ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.120 by root, Fri Nov 16 01:54:25 2007 UTC vs.
Revision 1.210 by root, Sat Feb 9 00:34:11 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
36#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
37# include "config.h" 48# include "config.h"
49# endif
38 50
39# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 52# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
42# endif 54# endif
43# ifndef EV_USE_REALTIME 55# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 56# define EV_USE_REALTIME 1
45# endif 57# endif
58# else
59# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0
61# endif
62# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0
64# endif
46# endif 65# endif
47 66
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
72# endif
50# endif 73# endif
51 74
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 75# ifndef EV_USE_SELECT
76# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif
54# endif 81# endif
55 82
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 85# define EV_USE_POLL 1
86# else
87# define EV_USE_POLL 0
88# endif
58# endif 89# endif
59 90
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 93# define EV_USE_EPOLL 1
94# else
95# define EV_USE_EPOLL 0
96# endif
62# endif 97# endif
63 98
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 99# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif
105# endif
106
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE
65# define EV_USE_PORT 1 109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif
113# endif
114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
66# endif 121# endif
67 122
68#endif 123#endif
69 124
70#include <math.h> 125#include <math.h>
79#include <sys/types.h> 134#include <sys/types.h>
80#include <time.h> 135#include <time.h>
81 136
82#include <signal.h> 137#include <signal.h>
83 138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
84#ifndef _WIN32 145#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 146# include <sys/time.h>
87# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
88#else 149#else
89# define WIN32_LEAN_AND_MEAN 150# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 151# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 152# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 153# define EV_SELECT_IS_WINSOCKET 1
94#endif 155#endif
95 156
96/**/ 157/**/
97 158
98#ifndef EV_USE_MONOTONIC 159#ifndef EV_USE_MONOTONIC
99# define EV_USE_MONOTONIC 1 160# define EV_USE_MONOTONIC 0
100#endif 161#endif
101 162
102#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1 164# define EV_USE_REALTIME 0
165#endif
166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
104#endif 169#endif
105 170
106#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
108# define EV_SELECT_USE_FD_SET 1
109#endif 173#endif
110 174
111#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
112# ifdef _WIN32 176# ifdef _WIN32
113# define EV_USE_POLL 0 177# define EV_USE_POLL 0
126 190
127#ifndef EV_USE_PORT 191#ifndef EV_USE_PORT
128# define EV_USE_PORT 0 192# define EV_USE_PORT 0
129#endif 193#endif
130 194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
202# else
203# define EV_PID_HASHSIZE 16
204# endif
205#endif
206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
213#endif
214
131/**/ 215/**/
132
133/* darwin simply cannot be helped */
134#ifdef __APPLE__
135# undef EV_USE_POLL
136# undef EV_USE_KQUEUE
137#endif
138 216
139#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
140# undef EV_USE_MONOTONIC 218# undef EV_USE_MONOTONIC
141# define EV_USE_MONOTONIC 0 219# define EV_USE_MONOTONIC 0
142#endif 220#endif
144#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
145# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
146# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
147#endif 225#endif
148 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
149#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
150# include <winsock.h> 243# include <winsock.h>
151#endif 244#endif
152 245
153/**/ 246/**/
154 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
156#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
158/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
159 261
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
166#if __GNUC__ >= 3 262#if __GNUC__ >= 4
167# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
168# define inline inline 264# define noinline __attribute__ ((noinline))
169#else 265#else
170# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
171# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
172#endif 271#endif
173 272
174#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
175#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
176 282
177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
178#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
179 285
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
182 288
183typedef struct ev_watcher *W; 289typedef ev_watcher *W;
184typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
185typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
186 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
188 298
189#ifdef _WIN32 299#ifdef _WIN32
190# include "ev_win32.c" 300# include "ev_win32.c"
191#endif 301#endif
192 302
193/*****************************************************************************/ 303/*****************************************************************************/
194 304
195static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
196 306
307void
197void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
198{ 309{
199 syserr_cb = cb; 310 syserr_cb = cb;
200} 311}
201 312
202static void 313static void noinline
203syserr (const char *msg) 314syserr (const char *msg)
204{ 315{
205 if (!msg) 316 if (!msg)
206 msg = "(libev) system error"; 317 msg = "(libev) system error";
207 318
214 } 325 }
215} 326}
216 327
217static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
218 329
330void
219void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
220{ 332{
221 alloc = cb; 333 alloc = cb;
222} 334}
223 335
224static void * 336inline_speed void *
225ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
226{ 338{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
228 340
229 if (!ptr && size) 341 if (!ptr && size)
253typedef struct 365typedef struct
254{ 366{
255 W w; 367 W w;
256 int events; 368 int events;
257} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
258 377
259#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
260 379
261 struct ev_loop 380 struct ev_loop
262 { 381 {
296 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
297 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
298#endif 417#endif
299} 418}
300 419
301inline ev_tstamp 420ev_tstamp inline_size
302get_clock (void) 421get_clock (void)
303{ 422{
304#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
305 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
306 { 425 {
319{ 438{
320 return ev_rt_now; 439 return ev_rt_now;
321} 440}
322#endif 441#endif
323 442
324#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
325 497
326#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
327 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
328 { \ 500 { \
329 int newcnt = cur; \ 501 int ocur_ = (cur); \
330 do \ 502 (base) = (type *)array_realloc \
331 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
332 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
333 } \
334 while ((cnt) > newcnt); \
335 \
336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
337 init (base + cur, newcnt - cur); \
338 cur = newcnt; \
339 } 505 }
340 506
507#if 0
341#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \ 510 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 } 514 }
515#endif
348 516
349#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
351 519
352/*****************************************************************************/ 520/*****************************************************************************/
353 521
354static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
355anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
356{ 552{
357 while (count--) 553 while (count--)
358 { 554 {
359 base->head = 0; 555 base->head = 0;
362 558
363 ++base; 559 ++base;
364 } 560 }
365} 561}
366 562
367void 563void inline_speed
368ev_feed_event (EV_P_ void *w, int revents)
369{
370 W w_ = (W)w;
371
372 if (w_->pending)
373 {
374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
375 return;
376 }
377
378 w_->pending = ++pendingcnt [ABSPRI (w_)];
379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
382}
383
384static void
385queue_events (EV_P_ W *events, int eventcnt, int type)
386{
387 int i;
388
389 for (i = 0; i < eventcnt; ++i)
390 ev_feed_event (EV_A_ events [i], type);
391}
392
393inline void
394fd_event (EV_P_ int fd, int revents) 564fd_event (EV_P_ int fd, int revents)
395{ 565{
396 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 567 ev_io *w;
398 568
399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
400 { 570 {
401 int ev = w->events & revents; 571 int ev = w->events & revents;
402 572
403 if (ev) 573 if (ev)
404 ev_feed_event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
406} 576}
407 577
408void 578void
409ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
410{ 580{
581 if (fd >= 0 && fd < anfdmax)
411 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
412} 583}
413 584
414/*****************************************************************************/ 585void inline_size
415
416static void
417fd_reify (EV_P) 586fd_reify (EV_P)
418{ 587{
419 int i; 588 int i;
420 589
421 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
422 { 591 {
423 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
424 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
425 struct ev_io *w; 594 ev_io *w;
426 595
427 int events = 0; 596 unsigned char events = 0;
428 597
429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
430 events |= w->events; 599 events |= (unsigned char)w->events;
431 600
432#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
433 if (events) 602 if (events)
434 { 603 {
435 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
436 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
437 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
438 } 611 }
439#endif 612#endif
440 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
441 anfd->reify = 0; 618 anfd->reify = 0;
442
443 method_modify (EV_A_ fd, anfd->events, events);
444 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
445 } 624 }
446 625
447 fdchangecnt = 0; 626 fdchangecnt = 0;
448} 627}
449 628
450static void 629void inline_size
451fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
452{ 631{
453 if (anfds [fd].reify) 632 unsigned char reify = anfds [fd].reify;
454 return;
455
456 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
457 634
635 if (expect_true (!reify))
636 {
458 ++fdchangecnt; 637 ++fdchangecnt;
459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
460 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
461} 641}
462 642
463static void 643void inline_speed
464fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
465{ 645{
466 struct ev_io *w; 646 ev_io *w;
467 647
468 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
469 { 649 {
470 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
472 } 652 }
473} 653}
474 654
475static int 655int inline_size
476fd_valid (int fd) 656fd_valid (int fd)
477{ 657{
478#ifdef _WIN32 658#ifdef _WIN32
479 return _get_osfhandle (fd) != -1; 659 return _get_osfhandle (fd) != -1;
480#else 660#else
481 return fcntl (fd, F_GETFD) != -1; 661 return fcntl (fd, F_GETFD) != -1;
482#endif 662#endif
483} 663}
484 664
485/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
486static void 666static void noinline
487fd_ebadf (EV_P) 667fd_ebadf (EV_P)
488{ 668{
489 int fd; 669 int fd;
490 670
491 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
493 if (!fd_valid (fd) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
494 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
495} 675}
496 676
497/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
498static void 678static void noinline
499fd_enomem (EV_P) 679fd_enomem (EV_P)
500{ 680{
501 int fd; 681 int fd;
502 682
503 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
506 fd_kill (EV_A_ fd); 686 fd_kill (EV_A_ fd);
507 return; 687 return;
508 } 688 }
509} 689}
510 690
511/* usually called after fork if method needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
512static void 692static void noinline
513fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
514{ 694{
515 int fd; 695 int fd;
516 696
517 /* this should be highly optimised to not do anything but set a flag */
518 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 698 if (anfds [fd].events)
520 { 699 {
521 anfds [fd].events = 0; 700 anfds [fd].events = 0;
522 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
523 } 702 }
524} 703}
525 704
526/*****************************************************************************/ 705/*****************************************************************************/
527 706
528static void 707void inline_speed
529upheap (WT *heap, int k) 708upheap (WT *heap, int k)
530{ 709{
531 WT w = heap [k]; 710 WT w = heap [k];
532 711
533 while (k && heap [k >> 1]->at > w->at) 712 while (k)
534 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
535 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
536 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
537 k >>= 1; 721 k = p;
538 } 722 }
539 723
540 heap [k] = w; 724 heap [k] = w;
541 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
542
543} 726}
544 727
545static void 728void inline_speed
546downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
547{ 730{
548 WT w = heap [k]; 731 WT w = heap [k];
549 732
550 while (k < (N >> 1)) 733 for (;;)
551 { 734 {
552 int j = k << 1; 735 int c = (k << 1) + 1;
553 736
554 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
555 ++j;
556
557 if (w->at <= heap [j]->at)
558 break; 738 break;
559 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
560 heap [k] = heap [j]; 746 heap [k] = heap [c];
561 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
562 k = j; 749 k = c;
563 } 750 }
564 751
565 heap [k] = w; 752 heap [k] = w;
566 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
567} 754}
568 755
569inline void 756void inline_size
570adjustheap (WT *heap, int N, int k) 757adjustheap (WT *heap, int N, int k)
571{ 758{
572 upheap (heap, k); 759 upheap (heap, k);
573 downheap (heap, N, k); 760 downheap (heap, N, k);
574} 761}
576/*****************************************************************************/ 763/*****************************************************************************/
577 764
578typedef struct 765typedef struct
579{ 766{
580 WL head; 767 WL head;
581 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
582} ANSIG; 769} ANSIG;
583 770
584static ANSIG *signals; 771static ANSIG *signals;
585static int signalmax; 772static int signalmax;
586 773
587static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
588static sig_atomic_t volatile gotsig;
589static struct ev_io sigev;
590 775
591static void 776void inline_size
592signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
593{ 778{
594 while (count--) 779 while (count--)
595 { 780 {
596 base->head = 0; 781 base->head = 0;
598 783
599 ++base; 784 ++base;
600 } 785 }
601} 786}
602 787
603static void 788/*****************************************************************************/
604sighandler (int signum)
605{
606#if _WIN32
607 signal (signum, sighandler);
608#endif
609 789
610 signals [signum - 1].gotsig = 1; 790void inline_speed
611
612 if (!gotsig)
613 {
614 int old_errno = errno;
615 gotsig = 1;
616 write (sigpipe [1], &signum, 1);
617 errno = old_errno;
618 }
619}
620
621void
622ev_feed_signal_event (EV_P_ int signum)
623{
624 WL w;
625
626#if EV_MULTIPLICITY
627 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
628#endif
629
630 --signum;
631
632 if (signum < 0 || signum >= signalmax)
633 return;
634
635 signals [signum].gotsig = 0;
636
637 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639}
640
641static void
642sigcb (EV_P_ struct ev_io *iow, int revents)
643{
644 int signum;
645
646 read (sigpipe [0], &revents, 1);
647 gotsig = 0;
648
649 for (signum = signalmax; signum--; )
650 if (signals [signum].gotsig)
651 ev_feed_signal_event (EV_A_ signum + 1);
652}
653
654inline void
655fd_intern (int fd) 791fd_intern (int fd)
656{ 792{
657#ifdef _WIN32 793#ifdef _WIN32
658 int arg = 1; 794 int arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
661 fcntl (fd, F_SETFD, FD_CLOEXEC); 797 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif 799#endif
664} 800}
665 801
802static void noinline
803evpipe_init (EV_P)
804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
810 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ);
814 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 {
824 int old_errno = errno; /* save errno becaue write might clobber it */
825
826 if (sig) gotsig = 1;
827 if (async) gotasync = 1;
828
829 write (evpipe [1], &old_errno, 1);
830
831 errno = old_errno;
832 }
833}
834
666static void 835static void
667siginit (EV_P) 836pipecb (EV_P_ ev_io *iow, int revents)
668{ 837{
669 fd_intern (sigpipe [0]); 838 {
670 fd_intern (sigpipe [1]); 839 int dummy;
840 read (evpipe [0], &dummy, 1);
841 }
671 842
672 ev_io_set (&sigev, sigpipe [0], EV_READ); 843 if (gotsig)
673 ev_io_start (EV_A_ &sigev); 844 {
674 ev_unref (EV_A); /* child watcher should not keep loop alive */ 845 int signum;
846 gotsig = 0;
847
848 for (signum = signalmax; signum--; )
849 if (signals [signum].gotsig)
850 ev_feed_signal_event (EV_A_ signum + 1);
851 }
852
853#if EV_ASYNC_ENABLE
854 if (gotasync)
855 {
856 int i;
857 gotasync = 0;
858
859 for (i = asynccnt; i--; )
860 if (asyncs [i]->sent)
861 {
862 asyncs [i]->sent = 0;
863 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
864 }
865 }
866#endif
675} 867}
676 868
677/*****************************************************************************/ 869/*****************************************************************************/
678 870
679static struct ev_child *childs [PID_HASHSIZE]; 871static void
872sighandler (int signum)
873{
874#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct;
876#endif
877
878#if _WIN32
879 signal (signum, sighandler);
880#endif
881
882 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0);
884}
885
886void noinline
887ev_feed_signal_event (EV_P_ int signum)
888{
889 WL w;
890
891#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
893#endif
894
895 --signum;
896
897 if (signum < 0 || signum >= signalmax)
898 return;
899
900 signals [signum].gotsig = 0;
901
902 for (w = signals [signum].head; w; w = w->next)
903 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
904}
905
906/*****************************************************************************/
907
908static WL childs [EV_PID_HASHSIZE];
680 909
681#ifndef _WIN32 910#ifndef _WIN32
682 911
683static struct ev_signal childev; 912static ev_signal childev;
913
914#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0
916#endif
917
918void inline_speed
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
920{
921 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 {
926 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1)))
928 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
930 w->rpid = pid;
931 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 }
934 }
935}
684 936
685#ifndef WCONTINUED 937#ifndef WCONTINUED
686# define WCONTINUED 0 938# define WCONTINUED 0
687#endif 939#endif
688 940
689static void 941static void
690child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
691{
692 struct ev_child *w;
693
694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
695 if (w->pid == pid || !w->pid)
696 {
697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
698 w->rpid = pid;
699 w->rstatus = status;
700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
701 }
702}
703
704static void
705childcb (EV_P_ struct ev_signal *sw, int revents) 942childcb (EV_P_ ev_signal *sw, int revents)
706{ 943{
707 int pid, status; 944 int pid, status;
708 945
946 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 947 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
710 { 948 if (!WCONTINUED
949 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return;
952
711 /* make sure we are called again until all childs have been reaped */ 953 /* make sure we are called again until all childs have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */
712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
713 956
714 child_reap (EV_A_ sw, pid, pid, status); 957 child_reap (EV_A_ sw, pid, pid, status);
958 if (EV_PID_HASHSIZE > 1)
715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
716 }
717} 960}
718 961
719#endif 962#endif
720 963
721/*****************************************************************************/ 964/*****************************************************************************/
747{ 990{
748 return EV_VERSION_MINOR; 991 return EV_VERSION_MINOR;
749} 992}
750 993
751/* return true if we are running with elevated privileges and should ignore env variables */ 994/* return true if we are running with elevated privileges and should ignore env variables */
752static int 995int inline_size
753enable_secure (void) 996enable_secure (void)
754{ 997{
755#ifdef _WIN32 998#ifdef _WIN32
756 return 0; 999 return 0;
757#else 1000#else
759 || getgid () != getegid (); 1002 || getgid () != getegid ();
760#endif 1003#endif
761} 1004}
762 1005
763unsigned int 1006unsigned int
764ev_method (EV_P) 1007ev_supported_backends (void)
765{ 1008{
766 return method; 1009 unsigned int flags = 0;
767}
768 1010
769static void 1011 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1012 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1013 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1014 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1015 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1016
1017 return flags;
1018}
1019
1020unsigned int
1021ev_recommended_backends (void)
1022{
1023 unsigned int flags = ev_supported_backends ();
1024
1025#ifndef __NetBSD__
1026 /* kqueue is borked on everything but netbsd apparently */
1027 /* it usually doesn't work correctly on anything but sockets and pipes */
1028 flags &= ~EVBACKEND_KQUEUE;
1029#endif
1030#ifdef __APPLE__
1031 // flags &= ~EVBACKEND_KQUEUE; for documentation
1032 flags &= ~EVBACKEND_POLL;
1033#endif
1034
1035 return flags;
1036}
1037
1038unsigned int
1039ev_embeddable_backends (void)
1040{
1041 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1042
1043 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1044 /* please fix it and tell me how to detect the fix */
1045 flags &= ~EVBACKEND_EPOLL;
1046
1047 return flags;
1048}
1049
1050unsigned int
1051ev_backend (EV_P)
1052{
1053 return backend;
1054}
1055
1056unsigned int
1057ev_loop_count (EV_P)
1058{
1059 return loop_count;
1060}
1061
1062void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1064{
1065 io_blocktime = interval;
1066}
1067
1068void
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1070{
1071 timeout_blocktime = interval;
1072}
1073
1074static void noinline
770loop_init (EV_P_ unsigned int flags) 1075loop_init (EV_P_ unsigned int flags)
771{ 1076{
772 if (!method) 1077 if (!backend)
773 { 1078 {
774#if EV_USE_MONOTONIC 1079#if EV_USE_MONOTONIC
775 { 1080 {
776 struct timespec ts; 1081 struct timespec ts;
777 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
778 have_monotonic = 1; 1083 have_monotonic = 1;
779 } 1084 }
780#endif 1085#endif
781 1086
782 ev_rt_now = ev_time (); 1087 ev_rt_now = ev_time ();
783 mn_now = get_clock (); 1088 mn_now = get_clock ();
784 now_floor = mn_now; 1089 now_floor = mn_now;
785 rtmn_diff = ev_rt_now - mn_now; 1090 rtmn_diff = ev_rt_now - mn_now;
786 1091
787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1092 io_blocktime = 0.;
1093 timeout_blocktime = 0.;
1094 backend = 0;
1095 backend_fd = -1;
1096 gotasync = 0;
1097#if EV_USE_INOTIFY
1098 fs_fd = -2;
1099#endif
1100
1101 /* pid check not overridable via env */
1102#ifndef _WIN32
1103 if (flags & EVFLAG_FORKCHECK)
1104 curpid = getpid ();
1105#endif
1106
1107 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS"))
788 flags = atoi (getenv ("LIBEV_FLAGS")); 1110 flags = atoi (getenv ("LIBEV_FLAGS"));
789 1111
790 if (!(flags & 0x0000ffff)) 1112 if (!(flags & 0x0000ffffUL))
791 flags |= 0x0000ffff; 1113 flags |= ev_recommended_backends ();
792 1114
793 method = 0;
794#if EV_USE_PORT 1115#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
796#endif 1117#endif
797#if EV_USE_KQUEUE 1118#if EV_USE_KQUEUE
798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1119 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
799#endif 1120#endif
800#if EV_USE_EPOLL 1121#if EV_USE_EPOLL
801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1122 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
802#endif 1123#endif
803#if EV_USE_POLL 1124#if EV_USE_POLL
804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1125 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
805#endif 1126#endif
806#if EV_USE_SELECT 1127#if EV_USE_SELECT
807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
808#endif 1129#endif
809 1130
810 ev_init (&sigev, sigcb); 1131 ev_init (&pipeev, pipecb);
811 ev_set_priority (&sigev, EV_MAXPRI); 1132 ev_set_priority (&pipeev, EV_MAXPRI);
812 } 1133 }
813} 1134}
814 1135
815void 1136static void noinline
816loop_destroy (EV_P) 1137loop_destroy (EV_P)
817{ 1138{
818 int i; 1139 int i;
819 1140
1141 if (ev_is_active (&pipeev))
1142 {
1143 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev);
1145
1146 close (evpipe [0]); evpipe [0] = 0;
1147 close (evpipe [1]); evpipe [1] = 0;
1148 }
1149
1150#if EV_USE_INOTIFY
1151 if (fs_fd >= 0)
1152 close (fs_fd);
1153#endif
1154
1155 if (backend_fd >= 0)
1156 close (backend_fd);
1157
820#if EV_USE_PORT 1158#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1159 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
822#endif 1160#endif
823#if EV_USE_KQUEUE 1161#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1162 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
825#endif 1163#endif
826#if EV_USE_EPOLL 1164#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1165 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
828#endif 1166#endif
829#if EV_USE_POLL 1167#if EV_USE_POLL
830 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1168 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
831#endif 1169#endif
832#if EV_USE_SELECT 1170#if EV_USE_SELECT
833 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1171 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
834#endif 1172#endif
835 1173
836 for (i = NUMPRI; i--; ) 1174 for (i = NUMPRI; i--; )
1175 {
837 array_free (pending, [i]); 1176 array_free (pending, [i]);
1177#if EV_IDLE_ENABLE
1178 array_free (idle, [i]);
1179#endif
1180 }
1181
1182 ev_free (anfds); anfdmax = 0;
838 1183
839 /* have to use the microsoft-never-gets-it-right macro */ 1184 /* have to use the microsoft-never-gets-it-right macro */
840 array_free (fdchange, EMPTY0); 1185 array_free (fdchange, EMPTY);
841 array_free (timer, EMPTY0); 1186 array_free (timer, EMPTY);
842#if EV_PERIODICS 1187#if EV_PERIODIC_ENABLE
843 array_free (periodic, EMPTY0); 1188 array_free (periodic, EMPTY);
844#endif 1189#endif
1190#if EV_FORK_ENABLE
845 array_free (idle, EMPTY0); 1191 array_free (fork, EMPTY);
1192#endif
846 array_free (prepare, EMPTY0); 1193 array_free (prepare, EMPTY);
847 array_free (check, EMPTY0); 1194 array_free (check, EMPTY);
1195#if EV_ASYNC_ENABLE
1196 array_free (async, EMPTY);
1197#endif
848 1198
849 method = 0; 1199 backend = 0;
850} 1200}
851 1201
852static void 1202void inline_size infy_fork (EV_P);
1203
1204void inline_size
853loop_fork (EV_P) 1205loop_fork (EV_P)
854{ 1206{
855#if EV_USE_PORT 1207#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1208 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
857#endif 1209#endif
858#if EV_USE_KQUEUE 1210#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1211 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
860#endif 1212#endif
861#if EV_USE_EPOLL 1213#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1214 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
863#endif 1215#endif
1216#if EV_USE_INOTIFY
1217 infy_fork (EV_A);
1218#endif
864 1219
865 if (ev_is_active (&sigev)) 1220 if (ev_is_active (&pipeev))
866 { 1221 {
867 /* default loop */ 1222 /* this "locks" the handlers against writing to the pipe */
1223 gotsig = gotasync = 1;
868 1224
869 ev_ref (EV_A); 1225 ev_ref (EV_A);
870 ev_io_stop (EV_A_ &sigev); 1226 ev_io_stop (EV_A_ &pipeev);
871 close (sigpipe [0]); 1227 close (evpipe [0]);
872 close (sigpipe [1]); 1228 close (evpipe [1]);
873 1229
874 while (pipe (sigpipe))
875 syserr ("(libev) error creating pipe");
876
877 siginit (EV_A); 1230 evpipe_init (EV_A);
1231 /* now iterate over everything, in case we missed something */
1232 pipecb (EV_A_ &pipeev, EV_READ);
878 } 1233 }
879 1234
880 postfork = 0; 1235 postfork = 0;
881} 1236}
882 1237
888 1243
889 memset (loop, 0, sizeof (struct ev_loop)); 1244 memset (loop, 0, sizeof (struct ev_loop));
890 1245
891 loop_init (EV_A_ flags); 1246 loop_init (EV_A_ flags);
892 1247
893 if (ev_method (EV_A)) 1248 if (ev_backend (EV_A))
894 return loop; 1249 return loop;
895 1250
896 return 0; 1251 return 0;
897} 1252}
898 1253
904} 1259}
905 1260
906void 1261void
907ev_loop_fork (EV_P) 1262ev_loop_fork (EV_P)
908{ 1263{
909 postfork = 1; 1264 postfork = 1; /* must be in line with ev_default_fork */
910} 1265}
911 1266
912#endif 1267#endif
913 1268
914#if EV_MULTIPLICITY 1269#if EV_MULTIPLICITY
915struct ev_loop * 1270struct ev_loop *
916ev_default_loop_ (unsigned int flags) 1271ev_default_loop_init (unsigned int flags)
917#else 1272#else
918int 1273int
919ev_default_loop (unsigned int flags) 1274ev_default_loop (unsigned int flags)
920#endif 1275#endif
921{ 1276{
922 if (sigpipe [0] == sigpipe [1])
923 if (pipe (sigpipe))
924 return 0;
925
926 if (!ev_default_loop_ptr) 1277 if (!ev_default_loop_ptr)
927 { 1278 {
928#if EV_MULTIPLICITY 1279#if EV_MULTIPLICITY
929 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1280 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
930#else 1281#else
931 ev_default_loop_ptr = 1; 1282 ev_default_loop_ptr = 1;
932#endif 1283#endif
933 1284
934 loop_init (EV_A_ flags); 1285 loop_init (EV_A_ flags);
935 1286
936 if (ev_method (EV_A)) 1287 if (ev_backend (EV_A))
937 { 1288 {
938 siginit (EV_A);
939
940#ifndef _WIN32 1289#ifndef _WIN32
941 ev_signal_init (&childev, childcb, SIGCHLD); 1290 ev_signal_init (&childev, childcb, SIGCHLD);
942 ev_set_priority (&childev, EV_MAXPRI); 1291 ev_set_priority (&childev, EV_MAXPRI);
943 ev_signal_start (EV_A_ &childev); 1292 ev_signal_start (EV_A_ &childev);
944 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1293 ev_unref (EV_A); /* child watcher should not keep loop alive */
961#ifndef _WIN32 1310#ifndef _WIN32
962 ev_ref (EV_A); /* child watcher */ 1311 ev_ref (EV_A); /* child watcher */
963 ev_signal_stop (EV_A_ &childev); 1312 ev_signal_stop (EV_A_ &childev);
964#endif 1313#endif
965 1314
966 ev_ref (EV_A); /* signal watcher */
967 ev_io_stop (EV_A_ &sigev);
968
969 close (sigpipe [0]); sigpipe [0] = 0;
970 close (sigpipe [1]); sigpipe [1] = 0;
971
972 loop_destroy (EV_A); 1315 loop_destroy (EV_A);
973} 1316}
974 1317
975void 1318void
976ev_default_fork (void) 1319ev_default_fork (void)
977{ 1320{
978#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
979 struct ev_loop *loop = ev_default_loop_ptr; 1322 struct ev_loop *loop = ev_default_loop_ptr;
980#endif 1323#endif
981 1324
982 if (method) 1325 if (backend)
983 postfork = 1; 1326 postfork = 1; /* must be in line with ev_loop_fork */
984} 1327}
985 1328
986/*****************************************************************************/ 1329/*****************************************************************************/
987 1330
988static int 1331void
989any_pending (EV_P) 1332ev_invoke (EV_P_ void *w, int revents)
990{ 1333{
991 int pri; 1334 EV_CB_INVOKE ((W)w, revents);
992
993 for (pri = NUMPRI; pri--; )
994 if (pendingcnt [pri])
995 return 1;
996
997 return 0;
998} 1335}
999 1336
1000static void 1337void inline_speed
1001call_pending (EV_P) 1338call_pending (EV_P)
1002{ 1339{
1003 int pri; 1340 int pri;
1004 1341
1005 for (pri = NUMPRI; pri--; ) 1342 for (pri = NUMPRI; pri--; )
1006 while (pendingcnt [pri]) 1343 while (pendingcnt [pri])
1007 { 1344 {
1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1345 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1009 1346
1010 if (p->w) 1347 if (expect_true (p->w))
1011 { 1348 {
1349 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1350
1012 p->w->pending = 0; 1351 p->w->pending = 0;
1013 EV_CB_INVOKE (p->w, p->events); 1352 EV_CB_INVOKE (p->w, p->events);
1014 } 1353 }
1015 } 1354 }
1016} 1355}
1017 1356
1018static void 1357void inline_size
1019timers_reify (EV_P) 1358timers_reify (EV_P)
1020{ 1359{
1021 while (timercnt && ((WT)timers [0])->at <= mn_now) 1360 while (timercnt && ((WT)timers [0])->at <= mn_now)
1022 { 1361 {
1023 struct ev_timer *w = timers [0]; 1362 ev_timer *w = (ev_timer *)timers [0];
1024 1363
1025 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1364 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1026 1365
1027 /* first reschedule or stop timer */ 1366 /* first reschedule or stop timer */
1028 if (w->repeat) 1367 if (w->repeat)
1029 { 1368 {
1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1369 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1031 1370
1032 ((WT)w)->at += w->repeat; 1371 ((WT)w)->at += w->repeat;
1033 if (((WT)w)->at < mn_now) 1372 if (((WT)w)->at < mn_now)
1034 ((WT)w)->at = mn_now; 1373 ((WT)w)->at = mn_now;
1035 1374
1036 downheap ((WT *)timers, timercnt, 0); 1375 downheap (timers, timercnt, 0);
1037 } 1376 }
1038 else 1377 else
1039 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 1379
1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1380 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1042 } 1381 }
1043} 1382}
1044 1383
1045#if EV_PERIODICS 1384#if EV_PERIODIC_ENABLE
1046static void 1385void inline_size
1047periodics_reify (EV_P) 1386periodics_reify (EV_P)
1048{ 1387{
1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1388 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1050 { 1389 {
1051 struct ev_periodic *w = periodics [0]; 1390 ev_periodic *w = (ev_periodic *)periodics [0];
1052 1391
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1392 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1054 1393
1055 /* first reschedule or stop timer */ 1394 /* first reschedule or stop timer */
1056 if (w->reschedule_cb) 1395 if (w->reschedule_cb)
1057 { 1396 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1397 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1398 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1060 downheap ((WT *)periodics, periodiccnt, 0); 1399 downheap (periodics, periodiccnt, 0);
1061 } 1400 }
1062 else if (w->interval) 1401 else if (w->interval)
1063 { 1402 {
1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1403 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1405 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1066 downheap ((WT *)periodics, periodiccnt, 0); 1406 downheap (periodics, periodiccnt, 0);
1067 } 1407 }
1068 else 1408 else
1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1409 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1070 1410
1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1411 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1072 } 1412 }
1073} 1413}
1074 1414
1075static void 1415static void noinline
1076periodics_reschedule (EV_P) 1416periodics_reschedule (EV_P)
1077{ 1417{
1078 int i; 1418 int i;
1079 1419
1080 /* adjust periodics after time jump */ 1420 /* adjust periodics after time jump */
1081 for (i = 0; i < periodiccnt; ++i) 1421 for (i = 0; i < periodiccnt; ++i)
1082 { 1422 {
1083 struct ev_periodic *w = periodics [i]; 1423 ev_periodic *w = (ev_periodic *)periodics [i];
1084 1424
1085 if (w->reschedule_cb) 1425 if (w->reschedule_cb)
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1426 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1087 else if (w->interval) 1427 else if (w->interval)
1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1428 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1089 } 1429 }
1090 1430
1091 /* now rebuild the heap */ 1431 /* now rebuild the heap */
1092 for (i = periodiccnt >> 1; i--; ) 1432 for (i = periodiccnt >> 1; i--; )
1093 downheap ((WT *)periodics, periodiccnt, i); 1433 downheap (periodics, periodiccnt, i);
1094} 1434}
1095#endif 1435#endif
1096 1436
1097inline int 1437#if EV_IDLE_ENABLE
1098time_update_monotonic (EV_P) 1438void inline_size
1439idle_reify (EV_P)
1099{ 1440{
1441 if (expect_false (idleall))
1442 {
1443 int pri;
1444
1445 for (pri = NUMPRI; pri--; )
1446 {
1447 if (pendingcnt [pri])
1448 break;
1449
1450 if (idlecnt [pri])
1451 {
1452 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1453 break;
1454 }
1455 }
1456 }
1457}
1458#endif
1459
1460void inline_speed
1461time_update (EV_P_ ev_tstamp max_block)
1462{
1463 int i;
1464
1465#if EV_USE_MONOTONIC
1466 if (expect_true (have_monotonic))
1467 {
1468 ev_tstamp odiff = rtmn_diff;
1469
1100 mn_now = get_clock (); 1470 mn_now = get_clock ();
1101 1471
1472 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1473 /* interpolate in the meantime */
1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1474 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1103 { 1475 {
1104 ev_rt_now = rtmn_diff + mn_now; 1476 ev_rt_now = rtmn_diff + mn_now;
1105 return 0; 1477 return;
1106 } 1478 }
1107 else 1479
1108 {
1109 now_floor = mn_now; 1480 now_floor = mn_now;
1110 ev_rt_now = ev_time (); 1481 ev_rt_now = ev_time ();
1111 return 1;
1112 }
1113}
1114 1482
1115static void 1483 /* loop a few times, before making important decisions.
1116time_update (EV_P) 1484 * on the choice of "4": one iteration isn't enough,
1117{ 1485 * in case we get preempted during the calls to
1118 int i; 1486 * ev_time and get_clock. a second call is almost guaranteed
1119 1487 * to succeed in that case, though. and looping a few more times
1120#if EV_USE_MONOTONIC 1488 * doesn't hurt either as we only do this on time-jumps or
1121 if (expect_true (have_monotonic)) 1489 * in the unlikely event of having been preempted here.
1122 { 1490 */
1123 if (time_update_monotonic (EV_A)) 1491 for (i = 4; --i; )
1124 { 1492 {
1125 ev_tstamp odiff = rtmn_diff;
1126
1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1128 {
1129 rtmn_diff = ev_rt_now - mn_now; 1493 rtmn_diff = ev_rt_now - mn_now;
1130 1494
1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1495 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1132 return; /* all is well */ 1496 return; /* all is well */
1133 1497
1134 ev_rt_now = ev_time (); 1498 ev_rt_now = ev_time ();
1135 mn_now = get_clock (); 1499 mn_now = get_clock ();
1136 now_floor = mn_now; 1500 now_floor = mn_now;
1137 } 1501 }
1138 1502
1139# if EV_PERIODICS 1503# if EV_PERIODIC_ENABLE
1504 periodics_reschedule (EV_A);
1505# endif
1506 /* no timer adjustment, as the monotonic clock doesn't jump */
1507 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1508 }
1509 else
1510#endif
1511 {
1512 ev_rt_now = ev_time ();
1513
1514 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1515 {
1516#if EV_PERIODIC_ENABLE
1140 periodics_reschedule (EV_A); 1517 periodics_reschedule (EV_A);
1141# endif 1518#endif
1142 /* no timer adjustment, as the monotonic clock doesn't jump */
1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1144 }
1145 }
1146 else
1147#endif
1148 {
1149 ev_rt_now = ev_time ();
1150
1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1152 {
1153#if EV_PERIODICS
1154 periodics_reschedule (EV_A);
1155#endif
1156
1157 /* adjust timers. this is easy, as the offset is the same for all */ 1519 /* adjust timers. this is easy, as the offset is the same for all of them */
1158 for (i = 0; i < timercnt; ++i) 1520 for (i = 0; i < timercnt; ++i)
1159 ((WT)timers [i])->at += ev_rt_now - mn_now; 1521 ((WT)timers [i])->at += ev_rt_now - mn_now;
1160 } 1522 }
1161 1523
1162 mn_now = ev_rt_now; 1524 mn_now = ev_rt_now;
1178static int loop_done; 1540static int loop_done;
1179 1541
1180void 1542void
1181ev_loop (EV_P_ int flags) 1543ev_loop (EV_P_ int flags)
1182{ 1544{
1183 double block;
1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1545 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1546 ? EVUNLOOP_ONE
1547 : EVUNLOOP_CANCEL;
1185 1548
1186 while (activecnt) 1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1550
1551 do
1187 { 1552 {
1553#ifndef _WIN32
1554 if (expect_false (curpid)) /* penalise the forking check even more */
1555 if (expect_false (getpid () != curpid))
1556 {
1557 curpid = getpid ();
1558 postfork = 1;
1559 }
1560#endif
1561
1562#if EV_FORK_ENABLE
1563 /* we might have forked, so queue fork handlers */
1564 if (expect_false (postfork))
1565 if (forkcnt)
1566 {
1567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1568 call_pending (EV_A);
1569 }
1570#endif
1571
1188 /* queue check watchers (and execute them) */ 1572 /* queue prepare watchers (and execute them) */
1189 if (expect_false (preparecnt)) 1573 if (expect_false (preparecnt))
1190 { 1574 {
1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1575 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1192 call_pending (EV_A); 1576 call_pending (EV_A);
1193 } 1577 }
1194 1578
1579 if (expect_false (!activecnt))
1580 break;
1581
1195 /* we might have forked, so reify kernel state if necessary */ 1582 /* we might have forked, so reify kernel state if necessary */
1196 if (expect_false (postfork)) 1583 if (expect_false (postfork))
1197 loop_fork (EV_A); 1584 loop_fork (EV_A);
1198 1585
1199 /* update fd-related kernel structures */ 1586 /* update fd-related kernel structures */
1200 fd_reify (EV_A); 1587 fd_reify (EV_A);
1201 1588
1202 /* calculate blocking time */ 1589 /* calculate blocking time */
1590 {
1591 ev_tstamp waittime = 0.;
1592 ev_tstamp sleeptime = 0.;
1203 1593
1204 /* we only need this for !monotonic clock or timers, but as we basically 1594 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1205 always have timers, we just calculate it always */
1206#if EV_USE_MONOTONIC
1207 if (expect_true (have_monotonic))
1208 time_update_monotonic (EV_A);
1209 else
1210#endif
1211 { 1595 {
1212 ev_rt_now = ev_time (); 1596 /* update time to cancel out callback processing overhead */
1213 mn_now = ev_rt_now; 1597 time_update (EV_A_ 1e100);
1214 }
1215 1598
1216 if (flags & EVLOOP_NONBLOCK || idlecnt)
1217 block = 0.;
1218 else
1219 {
1220 block = MAX_BLOCKTIME; 1599 waittime = MAX_BLOCKTIME;
1221 1600
1222 if (timercnt) 1601 if (timercnt)
1223 { 1602 {
1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1225 if (block > to) block = to; 1604 if (waittime > to) waittime = to;
1226 } 1605 }
1227 1606
1228#if EV_PERIODICS 1607#if EV_PERIODIC_ENABLE
1229 if (periodiccnt) 1608 if (periodiccnt)
1230 { 1609 {
1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1232 if (block > to) block = to; 1611 if (waittime > to) waittime = to;
1233 } 1612 }
1234#endif 1613#endif
1235 1614
1236 if (block < 0.) block = 0.; 1615 if (expect_false (waittime < timeout_blocktime))
1616 waittime = timeout_blocktime;
1617
1618 sleeptime = waittime - backend_fudge;
1619
1620 if (expect_true (sleeptime > io_blocktime))
1621 sleeptime = io_blocktime;
1622
1623 if (sleeptime)
1624 {
1625 ev_sleep (sleeptime);
1626 waittime -= sleeptime;
1627 }
1237 } 1628 }
1238 1629
1239 method_poll (EV_A_ block); 1630 ++loop_count;
1631 backend_poll (EV_A_ waittime);
1240 1632
1241 /* update ev_rt_now, do magic */ 1633 /* update ev_rt_now, do magic */
1242 time_update (EV_A); 1634 time_update (EV_A_ waittime + sleeptime);
1635 }
1243 1636
1244 /* queue pending timers and reschedule them */ 1637 /* queue pending timers and reschedule them */
1245 timers_reify (EV_A); /* relative timers called last */ 1638 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS 1639#if EV_PERIODIC_ENABLE
1247 periodics_reify (EV_A); /* absolute timers called first */ 1640 periodics_reify (EV_A); /* absolute timers called first */
1248#endif 1641#endif
1249 1642
1643#if EV_IDLE_ENABLE
1250 /* queue idle watchers unless io or timers are pending */ 1644 /* queue idle watchers unless other events are pending */
1251 if (idlecnt && !any_pending (EV_A)) 1645 idle_reify (EV_A);
1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1646#endif
1253 1647
1254 /* queue check watchers, to be executed first */ 1648 /* queue check watchers, to be executed first */
1255 if (checkcnt) 1649 if (expect_false (checkcnt))
1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1257 1651
1258 call_pending (EV_A); 1652 call_pending (EV_A);
1259 1653
1260 if (loop_done)
1261 break;
1262 } 1654 }
1655 while (expect_true (activecnt && !loop_done));
1263 1656
1264 if (loop_done != 2) 1657 if (loop_done == EVUNLOOP_ONE)
1265 loop_done = 0; 1658 loop_done = EVUNLOOP_CANCEL;
1266} 1659}
1267 1660
1268void 1661void
1269ev_unloop (EV_P_ int how) 1662ev_unloop (EV_P_ int how)
1270{ 1663{
1271 loop_done = how; 1664 loop_done = how;
1272} 1665}
1273 1666
1274/*****************************************************************************/ 1667/*****************************************************************************/
1275 1668
1276inline void 1669void inline_size
1277wlist_add (WL *head, WL elem) 1670wlist_add (WL *head, WL elem)
1278{ 1671{
1279 elem->next = *head; 1672 elem->next = *head;
1280 *head = elem; 1673 *head = elem;
1281} 1674}
1282 1675
1283inline void 1676void inline_size
1284wlist_del (WL *head, WL elem) 1677wlist_del (WL *head, WL elem)
1285{ 1678{
1286 while (*head) 1679 while (*head)
1287 { 1680 {
1288 if (*head == elem) 1681 if (*head == elem)
1293 1686
1294 head = &(*head)->next; 1687 head = &(*head)->next;
1295 } 1688 }
1296} 1689}
1297 1690
1298inline void 1691void inline_speed
1299ev_clear_pending (EV_P_ W w) 1692clear_pending (EV_P_ W w)
1300{ 1693{
1301 if (w->pending) 1694 if (w->pending)
1302 { 1695 {
1303 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1696 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1304 w->pending = 0; 1697 w->pending = 0;
1305 } 1698 }
1306} 1699}
1307 1700
1308inline void 1701int
1702ev_clear_pending (EV_P_ void *w)
1703{
1704 W w_ = (W)w;
1705 int pending = w_->pending;
1706
1707 if (expect_true (pending))
1708 {
1709 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1710 w_->pending = 0;
1711 p->w = 0;
1712 return p->events;
1713 }
1714 else
1715 return 0;
1716}
1717
1718void inline_size
1719pri_adjust (EV_P_ W w)
1720{
1721 int pri = w->priority;
1722 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1723 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1724 w->priority = pri;
1725}
1726
1727void inline_speed
1309ev_start (EV_P_ W w, int active) 1728ev_start (EV_P_ W w, int active)
1310{ 1729{
1311 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1730 pri_adjust (EV_A_ w);
1312 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1313
1314 w->active = active; 1731 w->active = active;
1315 ev_ref (EV_A); 1732 ev_ref (EV_A);
1316} 1733}
1317 1734
1318inline void 1735void inline_size
1319ev_stop (EV_P_ W w) 1736ev_stop (EV_P_ W w)
1320{ 1737{
1321 ev_unref (EV_A); 1738 ev_unref (EV_A);
1322 w->active = 0; 1739 w->active = 0;
1323} 1740}
1324 1741
1325/*****************************************************************************/ 1742/*****************************************************************************/
1326 1743
1327void 1744void noinline
1328ev_io_start (EV_P_ struct ev_io *w) 1745ev_io_start (EV_P_ ev_io *w)
1329{ 1746{
1330 int fd = w->fd; 1747 int fd = w->fd;
1331 1748
1332 if (ev_is_active (w)) 1749 if (expect_false (ev_is_active (w)))
1333 return; 1750 return;
1334 1751
1335 assert (("ev_io_start called with negative fd", fd >= 0)); 1752 assert (("ev_io_start called with negative fd", fd >= 0));
1336 1753
1337 ev_start (EV_A_ (W)w, 1); 1754 ev_start (EV_A_ (W)w, 1);
1338 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1755 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1339 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1756 wlist_add (&anfds[fd].head, (WL)w);
1340 1757
1341 fd_change (EV_A_ fd); 1758 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1759 w->events &= ~EV_IOFDSET;
1342} 1760}
1343 1761
1344void 1762void noinline
1345ev_io_stop (EV_P_ struct ev_io *w) 1763ev_io_stop (EV_P_ ev_io *w)
1346{ 1764{
1347 ev_clear_pending (EV_A_ (W)w); 1765 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 1766 if (expect_false (!ev_is_active (w)))
1349 return; 1767 return;
1350 1768
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1769 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352 1770
1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1771 wlist_del (&anfds[w->fd].head, (WL)w);
1354 ev_stop (EV_A_ (W)w); 1772 ev_stop (EV_A_ (W)w);
1355 1773
1356 fd_change (EV_A_ w->fd); 1774 fd_change (EV_A_ w->fd, 1);
1357} 1775}
1358 1776
1359void 1777void noinline
1360ev_timer_start (EV_P_ struct ev_timer *w) 1778ev_timer_start (EV_P_ ev_timer *w)
1361{ 1779{
1362 if (ev_is_active (w)) 1780 if (expect_false (ev_is_active (w)))
1363 return; 1781 return;
1364 1782
1365 ((WT)w)->at += mn_now; 1783 ((WT)w)->at += mn_now;
1366 1784
1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1785 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1368 1786
1369 ev_start (EV_A_ (W)w, ++timercnt); 1787 ev_start (EV_A_ (W)w, ++timercnt);
1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1788 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1371 timers [timercnt - 1] = w; 1789 timers [timercnt - 1] = (WT)w;
1372 upheap ((WT *)timers, timercnt - 1); 1790 upheap (timers, timercnt - 1);
1373 1791
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1792 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1375} 1793}
1376 1794
1377void 1795void noinline
1378ev_timer_stop (EV_P_ struct ev_timer *w) 1796ev_timer_stop (EV_P_ ev_timer *w)
1379{ 1797{
1380 ev_clear_pending (EV_A_ (W)w); 1798 clear_pending (EV_A_ (W)w);
1381 if (!ev_is_active (w)) 1799 if (expect_false (!ev_is_active (w)))
1382 return; 1800 return;
1383 1801
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1802 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1385 1803
1386 if (((W)w)->active < timercnt--) 1804 {
1805 int active = ((W)w)->active;
1806
1807 if (expect_true (--active < --timercnt))
1387 { 1808 {
1388 timers [((W)w)->active - 1] = timers [timercnt]; 1809 timers [active] = timers [timercnt];
1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1810 adjustheap (timers, timercnt, active);
1390 } 1811 }
1812 }
1391 1813
1392 ((WT)w)->at -= mn_now; 1814 ((WT)w)->at -= mn_now;
1393 1815
1394 ev_stop (EV_A_ (W)w); 1816 ev_stop (EV_A_ (W)w);
1395} 1817}
1396 1818
1397void 1819void noinline
1398ev_timer_again (EV_P_ struct ev_timer *w) 1820ev_timer_again (EV_P_ ev_timer *w)
1399{ 1821{
1400 if (ev_is_active (w)) 1822 if (ev_is_active (w))
1401 { 1823 {
1402 if (w->repeat) 1824 if (w->repeat)
1403 { 1825 {
1404 ((WT)w)->at = mn_now + w->repeat; 1826 ((WT)w)->at = mn_now + w->repeat;
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1827 adjustheap (timers, timercnt, ((W)w)->active - 1);
1406 } 1828 }
1407 else 1829 else
1408 ev_timer_stop (EV_A_ w); 1830 ev_timer_stop (EV_A_ w);
1409 } 1831 }
1410 else if (w->repeat) 1832 else if (w->repeat)
1412 w->at = w->repeat; 1834 w->at = w->repeat;
1413 ev_timer_start (EV_A_ w); 1835 ev_timer_start (EV_A_ w);
1414 } 1836 }
1415} 1837}
1416 1838
1417#if EV_PERIODICS 1839#if EV_PERIODIC_ENABLE
1418void 1840void noinline
1419ev_periodic_start (EV_P_ struct ev_periodic *w) 1841ev_periodic_start (EV_P_ ev_periodic *w)
1420{ 1842{
1421 if (ev_is_active (w)) 1843 if (expect_false (ev_is_active (w)))
1422 return; 1844 return;
1423 1845
1424 if (w->reschedule_cb) 1846 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1847 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval) 1848 else if (w->interval)
1427 { 1849 {
1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1429 /* this formula differs from the one in periodic_reify because we do not always round up */ 1851 /* this formula differs from the one in periodic_reify because we do not always round up */
1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1852 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 } 1853 }
1854 else
1855 ((WT)w)->at = w->offset;
1432 1856
1433 ev_start (EV_A_ (W)w, ++periodiccnt); 1857 ev_start (EV_A_ (W)w, ++periodiccnt);
1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1858 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1435 periodics [periodiccnt - 1] = w; 1859 periodics [periodiccnt - 1] = (WT)w;
1436 upheap ((WT *)periodics, periodiccnt - 1); 1860 upheap (periodics, periodiccnt - 1);
1437 1861
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1862 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1439} 1863}
1440 1864
1441void 1865void noinline
1442ev_periodic_stop (EV_P_ struct ev_periodic *w) 1866ev_periodic_stop (EV_P_ ev_periodic *w)
1443{ 1867{
1444 ev_clear_pending (EV_A_ (W)w); 1868 clear_pending (EV_A_ (W)w);
1445 if (!ev_is_active (w)) 1869 if (expect_false (!ev_is_active (w)))
1446 return; 1870 return;
1447 1871
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1872 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1449 1873
1450 if (((W)w)->active < periodiccnt--) 1874 {
1875 int active = ((W)w)->active;
1876
1877 if (expect_true (--active < --periodiccnt))
1451 { 1878 {
1452 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1879 periodics [active] = periodics [periodiccnt];
1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1880 adjustheap (periodics, periodiccnt, active);
1454 } 1881 }
1882 }
1455 1883
1456 ev_stop (EV_A_ (W)w); 1884 ev_stop (EV_A_ (W)w);
1457} 1885}
1458 1886
1459void 1887void noinline
1460ev_periodic_again (EV_P_ struct ev_periodic *w) 1888ev_periodic_again (EV_P_ ev_periodic *w)
1461{ 1889{
1462 /* TODO: use adjustheap and recalculation */ 1890 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w); 1891 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w); 1892 ev_periodic_start (EV_A_ w);
1465} 1893}
1466#endif 1894#endif
1467 1895
1468void
1469ev_idle_start (EV_P_ struct ev_idle *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++idlecnt);
1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1476 idles [idlecnt - 1] = w;
1477}
1478
1479void
1480ev_idle_stop (EV_P_ struct ev_idle *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1493 if (ev_is_active (w))
1494 return;
1495
1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1509 ev_stop (EV_A_ (W)w);
1510}
1511
1512void
1513ev_check_start (EV_P_ struct ev_check *w)
1514{
1515 if (ev_is_active (w))
1516 return;
1517
1518 ev_start (EV_A_ (W)w, ++checkcnt);
1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1520 checks [checkcnt - 1] = w;
1521}
1522
1523void
1524ev_check_stop (EV_P_ struct ev_check *w)
1525{
1526 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w))
1528 return;
1529
1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1531 ev_stop (EV_A_ (W)w);
1532}
1533
1534#ifndef SA_RESTART 1896#ifndef SA_RESTART
1535# define SA_RESTART 0 1897# define SA_RESTART 0
1536#endif 1898#endif
1537 1899
1538void 1900void noinline
1539ev_signal_start (EV_P_ struct ev_signal *w) 1901ev_signal_start (EV_P_ ev_signal *w)
1540{ 1902{
1541#if EV_MULTIPLICITY 1903#if EV_MULTIPLICITY
1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1904 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1543#endif 1905#endif
1544 if (ev_is_active (w)) 1906 if (expect_false (ev_is_active (w)))
1545 return; 1907 return;
1546 1908
1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1909 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1548 1910
1911 evpipe_init (EV_A);
1912
1913 {
1914#ifndef _WIN32
1915 sigset_t full, prev;
1916 sigfillset (&full);
1917 sigprocmask (SIG_SETMASK, &full, &prev);
1918#endif
1919
1920 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1921
1922#ifndef _WIN32
1923 sigprocmask (SIG_SETMASK, &prev, 0);
1924#endif
1925 }
1926
1549 ev_start (EV_A_ (W)w, 1); 1927 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1551 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1928 wlist_add (&signals [w->signum - 1].head, (WL)w);
1552 1929
1553 if (!((WL)w)->next) 1930 if (!((WL)w)->next)
1554 { 1931 {
1555#if _WIN32 1932#if _WIN32
1556 signal (w->signum, sighandler); 1933 signal (w->signum, sighandler);
1562 sigaction (w->signum, &sa, 0); 1939 sigaction (w->signum, &sa, 0);
1563#endif 1940#endif
1564 } 1941 }
1565} 1942}
1566 1943
1567void 1944void noinline
1568ev_signal_stop (EV_P_ struct ev_signal *w) 1945ev_signal_stop (EV_P_ ev_signal *w)
1569{ 1946{
1570 ev_clear_pending (EV_A_ (W)w); 1947 clear_pending (EV_A_ (W)w);
1571 if (!ev_is_active (w)) 1948 if (expect_false (!ev_is_active (w)))
1572 return; 1949 return;
1573 1950
1574 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1951 wlist_del (&signals [w->signum - 1].head, (WL)w);
1575 ev_stop (EV_A_ (W)w); 1952 ev_stop (EV_A_ (W)w);
1576 1953
1577 if (!signals [w->signum - 1].head) 1954 if (!signals [w->signum - 1].head)
1578 signal (w->signum, SIG_DFL); 1955 signal (w->signum, SIG_DFL);
1579} 1956}
1580 1957
1581void 1958void
1582ev_child_start (EV_P_ struct ev_child *w) 1959ev_child_start (EV_P_ ev_child *w)
1583{ 1960{
1584#if EV_MULTIPLICITY 1961#if EV_MULTIPLICITY
1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1962 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1586#endif 1963#endif
1587 if (ev_is_active (w)) 1964 if (expect_false (ev_is_active (w)))
1588 return; 1965 return;
1589 1966
1590 ev_start (EV_A_ (W)w, 1); 1967 ev_start (EV_A_ (W)w, 1);
1591 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1968 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1592} 1969}
1593 1970
1594void 1971void
1595ev_child_stop (EV_P_ struct ev_child *w) 1972ev_child_stop (EV_P_ ev_child *w)
1596{ 1973{
1597 ev_clear_pending (EV_A_ (W)w); 1974 clear_pending (EV_A_ (W)w);
1598 if (!ev_is_active (w)) 1975 if (expect_false (!ev_is_active (w)))
1599 return; 1976 return;
1600 1977
1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1978 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1602 ev_stop (EV_A_ (W)w); 1979 ev_stop (EV_A_ (W)w);
1603} 1980}
1604 1981
1982#if EV_STAT_ENABLE
1983
1984# ifdef _WIN32
1985# undef lstat
1986# define lstat(a,b) _stati64 (a,b)
1987# endif
1988
1989#define DEF_STAT_INTERVAL 5.0074891
1990#define MIN_STAT_INTERVAL 0.1074891
1991
1992static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1993
1994#if EV_USE_INOTIFY
1995# define EV_INOTIFY_BUFSIZE 8192
1996
1997static void noinline
1998infy_add (EV_P_ ev_stat *w)
1999{
2000 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2001
2002 if (w->wd < 0)
2003 {
2004 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2005
2006 /* monitor some parent directory for speedup hints */
2007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2008 {
2009 char path [4096];
2010 strcpy (path, w->path);
2011
2012 do
2013 {
2014 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2015 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2016
2017 char *pend = strrchr (path, '/');
2018
2019 if (!pend)
2020 break; /* whoops, no '/', complain to your admin */
2021
2022 *pend = 0;
2023 w->wd = inotify_add_watch (fs_fd, path, mask);
2024 }
2025 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2026 }
2027 }
2028 else
2029 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2030
2031 if (w->wd >= 0)
2032 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2033}
2034
2035static void noinline
2036infy_del (EV_P_ ev_stat *w)
2037{
2038 int slot;
2039 int wd = w->wd;
2040
2041 if (wd < 0)
2042 return;
2043
2044 w->wd = -2;
2045 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2046 wlist_del (&fs_hash [slot].head, (WL)w);
2047
2048 /* remove this watcher, if others are watching it, they will rearm */
2049 inotify_rm_watch (fs_fd, wd);
2050}
2051
2052static void noinline
2053infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2054{
2055 if (slot < 0)
2056 /* overflow, need to check for all hahs slots */
2057 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2058 infy_wd (EV_A_ slot, wd, ev);
2059 else
2060 {
2061 WL w_;
2062
2063 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2064 {
2065 ev_stat *w = (ev_stat *)w_;
2066 w_ = w_->next; /* lets us remove this watcher and all before it */
2067
2068 if (w->wd == wd || wd == -1)
2069 {
2070 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2071 {
2072 w->wd = -1;
2073 infy_add (EV_A_ w); /* re-add, no matter what */
2074 }
2075
2076 stat_timer_cb (EV_A_ &w->timer, 0);
2077 }
2078 }
2079 }
2080}
2081
2082static void
2083infy_cb (EV_P_ ev_io *w, int revents)
2084{
2085 char buf [EV_INOTIFY_BUFSIZE];
2086 struct inotify_event *ev = (struct inotify_event *)buf;
2087 int ofs;
2088 int len = read (fs_fd, buf, sizeof (buf));
2089
2090 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2091 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2092}
2093
2094void inline_size
2095infy_init (EV_P)
2096{
2097 if (fs_fd != -2)
2098 return;
2099
2100 fs_fd = inotify_init ();
2101
2102 if (fs_fd >= 0)
2103 {
2104 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2105 ev_set_priority (&fs_w, EV_MAXPRI);
2106 ev_io_start (EV_A_ &fs_w);
2107 }
2108}
2109
2110void inline_size
2111infy_fork (EV_P)
2112{
2113 int slot;
2114
2115 if (fs_fd < 0)
2116 return;
2117
2118 close (fs_fd);
2119 fs_fd = inotify_init ();
2120
2121 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2122 {
2123 WL w_ = fs_hash [slot].head;
2124 fs_hash [slot].head = 0;
2125
2126 while (w_)
2127 {
2128 ev_stat *w = (ev_stat *)w_;
2129 w_ = w_->next; /* lets us add this watcher */
2130
2131 w->wd = -1;
2132
2133 if (fs_fd >= 0)
2134 infy_add (EV_A_ w); /* re-add, no matter what */
2135 else
2136 ev_timer_start (EV_A_ &w->timer);
2137 }
2138
2139 }
2140}
2141
2142#endif
2143
2144void
2145ev_stat_stat (EV_P_ ev_stat *w)
2146{
2147 if (lstat (w->path, &w->attr) < 0)
2148 w->attr.st_nlink = 0;
2149 else if (!w->attr.st_nlink)
2150 w->attr.st_nlink = 1;
2151}
2152
2153static void noinline
2154stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2155{
2156 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2157
2158 /* we copy this here each the time so that */
2159 /* prev has the old value when the callback gets invoked */
2160 w->prev = w->attr;
2161 ev_stat_stat (EV_A_ w);
2162
2163 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2164 if (
2165 w->prev.st_dev != w->attr.st_dev
2166 || w->prev.st_ino != w->attr.st_ino
2167 || w->prev.st_mode != w->attr.st_mode
2168 || w->prev.st_nlink != w->attr.st_nlink
2169 || w->prev.st_uid != w->attr.st_uid
2170 || w->prev.st_gid != w->attr.st_gid
2171 || w->prev.st_rdev != w->attr.st_rdev
2172 || w->prev.st_size != w->attr.st_size
2173 || w->prev.st_atime != w->attr.st_atime
2174 || w->prev.st_mtime != w->attr.st_mtime
2175 || w->prev.st_ctime != w->attr.st_ctime
2176 ) {
2177 #if EV_USE_INOTIFY
2178 infy_del (EV_A_ w);
2179 infy_add (EV_A_ w);
2180 ev_stat_stat (EV_A_ w); /* avoid race... */
2181 #endif
2182
2183 ev_feed_event (EV_A_ w, EV_STAT);
2184 }
2185}
2186
2187void
2188ev_stat_start (EV_P_ ev_stat *w)
2189{
2190 if (expect_false (ev_is_active (w)))
2191 return;
2192
2193 /* since we use memcmp, we need to clear any padding data etc. */
2194 memset (&w->prev, 0, sizeof (ev_statdata));
2195 memset (&w->attr, 0, sizeof (ev_statdata));
2196
2197 ev_stat_stat (EV_A_ w);
2198
2199 if (w->interval < MIN_STAT_INTERVAL)
2200 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2201
2202 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2203 ev_set_priority (&w->timer, ev_priority (w));
2204
2205#if EV_USE_INOTIFY
2206 infy_init (EV_A);
2207
2208 if (fs_fd >= 0)
2209 infy_add (EV_A_ w);
2210 else
2211#endif
2212 ev_timer_start (EV_A_ &w->timer);
2213
2214 ev_start (EV_A_ (W)w, 1);
2215}
2216
2217void
2218ev_stat_stop (EV_P_ ev_stat *w)
2219{
2220 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w)))
2222 return;
2223
2224#if EV_USE_INOTIFY
2225 infy_del (EV_A_ w);
2226#endif
2227 ev_timer_stop (EV_A_ &w->timer);
2228
2229 ev_stop (EV_A_ (W)w);
2230}
2231#endif
2232
2233#if EV_IDLE_ENABLE
2234void
2235ev_idle_start (EV_P_ ev_idle *w)
2236{
2237 if (expect_false (ev_is_active (w)))
2238 return;
2239
2240 pri_adjust (EV_A_ (W)w);
2241
2242 {
2243 int active = ++idlecnt [ABSPRI (w)];
2244
2245 ++idleall;
2246 ev_start (EV_A_ (W)w, active);
2247
2248 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2249 idles [ABSPRI (w)][active - 1] = w;
2250 }
2251}
2252
2253void
2254ev_idle_stop (EV_P_ ev_idle *w)
2255{
2256 clear_pending (EV_A_ (W)w);
2257 if (expect_false (!ev_is_active (w)))
2258 return;
2259
2260 {
2261 int active = ((W)w)->active;
2262
2263 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2264 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2265
2266 ev_stop (EV_A_ (W)w);
2267 --idleall;
2268 }
2269}
2270#endif
2271
2272void
2273ev_prepare_start (EV_P_ ev_prepare *w)
2274{
2275 if (expect_false (ev_is_active (w)))
2276 return;
2277
2278 ev_start (EV_A_ (W)w, ++preparecnt);
2279 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2280 prepares [preparecnt - 1] = w;
2281}
2282
2283void
2284ev_prepare_stop (EV_P_ ev_prepare *w)
2285{
2286 clear_pending (EV_A_ (W)w);
2287 if (expect_false (!ev_is_active (w)))
2288 return;
2289
2290 {
2291 int active = ((W)w)->active;
2292 prepares [active - 1] = prepares [--preparecnt];
2293 ((W)prepares [active - 1])->active = active;
2294 }
2295
2296 ev_stop (EV_A_ (W)w);
2297}
2298
2299void
2300ev_check_start (EV_P_ ev_check *w)
2301{
2302 if (expect_false (ev_is_active (w)))
2303 return;
2304
2305 ev_start (EV_A_ (W)w, ++checkcnt);
2306 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2307 checks [checkcnt - 1] = w;
2308}
2309
2310void
2311ev_check_stop (EV_P_ ev_check *w)
2312{
2313 clear_pending (EV_A_ (W)w);
2314 if (expect_false (!ev_is_active (w)))
2315 return;
2316
2317 {
2318 int active = ((W)w)->active;
2319 checks [active - 1] = checks [--checkcnt];
2320 ((W)checks [active - 1])->active = active;
2321 }
2322
2323 ev_stop (EV_A_ (W)w);
2324}
2325
2326#if EV_EMBED_ENABLE
2327void noinline
2328ev_embed_sweep (EV_P_ ev_embed *w)
2329{
2330 ev_loop (w->other, EVLOOP_NONBLOCK);
2331}
2332
2333static void
2334embed_io_cb (EV_P_ ev_io *io, int revents)
2335{
2336 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2337
2338 if (ev_cb (w))
2339 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2340 else
2341 ev_loop (w->other, EVLOOP_NONBLOCK);
2342}
2343
2344static void
2345embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2346{
2347 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2348
2349 {
2350 struct ev_loop *loop = w->other;
2351
2352 while (fdchangecnt)
2353 {
2354 fd_reify (EV_A);
2355 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2356 }
2357 }
2358}
2359
2360#if 0
2361static void
2362embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2363{
2364 ev_idle_stop (EV_A_ idle);
2365}
2366#endif
2367
2368void
2369ev_embed_start (EV_P_ ev_embed *w)
2370{
2371 if (expect_false (ev_is_active (w)))
2372 return;
2373
2374 {
2375 struct ev_loop *loop = w->other;
2376 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2377 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2378 }
2379
2380 ev_set_priority (&w->io, ev_priority (w));
2381 ev_io_start (EV_A_ &w->io);
2382
2383 ev_prepare_init (&w->prepare, embed_prepare_cb);
2384 ev_set_priority (&w->prepare, EV_MINPRI);
2385 ev_prepare_start (EV_A_ &w->prepare);
2386
2387 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2388
2389 ev_start (EV_A_ (W)w, 1);
2390}
2391
2392void
2393ev_embed_stop (EV_P_ ev_embed *w)
2394{
2395 clear_pending (EV_A_ (W)w);
2396 if (expect_false (!ev_is_active (w)))
2397 return;
2398
2399 ev_io_stop (EV_A_ &w->io);
2400 ev_prepare_stop (EV_A_ &w->prepare);
2401
2402 ev_stop (EV_A_ (W)w);
2403}
2404#endif
2405
2406#if EV_FORK_ENABLE
2407void
2408ev_fork_start (EV_P_ ev_fork *w)
2409{
2410 if (expect_false (ev_is_active (w)))
2411 return;
2412
2413 ev_start (EV_A_ (W)w, ++forkcnt);
2414 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2415 forks [forkcnt - 1] = w;
2416}
2417
2418void
2419ev_fork_stop (EV_P_ ev_fork *w)
2420{
2421 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w)))
2423 return;
2424
2425 {
2426 int active = ((W)w)->active;
2427 forks [active - 1] = forks [--forkcnt];
2428 ((W)forks [active - 1])->active = active;
2429 }
2430
2431 ev_stop (EV_A_ (W)w);
2432}
2433#endif
2434
2435#if EV_ASYNC_ENABLE
2436void
2437ev_async_start (EV_P_ ev_async *w)
2438{
2439 if (expect_false (ev_is_active (w)))
2440 return;
2441
2442 evpipe_init (EV_A);
2443
2444 ev_start (EV_A_ (W)w, ++asynccnt);
2445 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2446 asyncs [asynccnt - 1] = w;
2447}
2448
2449void
2450ev_async_stop (EV_P_ ev_async *w)
2451{
2452 clear_pending (EV_A_ (W)w);
2453 if (expect_false (!ev_is_active (w)))
2454 return;
2455
2456 {
2457 int active = ((W)w)->active;
2458 asyncs [active - 1] = asyncs [--asynccnt];
2459 ((W)asyncs [active - 1])->active = active;
2460 }
2461
2462 ev_stop (EV_A_ (W)w);
2463}
2464
2465void
2466ev_async_send (EV_P_ ev_async *w)
2467{
2468 w->sent = 1;
2469 evpipe_write (EV_A_ 0, 1);
2470}
2471#endif
2472
1605/*****************************************************************************/ 2473/*****************************************************************************/
1606 2474
1607struct ev_once 2475struct ev_once
1608{ 2476{
1609 struct ev_io io; 2477 ev_io io;
1610 struct ev_timer to; 2478 ev_timer to;
1611 void (*cb)(int revents, void *arg); 2479 void (*cb)(int revents, void *arg);
1612 void *arg; 2480 void *arg;
1613}; 2481};
1614 2482
1615static void 2483static void
1624 2492
1625 cb (revents, arg); 2493 cb (revents, arg);
1626} 2494}
1627 2495
1628static void 2496static void
1629once_cb_io (EV_P_ struct ev_io *w, int revents) 2497once_cb_io (EV_P_ ev_io *w, int revents)
1630{ 2498{
1631 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2499 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1632} 2500}
1633 2501
1634static void 2502static void
1635once_cb_to (EV_P_ struct ev_timer *w, int revents) 2503once_cb_to (EV_P_ ev_timer *w, int revents)
1636{ 2504{
1637 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2505 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1638} 2506}
1639 2507
1640void 2508void
1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2509ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1642{ 2510{
1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2511 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1644 2512
1645 if (!once) 2513 if (expect_false (!once))
2514 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2515 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 else 2516 return;
1648 { 2517 }
2518
1649 once->cb = cb; 2519 once->cb = cb;
1650 once->arg = arg; 2520 once->arg = arg;
1651 2521
1652 ev_init (&once->io, once_cb_io); 2522 ev_init (&once->io, once_cb_io);
1653 if (fd >= 0) 2523 if (fd >= 0)
1654 { 2524 {
1655 ev_io_set (&once->io, fd, events); 2525 ev_io_set (&once->io, fd, events);
1656 ev_io_start (EV_A_ &once->io); 2526 ev_io_start (EV_A_ &once->io);
1657 } 2527 }
1658 2528
1659 ev_init (&once->to, once_cb_to); 2529 ev_init (&once->to, once_cb_to);
1660 if (timeout >= 0.) 2530 if (timeout >= 0.)
1661 { 2531 {
1662 ev_timer_set (&once->to, timeout, 0.); 2532 ev_timer_set (&once->to, timeout, 0.);
1663 ev_timer_start (EV_A_ &once->to); 2533 ev_timer_start (EV_A_ &once->to);
1664 }
1665 } 2534 }
1666} 2535}
2536
2537#if EV_MULTIPLICITY
2538 #include "ev_wrap.h"
2539#endif
1667 2540
1668#ifdef __cplusplus 2541#ifdef __cplusplus
1669} 2542}
1670#endif 2543#endif
1671 2544

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines