ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.157 by root, Wed Nov 28 20:58:32 2007 UTC vs.
Revision 1.210 by root, Sat Feb 9 00:34:11 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif 244#endif
210 245
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 246/**/
247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 257
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 261
225#if __GNUC__ >= 3 262#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 265#else
236# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
240#endif 271#endif
241 272
242#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
244 282
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 285
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
250 288
251typedef ev_watcher *W; 289typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
254 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
256 298
257#ifdef _WIN32 299#ifdef _WIN32
258# include "ev_win32.c" 300# include "ev_win32.c"
259#endif 301#endif
260 302
396{ 438{
397 return ev_rt_now; 439 return ev_rt_now;
398} 440}
399#endif 441#endif
400 442
401#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
402 497
403#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
405 { \ 500 { \
406 int newcnt = cur; \ 501 int ocur_ = (cur); \
407 do \ 502 (base) = (type *)array_realloc \
408 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 505 }
417 506
507#if 0
418#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 510 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 514 }
515#endif
425 516
426#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 519
429/*****************************************************************************/ 520/*****************************************************************************/
430 521
431void noinline 522void noinline
432ev_feed_event (EV_P_ void *w, int revents) 523ev_feed_event (EV_P_ void *w, int revents)
433{ 524{
434 W w_ = (W)w; 525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
435 527
436 if (expect_false (w_->pending)) 528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
437 { 531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 535 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 536 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 537}
447 538
448void inline_size 539void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 541{
451 int i; 542 int i;
452 543
453 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
485} 576}
486 577
487void 578void
488ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 580{
581 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
491} 583}
492 584
493void inline_size 585void inline_size
494fd_reify (EV_P) 586fd_reify (EV_P)
495{ 587{
499 { 591 {
500 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
502 ev_io *w; 594 ev_io *w;
503 595
504 int events = 0; 596 unsigned char events = 0;
505 597
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 599 events |= (unsigned char)w->events;
508 600
509#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
510 if (events) 602 if (events)
511 { 603 {
512 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
513 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 611 }
516#endif 612#endif
517 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
518 anfd->reify = 0; 618 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
522 } 624 }
523 625
524 fdchangecnt = 0; 626 fdchangecnt = 0;
525} 627}
526 628
527void inline_size 629void inline_size
528fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
529{ 631{
530 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
534 634
635 if (expect_true (!reify))
636 {
535 ++fdchangecnt; 637 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
538} 641}
539 642
540void inline_speed 643void inline_speed
541fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
542{ 645{
593 696
594 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 698 if (anfds [fd].events)
596 { 699 {
597 anfds [fd].events = 0; 700 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 702 }
600} 703}
601 704
602/*****************************************************************************/ 705/*****************************************************************************/
603 706
604void inline_speed 707void inline_speed
605upheap (WT *heap, int k) 708upheap (WT *heap, int k)
606{ 709{
607 WT w = heap [k]; 710 WT w = heap [k];
608 711
609 while (k && heap [k >> 1]->at > w->at) 712 while (k)
610 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
611 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
613 k >>= 1; 721 k = p;
614 } 722 }
615 723
616 heap [k] = w; 724 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
618
619} 726}
620 727
621void inline_speed 728void inline_speed
622downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
623{ 730{
624 WT w = heap [k]; 731 WT w = heap [k];
625 732
626 while (k < (N >> 1)) 733 for (;;)
627 { 734 {
628 int j = k << 1; 735 int c = (k << 1) + 1;
629 736
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 738 break;
635 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
636 heap [k] = heap [j]; 746 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
638 k = j; 749 k = c;
639 } 750 }
640 751
641 heap [k] = w; 752 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
643} 754}
652/*****************************************************************************/ 763/*****************************************************************************/
653 764
654typedef struct 765typedef struct
655{ 766{
656 WL head; 767 WL head;
657 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
658} ANSIG; 769} ANSIG;
659 770
660static ANSIG *signals; 771static ANSIG *signals;
661static int signalmax; 772static int signalmax;
662 773
663static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 775
667void inline_size 776void inline_size
668signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
669{ 778{
670 while (count--) 779 while (count--)
674 783
675 ++base; 784 ++base;
676 } 785 }
677} 786}
678 787
679static void 788/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 789
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 790void inline_speed
731fd_intern (int fd) 791fd_intern (int fd)
732{ 792{
733#ifdef _WIN32 793#ifdef _WIN32
734 int arg = 1; 794 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 799#endif
740} 800}
741 801
742static void noinline 802static void noinline
743siginit (EV_P) 803evpipe_init (EV_P)
744{ 804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
745 fd_intern (sigpipe [0]); 810 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 811 fd_intern (evpipe [1]);
747 812
748 ev_io_set (&sigev, sigpipe [0], EV_READ); 813 ev_io_set (&pipeev, evpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 814 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 815 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 {
824 int old_errno = errno; /* save errno becaue write might clobber it */
825
826 if (sig) gotsig = 1;
827 if (async) gotasync = 1;
828
829 write (evpipe [1], &old_errno, 1);
830
831 errno = old_errno;
832 }
833}
834
835static void
836pipecb (EV_P_ ev_io *iow, int revents)
837{
838 {
839 int dummy;
840 read (evpipe [0], &dummy, 1);
841 }
842
843 if (gotsig)
844 {
845 int signum;
846 gotsig = 0;
847
848 for (signum = signalmax; signum--; )
849 if (signals [signum].gotsig)
850 ev_feed_signal_event (EV_A_ signum + 1);
851 }
852
853#if EV_ASYNC_ENABLE
854 if (gotasync)
855 {
856 int i;
857 gotasync = 0;
858
859 for (i = asynccnt; i--; )
860 if (asyncs [i]->sent)
861 {
862 asyncs [i]->sent = 0;
863 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
864 }
865 }
866#endif
751} 867}
752 868
753/*****************************************************************************/ 869/*****************************************************************************/
754 870
871static void
872sighandler (int signum)
873{
874#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct;
876#endif
877
878#if _WIN32
879 signal (signum, sighandler);
880#endif
881
882 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0);
884}
885
886void noinline
887ev_feed_signal_event (EV_P_ int signum)
888{
889 WL w;
890
891#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
893#endif
894
895 --signum;
896
897 if (signum < 0 || signum >= signalmax)
898 return;
899
900 signals [signum].gotsig = 0;
901
902 for (w = signals [signum].head; w; w = w->next)
903 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
904}
905
906/*****************************************************************************/
907
755static ev_child *childs [EV_PID_HASHSIZE]; 908static WL childs [EV_PID_HASHSIZE];
756 909
757#ifndef _WIN32 910#ifndef _WIN32
758 911
759static ev_signal childev; 912static ev_signal childev;
913
914#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0
916#endif
760 917
761void inline_speed 918void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
763{ 920{
764 ev_child *w; 921 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 923
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 {
767 if (w->pid == pid || !w->pid) 926 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1)))
768 { 928 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
770 w->rpid = pid; 930 w->rpid = pid;
771 w->rstatus = status; 931 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 932 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 933 }
934 }
774} 935}
775 936
776#ifndef WCONTINUED 937#ifndef WCONTINUED
777# define WCONTINUED 0 938# define WCONTINUED 0
778#endif 939#endif
875} 1036}
876 1037
877unsigned int 1038unsigned int
878ev_embeddable_backends (void) 1039ev_embeddable_backends (void)
879{ 1040{
880 return EVBACKEND_EPOLL 1041 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1042
882 | EVBACKEND_PORT; 1043 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1044 /* please fix it and tell me how to detect the fix */
1045 flags &= ~EVBACKEND_EPOLL;
1046
1047 return flags;
883} 1048}
884 1049
885unsigned int 1050unsigned int
886ev_backend (EV_P) 1051ev_backend (EV_P)
887{ 1052{
888 return backend; 1053 return backend;
1054}
1055
1056unsigned int
1057ev_loop_count (EV_P)
1058{
1059 return loop_count;
1060}
1061
1062void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1064{
1065 io_blocktime = interval;
1066}
1067
1068void
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1070{
1071 timeout_blocktime = interval;
889} 1072}
890 1073
891static void noinline 1074static void noinline
892loop_init (EV_P_ unsigned int flags) 1075loop_init (EV_P_ unsigned int flags)
893{ 1076{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1083 have_monotonic = 1;
901 } 1084 }
902#endif 1085#endif
903 1086
904 ev_rt_now = ev_time (); 1087 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1088 mn_now = get_clock ();
906 now_floor = mn_now; 1089 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1090 rtmn_diff = ev_rt_now - mn_now;
1091
1092 io_blocktime = 0.;
1093 timeout_blocktime = 0.;
1094 backend = 0;
1095 backend_fd = -1;
1096 gotasync = 0;
1097#if EV_USE_INOTIFY
1098 fs_fd = -2;
1099#endif
1100
1101 /* pid check not overridable via env */
1102#ifndef _WIN32
1103 if (flags & EVFLAG_FORKCHECK)
1104 curpid = getpid ();
1105#endif
908 1106
909 if (!(flags & EVFLAG_NOENV) 1107 if (!(flags & EVFLAG_NOENV)
910 && !enable_secure () 1108 && !enable_secure ()
911 && getenv ("LIBEV_FLAGS")) 1109 && getenv ("LIBEV_FLAGS"))
912 flags = atoi (getenv ("LIBEV_FLAGS")); 1110 flags = atoi (getenv ("LIBEV_FLAGS"));
913 1111
914 if (!(flags & 0x0000ffffUL)) 1112 if (!(flags & 0x0000ffffUL))
915 flags |= ev_recommended_backends (); 1113 flags |= ev_recommended_backends ();
916 1114
917 backend = 0;
918 backend_fd = -1;
919#if EV_USE_INOTIFY
920 fs_fd = -2;
921#endif
922
923#if EV_USE_PORT 1115#if EV_USE_PORT
924 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
925#endif 1117#endif
926#if EV_USE_KQUEUE 1118#if EV_USE_KQUEUE
927 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1119 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
934#endif 1126#endif
935#if EV_USE_SELECT 1127#if EV_USE_SELECT
936 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
937#endif 1129#endif
938 1130
939 ev_init (&sigev, sigcb); 1131 ev_init (&pipeev, pipecb);
940 ev_set_priority (&sigev, EV_MAXPRI); 1132 ev_set_priority (&pipeev, EV_MAXPRI);
941 } 1133 }
942} 1134}
943 1135
944static void noinline 1136static void noinline
945loop_destroy (EV_P) 1137loop_destroy (EV_P)
946{ 1138{
947 int i; 1139 int i;
1140
1141 if (ev_is_active (&pipeev))
1142 {
1143 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev);
1145
1146 close (evpipe [0]); evpipe [0] = 0;
1147 close (evpipe [1]); evpipe [1] = 0;
1148 }
948 1149
949#if EV_USE_INOTIFY 1150#if EV_USE_INOTIFY
950 if (fs_fd >= 0) 1151 if (fs_fd >= 0)
951 close (fs_fd); 1152 close (fs_fd);
952#endif 1153#endif
969#if EV_USE_SELECT 1170#if EV_USE_SELECT
970 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1171 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
971#endif 1172#endif
972 1173
973 for (i = NUMPRI; i--; ) 1174 for (i = NUMPRI; i--; )
1175 {
974 array_free (pending, [i]); 1176 array_free (pending, [i]);
1177#if EV_IDLE_ENABLE
1178 array_free (idle, [i]);
1179#endif
1180 }
1181
1182 ev_free (anfds); anfdmax = 0;
975 1183
976 /* have to use the microsoft-never-gets-it-right macro */ 1184 /* have to use the microsoft-never-gets-it-right macro */
977 array_free (fdchange, EMPTY0); 1185 array_free (fdchange, EMPTY);
978 array_free (timer, EMPTY0); 1186 array_free (timer, EMPTY);
979#if EV_PERIODIC_ENABLE 1187#if EV_PERIODIC_ENABLE
980 array_free (periodic, EMPTY0); 1188 array_free (periodic, EMPTY);
981#endif 1189#endif
1190#if EV_FORK_ENABLE
982 array_free (idle, EMPTY0); 1191 array_free (fork, EMPTY);
1192#endif
983 array_free (prepare, EMPTY0); 1193 array_free (prepare, EMPTY);
984 array_free (check, EMPTY0); 1194 array_free (check, EMPTY);
1195#if EV_ASYNC_ENABLE
1196 array_free (async, EMPTY);
1197#endif
985 1198
986 backend = 0; 1199 backend = 0;
987} 1200}
988 1201
989void inline_size infy_fork (EV_P); 1202void inline_size infy_fork (EV_P);
1002#endif 1215#endif
1003#if EV_USE_INOTIFY 1216#if EV_USE_INOTIFY
1004 infy_fork (EV_A); 1217 infy_fork (EV_A);
1005#endif 1218#endif
1006 1219
1007 if (ev_is_active (&sigev)) 1220 if (ev_is_active (&pipeev))
1008 { 1221 {
1009 /* default loop */ 1222 /* this "locks" the handlers against writing to the pipe */
1223 gotsig = gotasync = 1;
1010 1224
1011 ev_ref (EV_A); 1225 ev_ref (EV_A);
1012 ev_io_stop (EV_A_ &sigev); 1226 ev_io_stop (EV_A_ &pipeev);
1013 close (sigpipe [0]); 1227 close (evpipe [0]);
1014 close (sigpipe [1]); 1228 close (evpipe [1]);
1015 1229
1016 while (pipe (sigpipe))
1017 syserr ("(libev) error creating pipe");
1018
1019 siginit (EV_A); 1230 evpipe_init (EV_A);
1231 /* now iterate over everything, in case we missed something */
1232 pipecb (EV_A_ &pipeev, EV_READ);
1020 } 1233 }
1021 1234
1022 postfork = 0; 1235 postfork = 0;
1023} 1236}
1024 1237
1046} 1259}
1047 1260
1048void 1261void
1049ev_loop_fork (EV_P) 1262ev_loop_fork (EV_P)
1050{ 1263{
1051 postfork = 1; 1264 postfork = 1; /* must be in line with ev_default_fork */
1052} 1265}
1053 1266
1054#endif 1267#endif
1055 1268
1056#if EV_MULTIPLICITY 1269#if EV_MULTIPLICITY
1059#else 1272#else
1060int 1273int
1061ev_default_loop (unsigned int flags) 1274ev_default_loop (unsigned int flags)
1062#endif 1275#endif
1063{ 1276{
1064 if (sigpipe [0] == sigpipe [1])
1065 if (pipe (sigpipe))
1066 return 0;
1067
1068 if (!ev_default_loop_ptr) 1277 if (!ev_default_loop_ptr)
1069 { 1278 {
1070#if EV_MULTIPLICITY 1279#if EV_MULTIPLICITY
1071 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1280 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1072#else 1281#else
1075 1284
1076 loop_init (EV_A_ flags); 1285 loop_init (EV_A_ flags);
1077 1286
1078 if (ev_backend (EV_A)) 1287 if (ev_backend (EV_A))
1079 { 1288 {
1080 siginit (EV_A);
1081
1082#ifndef _WIN32 1289#ifndef _WIN32
1083 ev_signal_init (&childev, childcb, SIGCHLD); 1290 ev_signal_init (&childev, childcb, SIGCHLD);
1084 ev_set_priority (&childev, EV_MAXPRI); 1291 ev_set_priority (&childev, EV_MAXPRI);
1085 ev_signal_start (EV_A_ &childev); 1292 ev_signal_start (EV_A_ &childev);
1086 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1293 ev_unref (EV_A); /* child watcher should not keep loop alive */
1103#ifndef _WIN32 1310#ifndef _WIN32
1104 ev_ref (EV_A); /* child watcher */ 1311 ev_ref (EV_A); /* child watcher */
1105 ev_signal_stop (EV_A_ &childev); 1312 ev_signal_stop (EV_A_ &childev);
1106#endif 1313#endif
1107 1314
1108 ev_ref (EV_A); /* signal watcher */
1109 ev_io_stop (EV_A_ &sigev);
1110
1111 close (sigpipe [0]); sigpipe [0] = 0;
1112 close (sigpipe [1]); sigpipe [1] = 0;
1113
1114 loop_destroy (EV_A); 1315 loop_destroy (EV_A);
1115} 1316}
1116 1317
1117void 1318void
1118ev_default_fork (void) 1319ev_default_fork (void)
1120#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr; 1322 struct ev_loop *loop = ev_default_loop_ptr;
1122#endif 1323#endif
1123 1324
1124 if (backend) 1325 if (backend)
1125 postfork = 1; 1326 postfork = 1; /* must be in line with ev_loop_fork */
1126} 1327}
1127 1328
1128/*****************************************************************************/ 1329/*****************************************************************************/
1129 1330
1130int inline_size 1331void
1131any_pending (EV_P) 1332ev_invoke (EV_P_ void *w, int revents)
1132{ 1333{
1133 int pri; 1334 EV_CB_INVOKE ((W)w, revents);
1134
1135 for (pri = NUMPRI; pri--; )
1136 if (pendingcnt [pri])
1137 return 1;
1138
1139 return 0;
1140} 1335}
1141 1336
1142void inline_speed 1337void inline_speed
1143call_pending (EV_P) 1338call_pending (EV_P)
1144{ 1339{
1162void inline_size 1357void inline_size
1163timers_reify (EV_P) 1358timers_reify (EV_P)
1164{ 1359{
1165 while (timercnt && ((WT)timers [0])->at <= mn_now) 1360 while (timercnt && ((WT)timers [0])->at <= mn_now)
1166 { 1361 {
1167 ev_timer *w = timers [0]; 1362 ev_timer *w = (ev_timer *)timers [0];
1168 1363
1169 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1364 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1170 1365
1171 /* first reschedule or stop timer */ 1366 /* first reschedule or stop timer */
1172 if (w->repeat) 1367 if (w->repeat)
1175 1370
1176 ((WT)w)->at += w->repeat; 1371 ((WT)w)->at += w->repeat;
1177 if (((WT)w)->at < mn_now) 1372 if (((WT)w)->at < mn_now)
1178 ((WT)w)->at = mn_now; 1373 ((WT)w)->at = mn_now;
1179 1374
1180 downheap ((WT *)timers, timercnt, 0); 1375 downheap (timers, timercnt, 0);
1181 } 1376 }
1182 else 1377 else
1183 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1184 1379
1185 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1380 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1190void inline_size 1385void inline_size
1191periodics_reify (EV_P) 1386periodics_reify (EV_P)
1192{ 1387{
1193 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1388 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1194 { 1389 {
1195 ev_periodic *w = periodics [0]; 1390 ev_periodic *w = (ev_periodic *)periodics [0];
1196 1391
1197 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1392 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1198 1393
1199 /* first reschedule or stop timer */ 1394 /* first reschedule or stop timer */
1200 if (w->reschedule_cb) 1395 if (w->reschedule_cb)
1201 { 1396 {
1202 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1397 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1203 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1398 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1204 downheap ((WT *)periodics, periodiccnt, 0); 1399 downheap (periodics, periodiccnt, 0);
1205 } 1400 }
1206 else if (w->interval) 1401 else if (w->interval)
1207 { 1402 {
1208 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1403 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1209 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1405 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0); 1406 downheap (periodics, periodiccnt, 0);
1211 } 1407 }
1212 else 1408 else
1213 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1409 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1214 1410
1215 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1411 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1222 int i; 1418 int i;
1223 1419
1224 /* adjust periodics after time jump */ 1420 /* adjust periodics after time jump */
1225 for (i = 0; i < periodiccnt; ++i) 1421 for (i = 0; i < periodiccnt; ++i)
1226 { 1422 {
1227 ev_periodic *w = periodics [i]; 1423 ev_periodic *w = (ev_periodic *)periodics [i];
1228 1424
1229 if (w->reschedule_cb) 1425 if (w->reschedule_cb)
1230 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1426 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1231 else if (w->interval) 1427 else if (w->interval)
1232 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1428 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1233 } 1429 }
1234 1430
1235 /* now rebuild the heap */ 1431 /* now rebuild the heap */
1236 for (i = periodiccnt >> 1; i--; ) 1432 for (i = periodiccnt >> 1; i--; )
1237 downheap ((WT *)periodics, periodiccnt, i); 1433 downheap (periodics, periodiccnt, i);
1238} 1434}
1239#endif 1435#endif
1240 1436
1437#if EV_IDLE_ENABLE
1241int inline_size 1438void inline_size
1242time_update_monotonic (EV_P) 1439idle_reify (EV_P)
1243{ 1440{
1441 if (expect_false (idleall))
1442 {
1443 int pri;
1444
1445 for (pri = NUMPRI; pri--; )
1446 {
1447 if (pendingcnt [pri])
1448 break;
1449
1450 if (idlecnt [pri])
1451 {
1452 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1453 break;
1454 }
1455 }
1456 }
1457}
1458#endif
1459
1460void inline_speed
1461time_update (EV_P_ ev_tstamp max_block)
1462{
1463 int i;
1464
1465#if EV_USE_MONOTONIC
1466 if (expect_true (have_monotonic))
1467 {
1468 ev_tstamp odiff = rtmn_diff;
1469
1244 mn_now = get_clock (); 1470 mn_now = get_clock ();
1245 1471
1472 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1473 /* interpolate in the meantime */
1246 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1474 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1247 { 1475 {
1248 ev_rt_now = rtmn_diff + mn_now; 1476 ev_rt_now = rtmn_diff + mn_now;
1249 return 0; 1477 return;
1250 } 1478 }
1251 else 1479
1252 {
1253 now_floor = mn_now; 1480 now_floor = mn_now;
1254 ev_rt_now = ev_time (); 1481 ev_rt_now = ev_time ();
1255 return 1;
1256 }
1257}
1258 1482
1259void inline_size 1483 /* loop a few times, before making important decisions.
1260time_update (EV_P) 1484 * on the choice of "4": one iteration isn't enough,
1261{ 1485 * in case we get preempted during the calls to
1262 int i; 1486 * ev_time and get_clock. a second call is almost guaranteed
1263 1487 * to succeed in that case, though. and looping a few more times
1264#if EV_USE_MONOTONIC 1488 * doesn't hurt either as we only do this on time-jumps or
1265 if (expect_true (have_monotonic)) 1489 * in the unlikely event of having been preempted here.
1266 { 1490 */
1267 if (time_update_monotonic (EV_A)) 1491 for (i = 4; --i; )
1268 { 1492 {
1269 ev_tstamp odiff = rtmn_diff;
1270
1271 /* loop a few times, before making important decisions.
1272 * on the choice of "4": one iteration isn't enough,
1273 * in case we get preempted during the calls to
1274 * ev_time and get_clock. a second call is almost guaranteed
1275 * to succeed in that case, though. and looping a few more times
1276 * doesn't hurt either as we only do this on time-jumps or
1277 * in the unlikely event of having been preempted here.
1278 */
1279 for (i = 4; --i; )
1280 {
1281 rtmn_diff = ev_rt_now - mn_now; 1493 rtmn_diff = ev_rt_now - mn_now;
1282 1494
1283 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1495 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1284 return; /* all is well */ 1496 return; /* all is well */
1285 1497
1286 ev_rt_now = ev_time (); 1498 ev_rt_now = ev_time ();
1287 mn_now = get_clock (); 1499 mn_now = get_clock ();
1288 now_floor = mn_now; 1500 now_floor = mn_now;
1289 } 1501 }
1290 1502
1291# if EV_PERIODIC_ENABLE 1503# if EV_PERIODIC_ENABLE
1292 periodics_reschedule (EV_A); 1504 periodics_reschedule (EV_A);
1293# endif 1505# endif
1294 /* no timer adjustment, as the monotonic clock doesn't jump */ 1506 /* no timer adjustment, as the monotonic clock doesn't jump */
1295 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1507 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1296 }
1297 } 1508 }
1298 else 1509 else
1299#endif 1510#endif
1300 { 1511 {
1301 ev_rt_now = ev_time (); 1512 ev_rt_now = ev_time ();
1302 1513
1303 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1514 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1304 { 1515 {
1305#if EV_PERIODIC_ENABLE 1516#if EV_PERIODIC_ENABLE
1306 periodics_reschedule (EV_A); 1517 periodics_reschedule (EV_A);
1307#endif 1518#endif
1308
1309 /* adjust timers. this is easy, as the offset is the same for all of them */ 1519 /* adjust timers. this is easy, as the offset is the same for all of them */
1310 for (i = 0; i < timercnt; ++i) 1520 for (i = 0; i < timercnt; ++i)
1311 ((WT)timers [i])->at += ev_rt_now - mn_now; 1521 ((WT)timers [i])->at += ev_rt_now - mn_now;
1312 } 1522 }
1313 1523
1334{ 1544{
1335 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1545 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1336 ? EVUNLOOP_ONE 1546 ? EVUNLOOP_ONE
1337 : EVUNLOOP_CANCEL; 1547 : EVUNLOOP_CANCEL;
1338 1548
1339 while (activecnt) 1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1550
1551 do
1340 { 1552 {
1553#ifndef _WIN32
1554 if (expect_false (curpid)) /* penalise the forking check even more */
1555 if (expect_false (getpid () != curpid))
1556 {
1557 curpid = getpid ();
1558 postfork = 1;
1559 }
1560#endif
1561
1341#if EV_FORK_ENABLE 1562#if EV_FORK_ENABLE
1342 /* we might have forked, so queue fork handlers */ 1563 /* we might have forked, so queue fork handlers */
1343 if (expect_false (postfork)) 1564 if (expect_false (postfork))
1344 if (forkcnt) 1565 if (forkcnt)
1345 { 1566 {
1346 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1347 call_pending (EV_A); 1568 call_pending (EV_A);
1348 } 1569 }
1349#endif 1570#endif
1350 1571
1351 /* queue check watchers (and execute them) */ 1572 /* queue prepare watchers (and execute them) */
1352 if (expect_false (preparecnt)) 1573 if (expect_false (preparecnt))
1353 { 1574 {
1354 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1575 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1355 call_pending (EV_A); 1576 call_pending (EV_A);
1356 } 1577 }
1357 1578
1579 if (expect_false (!activecnt))
1580 break;
1581
1358 /* we might have forked, so reify kernel state if necessary */ 1582 /* we might have forked, so reify kernel state if necessary */
1359 if (expect_false (postfork)) 1583 if (expect_false (postfork))
1360 loop_fork (EV_A); 1584 loop_fork (EV_A);
1361 1585
1362 /* update fd-related kernel structures */ 1586 /* update fd-related kernel structures */
1363 fd_reify (EV_A); 1587 fd_reify (EV_A);
1364 1588
1365 /* calculate blocking time */ 1589 /* calculate blocking time */
1366 { 1590 {
1367 ev_tstamp block; 1591 ev_tstamp waittime = 0.;
1592 ev_tstamp sleeptime = 0.;
1368 1593
1369 if (flags & EVLOOP_NONBLOCK || idlecnt) 1594 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1370 block = 0.; /* do not block at all */
1371 else
1372 { 1595 {
1373 /* update time to cancel out callback processing overhead */ 1596 /* update time to cancel out callback processing overhead */
1374#if EV_USE_MONOTONIC
1375 if (expect_true (have_monotonic))
1376 time_update_monotonic (EV_A); 1597 time_update (EV_A_ 1e100);
1377 else
1378#endif
1379 {
1380 ev_rt_now = ev_time ();
1381 mn_now = ev_rt_now;
1382 }
1383 1598
1384 block = MAX_BLOCKTIME; 1599 waittime = MAX_BLOCKTIME;
1385 1600
1386 if (timercnt) 1601 if (timercnt)
1387 { 1602 {
1388 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1389 if (block > to) block = to; 1604 if (waittime > to) waittime = to;
1390 } 1605 }
1391 1606
1392#if EV_PERIODIC_ENABLE 1607#if EV_PERIODIC_ENABLE
1393 if (periodiccnt) 1608 if (periodiccnt)
1394 { 1609 {
1395 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1396 if (block > to) block = to; 1611 if (waittime > to) waittime = to;
1397 } 1612 }
1398#endif 1613#endif
1399 1614
1400 if (expect_false (block < 0.)) block = 0.; 1615 if (expect_false (waittime < timeout_blocktime))
1616 waittime = timeout_blocktime;
1617
1618 sleeptime = waittime - backend_fudge;
1619
1620 if (expect_true (sleeptime > io_blocktime))
1621 sleeptime = io_blocktime;
1622
1623 if (sleeptime)
1624 {
1625 ev_sleep (sleeptime);
1626 waittime -= sleeptime;
1627 }
1401 } 1628 }
1402 1629
1630 ++loop_count;
1403 backend_poll (EV_A_ block); 1631 backend_poll (EV_A_ waittime);
1632
1633 /* update ev_rt_now, do magic */
1634 time_update (EV_A_ waittime + sleeptime);
1404 } 1635 }
1405
1406 /* update ev_rt_now, do magic */
1407 time_update (EV_A);
1408 1636
1409 /* queue pending timers and reschedule them */ 1637 /* queue pending timers and reschedule them */
1410 timers_reify (EV_A); /* relative timers called last */ 1638 timers_reify (EV_A); /* relative timers called last */
1411#if EV_PERIODIC_ENABLE 1639#if EV_PERIODIC_ENABLE
1412 periodics_reify (EV_A); /* absolute timers called first */ 1640 periodics_reify (EV_A); /* absolute timers called first */
1413#endif 1641#endif
1414 1642
1643#if EV_IDLE_ENABLE
1415 /* queue idle watchers unless other events are pending */ 1644 /* queue idle watchers unless other events are pending */
1416 if (idlecnt && !any_pending (EV_A)) 1645 idle_reify (EV_A);
1417 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1646#endif
1418 1647
1419 /* queue check watchers, to be executed first */ 1648 /* queue check watchers, to be executed first */
1420 if (expect_false (checkcnt)) 1649 if (expect_false (checkcnt))
1421 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1422 1651
1423 call_pending (EV_A); 1652 call_pending (EV_A);
1424 1653
1425 if (expect_false (loop_done))
1426 break;
1427 } 1654 }
1655 while (expect_true (activecnt && !loop_done));
1428 1656
1429 if (loop_done == EVUNLOOP_ONE) 1657 if (loop_done == EVUNLOOP_ONE)
1430 loop_done = EVUNLOOP_CANCEL; 1658 loop_done = EVUNLOOP_CANCEL;
1431} 1659}
1432 1660
1459 head = &(*head)->next; 1687 head = &(*head)->next;
1460 } 1688 }
1461} 1689}
1462 1690
1463void inline_speed 1691void inline_speed
1464ev_clear_pending (EV_P_ W w) 1692clear_pending (EV_P_ W w)
1465{ 1693{
1466 if (w->pending) 1694 if (w->pending)
1467 { 1695 {
1468 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1696 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1469 w->pending = 0; 1697 w->pending = 0;
1470 } 1698 }
1471} 1699}
1472 1700
1701int
1702ev_clear_pending (EV_P_ void *w)
1703{
1704 W w_ = (W)w;
1705 int pending = w_->pending;
1706
1707 if (expect_true (pending))
1708 {
1709 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1710 w_->pending = 0;
1711 p->w = 0;
1712 return p->events;
1713 }
1714 else
1715 return 0;
1716}
1717
1718void inline_size
1719pri_adjust (EV_P_ W w)
1720{
1721 int pri = w->priority;
1722 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1723 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1724 w->priority = pri;
1725}
1726
1473void inline_speed 1727void inline_speed
1474ev_start (EV_P_ W w, int active) 1728ev_start (EV_P_ W w, int active)
1475{ 1729{
1476 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1730 pri_adjust (EV_A_ w);
1477 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1478
1479 w->active = active; 1731 w->active = active;
1480 ev_ref (EV_A); 1732 ev_ref (EV_A);
1481} 1733}
1482 1734
1483void inline_size 1735void inline_size
1487 w->active = 0; 1739 w->active = 0;
1488} 1740}
1489 1741
1490/*****************************************************************************/ 1742/*****************************************************************************/
1491 1743
1492void 1744void noinline
1493ev_io_start (EV_P_ ev_io *w) 1745ev_io_start (EV_P_ ev_io *w)
1494{ 1746{
1495 int fd = w->fd; 1747 int fd = w->fd;
1496 1748
1497 if (expect_false (ev_is_active (w))) 1749 if (expect_false (ev_is_active (w)))
1499 1751
1500 assert (("ev_io_start called with negative fd", fd >= 0)); 1752 assert (("ev_io_start called with negative fd", fd >= 0));
1501 1753
1502 ev_start (EV_A_ (W)w, 1); 1754 ev_start (EV_A_ (W)w, 1);
1503 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1755 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1504 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1756 wlist_add (&anfds[fd].head, (WL)w);
1505 1757
1506 fd_change (EV_A_ fd); 1758 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1759 w->events &= ~EV_IOFDSET;
1507} 1760}
1508 1761
1509void 1762void noinline
1510ev_io_stop (EV_P_ ev_io *w) 1763ev_io_stop (EV_P_ ev_io *w)
1511{ 1764{
1512 ev_clear_pending (EV_A_ (W)w); 1765 clear_pending (EV_A_ (W)w);
1513 if (expect_false (!ev_is_active (w))) 1766 if (expect_false (!ev_is_active (w)))
1514 return; 1767 return;
1515 1768
1516 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1769 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1517 1770
1518 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1771 wlist_del (&anfds[w->fd].head, (WL)w);
1519 ev_stop (EV_A_ (W)w); 1772 ev_stop (EV_A_ (W)w);
1520 1773
1521 fd_change (EV_A_ w->fd); 1774 fd_change (EV_A_ w->fd, 1);
1522} 1775}
1523 1776
1524void 1777void noinline
1525ev_timer_start (EV_P_ ev_timer *w) 1778ev_timer_start (EV_P_ ev_timer *w)
1526{ 1779{
1527 if (expect_false (ev_is_active (w))) 1780 if (expect_false (ev_is_active (w)))
1528 return; 1781 return;
1529 1782
1530 ((WT)w)->at += mn_now; 1783 ((WT)w)->at += mn_now;
1531 1784
1532 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1785 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1533 1786
1534 ev_start (EV_A_ (W)w, ++timercnt); 1787 ev_start (EV_A_ (W)w, ++timercnt);
1535 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1788 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1536 timers [timercnt - 1] = w; 1789 timers [timercnt - 1] = (WT)w;
1537 upheap ((WT *)timers, timercnt - 1); 1790 upheap (timers, timercnt - 1);
1538 1791
1539 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1792 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1540} 1793}
1541 1794
1542void 1795void noinline
1543ev_timer_stop (EV_P_ ev_timer *w) 1796ev_timer_stop (EV_P_ ev_timer *w)
1544{ 1797{
1545 ev_clear_pending (EV_A_ (W)w); 1798 clear_pending (EV_A_ (W)w);
1546 if (expect_false (!ev_is_active (w))) 1799 if (expect_false (!ev_is_active (w)))
1547 return; 1800 return;
1548 1801
1549 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1802 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1550 1803
1551 { 1804 {
1552 int active = ((W)w)->active; 1805 int active = ((W)w)->active;
1553 1806
1554 if (expect_true (--active < --timercnt)) 1807 if (expect_true (--active < --timercnt))
1555 { 1808 {
1556 timers [active] = timers [timercnt]; 1809 timers [active] = timers [timercnt];
1557 adjustheap ((WT *)timers, timercnt, active); 1810 adjustheap (timers, timercnt, active);
1558 } 1811 }
1559 } 1812 }
1560 1813
1561 ((WT)w)->at -= mn_now; 1814 ((WT)w)->at -= mn_now;
1562 1815
1563 ev_stop (EV_A_ (W)w); 1816 ev_stop (EV_A_ (W)w);
1564} 1817}
1565 1818
1566void 1819void noinline
1567ev_timer_again (EV_P_ ev_timer *w) 1820ev_timer_again (EV_P_ ev_timer *w)
1568{ 1821{
1569 if (ev_is_active (w)) 1822 if (ev_is_active (w))
1570 { 1823 {
1571 if (w->repeat) 1824 if (w->repeat)
1572 { 1825 {
1573 ((WT)w)->at = mn_now + w->repeat; 1826 ((WT)w)->at = mn_now + w->repeat;
1574 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1827 adjustheap (timers, timercnt, ((W)w)->active - 1);
1575 } 1828 }
1576 else 1829 else
1577 ev_timer_stop (EV_A_ w); 1830 ev_timer_stop (EV_A_ w);
1578 } 1831 }
1579 else if (w->repeat) 1832 else if (w->repeat)
1582 ev_timer_start (EV_A_ w); 1835 ev_timer_start (EV_A_ w);
1583 } 1836 }
1584} 1837}
1585 1838
1586#if EV_PERIODIC_ENABLE 1839#if EV_PERIODIC_ENABLE
1587void 1840void noinline
1588ev_periodic_start (EV_P_ ev_periodic *w) 1841ev_periodic_start (EV_P_ ev_periodic *w)
1589{ 1842{
1590 if (expect_false (ev_is_active (w))) 1843 if (expect_false (ev_is_active (w)))
1591 return; 1844 return;
1592 1845
1594 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1847 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1595 else if (w->interval) 1848 else if (w->interval)
1596 { 1849 {
1597 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1598 /* this formula differs from the one in periodic_reify because we do not always round up */ 1851 /* this formula differs from the one in periodic_reify because we do not always round up */
1599 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1852 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1600 } 1853 }
1854 else
1855 ((WT)w)->at = w->offset;
1601 1856
1602 ev_start (EV_A_ (W)w, ++periodiccnt); 1857 ev_start (EV_A_ (W)w, ++periodiccnt);
1603 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1858 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1604 periodics [periodiccnt - 1] = w; 1859 periodics [periodiccnt - 1] = (WT)w;
1605 upheap ((WT *)periodics, periodiccnt - 1); 1860 upheap (periodics, periodiccnt - 1);
1606 1861
1607 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1862 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1608} 1863}
1609 1864
1610void 1865void noinline
1611ev_periodic_stop (EV_P_ ev_periodic *w) 1866ev_periodic_stop (EV_P_ ev_periodic *w)
1612{ 1867{
1613 ev_clear_pending (EV_A_ (W)w); 1868 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 1869 if (expect_false (!ev_is_active (w)))
1615 return; 1870 return;
1616 1871
1617 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1872 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1618 1873
1619 { 1874 {
1620 int active = ((W)w)->active; 1875 int active = ((W)w)->active;
1621 1876
1622 if (expect_true (--active < --periodiccnt)) 1877 if (expect_true (--active < --periodiccnt))
1623 { 1878 {
1624 periodics [active] = periodics [periodiccnt]; 1879 periodics [active] = periodics [periodiccnt];
1625 adjustheap ((WT *)periodics, periodiccnt, active); 1880 adjustheap (periodics, periodiccnt, active);
1626 } 1881 }
1627 } 1882 }
1628 1883
1629 ev_stop (EV_A_ (W)w); 1884 ev_stop (EV_A_ (W)w);
1630} 1885}
1631 1886
1632void 1887void noinline
1633ev_periodic_again (EV_P_ ev_periodic *w) 1888ev_periodic_again (EV_P_ ev_periodic *w)
1634{ 1889{
1635 /* TODO: use adjustheap and recalculation */ 1890 /* TODO: use adjustheap and recalculation */
1636 ev_periodic_stop (EV_A_ w); 1891 ev_periodic_stop (EV_A_ w);
1637 ev_periodic_start (EV_A_ w); 1892 ev_periodic_start (EV_A_ w);
1640 1895
1641#ifndef SA_RESTART 1896#ifndef SA_RESTART
1642# define SA_RESTART 0 1897# define SA_RESTART 0
1643#endif 1898#endif
1644 1899
1645void 1900void noinline
1646ev_signal_start (EV_P_ ev_signal *w) 1901ev_signal_start (EV_P_ ev_signal *w)
1647{ 1902{
1648#if EV_MULTIPLICITY 1903#if EV_MULTIPLICITY
1649 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1904 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1650#endif 1905#endif
1651 if (expect_false (ev_is_active (w))) 1906 if (expect_false (ev_is_active (w)))
1652 return; 1907 return;
1653 1908
1654 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1909 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1655 1910
1911 evpipe_init (EV_A);
1912
1913 {
1914#ifndef _WIN32
1915 sigset_t full, prev;
1916 sigfillset (&full);
1917 sigprocmask (SIG_SETMASK, &full, &prev);
1918#endif
1919
1920 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1921
1922#ifndef _WIN32
1923 sigprocmask (SIG_SETMASK, &prev, 0);
1924#endif
1925 }
1926
1656 ev_start (EV_A_ (W)w, 1); 1927 ev_start (EV_A_ (W)w, 1);
1657 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1658 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1928 wlist_add (&signals [w->signum - 1].head, (WL)w);
1659 1929
1660 if (!((WL)w)->next) 1930 if (!((WL)w)->next)
1661 { 1931 {
1662#if _WIN32 1932#if _WIN32
1663 signal (w->signum, sighandler); 1933 signal (w->signum, sighandler);
1669 sigaction (w->signum, &sa, 0); 1939 sigaction (w->signum, &sa, 0);
1670#endif 1940#endif
1671 } 1941 }
1672} 1942}
1673 1943
1674void 1944void noinline
1675ev_signal_stop (EV_P_ ev_signal *w) 1945ev_signal_stop (EV_P_ ev_signal *w)
1676{ 1946{
1677 ev_clear_pending (EV_A_ (W)w); 1947 clear_pending (EV_A_ (W)w);
1678 if (expect_false (!ev_is_active (w))) 1948 if (expect_false (!ev_is_active (w)))
1679 return; 1949 return;
1680 1950
1681 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1951 wlist_del (&signals [w->signum - 1].head, (WL)w);
1682 ev_stop (EV_A_ (W)w); 1952 ev_stop (EV_A_ (W)w);
1683 1953
1684 if (!signals [w->signum - 1].head) 1954 if (!signals [w->signum - 1].head)
1685 signal (w->signum, SIG_DFL); 1955 signal (w->signum, SIG_DFL);
1686} 1956}
1693#endif 1963#endif
1694 if (expect_false (ev_is_active (w))) 1964 if (expect_false (ev_is_active (w)))
1695 return; 1965 return;
1696 1966
1697 ev_start (EV_A_ (W)w, 1); 1967 ev_start (EV_A_ (W)w, 1);
1698 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1968 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1699} 1969}
1700 1970
1701void 1971void
1702ev_child_stop (EV_P_ ev_child *w) 1972ev_child_stop (EV_P_ ev_child *w)
1703{ 1973{
1704 ev_clear_pending (EV_A_ (W)w); 1974 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 1975 if (expect_false (!ev_is_active (w)))
1706 return; 1976 return;
1707 1977
1708 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1978 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1709 ev_stop (EV_A_ (W)w); 1979 ev_stop (EV_A_ (W)w);
1710} 1980}
1711 1981
1712#if EV_STAT_ENABLE 1982#if EV_STAT_ENABLE
1713 1983
1945} 2215}
1946 2216
1947void 2217void
1948ev_stat_stop (EV_P_ ev_stat *w) 2218ev_stat_stop (EV_P_ ev_stat *w)
1949{ 2219{
1950 ev_clear_pending (EV_A_ (W)w); 2220 clear_pending (EV_A_ (W)w);
1951 if (expect_false (!ev_is_active (w))) 2221 if (expect_false (!ev_is_active (w)))
1952 return; 2222 return;
1953 2223
1954#if EV_USE_INOTIFY 2224#if EV_USE_INOTIFY
1955 infy_del (EV_A_ w); 2225 infy_del (EV_A_ w);
1958 2228
1959 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1960} 2230}
1961#endif 2231#endif
1962 2232
2233#if EV_IDLE_ENABLE
1963void 2234void
1964ev_idle_start (EV_P_ ev_idle *w) 2235ev_idle_start (EV_P_ ev_idle *w)
1965{ 2236{
1966 if (expect_false (ev_is_active (w))) 2237 if (expect_false (ev_is_active (w)))
1967 return; 2238 return;
1968 2239
2240 pri_adjust (EV_A_ (W)w);
2241
2242 {
2243 int active = ++idlecnt [ABSPRI (w)];
2244
2245 ++idleall;
1969 ev_start (EV_A_ (W)w, ++idlecnt); 2246 ev_start (EV_A_ (W)w, active);
2247
1970 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2248 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1971 idles [idlecnt - 1] = w; 2249 idles [ABSPRI (w)][active - 1] = w;
2250 }
1972} 2251}
1973 2252
1974void 2253void
1975ev_idle_stop (EV_P_ ev_idle *w) 2254ev_idle_stop (EV_P_ ev_idle *w)
1976{ 2255{
1977 ev_clear_pending (EV_A_ (W)w); 2256 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2257 if (expect_false (!ev_is_active (w)))
1979 return; 2258 return;
1980 2259
1981 { 2260 {
1982 int active = ((W)w)->active; 2261 int active = ((W)w)->active;
1983 idles [active - 1] = idles [--idlecnt]; 2262
2263 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1984 ((W)idles [active - 1])->active = active; 2264 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2265
2266 ev_stop (EV_A_ (W)w);
2267 --idleall;
1985 } 2268 }
1986
1987 ev_stop (EV_A_ (W)w);
1988} 2269}
2270#endif
1989 2271
1990void 2272void
1991ev_prepare_start (EV_P_ ev_prepare *w) 2273ev_prepare_start (EV_P_ ev_prepare *w)
1992{ 2274{
1993 if (expect_false (ev_is_active (w))) 2275 if (expect_false (ev_is_active (w)))
1999} 2281}
2000 2282
2001void 2283void
2002ev_prepare_stop (EV_P_ ev_prepare *w) 2284ev_prepare_stop (EV_P_ ev_prepare *w)
2003{ 2285{
2004 ev_clear_pending (EV_A_ (W)w); 2286 clear_pending (EV_A_ (W)w);
2005 if (expect_false (!ev_is_active (w))) 2287 if (expect_false (!ev_is_active (w)))
2006 return; 2288 return;
2007 2289
2008 { 2290 {
2009 int active = ((W)w)->active; 2291 int active = ((W)w)->active;
2026} 2308}
2027 2309
2028void 2310void
2029ev_check_stop (EV_P_ ev_check *w) 2311ev_check_stop (EV_P_ ev_check *w)
2030{ 2312{
2031 ev_clear_pending (EV_A_ (W)w); 2313 clear_pending (EV_A_ (W)w);
2032 if (expect_false (!ev_is_active (w))) 2314 if (expect_false (!ev_is_active (w)))
2033 return; 2315 return;
2034 2316
2035 { 2317 {
2036 int active = ((W)w)->active; 2318 int active = ((W)w)->active;
2043 2325
2044#if EV_EMBED_ENABLE 2326#if EV_EMBED_ENABLE
2045void noinline 2327void noinline
2046ev_embed_sweep (EV_P_ ev_embed *w) 2328ev_embed_sweep (EV_P_ ev_embed *w)
2047{ 2329{
2048 ev_loop (w->loop, EVLOOP_NONBLOCK); 2330 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 2331}
2050 2332
2051static void 2333static void
2052embed_cb (EV_P_ ev_io *io, int revents) 2334embed_io_cb (EV_P_ ev_io *io, int revents)
2053{ 2335{
2054 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2336 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2055 2337
2056 if (ev_cb (w)) 2338 if (ev_cb (w))
2057 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2339 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2058 else 2340 else
2059 ev_embed_sweep (loop, w); 2341 ev_loop (w->other, EVLOOP_NONBLOCK);
2060} 2342}
2343
2344static void
2345embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2346{
2347 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2348
2349 {
2350 struct ev_loop *loop = w->other;
2351
2352 while (fdchangecnt)
2353 {
2354 fd_reify (EV_A);
2355 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2356 }
2357 }
2358}
2359
2360#if 0
2361static void
2362embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2363{
2364 ev_idle_stop (EV_A_ idle);
2365}
2366#endif
2061 2367
2062void 2368void
2063ev_embed_start (EV_P_ ev_embed *w) 2369ev_embed_start (EV_P_ ev_embed *w)
2064{ 2370{
2065 if (expect_false (ev_is_active (w))) 2371 if (expect_false (ev_is_active (w)))
2066 return; 2372 return;
2067 2373
2068 { 2374 {
2069 struct ev_loop *loop = w->loop; 2375 struct ev_loop *loop = w->other;
2070 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2376 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2071 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2377 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2072 } 2378 }
2073 2379
2074 ev_set_priority (&w->io, ev_priority (w)); 2380 ev_set_priority (&w->io, ev_priority (w));
2075 ev_io_start (EV_A_ &w->io); 2381 ev_io_start (EV_A_ &w->io);
2076 2382
2383 ev_prepare_init (&w->prepare, embed_prepare_cb);
2384 ev_set_priority (&w->prepare, EV_MINPRI);
2385 ev_prepare_start (EV_A_ &w->prepare);
2386
2387 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2388
2077 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
2078} 2390}
2079 2391
2080void 2392void
2081ev_embed_stop (EV_P_ ev_embed *w) 2393ev_embed_stop (EV_P_ ev_embed *w)
2082{ 2394{
2083 ev_clear_pending (EV_A_ (W)w); 2395 clear_pending (EV_A_ (W)w);
2084 if (expect_false (!ev_is_active (w))) 2396 if (expect_false (!ev_is_active (w)))
2085 return; 2397 return;
2086 2398
2087 ev_io_stop (EV_A_ &w->io); 2399 ev_io_stop (EV_A_ &w->io);
2400 ev_prepare_stop (EV_A_ &w->prepare);
2088 2401
2089 ev_stop (EV_A_ (W)w); 2402 ev_stop (EV_A_ (W)w);
2090} 2403}
2091#endif 2404#endif
2092 2405
2103} 2416}
2104 2417
2105void 2418void
2106ev_fork_stop (EV_P_ ev_fork *w) 2419ev_fork_stop (EV_P_ ev_fork *w)
2107{ 2420{
2108 ev_clear_pending (EV_A_ (W)w); 2421 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w))) 2422 if (expect_false (!ev_is_active (w)))
2110 return; 2423 return;
2111 2424
2112 { 2425 {
2113 int active = ((W)w)->active; 2426 int active = ((W)w)->active;
2117 2430
2118 ev_stop (EV_A_ (W)w); 2431 ev_stop (EV_A_ (W)w);
2119} 2432}
2120#endif 2433#endif
2121 2434
2435#if EV_ASYNC_ENABLE
2436void
2437ev_async_start (EV_P_ ev_async *w)
2438{
2439 if (expect_false (ev_is_active (w)))
2440 return;
2441
2442 evpipe_init (EV_A);
2443
2444 ev_start (EV_A_ (W)w, ++asynccnt);
2445 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2446 asyncs [asynccnt - 1] = w;
2447}
2448
2449void
2450ev_async_stop (EV_P_ ev_async *w)
2451{
2452 clear_pending (EV_A_ (W)w);
2453 if (expect_false (!ev_is_active (w)))
2454 return;
2455
2456 {
2457 int active = ((W)w)->active;
2458 asyncs [active - 1] = asyncs [--asynccnt];
2459 ((W)asyncs [active - 1])->active = active;
2460 }
2461
2462 ev_stop (EV_A_ (W)w);
2463}
2464
2465void
2466ev_async_send (EV_P_ ev_async *w)
2467{
2468 w->sent = 1;
2469 evpipe_write (EV_A_ 0, 1);
2470}
2471#endif
2472
2122/*****************************************************************************/ 2473/*****************************************************************************/
2123 2474
2124struct ev_once 2475struct ev_once
2125{ 2476{
2126 ev_io io; 2477 ev_io io;
2181 ev_timer_set (&once->to, timeout, 0.); 2532 ev_timer_set (&once->to, timeout, 0.);
2182 ev_timer_start (EV_A_ &once->to); 2533 ev_timer_start (EV_A_ &once->to);
2183 } 2534 }
2184} 2535}
2185 2536
2537#if EV_MULTIPLICITY
2538 #include "ev_wrap.h"
2539#endif
2540
2186#ifdef __cplusplus 2541#ifdef __cplusplus
2187} 2542}
2188#endif 2543#endif
2189 2544

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines