ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.21 by root, Wed Oct 31 18:37:38 2007 UTC vs.
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
36 63
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
41#include <sys/time.h> 72#include <sys/time.h>
42#include <time.h> 73#include <time.h>
43 74
75/**/
76
44#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
45# ifdef CLOCK_MONOTONIC
46# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
47# endif 102# endif
48#endif 103#endif
49 104
50#ifndef HAVE_SELECT
51# define HAVE_SELECT 1
52#endif
53
54#ifndef HAVE_EPOLL
55# define HAVE_EPOLL 0
56#endif
57
58#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
59# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
60#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
61 122
62#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
63#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
64 127
65#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
66 143
67typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
68typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
69typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
70 147
71static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
72ev_tstamp ev_now;
73int ev_method;
74 149
75static int have_monotonic; /* runtime */ 150#if WIN32
76 151/* note: the comment below could not be substantiated, but what would I care */
77static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
78static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
79static void (*method_poll)(ev_tstamp timeout); 154#endif
80 155
81/*****************************************************************************/ 156/*****************************************************************************/
82 157
83ev_tstamp 158static void (*syserr_cb)(void);
159
160void ev_set_syserr_cb (void (*cb)(void))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (void)
167{
168 if (syserr_cb)
169 syserr_cb ();
170 else
171 {
172 perror ("libev");
173 abort ();
174 }
175}
176
177static void *(*alloc)(void *ptr, long size);
178
179void ev_set_allocator (void *(*cb)(void *ptr, long size))
180{
181 alloc = cb;
182}
183
184static void *
185ev_realloc (void *ptr, long size)
186{
187 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
188
189 if (!ptr && size)
190 {
191 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
192 abort ();
193 }
194
195 return ptr;
196}
197
198#define ev_malloc(size) ev_realloc (0, (size))
199#define ev_free(ptr) ev_realloc ((ptr), 0)
200
201/*****************************************************************************/
202
203typedef struct
204{
205 WL head;
206 unsigned char events;
207 unsigned char reify;
208} ANFD;
209
210typedef struct
211{
212 W w;
213 int events;
214} ANPENDING;
215
216#if EV_MULTIPLICITY
217
218struct ev_loop
219{
220# define VAR(name,decl) decl;
221# include "ev_vars.h"
222};
223# undef VAR
224# include "ev_wrap.h"
225
226#else
227
228# define VAR(name,decl) static decl;
229# include "ev_vars.h"
230# undef VAR
231
232#endif
233
234/*****************************************************************************/
235
236inline ev_tstamp
84ev_time (void) 237ev_time (void)
85{ 238{
86#if HAVE_REALTIME 239#if EV_USE_REALTIME
87 struct timespec ts; 240 struct timespec ts;
88 clock_gettime (CLOCK_REALTIME, &ts); 241 clock_gettime (CLOCK_REALTIME, &ts);
89 return ts.tv_sec + ts.tv_nsec * 1e-9; 242 return ts.tv_sec + ts.tv_nsec * 1e-9;
90#else 243#else
91 struct timeval tv; 244 struct timeval tv;
92 gettimeofday (&tv, 0); 245 gettimeofday (&tv, 0);
93 return tv.tv_sec + tv.tv_usec * 1e-6; 246 return tv.tv_sec + tv.tv_usec * 1e-6;
94#endif 247#endif
95} 248}
96 249
97static ev_tstamp 250inline ev_tstamp
98get_clock (void) 251get_clock (void)
99{ 252{
100#if HAVE_MONOTONIC 253#if EV_USE_MONOTONIC
101 if (have_monotonic) 254 if (expect_true (have_monotonic))
102 { 255 {
103 struct timespec ts; 256 struct timespec ts;
104 clock_gettime (CLOCK_MONOTONIC, &ts); 257 clock_gettime (CLOCK_MONOTONIC, &ts);
105 return ts.tv_sec + ts.tv_nsec * 1e-9; 258 return ts.tv_sec + ts.tv_nsec * 1e-9;
106 } 259 }
107#endif 260#endif
108 261
109 return ev_time (); 262 return ev_time ();
110} 263}
111 264
265ev_tstamp
266ev_now (EV_P)
267{
268 return rt_now;
269}
270
271#define array_roundsize(base,n) ((n) | 4 & ~3)
272
112#define array_needsize(base,cur,cnt,init) \ 273#define array_needsize(base,cur,cnt,init) \
113 if ((cnt) > cur) \ 274 if (expect_false ((cnt) > cur)) \
114 { \ 275 { \
115 int newcnt = cur ? cur << 1 : 16; \ 276 int newcnt = cur; \
277 do \
278 { \
279 newcnt = array_roundsize (base, newcnt << 1); \
280 } \
281 while ((cnt) > newcnt); \
282 \
116 base = realloc (base, sizeof (*base) * (newcnt)); \ 283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
117 init (base + cur, newcnt - cur); \ 284 init (base + cur, newcnt - cur); \
118 cur = newcnt; \ 285 cur = newcnt; \
119 } 286 }
287
288#define array_slim(stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 }
295
296#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
120 298
121/*****************************************************************************/ 299/*****************************************************************************/
122 300
123typedef struct
124{
125 struct ev_io *head;
126 unsigned char wev, rev; /* want, received event set */
127} ANFD;
128
129static ANFD *anfds;
130static int anfdmax;
131
132static int *fdchanges;
133static int fdchangemax, fdchangecnt;
134
135static void 301static void
136anfds_init (ANFD *base, int count) 302anfds_init (ANFD *base, int count)
137{ 303{
138 while (count--) 304 while (count--)
139 { 305 {
140 base->head = 0; 306 base->head = 0;
141 base->wev = base->rev = EV_NONE; 307 base->events = EV_NONE;
308 base->reify = 0;
309
142 ++base; 310 ++base;
143 } 311 }
144} 312}
145 313
146typedef struct
147{
148 W w;
149 int events;
150} ANPENDING;
151
152static ANPENDING *pendings;
153static int pendingmax, pendingcnt;
154
155static void 314static void
156event (W w, int events) 315event (EV_P_ W w, int events)
157{ 316{
158 if (w->active) 317 if (w->pending)
159 { 318 {
160 w->pending = ++pendingcnt;
161 array_needsize (pendings, pendingmax, pendingcnt, );
162 pendings [pendingcnt - 1].w = w;
163 pendings [pendingcnt - 1].events = events; 319 pendings [ABSPRI (w)][w->pending - 1].events |= events;
320 return;
164 } 321 }
165}
166 322
323 w->pending = ++pendingcnt [ABSPRI (w)];
324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
325 pendings [ABSPRI (w)][w->pending - 1].w = w;
326 pendings [ABSPRI (w)][w->pending - 1].events = events;
327}
328
167static void 329static void
330queue_events (EV_P_ W *events, int eventcnt, int type)
331{
332 int i;
333
334 for (i = 0; i < eventcnt; ++i)
335 event (EV_A_ events [i], type);
336}
337
338static void
168fd_event (int fd, int events) 339fd_event (EV_P_ int fd, int events)
169{ 340{
170 ANFD *anfd = anfds + fd; 341 ANFD *anfd = anfds + fd;
171 struct ev_io *w; 342 struct ev_io *w;
172 343
173 for (w = anfd->head; w; w = w->next) 344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
174 { 345 {
175 int ev = w->events & events; 346 int ev = w->events & events;
176 347
177 if (ev) 348 if (ev)
178 event ((W)w, ev); 349 event (EV_A_ (W)w, ev);
179 } 350 }
180} 351}
181 352
353/*****************************************************************************/
354
182static void 355static void
183queue_events (W *events, int eventcnt, int type) 356fd_reify (EV_P)
184{ 357{
185 int i; 358 int i;
186 359
187 for (i = 0; i < eventcnt; ++i) 360 for (i = 0; i < fdchangecnt; ++i)
188 event (events [i], type); 361 {
362 int fd = fdchanges [i];
363 ANFD *anfd = anfds + fd;
364 struct ev_io *w;
365
366 int events = 0;
367
368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
369 events |= w->events;
370
371 anfd->reify = 0;
372
373 method_modify (EV_A_ fd, anfd->events, events);
374 anfd->events = events;
375 }
376
377 fdchangecnt = 0;
378}
379
380static void
381fd_change (EV_P_ int fd)
382{
383 if (anfds [fd].reify || fdchangecnt < 0)
384 return;
385
386 anfds [fd].reify = 1;
387
388 ++fdchangecnt;
389 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
390 fdchanges [fdchangecnt - 1] = fd;
391}
392
393static void
394fd_kill (EV_P_ int fd)
395{
396 struct ev_io *w;
397
398 while ((w = (struct ev_io *)anfds [fd].head))
399 {
400 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 }
189} 403}
190 404
191/* called on EBADF to verify fds */ 405/* called on EBADF to verify fds */
192static void 406static void
193fd_recheck () 407fd_ebadf (EV_P)
194{ 408{
195 int fd; 409 int fd;
196 410
197 for (fd = 0; fd < anfdmax; ++fd) 411 for (fd = 0; fd < anfdmax; ++fd)
198 if (anfds [fd].wev) 412 if (anfds [fd].events)
199 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
200 while (anfds [fd].head) 414 fd_kill (EV_A_ fd);
201 evio_stop (anfds [fd].head); 415}
416
417/* called on ENOMEM in select/poll to kill some fds and retry */
418static void
419fd_enomem (EV_P)
420{
421 int fd;
422
423 for (fd = anfdmax; fd--; )
424 if (anfds [fd].events)
425 {
426 fd_kill (EV_A_ fd);
427 return;
428 }
429}
430
431/* susually called after fork if method needs to re-arm all fds from scratch */
432static void
433fd_rearm_all (EV_P)
434{
435 int fd;
436
437 /* this should be highly optimised to not do anything but set a flag */
438 for (fd = 0; fd < anfdmax; ++fd)
439 if (anfds [fd].events)
440 {
441 anfds [fd].events = 0;
442 fd_change (EV_A_ fd);
443 }
202} 444}
203 445
204/*****************************************************************************/ 446/*****************************************************************************/
205 447
206static struct ev_timer **timers;
207static int timermax, timercnt;
208
209static struct ev_periodic **periodics;
210static int periodicmax, periodiccnt;
211
212static void 448static void
213upheap (WT *timers, int k) 449upheap (WT *heap, int k)
214{ 450{
215 WT w = timers [k]; 451 WT w = heap [k];
216 452
217 while (k && timers [k >> 1]->at > w->at) 453 while (k && heap [k >> 1]->at > w->at)
218 { 454 {
219 timers [k] = timers [k >> 1]; 455 heap [k] = heap [k >> 1];
220 timers [k]->active = k + 1; 456 ((W)heap [k])->active = k + 1;
221 k >>= 1; 457 k >>= 1;
222 } 458 }
223 459
224 timers [k] = w; 460 heap [k] = w;
225 timers [k]->active = k + 1; 461 ((W)heap [k])->active = k + 1;
226 462
227} 463}
228 464
229static void 465static void
230downheap (WT *timers, int N, int k) 466downheap (WT *heap, int N, int k)
231{ 467{
232 WT w = timers [k]; 468 WT w = heap [k];
233 469
234 while (k < (N >> 1)) 470 while (k < (N >> 1))
235 { 471 {
236 int j = k << 1; 472 int j = k << 1;
237 473
238 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 474 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
239 ++j; 475 ++j;
240 476
241 if (w->at <= timers [j]->at) 477 if (w->at <= heap [j]->at)
242 break; 478 break;
243 479
244 timers [k] = timers [j]; 480 heap [k] = heap [j];
245 timers [k]->active = k + 1; 481 ((W)heap [k])->active = k + 1;
246 k = j; 482 k = j;
247 } 483 }
248 484
249 timers [k] = w; 485 heap [k] = w;
250 timers [k]->active = k + 1; 486 ((W)heap [k])->active = k + 1;
251} 487}
252 488
253/*****************************************************************************/ 489/*****************************************************************************/
254 490
255typedef struct 491typedef struct
256{ 492{
257 struct ev_signal *head; 493 WL head;
258 sig_atomic_t gotsig; 494 sig_atomic_t volatile gotsig;
259} ANSIG; 495} ANSIG;
260 496
261static ANSIG *signals; 497static ANSIG *signals;
262static int signalmax; 498static int signalmax;
263 499
264static int sigpipe [2]; 500static int sigpipe [2];
265static sig_atomic_t gotsig; 501static sig_atomic_t volatile gotsig;
266static struct ev_io sigev; 502static struct ev_io sigev;
267 503
268static void 504static void
269signals_init (ANSIG *base, int count) 505signals_init (ANSIG *base, int count)
270{ 506{
271 while (count--) 507 while (count--)
272 { 508 {
273 base->head = 0; 509 base->head = 0;
274 base->gotsig = 0; 510 base->gotsig = 0;
511
275 ++base; 512 ++base;
276 } 513 }
277} 514}
278 515
279static void 516static void
280sighandler (int signum) 517sighandler (int signum)
281{ 518{
519#if WIN32
520 signal (signum, sighandler);
521#endif
522
282 signals [signum - 1].gotsig = 1; 523 signals [signum - 1].gotsig = 1;
283 524
284 if (!gotsig) 525 if (!gotsig)
285 { 526 {
527 int old_errno = errno;
286 gotsig = 1; 528 gotsig = 1;
287 write (sigpipe [1], &gotsig, 1); 529 write (sigpipe [1], &signum, 1);
530 errno = old_errno;
288 } 531 }
289} 532}
290 533
291static void 534static void
292sigcb (struct ev_io *iow, int revents) 535sigcb (EV_P_ struct ev_io *iow, int revents)
293{ 536{
294 struct ev_signal *w; 537 WL w;
295 int sig; 538 int signum;
296 539
540 read (sigpipe [0], &revents, 1);
297 gotsig = 0; 541 gotsig = 0;
298 read (sigpipe [0], &revents, 1);
299 542
300 for (sig = signalmax; sig--; ) 543 for (signum = signalmax; signum--; )
301 if (signals [sig].gotsig) 544 if (signals [signum].gotsig)
302 { 545 {
303 signals [sig].gotsig = 0; 546 signals [signum].gotsig = 0;
304 547
305 for (w = signals [sig].head; w; w = w->next) 548 for (w = signals [signum].head; w; w = w->next)
306 event ((W)w, EV_SIGNAL); 549 event (EV_A_ (W)w, EV_SIGNAL);
307 } 550 }
308} 551}
309 552
310static void 553static void
311siginit (void) 554siginit (EV_P)
312{ 555{
556#ifndef WIN32
313 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
314 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
315 559
316 /* rather than sort out wether we really need nb, set it */ 560 /* rather than sort out wether we really need nb, set it */
317 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
318 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
563#endif
319 564
320 evio_set (&sigev, sigpipe [0], EV_READ); 565 ev_io_set (&sigev, sigpipe [0], EV_READ);
321 evio_start (&sigev); 566 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */
322} 568}
323 569
324/*****************************************************************************/ 570/*****************************************************************************/
325 571
326static struct ev_idle **idles; 572#ifndef WIN32
327static int idlemax, idlecnt;
328 573
329static struct ev_prepare **prepares; 574static struct ev_child *childs [PID_HASHSIZE];
330static int preparemax, preparecnt; 575static struct ev_signal childev;
331 576
332static struct ev_check **checks; 577#ifndef WCONTINUED
333static int checkmax, checkcnt; 578# define WCONTINUED 0
579#endif
580
581static void
582child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
583{
584 struct ev_child *w;
585
586 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
587 if (w->pid == pid || !w->pid)
588 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid;
591 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD);
593 }
594}
595
596static void
597childcb (EV_P_ struct ev_signal *sw, int revents)
598{
599 int pid, status;
600
601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602 {
603 /* make sure we are called again until all childs have been reaped */
604 event (EV_A_ (W)sw, EV_SIGNAL);
605
606 child_reap (EV_A_ sw, pid, pid, status);
607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 }
609}
610
611#endif
334 612
335/*****************************************************************************/ 613/*****************************************************************************/
336 614
615#if EV_USE_KQUEUE
616# include "ev_kqueue.c"
617#endif
337#if HAVE_EPOLL 618#if EV_USE_EPOLL
338# include "ev_epoll.c" 619# include "ev_epoll.c"
339#endif 620#endif
621#if EV_USE_POLL
622# include "ev_poll.c"
623#endif
340#if HAVE_SELECT 624#if EV_USE_SELECT
341# include "ev_select.c" 625# include "ev_select.c"
342#endif 626#endif
343 627
344int ev_init (int flags) 628int
629ev_version_major (void)
345{ 630{
631 return EV_VERSION_MAJOR;
632}
633
634int
635ev_version_minor (void)
636{
637 return EV_VERSION_MINOR;
638}
639
640/* return true if we are running with elevated privileges and should ignore env variables */
641static int
642enable_secure (void)
643{
644#ifdef WIN32
645 return 0;
646#else
647 return getuid () != geteuid ()
648 || getgid () != getegid ();
649#endif
650}
651
652int
653ev_method (EV_P)
654{
655 return method;
656}
657
658static void
659loop_init (EV_P_ int methods)
660{
661 if (!method)
662 {
346#if HAVE_MONOTONIC 663#if EV_USE_MONOTONIC
347 { 664 {
348 struct timespec ts; 665 struct timespec ts;
349 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 666 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
350 have_monotonic = 1; 667 have_monotonic = 1;
351 } 668 }
352#endif 669#endif
353 670
354 ev_now = ev_time (); 671 rt_now = ev_time ();
355 now = get_clock (); 672 mn_now = get_clock ();
356 diff = ev_now - now; 673 now_floor = mn_now;
674 rtmn_diff = rt_now - mn_now;
357 675
676 if (methods == EVMETHOD_AUTO)
677 if (!enable_secure () && getenv ("LIBEV_METHODS"))
678 methods = atoi (getenv ("LIBEV_METHODS"));
679 else
680 methods = EVMETHOD_ANY;
681
682 method = 0;
683#if EV_USE_WIN32
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685#endif
686#if EV_USE_KQUEUE
687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
688#endif
689#if EV_USE_EPOLL
690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
691#endif
692#if EV_USE_POLL
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
694#endif
695#if EV_USE_SELECT
696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
697#endif
698 }
699}
700
701void
702loop_destroy (EV_P)
703{
704 int i;
705
706#if EV_USE_WIN32
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708#endif
709#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711#endif
712#if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
714#endif
715#if EV_USE_POLL
716 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
717#endif
718#if EV_USE_SELECT
719 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
720#endif
721
722 for (i = NUMPRI; i--; )
723 array_free (pending, [i]);
724
725 array_free (fdchange, );
726 array_free (timer, );
727 array_free (periodic, );
728 array_free (idle, );
729 array_free (prepare, );
730 array_free (check, );
731
732 method = 0;
733 /*TODO*/
734}
735
736void
737loop_fork (EV_P)
738{
739 /*TODO*/
740#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif
743#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif
746}
747
748#if EV_MULTIPLICITY
749struct ev_loop *
750ev_loop_new (int methods)
751{
752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753
754 memset (loop, 0, sizeof (struct ev_loop));
755
756 loop_init (EV_A_ methods);
757
758 if (ev_method (EV_A))
759 return loop;
760
761 return 0;
762}
763
764void
765ev_loop_destroy (EV_P)
766{
767 loop_destroy (EV_A);
768 ev_free (loop);
769}
770
771void
772ev_loop_fork (EV_P)
773{
774 loop_fork (EV_A);
775}
776
777#endif
778
779#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop *
784#else
785static int default_loop;
786
787int
788#endif
789ev_default_loop (int methods)
790{
791 if (sigpipe [0] == sigpipe [1])
358 if (pipe (sigpipe)) 792 if (pipe (sigpipe))
359 return 0; 793 return 0;
360 794
361 ev_method = EVMETHOD_NONE; 795 if (!default_loop)
362#if HAVE_EPOLL
363 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
364#endif
365#if HAVE_SELECT
366 if (ev_method == EVMETHOD_NONE) select_init (flags);
367#endif
368
369 if (ev_method)
370 { 796 {
797#if EV_MULTIPLICITY
798 struct ev_loop *loop = default_loop = &default_loop_struct;
799#else
800 default_loop = 1;
801#endif
802
803 loop_init (EV_A_ methods);
804
805 if (ev_method (EV_A))
806 {
371 evw_init (&sigev, sigcb); 807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
372 siginit (); 809 siginit (EV_A);
373 }
374 810
375 return ev_method; 811#ifndef WIN32
376} 812 ev_signal_init (&childev, childcb, SIGCHLD);
377 813 ev_set_priority (&childev, EV_MAXPRI);
378/*****************************************************************************/ 814 ev_signal_start (EV_A_ &childev);
379 815 ev_unref (EV_A); /* child watcher should not keep loop alive */
380void ev_prefork (void)
381{
382 /* nop */
383}
384
385void ev_postfork_parent (void)
386{
387 /* nop */
388}
389
390void ev_postfork_child (void)
391{
392#if HAVE_EPOLL
393 if (ev_method == EVMETHOD_EPOLL)
394 epoll_postfork_child ();
395#endif 816#endif
817 }
818 else
819 default_loop = 0;
820 }
396 821
822 return default_loop;
823}
824
825void
826ev_default_destroy (void)
827{
828#if EV_MULTIPLICITY
829 struct ev_loop *loop = default_loop;
830#endif
831
832 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev);
834
835 ev_ref (EV_A); /* signal watcher */
397 evio_stop (&sigev); 836 ev_io_stop (EV_A_ &sigev);
837
838 close (sigpipe [0]); sigpipe [0] = 0;
839 close (sigpipe [1]); sigpipe [1] = 0;
840
841 loop_destroy (EV_A);
842}
843
844void
845ev_default_fork (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 loop_fork (EV_A);
852
853 ev_io_stop (EV_A_ &sigev);
398 close (sigpipe [0]); 854 close (sigpipe [0]);
399 close (sigpipe [1]); 855 close (sigpipe [1]);
400 pipe (sigpipe); 856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
401 siginit (); 859 siginit (EV_A);
402} 860}
403 861
404/*****************************************************************************/ 862/*****************************************************************************/
405 863
406static void 864static void
407fd_reify (void) 865call_pending (EV_P)
408{ 866{
409 int i; 867 int pri;
410 868
411 for (i = 0; i < fdchangecnt; ++i) 869 for (pri = NUMPRI; pri--; )
412 { 870 while (pendingcnt [pri])
413 int fd = fdchanges [i];
414 ANFD *anfd = anfds + fd;
415 struct ev_io *w;
416
417 int wev = 0;
418
419 for (w = anfd->head; w; w = w->next)
420 wev |= w->events;
421
422 if (anfd->wev != wev)
423 { 871 {
424 method_modify (fd, anfd->wev, wev);
425 anfd->wev = wev;
426 }
427 }
428
429 fdchangecnt = 0;
430}
431
432static void
433call_pending ()
434{
435 while (pendingcnt)
436 {
437 ANPENDING *p = pendings + --pendingcnt; 872 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
438 873
439 if (p->w) 874 if (p->w)
440 { 875 {
441 p->w->pending = 0; 876 p->w->pending = 0;
442 p->w->cb (p->w, p->events); 877 p->w->cb (EV_A_ p->w, p->events);
443 } 878 }
444 } 879 }
445} 880}
446 881
447static void 882static void
448timers_reify () 883timers_reify (EV_P)
449{ 884{
450 while (timercnt && timers [0]->at <= now) 885 while (timercnt && ((WT)timers [0])->at <= mn_now)
451 { 886 {
452 struct ev_timer *w = timers [0]; 887 struct ev_timer *w = timers [0];
453 888
454 event ((W)w, EV_TIMEOUT); 889 assert (("inactive timer on timer heap detected", ev_is_active (w)));
455 890
456 /* first reschedule or stop timer */ 891 /* first reschedule or stop timer */
457 if (w->repeat) 892 if (w->repeat)
458 { 893 {
894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
459 w->at = now + w->repeat; 895 ((WT)w)->at = mn_now + w->repeat;
460 assert (("timer timeout in the past, negative repeat?", w->at > now));
461 downheap ((WT *)timers, timercnt, 0); 896 downheap ((WT *)timers, timercnt, 0);
462 } 897 }
463 else 898 else
464 evtimer_stop (w); /* nonrepeating: stop timer */ 899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
465 }
466}
467 900
901 event (EV_A_ (W)w, EV_TIMEOUT);
902 }
903}
904
468static void 905static void
469periodics_reify () 906periodics_reify (EV_P)
470{ 907{
471 while (periodiccnt && periodics [0]->at <= ev_now) 908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
472 { 909 {
473 struct ev_periodic *w = periodics [0]; 910 struct ev_periodic *w = periodics [0];
911
912 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
474 913
475 /* first reschedule or stop timer */ 914 /* first reschedule or stop timer */
476 if (w->interval) 915 if (w->interval)
477 { 916 {
478 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
479 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
480 downheap ((WT *)periodics, periodiccnt, 0); 919 downheap ((WT *)periodics, periodiccnt, 0);
481 } 920 }
482 else 921 else
483 evperiodic_stop (w); /* nonrepeating: stop timer */ 922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
484 923
485 event ((W)w, EV_TIMEOUT); 924 event (EV_A_ (W)w, EV_PERIODIC);
486 } 925 }
487} 926}
488 927
489static void 928static void
490periodics_reschedule (ev_tstamp diff) 929periodics_reschedule (EV_P)
491{ 930{
492 int i; 931 int i;
493 932
494 /* adjust periodics after time jump */ 933 /* adjust periodics after time jump */
495 for (i = 0; i < periodiccnt; ++i) 934 for (i = 0; i < periodiccnt; ++i)
496 { 935 {
497 struct ev_periodic *w = periodics [i]; 936 struct ev_periodic *w = periodics [i];
498 937
499 if (w->interval) 938 if (w->interval)
500 { 939 {
501 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
502 941
503 if (fabs (diff) >= 1e-4) 942 if (fabs (diff) >= 1e-4)
504 { 943 {
505 evperiodic_stop (w); 944 ev_periodic_stop (EV_A_ w);
506 evperiodic_start (w); 945 ev_periodic_start (EV_A_ w);
507 946
508 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
509 } 948 }
510 } 949 }
511 } 950 }
512} 951}
513 952
953inline int
954time_update_monotonic (EV_P)
955{
956 mn_now = get_clock ();
957
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 {
960 rt_now = rtmn_diff + mn_now;
961 return 0;
962 }
963 else
964 {
965 now_floor = mn_now;
966 rt_now = ev_time ();
967 return 1;
968 }
969}
970
514static void 971static void
515time_update () 972time_update (EV_P)
516{ 973{
517 int i; 974 int i;
518 975
519 ev_now = ev_time (); 976#if EV_USE_MONOTONIC
520
521 if (have_monotonic) 977 if (expect_true (have_monotonic))
522 { 978 {
523 ev_tstamp odiff = diff; 979 if (time_update_monotonic (EV_A))
524
525 for (i = 4; --i; ) /* loop a few times, before making important decisions */
526 { 980 {
527 now = get_clock (); 981 ev_tstamp odiff = rtmn_diff;
982
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984 {
528 diff = ev_now - now; 985 rtmn_diff = rt_now - mn_now;
529 986
530 if (fabs (odiff - diff) < MIN_TIMEJUMP) 987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
531 return; /* all is well */ 988 return; /* all is well */
532 989
533 ev_now = ev_time (); 990 rt_now = ev_time ();
991 mn_now = get_clock ();
992 now_floor = mn_now;
993 }
994
995 periodics_reschedule (EV_A);
996 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
534 } 998 }
535
536 periodics_reschedule (diff - odiff);
537 /* no timer adjustment, as the monotonic clock doesn't jump */
538 } 999 }
539 else 1000 else
1001#endif
540 { 1002 {
541 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1003 rt_now = ev_time ();
1004
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
542 { 1006 {
543 periodics_reschedule (ev_now - now); 1007 periodics_reschedule (EV_A);
544 1008
545 /* adjust timers. this is easy, as the offset is the same for all */ 1009 /* adjust timers. this is easy, as the offset is the same for all */
546 for (i = 0; i < timercnt; ++i) 1010 for (i = 0; i < timercnt; ++i)
547 timers [i]->at += diff; 1011 ((WT)timers [i])->at += rt_now - mn_now;
548 } 1012 }
549 1013
550 now = ev_now; 1014 mn_now = rt_now;
551 } 1015 }
552} 1016}
553 1017
554int ev_loop_done; 1018void
1019ev_ref (EV_P)
1020{
1021 ++activecnt;
1022}
555 1023
1024void
1025ev_unref (EV_P)
1026{
1027 --activecnt;
1028}
1029
1030static int loop_done;
1031
1032void
556void ev_loop (int flags) 1033ev_loop (EV_P_ int flags)
557{ 1034{
558 double block; 1035 double block;
559 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 1036 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
560 1037
561 do 1038 do
562 { 1039 {
563 /* queue check watchers (and execute them) */ 1040 /* queue check watchers (and execute them) */
564 if (preparecnt) 1041 if (expect_false (preparecnt))
565 { 1042 {
566 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
567 call_pending (); 1044 call_pending (EV_A);
568 } 1045 }
569 1046
570 /* update fd-related kernel structures */ 1047 /* update fd-related kernel structures */
571 fd_reify (); 1048 fd_reify (EV_A);
572 1049
573 /* calculate blocking time */ 1050 /* calculate blocking time */
574 1051
575 /* we only need this for !monotonic clockor timers, but as we basically 1052 /* we only need this for !monotonic clockor timers, but as we basically
576 always have timers, we just calculate it always */ 1053 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A);
1057 else
1058#endif
1059 {
577 ev_now = ev_time (); 1060 rt_now = ev_time ();
1061 mn_now = rt_now;
1062 }
578 1063
579 if (flags & EVLOOP_NONBLOCK || idlecnt) 1064 if (flags & EVLOOP_NONBLOCK || idlecnt)
580 block = 0.; 1065 block = 0.;
581 else 1066 else
582 { 1067 {
583 block = MAX_BLOCKTIME; 1068 block = MAX_BLOCKTIME;
584 1069
585 if (timercnt) 1070 if (timercnt)
586 { 1071 {
587 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
588 if (block > to) block = to; 1073 if (block > to) block = to;
589 } 1074 }
590 1075
591 if (periodiccnt) 1076 if (periodiccnt)
592 { 1077 {
593 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
594 if (block > to) block = to; 1079 if (block > to) block = to;
595 } 1080 }
596 1081
597 if (block < 0.) block = 0.; 1082 if (block < 0.) block = 0.;
598 } 1083 }
599 1084
600 method_poll (block); 1085 method_poll (EV_A_ block);
601 1086
602 /* update ev_now, do magic */ 1087 /* update rt_now, do magic */
603 time_update (); 1088 time_update (EV_A);
604 1089
605 /* queue pending timers and reschedule them */ 1090 /* queue pending timers and reschedule them */
606 timers_reify (); /* relative timers called last */ 1091 timers_reify (EV_A); /* relative timers called last */
607 periodics_reify (); /* absolute timers called first */ 1092 periodics_reify (EV_A); /* absolute timers called first */
608 1093
609 /* queue idle watchers unless io or timers are pending */ 1094 /* queue idle watchers unless io or timers are pending */
610 if (!pendingcnt) 1095 if (!pendingcnt)
611 queue_events ((W *)idles, idlecnt, EV_IDLE); 1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
612 1097
613 /* queue check watchers, to be executed first */ 1098 /* queue check watchers, to be executed first */
614 if (checkcnt) 1099 if (checkcnt)
615 queue_events ((W *)checks, checkcnt, EV_CHECK); 1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
616 1101
617 call_pending (); 1102 call_pending (EV_A);
618 } 1103 }
619 while (!ev_loop_done); 1104 while (activecnt && !loop_done);
620 1105
621 if (ev_loop_done != 2) 1106 if (loop_done != 2)
622 ev_loop_done = 0; 1107 loop_done = 0;
1108}
1109
1110void
1111ev_unloop (EV_P_ int how)
1112{
1113 loop_done = how;
623} 1114}
624 1115
625/*****************************************************************************/ 1116/*****************************************************************************/
626 1117
627static void 1118inline void
628wlist_add (WL *head, WL elem) 1119wlist_add (WL *head, WL elem)
629{ 1120{
630 elem->next = *head; 1121 elem->next = *head;
631 *head = elem; 1122 *head = elem;
632} 1123}
633 1124
634static void 1125inline void
635wlist_del (WL *head, WL elem) 1126wlist_del (WL *head, WL elem)
636{ 1127{
637 while (*head) 1128 while (*head)
638 { 1129 {
639 if (*head == elem) 1130 if (*head == elem)
644 1135
645 head = &(*head)->next; 1136 head = &(*head)->next;
646 } 1137 }
647} 1138}
648 1139
649static void 1140inline void
650ev_clear (W w) 1141ev_clear_pending (EV_P_ W w)
651{ 1142{
652 if (w->pending) 1143 if (w->pending)
653 { 1144 {
654 pendings [w->pending - 1].w = 0; 1145 pendings [ABSPRI (w)][w->pending - 1].w = 0;
655 w->pending = 0; 1146 w->pending = 0;
656 } 1147 }
657} 1148}
658 1149
659static void 1150inline void
660ev_start (W w, int active) 1151ev_start (EV_P_ W w, int active)
661{ 1152{
1153 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1154 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1155
662 w->active = active; 1156 w->active = active;
1157 ev_ref (EV_A);
663} 1158}
664 1159
665static void 1160inline void
666ev_stop (W w) 1161ev_stop (EV_P_ W w)
667{ 1162{
1163 ev_unref (EV_A);
668 w->active = 0; 1164 w->active = 0;
669} 1165}
670 1166
671/*****************************************************************************/ 1167/*****************************************************************************/
672 1168
673void 1169void
674evio_start (struct ev_io *w) 1170ev_io_start (EV_P_ struct ev_io *w)
675{ 1171{
1172 int fd = w->fd;
1173
676 if (ev_is_active (w)) 1174 if (ev_is_active (w))
677 return; 1175 return;
678 1176
679 int fd = w->fd; 1177 assert (("ev_io_start called with negative fd", fd >= 0));
680 1178
681 ev_start ((W)w, 1); 1179 ev_start (EV_A_ (W)w, 1);
682 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
683 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1181 wlist_add ((WL *)&anfds[fd].head, (WL)w);
684 1182
685 ++fdchangecnt; 1183 fd_change (EV_A_ fd);
686 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
687 fdchanges [fdchangecnt - 1] = fd;
688} 1184}
689 1185
690void 1186void
691evio_stop (struct ev_io *w) 1187ev_io_stop (EV_P_ struct ev_io *w)
692{ 1188{
693 ev_clear ((W)w); 1189 ev_clear_pending (EV_A_ (W)w);
694 if (!ev_is_active (w)) 1190 if (!ev_is_active (w))
695 return; 1191 return;
696 1192
697 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
698 ev_stop ((W)w); 1194 ev_stop (EV_A_ (W)w);
699 1195
700 ++fdchangecnt; 1196 fd_change (EV_A_ w->fd);
701 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
702 fdchanges [fdchangecnt - 1] = w->fd;
703} 1197}
704 1198
705void 1199void
706evtimer_start (struct ev_timer *w) 1200ev_timer_start (EV_P_ struct ev_timer *w)
707{ 1201{
708 if (ev_is_active (w)) 1202 if (ev_is_active (w))
709 return; 1203 return;
710 1204
711 w->at += now; 1205 ((WT)w)->at += mn_now;
712 1206
713 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
714 1208
715 ev_start ((W)w, ++timercnt); 1209 ev_start (EV_A_ (W)w, ++timercnt);
716 array_needsize (timers, timermax, timercnt, ); 1210 array_needsize (timers, timermax, timercnt, );
717 timers [timercnt - 1] = w; 1211 timers [timercnt - 1] = w;
718 upheap ((WT *)timers, timercnt - 1); 1212 upheap ((WT *)timers, timercnt - 1);
719}
720 1213
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215}
1216
721void 1217void
722evtimer_stop (struct ev_timer *w) 1218ev_timer_stop (EV_P_ struct ev_timer *w)
723{ 1219{
724 ev_clear ((W)w); 1220 ev_clear_pending (EV_A_ (W)w);
725 if (!ev_is_active (w)) 1221 if (!ev_is_active (w))
726 return; 1222 return;
727 1223
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225
728 if (w->active < timercnt--) 1226 if (((W)w)->active < timercnt--)
729 { 1227 {
730 timers [w->active - 1] = timers [timercnt]; 1228 timers [((W)w)->active - 1] = timers [timercnt];
731 downheap ((WT *)timers, timercnt, w->active - 1); 1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
732 } 1230 }
733 1231
734 w->at = w->repeat; 1232 ((WT)w)->at = w->repeat;
735 1233
736 ev_stop ((W)w); 1234 ev_stop (EV_A_ (W)w);
737} 1235}
738 1236
739void 1237void
740evtimer_again (struct ev_timer *w) 1238ev_timer_again (EV_P_ struct ev_timer *w)
741{ 1239{
742 if (ev_is_active (w)) 1240 if (ev_is_active (w))
743 { 1241 {
744 if (w->repeat) 1242 if (w->repeat)
745 { 1243 {
746 w->at = now + w->repeat; 1244 ((WT)w)->at = mn_now + w->repeat;
747 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
748 } 1246 }
749 else 1247 else
750 evtimer_stop (w); 1248 ev_timer_stop (EV_A_ w);
751 } 1249 }
752 else if (w->repeat) 1250 else if (w->repeat)
753 evtimer_start (w); 1251 ev_timer_start (EV_A_ w);
754} 1252}
755 1253
756void 1254void
757evperiodic_start (struct ev_periodic *w) 1255ev_periodic_start (EV_P_ struct ev_periodic *w)
758{ 1256{
759 if (ev_is_active (w)) 1257 if (ev_is_active (w))
760 return; 1258 return;
761 1259
762 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
763 1261
764 /* this formula differs from the one in periodic_reify because we do not always round up */ 1262 /* this formula differs from the one in periodic_reify because we do not always round up */
765 if (w->interval) 1263 if (w->interval)
766 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
767 1265
768 ev_start ((W)w, ++periodiccnt); 1266 ev_start (EV_A_ (W)w, ++periodiccnt);
769 array_needsize (periodics, periodicmax, periodiccnt, ); 1267 array_needsize (periodics, periodicmax, periodiccnt, );
770 periodics [periodiccnt - 1] = w; 1268 periodics [periodiccnt - 1] = w;
771 upheap ((WT *)periodics, periodiccnt - 1); 1269 upheap ((WT *)periodics, periodiccnt - 1);
772}
773 1270
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272}
1273
774void 1274void
775evperiodic_stop (struct ev_periodic *w) 1275ev_periodic_stop (EV_P_ struct ev_periodic *w)
776{ 1276{
777 ev_clear ((W)w); 1277 ev_clear_pending (EV_A_ (W)w);
778 if (!ev_is_active (w)) 1278 if (!ev_is_active (w))
779 return; 1279 return;
780 1280
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282
781 if (w->active < periodiccnt--) 1283 if (((W)w)->active < periodiccnt--)
782 { 1284 {
783 periodics [w->active - 1] = periodics [periodiccnt]; 1285 periodics [((W)w)->active - 1] = periodics [periodiccnt];
784 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
785 } 1287 }
786 1288
787 ev_stop ((W)w); 1289 ev_stop (EV_A_ (W)w);
788} 1290}
789 1291
790void 1292void
791evsignal_start (struct ev_signal *w) 1293ev_idle_start (EV_P_ struct ev_idle *w)
792{ 1294{
793 if (ev_is_active (w)) 1295 if (ev_is_active (w))
794 return; 1296 return;
795 1297
1298 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, );
1300 idles [idlecnt - 1] = w;
1301}
1302
1303void
1304ev_idle_stop (EV_P_ struct ev_idle *w)
1305{
1306 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w))
1308 return;
1309
1310 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w);
1312}
1313
1314void
1315ev_prepare_start (EV_P_ struct ev_prepare *w)
1316{
1317 if (ev_is_active (w))
1318 return;
1319
1320 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, );
1322 prepares [preparecnt - 1] = w;
1323}
1324
1325void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{
1328 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w))
1330 return;
1331
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w);
1334}
1335
1336void
1337ev_check_start (EV_P_ struct ev_check *w)
1338{
1339 if (ev_is_active (w))
1340 return;
1341
1342 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, );
1344 checks [checkcnt - 1] = w;
1345}
1346
1347void
1348ev_check_stop (EV_P_ struct ev_check *w)
1349{
1350 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w))
1352 return;
1353
1354 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w);
1356}
1357
1358#ifndef SA_RESTART
1359# define SA_RESTART 0
1360#endif
1361
1362void
1363ev_signal_start (EV_P_ struct ev_signal *w)
1364{
1365#if EV_MULTIPLICITY
1366 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1367#endif
1368 if (ev_is_active (w))
1369 return;
1370
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372
796 ev_start ((W)w, 1); 1373 ev_start (EV_A_ (W)w, 1);
797 array_needsize (signals, signalmax, w->signum, signals_init); 1374 array_needsize (signals, signalmax, w->signum, signals_init);
798 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
799 1376
800 if (!w->next) 1377 if (!((WL)w)->next)
801 { 1378 {
1379#if WIN32
1380 signal (w->signum, sighandler);
1381#else
802 struct sigaction sa; 1382 struct sigaction sa;
803 sa.sa_handler = sighandler; 1383 sa.sa_handler = sighandler;
804 sigfillset (&sa.sa_mask); 1384 sigfillset (&sa.sa_mask);
805 sa.sa_flags = 0; 1385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
806 sigaction (w->signum, &sa, 0); 1386 sigaction (w->signum, &sa, 0);
1387#endif
807 } 1388 }
808} 1389}
809 1390
810void 1391void
811evsignal_stop (struct ev_signal *w) 1392ev_signal_stop (EV_P_ struct ev_signal *w)
812{ 1393{
813 ev_clear ((W)w); 1394 ev_clear_pending (EV_A_ (W)w);
814 if (!ev_is_active (w)) 1395 if (!ev_is_active (w))
815 return; 1396 return;
816 1397
817 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1398 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
818 ev_stop ((W)w); 1399 ev_stop (EV_A_ (W)w);
819 1400
820 if (!signals [w->signum - 1].head) 1401 if (!signals [w->signum - 1].head)
821 signal (w->signum, SIG_DFL); 1402 signal (w->signum, SIG_DFL);
822} 1403}
823 1404
824void evidle_start (struct ev_idle *w) 1405void
1406ev_child_start (EV_P_ struct ev_child *w)
825{ 1407{
1408#if EV_MULTIPLICITY
1409 assert (("child watchers are only supported in the default loop", loop == default_loop));
1410#endif
826 if (ev_is_active (w)) 1411 if (ev_is_active (w))
827 return; 1412 return;
828 1413
829 ev_start ((W)w, ++idlecnt); 1414 ev_start (EV_A_ (W)w, 1);
830 array_needsize (idles, idlemax, idlecnt, ); 1415 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
831 idles [idlecnt - 1] = w;
832} 1416}
833 1417
834void evidle_stop (struct ev_idle *w) 1418void
1419ev_child_stop (EV_P_ struct ev_child *w)
835{ 1420{
836 ev_clear ((W)w); 1421 ev_clear_pending (EV_A_ (W)w);
837 if (ev_is_active (w)) 1422 if (ev_is_active (w))
838 return; 1423 return;
839 1424
840 idles [w->active - 1] = idles [--idlecnt]; 1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
841 ev_stop ((W)w); 1426 ev_stop (EV_A_ (W)w);
842}
843
844void evprepare_start (struct ev_prepare *w)
845{
846 if (ev_is_active (w))
847 return;
848
849 ev_start ((W)w, ++preparecnt);
850 array_needsize (prepares, preparemax, preparecnt, );
851 prepares [preparecnt - 1] = w;
852}
853
854void evprepare_stop (struct ev_prepare *w)
855{
856 ev_clear ((W)w);
857 if (ev_is_active (w))
858 return;
859
860 prepares [w->active - 1] = prepares [--preparecnt];
861 ev_stop ((W)w);
862}
863
864void evcheck_start (struct ev_check *w)
865{
866 if (ev_is_active (w))
867 return;
868
869 ev_start ((W)w, ++checkcnt);
870 array_needsize (checks, checkmax, checkcnt, );
871 checks [checkcnt - 1] = w;
872}
873
874void evcheck_stop (struct ev_check *w)
875{
876 ev_clear ((W)w);
877 if (ev_is_active (w))
878 return;
879
880 checks [w->active - 1] = checks [--checkcnt];
881 ev_stop ((W)w);
882} 1427}
883 1428
884/*****************************************************************************/ 1429/*****************************************************************************/
885 1430
886struct ev_once 1431struct ev_once
890 void (*cb)(int revents, void *arg); 1435 void (*cb)(int revents, void *arg);
891 void *arg; 1436 void *arg;
892}; 1437};
893 1438
894static void 1439static void
895once_cb (struct ev_once *once, int revents) 1440once_cb (EV_P_ struct ev_once *once, int revents)
896{ 1441{
897 void (*cb)(int revents, void *arg) = once->cb; 1442 void (*cb)(int revents, void *arg) = once->cb;
898 void *arg = once->arg; 1443 void *arg = once->arg;
899 1444
900 evio_stop (&once->io); 1445 ev_io_stop (EV_A_ &once->io);
901 evtimer_stop (&once->to); 1446 ev_timer_stop (EV_A_ &once->to);
902 free (once); 1447 ev_free (once);
903 1448
904 cb (revents, arg); 1449 cb (revents, arg);
905} 1450}
906 1451
907static void 1452static void
908once_cb_io (struct ev_io *w, int revents) 1453once_cb_io (EV_P_ struct ev_io *w, int revents)
909{ 1454{
910 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1455 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
911} 1456}
912 1457
913static void 1458static void
914once_cb_to (struct ev_timer *w, int revents) 1459once_cb_to (EV_P_ struct ev_timer *w, int revents)
915{ 1460{
916 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1461 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
917} 1462}
918 1463
919void 1464void
920ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
921{ 1466{
922 struct ev_once *once = malloc (sizeof (struct ev_once)); 1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
923 1468
924 if (!once) 1469 if (!once)
925 cb (EV_ERROR, arg); 1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
926 else 1471 else
927 { 1472 {
928 once->cb = cb; 1473 once->cb = cb;
929 once->arg = arg; 1474 once->arg = arg;
930 1475
931 evw_init (&once->io, once_cb_io); 1476 ev_watcher_init (&once->io, once_cb_io);
932
933 if (fd >= 0) 1477 if (fd >= 0)
934 { 1478 {
935 evio_set (&once->io, fd, events); 1479 ev_io_set (&once->io, fd, events);
936 evio_start (&once->io); 1480 ev_io_start (EV_A_ &once->io);
937 } 1481 }
938 1482
939 evw_init (&once->to, once_cb_to); 1483 ev_watcher_init (&once->to, once_cb_to);
940
941 if (timeout >= 0.) 1484 if (timeout >= 0.)
942 { 1485 {
943 evtimer_set (&once->to, timeout, 0.); 1486 ev_timer_set (&once->to, timeout, 0.);
944 evtimer_start (&once->to); 1487 ev_timer_start (EV_A_ &once->to);
945 } 1488 }
946 } 1489 }
947} 1490}
948 1491
949/*****************************************************************************/
950
951#if 0
952
953struct ev_io wio;
954
955static void
956sin_cb (struct ev_io *w, int revents)
957{
958 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
959}
960
961static void
962ocb (struct ev_timer *w, int revents)
963{
964 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
965 evtimer_stop (w);
966 evtimer_start (w);
967}
968
969static void
970scb (struct ev_signal *w, int revents)
971{
972 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
973 evio_stop (&wio);
974 evio_start (&wio);
975}
976
977static void
978gcb (struct ev_signal *w, int revents)
979{
980 fprintf (stderr, "generic %x\n", revents);
981
982}
983
984int main (void)
985{
986 ev_init (0);
987
988 evio_init (&wio, sin_cb, 0, EV_READ);
989 evio_start (&wio);
990
991 struct ev_timer t[10000];
992
993#if 0
994 int i;
995 for (i = 0; i < 10000; ++i)
996 {
997 struct ev_timer *w = t + i;
998 evw_init (w, ocb, i);
999 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1000 evtimer_start (w);
1001 if (drand48 () < 0.5)
1002 evtimer_stop (w);
1003 }
1004#endif
1005
1006 struct ev_timer t1;
1007 evtimer_init (&t1, ocb, 5, 10);
1008 evtimer_start (&t1);
1009
1010 struct ev_signal sig;
1011 evsignal_init (&sig, scb, SIGQUIT);
1012 evsignal_start (&sig);
1013
1014 struct ev_check cw;
1015 evcheck_init (&cw, gcb);
1016 evcheck_start (&cw);
1017
1018 struct ev_idle iw;
1019 evidle_init (&iw, gcb);
1020 evidle_start (&iw);
1021
1022 ev_loop (0);
1023
1024 return 0;
1025}
1026
1027#endif
1028
1029
1030
1031

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines