ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.210 by root, Sat Feb 9 00:34:11 2008 UTC vs.
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 259
217#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
220#endif 263#endif
241 284
242#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 286# include <winsock.h>
244#endif 287#endif
245 288
289#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
299#endif
300
246/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
247 308
248/* 309/*
249 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
265#else 326#else
266# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
267# define noinline 328# define noinline
268# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 330# define inline
270# endif 331# endif
271#endif 332#endif
272 333
273#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
288 349
289typedef ev_watcher *W; 350typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
292 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
293#if EV_USE_MONOTONIC 357#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 359/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 361#endif
323 perror (msg); 387 perror (msg);
324 abort (); 388 abort ();
325 } 389 }
326} 390}
327 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
328static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 408
330void 409void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 411{
333 alloc = cb; 412 alloc = cb;
334} 413}
335 414
336inline_speed void * 415inline_speed void *
337ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
338{ 417{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
340 419
341 if (!ptr && size) 420 if (!ptr && size)
342 { 421 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 423 abort ();
367 W w; 446 W w;
368 int events; 447 int events;
369} ANPENDING; 448} ANPENDING;
370 449
371#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
372typedef struct 452typedef struct
373{ 453{
374 WL head; 454 WL head;
375} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
376#endif 474#endif
377 475
378#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
379 477
380 struct ev_loop 478 struct ev_loop
451 ts.tv_sec = (time_t)delay; 549 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 551
454 nanosleep (&ts, 0); 552 nanosleep (&ts, 0);
455#elif defined(_WIN32) 553#elif defined(_WIN32)
456 Sleep (delay * 1e3); 554 Sleep ((unsigned long)(delay * 1e3));
457#else 555#else
458 struct timeval tv; 556 struct timeval tv;
459 557
460 tv.tv_sec = (time_t)delay; 558 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 562#endif
465 } 563 }
466} 564}
467 565
468/*****************************************************************************/ 566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 569
470int inline_size 570int inline_size
471array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
472{ 572{
473 int ncur = cur + 1; 573 int ncur = cur + 1;
474 574
475 do 575 do
476 ncur <<= 1; 576 ncur <<= 1;
477 while (cnt > ncur); 577 while (cnt > ncur);
478 578
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 581 {
482 ncur *= elem; 582 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 585 ncur /= elem;
486 } 586 }
487 587
488 return ncur; 588 return ncur;
702 } 802 }
703} 803}
704 804
705/*****************************************************************************/ 805/*****************************************************************************/
706 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
707void inline_speed 827void inline_speed
708upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
709{ 829{
710 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
711 832
712 while (k) 833 for (;;)
713 { 834 {
714 int p = (k - 1) >> 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 838
716 if (heap [p]->at <= w->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
717 break; 855 break;
718 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
719 heap [k] = heap [p]; 919 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 921 k = p;
722 } 922 }
723 923
724 heap [k] = w; 924 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 925 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 926}
755 927
756void inline_size 928void inline_size
757adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
758{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 932 upheap (heap, k);
933 else
760 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
761} 947}
762 948
763/*****************************************************************************/ 949/*****************************************************************************/
764 950
765typedef struct 951typedef struct
802static void noinline 988static void noinline
803evpipe_init (EV_P) 989evpipe_init (EV_P)
804{ 990{
805 if (!ev_is_active (&pipeev)) 991 if (!ev_is_active (&pipeev))
806 { 992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
807 while (pipe (evpipe)) 1003 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1004 syserr ("(libev) error creating signal/async pipe");
809 1005
810 fd_intern (evpipe [0]); 1006 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1007 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
1010
814 ev_io_start (EV_A_ &pipeev); 1011 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1012 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1013 }
817} 1014}
818 1015
819void inline_size 1016void inline_size
820evpipe_write (EV_P_ int sig, int async) 1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1018{
822 if (!(gotasync || gotsig)) 1019 if (!*flag)
823 { 1020 {
824 int old_errno = errno; /* save errno becaue write might clobber it */ 1021 int old_errno = errno; /* save errno because write might clobber it */
825 1022
826 if (sig) gotsig = 1; 1023 *flag = 1;
827 if (async) gotasync = 1;
828 1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
829 write (evpipe [1], &old_errno, 1); 1033 write (evpipe [1], &old_errno, 1);
830 1034
831 errno = old_errno; 1035 errno = old_errno;
832 } 1036 }
833} 1037}
834 1038
835static void 1039static void
836pipecb (EV_P_ ev_io *iow, int revents) 1040pipecb (EV_P_ ev_io *iow, int revents)
837{ 1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
838 { 1044 {
839 int dummy; 1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
840 read (evpipe [0], &dummy, 1); 1052 read (evpipe [0], &dummy, 1);
841 } 1053 }
842 1054
843 if (gotsig) 1055 if (gotsig && ev_is_default_loop (EV_A))
844 { 1056 {
845 int signum; 1057 int signum;
846 gotsig = 0; 1058 gotsig = 0;
847 1059
848 for (signum = signalmax; signum--; ) 1060 for (signum = signalmax; signum--; )
867} 1079}
868 1080
869/*****************************************************************************/ 1081/*****************************************************************************/
870 1082
871static void 1083static void
872sighandler (int signum) 1084ev_sighandler (int signum)
873{ 1085{
874#if EV_MULTIPLICITY 1086#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 1087 struct ev_loop *loop = &default_loop_struct;
876#endif 1088#endif
877 1089
878#if _WIN32 1090#if _WIN32
879 signal (signum, sighandler); 1091 signal (signum, ev_sighandler);
880#endif 1092#endif
881 1093
882 signals [signum - 1].gotsig = 1; 1094 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0); 1095 evpipe_write (EV_A_ &gotsig);
884} 1096}
885 1097
886void noinline 1098void noinline
887ev_feed_signal_event (EV_P_ int signum) 1099ev_feed_signal_event (EV_P_ int signum)
888{ 1100{
914#ifndef WIFCONTINUED 1126#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 1127# define WIFCONTINUED(status) 0
916#endif 1128#endif
917 1129
918void inline_speed 1130void inline_speed
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1131child_reap (EV_P_ int chain, int pid, int status)
920{ 1132{
921 ev_child *w; 1133 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 1135
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 1137 {
926 if ((w->pid == pid || !w->pid) 1138 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 1139 && (!traced || (w->flags & 1)))
928 { 1140 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 1142 w->rpid = pid;
931 w->rstatus = status; 1143 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 1145 }
934 } 1146 }
948 if (!WCONTINUED 1160 if (!WCONTINUED
949 || errno != EINVAL 1161 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 1163 return;
952 1164
953 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 1166 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 1168
957 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 1170 if (EV_PID_HASHSIZE > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 1172}
961 1173
962#endif 1174#endif
963 1175
964/*****************************************************************************/ 1176/*****************************************************************************/
1107 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure () 1320 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
1111 1323
1112 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
1113 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
1114 1326
1115#if EV_USE_PORT 1327#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 1329#endif
1141 if (ev_is_active (&pipeev)) 1353 if (ev_is_active (&pipeev))
1142 { 1354 {
1143 ev_ref (EV_A); /* signal watcher */ 1355 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev); 1356 ev_io_stop (EV_A_ &pipeev);
1145 1357
1146 close (evpipe [0]); evpipe [0] = 0; 1358#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1148 } 1368 }
1149 1369
1150#if EV_USE_INOTIFY 1370#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 1371 if (fs_fd >= 0)
1152 close (fs_fd); 1372 close (fs_fd);
1197#endif 1417#endif
1198 1418
1199 backend = 0; 1419 backend = 0;
1200} 1420}
1201 1421
1422#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 1423void inline_size infy_fork (EV_P);
1424#endif
1203 1425
1204void inline_size 1426void inline_size
1205loop_fork (EV_P) 1427loop_fork (EV_P)
1206{ 1428{
1207#if EV_USE_PORT 1429#if EV_USE_PORT
1218#endif 1440#endif
1219 1441
1220 if (ev_is_active (&pipeev)) 1442 if (ev_is_active (&pipeev))
1221 { 1443 {
1222 /* this "locks" the handlers against writing to the pipe */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1223 gotsig = gotasync = 1; 1448 gotasync = 1;
1449#endif
1224 1450
1225 ev_ref (EV_A); 1451 ev_ref (EV_A);
1226 ev_io_stop (EV_A_ &pipeev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1227 close (evpipe [0]); 1461 close (evpipe [0]);
1228 close (evpipe [1]); 1462 close (evpipe [1]);
1463 }
1229 1464
1230 evpipe_init (EV_A); 1465 evpipe_init (EV_A);
1231 /* now iterate over everything, in case we missed something */ 1466 /* now iterate over everything, in case we missed something */
1232 pipecb (EV_A_ &pipeev, EV_READ); 1467 pipecb (EV_A_ &pipeev, EV_READ);
1233 } 1468 }
1234 1469
1235 postfork = 0; 1470 postfork = 0;
1236} 1471}
1237 1472
1238#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1239struct ev_loop * 1475struct ev_loop *
1240ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1241{ 1477{
1242 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1243 1479
1262ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1263{ 1499{
1264 postfork = 1; /* must be in line with ev_default_fork */ 1500 postfork = 1; /* must be in line with ev_default_fork */
1265} 1501}
1266 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idleall >= 0);
1574 assert (idlemax [i] >= idlecnt [i]);
1575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1576#endif
1577 }
1578
1579#if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt);
1582#endif
1583
1584#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif
1588
1589 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt);
1591
1592 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt);
1594
1595# if 0
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1267#endif 1598# endif
1599#endif
1600}
1601
1602#endif /* multiplicity */
1268 1603
1269#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
1270struct ev_loop * 1605struct ev_loop *
1271ev_default_loop_init (unsigned int flags) 1606ev_default_loop_init (unsigned int flags)
1272#else 1607#else
1348 { 1683 {
1349 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1350 1685
1351 p->w->pending = 0; 1686 p->w->pending = 0;
1352 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1353 } 1689 }
1354 } 1690 }
1355} 1691}
1356
1357void inline_size
1358timers_reify (EV_P)
1359{
1360 while (timercnt && ((WT)timers [0])->at <= mn_now)
1361 {
1362 ev_timer *w = (ev_timer *)timers [0];
1363
1364 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1365
1366 /* first reschedule or stop timer */
1367 if (w->repeat)
1368 {
1369 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1370
1371 ((WT)w)->at += w->repeat;
1372 if (((WT)w)->at < mn_now)
1373 ((WT)w)->at = mn_now;
1374
1375 downheap (timers, timercnt, 0);
1376 }
1377 else
1378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1379
1380 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1381 }
1382}
1383
1384#if EV_PERIODIC_ENABLE
1385void inline_size
1386periodics_reify (EV_P)
1387{
1388 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1389 {
1390 ev_periodic *w = (ev_periodic *)periodics [0];
1391
1392 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1393
1394 /* first reschedule or stop timer */
1395 if (w->reschedule_cb)
1396 {
1397 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1398 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1399 downheap (periodics, periodiccnt, 0);
1400 }
1401 else if (w->interval)
1402 {
1403 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1405 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1406 downheap (periodics, periodiccnt, 0);
1407 }
1408 else
1409 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1410
1411 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1412 }
1413}
1414
1415static void noinline
1416periodics_reschedule (EV_P)
1417{
1418 int i;
1419
1420 /* adjust periodics after time jump */
1421 for (i = 0; i < periodiccnt; ++i)
1422 {
1423 ev_periodic *w = (ev_periodic *)periodics [i];
1424
1425 if (w->reschedule_cb)
1426 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1427 else if (w->interval)
1428 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1429 }
1430
1431 /* now rebuild the heap */
1432 for (i = periodiccnt >> 1; i--; )
1433 downheap (periodics, periodiccnt, i);
1434}
1435#endif
1436 1692
1437#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1438void inline_size 1694void inline_size
1439idle_reify (EV_P) 1695idle_reify (EV_P)
1440{ 1696{
1452 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1453 break; 1709 break;
1454 } 1710 }
1455 } 1711 }
1456 } 1712 }
1713}
1714#endif
1715
1716void inline_size
1717timers_reify (EV_P)
1718{
1719 EV_FREQUENT_CHECK;
1720
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 {
1730 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now;
1733
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735
1736 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0);
1738 }
1739 else
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1744 }
1745}
1746
1747#if EV_PERIODIC_ENABLE
1748void inline_size
1749periodics_reify (EV_P)
1750{
1751 EV_FREQUENT_CHECK;
1752
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1756
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0);
1768 }
1769 else if (w->interval)
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1793 }
1794}
1795
1796static void noinline
1797periodics_reschedule (EV_P)
1798{
1799 int i;
1800
1801 /* adjust periodics after time jump */
1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1803 {
1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1805
1806 if (w->reschedule_cb)
1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1808 else if (w->interval)
1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1810
1811 ANHE_at_cache (periodics [i]);
1812 }
1813
1814 reheap (periodics, periodiccnt);
1457} 1815}
1458#endif 1816#endif
1459 1817
1460void inline_speed 1818void inline_speed
1461time_update (EV_P_ ev_tstamp max_block) 1819time_update (EV_P_ ev_tstamp max_block)
1490 */ 1848 */
1491 for (i = 4; --i; ) 1849 for (i = 4; --i; )
1492 { 1850 {
1493 rtmn_diff = ev_rt_now - mn_now; 1851 rtmn_diff = ev_rt_now - mn_now;
1494 1852
1495 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1496 return; /* all is well */ 1854 return; /* all is well */
1497 1855
1498 ev_rt_now = ev_time (); 1856 ev_rt_now = ev_time ();
1499 mn_now = get_clock (); 1857 mn_now = get_clock ();
1500 now_floor = mn_now; 1858 now_floor = mn_now;
1516#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1517 periodics_reschedule (EV_A); 1875 periodics_reschedule (EV_A);
1518#endif 1876#endif
1519 /* adjust timers. this is easy, as the offset is the same for all of them */ 1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1520 for (i = 0; i < timercnt; ++i) 1878 for (i = 0; i < timercnt; ++i)
1879 {
1880 ANHE *he = timers + i + HEAP0;
1521 ((WT)timers [i])->at += ev_rt_now - mn_now; 1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1522 } 1884 }
1523 1885
1524 mn_now = ev_rt_now; 1886 mn_now = ev_rt_now;
1525 } 1887 }
1526} 1888}
1540static int loop_done; 1902static int loop_done;
1541 1903
1542void 1904void
1543ev_loop (EV_P_ int flags) 1905ev_loop (EV_P_ int flags)
1544{ 1906{
1545 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1907 loop_done = EVUNLOOP_CANCEL;
1546 ? EVUNLOOP_ONE
1547 : EVUNLOOP_CANCEL;
1548 1908
1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1550 1910
1551 do 1911 do
1552 { 1912 {
1913#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A);
1915#endif
1916
1553#ifndef _WIN32 1917#ifndef _WIN32
1554 if (expect_false (curpid)) /* penalise the forking check even more */ 1918 if (expect_false (curpid)) /* penalise the forking check even more */
1555 if (expect_false (getpid () != curpid)) 1919 if (expect_false (getpid () != curpid))
1556 { 1920 {
1557 curpid = getpid (); 1921 curpid = getpid ();
1598 1962
1599 waittime = MAX_BLOCKTIME; 1963 waittime = MAX_BLOCKTIME;
1600 1964
1601 if (timercnt) 1965 if (timercnt)
1602 { 1966 {
1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1967 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1604 if (waittime > to) waittime = to; 1968 if (waittime > to) waittime = to;
1605 } 1969 }
1606 1970
1607#if EV_PERIODIC_ENABLE 1971#if EV_PERIODIC_ENABLE
1608 if (periodiccnt) 1972 if (periodiccnt)
1609 { 1973 {
1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1611 if (waittime > to) waittime = to; 1975 if (waittime > to) waittime = to;
1612 } 1976 }
1613#endif 1977#endif
1614 1978
1615 if (expect_false (waittime < timeout_blocktime)) 1979 if (expect_false (waittime < timeout_blocktime))
1648 /* queue check watchers, to be executed first */ 2012 /* queue check watchers, to be executed first */
1649 if (expect_false (checkcnt)) 2013 if (expect_false (checkcnt))
1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2014 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1651 2015
1652 call_pending (EV_A); 2016 call_pending (EV_A);
1653
1654 } 2017 }
1655 while (expect_true (activecnt && !loop_done)); 2018 while (expect_true (
2019 activecnt
2020 && !loop_done
2021 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2022 ));
1656 2023
1657 if (loop_done == EVUNLOOP_ONE) 2024 if (loop_done == EVUNLOOP_ONE)
1658 loop_done = EVUNLOOP_CANCEL; 2025 loop_done = EVUNLOOP_CANCEL;
1659} 2026}
1660 2027
1749 if (expect_false (ev_is_active (w))) 2116 if (expect_false (ev_is_active (w)))
1750 return; 2117 return;
1751 2118
1752 assert (("ev_io_start called with negative fd", fd >= 0)); 2119 assert (("ev_io_start called with negative fd", fd >= 0));
1753 2120
2121 EV_FREQUENT_CHECK;
2122
1754 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1756 wlist_add (&anfds[fd].head, (WL)w); 2125 wlist_add (&anfds[fd].head, (WL)w);
1757 2126
1758 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1759 w->events &= ~EV_IOFDSET; 2128 w->events &= ~EV_IOFDSET;
2129
2130 EV_FREQUENT_CHECK;
1760} 2131}
1761 2132
1762void noinline 2133void noinline
1763ev_io_stop (EV_P_ ev_io *w) 2134ev_io_stop (EV_P_ ev_io *w)
1764{ 2135{
1765 clear_pending (EV_A_ (W)w); 2136 clear_pending (EV_A_ (W)w);
1766 if (expect_false (!ev_is_active (w))) 2137 if (expect_false (!ev_is_active (w)))
1767 return; 2138 return;
1768 2139
1769 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2141
2142 EV_FREQUENT_CHECK;
1770 2143
1771 wlist_del (&anfds[w->fd].head, (WL)w); 2144 wlist_del (&anfds[w->fd].head, (WL)w);
1772 ev_stop (EV_A_ (W)w); 2145 ev_stop (EV_A_ (W)w);
1773 2146
1774 fd_change (EV_A_ w->fd, 1); 2147 fd_change (EV_A_ w->fd, 1);
2148
2149 EV_FREQUENT_CHECK;
1775} 2150}
1776 2151
1777void noinline 2152void noinline
1778ev_timer_start (EV_P_ ev_timer *w) 2153ev_timer_start (EV_P_ ev_timer *w)
1779{ 2154{
1780 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1781 return; 2156 return;
1782 2157
1783 ((WT)w)->at += mn_now; 2158 ev_at (w) += mn_now;
1784 2159
1785 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1786 2161
2162 EV_FREQUENT_CHECK;
2163
2164 ++timercnt;
1787 ev_start (EV_A_ (W)w, ++timercnt); 2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1788 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2166 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1789 timers [timercnt - 1] = (WT)w; 2167 ANHE_w (timers [ev_active (w)]) = (WT)w;
1790 upheap (timers, timercnt - 1); 2168 ANHE_at_cache (timers [ev_active (w)]);
2169 upheap (timers, ev_active (w));
1791 2170
2171 EV_FREQUENT_CHECK;
2172
1792 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1793} 2174}
1794 2175
1795void noinline 2176void noinline
1796ev_timer_stop (EV_P_ ev_timer *w) 2177ev_timer_stop (EV_P_ ev_timer *w)
1797{ 2178{
1798 clear_pending (EV_A_ (W)w); 2179 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2180 if (expect_false (!ev_is_active (w)))
1800 return; 2181 return;
1801 2182
1802 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2183 EV_FREQUENT_CHECK;
1803 2184
1804 { 2185 {
1805 int active = ((W)w)->active; 2186 int active = ev_active (w);
1806 2187
2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2189
2190 --timercnt;
2191
1807 if (expect_true (--active < --timercnt)) 2192 if (expect_true (active < timercnt + HEAP0))
1808 { 2193 {
1809 timers [active] = timers [timercnt]; 2194 timers [active] = timers [timercnt + HEAP0];
1810 adjustheap (timers, timercnt, active); 2195 adjustheap (timers, timercnt, active);
1811 } 2196 }
1812 } 2197 }
1813 2198
1814 ((WT)w)->at -= mn_now; 2199 EV_FREQUENT_CHECK;
2200
2201 ev_at (w) -= mn_now;
1815 2202
1816 ev_stop (EV_A_ (W)w); 2203 ev_stop (EV_A_ (W)w);
1817} 2204}
1818 2205
1819void noinline 2206void noinline
1820ev_timer_again (EV_P_ ev_timer *w) 2207ev_timer_again (EV_P_ ev_timer *w)
1821{ 2208{
2209 EV_FREQUENT_CHECK;
2210
1822 if (ev_is_active (w)) 2211 if (ev_is_active (w))
1823 { 2212 {
1824 if (w->repeat) 2213 if (w->repeat)
1825 { 2214 {
1826 ((WT)w)->at = mn_now + w->repeat; 2215 ev_at (w) = mn_now + w->repeat;
2216 ANHE_at_cache (timers [ev_active (w)]);
1827 adjustheap (timers, timercnt, ((W)w)->active - 1); 2217 adjustheap (timers, timercnt, ev_active (w));
1828 } 2218 }
1829 else 2219 else
1830 ev_timer_stop (EV_A_ w); 2220 ev_timer_stop (EV_A_ w);
1831 } 2221 }
1832 else if (w->repeat) 2222 else if (w->repeat)
1833 { 2223 {
1834 w->at = w->repeat; 2224 ev_at (w) = w->repeat;
1835 ev_timer_start (EV_A_ w); 2225 ev_timer_start (EV_A_ w);
1836 } 2226 }
2227
2228 EV_FREQUENT_CHECK;
1837} 2229}
1838 2230
1839#if EV_PERIODIC_ENABLE 2231#if EV_PERIODIC_ENABLE
1840void noinline 2232void noinline
1841ev_periodic_start (EV_P_ ev_periodic *w) 2233ev_periodic_start (EV_P_ ev_periodic *w)
1842{ 2234{
1843 if (expect_false (ev_is_active (w))) 2235 if (expect_false (ev_is_active (w)))
1844 return; 2236 return;
1845 2237
1846 if (w->reschedule_cb) 2238 if (w->reschedule_cb)
1847 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2239 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1848 else if (w->interval) 2240 else if (w->interval)
1849 { 2241 {
1850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2242 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1851 /* this formula differs from the one in periodic_reify because we do not always round up */ 2243 /* this formula differs from the one in periodic_reify because we do not always round up */
1852 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1853 } 2245 }
1854 else 2246 else
1855 ((WT)w)->at = w->offset; 2247 ev_at (w) = w->offset;
1856 2248
2249 EV_FREQUENT_CHECK;
2250
2251 ++periodiccnt;
1857 ev_start (EV_A_ (W)w, ++periodiccnt); 2252 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1858 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2253 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1859 periodics [periodiccnt - 1] = (WT)w; 2254 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1860 upheap (periodics, periodiccnt - 1); 2255 ANHE_at_cache (periodics [ev_active (w)]);
2256 upheap (periodics, ev_active (w));
1861 2257
2258 EV_FREQUENT_CHECK;
2259
1862 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1863} 2261}
1864 2262
1865void noinline 2263void noinline
1866ev_periodic_stop (EV_P_ ev_periodic *w) 2264ev_periodic_stop (EV_P_ ev_periodic *w)
1867{ 2265{
1868 clear_pending (EV_A_ (W)w); 2266 clear_pending (EV_A_ (W)w);
1869 if (expect_false (!ev_is_active (w))) 2267 if (expect_false (!ev_is_active (w)))
1870 return; 2268 return;
1871 2269
1872 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2270 EV_FREQUENT_CHECK;
1873 2271
1874 { 2272 {
1875 int active = ((W)w)->active; 2273 int active = ev_active (w);
1876 2274
2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2276
2277 --periodiccnt;
2278
1877 if (expect_true (--active < --periodiccnt)) 2279 if (expect_true (active < periodiccnt + HEAP0))
1878 { 2280 {
1879 periodics [active] = periodics [periodiccnt]; 2281 periodics [active] = periodics [periodiccnt + HEAP0];
1880 adjustheap (periodics, periodiccnt, active); 2282 adjustheap (periodics, periodiccnt, active);
1881 } 2283 }
1882 } 2284 }
1883 2285
2286 EV_FREQUENT_CHECK;
2287
1884 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
1885} 2289}
1886 2290
1887void noinline 2291void noinline
1888ev_periodic_again (EV_P_ ev_periodic *w) 2292ev_periodic_again (EV_P_ ev_periodic *w)
1907 return; 2311 return;
1908 2312
1909 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1910 2314
1911 evpipe_init (EV_A); 2315 evpipe_init (EV_A);
2316
2317 EV_FREQUENT_CHECK;
1912 2318
1913 { 2319 {
1914#ifndef _WIN32 2320#ifndef _WIN32
1915 sigset_t full, prev; 2321 sigset_t full, prev;
1916 sigfillset (&full); 2322 sigfillset (&full);
1928 wlist_add (&signals [w->signum - 1].head, (WL)w); 2334 wlist_add (&signals [w->signum - 1].head, (WL)w);
1929 2335
1930 if (!((WL)w)->next) 2336 if (!((WL)w)->next)
1931 { 2337 {
1932#if _WIN32 2338#if _WIN32
1933 signal (w->signum, sighandler); 2339 signal (w->signum, ev_sighandler);
1934#else 2340#else
1935 struct sigaction sa; 2341 struct sigaction sa;
1936 sa.sa_handler = sighandler; 2342 sa.sa_handler = ev_sighandler;
1937 sigfillset (&sa.sa_mask); 2343 sigfillset (&sa.sa_mask);
1938 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1939 sigaction (w->signum, &sa, 0); 2345 sigaction (w->signum, &sa, 0);
1940#endif 2346#endif
1941 } 2347 }
2348
2349 EV_FREQUENT_CHECK;
1942} 2350}
1943 2351
1944void noinline 2352void noinline
1945ev_signal_stop (EV_P_ ev_signal *w) 2353ev_signal_stop (EV_P_ ev_signal *w)
1946{ 2354{
1947 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
1949 return; 2357 return;
1950 2358
2359 EV_FREQUENT_CHECK;
2360
1951 wlist_del (&signals [w->signum - 1].head, (WL)w); 2361 wlist_del (&signals [w->signum - 1].head, (WL)w);
1952 ev_stop (EV_A_ (W)w); 2362 ev_stop (EV_A_ (W)w);
1953 2363
1954 if (!signals [w->signum - 1].head) 2364 if (!signals [w->signum - 1].head)
1955 signal (w->signum, SIG_DFL); 2365 signal (w->signum, SIG_DFL);
2366
2367 EV_FREQUENT_CHECK;
1956} 2368}
1957 2369
1958void 2370void
1959ev_child_start (EV_P_ ev_child *w) 2371ev_child_start (EV_P_ ev_child *w)
1960{ 2372{
1962 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1963#endif 2375#endif
1964 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
1965 return; 2377 return;
1966 2378
2379 EV_FREQUENT_CHECK;
2380
1967 ev_start (EV_A_ (W)w, 1); 2381 ev_start (EV_A_ (W)w, 1);
1968 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2383
2384 EV_FREQUENT_CHECK;
1969} 2385}
1970 2386
1971void 2387void
1972ev_child_stop (EV_P_ ev_child *w) 2388ev_child_stop (EV_P_ ev_child *w)
1973{ 2389{
1974 clear_pending (EV_A_ (W)w); 2390 clear_pending (EV_A_ (W)w);
1975 if (expect_false (!ev_is_active (w))) 2391 if (expect_false (!ev_is_active (w)))
1976 return; 2392 return;
1977 2393
2394 EV_FREQUENT_CHECK;
2395
1978 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1979 ev_stop (EV_A_ (W)w); 2397 ev_stop (EV_A_ (W)w);
2398
2399 EV_FREQUENT_CHECK;
1980} 2400}
1981 2401
1982#if EV_STAT_ENABLE 2402#if EV_STAT_ENABLE
1983 2403
1984# ifdef _WIN32 2404# ifdef _WIN32
2002 if (w->wd < 0) 2422 if (w->wd < 0)
2003 { 2423 {
2004 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2424 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2005 2425
2006 /* monitor some parent directory for speedup hints */ 2426 /* monitor some parent directory for speedup hints */
2427 /* note that exceeding the hardcoded limit is not a correctness issue, */
2428 /* but an efficiency issue only */
2007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2429 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2008 { 2430 {
2009 char path [4096]; 2431 char path [4096];
2010 strcpy (path, w->path); 2432 strcpy (path, w->path);
2011 2433
2210 else 2632 else
2211#endif 2633#endif
2212 ev_timer_start (EV_A_ &w->timer); 2634 ev_timer_start (EV_A_ &w->timer);
2213 2635
2214 ev_start (EV_A_ (W)w, 1); 2636 ev_start (EV_A_ (W)w, 1);
2637
2638 EV_FREQUENT_CHECK;
2215} 2639}
2216 2640
2217void 2641void
2218ev_stat_stop (EV_P_ ev_stat *w) 2642ev_stat_stop (EV_P_ ev_stat *w)
2219{ 2643{
2220 clear_pending (EV_A_ (W)w); 2644 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 2645 if (expect_false (!ev_is_active (w)))
2222 return; 2646 return;
2223 2647
2648 EV_FREQUENT_CHECK;
2649
2224#if EV_USE_INOTIFY 2650#if EV_USE_INOTIFY
2225 infy_del (EV_A_ w); 2651 infy_del (EV_A_ w);
2226#endif 2652#endif
2227 ev_timer_stop (EV_A_ &w->timer); 2653 ev_timer_stop (EV_A_ &w->timer);
2228 2654
2229 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
2656
2657 EV_FREQUENT_CHECK;
2230} 2658}
2231#endif 2659#endif
2232 2660
2233#if EV_IDLE_ENABLE 2661#if EV_IDLE_ENABLE
2234void 2662void
2236{ 2664{
2237 if (expect_false (ev_is_active (w))) 2665 if (expect_false (ev_is_active (w)))
2238 return; 2666 return;
2239 2667
2240 pri_adjust (EV_A_ (W)w); 2668 pri_adjust (EV_A_ (W)w);
2669
2670 EV_FREQUENT_CHECK;
2241 2671
2242 { 2672 {
2243 int active = ++idlecnt [ABSPRI (w)]; 2673 int active = ++idlecnt [ABSPRI (w)];
2244 2674
2245 ++idleall; 2675 ++idleall;
2246 ev_start (EV_A_ (W)w, active); 2676 ev_start (EV_A_ (W)w, active);
2247 2677
2248 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2678 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2249 idles [ABSPRI (w)][active - 1] = w; 2679 idles [ABSPRI (w)][active - 1] = w;
2250 } 2680 }
2681
2682 EV_FREQUENT_CHECK;
2251} 2683}
2252 2684
2253void 2685void
2254ev_idle_stop (EV_P_ ev_idle *w) 2686ev_idle_stop (EV_P_ ev_idle *w)
2255{ 2687{
2256 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
2257 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
2258 return; 2690 return;
2259 2691
2692 EV_FREQUENT_CHECK;
2693
2260 { 2694 {
2261 int active = ((W)w)->active; 2695 int active = ev_active (w);
2262 2696
2263 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2697 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2264 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2698 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2265 2699
2266 ev_stop (EV_A_ (W)w); 2700 ev_stop (EV_A_ (W)w);
2267 --idleall; 2701 --idleall;
2268 } 2702 }
2703
2704 EV_FREQUENT_CHECK;
2269} 2705}
2270#endif 2706#endif
2271 2707
2272void 2708void
2273ev_prepare_start (EV_P_ ev_prepare *w) 2709ev_prepare_start (EV_P_ ev_prepare *w)
2274{ 2710{
2275 if (expect_false (ev_is_active (w))) 2711 if (expect_false (ev_is_active (w)))
2276 return; 2712 return;
2713
2714 EV_FREQUENT_CHECK;
2277 2715
2278 ev_start (EV_A_ (W)w, ++preparecnt); 2716 ev_start (EV_A_ (W)w, ++preparecnt);
2279 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2717 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2280 prepares [preparecnt - 1] = w; 2718 prepares [preparecnt - 1] = w;
2719
2720 EV_FREQUENT_CHECK;
2281} 2721}
2282 2722
2283void 2723void
2284ev_prepare_stop (EV_P_ ev_prepare *w) 2724ev_prepare_stop (EV_P_ ev_prepare *w)
2285{ 2725{
2286 clear_pending (EV_A_ (W)w); 2726 clear_pending (EV_A_ (W)w);
2287 if (expect_false (!ev_is_active (w))) 2727 if (expect_false (!ev_is_active (w)))
2288 return; 2728 return;
2289 2729
2730 EV_FREQUENT_CHECK;
2731
2290 { 2732 {
2291 int active = ((W)w)->active; 2733 int active = ev_active (w);
2734
2292 prepares [active - 1] = prepares [--preparecnt]; 2735 prepares [active - 1] = prepares [--preparecnt];
2293 ((W)prepares [active - 1])->active = active; 2736 ev_active (prepares [active - 1]) = active;
2294 } 2737 }
2295 2738
2296 ev_stop (EV_A_ (W)w); 2739 ev_stop (EV_A_ (W)w);
2740
2741 EV_FREQUENT_CHECK;
2297} 2742}
2298 2743
2299void 2744void
2300ev_check_start (EV_P_ ev_check *w) 2745ev_check_start (EV_P_ ev_check *w)
2301{ 2746{
2302 if (expect_false (ev_is_active (w))) 2747 if (expect_false (ev_is_active (w)))
2303 return; 2748 return;
2749
2750 EV_FREQUENT_CHECK;
2304 2751
2305 ev_start (EV_A_ (W)w, ++checkcnt); 2752 ev_start (EV_A_ (W)w, ++checkcnt);
2306 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2753 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2307 checks [checkcnt - 1] = w; 2754 checks [checkcnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2308} 2757}
2309 2758
2310void 2759void
2311ev_check_stop (EV_P_ ev_check *w) 2760ev_check_stop (EV_P_ ev_check *w)
2312{ 2761{
2313 clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
2314 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
2315 return; 2764 return;
2316 2765
2766 EV_FREQUENT_CHECK;
2767
2317 { 2768 {
2318 int active = ((W)w)->active; 2769 int active = ev_active (w);
2770
2319 checks [active - 1] = checks [--checkcnt]; 2771 checks [active - 1] = checks [--checkcnt];
2320 ((W)checks [active - 1])->active = active; 2772 ev_active (checks [active - 1]) = active;
2321 } 2773 }
2322 2774
2323 ev_stop (EV_A_ (W)w); 2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2324} 2778}
2325 2779
2326#if EV_EMBED_ENABLE 2780#if EV_EMBED_ENABLE
2327void noinline 2781void noinline
2328ev_embed_sweep (EV_P_ ev_embed *w) 2782ev_embed_sweep (EV_P_ ev_embed *w)
2375 struct ev_loop *loop = w->other; 2829 struct ev_loop *loop = w->other;
2376 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2377 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2378 } 2832 }
2379 2833
2834 EV_FREQUENT_CHECK;
2835
2380 ev_set_priority (&w->io, ev_priority (w)); 2836 ev_set_priority (&w->io, ev_priority (w));
2381 ev_io_start (EV_A_ &w->io); 2837 ev_io_start (EV_A_ &w->io);
2382 2838
2383 ev_prepare_init (&w->prepare, embed_prepare_cb); 2839 ev_prepare_init (&w->prepare, embed_prepare_cb);
2384 ev_set_priority (&w->prepare, EV_MINPRI); 2840 ev_set_priority (&w->prepare, EV_MINPRI);
2385 ev_prepare_start (EV_A_ &w->prepare); 2841 ev_prepare_start (EV_A_ &w->prepare);
2386 2842
2387 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2388 2844
2389 ev_start (EV_A_ (W)w, 1); 2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2390} 2848}
2391 2849
2392void 2850void
2393ev_embed_stop (EV_P_ ev_embed *w) 2851ev_embed_stop (EV_P_ ev_embed *w)
2394{ 2852{
2395 clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2396 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2397 return; 2855 return;
2398 2856
2857 EV_FREQUENT_CHECK;
2858
2399 ev_io_stop (EV_A_ &w->io); 2859 ev_io_stop (EV_A_ &w->io);
2400 ev_prepare_stop (EV_A_ &w->prepare); 2860 ev_prepare_stop (EV_A_ &w->prepare);
2401 2861
2402 ev_stop (EV_A_ (W)w); 2862 ev_stop (EV_A_ (W)w);
2863
2864 EV_FREQUENT_CHECK;
2403} 2865}
2404#endif 2866#endif
2405 2867
2406#if EV_FORK_ENABLE 2868#if EV_FORK_ENABLE
2407void 2869void
2408ev_fork_start (EV_P_ ev_fork *w) 2870ev_fork_start (EV_P_ ev_fork *w)
2409{ 2871{
2410 if (expect_false (ev_is_active (w))) 2872 if (expect_false (ev_is_active (w)))
2411 return; 2873 return;
2874
2875 EV_FREQUENT_CHECK;
2412 2876
2413 ev_start (EV_A_ (W)w, ++forkcnt); 2877 ev_start (EV_A_ (W)w, ++forkcnt);
2414 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2878 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2415 forks [forkcnt - 1] = w; 2879 forks [forkcnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2416} 2882}
2417 2883
2418void 2884void
2419ev_fork_stop (EV_P_ ev_fork *w) 2885ev_fork_stop (EV_P_ ev_fork *w)
2420{ 2886{
2421 clear_pending (EV_A_ (W)w); 2887 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w))) 2888 if (expect_false (!ev_is_active (w)))
2423 return; 2889 return;
2424 2890
2891 EV_FREQUENT_CHECK;
2892
2425 { 2893 {
2426 int active = ((W)w)->active; 2894 int active = ev_active (w);
2895
2427 forks [active - 1] = forks [--forkcnt]; 2896 forks [active - 1] = forks [--forkcnt];
2428 ((W)forks [active - 1])->active = active; 2897 ev_active (forks [active - 1]) = active;
2429 } 2898 }
2430 2899
2431 ev_stop (EV_A_ (W)w); 2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2432} 2903}
2433#endif 2904#endif
2434 2905
2435#if EV_ASYNC_ENABLE 2906#if EV_ASYNC_ENABLE
2436void 2907void
2438{ 2909{
2439 if (expect_false (ev_is_active (w))) 2910 if (expect_false (ev_is_active (w)))
2440 return; 2911 return;
2441 2912
2442 evpipe_init (EV_A); 2913 evpipe_init (EV_A);
2914
2915 EV_FREQUENT_CHECK;
2443 2916
2444 ev_start (EV_A_ (W)w, ++asynccnt); 2917 ev_start (EV_A_ (W)w, ++asynccnt);
2445 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2918 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2446 asyncs [asynccnt - 1] = w; 2919 asyncs [asynccnt - 1] = w;
2920
2921 EV_FREQUENT_CHECK;
2447} 2922}
2448 2923
2449void 2924void
2450ev_async_stop (EV_P_ ev_async *w) 2925ev_async_stop (EV_P_ ev_async *w)
2451{ 2926{
2452 clear_pending (EV_A_ (W)w); 2927 clear_pending (EV_A_ (W)w);
2453 if (expect_false (!ev_is_active (w))) 2928 if (expect_false (!ev_is_active (w)))
2454 return; 2929 return;
2455 2930
2931 EV_FREQUENT_CHECK;
2932
2456 { 2933 {
2457 int active = ((W)w)->active; 2934 int active = ev_active (w);
2935
2458 asyncs [active - 1] = asyncs [--asynccnt]; 2936 asyncs [active - 1] = asyncs [--asynccnt];
2459 ((W)asyncs [active - 1])->active = active; 2937 ev_active (asyncs [active - 1]) = active;
2460 } 2938 }
2461 2939
2462 ev_stop (EV_A_ (W)w); 2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2463} 2943}
2464 2944
2465void 2945void
2466ev_async_send (EV_P_ ev_async *w) 2946ev_async_send (EV_P_ ev_async *w)
2467{ 2947{
2468 w->sent = 1; 2948 w->sent = 1;
2469 evpipe_write (EV_A_ 0, 1); 2949 evpipe_write (EV_A_ &gotasync);
2470} 2950}
2471#endif 2951#endif
2472 2952
2473/*****************************************************************************/ 2953/*****************************************************************************/
2474 2954

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines