ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.210 by root, Sat Feb 9 00:34:11 2008 UTC vs.
Revision 1.254 by root, Wed Jun 4 20:26:55 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
160# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
161#endif 174#endif
162 175
163#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
165#endif 178#endif
166 179
167#ifndef EV_USE_NANOSLEEP 180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
168# define EV_USE_NANOSLEEP 0 184# define EV_USE_NANOSLEEP 0
185# endif
169#endif 186#endif
170 187
171#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
173#endif 190#endif
179# define EV_USE_POLL 1 196# define EV_USE_POLL 1
180# endif 197# endif
181#endif 198#endif
182 199
183#ifndef EV_USE_EPOLL 200#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1
203# else
184# define EV_USE_EPOLL 0 204# define EV_USE_EPOLL 0
205# endif
185#endif 206#endif
186 207
187#ifndef EV_USE_KQUEUE 208#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 209# define EV_USE_KQUEUE 0
189#endif 210#endif
191#ifndef EV_USE_PORT 212#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 213# define EV_USE_PORT 0
193#endif 214#endif
194 215
195#ifndef EV_USE_INOTIFY 216#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
218# define EV_USE_INOTIFY 1
219# else
196# define EV_USE_INOTIFY 0 220# define EV_USE_INOTIFY 0
221# endif
197#endif 222#endif
198 223
199#ifndef EV_PID_HASHSIZE 224#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 225# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 226# define EV_PID_HASHSIZE 1
210# else 235# else
211# define EV_INOTIFY_HASHSIZE 16 236# define EV_INOTIFY_HASHSIZE 16
212# endif 237# endif
213#endif 238#endif
214 239
215/**/ 240#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1
243# else
244# define EV_USE_EVENTFD 0
245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
264#endif
265
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 267
217#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 269# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 270# define EV_USE_MONOTONIC 0
220#endif 271#endif
241 292
242#if EV_SELECT_IS_WINSOCKET 293#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 294# include <winsock.h>
244#endif 295#endif
245 296
297#if EV_USE_EVENTFD
298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h>
300# ifdef __cplusplus
301extern "C" {
302# endif
303int eventfd (unsigned int initval, int flags);
304# ifdef __cplusplus
305}
306# endif
307#endif
308
246/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
247 316
248/* 317/*
249 * This is used to avoid floating point rounding problems. 318 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 319 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 320 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 332# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 333# define noinline __attribute__ ((noinline))
265#else 334#else
266# define expect(expr,value) (expr) 335# define expect(expr,value) (expr)
267# define noinline 336# define noinline
268# if __STDC_VERSION__ < 199901L 337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 338# define inline
270# endif 339# endif
271#endif 340#endif
272 341
273#define expect_false(expr) expect ((expr) != 0, 0) 342#define expect_false(expr) expect ((expr) != 0, 0)
288 357
289typedef ev_watcher *W; 358typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 359typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 360typedef ev_watcher_time *WT;
292 361
362#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at
364
293#if EV_USE_MONOTONIC 365#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 367/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 369#endif
323 perror (msg); 395 perror (msg);
324 abort (); 396 abort ();
325 } 397 }
326} 398}
327 399
400static void *
401ev_realloc_emul (void *ptr, long size)
402{
403 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and
405 * the single unix specification, so work around them here.
406 */
407
408 if (size)
409 return realloc (ptr, size);
410
411 free (ptr);
412 return 0;
413}
414
328static void *(*alloc)(void *ptr, long size); 415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 416
330void 417void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 418ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 419{
333 alloc = cb; 420 alloc = cb;
334} 421}
335 422
336inline_speed void * 423inline_speed void *
337ev_realloc (void *ptr, long size) 424ev_realloc (void *ptr, long size)
338{ 425{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 426 ptr = alloc (ptr, size);
340 427
341 if (!ptr && size) 428 if (!ptr && size)
342 { 429 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 431 abort ();
367 W w; 454 W w;
368 int events; 455 int events;
369} ANPENDING; 456} ANPENDING;
370 457
371#if EV_USE_INOTIFY 458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
372typedef struct 460typedef struct
373{ 461{
374 WL head; 462 WL head;
375} ANFS; 463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
376#endif 482#endif
377 483
378#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
379 485
380 struct ev_loop 486 struct ev_loop
451 ts.tv_sec = (time_t)delay; 557 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 559
454 nanosleep (&ts, 0); 560 nanosleep (&ts, 0);
455#elif defined(_WIN32) 561#elif defined(_WIN32)
456 Sleep (delay * 1e3); 562 Sleep ((unsigned long)(delay * 1e3));
457#else 563#else
458 struct timeval tv; 564 struct timeval tv;
459 565
460 tv.tv_sec = (time_t)delay; 566 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 570#endif
465 } 571 }
466} 572}
467 573
468/*****************************************************************************/ 574/*****************************************************************************/
575
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 577
470int inline_size 578int inline_size
471array_nextsize (int elem, int cur, int cnt) 579array_nextsize (int elem, int cur, int cnt)
472{ 580{
473 int ncur = cur + 1; 581 int ncur = cur + 1;
474 582
475 do 583 do
476 ncur <<= 1; 584 ncur <<= 1;
477 while (cnt > ncur); 585 while (cnt > ncur);
478 586
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 589 {
482 ncur *= elem; 590 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 592 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 593 ncur /= elem;
486 } 594 }
487 595
488 return ncur; 596 return ncur;
599 events |= (unsigned char)w->events; 707 events |= (unsigned char)w->events;
600 708
601#if EV_SELECT_IS_WINSOCKET 709#if EV_SELECT_IS_WINSOCKET
602 if (events) 710 if (events)
603 { 711 {
604 unsigned long argp; 712 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 713 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 715 #else
608 anfd->handle = _get_osfhandle (fd); 716 anfd->handle = _get_osfhandle (fd);
609 #endif 717 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 719 }
612#endif 720#endif
613 721
614 { 722 {
615 unsigned char o_events = anfd->events; 723 unsigned char o_events = anfd->events;
668{ 776{
669 int fd; 777 int fd;
670 778
671 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 780 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 781 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
675} 783}
676 784
677/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 786static void noinline
702 } 810 }
703} 811}
704 812
705/*****************************************************************************/ 813/*****************************************************************************/
706 814
815/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree.
819 */
820
821/*
822 * at the moment we allow libev the luxury of two heaps,
823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
824 * which is more cache-efficient.
825 * the difference is about 5% with 50000+ watchers.
826 */
827#if EV_USE_4HEAP
828
829#define DHEAP 4
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
833
834/* away from the root */
707void inline_speed 835void inline_speed
708upheap (WT *heap, int k) 836downheap (ANHE *heap, int N, int k)
709{ 837{
710 WT w = heap [k]; 838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
711 840
712 while (k) 841 for (;;)
713 { 842 {
714 int p = (k - 1) >> 1; 843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 846
716 if (heap [p]->at <= w->at) 847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
849 {
850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
717 break; 863 break;
718 864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
903 heap [k] = heap [c];
904 ev_active (ANHE_w (heap [k])) = k;
905
906 k = c;
907 }
908
909 heap [k] = he;
910 ev_active (ANHE_w (he)) = k;
911}
912#endif
913
914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
719 heap [k] = heap [p]; 927 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 928 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 929 k = p;
722 } 930 }
723 931
724 heap [k] = w; 932 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 933 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 934}
755 935
756void inline_size 936void inline_size
757adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
758{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 940 upheap (heap, k);
941 else
760 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
761} 955}
762 956
763/*****************************************************************************/ 957/*****************************************************************************/
764 958
765typedef struct 959typedef struct
789 983
790void inline_speed 984void inline_speed
791fd_intern (int fd) 985fd_intern (int fd)
792{ 986{
793#ifdef _WIN32 987#ifdef _WIN32
794 int arg = 1; 988 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 990#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 991 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 992 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 993#endif
802static void noinline 996static void noinline
803evpipe_init (EV_P) 997evpipe_init (EV_P)
804{ 998{
805 if (!ev_is_active (&pipeev)) 999 if (!ev_is_active (&pipeev))
806 { 1000 {
1001#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0)
1003 {
1004 evpipe [0] = -1;
1005 fd_intern (evfd);
1006 ev_io_set (&pipeev, evfd, EV_READ);
1007 }
1008 else
1009#endif
1010 {
807 while (pipe (evpipe)) 1011 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1012 syserr ("(libev) error creating signal/async pipe");
809 1013
810 fd_intern (evpipe [0]); 1014 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1015 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1016 ev_io_set (&pipeev, evpipe [0], EV_READ);
1017 }
1018
814 ev_io_start (EV_A_ &pipeev); 1019 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1020 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1021 }
817} 1022}
818 1023
819void inline_size 1024void inline_size
820evpipe_write (EV_P_ int sig, int async) 1025evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1026{
822 if (!(gotasync || gotsig)) 1027 if (!*flag)
823 { 1028 {
824 int old_errno = errno; /* save errno becaue write might clobber it */ 1029 int old_errno = errno; /* save errno because write might clobber it */
825 1030
826 if (sig) gotsig = 1; 1031 *flag = 1;
827 if (async) gotasync = 1;
828 1032
1033#if EV_USE_EVENTFD
1034 if (evfd >= 0)
1035 {
1036 uint64_t counter = 1;
1037 write (evfd, &counter, sizeof (uint64_t));
1038 }
1039 else
1040#endif
829 write (evpipe [1], &old_errno, 1); 1041 write (evpipe [1], &old_errno, 1);
830 1042
831 errno = old_errno; 1043 errno = old_errno;
832 } 1044 }
833} 1045}
834 1046
835static void 1047static void
836pipecb (EV_P_ ev_io *iow, int revents) 1048pipecb (EV_P_ ev_io *iow, int revents)
837{ 1049{
1050#if EV_USE_EVENTFD
1051 if (evfd >= 0)
838 { 1052 {
839 int dummy; 1053 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t));
1055 }
1056 else
1057#endif
1058 {
1059 char dummy;
840 read (evpipe [0], &dummy, 1); 1060 read (evpipe [0], &dummy, 1);
841 } 1061 }
842 1062
843 if (gotsig) 1063 if (gotsig && ev_is_default_loop (EV_A))
844 { 1064 {
845 int signum; 1065 int signum;
846 gotsig = 0; 1066 gotsig = 0;
847 1067
848 for (signum = signalmax; signum--; ) 1068 for (signum = signalmax; signum--; )
867} 1087}
868 1088
869/*****************************************************************************/ 1089/*****************************************************************************/
870 1090
871static void 1091static void
872sighandler (int signum) 1092ev_sighandler (int signum)
873{ 1093{
874#if EV_MULTIPLICITY 1094#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 1095 struct ev_loop *loop = &default_loop_struct;
876#endif 1096#endif
877 1097
878#if _WIN32 1098#if _WIN32
879 signal (signum, sighandler); 1099 signal (signum, ev_sighandler);
880#endif 1100#endif
881 1101
882 signals [signum - 1].gotsig = 1; 1102 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0); 1103 evpipe_write (EV_A_ &gotsig);
884} 1104}
885 1105
886void noinline 1106void noinline
887ev_feed_signal_event (EV_P_ int signum) 1107ev_feed_signal_event (EV_P_ int signum)
888{ 1108{
914#ifndef WIFCONTINUED 1134#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 1135# define WIFCONTINUED(status) 0
916#endif 1136#endif
917 1137
918void inline_speed 1138void inline_speed
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1139child_reap (EV_P_ int chain, int pid, int status)
920{ 1140{
921 ev_child *w; 1141 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 1143
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 1145 {
926 if ((w->pid == pid || !w->pid) 1146 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 1147 && (!traced || (w->flags & 1)))
928 { 1148 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 1150 w->rpid = pid;
931 w->rstatus = status; 1151 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1152 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 1153 }
934 } 1154 }
948 if (!WCONTINUED 1168 if (!WCONTINUED
949 || errno != EINVAL 1169 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1170 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 1171 return;
952 1172
953 /* make sure we are called again until all childs have been reaped */ 1173 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 1174 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 1176
957 child_reap (EV_A_ sw, pid, pid, status); 1177 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 1178 if (EV_PID_HASHSIZE > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 1180}
961 1181
962#endif 1182#endif
963 1183
964/*****************************************************************************/ 1184/*****************************************************************************/
1107 if (!(flags & EVFLAG_NOENV) 1327 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure () 1328 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS")) 1329 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS")); 1330 flags = atoi (getenv ("LIBEV_FLAGS"));
1111 1331
1112 if (!(flags & 0x0000ffffUL)) 1332 if (!(flags & 0x0000ffffU))
1113 flags |= ev_recommended_backends (); 1333 flags |= ev_recommended_backends ();
1114 1334
1115#if EV_USE_PORT 1335#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 1337#endif
1141 if (ev_is_active (&pipeev)) 1361 if (ev_is_active (&pipeev))
1142 { 1362 {
1143 ev_ref (EV_A); /* signal watcher */ 1363 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev); 1364 ev_io_stop (EV_A_ &pipeev);
1145 1365
1146 close (evpipe [0]); evpipe [0] = 0; 1366#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 1367 if (evfd >= 0)
1368 close (evfd);
1369#endif
1370
1371 if (evpipe [0] >= 0)
1372 {
1373 close (evpipe [0]);
1374 close (evpipe [1]);
1375 }
1148 } 1376 }
1149 1377
1150#if EV_USE_INOTIFY 1378#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 1379 if (fs_fd >= 0)
1152 close (fs_fd); 1380 close (fs_fd);
1197#endif 1425#endif
1198 1426
1199 backend = 0; 1427 backend = 0;
1200} 1428}
1201 1429
1430#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 1431void inline_size infy_fork (EV_P);
1432#endif
1203 1433
1204void inline_size 1434void inline_size
1205loop_fork (EV_P) 1435loop_fork (EV_P)
1206{ 1436{
1207#if EV_USE_PORT 1437#if EV_USE_PORT
1218#endif 1448#endif
1219 1449
1220 if (ev_is_active (&pipeev)) 1450 if (ev_is_active (&pipeev))
1221 { 1451 {
1222 /* this "locks" the handlers against writing to the pipe */ 1452 /* this "locks" the handlers against writing to the pipe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1223 gotsig = gotasync = 1; 1456 gotasync = 1;
1457#endif
1224 1458
1225 ev_ref (EV_A); 1459 ev_ref (EV_A);
1226 ev_io_stop (EV_A_ &pipeev); 1460 ev_io_stop (EV_A_ &pipeev);
1461
1462#if EV_USE_EVENTFD
1463 if (evfd >= 0)
1464 close (evfd);
1465#endif
1466
1467 if (evpipe [0] >= 0)
1468 {
1227 close (evpipe [0]); 1469 close (evpipe [0]);
1228 close (evpipe [1]); 1470 close (evpipe [1]);
1471 }
1229 1472
1230 evpipe_init (EV_A); 1473 evpipe_init (EV_A);
1231 /* now iterate over everything, in case we missed something */ 1474 /* now iterate over everything, in case we missed something */
1232 pipecb (EV_A_ &pipeev, EV_READ); 1475 pipecb (EV_A_ &pipeev, EV_READ);
1233 } 1476 }
1234 1477
1235 postfork = 0; 1478 postfork = 0;
1236} 1479}
1237 1480
1238#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1239struct ev_loop * 1483struct ev_loop *
1240ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1241{ 1485{
1242 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1243 1487
1262ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1263{ 1507{
1264 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1265} 1509}
1266 1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1267#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1268 1611
1269#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1270struct ev_loop * 1613struct ev_loop *
1271ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1272#else 1615#else
1348 { 1691 {
1349 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1350 1693
1351 p->w->pending = 0; 1694 p->w->pending = 0;
1352 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1353 } 1697 }
1354 } 1698 }
1355} 1699}
1356
1357void inline_size
1358timers_reify (EV_P)
1359{
1360 while (timercnt && ((WT)timers [0])->at <= mn_now)
1361 {
1362 ev_timer *w = (ev_timer *)timers [0];
1363
1364 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1365
1366 /* first reschedule or stop timer */
1367 if (w->repeat)
1368 {
1369 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1370
1371 ((WT)w)->at += w->repeat;
1372 if (((WT)w)->at < mn_now)
1373 ((WT)w)->at = mn_now;
1374
1375 downheap (timers, timercnt, 0);
1376 }
1377 else
1378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1379
1380 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1381 }
1382}
1383
1384#if EV_PERIODIC_ENABLE
1385void inline_size
1386periodics_reify (EV_P)
1387{
1388 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1389 {
1390 ev_periodic *w = (ev_periodic *)periodics [0];
1391
1392 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1393
1394 /* first reschedule or stop timer */
1395 if (w->reschedule_cb)
1396 {
1397 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1398 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1399 downheap (periodics, periodiccnt, 0);
1400 }
1401 else if (w->interval)
1402 {
1403 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1405 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1406 downheap (periodics, periodiccnt, 0);
1407 }
1408 else
1409 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1410
1411 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1412 }
1413}
1414
1415static void noinline
1416periodics_reschedule (EV_P)
1417{
1418 int i;
1419
1420 /* adjust periodics after time jump */
1421 for (i = 0; i < periodiccnt; ++i)
1422 {
1423 ev_periodic *w = (ev_periodic *)periodics [i];
1424
1425 if (w->reschedule_cb)
1426 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1427 else if (w->interval)
1428 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1429 }
1430
1431 /* now rebuild the heap */
1432 for (i = periodiccnt >> 1; i--; )
1433 downheap (periodics, periodiccnt, i);
1434}
1435#endif
1436 1700
1437#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1438void inline_size 1702void inline_size
1439idle_reify (EV_P) 1703idle_reify (EV_P)
1440{ 1704{
1452 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1716 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1453 break; 1717 break;
1454 } 1718 }
1455 } 1719 }
1456 } 1720 }
1721}
1722#endif
1723
1724void inline_size
1725timers_reify (EV_P)
1726{
1727 EV_FREQUENT_CHECK;
1728
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743
1744 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0);
1746 }
1747 else
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749
1750 EV_FREQUENT_CHECK;
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 }
1753}
1754
1755#if EV_PERIODIC_ENABLE
1756void inline_size
1757periodics_reify (EV_P)
1758{
1759 EV_FREQUENT_CHECK;
1760
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0);
1776 }
1777 else if (w->interval)
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1801 }
1802}
1803
1804static void noinline
1805periodics_reschedule (EV_P)
1806{
1807 int i;
1808
1809 /* adjust periodics after time jump */
1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1811 {
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813
1814 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1818
1819 ANHE_at_cache (periodics [i]);
1820 }
1821
1822 reheap (periodics, periodiccnt);
1457} 1823}
1458#endif 1824#endif
1459 1825
1460void inline_speed 1826void inline_speed
1461time_update (EV_P_ ev_tstamp max_block) 1827time_update (EV_P_ ev_tstamp max_block)
1490 */ 1856 */
1491 for (i = 4; --i; ) 1857 for (i = 4; --i; )
1492 { 1858 {
1493 rtmn_diff = ev_rt_now - mn_now; 1859 rtmn_diff = ev_rt_now - mn_now;
1494 1860
1495 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1496 return; /* all is well */ 1862 return; /* all is well */
1497 1863
1498 ev_rt_now = ev_time (); 1864 ev_rt_now = ev_time ();
1499 mn_now = get_clock (); 1865 mn_now = get_clock ();
1500 now_floor = mn_now; 1866 now_floor = mn_now;
1516#if EV_PERIODIC_ENABLE 1882#if EV_PERIODIC_ENABLE
1517 periodics_reschedule (EV_A); 1883 periodics_reschedule (EV_A);
1518#endif 1884#endif
1519 /* adjust timers. this is easy, as the offset is the same for all of them */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1520 for (i = 0; i < timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1521 ((WT)timers [i])->at += ev_rt_now - mn_now; 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1522 } 1892 }
1523 1893
1524 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1525 } 1895 }
1526} 1896}
1540static int loop_done; 1910static int loop_done;
1541 1911
1542void 1912void
1543ev_loop (EV_P_ int flags) 1913ev_loop (EV_P_ int flags)
1544{ 1914{
1545 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1915 loop_done = EVUNLOOP_CANCEL;
1546 ? EVUNLOOP_ONE
1547 : EVUNLOOP_CANCEL;
1548 1916
1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1550 1918
1551 do 1919 do
1552 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1553#ifndef _WIN32 1925#ifndef _WIN32
1554 if (expect_false (curpid)) /* penalise the forking check even more */ 1926 if (expect_false (curpid)) /* penalise the forking check even more */
1555 if (expect_false (getpid () != curpid)) 1927 if (expect_false (getpid () != curpid))
1556 { 1928 {
1557 curpid = getpid (); 1929 curpid = getpid ();
1598 1970
1599 waittime = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1600 1972
1601 if (timercnt) 1973 if (timercnt)
1602 { 1974 {
1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1604 if (waittime > to) waittime = to; 1976 if (waittime > to) waittime = to;
1605 } 1977 }
1606 1978
1607#if EV_PERIODIC_ENABLE 1979#if EV_PERIODIC_ENABLE
1608 if (periodiccnt) 1980 if (periodiccnt)
1609 { 1981 {
1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1611 if (waittime > to) waittime = to; 1983 if (waittime > to) waittime = to;
1612 } 1984 }
1613#endif 1985#endif
1614 1986
1615 if (expect_false (waittime < timeout_blocktime)) 1987 if (expect_false (waittime < timeout_blocktime))
1648 /* queue check watchers, to be executed first */ 2020 /* queue check watchers, to be executed first */
1649 if (expect_false (checkcnt)) 2021 if (expect_false (checkcnt))
1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1651 2023
1652 call_pending (EV_A); 2024 call_pending (EV_A);
1653
1654 } 2025 }
1655 while (expect_true (activecnt && !loop_done)); 2026 while (expect_true (
2027 activecnt
2028 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2030 ));
1656 2031
1657 if (loop_done == EVUNLOOP_ONE) 2032 if (loop_done == EVUNLOOP_ONE)
1658 loop_done = EVUNLOOP_CANCEL; 2033 loop_done = EVUNLOOP_CANCEL;
1659} 2034}
1660 2035
1749 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1750 return; 2125 return;
1751 2126
1752 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1753 2128
2129 EV_FREQUENT_CHECK;
2130
1754 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1756 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1757 2134
1758 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1759 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1760} 2139}
1761 2140
1762void noinline 2141void noinline
1763ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1764{ 2143{
1765 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1766 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1767 return; 2146 return;
1768 2147
1769 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
1770 2151
1771 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1772 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1773 2154
1774 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1775} 2158}
1776 2159
1777void noinline 2160void noinline
1778ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1779{ 2162{
1780 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1781 return; 2164 return;
1782 2165
1783 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1784 2167
1785 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1786 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1787 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1788 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1789 timers [timercnt - 1] = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1790 upheap (timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1791 2178
2179 EV_FREQUENT_CHECK;
2180
1792 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1793} 2182}
1794 2183
1795void noinline 2184void noinline
1796ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1797{ 2186{
1798 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1800 return; 2189 return;
1801 2190
1802 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2191 EV_FREQUENT_CHECK;
1803 2192
1804 { 2193 {
1805 int active = ((W)w)->active; 2194 int active = ev_active (w);
1806 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1807 if (expect_true (--active < --timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1808 { 2201 {
1809 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1810 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1811 } 2204 }
1812 } 2205 }
1813 2206
1814 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1815 2210
1816 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1817} 2212}
1818 2213
1819void noinline 2214void noinline
1820ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1821{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1822 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1823 { 2220 {
1824 if (w->repeat) 2221 if (w->repeat)
1825 { 2222 {
1826 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1827 adjustheap (timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1828 } 2226 }
1829 else 2227 else
1830 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1831 } 2229 }
1832 else if (w->repeat) 2230 else if (w->repeat)
1833 { 2231 {
1834 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1835 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1836 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1837} 2237}
1838 2238
1839#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1840void noinline 2240void noinline
1841ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1842{ 2242{
1843 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1844 return; 2244 return;
1845 2245
1846 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1847 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1848 else if (w->interval) 2248 else if (w->interval)
1849 { 2249 {
1850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1851 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1852 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1853 } 2253 }
1854 else 2254 else
1855 ((WT)w)->at = w->offset; 2255 ev_at (w) = w->offset;
1856 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1857 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1858 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1859 periodics [periodiccnt - 1] = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1860 upheap (periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1861 2265
2266 EV_FREQUENT_CHECK;
2267
1862 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1863} 2269}
1864 2270
1865void noinline 2271void noinline
1866ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1867{ 2273{
1868 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1869 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1870 return; 2276 return;
1871 2277
1872 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2278 EV_FREQUENT_CHECK;
1873 2279
1874 { 2280 {
1875 int active = ((W)w)->active; 2281 int active = ev_active (w);
1876 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1877 if (expect_true (--active < --periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1878 { 2288 {
1879 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1880 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1881 } 2291 }
1882 } 2292 }
1883 2293
2294 EV_FREQUENT_CHECK;
2295
1884 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1885} 2297}
1886 2298
1887void noinline 2299void noinline
1888ev_periodic_again (EV_P_ ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1907 return; 2319 return;
1908 2320
1909 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1910 2322
1911 evpipe_init (EV_A); 2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
1912 2326
1913 { 2327 {
1914#ifndef _WIN32 2328#ifndef _WIN32
1915 sigset_t full, prev; 2329 sigset_t full, prev;
1916 sigfillset (&full); 2330 sigfillset (&full);
1928 wlist_add (&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1929 2343
1930 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1931 { 2345 {
1932#if _WIN32 2346#if _WIN32
1933 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1934#else 2348#else
1935 struct sigaction sa; 2349 struct sigaction sa;
1936 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1937 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1938 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1939 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1940#endif 2354#endif
1941 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
1942} 2358}
1943 2359
1944void noinline 2360void noinline
1945ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1946{ 2362{
1947 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
1949 return; 2365 return;
1950 2366
2367 EV_FREQUENT_CHECK;
2368
1951 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1952 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1953 2371
1954 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1955 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
1956} 2376}
1957 2377
1958void 2378void
1959ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1960{ 2380{
1962 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1963#endif 2383#endif
1964 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
1965 return; 2385 return;
1966 2386
2387 EV_FREQUENT_CHECK;
2388
1967 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1968 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
1969} 2393}
1970 2394
1971void 2395void
1972ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1973{ 2397{
1974 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1975 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
1976 return; 2400 return;
1977 2401
2402 EV_FREQUENT_CHECK;
2403
1978 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1979 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1980} 2408}
1981 2409
1982#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
1983 2411
1984# ifdef _WIN32 2412# ifdef _WIN32
2002 if (w->wd < 0) 2430 if (w->wd < 0)
2003 { 2431 {
2004 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2005 2433
2006 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2008 { 2438 {
2009 char path [4096]; 2439 char path [4096];
2010 strcpy (path, w->path); 2440 strcpy (path, w->path);
2011 2441
2210 else 2640 else
2211#endif 2641#endif
2212 ev_timer_start (EV_A_ &w->timer); 2642 ev_timer_start (EV_A_ &w->timer);
2213 2643
2214 ev_start (EV_A_ (W)w, 1); 2644 ev_start (EV_A_ (W)w, 1);
2645
2646 EV_FREQUENT_CHECK;
2215} 2647}
2216 2648
2217void 2649void
2218ev_stat_stop (EV_P_ ev_stat *w) 2650ev_stat_stop (EV_P_ ev_stat *w)
2219{ 2651{
2220 clear_pending (EV_A_ (W)w); 2652 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 2653 if (expect_false (!ev_is_active (w)))
2222 return; 2654 return;
2223 2655
2656 EV_FREQUENT_CHECK;
2657
2224#if EV_USE_INOTIFY 2658#if EV_USE_INOTIFY
2225 infy_del (EV_A_ w); 2659 infy_del (EV_A_ w);
2226#endif 2660#endif
2227 ev_timer_stop (EV_A_ &w->timer); 2661 ev_timer_stop (EV_A_ &w->timer);
2228 2662
2229 ev_stop (EV_A_ (W)w); 2663 ev_stop (EV_A_ (W)w);
2664
2665 EV_FREQUENT_CHECK;
2230} 2666}
2231#endif 2667#endif
2232 2668
2233#if EV_IDLE_ENABLE 2669#if EV_IDLE_ENABLE
2234void 2670void
2236{ 2672{
2237 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
2238 return; 2674 return;
2239 2675
2240 pri_adjust (EV_A_ (W)w); 2676 pri_adjust (EV_A_ (W)w);
2677
2678 EV_FREQUENT_CHECK;
2241 2679
2242 { 2680 {
2243 int active = ++idlecnt [ABSPRI (w)]; 2681 int active = ++idlecnt [ABSPRI (w)];
2244 2682
2245 ++idleall; 2683 ++idleall;
2246 ev_start (EV_A_ (W)w, active); 2684 ev_start (EV_A_ (W)w, active);
2247 2685
2248 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2686 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2249 idles [ABSPRI (w)][active - 1] = w; 2687 idles [ABSPRI (w)][active - 1] = w;
2250 } 2688 }
2689
2690 EV_FREQUENT_CHECK;
2251} 2691}
2252 2692
2253void 2693void
2254ev_idle_stop (EV_P_ ev_idle *w) 2694ev_idle_stop (EV_P_ ev_idle *w)
2255{ 2695{
2256 clear_pending (EV_A_ (W)w); 2696 clear_pending (EV_A_ (W)w);
2257 if (expect_false (!ev_is_active (w))) 2697 if (expect_false (!ev_is_active (w)))
2258 return; 2698 return;
2259 2699
2700 EV_FREQUENT_CHECK;
2701
2260 { 2702 {
2261 int active = ((W)w)->active; 2703 int active = ev_active (w);
2262 2704
2263 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2705 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2264 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2706 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2265 2707
2266 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2267 --idleall; 2709 --idleall;
2268 } 2710 }
2711
2712 EV_FREQUENT_CHECK;
2269} 2713}
2270#endif 2714#endif
2271 2715
2272void 2716void
2273ev_prepare_start (EV_P_ ev_prepare *w) 2717ev_prepare_start (EV_P_ ev_prepare *w)
2274{ 2718{
2275 if (expect_false (ev_is_active (w))) 2719 if (expect_false (ev_is_active (w)))
2276 return; 2720 return;
2721
2722 EV_FREQUENT_CHECK;
2277 2723
2278 ev_start (EV_A_ (W)w, ++preparecnt); 2724 ev_start (EV_A_ (W)w, ++preparecnt);
2279 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2725 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2280 prepares [preparecnt - 1] = w; 2726 prepares [preparecnt - 1] = w;
2727
2728 EV_FREQUENT_CHECK;
2281} 2729}
2282 2730
2283void 2731void
2284ev_prepare_stop (EV_P_ ev_prepare *w) 2732ev_prepare_stop (EV_P_ ev_prepare *w)
2285{ 2733{
2286 clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
2287 if (expect_false (!ev_is_active (w))) 2735 if (expect_false (!ev_is_active (w)))
2288 return; 2736 return;
2289 2737
2738 EV_FREQUENT_CHECK;
2739
2290 { 2740 {
2291 int active = ((W)w)->active; 2741 int active = ev_active (w);
2742
2292 prepares [active - 1] = prepares [--preparecnt]; 2743 prepares [active - 1] = prepares [--preparecnt];
2293 ((W)prepares [active - 1])->active = active; 2744 ev_active (prepares [active - 1]) = active;
2294 } 2745 }
2295 2746
2296 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2297} 2750}
2298 2751
2299void 2752void
2300ev_check_start (EV_P_ ev_check *w) 2753ev_check_start (EV_P_ ev_check *w)
2301{ 2754{
2302 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
2303 return; 2756 return;
2757
2758 EV_FREQUENT_CHECK;
2304 2759
2305 ev_start (EV_A_ (W)w, ++checkcnt); 2760 ev_start (EV_A_ (W)w, ++checkcnt);
2306 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2761 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2307 checks [checkcnt - 1] = w; 2762 checks [checkcnt - 1] = w;
2763
2764 EV_FREQUENT_CHECK;
2308} 2765}
2309 2766
2310void 2767void
2311ev_check_stop (EV_P_ ev_check *w) 2768ev_check_stop (EV_P_ ev_check *w)
2312{ 2769{
2313 clear_pending (EV_A_ (W)w); 2770 clear_pending (EV_A_ (W)w);
2314 if (expect_false (!ev_is_active (w))) 2771 if (expect_false (!ev_is_active (w)))
2315 return; 2772 return;
2316 2773
2774 EV_FREQUENT_CHECK;
2775
2317 { 2776 {
2318 int active = ((W)w)->active; 2777 int active = ev_active (w);
2778
2319 checks [active - 1] = checks [--checkcnt]; 2779 checks [active - 1] = checks [--checkcnt];
2320 ((W)checks [active - 1])->active = active; 2780 ev_active (checks [active - 1]) = active;
2321 } 2781 }
2322 2782
2323 ev_stop (EV_A_ (W)w); 2783 ev_stop (EV_A_ (W)w);
2784
2785 EV_FREQUENT_CHECK;
2324} 2786}
2325 2787
2326#if EV_EMBED_ENABLE 2788#if EV_EMBED_ENABLE
2327void noinline 2789void noinline
2328ev_embed_sweep (EV_P_ ev_embed *w) 2790ev_embed_sweep (EV_P_ ev_embed *w)
2375 struct ev_loop *loop = w->other; 2837 struct ev_loop *loop = w->other;
2376 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2377 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2378 } 2840 }
2379 2841
2842 EV_FREQUENT_CHECK;
2843
2380 ev_set_priority (&w->io, ev_priority (w)); 2844 ev_set_priority (&w->io, ev_priority (w));
2381 ev_io_start (EV_A_ &w->io); 2845 ev_io_start (EV_A_ &w->io);
2382 2846
2383 ev_prepare_init (&w->prepare, embed_prepare_cb); 2847 ev_prepare_init (&w->prepare, embed_prepare_cb);
2384 ev_set_priority (&w->prepare, EV_MINPRI); 2848 ev_set_priority (&w->prepare, EV_MINPRI);
2385 ev_prepare_start (EV_A_ &w->prepare); 2849 ev_prepare_start (EV_A_ &w->prepare);
2386 2850
2387 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2388 2852
2389 ev_start (EV_A_ (W)w, 1); 2853 ev_start (EV_A_ (W)w, 1);
2854
2855 EV_FREQUENT_CHECK;
2390} 2856}
2391 2857
2392void 2858void
2393ev_embed_stop (EV_P_ ev_embed *w) 2859ev_embed_stop (EV_P_ ev_embed *w)
2394{ 2860{
2395 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
2396 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
2397 return; 2863 return;
2398 2864
2865 EV_FREQUENT_CHECK;
2866
2399 ev_io_stop (EV_A_ &w->io); 2867 ev_io_stop (EV_A_ &w->io);
2400 ev_prepare_stop (EV_A_ &w->prepare); 2868 ev_prepare_stop (EV_A_ &w->prepare);
2401 2869
2402 ev_stop (EV_A_ (W)w); 2870 ev_stop (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2403} 2873}
2404#endif 2874#endif
2405 2875
2406#if EV_FORK_ENABLE 2876#if EV_FORK_ENABLE
2407void 2877void
2408ev_fork_start (EV_P_ ev_fork *w) 2878ev_fork_start (EV_P_ ev_fork *w)
2409{ 2879{
2410 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
2411 return; 2881 return;
2882
2883 EV_FREQUENT_CHECK;
2412 2884
2413 ev_start (EV_A_ (W)w, ++forkcnt); 2885 ev_start (EV_A_ (W)w, ++forkcnt);
2414 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2886 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2415 forks [forkcnt - 1] = w; 2887 forks [forkcnt - 1] = w;
2888
2889 EV_FREQUENT_CHECK;
2416} 2890}
2417 2891
2418void 2892void
2419ev_fork_stop (EV_P_ ev_fork *w) 2893ev_fork_stop (EV_P_ ev_fork *w)
2420{ 2894{
2421 clear_pending (EV_A_ (W)w); 2895 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w))) 2896 if (expect_false (!ev_is_active (w)))
2423 return; 2897 return;
2424 2898
2899 EV_FREQUENT_CHECK;
2900
2425 { 2901 {
2426 int active = ((W)w)->active; 2902 int active = ev_active (w);
2903
2427 forks [active - 1] = forks [--forkcnt]; 2904 forks [active - 1] = forks [--forkcnt];
2428 ((W)forks [active - 1])->active = active; 2905 ev_active (forks [active - 1]) = active;
2429 } 2906 }
2430 2907
2431 ev_stop (EV_A_ (W)w); 2908 ev_stop (EV_A_ (W)w);
2909
2910 EV_FREQUENT_CHECK;
2432} 2911}
2433#endif 2912#endif
2434 2913
2435#if EV_ASYNC_ENABLE 2914#if EV_ASYNC_ENABLE
2436void 2915void
2438{ 2917{
2439 if (expect_false (ev_is_active (w))) 2918 if (expect_false (ev_is_active (w)))
2440 return; 2919 return;
2441 2920
2442 evpipe_init (EV_A); 2921 evpipe_init (EV_A);
2922
2923 EV_FREQUENT_CHECK;
2443 2924
2444 ev_start (EV_A_ (W)w, ++asynccnt); 2925 ev_start (EV_A_ (W)w, ++asynccnt);
2445 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2926 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2446 asyncs [asynccnt - 1] = w; 2927 asyncs [asynccnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2447} 2930}
2448 2931
2449void 2932void
2450ev_async_stop (EV_P_ ev_async *w) 2933ev_async_stop (EV_P_ ev_async *w)
2451{ 2934{
2452 clear_pending (EV_A_ (W)w); 2935 clear_pending (EV_A_ (W)w);
2453 if (expect_false (!ev_is_active (w))) 2936 if (expect_false (!ev_is_active (w)))
2454 return; 2937 return;
2455 2938
2939 EV_FREQUENT_CHECK;
2940
2456 { 2941 {
2457 int active = ((W)w)->active; 2942 int active = ev_active (w);
2943
2458 asyncs [active - 1] = asyncs [--asynccnt]; 2944 asyncs [active - 1] = asyncs [--asynccnt];
2459 ((W)asyncs [active - 1])->active = active; 2945 ev_active (asyncs [active - 1]) = active;
2460 } 2946 }
2461 2947
2462 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2463} 2951}
2464 2952
2465void 2953void
2466ev_async_send (EV_P_ ev_async *w) 2954ev_async_send (EV_P_ ev_async *w)
2467{ 2955{
2468 w->sent = 1; 2956 w->sent = 1;
2469 evpipe_write (EV_A_ 0, 1); 2957 evpipe_write (EV_A_ &gotasync);
2470} 2958}
2471#endif 2959#endif
2472 2960
2473/*****************************************************************************/ 2961/*****************************************************************************/
2474 2962

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines