ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.210 by root, Sat Feb 9 00:34:11 2008 UTC vs.
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 241
217#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
220#endif 245#endif
239# include <sys/inotify.h> 264# include <sys/inotify.h>
240#endif 265#endif
241 266
242#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
244#endif 281#endif
245 282
246/**/ 283/**/
247 284
248/* 285/*
263# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
265#else 302#else
266# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
267# define noinline 304# define noinline
268# if __STDC_VERSION__ < 199901L 305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 306# define inline
270# endif 307# endif
271#endif 308#endif
272 309
273#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
288 325
289typedef ev_watcher *W; 326typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
292 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
293#if EV_USE_MONOTONIC 333#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 335/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 337#endif
323 perror (msg); 363 perror (msg);
324 abort (); 364 abort ();
325 } 365 }
326} 366}
327 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
328static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 384
330void 385void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 387{
333 alloc = cb; 388 alloc = cb;
334} 389}
335 390
336inline_speed void * 391inline_speed void *
337ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
338{ 393{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
340 395
341 if (!ptr && size) 396 if (!ptr && size)
342 { 397 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 399 abort ();
367 W w; 422 W w;
368 int events; 423 int events;
369} ANPENDING; 424} ANPENDING;
370 425
371#if EV_USE_INOTIFY 426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
372typedef struct 428typedef struct
373{ 429{
374 WL head; 430 WL head;
375} ANFS; 431} ANFS;
432#endif
433
434/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT
437 typedef struct {
438 WT w;
439 ev_tstamp at;
440 } ANHE;
441
442 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
445#else
446 typedef WT ANHE;
447
448 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he)
376#endif 451#endif
377 452
378#if EV_MULTIPLICITY 453#if EV_MULTIPLICITY
379 454
380 struct ev_loop 455 struct ev_loop
451 ts.tv_sec = (time_t)delay; 526 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 528
454 nanosleep (&ts, 0); 529 nanosleep (&ts, 0);
455#elif defined(_WIN32) 530#elif defined(_WIN32)
456 Sleep (delay * 1e3); 531 Sleep ((unsigned long)(delay * 1e3));
457#else 532#else
458 struct timeval tv; 533 struct timeval tv;
459 534
460 tv.tv_sec = (time_t)delay; 535 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 539#endif
465 } 540 }
466} 541}
467 542
468/*****************************************************************************/ 543/*****************************************************************************/
544
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 546
470int inline_size 547int inline_size
471array_nextsize (int elem, int cur, int cnt) 548array_nextsize (int elem, int cur, int cnt)
472{ 549{
473 int ncur = cur + 1; 550 int ncur = cur + 1;
474 551
475 do 552 do
476 ncur <<= 1; 553 ncur <<= 1;
477 while (cnt > ncur); 554 while (cnt > ncur);
478 555
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 558 {
482 ncur *= elem; 559 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 561 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 562 ncur /= elem;
486 } 563 }
487 564
488 return ncur; 565 return ncur;
702 } 779 }
703} 780}
704 781
705/*****************************************************************************/ 782/*****************************************************************************/
706 783
784/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree.
788 */
789
790/*
791 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers.
795 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP
798
799#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801
802/* towards the root */
707void inline_speed 803void inline_speed
708upheap (WT *heap, int k) 804upheap (ANHE *heap, int k)
709{ 805{
710 WT w = heap [k]; 806 ANHE he = heap [k];
711 807
712 while (k) 808 for (;;)
713 { 809 {
714 int p = (k - 1) >> 1; 810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
715 811
716 if (heap [p]->at <= w->at) 812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
717 break; 813 break;
718 814
719 heap [k] = heap [p]; 815 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 816 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 817 k = p;
722 } 818 }
723 819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823
824/* away from the root */
825void inline_speed
826downheap (ANHE *heap, int N, int k)
827{
828 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0;
830
831 for (;;)
832 {
833 ev_tstamp minat;
834 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
836
837 // find minimum child
838 if (expect_true (pos + DHEAP - 1 < E))
839 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 }
845 else if (pos < E)
846 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else
853 break;
854
855 if (ANHE_at (he) <= minat)
856 break;
857
858 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860
861 k = minpos - heap;
862 }
863
864 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866}
867
868#else // 4HEAP
869
870#define HEAP0 1
871
872/* towards the root */
873void inline_speed
874upheap (ANHE *heap, int k)
875{
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
724 heap [k] = w; 891 heap [k] = w;
725 ((W)heap [k])->active = k + 1; 892 ev_active (ANHE_w (heap [k])) = k;
726} 893}
727 894
895/* away from the root */
728void inline_speed 896void inline_speed
729downheap (WT *heap, int N, int k) 897downheap (ANHE *heap, int N, int k)
730{ 898{
731 WT w = heap [k]; 899 ANHE he = heap [k];
732 900
733 for (;;) 901 for (;;)
734 { 902 {
735 int c = (k << 1) + 1; 903 int c = k << 1;
736 904
737 if (c >= N) 905 if (c > N)
738 break; 906 break;
739 907
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
741 ? 1 : 0; 909 ? 1 : 0;
742 910
743 if (w->at <= heap [c]->at) 911 if (w->at <= ANHE_at (heap [c]))
744 break; 912 break;
745 913
746 heap [k] = heap [c]; 914 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1; 915 ev_active (ANHE_w (heap [k])) = k;
748 916
749 k = c; 917 k = c;
750 } 918 }
751 919
752 heap [k] = w; 920 heap [k] = he;
753 ((W)heap [k])->active = k + 1; 921 ev_active (ANHE_w (he)) = k;
754} 922}
923#endif
755 924
756void inline_size 925void inline_size
757adjustheap (WT *heap, int N, int k) 926adjustheap (ANHE *heap, int N, int k)
758{ 927{
759 upheap (heap, k); 928 upheap (heap, k);
760 downheap (heap, N, k); 929 downheap (heap, N, k);
761} 930}
762 931
802static void noinline 971static void noinline
803evpipe_init (EV_P) 972evpipe_init (EV_P)
804{ 973{
805 if (!ev_is_active (&pipeev)) 974 if (!ev_is_active (&pipeev))
806 { 975 {
976#if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0)
978 {
979 evpipe [0] = -1;
980 fd_intern (evfd);
981 ev_io_set (&pipeev, evfd, EV_READ);
982 }
983 else
984#endif
985 {
807 while (pipe (evpipe)) 986 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 987 syserr ("(libev) error creating signal/async pipe");
809 988
810 fd_intern (evpipe [0]); 989 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 990 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 991 ev_io_set (&pipeev, evpipe [0], EV_READ);
992 }
993
814 ev_io_start (EV_A_ &pipeev); 994 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 995 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 996 }
817} 997}
818 998
819void inline_size 999void inline_size
820evpipe_write (EV_P_ int sig, int async) 1000evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1001{
822 if (!(gotasync || gotsig)) 1002 if (!*flag)
823 { 1003 {
824 int old_errno = errno; /* save errno becaue write might clobber it */ 1004 int old_errno = errno; /* save errno because write might clobber it */
825 1005
826 if (sig) gotsig = 1; 1006 *flag = 1;
827 if (async) gotasync = 1;
828 1007
1008#if EV_USE_EVENTFD
1009 if (evfd >= 0)
1010 {
1011 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t));
1013 }
1014 else
1015#endif
829 write (evpipe [1], &old_errno, 1); 1016 write (evpipe [1], &old_errno, 1);
830 1017
831 errno = old_errno; 1018 errno = old_errno;
832 } 1019 }
833} 1020}
834 1021
835static void 1022static void
836pipecb (EV_P_ ev_io *iow, int revents) 1023pipecb (EV_P_ ev_io *iow, int revents)
837{ 1024{
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
838 { 1027 {
839 int dummy; 1028 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 {
1034 char dummy;
840 read (evpipe [0], &dummy, 1); 1035 read (evpipe [0], &dummy, 1);
841 } 1036 }
842 1037
843 if (gotsig) 1038 if (gotsig && ev_is_default_loop (EV_A))
844 { 1039 {
845 int signum; 1040 int signum;
846 gotsig = 0; 1041 gotsig = 0;
847 1042
848 for (signum = signalmax; signum--; ) 1043 for (signum = signalmax; signum--; )
867} 1062}
868 1063
869/*****************************************************************************/ 1064/*****************************************************************************/
870 1065
871static void 1066static void
872sighandler (int signum) 1067ev_sighandler (int signum)
873{ 1068{
874#if EV_MULTIPLICITY 1069#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 1070 struct ev_loop *loop = &default_loop_struct;
876#endif 1071#endif
877 1072
878#if _WIN32 1073#if _WIN32
879 signal (signum, sighandler); 1074 signal (signum, ev_sighandler);
880#endif 1075#endif
881 1076
882 signals [signum - 1].gotsig = 1; 1077 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0); 1078 evpipe_write (EV_A_ &gotsig);
884} 1079}
885 1080
886void noinline 1081void noinline
887ev_feed_signal_event (EV_P_ int signum) 1082ev_feed_signal_event (EV_P_ int signum)
888{ 1083{
914#ifndef WIFCONTINUED 1109#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 1110# define WIFCONTINUED(status) 0
916#endif 1111#endif
917 1112
918void inline_speed 1113void inline_speed
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1114child_reap (EV_P_ int chain, int pid, int status)
920{ 1115{
921 ev_child *w; 1116 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 1118
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 1120 {
926 if ((w->pid == pid || !w->pid) 1121 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 1122 && (!traced || (w->flags & 1)))
928 { 1123 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 1125 w->rpid = pid;
931 w->rstatus = status; 1126 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1127 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 1128 }
934 } 1129 }
948 if (!WCONTINUED 1143 if (!WCONTINUED
949 || errno != EINVAL 1144 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1145 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 1146 return;
952 1147
953 /* make sure we are called again until all childs have been reaped */ 1148 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 1149 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 1151
957 child_reap (EV_A_ sw, pid, pid, status); 1152 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 1153 if (EV_PID_HASHSIZE > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 1155}
961 1156
962#endif 1157#endif
963 1158
964/*****************************************************************************/ 1159/*****************************************************************************/
1107 if (!(flags & EVFLAG_NOENV) 1302 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure () 1303 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS")) 1304 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS")); 1305 flags = atoi (getenv ("LIBEV_FLAGS"));
1111 1306
1112 if (!(flags & 0x0000ffffUL)) 1307 if (!(flags & 0x0000ffffU))
1113 flags |= ev_recommended_backends (); 1308 flags |= ev_recommended_backends ();
1114 1309
1115#if EV_USE_PORT 1310#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 1312#endif
1141 if (ev_is_active (&pipeev)) 1336 if (ev_is_active (&pipeev))
1142 { 1337 {
1143 ev_ref (EV_A); /* signal watcher */ 1338 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev); 1339 ev_io_stop (EV_A_ &pipeev);
1145 1340
1146 close (evpipe [0]); evpipe [0] = 0; 1341#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 1342 if (evfd >= 0)
1343 close (evfd);
1344#endif
1345
1346 if (evpipe [0] >= 0)
1347 {
1348 close (evpipe [0]);
1349 close (evpipe [1]);
1350 }
1148 } 1351 }
1149 1352
1150#if EV_USE_INOTIFY 1353#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 1354 if (fs_fd >= 0)
1152 close (fs_fd); 1355 close (fs_fd);
1197#endif 1400#endif
1198 1401
1199 backend = 0; 1402 backend = 0;
1200} 1403}
1201 1404
1405#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 1406void inline_size infy_fork (EV_P);
1407#endif
1203 1408
1204void inline_size 1409void inline_size
1205loop_fork (EV_P) 1410loop_fork (EV_P)
1206{ 1411{
1207#if EV_USE_PORT 1412#if EV_USE_PORT
1218#endif 1423#endif
1219 1424
1220 if (ev_is_active (&pipeev)) 1425 if (ev_is_active (&pipeev))
1221 { 1426 {
1222 /* this "locks" the handlers against writing to the pipe */ 1427 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */
1429 gotsig = 1;
1430#if EV_ASYNC_ENABLE
1223 gotsig = gotasync = 1; 1431 gotasync = 1;
1432#endif
1224 1433
1225 ev_ref (EV_A); 1434 ev_ref (EV_A);
1226 ev_io_stop (EV_A_ &pipeev); 1435 ev_io_stop (EV_A_ &pipeev);
1436
1437#if EV_USE_EVENTFD
1438 if (evfd >= 0)
1439 close (evfd);
1440#endif
1441
1442 if (evpipe [0] >= 0)
1443 {
1227 close (evpipe [0]); 1444 close (evpipe [0]);
1228 close (evpipe [1]); 1445 close (evpipe [1]);
1446 }
1229 1447
1230 evpipe_init (EV_A); 1448 evpipe_init (EV_A);
1231 /* now iterate over everything, in case we missed something */ 1449 /* now iterate over everything, in case we missed something */
1232 pipecb (EV_A_ &pipeev, EV_READ); 1450 pipecb (EV_A_ &pipeev, EV_READ);
1233 } 1451 }
1261void 1479void
1262ev_loop_fork (EV_P) 1480ev_loop_fork (EV_P)
1263{ 1481{
1264 postfork = 1; /* must be in line with ev_default_fork */ 1482 postfork = 1; /* must be in line with ev_default_fork */
1265} 1483}
1266
1267#endif 1484#endif
1268 1485
1269#if EV_MULTIPLICITY 1486#if EV_MULTIPLICITY
1270struct ev_loop * 1487struct ev_loop *
1271ev_default_loop_init (unsigned int flags) 1488ev_default_loop_init (unsigned int flags)
1352 EV_CB_INVOKE (p->w, p->events); 1569 EV_CB_INVOKE (p->w, p->events);
1353 } 1570 }
1354 } 1571 }
1355} 1572}
1356 1573
1357void inline_size
1358timers_reify (EV_P)
1359{
1360 while (timercnt && ((WT)timers [0])->at <= mn_now)
1361 {
1362 ev_timer *w = (ev_timer *)timers [0];
1363
1364 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1365
1366 /* first reschedule or stop timer */
1367 if (w->repeat)
1368 {
1369 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1370
1371 ((WT)w)->at += w->repeat;
1372 if (((WT)w)->at < mn_now)
1373 ((WT)w)->at = mn_now;
1374
1375 downheap (timers, timercnt, 0);
1376 }
1377 else
1378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1379
1380 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1381 }
1382}
1383
1384#if EV_PERIODIC_ENABLE
1385void inline_size
1386periodics_reify (EV_P)
1387{
1388 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1389 {
1390 ev_periodic *w = (ev_periodic *)periodics [0];
1391
1392 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1393
1394 /* first reschedule or stop timer */
1395 if (w->reschedule_cb)
1396 {
1397 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1398 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1399 downheap (periodics, periodiccnt, 0);
1400 }
1401 else if (w->interval)
1402 {
1403 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1405 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1406 downheap (periodics, periodiccnt, 0);
1407 }
1408 else
1409 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1410
1411 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1412 }
1413}
1414
1415static void noinline
1416periodics_reschedule (EV_P)
1417{
1418 int i;
1419
1420 /* adjust periodics after time jump */
1421 for (i = 0; i < periodiccnt; ++i)
1422 {
1423 ev_periodic *w = (ev_periodic *)periodics [i];
1424
1425 if (w->reschedule_cb)
1426 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1427 else if (w->interval)
1428 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1429 }
1430
1431 /* now rebuild the heap */
1432 for (i = periodiccnt >> 1; i--; )
1433 downheap (periodics, periodiccnt, i);
1434}
1435#endif
1436
1437#if EV_IDLE_ENABLE 1574#if EV_IDLE_ENABLE
1438void inline_size 1575void inline_size
1439idle_reify (EV_P) 1576idle_reify (EV_P)
1440{ 1577{
1441 if (expect_false (idleall)) 1578 if (expect_false (idleall))
1452 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1589 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1453 break; 1590 break;
1454 } 1591 }
1455 } 1592 }
1456 } 1593 }
1594}
1595#endif
1596
1597void inline_size
1598timers_reify (EV_P)
1599{
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1601 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 {
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0);
1617 }
1618 else
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1622 }
1623}
1624
1625#if EV_PERIODIC_ENABLE
1626void inline_size
1627periodics_reify (EV_P)
1628{
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1630 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1632
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1640 ANHE_at_set (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0);
1642 }
1643 else if (w->interval)
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1655 }
1656}
1657
1658static void noinline
1659periodics_reschedule (EV_P)
1660{
1661 int i;
1662
1663 /* adjust periodics after time jump */
1664 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1665 {
1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1667
1668 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672
1673 ANHE_at_set (periodics [i]);
1674 }
1675
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1677 for (i = periodiccnt >> 1; --i; )
1678 downheap (periodics, periodiccnt, i + HEAP0);
1457} 1679}
1458#endif 1680#endif
1459 1681
1460void inline_speed 1682void inline_speed
1461time_update (EV_P_ ev_tstamp max_block) 1683time_update (EV_P_ ev_tstamp max_block)
1490 */ 1712 */
1491 for (i = 4; --i; ) 1713 for (i = 4; --i; )
1492 { 1714 {
1493 rtmn_diff = ev_rt_now - mn_now; 1715 rtmn_diff = ev_rt_now - mn_now;
1494 1716
1495 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1496 return; /* all is well */ 1718 return; /* all is well */
1497 1719
1498 ev_rt_now = ev_time (); 1720 ev_rt_now = ev_time ();
1499 mn_now = get_clock (); 1721 mn_now = get_clock ();
1500 now_floor = mn_now; 1722 now_floor = mn_now;
1516#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1517 periodics_reschedule (EV_A); 1739 periodics_reschedule (EV_A);
1518#endif 1740#endif
1519 /* adjust timers. this is easy, as the offset is the same for all of them */ 1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1520 for (i = 0; i < timercnt; ++i) 1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1521 ((WT)timers [i])->at += ev_rt_now - mn_now; 1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1522 } 1748 }
1523 1749
1524 mn_now = ev_rt_now; 1750 mn_now = ev_rt_now;
1525 } 1751 }
1526} 1752}
1540static int loop_done; 1766static int loop_done;
1541 1767
1542void 1768void
1543ev_loop (EV_P_ int flags) 1769ev_loop (EV_P_ int flags)
1544{ 1770{
1545 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1771 loop_done = EVUNLOOP_CANCEL;
1546 ? EVUNLOOP_ONE
1547 : EVUNLOOP_CANCEL;
1548 1772
1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1550 1774
1551 do 1775 do
1552 { 1776 {
1598 1822
1599 waittime = MAX_BLOCKTIME; 1823 waittime = MAX_BLOCKTIME;
1600 1824
1601 if (timercnt) 1825 if (timercnt)
1602 { 1826 {
1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1604 if (waittime > to) waittime = to; 1828 if (waittime > to) waittime = to;
1605 } 1829 }
1606 1830
1607#if EV_PERIODIC_ENABLE 1831#if EV_PERIODIC_ENABLE
1608 if (periodiccnt) 1832 if (periodiccnt)
1609 { 1833 {
1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1611 if (waittime > to) waittime = to; 1835 if (waittime > to) waittime = to;
1612 } 1836 }
1613#endif 1837#endif
1614 1838
1615 if (expect_false (waittime < timeout_blocktime)) 1839 if (expect_false (waittime < timeout_blocktime))
1648 /* queue check watchers, to be executed first */ 1872 /* queue check watchers, to be executed first */
1649 if (expect_false (checkcnt)) 1873 if (expect_false (checkcnt))
1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1651 1875
1652 call_pending (EV_A); 1876 call_pending (EV_A);
1653
1654 } 1877 }
1655 while (expect_true (activecnt && !loop_done)); 1878 while (expect_true (
1879 activecnt
1880 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 ));
1656 1883
1657 if (loop_done == EVUNLOOP_ONE) 1884 if (loop_done == EVUNLOOP_ONE)
1658 loop_done = EVUNLOOP_CANCEL; 1885 loop_done = EVUNLOOP_CANCEL;
1659} 1886}
1660 1887
1764{ 1991{
1765 clear_pending (EV_A_ (W)w); 1992 clear_pending (EV_A_ (W)w);
1766 if (expect_false (!ev_is_active (w))) 1993 if (expect_false (!ev_is_active (w)))
1767 return; 1994 return;
1768 1995
1769 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1770 1997
1771 wlist_del (&anfds[w->fd].head, (WL)w); 1998 wlist_del (&anfds[w->fd].head, (WL)w);
1772 ev_stop (EV_A_ (W)w); 1999 ev_stop (EV_A_ (W)w);
1773 2000
1774 fd_change (EV_A_ w->fd, 1); 2001 fd_change (EV_A_ w->fd, 1);
1778ev_timer_start (EV_P_ ev_timer *w) 2005ev_timer_start (EV_P_ ev_timer *w)
1779{ 2006{
1780 if (expect_false (ev_is_active (w))) 2007 if (expect_false (ev_is_active (w)))
1781 return; 2008 return;
1782 2009
1783 ((WT)w)->at += mn_now; 2010 ev_at (w) += mn_now;
1784 2011
1785 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1786 2013
1787 ev_start (EV_A_ (W)w, ++timercnt); 2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1788 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1789 timers [timercnt - 1] = (WT)w; 2016 ANHE_w (timers [ev_active (w)]) = (WT)w;
1790 upheap (timers, timercnt - 1); 2017 ANHE_at_set (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w));
1791 2019
1792 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1793} 2021}
1794 2022
1795void noinline 2023void noinline
1796ev_timer_stop (EV_P_ ev_timer *w) 2024ev_timer_stop (EV_P_ ev_timer *w)
1797{ 2025{
1798 clear_pending (EV_A_ (W)w); 2026 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2027 if (expect_false (!ev_is_active (w)))
1800 return; 2028 return;
1801 2029
1802 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1803
1804 { 2030 {
1805 int active = ((W)w)->active; 2031 int active = ev_active (w);
1806 2032
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034
1807 if (expect_true (--active < --timercnt)) 2035 if (expect_true (active < timercnt + HEAP0 - 1))
1808 { 2036 {
1809 timers [active] = timers [timercnt]; 2037 timers [active] = timers [timercnt + HEAP0 - 1];
1810 adjustheap (timers, timercnt, active); 2038 adjustheap (timers, timercnt, active);
1811 } 2039 }
2040
2041 --timercnt;
1812 } 2042 }
1813 2043
1814 ((WT)w)->at -= mn_now; 2044 ev_at (w) -= mn_now;
1815 2045
1816 ev_stop (EV_A_ (W)w); 2046 ev_stop (EV_A_ (W)w);
1817} 2047}
1818 2048
1819void noinline 2049void noinline
1821{ 2051{
1822 if (ev_is_active (w)) 2052 if (ev_is_active (w))
1823 { 2053 {
1824 if (w->repeat) 2054 if (w->repeat)
1825 { 2055 {
1826 ((WT)w)->at = mn_now + w->repeat; 2056 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]);
1827 adjustheap (timers, timercnt, ((W)w)->active - 1); 2058 adjustheap (timers, timercnt, ev_active (w));
1828 } 2059 }
1829 else 2060 else
1830 ev_timer_stop (EV_A_ w); 2061 ev_timer_stop (EV_A_ w);
1831 } 2062 }
1832 else if (w->repeat) 2063 else if (w->repeat)
1833 { 2064 {
1834 w->at = w->repeat; 2065 ev_at (w) = w->repeat;
1835 ev_timer_start (EV_A_ w); 2066 ev_timer_start (EV_A_ w);
1836 } 2067 }
1837} 2068}
1838 2069
1839#if EV_PERIODIC_ENABLE 2070#if EV_PERIODIC_ENABLE
1842{ 2073{
1843 if (expect_false (ev_is_active (w))) 2074 if (expect_false (ev_is_active (w)))
1844 return; 2075 return;
1845 2076
1846 if (w->reschedule_cb) 2077 if (w->reschedule_cb)
1847 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1848 else if (w->interval) 2079 else if (w->interval)
1849 { 2080 {
1850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1851 /* this formula differs from the one in periodic_reify because we do not always round up */ 2082 /* this formula differs from the one in periodic_reify because we do not always round up */
1852 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1853 } 2084 }
1854 else 2085 else
1855 ((WT)w)->at = w->offset; 2086 ev_at (w) = w->offset;
1856 2087
1857 ev_start (EV_A_ (W)w, ++periodiccnt); 2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1858 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1859 periodics [periodiccnt - 1] = (WT)w; 2090 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1860 upheap (periodics, periodiccnt - 1); 2091 upheap (periodics, ev_active (w));
1861 2092
1862 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1863} 2094}
1864 2095
1865void noinline 2096void noinline
1866ev_periodic_stop (EV_P_ ev_periodic *w) 2097ev_periodic_stop (EV_P_ ev_periodic *w)
1867{ 2098{
1868 clear_pending (EV_A_ (W)w); 2099 clear_pending (EV_A_ (W)w);
1869 if (expect_false (!ev_is_active (w))) 2100 if (expect_false (!ev_is_active (w)))
1870 return; 2101 return;
1871 2102
1872 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1873
1874 { 2103 {
1875 int active = ((W)w)->active; 2104 int active = ev_active (w);
1876 2105
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107
1877 if (expect_true (--active < --periodiccnt)) 2108 if (expect_true (active < periodiccnt + HEAP0 - 1))
1878 { 2109 {
1879 periodics [active] = periodics [periodiccnt]; 2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1880 adjustheap (periodics, periodiccnt, active); 2111 adjustheap (periodics, periodiccnt, active);
1881 } 2112 }
2113
2114 --periodiccnt;
1882 } 2115 }
1883 2116
1884 ev_stop (EV_A_ (W)w); 2117 ev_stop (EV_A_ (W)w);
1885} 2118}
1886 2119
1928 wlist_add (&signals [w->signum - 1].head, (WL)w); 2161 wlist_add (&signals [w->signum - 1].head, (WL)w);
1929 2162
1930 if (!((WL)w)->next) 2163 if (!((WL)w)->next)
1931 { 2164 {
1932#if _WIN32 2165#if _WIN32
1933 signal (w->signum, sighandler); 2166 signal (w->signum, ev_sighandler);
1934#else 2167#else
1935 struct sigaction sa; 2168 struct sigaction sa;
1936 sa.sa_handler = sighandler; 2169 sa.sa_handler = ev_sighandler;
1937 sigfillset (&sa.sa_mask); 2170 sigfillset (&sa.sa_mask);
1938 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1939 sigaction (w->signum, &sa, 0); 2172 sigaction (w->signum, &sa, 0);
1940#endif 2173#endif
1941 } 2174 }
2002 if (w->wd < 0) 2235 if (w->wd < 0)
2003 { 2236 {
2004 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2005 2238
2006 /* monitor some parent directory for speedup hints */ 2239 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */
2241 /* but an efficiency issue only */
2007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2008 { 2243 {
2009 char path [4096]; 2244 char path [4096];
2010 strcpy (path, w->path); 2245 strcpy (path, w->path);
2011 2246
2256 clear_pending (EV_A_ (W)w); 2491 clear_pending (EV_A_ (W)w);
2257 if (expect_false (!ev_is_active (w))) 2492 if (expect_false (!ev_is_active (w)))
2258 return; 2493 return;
2259 2494
2260 { 2495 {
2261 int active = ((W)w)->active; 2496 int active = ev_active (w);
2262 2497
2263 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2264 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2499 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2265 2500
2266 ev_stop (EV_A_ (W)w); 2501 ev_stop (EV_A_ (W)w);
2267 --idleall; 2502 --idleall;
2268 } 2503 }
2269} 2504}
2286 clear_pending (EV_A_ (W)w); 2521 clear_pending (EV_A_ (W)w);
2287 if (expect_false (!ev_is_active (w))) 2522 if (expect_false (!ev_is_active (w)))
2288 return; 2523 return;
2289 2524
2290 { 2525 {
2291 int active = ((W)w)->active; 2526 int active = ev_active (w);
2527
2292 prepares [active - 1] = prepares [--preparecnt]; 2528 prepares [active - 1] = prepares [--preparecnt];
2293 ((W)prepares [active - 1])->active = active; 2529 ev_active (prepares [active - 1]) = active;
2294 } 2530 }
2295 2531
2296 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
2297} 2533}
2298 2534
2313 clear_pending (EV_A_ (W)w); 2549 clear_pending (EV_A_ (W)w);
2314 if (expect_false (!ev_is_active (w))) 2550 if (expect_false (!ev_is_active (w)))
2315 return; 2551 return;
2316 2552
2317 { 2553 {
2318 int active = ((W)w)->active; 2554 int active = ev_active (w);
2555
2319 checks [active - 1] = checks [--checkcnt]; 2556 checks [active - 1] = checks [--checkcnt];
2320 ((W)checks [active - 1])->active = active; 2557 ev_active (checks [active - 1]) = active;
2321 } 2558 }
2322 2559
2323 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
2324} 2561}
2325 2562
2421 clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
2423 return; 2660 return;
2424 2661
2425 { 2662 {
2426 int active = ((W)w)->active; 2663 int active = ev_active (w);
2664
2427 forks [active - 1] = forks [--forkcnt]; 2665 forks [active - 1] = forks [--forkcnt];
2428 ((W)forks [active - 1])->active = active; 2666 ev_active (forks [active - 1]) = active;
2429 } 2667 }
2430 2668
2431 ev_stop (EV_A_ (W)w); 2669 ev_stop (EV_A_ (W)w);
2432} 2670}
2433#endif 2671#endif
2452 clear_pending (EV_A_ (W)w); 2690 clear_pending (EV_A_ (W)w);
2453 if (expect_false (!ev_is_active (w))) 2691 if (expect_false (!ev_is_active (w)))
2454 return; 2692 return;
2455 2693
2456 { 2694 {
2457 int active = ((W)w)->active; 2695 int active = ev_active (w);
2696
2458 asyncs [active - 1] = asyncs [--asynccnt]; 2697 asyncs [active - 1] = asyncs [--asynccnt];
2459 ((W)asyncs [active - 1])->active = active; 2698 ev_active (asyncs [active - 1]) = active;
2460 } 2699 }
2461 2700
2462 ev_stop (EV_A_ (W)w); 2701 ev_stop (EV_A_ (W)w);
2463} 2702}
2464 2703
2465void 2704void
2466ev_async_send (EV_P_ ev_async *w) 2705ev_async_send (EV_P_ ev_async *w)
2467{ 2706{
2468 w->sent = 1; 2707 w->sent = 1;
2469 evpipe_write (EV_A_ 0, 1); 2708 evpipe_write (EV_A_ &gotasync);
2470} 2709}
2471#endif 2710#endif
2472 2711
2473/*****************************************************************************/ 2712/*****************************************************************************/
2474 2713

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines