ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.209 by root, Tue Feb 5 23:56:33 2008 UTC vs.
Revision 1.500 by root, Mon Jul 1 20:47:37 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
99# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
101# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT 129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
108# if HAVE_PORT_H && HAVE_PORT_CREATE 130# ifndef EV_USE_KQUEUE
109# define EV_USE_PORT 1 131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
110# else
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
113# endif 136# endif
114 137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
115# ifndef EV_USE_INOTIFY 139# ifndef EV_USE_PORT
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 140# define EV_USE_PORT EV_FEATURE_BACKENDS
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif 141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
121# endif 145# endif
122 146
147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
126#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
127#include <fcntl.h> 188#include <fcntl.h>
128#include <stddef.h> 189#include <stddef.h>
129 190
130#include <stdio.h> 191#include <stdio.h>
131 192
132#include <assert.h> 193#include <assert.h>
133#include <errno.h> 194#include <errno.h>
134#include <sys/types.h> 195#include <sys/types.h>
135#include <time.h> 196#include <time.h>
197#include <limits.h>
136 198
137#include <signal.h> 199#include <signal.h>
138 200
139#ifdef EV_H 201#ifdef EV_H
140# include EV_H 202# include EV_H
141#else 203#else
142# include "ev.h" 204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
143#endif 216#endif
144 217
145#ifndef _WIN32 218#ifndef _WIN32
146# include <sys/time.h> 219# include <sys/time.h>
147# include <sys/wait.h> 220# include <sys/wait.h>
148# include <unistd.h> 221# include <unistd.h>
149#else 222#else
223# include <io.h>
150# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
151# include <windows.h> 226# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
154# endif 229# endif
230# undef EV_AVOID_STDIO
231#endif
232
233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
155#endif 269# endif
270#endif
156 271
157/**/ 272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
158 280
159#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
160# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
286# endif
161#endif 287#endif
162 288
163#ifndef EV_USE_REALTIME 289#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 291#endif
166 292
167#ifndef EV_USE_NANOSLEEP 293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
168# define EV_USE_NANOSLEEP 0 297# define EV_USE_NANOSLEEP 0
298# endif
169#endif 299#endif
170 300
171#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 303#endif
174 304
175#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
176# ifdef _WIN32 306# ifdef _WIN32
177# define EV_USE_POLL 0 307# define EV_USE_POLL 0
178# else 308# else
179# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 310# endif
181#endif 311#endif
182 312
183#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
184# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
318# endif
185#endif 319#endif
186 320
187#ifndef EV_USE_KQUEUE 321#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 322# define EV_USE_KQUEUE 0
189#endif 323#endif
190 324
191#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 326# define EV_USE_PORT 0
193#endif 327#endif
194 328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
195#ifndef EV_USE_INOTIFY 337#ifndef EV_USE_INOTIFY
338# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
339# define EV_USE_INOTIFY EV_FEATURE_OS
340# else
196# define EV_USE_INOTIFY 0 341# define EV_USE_INOTIFY 0
342# endif
197#endif 343#endif
198 344
199#ifndef EV_PID_HASHSIZE 345#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 346# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 347#endif
348
349#ifndef EV_INOTIFY_HASHSIZE
350# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
351#endif
352
353#ifndef EV_USE_EVENTFD
354# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
355# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 356# else
203# define EV_PID_HASHSIZE 16 357# define EV_USE_EVENTFD 0
204# endif 358# endif
205#endif 359#endif
206 360
207#ifndef EV_INOTIFY_HASHSIZE 361#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 363# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 364# else
211# define EV_INOTIFY_HASHSIZE 16 365# define EV_USE_SIGNALFD 0
212# endif 366# endif
213#endif 367#endif
214 368
215/**/ 369#if 0 /* debugging */
370# define EV_VERIFY 3
371# define EV_USE_4HEAP 1
372# define EV_HEAP_CACHE_AT 1
373#endif
374
375#ifndef EV_VERIFY
376# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
377#endif
378
379#ifndef EV_USE_4HEAP
380# define EV_USE_4HEAP EV_FEATURE_DATA
381#endif
382
383#ifndef EV_HEAP_CACHE_AT
384# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385#endif
386
387#ifdef __ANDROID__
388/* supposedly, android doesn't typedef fd_mask */
389# undef EV_USE_SELECT
390# define EV_USE_SELECT 0
391/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392# undef EV_USE_CLOCK_SYSCALL
393# define EV_USE_CLOCK_SYSCALL 0
394#endif
395
396/* aix's poll.h seems to cause lots of trouble */
397#ifdef _AIX
398/* AIX has a completely broken poll.h header */
399# undef EV_USE_POLL
400# define EV_USE_POLL 0
401#endif
402
403/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404/* which makes programs even slower. might work on other unices, too. */
405#if EV_USE_CLOCK_SYSCALL
406# include <sys/syscall.h>
407# ifdef SYS_clock_gettime
408# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409# undef EV_USE_MONOTONIC
410# define EV_USE_MONOTONIC 1
411# else
412# undef EV_USE_CLOCK_SYSCALL
413# define EV_USE_CLOCK_SYSCALL 0
414# endif
415#endif
416
417/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 418
217#ifndef CLOCK_MONOTONIC 419#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 420# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 421# define EV_USE_MONOTONIC 0
220#endif 422#endif
228# undef EV_USE_INOTIFY 430# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 431# define EV_USE_INOTIFY 0
230#endif 432#endif
231 433
232#if !EV_USE_NANOSLEEP 434#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 435/* hp-ux has it in sys/time.h, which we unconditionally include above */
436# if !defined _WIN32 && !defined __hpux
234# include <sys/select.h> 437# include <sys/select.h>
235# endif 438# endif
236#endif 439#endif
237 440
441#if EV_USE_LINUXAIO
442# include <sys/syscall.h>
443# if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
444# undef EV_USE_LINUXAIO
445# define EV_USE_LINUXAIO 0
446# endif
447#endif
448
238#if EV_USE_INOTIFY 449#if EV_USE_INOTIFY
450# include <sys/statfs.h>
239# include <sys/inotify.h> 451# include <sys/inotify.h>
452/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453# ifndef IN_DONT_FOLLOW
454# undef EV_USE_INOTIFY
455# define EV_USE_INOTIFY 0
240#endif 456# endif
457#endif
241 458
242#if EV_SELECT_IS_WINSOCKET 459#if EV_USE_EVENTFD
460/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
243# include <winsock.h> 461# include <stdint.h>
462# ifndef EFD_NONBLOCK
463# define EFD_NONBLOCK O_NONBLOCK
464# endif
465# ifndef EFD_CLOEXEC
466# ifdef O_CLOEXEC
467# define EFD_CLOEXEC O_CLOEXEC
468# else
469# define EFD_CLOEXEC 02000000
470# endif
471# endif
472EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473#endif
474
475#if EV_USE_SIGNALFD
476/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477# include <stdint.h>
478# ifndef SFD_NONBLOCK
479# define SFD_NONBLOCK O_NONBLOCK
480# endif
481# ifndef SFD_CLOEXEC
482# ifdef O_CLOEXEC
483# define SFD_CLOEXEC O_CLOEXEC
484# else
485# define SFD_CLOEXEC 02000000
486# endif
487# endif
488EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490struct signalfd_siginfo
491{
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494};
244#endif 495#endif
245 496
246/**/ 497/**/
247 498
499#if EV_VERIFY >= 3
500# define EV_FREQUENT_CHECK ev_verify (EV_A)
501#else
502# define EV_FREQUENT_CHECK do { } while (0)
503#endif
504
248/* 505/*
249 * This is used to avoid floating point rounding problems. 506 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 507 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 508 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 509#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 511
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 512#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 513#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 514
515#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517
518/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519/* ECB.H BEGIN */
520/*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
559
560#ifndef ECB_H
561#define ECB_H
562
563/* 16 bits major, 16 bits minor */
564#define ECB_VERSION 0x00010006
565
566#ifdef _WIN32
567 typedef signed char int8_t;
568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 573 #if __GNUC__
574 typedef signed long long int64_t;
575 typedef unsigned long long uint64_t;
576 #else /* _MSC_VER || __BORLANDC__ */
577 typedef signed __int64 int64_t;
578 typedef unsigned __int64 uint64_t;
579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
589#else
590 #include <inttypes.h>
591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 #define ECB_PTRSIZE 8
593 #else
594 #define ECB_PTRSIZE 4
595 #endif
596#endif
597
598#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600
601/* work around x32 idiocy by defining proper macros */
602#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
607 #endif
608#endif
609
610/* many compilers define _GNUC_ to some versions but then only implement
611 * what their idiot authors think are the "more important" extensions,
612 * causing enormous grief in return for some better fake benchmark numbers.
613 * or so.
614 * we try to detect these and simply assume they are not gcc - if they have
615 * an issue with that they should have done it right in the first place.
616 */
617#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
619#else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621#endif
622
623#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624
625#if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627#else
628 #define ECB_CLANG_BUILTIN(x) 0
629#endif
630
631#if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633#else
634 #define ECB_CLANG_EXTENSION(x) 0
635#endif
636
637#define ECB_CPP (__cplusplus+0)
638#define ECB_CPP11 (__cplusplus >= 201103L)
639#define ECB_CPP14 (__cplusplus >= 201402L)
640#define ECB_CPP17 (__cplusplus >= 201703L)
641
642#if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645#else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648#endif
649
650#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654#if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658#else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662#endif
663
664/*****************************************************************************/
665
666/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669#if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671#endif
672
673#if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675#endif
676
677/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678#if __xlC__ && ECB_CPP
679 #include <builtins.h>
680#endif
681
682#if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
689 #if __i386 || __i386__
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
691 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
692 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
693 #elif ECB_GCC_AMD64
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
695 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
696 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
697 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
699 #elif defined __ARM_ARCH_2__ \
700 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
701 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
702 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
703 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
704 || defined __ARM_ARCH_5TEJ__
705 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
706 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
707 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
708 || defined __ARM_ARCH_6T2__
709 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
710 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
711 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
712 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
713 #elif __aarch64__
714 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
715 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
716 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
718 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
719 #elif defined __s390__ || defined __s390x__
720 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
721 #elif defined __mips__
722 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
723 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
724 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
725 #elif defined __alpha__
726 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
727 #elif defined __hppa__
728 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
729 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
730 #elif defined __ia64__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
732 #elif defined __m68k__
733 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
734 #elif defined __m88k__
735 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
736 #elif defined __sh__
737 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
738 #endif
739 #endif
740#endif
741
742#ifndef ECB_MEMORY_FENCE
743 #if ECB_GCC_VERSION(4,7)
744 /* see comment below (stdatomic.h) about the C11 memory model. */
745 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
746 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
747 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
748 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
749
750 #elif ECB_CLANG_EXTENSION(c_atomic)
751 /* see comment below (stdatomic.h) about the C11 memory model. */
752 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
753 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
754 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
755 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
756
757 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
758 #define ECB_MEMORY_FENCE __sync_synchronize ()
759 #elif _MSC_VER >= 1500 /* VC++ 2008 */
760 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
761 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
762 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
763 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
764 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
765 #elif _MSC_VER >= 1400 /* VC++ 2005 */
766 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
767 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
768 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
769 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
770 #elif defined _WIN32
771 #include <WinNT.h>
772 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
773 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
774 #include <mbarrier.h>
775 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
776 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
777 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
778 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
779 #elif __xlC__
780 #define ECB_MEMORY_FENCE __sync ()
781 #endif
782#endif
783
784#ifndef ECB_MEMORY_FENCE
785 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
786 /* we assume that these memory fences work on all variables/all memory accesses, */
787 /* not just C11 atomics and atomic accesses */
788 #include <stdatomic.h>
789 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
790 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
791 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
792 #endif
793#endif
794
795#ifndef ECB_MEMORY_FENCE
796 #if !ECB_AVOID_PTHREADS
797 /*
798 * if you get undefined symbol references to pthread_mutex_lock,
799 * or failure to find pthread.h, then you should implement
800 * the ECB_MEMORY_FENCE operations for your cpu/compiler
801 * OR provide pthread.h and link against the posix thread library
802 * of your system.
803 */
804 #include <pthread.h>
805 #define ECB_NEEDS_PTHREADS 1
806 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
807
808 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
809 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
810 #endif
811#endif
812
813#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
814 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
815#endif
816
817#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
818 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
819#endif
820
821#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
822 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
823#endif
824
825/*****************************************************************************/
826
827#if ECB_CPP
828 #define ecb_inline static inline
829#elif ECB_GCC_VERSION(2,5)
830 #define ecb_inline static __inline__
831#elif ECB_C99
832 #define ecb_inline static inline
833#else
834 #define ecb_inline static
835#endif
836
837#if ECB_GCC_VERSION(3,3)
838 #define ecb_restrict __restrict__
839#elif ECB_C99
840 #define ecb_restrict restrict
841#else
842 #define ecb_restrict
843#endif
844
845typedef int ecb_bool;
846
847#define ECB_CONCAT_(a, b) a ## b
848#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
849#define ECB_STRINGIFY_(a) # a
850#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
851#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
852
853#define ecb_function_ ecb_inline
854
855#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
856 #define ecb_attribute(attrlist) __attribute__ (attrlist)
857#else
858 #define ecb_attribute(attrlist)
859#endif
860
861#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
862 #define ecb_is_constant(expr) __builtin_constant_p (expr)
863#else
864 /* possible C11 impl for integral types
865 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
866 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
867
868 #define ecb_is_constant(expr) 0
869#endif
870
871#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
263# define expect(expr,value) __builtin_expect ((expr),(value)) 872 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline))
265#else 873#else
266# define expect(expr,value) (expr) 874 #define ecb_expect(expr,value) (expr)
267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif 875#endif
271#endif
272 876
877#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
878 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
879#else
880 #define ecb_prefetch(addr,rw,locality)
881#endif
882
883/* no emulation for ecb_decltype */
884#if ECB_CPP11
885 // older implementations might have problems with decltype(x)::type, work around it
886 template<class T> struct ecb_decltype_t { typedef T type; };
887 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
888#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
889 #define ecb_decltype(x) __typeof__ (x)
890#endif
891
892#if _MSC_VER >= 1300
893 #define ecb_deprecated __declspec (deprecated)
894#else
895 #define ecb_deprecated ecb_attribute ((__deprecated__))
896#endif
897
898#if _MSC_VER >= 1500
899 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
900#elif ECB_GCC_VERSION(4,5)
901 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
902#else
903 #define ecb_deprecated_message(msg) ecb_deprecated
904#endif
905
906#if _MSC_VER >= 1400
907 #define ecb_noinline __declspec (noinline)
908#else
909 #define ecb_noinline ecb_attribute ((__noinline__))
910#endif
911
912#define ecb_unused ecb_attribute ((__unused__))
913#define ecb_const ecb_attribute ((__const__))
914#define ecb_pure ecb_attribute ((__pure__))
915
916#if ECB_C11 || __IBMC_NORETURN
917 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
918 #define ecb_noreturn _Noreturn
919#elif ECB_CPP11
920 #define ecb_noreturn [[noreturn]]
921#elif _MSC_VER >= 1200
922 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
923 #define ecb_noreturn __declspec (noreturn)
924#else
925 #define ecb_noreturn ecb_attribute ((__noreturn__))
926#endif
927
928#if ECB_GCC_VERSION(4,3)
929 #define ecb_artificial ecb_attribute ((__artificial__))
930 #define ecb_hot ecb_attribute ((__hot__))
931 #define ecb_cold ecb_attribute ((__cold__))
932#else
933 #define ecb_artificial
934 #define ecb_hot
935 #define ecb_cold
936#endif
937
938/* put around conditional expressions if you are very sure that the */
939/* expression is mostly true or mostly false. note that these return */
940/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 941#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 942#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
943/* for compatibility to the rest of the world */
944#define ecb_likely(expr) ecb_expect_true (expr)
945#define ecb_unlikely(expr) ecb_expect_false (expr)
946
947/* count trailing zero bits and count # of one bits */
948#if ECB_GCC_VERSION(3,4) \
949 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
950 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
951 && ECB_CLANG_BUILTIN(__builtin_popcount))
952 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
953 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
954 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
955 #define ecb_ctz32(x) __builtin_ctz (x)
956 #define ecb_ctz64(x) __builtin_ctzll (x)
957 #define ecb_popcount32(x) __builtin_popcount (x)
958 /* no popcountll */
959#else
960 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
961 ecb_function_ ecb_const int
962 ecb_ctz32 (uint32_t x)
963 {
964#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
965 unsigned long r;
966 _BitScanForward (&r, x);
967 return (int)r;
968#else
969 int r = 0;
970
971 x &= ~x + 1; /* this isolates the lowest bit */
972
973#if ECB_branchless_on_i386
974 r += !!(x & 0xaaaaaaaa) << 0;
975 r += !!(x & 0xcccccccc) << 1;
976 r += !!(x & 0xf0f0f0f0) << 2;
977 r += !!(x & 0xff00ff00) << 3;
978 r += !!(x & 0xffff0000) << 4;
979#else
980 if (x & 0xaaaaaaaa) r += 1;
981 if (x & 0xcccccccc) r += 2;
982 if (x & 0xf0f0f0f0) r += 4;
983 if (x & 0xff00ff00) r += 8;
984 if (x & 0xffff0000) r += 16;
985#endif
986
987 return r;
988#endif
989 }
990
991 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
992 ecb_function_ ecb_const int
993 ecb_ctz64 (uint64_t x)
994 {
995#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
996 unsigned long r;
997 _BitScanForward64 (&r, x);
998 return (int)r;
999#else
1000 int shift = x & 0xffffffff ? 0 : 32;
1001 return ecb_ctz32 (x >> shift) + shift;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1006 ecb_function_ ecb_const int
1007 ecb_popcount32 (uint32_t x)
1008 {
1009 x -= (x >> 1) & 0x55555555;
1010 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1011 x = ((x >> 4) + x) & 0x0f0f0f0f;
1012 x *= 0x01010101;
1013
1014 return x >> 24;
1015 }
1016
1017 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1018 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1019 {
1020#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1021 unsigned long r;
1022 _BitScanReverse (&r, x);
1023 return (int)r;
1024#else
1025 int r = 0;
1026
1027 if (x >> 16) { x >>= 16; r += 16; }
1028 if (x >> 8) { x >>= 8; r += 8; }
1029 if (x >> 4) { x >>= 4; r += 4; }
1030 if (x >> 2) { x >>= 2; r += 2; }
1031 if (x >> 1) { r += 1; }
1032
1033 return r;
1034#endif
1035 }
1036
1037 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1038 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1039 {
1040#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1041 unsigned long r;
1042 _BitScanReverse64 (&r, x);
1043 return (int)r;
1044#else
1045 int r = 0;
1046
1047 if (x >> 32) { x >>= 32; r += 32; }
1048
1049 return r + ecb_ld32 (x);
1050#endif
1051 }
1052#endif
1053
1054ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1055ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1056ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1057ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1058
1059ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1060ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1061{
1062 return ( (x * 0x0802U & 0x22110U)
1063 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1064}
1065
1066ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1067ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1068{
1069 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1070 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1071 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1072 x = ( x >> 8 ) | ( x << 8);
1073
1074 return x;
1075}
1076
1077ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1078ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1079{
1080 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1081 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1082 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1083 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1084 x = ( x >> 16 ) | ( x << 16);
1085
1086 return x;
1087}
1088
1089/* popcount64 is only available on 64 bit cpus as gcc builtin */
1090/* so for this version we are lazy */
1091ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1092ecb_function_ ecb_const int
1093ecb_popcount64 (uint64_t x)
1094{
1095 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1096}
1097
1098ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1099ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1100ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1101ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1102ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1103ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1104ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1105ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1106
1107ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1108ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1109ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1110ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1111ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1112ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1113ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1114ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1115
1116#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1117 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1118 #define ecb_bswap16(x) __builtin_bswap16 (x)
1119 #else
1120 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1121 #endif
1122 #define ecb_bswap32(x) __builtin_bswap32 (x)
1123 #define ecb_bswap64(x) __builtin_bswap64 (x)
1124#elif _MSC_VER
1125 #include <stdlib.h>
1126 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1127 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1128 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1129#else
1130 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1131 ecb_function_ ecb_const uint16_t
1132 ecb_bswap16 (uint16_t x)
1133 {
1134 return ecb_rotl16 (x, 8);
1135 }
1136
1137 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1138 ecb_function_ ecb_const uint32_t
1139 ecb_bswap32 (uint32_t x)
1140 {
1141 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1142 }
1143
1144 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1145 ecb_function_ ecb_const uint64_t
1146 ecb_bswap64 (uint64_t x)
1147 {
1148 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1149 }
1150#endif
1151
1152#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1153 #define ecb_unreachable() __builtin_unreachable ()
1154#else
1155 /* this seems to work fine, but gcc always emits a warning for it :/ */
1156 ecb_inline ecb_noreturn void ecb_unreachable (void);
1157 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1158#endif
1159
1160/* try to tell the compiler that some condition is definitely true */
1161#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1162
1163ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1164ecb_inline ecb_const uint32_t
1165ecb_byteorder_helper (void)
1166{
1167 /* the union code still generates code under pressure in gcc, */
1168 /* but less than using pointers, and always seems to */
1169 /* successfully return a constant. */
1170 /* the reason why we have this horrible preprocessor mess */
1171 /* is to avoid it in all cases, at least on common architectures */
1172 /* or when using a recent enough gcc version (>= 4.6) */
1173#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1174 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1175 #define ECB_LITTLE_ENDIAN 1
1176 return 0x44332211;
1177#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1178 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1179 #define ECB_BIG_ENDIAN 1
1180 return 0x11223344;
1181#else
1182 union
1183 {
1184 uint8_t c[4];
1185 uint32_t u;
1186 } u = { 0x11, 0x22, 0x33, 0x44 };
1187 return u.u;
1188#endif
1189}
1190
1191ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1192ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1193ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1194ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1195
1196#if ECB_GCC_VERSION(3,0) || ECB_C99
1197 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1198#else
1199 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1200#endif
1201
1202#if ECB_CPP
1203 template<typename T>
1204 static inline T ecb_div_rd (T val, T div)
1205 {
1206 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1207 }
1208 template<typename T>
1209 static inline T ecb_div_ru (T val, T div)
1210 {
1211 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1212 }
1213#else
1214 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1215 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1216#endif
1217
1218#if ecb_cplusplus_does_not_suck
1219 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1220 template<typename T, int N>
1221 static inline int ecb_array_length (const T (&arr)[N])
1222 {
1223 return N;
1224 }
1225#else
1226 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1227#endif
1228
1229ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1230ecb_function_ ecb_const uint32_t
1231ecb_binary16_to_binary32 (uint32_t x)
1232{
1233 unsigned int s = (x & 0x8000) << (31 - 15);
1234 int e = (x >> 10) & 0x001f;
1235 unsigned int m = x & 0x03ff;
1236
1237 if (ecb_expect_false (e == 31))
1238 /* infinity or NaN */
1239 e = 255 - (127 - 15);
1240 else if (ecb_expect_false (!e))
1241 {
1242 if (ecb_expect_true (!m))
1243 /* zero, handled by code below by forcing e to 0 */
1244 e = 0 - (127 - 15);
1245 else
1246 {
1247 /* subnormal, renormalise */
1248 unsigned int s = 10 - ecb_ld32 (m);
1249
1250 m = (m << s) & 0x3ff; /* mask implicit bit */
1251 e -= s - 1;
1252 }
1253 }
1254
1255 /* e and m now are normalised, or zero, (or inf or nan) */
1256 e += 127 - 15;
1257
1258 return s | (e << 23) | (m << (23 - 10));
1259}
1260
1261ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1262ecb_function_ ecb_const uint16_t
1263ecb_binary32_to_binary16 (uint32_t x)
1264{
1265 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1266 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1267 unsigned int m = x & 0x007fffff;
1268
1269 x &= 0x7fffffff;
1270
1271 /* if it's within range of binary16 normals, use fast path */
1272 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1273 {
1274 /* mantissa round-to-even */
1275 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1276
1277 /* handle overflow */
1278 if (ecb_expect_false (m >= 0x00800000))
1279 {
1280 m >>= 1;
1281 e += 1;
1282 }
1283
1284 return s | (e << 10) | (m >> (23 - 10));
1285 }
1286
1287 /* handle large numbers and infinity */
1288 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1289 return s | 0x7c00;
1290
1291 /* handle zero, subnormals and small numbers */
1292 if (ecb_expect_true (x < 0x38800000))
1293 {
1294 /* zero */
1295 if (ecb_expect_true (!x))
1296 return s;
1297
1298 /* handle subnormals */
1299
1300 /* too small, will be zero */
1301 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1302 return s;
1303
1304 m |= 0x00800000; /* make implicit bit explicit */
1305
1306 /* very tricky - we need to round to the nearest e (+10) bit value */
1307 {
1308 unsigned int bits = 14 - e;
1309 unsigned int half = (1 << (bits - 1)) - 1;
1310 unsigned int even = (m >> bits) & 1;
1311
1312 /* if this overflows, we will end up with a normalised number */
1313 m = (m + half + even) >> bits;
1314 }
1315
1316 return s | m;
1317 }
1318
1319 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1320 m >>= 13;
1321
1322 return s | 0x7c00 | m | !m;
1323}
1324
1325/*******************************************************************************/
1326/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1327
1328/* basically, everything uses "ieee pure-endian" floating point numbers */
1329/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1330#if 0 \
1331 || __i386 || __i386__ \
1332 || ECB_GCC_AMD64 \
1333 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1334 || defined __s390__ || defined __s390x__ \
1335 || defined __mips__ \
1336 || defined __alpha__ \
1337 || defined __hppa__ \
1338 || defined __ia64__ \
1339 || defined __m68k__ \
1340 || defined __m88k__ \
1341 || defined __sh__ \
1342 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1343 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1344 || defined __aarch64__
1345 #define ECB_STDFP 1
1346 #include <string.h> /* for memcpy */
1347#else
1348 #define ECB_STDFP 0
1349#endif
1350
1351#ifndef ECB_NO_LIBM
1352
1353 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1354
1355 /* only the oldest of old doesn't have this one. solaris. */
1356 #ifdef INFINITY
1357 #define ECB_INFINITY INFINITY
1358 #else
1359 #define ECB_INFINITY HUGE_VAL
1360 #endif
1361
1362 #ifdef NAN
1363 #define ECB_NAN NAN
1364 #else
1365 #define ECB_NAN ECB_INFINITY
1366 #endif
1367
1368 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1369 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1370 #define ecb_frexpf(x,e) frexpf ((x), (e))
1371 #else
1372 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1373 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1374 #endif
1375
1376 /* convert a float to ieee single/binary32 */
1377 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1378 ecb_function_ ecb_const uint32_t
1379 ecb_float_to_binary32 (float x)
1380 {
1381 uint32_t r;
1382
1383 #if ECB_STDFP
1384 memcpy (&r, &x, 4);
1385 #else
1386 /* slow emulation, works for anything but -0 */
1387 uint32_t m;
1388 int e;
1389
1390 if (x == 0e0f ) return 0x00000000U;
1391 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1392 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1393 if (x != x ) return 0x7fbfffffU;
1394
1395 m = ecb_frexpf (x, &e) * 0x1000000U;
1396
1397 r = m & 0x80000000U;
1398
1399 if (r)
1400 m = -m;
1401
1402 if (e <= -126)
1403 {
1404 m &= 0xffffffU;
1405 m >>= (-125 - e);
1406 e = -126;
1407 }
1408
1409 r |= (e + 126) << 23;
1410 r |= m & 0x7fffffU;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* converts an ieee single/binary32 to a float */
1417 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1418 ecb_function_ ecb_const float
1419 ecb_binary32_to_float (uint32_t x)
1420 {
1421 float r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 4);
1425 #else
1426 /* emulation, only works for normals and subnormals and +0 */
1427 int neg = x >> 31;
1428 int e = (x >> 23) & 0xffU;
1429
1430 x &= 0x7fffffU;
1431
1432 if (e)
1433 x |= 0x800000U;
1434 else
1435 e = 1;
1436
1437 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1438 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1439
1440 r = neg ? -r : r;
1441 #endif
1442
1443 return r;
1444 }
1445
1446 /* convert a double to ieee double/binary64 */
1447 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1448 ecb_function_ ecb_const uint64_t
1449 ecb_double_to_binary64 (double x)
1450 {
1451 uint64_t r;
1452
1453 #if ECB_STDFP
1454 memcpy (&r, &x, 8);
1455 #else
1456 /* slow emulation, works for anything but -0 */
1457 uint64_t m;
1458 int e;
1459
1460 if (x == 0e0 ) return 0x0000000000000000U;
1461 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1462 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1463 if (x != x ) return 0X7ff7ffffffffffffU;
1464
1465 m = frexp (x, &e) * 0x20000000000000U;
1466
1467 r = m & 0x8000000000000000;;
1468
1469 if (r)
1470 m = -m;
1471
1472 if (e <= -1022)
1473 {
1474 m &= 0x1fffffffffffffU;
1475 m >>= (-1021 - e);
1476 e = -1022;
1477 }
1478
1479 r |= ((uint64_t)(e + 1022)) << 52;
1480 r |= m & 0xfffffffffffffU;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* converts an ieee double/binary64 to a double */
1487 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1488 ecb_function_ ecb_const double
1489 ecb_binary64_to_double (uint64_t x)
1490 {
1491 double r;
1492
1493 #if ECB_STDFP
1494 memcpy (&r, &x, 8);
1495 #else
1496 /* emulation, only works for normals and subnormals and +0 */
1497 int neg = x >> 63;
1498 int e = (x >> 52) & 0x7ffU;
1499
1500 x &= 0xfffffffffffffU;
1501
1502 if (e)
1503 x |= 0x10000000000000U;
1504 else
1505 e = 1;
1506
1507 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1508 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1509
1510 r = neg ? -r : r;
1511 #endif
1512
1513 return r;
1514 }
1515
1516 /* convert a float to ieee half/binary16 */
1517 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1518 ecb_function_ ecb_const uint16_t
1519 ecb_float_to_binary16 (float x)
1520 {
1521 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1522 }
1523
1524 /* convert an ieee half/binary16 to float */
1525 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1526 ecb_function_ ecb_const float
1527 ecb_binary16_to_float (uint16_t x)
1528 {
1529 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1530 }
1531
1532#endif
1533
1534#endif
1535
1536/* ECB.H END */
1537
1538#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1539/* if your architecture doesn't need memory fences, e.g. because it is
1540 * single-cpu/core, or if you use libev in a project that doesn't use libev
1541 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1542 * libev, in which cases the memory fences become nops.
1543 * alternatively, you can remove this #error and link against libpthread,
1544 * which will then provide the memory fences.
1545 */
1546# error "memory fences not defined for your architecture, please report"
1547#endif
1548
1549#ifndef ECB_MEMORY_FENCE
1550# define ECB_MEMORY_FENCE do { } while (0)
1551# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1552# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1553#endif
1554
275#define inline_size static inline 1555#define inline_size ecb_inline
276 1556
277#if EV_MINIMAL 1557#if EV_FEATURE_CODE
278# define inline_speed static noinline
279#else
280# define inline_speed static inline 1558# define inline_speed ecb_inline
1559#else
1560# define inline_speed ecb_noinline static
281#endif 1561#endif
282 1562
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1563#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1564
1565#if EV_MINPRI == EV_MAXPRI
1566# define ABSPRI(w) (((W)w), 0)
1567#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1568# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1569#endif
285 1570
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1571#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */
288 1572
289typedef ev_watcher *W; 1573typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 1574typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 1575typedef ev_watcher_time *WT;
292 1576
1577#define ev_active(w) ((W)(w))->active
1578#define ev_at(w) ((WT)(w))->at
1579
1580#if EV_USE_REALTIME
1581/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1582/* giving it a reasonably high chance of working on typical architectures */
1583static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1584#endif
1585
293#if EV_USE_MONOTONIC 1586#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1587static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1588#endif
1589
1590#ifndef EV_FD_TO_WIN32_HANDLE
1591# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1592#endif
1593#ifndef EV_WIN32_HANDLE_TO_FD
1594# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1595#endif
1596#ifndef EV_WIN32_CLOSE_FD
1597# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1598#endif
298 1599
299#ifdef _WIN32 1600#ifdef _WIN32
300# include "ev_win32.c" 1601# include "ev_win32.c"
301#endif 1602#endif
302 1603
303/*****************************************************************************/ 1604/*****************************************************************************/
304 1605
1606#if EV_USE_LINUXAIO
1607# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1608#endif
1609
1610/* define a suitable floor function (only used by periodics atm) */
1611
1612#if EV_USE_FLOOR
1613# include <math.h>
1614# define ev_floor(v) floor (v)
1615#else
1616
1617#include <float.h>
1618
1619/* a floor() replacement function, should be independent of ev_tstamp type */
1620ecb_noinline
1621static ev_tstamp
1622ev_floor (ev_tstamp v)
1623{
1624 /* the choice of shift factor is not terribly important */
1625#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1626 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1627#else
1628 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1629#endif
1630
1631 /* argument too large for an unsigned long? */
1632 if (ecb_expect_false (v >= shift))
1633 {
1634 ev_tstamp f;
1635
1636 if (v == v - 1.)
1637 return v; /* very large number */
1638
1639 f = shift * ev_floor (v * (1. / shift));
1640 return f + ev_floor (v - f);
1641 }
1642
1643 /* special treatment for negative args? */
1644 if (ecb_expect_false (v < 0.))
1645 {
1646 ev_tstamp f = -ev_floor (-v);
1647
1648 return f - (f == v ? 0 : 1);
1649 }
1650
1651 /* fits into an unsigned long */
1652 return (unsigned long)v;
1653}
1654
1655#endif
1656
1657/*****************************************************************************/
1658
1659#ifdef __linux
1660# include <sys/utsname.h>
1661#endif
1662
1663ecb_noinline ecb_cold
1664static unsigned int
1665ev_linux_version (void)
1666{
1667#ifdef __linux
1668 unsigned int v = 0;
1669 struct utsname buf;
1670 int i;
1671 char *p = buf.release;
1672
1673 if (uname (&buf))
1674 return 0;
1675
1676 for (i = 3+1; --i; )
1677 {
1678 unsigned int c = 0;
1679
1680 for (;;)
1681 {
1682 if (*p >= '0' && *p <= '9')
1683 c = c * 10 + *p++ - '0';
1684 else
1685 {
1686 p += *p == '.';
1687 break;
1688 }
1689 }
1690
1691 v = (v << 8) | c;
1692 }
1693
1694 return v;
1695#else
1696 return 0;
1697#endif
1698}
1699
1700/*****************************************************************************/
1701
1702#if EV_AVOID_STDIO
1703ecb_noinline ecb_cold
1704static void
1705ev_printerr (const char *msg)
1706{
1707 write (STDERR_FILENO, msg, strlen (msg));
1708}
1709#endif
1710
305static void (*syserr_cb)(const char *msg); 1711static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
306 1712
1713ecb_cold
307void 1714void
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1715ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
309{ 1716{
310 syserr_cb = cb; 1717 syserr_cb = cb;
311} 1718}
312 1719
313static void noinline 1720ecb_noinline ecb_cold
1721static void
314syserr (const char *msg) 1722ev_syserr (const char *msg)
315{ 1723{
316 if (!msg) 1724 if (!msg)
317 msg = "(libev) system error"; 1725 msg = "(libev) system error";
318 1726
319 if (syserr_cb) 1727 if (syserr_cb)
320 syserr_cb (msg); 1728 syserr_cb (msg);
321 else 1729 else
322 { 1730 {
1731#if EV_AVOID_STDIO
1732 ev_printerr (msg);
1733 ev_printerr (": ");
1734 ev_printerr (strerror (errno));
1735 ev_printerr ("\n");
1736#else
323 perror (msg); 1737 perror (msg);
1738#endif
324 abort (); 1739 abort ();
325 } 1740 }
326} 1741}
327 1742
328static void *(*alloc)(void *ptr, long size); 1743static void *
1744ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1745{
1746 /* some systems, notably openbsd and darwin, fail to properly
1747 * implement realloc (x, 0) (as required by both ansi c-89 and
1748 * the single unix specification, so work around them here.
1749 * recently, also (at least) fedora and debian started breaking it,
1750 * despite documenting it otherwise.
1751 */
329 1752
1753 if (size)
1754 return realloc (ptr, size);
1755
1756 free (ptr);
1757 return 0;
1758}
1759
1760static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1761
1762ecb_cold
330void 1763void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1764ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
332{ 1765{
333 alloc = cb; 1766 alloc = cb;
334} 1767}
335 1768
336inline_speed void * 1769inline_speed void *
337ev_realloc (void *ptr, long size) 1770ev_realloc (void *ptr, long size)
338{ 1771{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1772 ptr = alloc (ptr, size);
340 1773
341 if (!ptr && size) 1774 if (!ptr && size)
342 { 1775 {
1776#if EV_AVOID_STDIO
1777 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1778#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1779 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1780#endif
344 abort (); 1781 abort ();
345 } 1782 }
346 1783
347 return ptr; 1784 return ptr;
348} 1785}
350#define ev_malloc(size) ev_realloc (0, (size)) 1787#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1788#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1789
353/*****************************************************************************/ 1790/*****************************************************************************/
354 1791
1792/* set in reify when reification needed */
1793#define EV_ANFD_REIFY 1
1794
1795/* file descriptor info structure */
355typedef struct 1796typedef struct
356{ 1797{
357 WL head; 1798 WL head;
358 unsigned char events; 1799 unsigned char events; /* the events watched for */
1800 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1801 unsigned char emask; /* some backends store the actual kernel mask in here */
359 unsigned char reify; 1802 unsigned char unused;
1803#if EV_USE_EPOLL
1804 unsigned int egen; /* generation counter to counter epoll bugs */
1805#endif
360#if EV_SELECT_IS_WINSOCKET 1806#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1807 SOCKET handle;
362#endif 1808#endif
1809#if EV_USE_IOCP
1810 OVERLAPPED or, ow;
1811#endif
363} ANFD; 1812} ANFD;
364 1813
1814/* stores the pending event set for a given watcher */
365typedef struct 1815typedef struct
366{ 1816{
367 W w; 1817 W w;
368 int events; 1818 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1819} ANPENDING;
370 1820
371#if EV_USE_INOTIFY 1821#if EV_USE_INOTIFY
1822/* hash table entry per inotify-id */
372typedef struct 1823typedef struct
373{ 1824{
374 WL head; 1825 WL head;
375} ANFS; 1826} ANFS;
1827#endif
1828
1829/* Heap Entry */
1830#if EV_HEAP_CACHE_AT
1831 /* a heap element */
1832 typedef struct {
1833 ev_tstamp at;
1834 WT w;
1835 } ANHE;
1836
1837 #define ANHE_w(he) (he).w /* access watcher, read-write */
1838 #define ANHE_at(he) (he).at /* access cached at, read-only */
1839 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1840#else
1841 /* a heap element */
1842 typedef WT ANHE;
1843
1844 #define ANHE_w(he) (he)
1845 #define ANHE_at(he) (he)->at
1846 #define ANHE_at_cache(he)
376#endif 1847#endif
377 1848
378#if EV_MULTIPLICITY 1849#if EV_MULTIPLICITY
379 1850
380 struct ev_loop 1851 struct ev_loop
386 #undef VAR 1857 #undef VAR
387 }; 1858 };
388 #include "ev_wrap.h" 1859 #include "ev_wrap.h"
389 1860
390 static struct ev_loop default_loop_struct; 1861 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1862 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1863
393#else 1864#else
394 1865
395 ev_tstamp ev_rt_now; 1866 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1867 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1868 #include "ev_vars.h"
398 #undef VAR 1869 #undef VAR
399 1870
400 static int ev_default_loop_ptr; 1871 static int ev_default_loop_ptr;
401 1872
402#endif 1873#endif
403 1874
1875#if EV_FEATURE_API
1876# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1877# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1878# define EV_INVOKE_PENDING invoke_cb (EV_A)
1879#else
1880# define EV_RELEASE_CB (void)0
1881# define EV_ACQUIRE_CB (void)0
1882# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1883#endif
1884
1885#define EVBREAK_RECURSE 0x80
1886
404/*****************************************************************************/ 1887/*****************************************************************************/
405 1888
1889#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1890ev_tstamp
407ev_time (void) 1891ev_time (void) EV_NOEXCEPT
408{ 1892{
409#if EV_USE_REALTIME 1893#if EV_USE_REALTIME
1894 if (ecb_expect_true (have_realtime))
1895 {
410 struct timespec ts; 1896 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1897 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1898 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1899 }
1900#endif
1901
414 struct timeval tv; 1902 struct timeval tv;
415 gettimeofday (&tv, 0); 1903 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1904 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1905}
1906#endif
419 1907
420ev_tstamp inline_size 1908inline_size ev_tstamp
421get_clock (void) 1909get_clock (void)
422{ 1910{
423#if EV_USE_MONOTONIC 1911#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1912 if (ecb_expect_true (have_monotonic))
425 { 1913 {
426 struct timespec ts; 1914 struct timespec ts;
427 clock_gettime (CLOCK_MONOTONIC, &ts); 1915 clock_gettime (CLOCK_MONOTONIC, &ts);
428 return ts.tv_sec + ts.tv_nsec * 1e-9; 1916 return ts.tv_sec + ts.tv_nsec * 1e-9;
429 } 1917 }
432 return ev_time (); 1920 return ev_time ();
433} 1921}
434 1922
435#if EV_MULTIPLICITY 1923#if EV_MULTIPLICITY
436ev_tstamp 1924ev_tstamp
437ev_now (EV_P) 1925ev_now (EV_P) EV_NOEXCEPT
438{ 1926{
439 return ev_rt_now; 1927 return ev_rt_now;
440} 1928}
441#endif 1929#endif
442 1930
443void 1931void
444ev_sleep (ev_tstamp delay) 1932ev_sleep (ev_tstamp delay) EV_NOEXCEPT
445{ 1933{
446 if (delay > 0.) 1934 if (delay > 0.)
447 { 1935 {
448#if EV_USE_NANOSLEEP 1936#if EV_USE_NANOSLEEP
449 struct timespec ts; 1937 struct timespec ts;
450 1938
451 ts.tv_sec = (time_t)delay; 1939 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1940 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1941#elif defined _WIN32
1942 /* maybe this should round up, as ms is very low resolution */
1943 /* compared to select (µs) or nanosleep (ns) */
456 Sleep (delay * 1e3); 1944 Sleep ((unsigned long)(delay * 1e3));
457#else 1945#else
458 struct timeval tv; 1946 struct timeval tv;
459 1947
460 tv.tv_sec = (time_t)delay; 1948 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1949 /* something not guaranteed by newer posix versions, but guaranteed */
462 1950 /* by older ones */
1951 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1952 select (0, 0, 0, 0, &tv);
464#endif 1953#endif
465 } 1954 }
466} 1955}
467 1956
468/*****************************************************************************/ 1957/*****************************************************************************/
469 1958
470int inline_size 1959#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1960
1961/* find a suitable new size for the given array, */
1962/* hopefully by rounding to a nice-to-malloc size */
1963inline_size int
471array_nextsize (int elem, int cur, int cnt) 1964array_nextsize (int elem, int cur, int cnt)
472{ 1965{
473 int ncur = cur + 1; 1966 int ncur = cur + 1;
474 1967
475 do 1968 do
476 ncur <<= 1; 1969 ncur <<= 1;
477 while (cnt > ncur); 1970 while (cnt > ncur);
478 1971
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1972 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1973 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1974 {
482 ncur *= elem; 1975 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1976 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1977 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1978 ncur /= elem;
486 } 1979 }
487 1980
488 return ncur; 1981 return ncur;
489} 1982}
490 1983
491static noinline void * 1984ecb_noinline ecb_cold
1985static void *
492array_realloc (int elem, void *base, int *cur, int cnt) 1986array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1987{
494 *cur = array_nextsize (elem, *cur, cnt); 1988 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1989 return ev_realloc (base, elem * *cur);
496} 1990}
497 1991
1992#define array_needsize_noinit(base,offset,count)
1993
1994#define array_needsize_zerofill(base,offset,count) \
1995 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
1996
498#define array_needsize(type,base,cur,cnt,init) \ 1997#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1998 if (ecb_expect_false ((cnt) > (cur))) \
500 { \ 1999 { \
501 int ocur_ = (cur); \ 2000 ecb_unused int ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 2001 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 2002 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 2003 init ((base), ocur_, ((cur) - ocur_)); \
505 } 2004 }
506 2005
507#if 0 2006#if 0
508#define array_slim(type,stem) \ 2007#define array_slim(type,stem) \
509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2008 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2012 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 2013 }
515#endif 2014#endif
516 2015
517#define array_free(stem, idx) \ 2016#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2017 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 2018
520/*****************************************************************************/ 2019/*****************************************************************************/
521 2020
522void noinline 2021/* dummy callback for pending events */
2022ecb_noinline
2023static void
2024pendingcb (EV_P_ ev_prepare *w, int revents)
2025{
2026}
2027
2028ecb_noinline
2029void
523ev_feed_event (EV_P_ void *w, int revents) 2030ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
524{ 2031{
525 W w_ = (W)w; 2032 W w_ = (W)w;
526 int pri = ABSPRI (w_); 2033 int pri = ABSPRI (w_);
527 2034
528 if (expect_false (w_->pending)) 2035 if (ecb_expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents; 2036 pendings [pri][w_->pending - 1].events |= revents;
530 else 2037 else
531 { 2038 {
532 w_->pending = ++pendingcnt [pri]; 2039 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2040 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
534 pendings [pri][w_->pending - 1].w = w_; 2041 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 2042 pendings [pri][w_->pending - 1].events = revents;
536 } 2043 }
537}
538 2044
539void inline_speed 2045 pendingpri = NUMPRI - 1;
2046}
2047
2048inline_speed void
2049feed_reverse (EV_P_ W w)
2050{
2051 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2052 rfeeds [rfeedcnt++] = w;
2053}
2054
2055inline_size void
2056feed_reverse_done (EV_P_ int revents)
2057{
2058 do
2059 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2060 while (rfeedcnt);
2061}
2062
2063inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 2064queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 2065{
542 int i; 2066 int i;
543 2067
544 for (i = 0; i < eventcnt; ++i) 2068 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 2069 ev_feed_event (EV_A_ events [i], type);
546} 2070}
547 2071
548/*****************************************************************************/ 2072/*****************************************************************************/
549 2073
550void inline_size 2074inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 2075fd_event_nocheck (EV_P_ int fd, int revents)
565{ 2076{
566 ANFD *anfd = anfds + fd; 2077 ANFD *anfd = anfds + fd;
567 ev_io *w; 2078 ev_io *w;
568 2079
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2080 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 2084 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 2085 ev_feed_event (EV_A_ (W)w, ev);
575 } 2086 }
576} 2087}
577 2088
578void 2089/* do not submit kernel events for fds that have reify set */
2090/* because that means they changed while we were polling for new events */
2091inline_speed void
579ev_feed_fd_event (EV_P_ int fd, int revents) 2092fd_event (EV_P_ int fd, int revents)
2093{
2094 ANFD *anfd = anfds + fd;
2095
2096 if (ecb_expect_true (!anfd->reify))
2097 fd_event_nocheck (EV_A_ fd, revents);
2098}
2099
2100void
2101ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
580{ 2102{
581 if (fd >= 0 && fd < anfdmax) 2103 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 2104 fd_event_nocheck (EV_A_ fd, revents);
583} 2105}
584 2106
585void inline_size 2107/* make sure the external fd watch events are in-sync */
2108/* with the kernel/libev internal state */
2109inline_size void
586fd_reify (EV_P) 2110fd_reify (EV_P)
587{ 2111{
588 int i; 2112 int i;
2113
2114#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2115 for (i = 0; i < fdchangecnt; ++i)
2116 {
2117 int fd = fdchanges [i];
2118 ANFD *anfd = anfds + fd;
2119
2120 if (anfd->reify & EV__IOFDSET && anfd->head)
2121 {
2122 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2123
2124 if (handle != anfd->handle)
2125 {
2126 unsigned long arg;
2127
2128 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2129
2130 /* handle changed, but fd didn't - we need to do it in two steps */
2131 backend_modify (EV_A_ fd, anfd->events, 0);
2132 anfd->events = 0;
2133 anfd->handle = handle;
2134 }
2135 }
2136 }
2137#endif
589 2138
590 for (i = 0; i < fdchangecnt; ++i) 2139 for (i = 0; i < fdchangecnt; ++i)
591 { 2140 {
592 int fd = fdchanges [i]; 2141 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 2142 ANFD *anfd = anfds + fd;
594 ev_io *w; 2143 ev_io *w;
595 2144
596 unsigned char events = 0; 2145 unsigned char o_events = anfd->events;
2146 unsigned char o_reify = anfd->reify;
597 2147
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2148 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 2149
601#if EV_SELECT_IS_WINSOCKET 2150 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 2151 {
604 unsigned long argp; 2152 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 2153
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2154 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 2155 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 2156
609 #endif 2157 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2158 o_reify = EV__IOFDSET; /* actually |= */
611 } 2159 }
612#endif
613 2160
614 { 2161 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 2162 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 2163 }
625 2164
626 fdchangecnt = 0; 2165 fdchangecnt = 0;
627} 2166}
628 2167
2168/* something about the given fd changed */
629void inline_size 2169inline_size
2170void
630fd_change (EV_P_ int fd, int flags) 2171fd_change (EV_P_ int fd, int flags)
631{ 2172{
632 unsigned char reify = anfds [fd].reify; 2173 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 2174 anfds [fd].reify |= flags;
634 2175
635 if (expect_true (!reify)) 2176 if (ecb_expect_true (!reify))
636 { 2177 {
637 ++fdchangecnt; 2178 ++fdchangecnt;
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2179 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
639 fdchanges [fdchangecnt - 1] = fd; 2180 fdchanges [fdchangecnt - 1] = fd;
640 } 2181 }
641} 2182}
642 2183
643void inline_speed 2184/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2185inline_speed ecb_cold void
644fd_kill (EV_P_ int fd) 2186fd_kill (EV_P_ int fd)
645{ 2187{
646 ev_io *w; 2188 ev_io *w;
647 2189
648 while ((w = (ev_io *)anfds [fd].head)) 2190 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 2192 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2193 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 2194 }
653} 2195}
654 2196
655int inline_size 2197/* check whether the given fd is actually valid, for error recovery */
2198inline_size ecb_cold int
656fd_valid (int fd) 2199fd_valid (int fd)
657{ 2200{
658#ifdef _WIN32 2201#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 2202 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 2203#else
661 return fcntl (fd, F_GETFD) != -1; 2204 return fcntl (fd, F_GETFD) != -1;
662#endif 2205#endif
663} 2206}
664 2207
665/* called on EBADF to verify fds */ 2208/* called on EBADF to verify fds */
666static void noinline 2209ecb_noinline ecb_cold
2210static void
667fd_ebadf (EV_P) 2211fd_ebadf (EV_P)
668{ 2212{
669 int fd; 2213 int fd;
670 2214
671 for (fd = 0; fd < anfdmax; ++fd) 2215 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 2216 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 2217 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 2218 fd_kill (EV_A_ fd);
675} 2219}
676 2220
677/* called on ENOMEM in select/poll to kill some fds and retry */ 2221/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 2222ecb_noinline ecb_cold
2223static void
679fd_enomem (EV_P) 2224fd_enomem (EV_P)
680{ 2225{
681 int fd; 2226 int fd;
682 2227
683 for (fd = anfdmax; fd--; ) 2228 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 2229 if (anfds [fd].events)
685 { 2230 {
686 fd_kill (EV_A_ fd); 2231 fd_kill (EV_A_ fd);
687 return; 2232 break;
688 } 2233 }
689} 2234}
690 2235
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 2236/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 2237ecb_noinline
2238static void
693fd_rearm_all (EV_P) 2239fd_rearm_all (EV_P)
694{ 2240{
695 int fd; 2241 int fd;
696 2242
697 for (fd = 0; fd < anfdmax; ++fd) 2243 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 2244 if (anfds [fd].events)
699 { 2245 {
700 anfds [fd].events = 0; 2246 anfds [fd].events = 0;
2247 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2248 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 2249 }
703} 2250}
704 2251
705/*****************************************************************************/ 2252/* used to prepare libev internal fd's */
706 2253/* this is not fork-safe */
707void inline_speed 2254inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 2255fd_intern (int fd)
792{ 2256{
793#ifdef _WIN32 2257#ifdef _WIN32
794 int arg = 1; 2258 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2259 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 2260#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 2261 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 2262 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 2263#endif
800} 2264}
801 2265
802static void noinline 2266/*****************************************************************************/
2267
2268/*
2269 * the heap functions want a real array index. array index 0 is guaranteed to not
2270 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2271 * the branching factor of the d-tree.
2272 */
2273
2274/*
2275 * at the moment we allow libev the luxury of two heaps,
2276 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2277 * which is more cache-efficient.
2278 * the difference is about 5% with 50000+ watchers.
2279 */
2280#if EV_USE_4HEAP
2281
2282#define DHEAP 4
2283#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2284#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2285#define UPHEAP_DONE(p,k) ((p) == (k))
2286
2287/* away from the root */
2288inline_speed void
2289downheap (ANHE *heap, int N, int k)
2290{
2291 ANHE he = heap [k];
2292 ANHE *E = heap + N + HEAP0;
2293
2294 for (;;)
2295 {
2296 ev_tstamp minat;
2297 ANHE *minpos;
2298 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2299
2300 /* find minimum child */
2301 if (ecb_expect_true (pos + DHEAP - 1 < E))
2302 {
2303 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2304 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2305 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2306 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2307 }
2308 else if (pos < E)
2309 {
2310 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2311 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2312 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2313 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2314 }
2315 else
2316 break;
2317
2318 if (ANHE_at (he) <= minat)
2319 break;
2320
2321 heap [k] = *minpos;
2322 ev_active (ANHE_w (*minpos)) = k;
2323
2324 k = minpos - heap;
2325 }
2326
2327 heap [k] = he;
2328 ev_active (ANHE_w (he)) = k;
2329}
2330
2331#else /* 4HEAP */
2332
2333#define HEAP0 1
2334#define HPARENT(k) ((k) >> 1)
2335#define UPHEAP_DONE(p,k) (!(p))
2336
2337/* away from the root */
2338inline_speed void
2339downheap (ANHE *heap, int N, int k)
2340{
2341 ANHE he = heap [k];
2342
2343 for (;;)
2344 {
2345 int c = k << 1;
2346
2347 if (c >= N + HEAP0)
2348 break;
2349
2350 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2351 ? 1 : 0;
2352
2353 if (ANHE_at (he) <= ANHE_at (heap [c]))
2354 break;
2355
2356 heap [k] = heap [c];
2357 ev_active (ANHE_w (heap [k])) = k;
2358
2359 k = c;
2360 }
2361
2362 heap [k] = he;
2363 ev_active (ANHE_w (he)) = k;
2364}
2365#endif
2366
2367/* towards the root */
2368inline_speed void
2369upheap (ANHE *heap, int k)
2370{
2371 ANHE he = heap [k];
2372
2373 for (;;)
2374 {
2375 int p = HPARENT (k);
2376
2377 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2378 break;
2379
2380 heap [k] = heap [p];
2381 ev_active (ANHE_w (heap [k])) = k;
2382 k = p;
2383 }
2384
2385 heap [k] = he;
2386 ev_active (ANHE_w (he)) = k;
2387}
2388
2389/* move an element suitably so it is in a correct place */
2390inline_size void
2391adjustheap (ANHE *heap, int N, int k)
2392{
2393 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2394 upheap (heap, k);
2395 else
2396 downheap (heap, N, k);
2397}
2398
2399/* rebuild the heap: this function is used only once and executed rarely */
2400inline_size void
2401reheap (ANHE *heap, int N)
2402{
2403 int i;
2404
2405 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2406 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2407 for (i = 0; i < N; ++i)
2408 upheap (heap, i + HEAP0);
2409}
2410
2411/*****************************************************************************/
2412
2413/* associate signal watchers to a signal signal */
2414typedef struct
2415{
2416 EV_ATOMIC_T pending;
2417#if EV_MULTIPLICITY
2418 EV_P;
2419#endif
2420 WL head;
2421} ANSIG;
2422
2423static ANSIG signals [EV_NSIG - 1];
2424
2425/*****************************************************************************/
2426
2427#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2428
2429ecb_noinline ecb_cold
2430static void
803evpipe_init (EV_P) 2431evpipe_init (EV_P)
804{ 2432{
805 if (!ev_is_active (&pipeev)) 2433 if (!ev_is_active (&pipe_w))
806 { 2434 {
2435 int fds [2];
2436
2437# if EV_USE_EVENTFD
2438 fds [0] = -1;
2439 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2440 if (fds [1] < 0 && errno == EINVAL)
2441 fds [1] = eventfd (0, 0);
2442
2443 if (fds [1] < 0)
2444# endif
2445 {
807 while (pipe (evpipe)) 2446 while (pipe (fds))
808 syserr ("(libev) error creating signal/async pipe"); 2447 ev_syserr ("(libev) error creating signal/async pipe");
809 2448
810 fd_intern (evpipe [0]); 2449 fd_intern (fds [0]);
2450 }
2451
2452 evpipe [0] = fds [0];
2453
2454 if (evpipe [1] < 0)
2455 evpipe [1] = fds [1]; /* first call, set write fd */
2456 else
2457 {
2458 /* on subsequent calls, do not change evpipe [1] */
2459 /* so that evpipe_write can always rely on its value. */
2460 /* this branch does not do anything sensible on windows, */
2461 /* so must not be executed on windows */
2462
2463 dup2 (fds [1], evpipe [1]);
2464 close (fds [1]);
2465 }
2466
811 fd_intern (evpipe [1]); 2467 fd_intern (evpipe [1]);
812 2468
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 2469 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
814 ev_io_start (EV_A_ &pipeev); 2470 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2471 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 { 2472 }
2473}
2474
2475inline_speed void
2476evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2477{
2478 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2479
2480 if (ecb_expect_true (*flag))
2481 return;
2482
2483 *flag = 1;
2484 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2485
2486 pipe_write_skipped = 1;
2487
2488 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2489
2490 if (pipe_write_wanted)
2491 {
824 int old_errno = errno; 2492 int old_errno;
825 2493
826 if (sig) gotsig = 1; 2494 pipe_write_skipped = 0;
827 if (async) gotasync = 1; 2495 ECB_MEMORY_FENCE_RELEASE;
828 2496
829 write (evpipe [1], &old_errno, 1); 2497 old_errno = errno; /* save errno because write will clobber it */
2498
2499#if EV_USE_EVENTFD
2500 if (evpipe [0] < 0)
2501 {
2502 uint64_t counter = 1;
2503 write (evpipe [1], &counter, sizeof (uint64_t));
2504 }
2505 else
2506#endif
2507 {
2508#ifdef _WIN32
2509 WSABUF buf;
2510 DWORD sent;
2511 buf.buf = (char *)&buf;
2512 buf.len = 1;
2513 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2514#else
2515 write (evpipe [1], &(evpipe [1]), 1);
2516#endif
2517 }
2518
830 errno = old_errno; 2519 errno = old_errno;
831 } 2520 }
832} 2521}
833 2522
2523/* called whenever the libev signal pipe */
2524/* got some events (signal, async) */
834static void 2525static void
835pipecb (EV_P_ ev_io *iow, int revents) 2526pipecb (EV_P_ ev_io *iow, int revents)
836{ 2527{
2528 int i;
2529
2530 if (revents & EV_READ)
837 { 2531 {
838 int dummy; 2532#if EV_USE_EVENTFD
2533 if (evpipe [0] < 0)
2534 {
2535 uint64_t counter;
2536 read (evpipe [1], &counter, sizeof (uint64_t));
2537 }
2538 else
2539#endif
2540 {
2541 char dummy[4];
2542#ifdef _WIN32
2543 WSABUF buf;
2544 DWORD recvd;
2545 DWORD flags = 0;
2546 buf.buf = dummy;
2547 buf.len = sizeof (dummy);
2548 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2549#else
839 read (evpipe [0], &dummy, 1); 2550 read (evpipe [0], &dummy, sizeof (dummy));
2551#endif
2552 }
840 } 2553 }
841 2554
842 if (gotsig) 2555 pipe_write_skipped = 0;
843 {
844 int signum;
845 gotsig = 0;
846 2556
847 for (signum = signalmax; signum--; ) 2557 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
848 if (signals [signum].gotsig) 2558
2559#if EV_SIGNAL_ENABLE
2560 if (sig_pending)
2561 {
2562 sig_pending = 0;
2563
2564 ECB_MEMORY_FENCE;
2565
2566 for (i = EV_NSIG - 1; i--; )
2567 if (ecb_expect_false (signals [i].pending))
849 ev_feed_signal_event (EV_A_ signum + 1); 2568 ev_feed_signal_event (EV_A_ i + 1);
850 } 2569 }
2570#endif
851 2571
852#if EV_ASYNC_ENABLE 2572#if EV_ASYNC_ENABLE
853 if (gotasync) 2573 if (async_pending)
854 { 2574 {
855 int i; 2575 async_pending = 0;
856 gotasync = 0; 2576
2577 ECB_MEMORY_FENCE;
857 2578
858 for (i = asynccnt; i--; ) 2579 for (i = asynccnt; i--; )
859 if (asyncs [i]->sent) 2580 if (asyncs [i]->sent)
860 { 2581 {
861 asyncs [i]->sent = 0; 2582 asyncs [i]->sent = 0;
2583 ECB_MEMORY_FENCE_RELEASE;
862 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2584 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
863 } 2585 }
864 } 2586 }
865#endif 2587#endif
866} 2588}
867 2589
868/*****************************************************************************/ 2590/*****************************************************************************/
869 2591
2592void
2593ev_feed_signal (int signum) EV_NOEXCEPT
2594{
2595#if EV_MULTIPLICITY
2596 EV_P;
2597 ECB_MEMORY_FENCE_ACQUIRE;
2598 EV_A = signals [signum - 1].loop;
2599
2600 if (!EV_A)
2601 return;
2602#endif
2603
2604 signals [signum - 1].pending = 1;
2605 evpipe_write (EV_A_ &sig_pending);
2606}
2607
870static void 2608static void
871sighandler (int signum) 2609ev_sighandler (int signum)
872{ 2610{
2611#ifdef _WIN32
2612 signal (signum, ev_sighandler);
2613#endif
2614
2615 ev_feed_signal (signum);
2616}
2617
2618ecb_noinline
2619void
2620ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2621{
2622 WL w;
2623
2624 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2625 return;
2626
2627 --signum;
2628
873#if EV_MULTIPLICITY 2629#if EV_MULTIPLICITY
874 struct ev_loop *loop = &default_loop_struct; 2630 /* it is permissible to try to feed a signal to the wrong loop */
875#endif 2631 /* or, likely more useful, feeding a signal nobody is waiting for */
876 2632
877#if _WIN32 2633 if (ecb_expect_false (signals [signum].loop != EV_A))
878 signal (signum, sighandler);
879#endif
880
881 signals [signum - 1].gotsig = 1;
882 evpipe_write (EV_A_ 1, 0);
883}
884
885void noinline
886ev_feed_signal_event (EV_P_ int signum)
887{
888 WL w;
889
890#if EV_MULTIPLICITY
891 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
892#endif
893
894 --signum;
895
896 if (signum < 0 || signum >= signalmax)
897 return; 2634 return;
2635#endif
898 2636
899 signals [signum].gotsig = 0; 2637 signals [signum].pending = 0;
2638 ECB_MEMORY_FENCE_RELEASE;
900 2639
901 for (w = signals [signum].head; w; w = w->next) 2640 for (w = signals [signum].head; w; w = w->next)
902 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2641 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
903} 2642}
904 2643
2644#if EV_USE_SIGNALFD
2645static void
2646sigfdcb (EV_P_ ev_io *iow, int revents)
2647{
2648 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2649
2650 for (;;)
2651 {
2652 ssize_t res = read (sigfd, si, sizeof (si));
2653
2654 /* not ISO-C, as res might be -1, but works with SuS */
2655 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2656 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2657
2658 if (res < (ssize_t)sizeof (si))
2659 break;
2660 }
2661}
2662#endif
2663
2664#endif
2665
905/*****************************************************************************/ 2666/*****************************************************************************/
906 2667
2668#if EV_CHILD_ENABLE
907static WL childs [EV_PID_HASHSIZE]; 2669static WL childs [EV_PID_HASHSIZE];
908
909#ifndef _WIN32
910 2670
911static ev_signal childev; 2671static ev_signal childev;
912 2672
913#ifndef WIFCONTINUED 2673#ifndef WIFCONTINUED
914# define WIFCONTINUED(status) 0 2674# define WIFCONTINUED(status) 0
915#endif 2675#endif
916 2676
917void inline_speed 2677/* handle a single child status event */
2678inline_speed void
918child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2679child_reap (EV_P_ int chain, int pid, int status)
919{ 2680{
920 ev_child *w; 2681 ev_child *w;
921 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2682 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
922 2683
923 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2684 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
924 { 2685 {
925 if ((w->pid == pid || !w->pid) 2686 if ((w->pid == pid || !w->pid)
926 && (!traced || (w->flags & 1))) 2687 && (!traced || (w->flags & 1)))
927 { 2688 {
928 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2689 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
929 w->rpid = pid; 2690 w->rpid = pid;
930 w->rstatus = status; 2691 w->rstatus = status;
931 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
932 } 2693 }
933 } 2694 }
935 2696
936#ifndef WCONTINUED 2697#ifndef WCONTINUED
937# define WCONTINUED 0 2698# define WCONTINUED 0
938#endif 2699#endif
939 2700
2701/* called on sigchld etc., calls waitpid */
940static void 2702static void
941childcb (EV_P_ ev_signal *sw, int revents) 2703childcb (EV_P_ ev_signal *sw, int revents)
942{ 2704{
943 int pid, status; 2705 int pid, status;
944 2706
947 if (!WCONTINUED 2709 if (!WCONTINUED
948 || errno != EINVAL 2710 || errno != EINVAL
949 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2711 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
950 return; 2712 return;
951 2713
952 /* make sure we are called again until all childs have been reaped */ 2714 /* make sure we are called again until all children have been reaped */
953 /* we need to do it this way so that the callback gets called before we continue */ 2715 /* we need to do it this way so that the callback gets called before we continue */
954 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2716 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
955 2717
956 child_reap (EV_A_ sw, pid, pid, status); 2718 child_reap (EV_A_ pid, pid, status);
957 if (EV_PID_HASHSIZE > 1) 2719 if ((EV_PID_HASHSIZE) > 1)
958 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2720 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
959} 2721}
960 2722
961#endif 2723#endif
962 2724
963/*****************************************************************************/ 2725/*****************************************************************************/
964 2726
2727#if EV_USE_IOCP
2728# include "ev_iocp.c"
2729#endif
965#if EV_USE_PORT 2730#if EV_USE_PORT
966# include "ev_port.c" 2731# include "ev_port.c"
967#endif 2732#endif
968#if EV_USE_KQUEUE 2733#if EV_USE_KQUEUE
969# include "ev_kqueue.c" 2734# include "ev_kqueue.c"
970#endif 2735#endif
971#if EV_USE_EPOLL 2736#if EV_USE_EPOLL
972# include "ev_epoll.c" 2737# include "ev_epoll.c"
973#endif 2738#endif
2739#if EV_USE_LINUXAIO
2740# include "ev_linuxaio.c"
2741#endif
974#if EV_USE_POLL 2742#if EV_USE_POLL
975# include "ev_poll.c" 2743# include "ev_poll.c"
976#endif 2744#endif
977#if EV_USE_SELECT 2745#if EV_USE_SELECT
978# include "ev_select.c" 2746# include "ev_select.c"
979#endif 2747#endif
980 2748
981int 2749ecb_cold int
982ev_version_major (void) 2750ev_version_major (void) EV_NOEXCEPT
983{ 2751{
984 return EV_VERSION_MAJOR; 2752 return EV_VERSION_MAJOR;
985} 2753}
986 2754
987int 2755ecb_cold int
988ev_version_minor (void) 2756ev_version_minor (void) EV_NOEXCEPT
989{ 2757{
990 return EV_VERSION_MINOR; 2758 return EV_VERSION_MINOR;
991} 2759}
992 2760
993/* return true if we are running with elevated privileges and should ignore env variables */ 2761/* return true if we are running with elevated privileges and should ignore env variables */
994int inline_size 2762inline_size ecb_cold int
995enable_secure (void) 2763enable_secure (void)
996{ 2764{
997#ifdef _WIN32 2765#ifdef _WIN32
998 return 0; 2766 return 0;
999#else 2767#else
1000 return getuid () != geteuid () 2768 return getuid () != geteuid ()
1001 || getgid () != getegid (); 2769 || getgid () != getegid ();
1002#endif 2770#endif
1003} 2771}
1004 2772
2773ecb_cold
1005unsigned int 2774unsigned int
1006ev_supported_backends (void) 2775ev_supported_backends (void) EV_NOEXCEPT
1007{ 2776{
1008 unsigned int flags = 0; 2777 unsigned int flags = 0;
1009 2778
1010 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2779 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1011 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2780 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1012 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2781 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2782 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
1013 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2783 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1014 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2784 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
1015 2785
1016 return flags; 2786 return flags;
1017} 2787}
1018 2788
2789ecb_cold
1019unsigned int 2790unsigned int
1020ev_recommended_backends (void) 2791ev_recommended_backends (void) EV_NOEXCEPT
1021{ 2792{
1022 unsigned int flags = ev_supported_backends (); 2793 unsigned int flags = ev_supported_backends ();
1023 2794
1024#ifndef __NetBSD__ 2795#ifndef __NetBSD__
1025 /* kqueue is borked on everything but netbsd apparently */ 2796 /* kqueue is borked on everything but netbsd apparently */
1026 /* it usually doesn't work correctly on anything but sockets and pipes */ 2797 /* it usually doesn't work correctly on anything but sockets and pipes */
1027 flags &= ~EVBACKEND_KQUEUE; 2798 flags &= ~EVBACKEND_KQUEUE;
1028#endif 2799#endif
1029#ifdef __APPLE__ 2800#ifdef __APPLE__
1030 // flags &= ~EVBACKEND_KQUEUE; for documentation 2801 /* only select works correctly on that "unix-certified" platform */
2802 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2803 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2804#endif
2805#ifdef __FreeBSD__
2806 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2807#endif
2808
2809 /* TODO: linuxaio is very experimental */
2810#if !EV_RECOMMEND_LINUXAIO
1031 flags &= ~EVBACKEND_POLL; 2811 flags &= ~EVBACKEND_LINUXAIO;
1032#endif 2812#endif
1033 2813
1034 return flags; 2814 return flags;
1035} 2815}
1036 2816
2817ecb_cold
1037unsigned int 2818unsigned int
1038ev_embeddable_backends (void) 2819ev_embeddable_backends (void) EV_NOEXCEPT
1039{ 2820{
1040 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2821 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1041 2822
1042 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2823 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1043 /* please fix it and tell me how to detect the fix */ 2824 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1044 flags &= ~EVBACKEND_EPOLL; 2825 flags &= ~EVBACKEND_EPOLL;
1045 2826
1046 return flags; 2827 return flags;
1047} 2828}
1048 2829
1049unsigned int 2830unsigned int
1050ev_backend (EV_P) 2831ev_backend (EV_P) EV_NOEXCEPT
1051{ 2832{
1052 return backend; 2833 return backend;
1053} 2834}
1054 2835
2836#if EV_FEATURE_API
1055unsigned int 2837unsigned int
1056ev_loop_count (EV_P) 2838ev_iteration (EV_P) EV_NOEXCEPT
1057{ 2839{
1058 return loop_count; 2840 return loop_count;
1059} 2841}
1060 2842
2843unsigned int
2844ev_depth (EV_P) EV_NOEXCEPT
2845{
2846 return loop_depth;
2847}
2848
1061void 2849void
1062ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2850ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1063{ 2851{
1064 io_blocktime = interval; 2852 io_blocktime = interval;
1065} 2853}
1066 2854
1067void 2855void
1068ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2856ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1069{ 2857{
1070 timeout_blocktime = interval; 2858 timeout_blocktime = interval;
1071} 2859}
1072 2860
1073static void noinline 2861void
2862ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2863{
2864 userdata = data;
2865}
2866
2867void *
2868ev_userdata (EV_P) EV_NOEXCEPT
2869{
2870 return userdata;
2871}
2872
2873void
2874ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2875{
2876 invoke_cb = invoke_pending_cb;
2877}
2878
2879void
2880ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2881{
2882 release_cb = release;
2883 acquire_cb = acquire;
2884}
2885#endif
2886
2887/* initialise a loop structure, must be zero-initialised */
2888ecb_noinline ecb_cold
2889static void
1074loop_init (EV_P_ unsigned int flags) 2890loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1075{ 2891{
1076 if (!backend) 2892 if (!backend)
1077 { 2893 {
2894 origflags = flags;
2895
2896#if EV_USE_REALTIME
2897 if (!have_realtime)
2898 {
2899 struct timespec ts;
2900
2901 if (!clock_gettime (CLOCK_REALTIME, &ts))
2902 have_realtime = 1;
2903 }
2904#endif
2905
1078#if EV_USE_MONOTONIC 2906#if EV_USE_MONOTONIC
2907 if (!have_monotonic)
1079 { 2908 {
1080 struct timespec ts; 2909 struct timespec ts;
2910
1081 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2911 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1082 have_monotonic = 1; 2912 have_monotonic = 1;
1083 } 2913 }
1084#endif
1085
1086 ev_rt_now = ev_time ();
1087 mn_now = get_clock ();
1088 now_floor = mn_now;
1089 rtmn_diff = ev_rt_now - mn_now;
1090
1091 io_blocktime = 0.;
1092 timeout_blocktime = 0.;
1093 backend = 0;
1094 backend_fd = -1;
1095 gotasync = 0;
1096#if EV_USE_INOTIFY
1097 fs_fd = -2;
1098#endif 2914#endif
1099 2915
1100 /* pid check not overridable via env */ 2916 /* pid check not overridable via env */
1101#ifndef _WIN32 2917#ifndef _WIN32
1102 if (flags & EVFLAG_FORKCHECK) 2918 if (flags & EVFLAG_FORKCHECK)
1106 if (!(flags & EVFLAG_NOENV) 2922 if (!(flags & EVFLAG_NOENV)
1107 && !enable_secure () 2923 && !enable_secure ()
1108 && getenv ("LIBEV_FLAGS")) 2924 && getenv ("LIBEV_FLAGS"))
1109 flags = atoi (getenv ("LIBEV_FLAGS")); 2925 flags = atoi (getenv ("LIBEV_FLAGS"));
1110 2926
1111 if (!(flags & 0x0000ffffUL)) 2927 ev_rt_now = ev_time ();
2928 mn_now = get_clock ();
2929 now_floor = mn_now;
2930 rtmn_diff = ev_rt_now - mn_now;
2931#if EV_FEATURE_API
2932 invoke_cb = ev_invoke_pending;
2933#endif
2934
2935 io_blocktime = 0.;
2936 timeout_blocktime = 0.;
2937 backend = 0;
2938 backend_fd = -1;
2939 sig_pending = 0;
2940#if EV_ASYNC_ENABLE
2941 async_pending = 0;
2942#endif
2943 pipe_write_skipped = 0;
2944 pipe_write_wanted = 0;
2945 evpipe [0] = -1;
2946 evpipe [1] = -1;
2947#if EV_USE_INOTIFY
2948 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2949#endif
2950#if EV_USE_SIGNALFD
2951 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2952#endif
2953
2954 if (!(flags & EVBACKEND_MASK))
1112 flags |= ev_recommended_backends (); 2955 flags |= ev_recommended_backends ();
1113 2956
2957#if EV_USE_IOCP
2958 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2959#endif
1114#if EV_USE_PORT 2960#if EV_USE_PORT
1115 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2961 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1116#endif 2962#endif
1117#if EV_USE_KQUEUE 2963#if EV_USE_KQUEUE
1118 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2964 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2965#endif
2966#if EV_USE_LINUXAIO
2967 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1119#endif 2968#endif
1120#if EV_USE_EPOLL 2969#if EV_USE_EPOLL
1121 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 2970 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1122#endif 2971#endif
1123#if EV_USE_POLL 2972#if EV_USE_POLL
1124 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 2973 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1125#endif 2974#endif
1126#if EV_USE_SELECT 2975#if EV_USE_SELECT
1127 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2976 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1128#endif 2977#endif
1129 2978
2979 ev_prepare_init (&pending_w, pendingcb);
2980
2981#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1130 ev_init (&pipeev, pipecb); 2982 ev_init (&pipe_w, pipecb);
1131 ev_set_priority (&pipeev, EV_MAXPRI); 2983 ev_set_priority (&pipe_w, EV_MAXPRI);
2984#endif
1132 } 2985 }
1133} 2986}
1134 2987
1135static void noinline 2988/* free up a loop structure */
2989ecb_cold
2990void
1136loop_destroy (EV_P) 2991ev_loop_destroy (EV_P)
1137{ 2992{
1138 int i; 2993 int i;
1139 2994
2995#if EV_MULTIPLICITY
2996 /* mimic free (0) */
2997 if (!EV_A)
2998 return;
2999#endif
3000
3001#if EV_CLEANUP_ENABLE
3002 /* queue cleanup watchers (and execute them) */
3003 if (ecb_expect_false (cleanupcnt))
3004 {
3005 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3006 EV_INVOKE_PENDING;
3007 }
3008#endif
3009
3010#if EV_CHILD_ENABLE
3011 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3012 {
3013 ev_ref (EV_A); /* child watcher */
3014 ev_signal_stop (EV_A_ &childev);
3015 }
3016#endif
3017
1140 if (ev_is_active (&pipeev)) 3018 if (ev_is_active (&pipe_w))
1141 { 3019 {
1142 ev_ref (EV_A); /* signal watcher */ 3020 /*ev_ref (EV_A);*/
1143 ev_io_stop (EV_A_ &pipeev); 3021 /*ev_io_stop (EV_A_ &pipe_w);*/
1144 3022
1145 close (evpipe [0]); evpipe [0] = 0; 3023 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
1146 close (evpipe [1]); evpipe [1] = 0; 3024 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
1147 } 3025 }
3026
3027#if EV_USE_SIGNALFD
3028 if (ev_is_active (&sigfd_w))
3029 close (sigfd);
3030#endif
1148 3031
1149#if EV_USE_INOTIFY 3032#if EV_USE_INOTIFY
1150 if (fs_fd >= 0) 3033 if (fs_fd >= 0)
1151 close (fs_fd); 3034 close (fs_fd);
1152#endif 3035#endif
1153 3036
1154 if (backend_fd >= 0) 3037 if (backend_fd >= 0)
1155 close (backend_fd); 3038 close (backend_fd);
1156 3039
3040#if EV_USE_IOCP
3041 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3042#endif
1157#if EV_USE_PORT 3043#if EV_USE_PORT
1158 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3044 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1159#endif 3045#endif
1160#if EV_USE_KQUEUE 3046#if EV_USE_KQUEUE
1161 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3047 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3048#endif
3049#if EV_USE_LINUXAIO
3050 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1162#endif 3051#endif
1163#if EV_USE_EPOLL 3052#if EV_USE_EPOLL
1164 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3053 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1165#endif 3054#endif
1166#if EV_USE_POLL 3055#if EV_USE_POLL
1167 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3056 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1168#endif 3057#endif
1169#if EV_USE_SELECT 3058#if EV_USE_SELECT
1170 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3059 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1171#endif 3060#endif
1172 3061
1173 for (i = NUMPRI; i--; ) 3062 for (i = NUMPRI; i--; )
1174 { 3063 {
1175 array_free (pending, [i]); 3064 array_free (pending, [i]);
1176#if EV_IDLE_ENABLE 3065#if EV_IDLE_ENABLE
1177 array_free (idle, [i]); 3066 array_free (idle, [i]);
1178#endif 3067#endif
1179 } 3068 }
1180 3069
1181 ev_free (anfds); anfdmax = 0; 3070 ev_free (anfds); anfds = 0; anfdmax = 0;
1182 3071
1183 /* have to use the microsoft-never-gets-it-right macro */ 3072 /* have to use the microsoft-never-gets-it-right macro */
3073 array_free (rfeed, EMPTY);
1184 array_free (fdchange, EMPTY); 3074 array_free (fdchange, EMPTY);
1185 array_free (timer, EMPTY); 3075 array_free (timer, EMPTY);
1186#if EV_PERIODIC_ENABLE 3076#if EV_PERIODIC_ENABLE
1187 array_free (periodic, EMPTY); 3077 array_free (periodic, EMPTY);
1188#endif 3078#endif
1189#if EV_FORK_ENABLE 3079#if EV_FORK_ENABLE
1190 array_free (fork, EMPTY); 3080 array_free (fork, EMPTY);
1191#endif 3081#endif
3082#if EV_CLEANUP_ENABLE
3083 array_free (cleanup, EMPTY);
3084#endif
1192 array_free (prepare, EMPTY); 3085 array_free (prepare, EMPTY);
1193 array_free (check, EMPTY); 3086 array_free (check, EMPTY);
1194#if EV_ASYNC_ENABLE 3087#if EV_ASYNC_ENABLE
1195 array_free (async, EMPTY); 3088 array_free (async, EMPTY);
1196#endif 3089#endif
1197 3090
1198 backend = 0; 3091 backend = 0;
1199}
1200 3092
3093#if EV_MULTIPLICITY
3094 if (ev_is_default_loop (EV_A))
3095#endif
3096 ev_default_loop_ptr = 0;
3097#if EV_MULTIPLICITY
3098 else
3099 ev_free (EV_A);
3100#endif
3101}
3102
3103#if EV_USE_INOTIFY
1201void inline_size infy_fork (EV_P); 3104inline_size void infy_fork (EV_P);
3105#endif
1202 3106
1203void inline_size 3107inline_size void
1204loop_fork (EV_P) 3108loop_fork (EV_P)
1205{ 3109{
1206#if EV_USE_PORT 3110#if EV_USE_PORT
1207 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3111 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1208#endif 3112#endif
1209#if EV_USE_KQUEUE 3113#if EV_USE_KQUEUE
1210 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3114 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3115#endif
3116#if EV_USE_LINUXAIO
3117 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1211#endif 3118#endif
1212#if EV_USE_EPOLL 3119#if EV_USE_EPOLL
1213 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3120 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1214#endif 3121#endif
1215#if EV_USE_INOTIFY 3122#if EV_USE_INOTIFY
1216 infy_fork (EV_A); 3123 infy_fork (EV_A);
1217#endif 3124#endif
1218 3125
1219 if (ev_is_active (&pipeev)) 3126#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3127 if (ev_is_active (&pipe_w) && postfork != 2)
1220 { 3128 {
1221 /* this "locks" the handlers against writing to the pipe */ 3129 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1222 gotsig = gotasync = 1;
1223 3130
1224 ev_ref (EV_A); 3131 ev_ref (EV_A);
1225 ev_io_stop (EV_A_ &pipeev); 3132 ev_io_stop (EV_A_ &pipe_w);
1226 close (evpipe [0]); 3133
1227 close (evpipe [1]); 3134 if (evpipe [0] >= 0)
3135 EV_WIN32_CLOSE_FD (evpipe [0]);
1228 3136
1229 evpipe_init (EV_A); 3137 evpipe_init (EV_A);
1230 /* now iterate over everything, in case we missed something */ 3138 /* iterate over everything, in case we missed something before */
1231 pipecb (EV_A_ &pipeev, EV_READ); 3139 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1232 } 3140 }
3141#endif
1233 3142
1234 postfork = 0; 3143 postfork = 0;
1235} 3144}
1236 3145
1237#if EV_MULTIPLICITY 3146#if EV_MULTIPLICITY
3147
3148ecb_cold
1238struct ev_loop * 3149struct ev_loop *
1239ev_loop_new (unsigned int flags) 3150ev_loop_new (unsigned int flags) EV_NOEXCEPT
1240{ 3151{
1241 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3152 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1242 3153
1243 memset (loop, 0, sizeof (struct ev_loop)); 3154 memset (EV_A, 0, sizeof (struct ev_loop));
1244
1245 loop_init (EV_A_ flags); 3155 loop_init (EV_A_ flags);
1246 3156
1247 if (ev_backend (EV_A)) 3157 if (ev_backend (EV_A))
1248 return loop; 3158 return EV_A;
1249 3159
3160 ev_free (EV_A);
1250 return 0; 3161 return 0;
1251} 3162}
1252 3163
1253void 3164#endif /* multiplicity */
1254ev_loop_destroy (EV_P)
1255{
1256 loop_destroy (EV_A);
1257 ev_free (loop);
1258}
1259 3165
1260void 3166#if EV_VERIFY
1261ev_loop_fork (EV_P) 3167ecb_noinline ecb_cold
3168static void
3169verify_watcher (EV_P_ W w)
1262{ 3170{
1263 postfork = 1; /* must be in line with ev_default_fork */ 3171 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1264}
1265 3172
3173 if (w->pending)
3174 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3175}
3176
3177ecb_noinline ecb_cold
3178static void
3179verify_heap (EV_P_ ANHE *heap, int N)
3180{
3181 int i;
3182
3183 for (i = HEAP0; i < N + HEAP0; ++i)
3184 {
3185 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3186 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3187 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3188
3189 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3190 }
3191}
3192
3193ecb_noinline ecb_cold
3194static void
3195array_verify (EV_P_ W *ws, int cnt)
3196{
3197 while (cnt--)
3198 {
3199 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3200 verify_watcher (EV_A_ ws [cnt]);
3201 }
3202}
3203#endif
3204
3205#if EV_FEATURE_API
3206void ecb_cold
3207ev_verify (EV_P) EV_NOEXCEPT
3208{
3209#if EV_VERIFY
3210 int i;
3211 WL w, w2;
3212
3213 assert (activecnt >= -1);
3214
3215 assert (fdchangemax >= fdchangecnt);
3216 for (i = 0; i < fdchangecnt; ++i)
3217 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3218
3219 assert (anfdmax >= 0);
3220 for (i = 0; i < anfdmax; ++i)
3221 {
3222 int j = 0;
3223
3224 for (w = w2 = anfds [i].head; w; w = w->next)
3225 {
3226 verify_watcher (EV_A_ (W)w);
3227
3228 if (j++ & 1)
3229 {
3230 assert (("libev: io watcher list contains a loop", w != w2));
3231 w2 = w2->next;
3232 }
3233
3234 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3235 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3236 }
3237 }
3238
3239 assert (timermax >= timercnt);
3240 verify_heap (EV_A_ timers, timercnt);
3241
3242#if EV_PERIODIC_ENABLE
3243 assert (periodicmax >= periodiccnt);
3244 verify_heap (EV_A_ periodics, periodiccnt);
3245#endif
3246
3247 for (i = NUMPRI; i--; )
3248 {
3249 assert (pendingmax [i] >= pendingcnt [i]);
3250#if EV_IDLE_ENABLE
3251 assert (idleall >= 0);
3252 assert (idlemax [i] >= idlecnt [i]);
3253 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3254#endif
3255 }
3256
3257#if EV_FORK_ENABLE
3258 assert (forkmax >= forkcnt);
3259 array_verify (EV_A_ (W *)forks, forkcnt);
3260#endif
3261
3262#if EV_CLEANUP_ENABLE
3263 assert (cleanupmax >= cleanupcnt);
3264 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3265#endif
3266
3267#if EV_ASYNC_ENABLE
3268 assert (asyncmax >= asynccnt);
3269 array_verify (EV_A_ (W *)asyncs, asynccnt);
3270#endif
3271
3272#if EV_PREPARE_ENABLE
3273 assert (preparemax >= preparecnt);
3274 array_verify (EV_A_ (W *)prepares, preparecnt);
3275#endif
3276
3277#if EV_CHECK_ENABLE
3278 assert (checkmax >= checkcnt);
3279 array_verify (EV_A_ (W *)checks, checkcnt);
3280#endif
3281
3282# if 0
3283#if EV_CHILD_ENABLE
3284 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3285 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3286#endif
3287# endif
3288#endif
3289}
1266#endif 3290#endif
1267 3291
1268#if EV_MULTIPLICITY 3292#if EV_MULTIPLICITY
3293ecb_cold
1269struct ev_loop * 3294struct ev_loop *
1270ev_default_loop_init (unsigned int flags)
1271#else 3295#else
1272int 3296int
3297#endif
1273ev_default_loop (unsigned int flags) 3298ev_default_loop (unsigned int flags) EV_NOEXCEPT
1274#endif
1275{ 3299{
1276 if (!ev_default_loop_ptr) 3300 if (!ev_default_loop_ptr)
1277 { 3301 {
1278#if EV_MULTIPLICITY 3302#if EV_MULTIPLICITY
1279 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3303 EV_P = ev_default_loop_ptr = &default_loop_struct;
1280#else 3304#else
1281 ev_default_loop_ptr = 1; 3305 ev_default_loop_ptr = 1;
1282#endif 3306#endif
1283 3307
1284 loop_init (EV_A_ flags); 3308 loop_init (EV_A_ flags);
1285 3309
1286 if (ev_backend (EV_A)) 3310 if (ev_backend (EV_A))
1287 { 3311 {
1288#ifndef _WIN32 3312#if EV_CHILD_ENABLE
1289 ev_signal_init (&childev, childcb, SIGCHLD); 3313 ev_signal_init (&childev, childcb, SIGCHLD);
1290 ev_set_priority (&childev, EV_MAXPRI); 3314 ev_set_priority (&childev, EV_MAXPRI);
1291 ev_signal_start (EV_A_ &childev); 3315 ev_signal_start (EV_A_ &childev);
1292 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3316 ev_unref (EV_A); /* child watcher should not keep loop alive */
1293#endif 3317#endif
1298 3322
1299 return ev_default_loop_ptr; 3323 return ev_default_loop_ptr;
1300} 3324}
1301 3325
1302void 3326void
1303ev_default_destroy (void) 3327ev_loop_fork (EV_P) EV_NOEXCEPT
1304{ 3328{
1305#if EV_MULTIPLICITY 3329 postfork = 1;
1306 struct ev_loop *loop = ev_default_loop_ptr;
1307#endif
1308
1309#ifndef _WIN32
1310 ev_ref (EV_A); /* child watcher */
1311 ev_signal_stop (EV_A_ &childev);
1312#endif
1313
1314 loop_destroy (EV_A);
1315}
1316
1317void
1318ev_default_fork (void)
1319{
1320#if EV_MULTIPLICITY
1321 struct ev_loop *loop = ev_default_loop_ptr;
1322#endif
1323
1324 if (backend)
1325 postfork = 1; /* must be in line with ev_loop_fork */
1326} 3330}
1327 3331
1328/*****************************************************************************/ 3332/*****************************************************************************/
1329 3333
1330void 3334void
1331ev_invoke (EV_P_ void *w, int revents) 3335ev_invoke (EV_P_ void *w, int revents)
1332{ 3336{
1333 EV_CB_INVOKE ((W)w, revents); 3337 EV_CB_INVOKE ((W)w, revents);
1334} 3338}
1335 3339
1336void inline_speed 3340unsigned int
1337call_pending (EV_P) 3341ev_pending_count (EV_P) EV_NOEXCEPT
1338{ 3342{
1339 int pri; 3343 int pri;
3344 unsigned int count = 0;
1340 3345
1341 for (pri = NUMPRI; pri--; ) 3346 for (pri = NUMPRI; pri--; )
3347 count += pendingcnt [pri];
3348
3349 return count;
3350}
3351
3352ecb_noinline
3353void
3354ev_invoke_pending (EV_P)
3355{
3356 pendingpri = NUMPRI;
3357
3358 do
3359 {
3360 --pendingpri;
3361
3362 /* pendingpri possibly gets modified in the inner loop */
1342 while (pendingcnt [pri]) 3363 while (pendingcnt [pendingpri])
1343 {
1344 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1345
1346 if (expect_true (p->w))
1347 {
1348 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1349
1350 p->w->pending = 0;
1351 EV_CB_INVOKE (p->w, p->events);
1352 }
1353 }
1354}
1355
1356void inline_size
1357timers_reify (EV_P)
1358{
1359 while (timercnt && ((WT)timers [0])->at <= mn_now)
1360 {
1361 ev_timer *w = (ev_timer *)timers [0];
1362
1363 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1364
1365 /* first reschedule or stop timer */
1366 if (w->repeat)
1367 { 3364 {
1368 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3365 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1369 3366
1370 ((WT)w)->at += w->repeat; 3367 p->w->pending = 0;
1371 if (((WT)w)->at < mn_now) 3368 EV_CB_INVOKE (p->w, p->events);
1372 ((WT)w)->at = mn_now; 3369 EV_FREQUENT_CHECK;
1373
1374 downheap (timers, timercnt, 0);
1375 } 3370 }
1376 else
1377 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1378
1379 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1380 }
1381}
1382
1383#if EV_PERIODIC_ENABLE
1384void inline_size
1385periodics_reify (EV_P)
1386{
1387 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1388 { 3371 }
1389 ev_periodic *w = (ev_periodic *)periodics [0]; 3372 while (pendingpri);
1390
1391 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1392
1393 /* first reschedule or stop timer */
1394 if (w->reschedule_cb)
1395 {
1396 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1397 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1398 downheap (periodics, periodiccnt, 0);
1399 }
1400 else if (w->interval)
1401 {
1402 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1403 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1404 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1405 downheap (periodics, periodiccnt, 0);
1406 }
1407 else
1408 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1409
1410 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1411 }
1412} 3373}
1413
1414static void noinline
1415periodics_reschedule (EV_P)
1416{
1417 int i;
1418
1419 /* adjust periodics after time jump */
1420 for (i = 0; i < periodiccnt; ++i)
1421 {
1422 ev_periodic *w = (ev_periodic *)periodics [i];
1423
1424 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval)
1427 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1428 }
1429
1430 /* now rebuild the heap */
1431 for (i = periodiccnt >> 1; i--; )
1432 downheap (periodics, periodiccnt, i);
1433}
1434#endif
1435 3374
1436#if EV_IDLE_ENABLE 3375#if EV_IDLE_ENABLE
1437void inline_size 3376/* make idle watchers pending. this handles the "call-idle */
3377/* only when higher priorities are idle" logic */
3378inline_size void
1438idle_reify (EV_P) 3379idle_reify (EV_P)
1439{ 3380{
1440 if (expect_false (idleall)) 3381 if (ecb_expect_false (idleall))
1441 { 3382 {
1442 int pri; 3383 int pri;
1443 3384
1444 for (pri = NUMPRI; pri--; ) 3385 for (pri = NUMPRI; pri--; )
1445 { 3386 {
1454 } 3395 }
1455 } 3396 }
1456} 3397}
1457#endif 3398#endif
1458 3399
1459void inline_speed 3400/* make timers pending */
3401inline_size void
3402timers_reify (EV_P)
3403{
3404 EV_FREQUENT_CHECK;
3405
3406 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3407 {
3408 do
3409 {
3410 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3411
3412 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3413
3414 /* first reschedule or stop timer */
3415 if (w->repeat)
3416 {
3417 ev_at (w) += w->repeat;
3418 if (ev_at (w) < mn_now)
3419 ev_at (w) = mn_now;
3420
3421 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3422
3423 ANHE_at_cache (timers [HEAP0]);
3424 downheap (timers, timercnt, HEAP0);
3425 }
3426 else
3427 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3428
3429 EV_FREQUENT_CHECK;
3430 feed_reverse (EV_A_ (W)w);
3431 }
3432 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3433
3434 feed_reverse_done (EV_A_ EV_TIMER);
3435 }
3436}
3437
3438#if EV_PERIODIC_ENABLE
3439
3440ecb_noinline
3441static void
3442periodic_recalc (EV_P_ ev_periodic *w)
3443{
3444 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3445 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3446
3447 /* the above almost always errs on the low side */
3448 while (at <= ev_rt_now)
3449 {
3450 ev_tstamp nat = at + w->interval;
3451
3452 /* when resolution fails us, we use ev_rt_now */
3453 if (ecb_expect_false (nat == at))
3454 {
3455 at = ev_rt_now;
3456 break;
3457 }
3458
3459 at = nat;
3460 }
3461
3462 ev_at (w) = at;
3463}
3464
3465/* make periodics pending */
3466inline_size void
3467periodics_reify (EV_P)
3468{
3469 EV_FREQUENT_CHECK;
3470
3471 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3472 {
3473 do
3474 {
3475 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3476
3477 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3478
3479 /* first reschedule or stop timer */
3480 if (w->reschedule_cb)
3481 {
3482 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3483
3484 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3485
3486 ANHE_at_cache (periodics [HEAP0]);
3487 downheap (periodics, periodiccnt, HEAP0);
3488 }
3489 else if (w->interval)
3490 {
3491 periodic_recalc (EV_A_ w);
3492 ANHE_at_cache (periodics [HEAP0]);
3493 downheap (periodics, periodiccnt, HEAP0);
3494 }
3495 else
3496 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3497
3498 EV_FREQUENT_CHECK;
3499 feed_reverse (EV_A_ (W)w);
3500 }
3501 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3502
3503 feed_reverse_done (EV_A_ EV_PERIODIC);
3504 }
3505}
3506
3507/* simply recalculate all periodics */
3508/* TODO: maybe ensure that at least one event happens when jumping forward? */
3509ecb_noinline ecb_cold
3510static void
3511periodics_reschedule (EV_P)
3512{
3513 int i;
3514
3515 /* adjust periodics after time jump */
3516 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3517 {
3518 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3519
3520 if (w->reschedule_cb)
3521 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3522 else if (w->interval)
3523 periodic_recalc (EV_A_ w);
3524
3525 ANHE_at_cache (periodics [i]);
3526 }
3527
3528 reheap (periodics, periodiccnt);
3529}
3530#endif
3531
3532/* adjust all timers by a given offset */
3533ecb_noinline ecb_cold
3534static void
3535timers_reschedule (EV_P_ ev_tstamp adjust)
3536{
3537 int i;
3538
3539 for (i = 0; i < timercnt; ++i)
3540 {
3541 ANHE *he = timers + i + HEAP0;
3542 ANHE_w (*he)->at += adjust;
3543 ANHE_at_cache (*he);
3544 }
3545}
3546
3547/* fetch new monotonic and realtime times from the kernel */
3548/* also detect if there was a timejump, and act accordingly */
3549inline_speed void
1460time_update (EV_P_ ev_tstamp max_block) 3550time_update (EV_P_ ev_tstamp max_block)
1461{ 3551{
1462 int i;
1463
1464#if EV_USE_MONOTONIC 3552#if EV_USE_MONOTONIC
1465 if (expect_true (have_monotonic)) 3553 if (ecb_expect_true (have_monotonic))
1466 { 3554 {
3555 int i;
1467 ev_tstamp odiff = rtmn_diff; 3556 ev_tstamp odiff = rtmn_diff;
1468 3557
1469 mn_now = get_clock (); 3558 mn_now = get_clock ();
1470 3559
1471 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3560 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1472 /* interpolate in the meantime */ 3561 /* interpolate in the meantime */
1473 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3562 if (ecb_expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1474 { 3563 {
1475 ev_rt_now = rtmn_diff + mn_now; 3564 ev_rt_now = rtmn_diff + mn_now;
1476 return; 3565 return;
1477 } 3566 }
1478 3567
1487 * doesn't hurt either as we only do this on time-jumps or 3576 * doesn't hurt either as we only do this on time-jumps or
1488 * in the unlikely event of having been preempted here. 3577 * in the unlikely event of having been preempted here.
1489 */ 3578 */
1490 for (i = 4; --i; ) 3579 for (i = 4; --i; )
1491 { 3580 {
3581 ev_tstamp diff;
1492 rtmn_diff = ev_rt_now - mn_now; 3582 rtmn_diff = ev_rt_now - mn_now;
1493 3583
1494 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3584 diff = odiff - rtmn_diff;
3585
3586 if (ecb_expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1495 return; /* all is well */ 3587 return; /* all is well */
1496 3588
1497 ev_rt_now = ev_time (); 3589 ev_rt_now = ev_time ();
1498 mn_now = get_clock (); 3590 mn_now = get_clock ();
1499 now_floor = mn_now; 3591 now_floor = mn_now;
1500 } 3592 }
1501 3593
3594 /* no timer adjustment, as the monotonic clock doesn't jump */
3595 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1502# if EV_PERIODIC_ENABLE 3596# if EV_PERIODIC_ENABLE
1503 periodics_reschedule (EV_A); 3597 periodics_reschedule (EV_A);
1504# endif 3598# endif
1505 /* no timer adjustment, as the monotonic clock doesn't jump */
1506 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1507 } 3599 }
1508 else 3600 else
1509#endif 3601#endif
1510 { 3602 {
1511 ev_rt_now = ev_time (); 3603 ev_rt_now = ev_time ();
1512 3604
1513 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3605 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1514 { 3606 {
3607 /* adjust timers. this is easy, as the offset is the same for all of them */
3608 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1515#if EV_PERIODIC_ENABLE 3609#if EV_PERIODIC_ENABLE
1516 periodics_reschedule (EV_A); 3610 periodics_reschedule (EV_A);
1517#endif 3611#endif
1518 /* adjust timers. this is easy, as the offset is the same for all of them */
1519 for (i = 0; i < timercnt; ++i)
1520 ((WT)timers [i])->at += ev_rt_now - mn_now;
1521 } 3612 }
1522 3613
1523 mn_now = ev_rt_now; 3614 mn_now = ev_rt_now;
1524 } 3615 }
1525} 3616}
1526 3617
1527void 3618int
1528ev_ref (EV_P)
1529{
1530 ++activecnt;
1531}
1532
1533void
1534ev_unref (EV_P)
1535{
1536 --activecnt;
1537}
1538
1539static int loop_done;
1540
1541void
1542ev_loop (EV_P_ int flags) 3619ev_run (EV_P_ int flags)
1543{ 3620{
1544 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3621#if EV_FEATURE_API
1545 ? EVUNLOOP_ONE 3622 ++loop_depth;
1546 : EVUNLOOP_CANCEL; 3623#endif
1547 3624
3625 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3626
3627 loop_done = EVBREAK_CANCEL;
3628
1548 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3629 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1549 3630
1550 do 3631 do
1551 { 3632 {
3633#if EV_VERIFY >= 2
3634 ev_verify (EV_A);
3635#endif
3636
1552#ifndef _WIN32 3637#ifndef _WIN32
1553 if (expect_false (curpid)) /* penalise the forking check even more */ 3638 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1554 if (expect_false (getpid () != curpid)) 3639 if (ecb_expect_false (getpid () != curpid))
1555 { 3640 {
1556 curpid = getpid (); 3641 curpid = getpid ();
1557 postfork = 1; 3642 postfork = 1;
1558 } 3643 }
1559#endif 3644#endif
1560 3645
1561#if EV_FORK_ENABLE 3646#if EV_FORK_ENABLE
1562 /* we might have forked, so queue fork handlers */ 3647 /* we might have forked, so queue fork handlers */
1563 if (expect_false (postfork)) 3648 if (ecb_expect_false (postfork))
1564 if (forkcnt) 3649 if (forkcnt)
1565 { 3650 {
1566 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3651 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1567 call_pending (EV_A); 3652 EV_INVOKE_PENDING;
1568 } 3653 }
1569#endif 3654#endif
1570 3655
3656#if EV_PREPARE_ENABLE
1571 /* queue prepare watchers (and execute them) */ 3657 /* queue prepare watchers (and execute them) */
1572 if (expect_false (preparecnt)) 3658 if (ecb_expect_false (preparecnt))
1573 { 3659 {
1574 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3660 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1575 call_pending (EV_A); 3661 EV_INVOKE_PENDING;
1576 } 3662 }
3663#endif
1577 3664
1578 if (expect_false (!activecnt)) 3665 if (ecb_expect_false (loop_done))
1579 break; 3666 break;
1580 3667
1581 /* we might have forked, so reify kernel state if necessary */ 3668 /* we might have forked, so reify kernel state if necessary */
1582 if (expect_false (postfork)) 3669 if (ecb_expect_false (postfork))
1583 loop_fork (EV_A); 3670 loop_fork (EV_A);
1584 3671
1585 /* update fd-related kernel structures */ 3672 /* update fd-related kernel structures */
1586 fd_reify (EV_A); 3673 fd_reify (EV_A);
1587 3674
1588 /* calculate blocking time */ 3675 /* calculate blocking time */
1589 { 3676 {
1590 ev_tstamp waittime = 0.; 3677 ev_tstamp waittime = 0.;
1591 ev_tstamp sleeptime = 0.; 3678 ev_tstamp sleeptime = 0.;
1592 3679
3680 /* remember old timestamp for io_blocktime calculation */
3681 ev_tstamp prev_mn_now = mn_now;
3682
3683 /* update time to cancel out callback processing overhead */
3684 time_update (EV_A_ 1e100);
3685
3686 /* from now on, we want a pipe-wake-up */
3687 pipe_write_wanted = 1;
3688
3689 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3690
1593 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3691 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1594 { 3692 {
1595 /* update time to cancel out callback processing overhead */
1596 time_update (EV_A_ 1e100);
1597
1598 waittime = MAX_BLOCKTIME; 3693 waittime = MAX_BLOCKTIME;
1599 3694
1600 if (timercnt) 3695 if (timercnt)
1601 { 3696 {
1602 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3697 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1603 if (waittime > to) waittime = to; 3698 if (waittime > to) waittime = to;
1604 } 3699 }
1605 3700
1606#if EV_PERIODIC_ENABLE 3701#if EV_PERIODIC_ENABLE
1607 if (periodiccnt) 3702 if (periodiccnt)
1608 { 3703 {
1609 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3704 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1610 if (waittime > to) waittime = to; 3705 if (waittime > to) waittime = to;
1611 } 3706 }
1612#endif 3707#endif
1613 3708
3709 /* don't let timeouts decrease the waittime below timeout_blocktime */
1614 if (expect_false (waittime < timeout_blocktime)) 3710 if (ecb_expect_false (waittime < timeout_blocktime))
1615 waittime = timeout_blocktime; 3711 waittime = timeout_blocktime;
1616 3712
1617 sleeptime = waittime - backend_fudge; 3713 /* at this point, we NEED to wait, so we have to ensure */
3714 /* to pass a minimum nonzero value to the backend */
3715 if (ecb_expect_false (waittime < backend_mintime))
3716 waittime = backend_mintime;
1618 3717
3718 /* extra check because io_blocktime is commonly 0 */
1619 if (expect_true (sleeptime > io_blocktime)) 3719 if (ecb_expect_false (io_blocktime))
1620 sleeptime = io_blocktime;
1621
1622 if (sleeptime)
1623 { 3720 {
3721 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3722
3723 if (sleeptime > waittime - backend_mintime)
3724 sleeptime = waittime - backend_mintime;
3725
3726 if (ecb_expect_true (sleeptime > 0.))
3727 {
1624 ev_sleep (sleeptime); 3728 ev_sleep (sleeptime);
1625 waittime -= sleeptime; 3729 waittime -= sleeptime;
3730 }
1626 } 3731 }
1627 } 3732 }
1628 3733
3734#if EV_FEATURE_API
1629 ++loop_count; 3735 ++loop_count;
3736#endif
3737 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1630 backend_poll (EV_A_ waittime); 3738 backend_poll (EV_A_ waittime);
3739 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3740
3741 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3742
3743 ECB_MEMORY_FENCE_ACQUIRE;
3744 if (pipe_write_skipped)
3745 {
3746 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3747 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3748 }
1631 3749
1632 /* update ev_rt_now, do magic */ 3750 /* update ev_rt_now, do magic */
1633 time_update (EV_A_ waittime + sleeptime); 3751 time_update (EV_A_ waittime + sleeptime);
1634 } 3752 }
1635 3753
1642#if EV_IDLE_ENABLE 3760#if EV_IDLE_ENABLE
1643 /* queue idle watchers unless other events are pending */ 3761 /* queue idle watchers unless other events are pending */
1644 idle_reify (EV_A); 3762 idle_reify (EV_A);
1645#endif 3763#endif
1646 3764
3765#if EV_CHECK_ENABLE
1647 /* queue check watchers, to be executed first */ 3766 /* queue check watchers, to be executed first */
1648 if (expect_false (checkcnt)) 3767 if (ecb_expect_false (checkcnt))
1649 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3768 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3769#endif
1650 3770
1651 call_pending (EV_A); 3771 EV_INVOKE_PENDING;
1652
1653 } 3772 }
1654 while (expect_true (activecnt && !loop_done)); 3773 while (ecb_expect_true (
3774 activecnt
3775 && !loop_done
3776 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3777 ));
1655 3778
1656 if (loop_done == EVUNLOOP_ONE) 3779 if (loop_done == EVBREAK_ONE)
1657 loop_done = EVUNLOOP_CANCEL; 3780 loop_done = EVBREAK_CANCEL;
1658}
1659 3781
3782#if EV_FEATURE_API
3783 --loop_depth;
3784#endif
3785
3786 return activecnt;
3787}
3788
1660void 3789void
1661ev_unloop (EV_P_ int how) 3790ev_break (EV_P_ int how) EV_NOEXCEPT
1662{ 3791{
1663 loop_done = how; 3792 loop_done = how;
1664} 3793}
1665 3794
3795void
3796ev_ref (EV_P) EV_NOEXCEPT
3797{
3798 ++activecnt;
3799}
3800
3801void
3802ev_unref (EV_P) EV_NOEXCEPT
3803{
3804 --activecnt;
3805}
3806
3807void
3808ev_now_update (EV_P) EV_NOEXCEPT
3809{
3810 time_update (EV_A_ 1e100);
3811}
3812
3813void
3814ev_suspend (EV_P) EV_NOEXCEPT
3815{
3816 ev_now_update (EV_A);
3817}
3818
3819void
3820ev_resume (EV_P) EV_NOEXCEPT
3821{
3822 ev_tstamp mn_prev = mn_now;
3823
3824 ev_now_update (EV_A);
3825 timers_reschedule (EV_A_ mn_now - mn_prev);
3826#if EV_PERIODIC_ENABLE
3827 /* TODO: really do this? */
3828 periodics_reschedule (EV_A);
3829#endif
3830}
3831
1666/*****************************************************************************/ 3832/*****************************************************************************/
3833/* singly-linked list management, used when the expected list length is short */
1667 3834
1668void inline_size 3835inline_size void
1669wlist_add (WL *head, WL elem) 3836wlist_add (WL *head, WL elem)
1670{ 3837{
1671 elem->next = *head; 3838 elem->next = *head;
1672 *head = elem; 3839 *head = elem;
1673} 3840}
1674 3841
1675void inline_size 3842inline_size void
1676wlist_del (WL *head, WL elem) 3843wlist_del (WL *head, WL elem)
1677{ 3844{
1678 while (*head) 3845 while (*head)
1679 { 3846 {
1680 if (*head == elem) 3847 if (ecb_expect_true (*head == elem))
1681 { 3848 {
1682 *head = elem->next; 3849 *head = elem->next;
1683 return; 3850 break;
1684 } 3851 }
1685 3852
1686 head = &(*head)->next; 3853 head = &(*head)->next;
1687 } 3854 }
1688} 3855}
1689 3856
1690void inline_speed 3857/* internal, faster, version of ev_clear_pending */
3858inline_speed void
1691clear_pending (EV_P_ W w) 3859clear_pending (EV_P_ W w)
1692{ 3860{
1693 if (w->pending) 3861 if (w->pending)
1694 { 3862 {
1695 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3863 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1696 w->pending = 0; 3864 w->pending = 0;
1697 } 3865 }
1698} 3866}
1699 3867
1700int 3868int
1701ev_clear_pending (EV_P_ void *w) 3869ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
1702{ 3870{
1703 W w_ = (W)w; 3871 W w_ = (W)w;
1704 int pending = w_->pending; 3872 int pending = w_->pending;
1705 3873
1706 if (expect_true (pending)) 3874 if (ecb_expect_true (pending))
1707 { 3875 {
1708 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3876 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3877 p->w = (W)&pending_w;
1709 w_->pending = 0; 3878 w_->pending = 0;
1710 p->w = 0;
1711 return p->events; 3879 return p->events;
1712 } 3880 }
1713 else 3881 else
1714 return 0; 3882 return 0;
1715} 3883}
1716 3884
1717void inline_size 3885inline_size void
1718pri_adjust (EV_P_ W w) 3886pri_adjust (EV_P_ W w)
1719{ 3887{
1720 int pri = w->priority; 3888 int pri = ev_priority (w);
1721 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3889 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1722 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3890 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1723 w->priority = pri; 3891 ev_set_priority (w, pri);
1724} 3892}
1725 3893
1726void inline_speed 3894inline_speed void
1727ev_start (EV_P_ W w, int active) 3895ev_start (EV_P_ W w, int active)
1728{ 3896{
1729 pri_adjust (EV_A_ w); 3897 pri_adjust (EV_A_ w);
1730 w->active = active; 3898 w->active = active;
1731 ev_ref (EV_A); 3899 ev_ref (EV_A);
1732} 3900}
1733 3901
1734void inline_size 3902inline_size void
1735ev_stop (EV_P_ W w) 3903ev_stop (EV_P_ W w)
1736{ 3904{
1737 ev_unref (EV_A); 3905 ev_unref (EV_A);
1738 w->active = 0; 3906 w->active = 0;
1739} 3907}
1740 3908
1741/*****************************************************************************/ 3909/*****************************************************************************/
1742 3910
1743void noinline 3911ecb_noinline
3912void
1744ev_io_start (EV_P_ ev_io *w) 3913ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1745{ 3914{
1746 int fd = w->fd; 3915 int fd = w->fd;
1747 3916
1748 if (expect_false (ev_is_active (w))) 3917 if (ecb_expect_false (ev_is_active (w)))
1749 return; 3918 return;
1750 3919
1751 assert (("ev_io_start called with negative fd", fd >= 0)); 3920 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3921 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3922
3923#if EV_VERIFY >= 2
3924 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
3925#endif
3926 EV_FREQUENT_CHECK;
1752 3927
1753 ev_start (EV_A_ (W)w, 1); 3928 ev_start (EV_A_ (W)w, 1);
1754 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3929 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1755 wlist_add (&anfds[fd].head, (WL)w); 3930 wlist_add (&anfds[fd].head, (WL)w);
1756 3931
3932 /* common bug, apparently */
3933 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3934
1757 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3935 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1758 w->events &= ~EV_IOFDSET; 3936 w->events &= ~EV__IOFDSET;
1759}
1760 3937
1761void noinline 3938 EV_FREQUENT_CHECK;
3939}
3940
3941ecb_noinline
3942void
1762ev_io_stop (EV_P_ ev_io *w) 3943ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1763{ 3944{
1764 clear_pending (EV_A_ (W)w); 3945 clear_pending (EV_A_ (W)w);
1765 if (expect_false (!ev_is_active (w))) 3946 if (ecb_expect_false (!ev_is_active (w)))
1766 return; 3947 return;
1767 3948
1768 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3949 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3950
3951#if EV_VERIFY >= 2
3952 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
3953#endif
3954 EV_FREQUENT_CHECK;
1769 3955
1770 wlist_del (&anfds[w->fd].head, (WL)w); 3956 wlist_del (&anfds[w->fd].head, (WL)w);
1771 ev_stop (EV_A_ (W)w); 3957 ev_stop (EV_A_ (W)w);
1772 3958
1773 fd_change (EV_A_ w->fd, 1); 3959 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1774}
1775 3960
1776void noinline 3961 EV_FREQUENT_CHECK;
3962}
3963
3964ecb_noinline
3965void
1777ev_timer_start (EV_P_ ev_timer *w) 3966ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1778{ 3967{
1779 if (expect_false (ev_is_active (w))) 3968 if (ecb_expect_false (ev_is_active (w)))
1780 return; 3969 return;
1781 3970
1782 ((WT)w)->at += mn_now; 3971 ev_at (w) += mn_now;
1783 3972
1784 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3973 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1785 3974
3975 EV_FREQUENT_CHECK;
3976
3977 ++timercnt;
1786 ev_start (EV_A_ (W)w, ++timercnt); 3978 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1787 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3979 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
1788 timers [timercnt - 1] = (WT)w; 3980 ANHE_w (timers [ev_active (w)]) = (WT)w;
1789 upheap (timers, timercnt - 1); 3981 ANHE_at_cache (timers [ev_active (w)]);
3982 upheap (timers, ev_active (w));
1790 3983
3984 EV_FREQUENT_CHECK;
3985
1791 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3986 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1792} 3987}
1793 3988
1794void noinline 3989ecb_noinline
3990void
1795ev_timer_stop (EV_P_ ev_timer *w) 3991ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1796{ 3992{
1797 clear_pending (EV_A_ (W)w); 3993 clear_pending (EV_A_ (W)w);
1798 if (expect_false (!ev_is_active (w))) 3994 if (ecb_expect_false (!ev_is_active (w)))
1799 return; 3995 return;
1800 3996
1801 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3997 EV_FREQUENT_CHECK;
1802 3998
1803 { 3999 {
1804 int active = ((W)w)->active; 4000 int active = ev_active (w);
1805 4001
4002 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4003
4004 --timercnt;
4005
1806 if (expect_true (--active < --timercnt)) 4006 if (ecb_expect_true (active < timercnt + HEAP0))
1807 { 4007 {
1808 timers [active] = timers [timercnt]; 4008 timers [active] = timers [timercnt + HEAP0];
1809 adjustheap (timers, timercnt, active); 4009 adjustheap (timers, timercnt, active);
1810 } 4010 }
1811 } 4011 }
1812 4012
1813 ((WT)w)->at -= mn_now; 4013 ev_at (w) -= mn_now;
1814 4014
1815 ev_stop (EV_A_ (W)w); 4015 ev_stop (EV_A_ (W)w);
1816}
1817 4016
1818void noinline 4017 EV_FREQUENT_CHECK;
4018}
4019
4020ecb_noinline
4021void
1819ev_timer_again (EV_P_ ev_timer *w) 4022ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1820{ 4023{
4024 EV_FREQUENT_CHECK;
4025
4026 clear_pending (EV_A_ (W)w);
4027
1821 if (ev_is_active (w)) 4028 if (ev_is_active (w))
1822 { 4029 {
1823 if (w->repeat) 4030 if (w->repeat)
1824 { 4031 {
1825 ((WT)w)->at = mn_now + w->repeat; 4032 ev_at (w) = mn_now + w->repeat;
4033 ANHE_at_cache (timers [ev_active (w)]);
1826 adjustheap (timers, timercnt, ((W)w)->active - 1); 4034 adjustheap (timers, timercnt, ev_active (w));
1827 } 4035 }
1828 else 4036 else
1829 ev_timer_stop (EV_A_ w); 4037 ev_timer_stop (EV_A_ w);
1830 } 4038 }
1831 else if (w->repeat) 4039 else if (w->repeat)
1832 { 4040 {
1833 w->at = w->repeat; 4041 ev_at (w) = w->repeat;
1834 ev_timer_start (EV_A_ w); 4042 ev_timer_start (EV_A_ w);
1835 } 4043 }
4044
4045 EV_FREQUENT_CHECK;
4046}
4047
4048ev_tstamp
4049ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4050{
4051 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1836} 4052}
1837 4053
1838#if EV_PERIODIC_ENABLE 4054#if EV_PERIODIC_ENABLE
1839void noinline 4055ecb_noinline
4056void
1840ev_periodic_start (EV_P_ ev_periodic *w) 4057ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1841{ 4058{
1842 if (expect_false (ev_is_active (w))) 4059 if (ecb_expect_false (ev_is_active (w)))
1843 return; 4060 return;
1844 4061
1845 if (w->reschedule_cb) 4062 if (w->reschedule_cb)
1846 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4063 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1847 else if (w->interval) 4064 else if (w->interval)
1848 { 4065 {
1849 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4066 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1850 /* this formula differs from the one in periodic_reify because we do not always round up */ 4067 periodic_recalc (EV_A_ w);
1851 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1852 } 4068 }
1853 else 4069 else
1854 ((WT)w)->at = w->offset; 4070 ev_at (w) = w->offset;
1855 4071
4072 EV_FREQUENT_CHECK;
4073
4074 ++periodiccnt;
1856 ev_start (EV_A_ (W)w, ++periodiccnt); 4075 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1857 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 4076 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1858 periodics [periodiccnt - 1] = (WT)w; 4077 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1859 upheap (periodics, periodiccnt - 1); 4078 ANHE_at_cache (periodics [ev_active (w)]);
4079 upheap (periodics, ev_active (w));
1860 4080
4081 EV_FREQUENT_CHECK;
4082
1861 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 4083 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1862} 4084}
1863 4085
1864void noinline 4086ecb_noinline
4087void
1865ev_periodic_stop (EV_P_ ev_periodic *w) 4088ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1866{ 4089{
1867 clear_pending (EV_A_ (W)w); 4090 clear_pending (EV_A_ (W)w);
1868 if (expect_false (!ev_is_active (w))) 4091 if (ecb_expect_false (!ev_is_active (w)))
1869 return; 4092 return;
1870 4093
1871 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 4094 EV_FREQUENT_CHECK;
1872 4095
1873 { 4096 {
1874 int active = ((W)w)->active; 4097 int active = ev_active (w);
1875 4098
4099 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4100
4101 --periodiccnt;
4102
1876 if (expect_true (--active < --periodiccnt)) 4103 if (ecb_expect_true (active < periodiccnt + HEAP0))
1877 { 4104 {
1878 periodics [active] = periodics [periodiccnt]; 4105 periodics [active] = periodics [periodiccnt + HEAP0];
1879 adjustheap (periodics, periodiccnt, active); 4106 adjustheap (periodics, periodiccnt, active);
1880 } 4107 }
1881 } 4108 }
1882 4109
1883 ev_stop (EV_A_ (W)w); 4110 ev_stop (EV_A_ (W)w);
1884}
1885 4111
1886void noinline 4112 EV_FREQUENT_CHECK;
4113}
4114
4115ecb_noinline
4116void
1887ev_periodic_again (EV_P_ ev_periodic *w) 4117ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1888{ 4118{
1889 /* TODO: use adjustheap and recalculation */ 4119 /* TODO: use adjustheap and recalculation */
1890 ev_periodic_stop (EV_A_ w); 4120 ev_periodic_stop (EV_A_ w);
1891 ev_periodic_start (EV_A_ w); 4121 ev_periodic_start (EV_A_ w);
1892} 4122}
1894 4124
1895#ifndef SA_RESTART 4125#ifndef SA_RESTART
1896# define SA_RESTART 0 4126# define SA_RESTART 0
1897#endif 4127#endif
1898 4128
1899void noinline 4129#if EV_SIGNAL_ENABLE
4130
4131ecb_noinline
4132void
1900ev_signal_start (EV_P_ ev_signal *w) 4133ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1901{ 4134{
4135 if (ecb_expect_false (ev_is_active (w)))
4136 return;
4137
4138 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4139
1902#if EV_MULTIPLICITY 4140#if EV_MULTIPLICITY
1903 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4141 assert (("libev: a signal must not be attached to two different loops",
1904#endif 4142 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1905 if (expect_false (ev_is_active (w)))
1906 return;
1907 4143
1908 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4144 signals [w->signum - 1].loop = EV_A;
4145 ECB_MEMORY_FENCE_RELEASE;
4146#endif
1909 4147
1910 evpipe_init (EV_A); 4148 EV_FREQUENT_CHECK;
1911 4149
4150#if EV_USE_SIGNALFD
4151 if (sigfd == -2)
1912 { 4152 {
1913#ifndef _WIN32 4153 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1914 sigset_t full, prev; 4154 if (sigfd < 0 && errno == EINVAL)
1915 sigfillset (&full); 4155 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1916 sigprocmask (SIG_SETMASK, &full, &prev);
1917#endif
1918 4156
1919 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4157 if (sigfd >= 0)
4158 {
4159 fd_intern (sigfd); /* doing it twice will not hurt */
1920 4160
1921#ifndef _WIN32 4161 sigemptyset (&sigfd_set);
1922 sigprocmask (SIG_SETMASK, &prev, 0); 4162
1923#endif 4163 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4164 ev_set_priority (&sigfd_w, EV_MAXPRI);
4165 ev_io_start (EV_A_ &sigfd_w);
4166 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4167 }
1924 } 4168 }
4169
4170 if (sigfd >= 0)
4171 {
4172 /* TODO: check .head */
4173 sigaddset (&sigfd_set, w->signum);
4174 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4175
4176 signalfd (sigfd, &sigfd_set, 0);
4177 }
4178#endif
1925 4179
1926 ev_start (EV_A_ (W)w, 1); 4180 ev_start (EV_A_ (W)w, 1);
1927 wlist_add (&signals [w->signum - 1].head, (WL)w); 4181 wlist_add (&signals [w->signum - 1].head, (WL)w);
1928 4182
1929 if (!((WL)w)->next) 4183 if (!((WL)w)->next)
4184# if EV_USE_SIGNALFD
4185 if (sigfd < 0) /*TODO*/
4186# endif
1930 { 4187 {
1931#if _WIN32 4188# ifdef _WIN32
4189 evpipe_init (EV_A);
4190
1932 signal (w->signum, sighandler); 4191 signal (w->signum, ev_sighandler);
1933#else 4192# else
1934 struct sigaction sa; 4193 struct sigaction sa;
4194
4195 evpipe_init (EV_A);
4196
1935 sa.sa_handler = sighandler; 4197 sa.sa_handler = ev_sighandler;
1936 sigfillset (&sa.sa_mask); 4198 sigfillset (&sa.sa_mask);
1937 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4199 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1938 sigaction (w->signum, &sa, 0); 4200 sigaction (w->signum, &sa, 0);
4201
4202 if (origflags & EVFLAG_NOSIGMASK)
4203 {
4204 sigemptyset (&sa.sa_mask);
4205 sigaddset (&sa.sa_mask, w->signum);
4206 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4207 }
1939#endif 4208#endif
1940 } 4209 }
1941}
1942 4210
1943void noinline 4211 EV_FREQUENT_CHECK;
4212}
4213
4214ecb_noinline
4215void
1944ev_signal_stop (EV_P_ ev_signal *w) 4216ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
1945{ 4217{
1946 clear_pending (EV_A_ (W)w); 4218 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 4219 if (ecb_expect_false (!ev_is_active (w)))
1948 return; 4220 return;
4221
4222 EV_FREQUENT_CHECK;
1949 4223
1950 wlist_del (&signals [w->signum - 1].head, (WL)w); 4224 wlist_del (&signals [w->signum - 1].head, (WL)w);
1951 ev_stop (EV_A_ (W)w); 4225 ev_stop (EV_A_ (W)w);
1952 4226
1953 if (!signals [w->signum - 1].head) 4227 if (!signals [w->signum - 1].head)
1954 signal (w->signum, SIG_DFL); 4228 {
1955}
1956
1957void
1958ev_child_start (EV_P_ ev_child *w)
1959{
1960#if EV_MULTIPLICITY 4229#if EV_MULTIPLICITY
4230 signals [w->signum - 1].loop = 0; /* unattach from signal */
4231#endif
4232#if EV_USE_SIGNALFD
4233 if (sigfd >= 0)
4234 {
4235 sigset_t ss;
4236
4237 sigemptyset (&ss);
4238 sigaddset (&ss, w->signum);
4239 sigdelset (&sigfd_set, w->signum);
4240
4241 signalfd (sigfd, &sigfd_set, 0);
4242 sigprocmask (SIG_UNBLOCK, &ss, 0);
4243 }
4244 else
4245#endif
4246 signal (w->signum, SIG_DFL);
4247 }
4248
4249 EV_FREQUENT_CHECK;
4250}
4251
4252#endif
4253
4254#if EV_CHILD_ENABLE
4255
4256void
4257ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4258{
4259#if EV_MULTIPLICITY
1961 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4260 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1962#endif 4261#endif
1963 if (expect_false (ev_is_active (w))) 4262 if (ecb_expect_false (ev_is_active (w)))
1964 return; 4263 return;
1965 4264
4265 EV_FREQUENT_CHECK;
4266
1966 ev_start (EV_A_ (W)w, 1); 4267 ev_start (EV_A_ (W)w, 1);
1967 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4268 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1968}
1969 4269
4270 EV_FREQUENT_CHECK;
4271}
4272
1970void 4273void
1971ev_child_stop (EV_P_ ev_child *w) 4274ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1972{ 4275{
1973 clear_pending (EV_A_ (W)w); 4276 clear_pending (EV_A_ (W)w);
1974 if (expect_false (!ev_is_active (w))) 4277 if (ecb_expect_false (!ev_is_active (w)))
1975 return; 4278 return;
1976 4279
4280 EV_FREQUENT_CHECK;
4281
1977 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4282 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1978 ev_stop (EV_A_ (W)w); 4283 ev_stop (EV_A_ (W)w);
4284
4285 EV_FREQUENT_CHECK;
1979} 4286}
4287
4288#endif
1980 4289
1981#if EV_STAT_ENABLE 4290#if EV_STAT_ENABLE
1982 4291
1983# ifdef _WIN32 4292# ifdef _WIN32
1984# undef lstat 4293# undef lstat
1985# define lstat(a,b) _stati64 (a,b) 4294# define lstat(a,b) _stati64 (a,b)
1986# endif 4295# endif
1987 4296
1988#define DEF_STAT_INTERVAL 5.0074891 4297#define DEF_STAT_INTERVAL 5.0074891
4298#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1989#define MIN_STAT_INTERVAL 0.1074891 4299#define MIN_STAT_INTERVAL 0.1074891
1990 4300
1991static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4301ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1992 4302
1993#if EV_USE_INOTIFY 4303#if EV_USE_INOTIFY
1994# define EV_INOTIFY_BUFSIZE 8192
1995 4304
1996static void noinline 4305/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4306# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4307
4308ecb_noinline
4309static void
1997infy_add (EV_P_ ev_stat *w) 4310infy_add (EV_P_ ev_stat *w)
1998{ 4311{
1999 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4312 w->wd = inotify_add_watch (fs_fd, w->path,
4313 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4314 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4315 | IN_DONT_FOLLOW | IN_MASK_ADD);
2000 4316
2001 if (w->wd < 0) 4317 if (w->wd >= 0)
4318 {
4319 struct statfs sfs;
4320
4321 /* now local changes will be tracked by inotify, but remote changes won't */
4322 /* unless the filesystem is known to be local, we therefore still poll */
4323 /* also do poll on <2.6.25, but with normal frequency */
4324
4325 if (!fs_2625)
4326 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4327 else if (!statfs (w->path, &sfs)
4328 && (sfs.f_type == 0x1373 /* devfs */
4329 || sfs.f_type == 0x4006 /* fat */
4330 || sfs.f_type == 0x4d44 /* msdos */
4331 || sfs.f_type == 0xEF53 /* ext2/3 */
4332 || sfs.f_type == 0x72b6 /* jffs2 */
4333 || sfs.f_type == 0x858458f6 /* ramfs */
4334 || sfs.f_type == 0x5346544e /* ntfs */
4335 || sfs.f_type == 0x3153464a /* jfs */
4336 || sfs.f_type == 0x9123683e /* btrfs */
4337 || sfs.f_type == 0x52654973 /* reiser3 */
4338 || sfs.f_type == 0x01021994 /* tmpfs */
4339 || sfs.f_type == 0x58465342 /* xfs */))
4340 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4341 else
4342 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2002 { 4343 }
2003 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4344 else
4345 {
4346 /* can't use inotify, continue to stat */
4347 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2004 4348
2005 /* monitor some parent directory for speedup hints */ 4349 /* if path is not there, monitor some parent directory for speedup hints */
4350 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4351 /* but an efficiency issue only */
2006 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4352 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2007 { 4353 {
2008 char path [4096]; 4354 char path [4096];
2009 strcpy (path, w->path); 4355 strcpy (path, w->path);
2010 4356
2013 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4359 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2014 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4360 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2015 4361
2016 char *pend = strrchr (path, '/'); 4362 char *pend = strrchr (path, '/');
2017 4363
2018 if (!pend) 4364 if (!pend || pend == path)
2019 break; /* whoops, no '/', complain to your admin */ 4365 break;
2020 4366
2021 *pend = 0; 4367 *pend = 0;
2022 w->wd = inotify_add_watch (fs_fd, path, mask); 4368 w->wd = inotify_add_watch (fs_fd, path, mask);
2023 } 4369 }
2024 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4370 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2025 } 4371 }
2026 } 4372 }
2027 else
2028 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2029 4373
2030 if (w->wd >= 0) 4374 if (w->wd >= 0)
2031 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4375 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2032}
2033 4376
2034static void noinline 4377 /* now re-arm timer, if required */
4378 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4379 ev_timer_again (EV_A_ &w->timer);
4380 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4381}
4382
4383ecb_noinline
4384static void
2035infy_del (EV_P_ ev_stat *w) 4385infy_del (EV_P_ ev_stat *w)
2036{ 4386{
2037 int slot; 4387 int slot;
2038 int wd = w->wd; 4388 int wd = w->wd;
2039 4389
2040 if (wd < 0) 4390 if (wd < 0)
2041 return; 4391 return;
2042 4392
2043 w->wd = -2; 4393 w->wd = -2;
2044 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4394 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2045 wlist_del (&fs_hash [slot].head, (WL)w); 4395 wlist_del (&fs_hash [slot].head, (WL)w);
2046 4396
2047 /* remove this watcher, if others are watching it, they will rearm */ 4397 /* remove this watcher, if others are watching it, they will rearm */
2048 inotify_rm_watch (fs_fd, wd); 4398 inotify_rm_watch (fs_fd, wd);
2049} 4399}
2050 4400
2051static void noinline 4401ecb_noinline
4402static void
2052infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4403infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2053{ 4404{
2054 if (slot < 0) 4405 if (slot < 0)
2055 /* overflow, need to check for all hahs slots */ 4406 /* overflow, need to check for all hash slots */
2056 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4407 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2057 infy_wd (EV_A_ slot, wd, ev); 4408 infy_wd (EV_A_ slot, wd, ev);
2058 else 4409 else
2059 { 4410 {
2060 WL w_; 4411 WL w_;
2061 4412
2062 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4413 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2063 { 4414 {
2064 ev_stat *w = (ev_stat *)w_; 4415 ev_stat *w = (ev_stat *)w_;
2065 w_ = w_->next; /* lets us remove this watcher and all before it */ 4416 w_ = w_->next; /* lets us remove this watcher and all before it */
2066 4417
2067 if (w->wd == wd || wd == -1) 4418 if (w->wd == wd || wd == -1)
2068 { 4419 {
2069 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4420 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2070 { 4421 {
4422 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2071 w->wd = -1; 4423 w->wd = -1;
2072 infy_add (EV_A_ w); /* re-add, no matter what */ 4424 infy_add (EV_A_ w); /* re-add, no matter what */
2073 } 4425 }
2074 4426
2075 stat_timer_cb (EV_A_ &w->timer, 0); 4427 stat_timer_cb (EV_A_ &w->timer, 0);
2080 4432
2081static void 4433static void
2082infy_cb (EV_P_ ev_io *w, int revents) 4434infy_cb (EV_P_ ev_io *w, int revents)
2083{ 4435{
2084 char buf [EV_INOTIFY_BUFSIZE]; 4436 char buf [EV_INOTIFY_BUFSIZE];
2085 struct inotify_event *ev = (struct inotify_event *)buf;
2086 int ofs; 4437 int ofs;
2087 int len = read (fs_fd, buf, sizeof (buf)); 4438 int len = read (fs_fd, buf, sizeof (buf));
2088 4439
2089 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4440 for (ofs = 0; ofs < len; )
4441 {
4442 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2090 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4443 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4444 ofs += sizeof (struct inotify_event) + ev->len;
4445 }
2091} 4446}
2092 4447
2093void inline_size 4448inline_size ecb_cold
4449void
4450ev_check_2625 (EV_P)
4451{
4452 /* kernels < 2.6.25 are borked
4453 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4454 */
4455 if (ev_linux_version () < 0x020619)
4456 return;
4457
4458 fs_2625 = 1;
4459}
4460
4461inline_size int
4462infy_newfd (void)
4463{
4464#if defined IN_CLOEXEC && defined IN_NONBLOCK
4465 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4466 if (fd >= 0)
4467 return fd;
4468#endif
4469 return inotify_init ();
4470}
4471
4472inline_size void
2094infy_init (EV_P) 4473infy_init (EV_P)
2095{ 4474{
2096 if (fs_fd != -2) 4475 if (fs_fd != -2)
2097 return; 4476 return;
2098 4477
4478 fs_fd = -1;
4479
4480 ev_check_2625 (EV_A);
4481
2099 fs_fd = inotify_init (); 4482 fs_fd = infy_newfd ();
2100 4483
2101 if (fs_fd >= 0) 4484 if (fs_fd >= 0)
2102 { 4485 {
4486 fd_intern (fs_fd);
2103 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4487 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2104 ev_set_priority (&fs_w, EV_MAXPRI); 4488 ev_set_priority (&fs_w, EV_MAXPRI);
2105 ev_io_start (EV_A_ &fs_w); 4489 ev_io_start (EV_A_ &fs_w);
4490 ev_unref (EV_A);
2106 } 4491 }
2107} 4492}
2108 4493
2109void inline_size 4494inline_size void
2110infy_fork (EV_P) 4495infy_fork (EV_P)
2111{ 4496{
2112 int slot; 4497 int slot;
2113 4498
2114 if (fs_fd < 0) 4499 if (fs_fd < 0)
2115 return; 4500 return;
2116 4501
4502 ev_ref (EV_A);
4503 ev_io_stop (EV_A_ &fs_w);
2117 close (fs_fd); 4504 close (fs_fd);
2118 fs_fd = inotify_init (); 4505 fs_fd = infy_newfd ();
2119 4506
4507 if (fs_fd >= 0)
4508 {
4509 fd_intern (fs_fd);
4510 ev_io_set (&fs_w, fs_fd, EV_READ);
4511 ev_io_start (EV_A_ &fs_w);
4512 ev_unref (EV_A);
4513 }
4514
2120 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4515 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2121 { 4516 {
2122 WL w_ = fs_hash [slot].head; 4517 WL w_ = fs_hash [slot].head;
2123 fs_hash [slot].head = 0; 4518 fs_hash [slot].head = 0;
2124 4519
2125 while (w_) 4520 while (w_)
2130 w->wd = -1; 4525 w->wd = -1;
2131 4526
2132 if (fs_fd >= 0) 4527 if (fs_fd >= 0)
2133 infy_add (EV_A_ w); /* re-add, no matter what */ 4528 infy_add (EV_A_ w); /* re-add, no matter what */
2134 else 4529 else
4530 {
4531 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4532 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2135 ev_timer_start (EV_A_ &w->timer); 4533 ev_timer_again (EV_A_ &w->timer);
4534 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4535 }
2136 } 4536 }
2137
2138 } 4537 }
2139} 4538}
2140 4539
2141#endif 4540#endif
2142 4541
4542#ifdef _WIN32
4543# define EV_LSTAT(p,b) _stati64 (p, b)
4544#else
4545# define EV_LSTAT(p,b) lstat (p, b)
4546#endif
4547
2143void 4548void
2144ev_stat_stat (EV_P_ ev_stat *w) 4549ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2145{ 4550{
2146 if (lstat (w->path, &w->attr) < 0) 4551 if (lstat (w->path, &w->attr) < 0)
2147 w->attr.st_nlink = 0; 4552 w->attr.st_nlink = 0;
2148 else if (!w->attr.st_nlink) 4553 else if (!w->attr.st_nlink)
2149 w->attr.st_nlink = 1; 4554 w->attr.st_nlink = 1;
2150} 4555}
2151 4556
2152static void noinline 4557ecb_noinline
4558static void
2153stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4559stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2154{ 4560{
2155 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4561 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2156 4562
2157 /* we copy this here each the time so that */ 4563 ev_statdata prev = w->attr;
2158 /* prev has the old value when the callback gets invoked */
2159 w->prev = w->attr;
2160 ev_stat_stat (EV_A_ w); 4564 ev_stat_stat (EV_A_ w);
2161 4565
2162 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4566 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2163 if ( 4567 if (
2164 w->prev.st_dev != w->attr.st_dev 4568 prev.st_dev != w->attr.st_dev
2165 || w->prev.st_ino != w->attr.st_ino 4569 || prev.st_ino != w->attr.st_ino
2166 || w->prev.st_mode != w->attr.st_mode 4570 || prev.st_mode != w->attr.st_mode
2167 || w->prev.st_nlink != w->attr.st_nlink 4571 || prev.st_nlink != w->attr.st_nlink
2168 || w->prev.st_uid != w->attr.st_uid 4572 || prev.st_uid != w->attr.st_uid
2169 || w->prev.st_gid != w->attr.st_gid 4573 || prev.st_gid != w->attr.st_gid
2170 || w->prev.st_rdev != w->attr.st_rdev 4574 || prev.st_rdev != w->attr.st_rdev
2171 || w->prev.st_size != w->attr.st_size 4575 || prev.st_size != w->attr.st_size
2172 || w->prev.st_atime != w->attr.st_atime 4576 || prev.st_atime != w->attr.st_atime
2173 || w->prev.st_mtime != w->attr.st_mtime 4577 || prev.st_mtime != w->attr.st_mtime
2174 || w->prev.st_ctime != w->attr.st_ctime 4578 || prev.st_ctime != w->attr.st_ctime
2175 ) { 4579 ) {
4580 /* we only update w->prev on actual differences */
4581 /* in case we test more often than invoke the callback, */
4582 /* to ensure that prev is always different to attr */
4583 w->prev = prev;
4584
2176 #if EV_USE_INOTIFY 4585 #if EV_USE_INOTIFY
4586 if (fs_fd >= 0)
4587 {
2177 infy_del (EV_A_ w); 4588 infy_del (EV_A_ w);
2178 infy_add (EV_A_ w); 4589 infy_add (EV_A_ w);
2179 ev_stat_stat (EV_A_ w); /* avoid race... */ 4590 ev_stat_stat (EV_A_ w); /* avoid race... */
4591 }
2180 #endif 4592 #endif
2181 4593
2182 ev_feed_event (EV_A_ w, EV_STAT); 4594 ev_feed_event (EV_A_ w, EV_STAT);
2183 } 4595 }
2184} 4596}
2185 4597
2186void 4598void
2187ev_stat_start (EV_P_ ev_stat *w) 4599ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2188{ 4600{
2189 if (expect_false (ev_is_active (w))) 4601 if (ecb_expect_false (ev_is_active (w)))
2190 return; 4602 return;
2191 4603
2192 /* since we use memcmp, we need to clear any padding data etc. */
2193 memset (&w->prev, 0, sizeof (ev_statdata));
2194 memset (&w->attr, 0, sizeof (ev_statdata));
2195
2196 ev_stat_stat (EV_A_ w); 4604 ev_stat_stat (EV_A_ w);
2197 4605
4606 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2198 if (w->interval < MIN_STAT_INTERVAL) 4607 w->interval = MIN_STAT_INTERVAL;
2199 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2200 4608
2201 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4609 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2202 ev_set_priority (&w->timer, ev_priority (w)); 4610 ev_set_priority (&w->timer, ev_priority (w));
2203 4611
2204#if EV_USE_INOTIFY 4612#if EV_USE_INOTIFY
2205 infy_init (EV_A); 4613 infy_init (EV_A);
2206 4614
2207 if (fs_fd >= 0) 4615 if (fs_fd >= 0)
2208 infy_add (EV_A_ w); 4616 infy_add (EV_A_ w);
2209 else 4617 else
2210#endif 4618#endif
4619 {
2211 ev_timer_start (EV_A_ &w->timer); 4620 ev_timer_again (EV_A_ &w->timer);
4621 ev_unref (EV_A);
4622 }
2212 4623
2213 ev_start (EV_A_ (W)w, 1); 4624 ev_start (EV_A_ (W)w, 1);
2214}
2215 4625
4626 EV_FREQUENT_CHECK;
4627}
4628
2216void 4629void
2217ev_stat_stop (EV_P_ ev_stat *w) 4630ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2218{ 4631{
2219 clear_pending (EV_A_ (W)w); 4632 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 4633 if (ecb_expect_false (!ev_is_active (w)))
2221 return; 4634 return;
4635
4636 EV_FREQUENT_CHECK;
2222 4637
2223#if EV_USE_INOTIFY 4638#if EV_USE_INOTIFY
2224 infy_del (EV_A_ w); 4639 infy_del (EV_A_ w);
2225#endif 4640#endif
4641
4642 if (ev_is_active (&w->timer))
4643 {
4644 ev_ref (EV_A);
2226 ev_timer_stop (EV_A_ &w->timer); 4645 ev_timer_stop (EV_A_ &w->timer);
4646 }
2227 4647
2228 ev_stop (EV_A_ (W)w); 4648 ev_stop (EV_A_ (W)w);
4649
4650 EV_FREQUENT_CHECK;
2229} 4651}
2230#endif 4652#endif
2231 4653
2232#if EV_IDLE_ENABLE 4654#if EV_IDLE_ENABLE
2233void 4655void
2234ev_idle_start (EV_P_ ev_idle *w) 4656ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2235{ 4657{
2236 if (expect_false (ev_is_active (w))) 4658 if (ecb_expect_false (ev_is_active (w)))
2237 return; 4659 return;
2238 4660
2239 pri_adjust (EV_A_ (W)w); 4661 pri_adjust (EV_A_ (W)w);
4662
4663 EV_FREQUENT_CHECK;
2240 4664
2241 { 4665 {
2242 int active = ++idlecnt [ABSPRI (w)]; 4666 int active = ++idlecnt [ABSPRI (w)];
2243 4667
2244 ++idleall; 4668 ++idleall;
2245 ev_start (EV_A_ (W)w, active); 4669 ev_start (EV_A_ (W)w, active);
2246 4670
2247 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4671 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2248 idles [ABSPRI (w)][active - 1] = w; 4672 idles [ABSPRI (w)][active - 1] = w;
2249 } 4673 }
2250}
2251 4674
4675 EV_FREQUENT_CHECK;
4676}
4677
2252void 4678void
2253ev_idle_stop (EV_P_ ev_idle *w) 4679ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2254{ 4680{
2255 clear_pending (EV_A_ (W)w); 4681 clear_pending (EV_A_ (W)w);
2256 if (expect_false (!ev_is_active (w))) 4682 if (ecb_expect_false (!ev_is_active (w)))
2257 return; 4683 return;
2258 4684
4685 EV_FREQUENT_CHECK;
4686
2259 { 4687 {
2260 int active = ((W)w)->active; 4688 int active = ev_active (w);
2261 4689
2262 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4690 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2263 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4691 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2264 4692
2265 ev_stop (EV_A_ (W)w); 4693 ev_stop (EV_A_ (W)w);
2266 --idleall; 4694 --idleall;
2267 } 4695 }
2268}
2269#endif
2270 4696
4697 EV_FREQUENT_CHECK;
4698}
4699#endif
4700
4701#if EV_PREPARE_ENABLE
2271void 4702void
2272ev_prepare_start (EV_P_ ev_prepare *w) 4703ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2273{ 4704{
2274 if (expect_false (ev_is_active (w))) 4705 if (ecb_expect_false (ev_is_active (w)))
2275 return; 4706 return;
2276 4707
4708 EV_FREQUENT_CHECK;
4709
2277 ev_start (EV_A_ (W)w, ++preparecnt); 4710 ev_start (EV_A_ (W)w, ++preparecnt);
2278 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4711 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2279 prepares [preparecnt - 1] = w; 4712 prepares [preparecnt - 1] = w;
2280}
2281 4713
4714 EV_FREQUENT_CHECK;
4715}
4716
2282void 4717void
2283ev_prepare_stop (EV_P_ ev_prepare *w) 4718ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2284{ 4719{
2285 clear_pending (EV_A_ (W)w); 4720 clear_pending (EV_A_ (W)w);
2286 if (expect_false (!ev_is_active (w))) 4721 if (ecb_expect_false (!ev_is_active (w)))
2287 return; 4722 return;
2288 4723
4724 EV_FREQUENT_CHECK;
4725
2289 { 4726 {
2290 int active = ((W)w)->active; 4727 int active = ev_active (w);
4728
2291 prepares [active - 1] = prepares [--preparecnt]; 4729 prepares [active - 1] = prepares [--preparecnt];
2292 ((W)prepares [active - 1])->active = active; 4730 ev_active (prepares [active - 1]) = active;
2293 } 4731 }
2294 4732
2295 ev_stop (EV_A_ (W)w); 4733 ev_stop (EV_A_ (W)w);
2296}
2297 4734
4735 EV_FREQUENT_CHECK;
4736}
4737#endif
4738
4739#if EV_CHECK_ENABLE
2298void 4740void
2299ev_check_start (EV_P_ ev_check *w) 4741ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2300{ 4742{
2301 if (expect_false (ev_is_active (w))) 4743 if (ecb_expect_false (ev_is_active (w)))
2302 return; 4744 return;
2303 4745
4746 EV_FREQUENT_CHECK;
4747
2304 ev_start (EV_A_ (W)w, ++checkcnt); 4748 ev_start (EV_A_ (W)w, ++checkcnt);
2305 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4749 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2306 checks [checkcnt - 1] = w; 4750 checks [checkcnt - 1] = w;
2307}
2308 4751
4752 EV_FREQUENT_CHECK;
4753}
4754
2309void 4755void
2310ev_check_stop (EV_P_ ev_check *w) 4756ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2311{ 4757{
2312 clear_pending (EV_A_ (W)w); 4758 clear_pending (EV_A_ (W)w);
2313 if (expect_false (!ev_is_active (w))) 4759 if (ecb_expect_false (!ev_is_active (w)))
2314 return; 4760 return;
2315 4761
4762 EV_FREQUENT_CHECK;
4763
2316 { 4764 {
2317 int active = ((W)w)->active; 4765 int active = ev_active (w);
4766
2318 checks [active - 1] = checks [--checkcnt]; 4767 checks [active - 1] = checks [--checkcnt];
2319 ((W)checks [active - 1])->active = active; 4768 ev_active (checks [active - 1]) = active;
2320 } 4769 }
2321 4770
2322 ev_stop (EV_A_ (W)w); 4771 ev_stop (EV_A_ (W)w);
4772
4773 EV_FREQUENT_CHECK;
2323} 4774}
4775#endif
2324 4776
2325#if EV_EMBED_ENABLE 4777#if EV_EMBED_ENABLE
2326void noinline 4778ecb_noinline
4779void
2327ev_embed_sweep (EV_P_ ev_embed *w) 4780ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2328{ 4781{
2329 ev_loop (w->other, EVLOOP_NONBLOCK); 4782 ev_run (w->other, EVRUN_NOWAIT);
2330} 4783}
2331 4784
2332static void 4785static void
2333embed_io_cb (EV_P_ ev_io *io, int revents) 4786embed_io_cb (EV_P_ ev_io *io, int revents)
2334{ 4787{
2335 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4788 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2336 4789
2337 if (ev_cb (w)) 4790 if (ev_cb (w))
2338 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4791 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2339 else 4792 else
2340 ev_loop (w->other, EVLOOP_NONBLOCK); 4793 ev_run (w->other, EVRUN_NOWAIT);
2341} 4794}
2342 4795
2343static void 4796static void
2344embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4797embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2345{ 4798{
2346 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4799 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2347 4800
2348 { 4801 {
2349 struct ev_loop *loop = w->other; 4802 EV_P = w->other;
2350 4803
2351 while (fdchangecnt) 4804 while (fdchangecnt)
2352 { 4805 {
2353 fd_reify (EV_A); 4806 fd_reify (EV_A);
2354 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4807 ev_run (EV_A_ EVRUN_NOWAIT);
2355 } 4808 }
2356 } 4809 }
4810}
4811
4812static void
4813embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4814{
4815 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4816
4817 ev_embed_stop (EV_A_ w);
4818
4819 {
4820 EV_P = w->other;
4821
4822 ev_loop_fork (EV_A);
4823 ev_run (EV_A_ EVRUN_NOWAIT);
4824 }
4825
4826 ev_embed_start (EV_A_ w);
2357} 4827}
2358 4828
2359#if 0 4829#if 0
2360static void 4830static void
2361embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4831embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2363 ev_idle_stop (EV_A_ idle); 4833 ev_idle_stop (EV_A_ idle);
2364} 4834}
2365#endif 4835#endif
2366 4836
2367void 4837void
2368ev_embed_start (EV_P_ ev_embed *w) 4838ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2369{ 4839{
2370 if (expect_false (ev_is_active (w))) 4840 if (ecb_expect_false (ev_is_active (w)))
2371 return; 4841 return;
2372 4842
2373 { 4843 {
2374 struct ev_loop *loop = w->other; 4844 EV_P = w->other;
2375 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4845 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2376 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2377 } 4847 }
4848
4849 EV_FREQUENT_CHECK;
2378 4850
2379 ev_set_priority (&w->io, ev_priority (w)); 4851 ev_set_priority (&w->io, ev_priority (w));
2380 ev_io_start (EV_A_ &w->io); 4852 ev_io_start (EV_A_ &w->io);
2381 4853
2382 ev_prepare_init (&w->prepare, embed_prepare_cb); 4854 ev_prepare_init (&w->prepare, embed_prepare_cb);
2383 ev_set_priority (&w->prepare, EV_MINPRI); 4855 ev_set_priority (&w->prepare, EV_MINPRI);
2384 ev_prepare_start (EV_A_ &w->prepare); 4856 ev_prepare_start (EV_A_ &w->prepare);
2385 4857
4858 ev_fork_init (&w->fork, embed_fork_cb);
4859 ev_fork_start (EV_A_ &w->fork);
4860
2386 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2387 4862
2388 ev_start (EV_A_ (W)w, 1); 4863 ev_start (EV_A_ (W)w, 1);
2389}
2390 4864
4865 EV_FREQUENT_CHECK;
4866}
4867
2391void 4868void
2392ev_embed_stop (EV_P_ ev_embed *w) 4869ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2393{ 4870{
2394 clear_pending (EV_A_ (W)w); 4871 clear_pending (EV_A_ (W)w);
2395 if (expect_false (!ev_is_active (w))) 4872 if (ecb_expect_false (!ev_is_active (w)))
2396 return; 4873 return;
2397 4874
4875 EV_FREQUENT_CHECK;
4876
2398 ev_io_stop (EV_A_ &w->io); 4877 ev_io_stop (EV_A_ &w->io);
2399 ev_prepare_stop (EV_A_ &w->prepare); 4878 ev_prepare_stop (EV_A_ &w->prepare);
4879 ev_fork_stop (EV_A_ &w->fork);
2400 4880
2401 ev_stop (EV_A_ (W)w); 4881 ev_stop (EV_A_ (W)w);
4882
4883 EV_FREQUENT_CHECK;
2402} 4884}
2403#endif 4885#endif
2404 4886
2405#if EV_FORK_ENABLE 4887#if EV_FORK_ENABLE
2406void 4888void
2407ev_fork_start (EV_P_ ev_fork *w) 4889ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2408{ 4890{
2409 if (expect_false (ev_is_active (w))) 4891 if (ecb_expect_false (ev_is_active (w)))
2410 return; 4892 return;
2411 4893
4894 EV_FREQUENT_CHECK;
4895
2412 ev_start (EV_A_ (W)w, ++forkcnt); 4896 ev_start (EV_A_ (W)w, ++forkcnt);
2413 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4897 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2414 forks [forkcnt - 1] = w; 4898 forks [forkcnt - 1] = w;
2415}
2416 4899
4900 EV_FREQUENT_CHECK;
4901}
4902
2417void 4903void
2418ev_fork_stop (EV_P_ ev_fork *w) 4904ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2419{ 4905{
2420 clear_pending (EV_A_ (W)w); 4906 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w))) 4907 if (ecb_expect_false (!ev_is_active (w)))
2422 return; 4908 return;
2423 4909
4910 EV_FREQUENT_CHECK;
4911
2424 { 4912 {
2425 int active = ((W)w)->active; 4913 int active = ev_active (w);
4914
2426 forks [active - 1] = forks [--forkcnt]; 4915 forks [active - 1] = forks [--forkcnt];
2427 ((W)forks [active - 1])->active = active; 4916 ev_active (forks [active - 1]) = active;
2428 } 4917 }
2429 4918
2430 ev_stop (EV_A_ (W)w); 4919 ev_stop (EV_A_ (W)w);
4920
4921 EV_FREQUENT_CHECK;
4922}
4923#endif
4924
4925#if EV_CLEANUP_ENABLE
4926void
4927ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4928{
4929 if (ecb_expect_false (ev_is_active (w)))
4930 return;
4931
4932 EV_FREQUENT_CHECK;
4933
4934 ev_start (EV_A_ (W)w, ++cleanupcnt);
4935 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4936 cleanups [cleanupcnt - 1] = w;
4937
4938 /* cleanup watchers should never keep a refcount on the loop */
4939 ev_unref (EV_A);
4940 EV_FREQUENT_CHECK;
4941}
4942
4943void
4944ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4945{
4946 clear_pending (EV_A_ (W)w);
4947 if (ecb_expect_false (!ev_is_active (w)))
4948 return;
4949
4950 EV_FREQUENT_CHECK;
4951 ev_ref (EV_A);
4952
4953 {
4954 int active = ev_active (w);
4955
4956 cleanups [active - 1] = cleanups [--cleanupcnt];
4957 ev_active (cleanups [active - 1]) = active;
4958 }
4959
4960 ev_stop (EV_A_ (W)w);
4961
4962 EV_FREQUENT_CHECK;
2431} 4963}
2432#endif 4964#endif
2433 4965
2434#if EV_ASYNC_ENABLE 4966#if EV_ASYNC_ENABLE
2435void 4967void
2436ev_async_start (EV_P_ ev_async *w) 4968ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
2437{ 4969{
2438 if (expect_false (ev_is_active (w))) 4970 if (ecb_expect_false (ev_is_active (w)))
2439 return; 4971 return;
2440 4972
4973 w->sent = 0;
4974
2441 evpipe_init (EV_A); 4975 evpipe_init (EV_A);
2442 4976
4977 EV_FREQUENT_CHECK;
4978
2443 ev_start (EV_A_ (W)w, ++asynccnt); 4979 ev_start (EV_A_ (W)w, ++asynccnt);
2444 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4980 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
2445 asyncs [asynccnt - 1] = w; 4981 asyncs [asynccnt - 1] = w;
2446}
2447 4982
4983 EV_FREQUENT_CHECK;
4984}
4985
2448void 4986void
2449ev_async_stop (EV_P_ ev_async *w) 4987ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2450{ 4988{
2451 clear_pending (EV_A_ (W)w); 4989 clear_pending (EV_A_ (W)w);
2452 if (expect_false (!ev_is_active (w))) 4990 if (ecb_expect_false (!ev_is_active (w)))
2453 return; 4991 return;
2454 4992
4993 EV_FREQUENT_CHECK;
4994
2455 { 4995 {
2456 int active = ((W)w)->active; 4996 int active = ev_active (w);
4997
2457 asyncs [active - 1] = asyncs [--asynccnt]; 4998 asyncs [active - 1] = asyncs [--asynccnt];
2458 ((W)asyncs [active - 1])->active = active; 4999 ev_active (asyncs [active - 1]) = active;
2459 } 5000 }
2460 5001
2461 ev_stop (EV_A_ (W)w); 5002 ev_stop (EV_A_ (W)w);
2462}
2463 5003
5004 EV_FREQUENT_CHECK;
5005}
5006
2464void 5007void
2465ev_async_send (EV_P_ ev_async *w) 5008ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
2466{ 5009{
2467 w->sent = 1; 5010 w->sent = 1;
2468 evpipe_write (EV_A_ 0, 1); 5011 evpipe_write (EV_A_ &async_pending);
2469} 5012}
2470#endif 5013#endif
2471 5014
2472/*****************************************************************************/ 5015/*****************************************************************************/
2473 5016
2483once_cb (EV_P_ struct ev_once *once, int revents) 5026once_cb (EV_P_ struct ev_once *once, int revents)
2484{ 5027{
2485 void (*cb)(int revents, void *arg) = once->cb; 5028 void (*cb)(int revents, void *arg) = once->cb;
2486 void *arg = once->arg; 5029 void *arg = once->arg;
2487 5030
2488 ev_io_stop (EV_A_ &once->io); 5031 ev_io_stop (EV_A_ &once->io);
2489 ev_timer_stop (EV_A_ &once->to); 5032 ev_timer_stop (EV_A_ &once->to);
2490 ev_free (once); 5033 ev_free (once);
2491 5034
2492 cb (revents, arg); 5035 cb (revents, arg);
2493} 5036}
2494 5037
2495static void 5038static void
2496once_cb_io (EV_P_ ev_io *w, int revents) 5039once_cb_io (EV_P_ ev_io *w, int revents)
2497{ 5040{
2498 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5041 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5042
5043 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2499} 5044}
2500 5045
2501static void 5046static void
2502once_cb_to (EV_P_ ev_timer *w, int revents) 5047once_cb_to (EV_P_ ev_timer *w, int revents)
2503{ 5048{
2504 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5049 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2505}
2506 5050
5051 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5052}
5053
2507void 5054void
2508ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5055ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2509{ 5056{
2510 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5057 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2511
2512 if (expect_false (!once))
2513 {
2514 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2515 return;
2516 }
2517 5058
2518 once->cb = cb; 5059 once->cb = cb;
2519 once->arg = arg; 5060 once->arg = arg;
2520 5061
2521 ev_init (&once->io, once_cb_io); 5062 ev_init (&once->io, once_cb_io);
2531 ev_timer_set (&once->to, timeout, 0.); 5072 ev_timer_set (&once->to, timeout, 0.);
2532 ev_timer_start (EV_A_ &once->to); 5073 ev_timer_start (EV_A_ &once->to);
2533 } 5074 }
2534} 5075}
2535 5076
5077/*****************************************************************************/
5078
5079#if EV_WALK_ENABLE
5080ecb_cold
5081void
5082ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5083{
5084 int i, j;
5085 ev_watcher_list *wl, *wn;
5086
5087 if (types & (EV_IO | EV_EMBED))
5088 for (i = 0; i < anfdmax; ++i)
5089 for (wl = anfds [i].head; wl; )
5090 {
5091 wn = wl->next;
5092
5093#if EV_EMBED_ENABLE
5094 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5095 {
5096 if (types & EV_EMBED)
5097 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5098 }
5099 else
5100#endif
5101#if EV_USE_INOTIFY
5102 if (ev_cb ((ev_io *)wl) == infy_cb)
5103 ;
5104 else
5105#endif
5106 if ((ev_io *)wl != &pipe_w)
5107 if (types & EV_IO)
5108 cb (EV_A_ EV_IO, wl);
5109
5110 wl = wn;
5111 }
5112
5113 if (types & (EV_TIMER | EV_STAT))
5114 for (i = timercnt + HEAP0; i-- > HEAP0; )
5115#if EV_STAT_ENABLE
5116 /*TODO: timer is not always active*/
5117 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5118 {
5119 if (types & EV_STAT)
5120 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5121 }
5122 else
5123#endif
5124 if (types & EV_TIMER)
5125 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5126
5127#if EV_PERIODIC_ENABLE
5128 if (types & EV_PERIODIC)
5129 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5130 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5131#endif
5132
5133#if EV_IDLE_ENABLE
5134 if (types & EV_IDLE)
5135 for (j = NUMPRI; j--; )
5136 for (i = idlecnt [j]; i--; )
5137 cb (EV_A_ EV_IDLE, idles [j][i]);
5138#endif
5139
5140#if EV_FORK_ENABLE
5141 if (types & EV_FORK)
5142 for (i = forkcnt; i--; )
5143 if (ev_cb (forks [i]) != embed_fork_cb)
5144 cb (EV_A_ EV_FORK, forks [i]);
5145#endif
5146
5147#if EV_ASYNC_ENABLE
5148 if (types & EV_ASYNC)
5149 for (i = asynccnt; i--; )
5150 cb (EV_A_ EV_ASYNC, asyncs [i]);
5151#endif
5152
5153#if EV_PREPARE_ENABLE
5154 if (types & EV_PREPARE)
5155 for (i = preparecnt; i--; )
5156# if EV_EMBED_ENABLE
5157 if (ev_cb (prepares [i]) != embed_prepare_cb)
5158# endif
5159 cb (EV_A_ EV_PREPARE, prepares [i]);
5160#endif
5161
5162#if EV_CHECK_ENABLE
5163 if (types & EV_CHECK)
5164 for (i = checkcnt; i--; )
5165 cb (EV_A_ EV_CHECK, checks [i]);
5166#endif
5167
5168#if EV_SIGNAL_ENABLE
5169 if (types & EV_SIGNAL)
5170 for (i = 0; i < EV_NSIG - 1; ++i)
5171 for (wl = signals [i].head; wl; )
5172 {
5173 wn = wl->next;
5174 cb (EV_A_ EV_SIGNAL, wl);
5175 wl = wn;
5176 }
5177#endif
5178
5179#if EV_CHILD_ENABLE
5180 if (types & EV_CHILD)
5181 for (i = (EV_PID_HASHSIZE); i--; )
5182 for (wl = childs [i]; wl; )
5183 {
5184 wn = wl->next;
5185 cb (EV_A_ EV_CHILD, wl);
5186 wl = wn;
5187 }
5188#endif
5189/* EV_STAT 0x00001000 /* stat data changed */
5190/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5191}
5192#endif
5193
2536#if EV_MULTIPLICITY 5194#if EV_MULTIPLICITY
2537 #include "ev_wrap.h" 5195 #include "ev_wrap.h"
2538#endif 5196#endif
2539 5197
2540#ifdef __cplusplus
2541}
2542#endif
2543

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines