ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.210 by root, Sat Feb 9 00:34:11 2008 UTC vs.
Revision 1.269 by root, Wed Oct 29 06:32:48 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
145#ifndef _WIN32 154#ifndef _WIN32
146# include <sys/time.h> 155# include <sys/time.h>
147# include <sys/wait.h> 156# include <sys/wait.h>
148# include <unistd.h> 157# include <unistd.h>
149#else 158#else
159# include <io.h>
150# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 161# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
154# endif 164# endif
155#endif 165#endif
156 166
157/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
158 168
159#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
160# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
161#endif 175#endif
162 176
163#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
165#endif 179#endif
166 180
167#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
168# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
169#endif 187#endif
170 188
171#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
173#endif 191#endif
179# define EV_USE_POLL 1 197# define EV_USE_POLL 1
180# endif 198# endif
181#endif 199#endif
182 200
183#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
184# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
185#endif 207#endif
186 208
187#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
189#endif 211#endif
191#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 214# define EV_USE_PORT 0
193#endif 215#endif
194 216
195#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
196# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
197#endif 223#endif
198 224
199#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 226# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
210# else 236# else
211# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
212# endif 238# endif
213#endif 239#endif
214 240
215/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 268
217#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
220#endif 272#endif
234# include <sys/select.h> 286# include <sys/select.h>
235# endif 287# endif
236#endif 288#endif
237 289
238#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
239# include <sys/inotify.h> 292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
240#endif 298#endif
241 299
242#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 301# include <winsock.h>
244#endif 302#endif
245 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
246/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
247 323
248/* 324/*
249 * This is used to avoid floating point rounding problems. 325 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 326 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 327 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
265#else 341#else
266# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
267# define noinline 343# define noinline
268# if __STDC_VERSION__ < 199901L 344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 345# define inline
270# endif 346# endif
271#endif 347#endif
272 348
273#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
288 364
289typedef ev_watcher *W; 365typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
292 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
293#if EV_USE_MONOTONIC 372#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 374/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 376#endif
309{ 388{
310 syserr_cb = cb; 389 syserr_cb = cb;
311} 390}
312 391
313static void noinline 392static void noinline
314syserr (const char *msg) 393ev_syserr (const char *msg)
315{ 394{
316 if (!msg) 395 if (!msg)
317 msg = "(libev) system error"; 396 msg = "(libev) system error";
318 397
319 if (syserr_cb) 398 if (syserr_cb)
323 perror (msg); 402 perror (msg);
324 abort (); 403 abort ();
325 } 404 }
326} 405}
327 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
328static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 423
330void 424void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 426{
333 alloc = cb; 427 alloc = cb;
334} 428}
335 429
336inline_speed void * 430inline_speed void *
337ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
338{ 432{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
340 434
341 if (!ptr && size) 435 if (!ptr && size)
342 { 436 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 438 abort ();
355typedef struct 449typedef struct
356{ 450{
357 WL head; 451 WL head;
358 unsigned char events; 452 unsigned char events;
359 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char unused;
456#if EV_USE_EPOLL
457 unsigned int egen; /* generation counter to counter epoll bugs */
458#endif
360#if EV_SELECT_IS_WINSOCKET 459#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 460 SOCKET handle;
362#endif 461#endif
363} ANFD; 462} ANFD;
364 463
367 W w; 466 W w;
368 int events; 467 int events;
369} ANPENDING; 468} ANPENDING;
370 469
371#if EV_USE_INOTIFY 470#if EV_USE_INOTIFY
471/* hash table entry per inotify-id */
372typedef struct 472typedef struct
373{ 473{
374 WL head; 474 WL head;
375} ANFS; 475} ANFS;
476#endif
477
478/* Heap Entry */
479#if EV_HEAP_CACHE_AT
480 typedef struct {
481 ev_tstamp at;
482 WT w;
483 } ANHE;
484
485 #define ANHE_w(he) (he).w /* access watcher, read-write */
486 #define ANHE_at(he) (he).at /* access cached at, read-only */
487 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
488#else
489 typedef WT ANHE;
490
491 #define ANHE_w(he) (he)
492 #define ANHE_at(he) (he)->at
493 #define ANHE_at_cache(he)
376#endif 494#endif
377 495
378#if EV_MULTIPLICITY 496#if EV_MULTIPLICITY
379 497
380 struct ev_loop 498 struct ev_loop
451 ts.tv_sec = (time_t)delay; 569 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 570 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 571
454 nanosleep (&ts, 0); 572 nanosleep (&ts, 0);
455#elif defined(_WIN32) 573#elif defined(_WIN32)
456 Sleep (delay * 1e3); 574 Sleep ((unsigned long)(delay * 1e3));
457#else 575#else
458 struct timeval tv; 576 struct timeval tv;
459 577
460 tv.tv_sec = (time_t)delay; 578 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 579 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 580
581 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
582 /* somehting nto guaranteed by newer posix versions, but guaranteed */
583 /* by older ones */
463 select (0, 0, 0, 0, &tv); 584 select (0, 0, 0, 0, &tv);
464#endif 585#endif
465 } 586 }
466} 587}
467 588
468/*****************************************************************************/ 589/*****************************************************************************/
590
591#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 592
470int inline_size 593int inline_size
471array_nextsize (int elem, int cur, int cnt) 594array_nextsize (int elem, int cur, int cnt)
472{ 595{
473 int ncur = cur + 1; 596 int ncur = cur + 1;
474 597
475 do 598 do
476 ncur <<= 1; 599 ncur <<= 1;
477 while (cnt > ncur); 600 while (cnt > ncur);
478 601
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 602 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 603 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 604 {
482 ncur *= elem; 605 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 606 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 607 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 608 ncur /= elem;
486 } 609 }
487 610
488 return ncur; 611 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 615array_realloc (int elem, void *base, int *cur, int cnt)
493{ 616{
494 *cur = array_nextsize (elem, *cur, cnt); 617 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 618 return ev_realloc (base, elem * *cur);
496} 619}
620
621#define array_init_zero(base,count) \
622 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 623
498#define array_needsize(type,base,cur,cnt,init) \ 624#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 625 if (expect_false ((cnt) > (cur))) \
500 { \ 626 { \
501 int ocur_ = (cur); \ 627 int ocur_ = (cur); \
545 ev_feed_event (EV_A_ events [i], type); 671 ev_feed_event (EV_A_ events [i], type);
546} 672}
547 673
548/*****************************************************************************/ 674/*****************************************************************************/
549 675
550void inline_size
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed 676void inline_speed
564fd_event (EV_P_ int fd, int revents) 677fd_event (EV_P_ int fd, int revents)
565{ 678{
566 ANFD *anfd = anfds + fd; 679 ANFD *anfd = anfds + fd;
567 ev_io *w; 680 ev_io *w;
599 events |= (unsigned char)w->events; 712 events |= (unsigned char)w->events;
600 713
601#if EV_SELECT_IS_WINSOCKET 714#if EV_SELECT_IS_WINSOCKET
602 if (events) 715 if (events)
603 { 716 {
604 unsigned long argp; 717 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 718 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 719 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 720 #else
608 anfd->handle = _get_osfhandle (fd); 721 anfd->handle = _get_osfhandle (fd);
609 #endif 722 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 723 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 724 }
612#endif 725#endif
613 726
614 { 727 {
615 unsigned char o_events = anfd->events; 728 unsigned char o_events = anfd->events;
668{ 781{
669 int fd; 782 int fd;
670 783
671 for (fd = 0; fd < anfdmax; ++fd) 784 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 785 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 786 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 787 fd_kill (EV_A_ fd);
675} 788}
676 789
677/* called on ENOMEM in select/poll to kill some fds and retry */ 790/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 791static void noinline
696 809
697 for (fd = 0; fd < anfdmax; ++fd) 810 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 811 if (anfds [fd].events)
699 { 812 {
700 anfds [fd].events = 0; 813 anfds [fd].events = 0;
814 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 815 fd_change (EV_A_ fd, EV_IOFDSET | 1);
702 } 816 }
703} 817}
704 818
705/*****************************************************************************/ 819/*****************************************************************************/
706 820
821/*
822 * the heap functions want a real array index. array index 0 uis guaranteed to not
823 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
824 * the branching factor of the d-tree.
825 */
826
827/*
828 * at the moment we allow libev the luxury of two heaps,
829 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
830 * which is more cache-efficient.
831 * the difference is about 5% with 50000+ watchers.
832 */
833#if EV_USE_4HEAP
834
835#define DHEAP 4
836#define HEAP0 (DHEAP - 1) /* index of first element in heap */
837#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
838#define UPHEAP_DONE(p,k) ((p) == (k))
839
840/* away from the root */
707void inline_speed 841void inline_speed
708upheap (WT *heap, int k) 842downheap (ANHE *heap, int N, int k)
709{ 843{
710 WT w = heap [k]; 844 ANHE he = heap [k];
845 ANHE *E = heap + N + HEAP0;
711 846
712 while (k) 847 for (;;)
713 { 848 {
714 int p = (k - 1) >> 1; 849 ev_tstamp minat;
850 ANHE *minpos;
851 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 852
716 if (heap [p]->at <= w->at) 853 /* find minimum child */
854 if (expect_true (pos + DHEAP - 1 < E))
855 {
856 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
860 }
861 else if (pos < E)
862 {
863 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
864 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
865 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
866 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
867 }
868 else
717 break; 869 break;
718 870
871 if (ANHE_at (he) <= minat)
872 break;
873
874 heap [k] = *minpos;
875 ev_active (ANHE_w (*minpos)) = k;
876
877 k = minpos - heap;
878 }
879
880 heap [k] = he;
881 ev_active (ANHE_w (he)) = k;
882}
883
884#else /* 4HEAP */
885
886#define HEAP0 1
887#define HPARENT(k) ((k) >> 1)
888#define UPHEAP_DONE(p,k) (!(p))
889
890/* away from the root */
891void inline_speed
892downheap (ANHE *heap, int N, int k)
893{
894 ANHE he = heap [k];
895
896 for (;;)
897 {
898 int c = k << 1;
899
900 if (c > N + HEAP0 - 1)
901 break;
902
903 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
904 ? 1 : 0;
905
906 if (ANHE_at (he) <= ANHE_at (heap [c]))
907 break;
908
909 heap [k] = heap [c];
910 ev_active (ANHE_w (heap [k])) = k;
911
912 k = c;
913 }
914
915 heap [k] = he;
916 ev_active (ANHE_w (he)) = k;
917}
918#endif
919
920/* towards the root */
921void inline_speed
922upheap (ANHE *heap, int k)
923{
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int p = HPARENT (k);
929
930 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
931 break;
932
719 heap [k] = heap [p]; 933 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 934 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 935 k = p;
722 } 936 }
723 937
724 heap [k] = w; 938 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 939 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 940}
755 941
756void inline_size 942void inline_size
757adjustheap (WT *heap, int N, int k) 943adjustheap (ANHE *heap, int N, int k)
758{ 944{
945 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 946 upheap (heap, k);
947 else
760 downheap (heap, N, k); 948 downheap (heap, N, k);
949}
950
951/* rebuild the heap: this function is used only once and executed rarely */
952void inline_size
953reheap (ANHE *heap, int N)
954{
955 int i;
956
957 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
958 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
959 for (i = 0; i < N; ++i)
960 upheap (heap, i + HEAP0);
761} 961}
762 962
763/*****************************************************************************/ 963/*****************************************************************************/
764 964
765typedef struct 965typedef struct
771static ANSIG *signals; 971static ANSIG *signals;
772static int signalmax; 972static int signalmax;
773 973
774static EV_ATOMIC_T gotsig; 974static EV_ATOMIC_T gotsig;
775 975
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/ 976/*****************************************************************************/
789 977
790void inline_speed 978void inline_speed
791fd_intern (int fd) 979fd_intern (int fd)
792{ 980{
793#ifdef _WIN32 981#ifdef _WIN32
794 int arg = 1; 982 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 983 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 984#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 985 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 986 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 987#endif
802static void noinline 990static void noinline
803evpipe_init (EV_P) 991evpipe_init (EV_P)
804{ 992{
805 if (!ev_is_active (&pipeev)) 993 if (!ev_is_active (&pipeev))
806 { 994 {
995#if EV_USE_EVENTFD
996 if ((evfd = eventfd (0, 0)) >= 0)
997 {
998 evpipe [0] = -1;
999 fd_intern (evfd);
1000 ev_io_set (&pipeev, evfd, EV_READ);
1001 }
1002 else
1003#endif
1004 {
807 while (pipe (evpipe)) 1005 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1006 ev_syserr ("(libev) error creating signal/async pipe");
809 1007
810 fd_intern (evpipe [0]); 1008 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1009 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1010 ev_io_set (&pipeev, evpipe [0], EV_READ);
1011 }
1012
814 ev_io_start (EV_A_ &pipeev); 1013 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1014 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1015 }
817} 1016}
818 1017
819void inline_size 1018void inline_size
820evpipe_write (EV_P_ int sig, int async) 1019evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1020{
822 if (!(gotasync || gotsig)) 1021 if (!*flag)
823 { 1022 {
824 int old_errno = errno; /* save errno becaue write might clobber it */ 1023 int old_errno = errno; /* save errno because write might clobber it */
825 1024
826 if (sig) gotsig = 1; 1025 *flag = 1;
827 if (async) gotasync = 1;
828 1026
1027#if EV_USE_EVENTFD
1028 if (evfd >= 0)
1029 {
1030 uint64_t counter = 1;
1031 write (evfd, &counter, sizeof (uint64_t));
1032 }
1033 else
1034#endif
829 write (evpipe [1], &old_errno, 1); 1035 write (evpipe [1], &old_errno, 1);
830 1036
831 errno = old_errno; 1037 errno = old_errno;
832 } 1038 }
833} 1039}
834 1040
835static void 1041static void
836pipecb (EV_P_ ev_io *iow, int revents) 1042pipecb (EV_P_ ev_io *iow, int revents)
837{ 1043{
1044#if EV_USE_EVENTFD
1045 if (evfd >= 0)
838 { 1046 {
839 int dummy; 1047 uint64_t counter;
1048 read (evfd, &counter, sizeof (uint64_t));
1049 }
1050 else
1051#endif
1052 {
1053 char dummy;
840 read (evpipe [0], &dummy, 1); 1054 read (evpipe [0], &dummy, 1);
841 } 1055 }
842 1056
843 if (gotsig) 1057 if (gotsig && ev_is_default_loop (EV_A))
844 { 1058 {
845 int signum; 1059 int signum;
846 gotsig = 0; 1060 gotsig = 0;
847 1061
848 for (signum = signalmax; signum--; ) 1062 for (signum = signalmax; signum--; )
867} 1081}
868 1082
869/*****************************************************************************/ 1083/*****************************************************************************/
870 1084
871static void 1085static void
872sighandler (int signum) 1086ev_sighandler (int signum)
873{ 1087{
874#if EV_MULTIPLICITY 1088#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 1089 struct ev_loop *loop = &default_loop_struct;
876#endif 1090#endif
877 1091
878#if _WIN32 1092#if _WIN32
879 signal (signum, sighandler); 1093 signal (signum, ev_sighandler);
880#endif 1094#endif
881 1095
882 signals [signum - 1].gotsig = 1; 1096 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0); 1097 evpipe_write (EV_A_ &gotsig);
884} 1098}
885 1099
886void noinline 1100void noinline
887ev_feed_signal_event (EV_P_ int signum) 1101ev_feed_signal_event (EV_P_ int signum)
888{ 1102{
914#ifndef WIFCONTINUED 1128#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 1129# define WIFCONTINUED(status) 0
916#endif 1130#endif
917 1131
918void inline_speed 1132void inline_speed
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1133child_reap (EV_P_ int chain, int pid, int status)
920{ 1134{
921 ev_child *w; 1135 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1136 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 1137
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1138 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 1139 {
926 if ((w->pid == pid || !w->pid) 1140 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 1141 && (!traced || (w->flags & 1)))
928 { 1142 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1143 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 1144 w->rpid = pid;
931 w->rstatus = status; 1145 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1146 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 1147 }
934 } 1148 }
948 if (!WCONTINUED 1162 if (!WCONTINUED
949 || errno != EINVAL 1163 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1164 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 1165 return;
952 1166
953 /* make sure we are called again until all childs have been reaped */ 1167 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 1168 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1169 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 1170
957 child_reap (EV_A_ sw, pid, pid, status); 1171 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 1172 if (EV_PID_HASHSIZE > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1173 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 1174}
961 1175
962#endif 1176#endif
963 1177
964/*****************************************************************************/ 1178/*****************************************************************************/
1107 if (!(flags & EVFLAG_NOENV) 1321 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure () 1322 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS")) 1323 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS")); 1324 flags = atoi (getenv ("LIBEV_FLAGS"));
1111 1325
1112 if (!(flags & 0x0000ffffUL)) 1326 if (!(flags & 0x0000ffffU))
1113 flags |= ev_recommended_backends (); 1327 flags |= ev_recommended_backends ();
1114 1328
1115#if EV_USE_PORT 1329#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1330 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 1331#endif
1141 if (ev_is_active (&pipeev)) 1355 if (ev_is_active (&pipeev))
1142 { 1356 {
1143 ev_ref (EV_A); /* signal watcher */ 1357 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev); 1358 ev_io_stop (EV_A_ &pipeev);
1145 1359
1146 close (evpipe [0]); evpipe [0] = 0; 1360#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 1361 if (evfd >= 0)
1362 close (evfd);
1363#endif
1364
1365 if (evpipe [0] >= 0)
1366 {
1367 close (evpipe [0]);
1368 close (evpipe [1]);
1369 }
1148 } 1370 }
1149 1371
1150#if EV_USE_INOTIFY 1372#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 1373 if (fs_fd >= 0)
1152 close (fs_fd); 1374 close (fs_fd);
1197#endif 1419#endif
1198 1420
1199 backend = 0; 1421 backend = 0;
1200} 1422}
1201 1423
1424#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 1425void inline_size infy_fork (EV_P);
1426#endif
1203 1427
1204void inline_size 1428void inline_size
1205loop_fork (EV_P) 1429loop_fork (EV_P)
1206{ 1430{
1207#if EV_USE_PORT 1431#if EV_USE_PORT
1218#endif 1442#endif
1219 1443
1220 if (ev_is_active (&pipeev)) 1444 if (ev_is_active (&pipeev))
1221 { 1445 {
1222 /* this "locks" the handlers against writing to the pipe */ 1446 /* this "locks" the handlers against writing to the pipe */
1447 /* while we modify the fd vars */
1448 gotsig = 1;
1449#if EV_ASYNC_ENABLE
1223 gotsig = gotasync = 1; 1450 gotasync = 1;
1451#endif
1224 1452
1225 ev_ref (EV_A); 1453 ev_ref (EV_A);
1226 ev_io_stop (EV_A_ &pipeev); 1454 ev_io_stop (EV_A_ &pipeev);
1455
1456#if EV_USE_EVENTFD
1457 if (evfd >= 0)
1458 close (evfd);
1459#endif
1460
1461 if (evpipe [0] >= 0)
1462 {
1227 close (evpipe [0]); 1463 close (evpipe [0]);
1228 close (evpipe [1]); 1464 close (evpipe [1]);
1465 }
1229 1466
1230 evpipe_init (EV_A); 1467 evpipe_init (EV_A);
1231 /* now iterate over everything, in case we missed something */ 1468 /* now iterate over everything, in case we missed something */
1232 pipecb (EV_A_ &pipeev, EV_READ); 1469 pipecb (EV_A_ &pipeev, EV_READ);
1233 } 1470 }
1234 1471
1235 postfork = 0; 1472 postfork = 0;
1236} 1473}
1237 1474
1238#if EV_MULTIPLICITY 1475#if EV_MULTIPLICITY
1476
1239struct ev_loop * 1477struct ev_loop *
1240ev_loop_new (unsigned int flags) 1478ev_loop_new (unsigned int flags)
1241{ 1479{
1242 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1480 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1243 1481
1262ev_loop_fork (EV_P) 1500ev_loop_fork (EV_P)
1263{ 1501{
1264 postfork = 1; /* must be in line with ev_default_fork */ 1502 postfork = 1; /* must be in line with ev_default_fork */
1265} 1503}
1266 1504
1505#if EV_VERIFY
1506static void noinline
1507verify_watcher (EV_P_ W w)
1508{
1509 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1510
1511 if (w->pending)
1512 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1513}
1514
1515static void noinline
1516verify_heap (EV_P_ ANHE *heap, int N)
1517{
1518 int i;
1519
1520 for (i = HEAP0; i < N + HEAP0; ++i)
1521 {
1522 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1523 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1524 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1525
1526 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1527 }
1528}
1529
1530static void noinline
1531array_verify (EV_P_ W *ws, int cnt)
1532{
1533 while (cnt--)
1534 {
1535 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1536 verify_watcher (EV_A_ ws [cnt]);
1537 }
1538}
1539#endif
1540
1541void
1542ev_loop_verify (EV_P)
1543{
1544#if EV_VERIFY
1545 int i;
1546 WL w;
1547
1548 assert (activecnt >= -1);
1549
1550 assert (fdchangemax >= fdchangecnt);
1551 for (i = 0; i < fdchangecnt; ++i)
1552 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1553
1554 assert (anfdmax >= 0);
1555 for (i = 0; i < anfdmax; ++i)
1556 for (w = anfds [i].head; w; w = w->next)
1557 {
1558 verify_watcher (EV_A_ (W)w);
1559 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1560 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1561 }
1562
1563 assert (timermax >= timercnt);
1564 verify_heap (EV_A_ timers, timercnt);
1565
1566#if EV_PERIODIC_ENABLE
1567 assert (periodicmax >= periodiccnt);
1568 verify_heap (EV_A_ periodics, periodiccnt);
1569#endif
1570
1571 for (i = NUMPRI; i--; )
1572 {
1573 assert (pendingmax [i] >= pendingcnt [i]);
1574#if EV_IDLE_ENABLE
1575 assert (idleall >= 0);
1576 assert (idlemax [i] >= idlecnt [i]);
1577 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1578#endif
1579 }
1580
1581#if EV_FORK_ENABLE
1582 assert (forkmax >= forkcnt);
1583 array_verify (EV_A_ (W *)forks, forkcnt);
1584#endif
1585
1586#if EV_ASYNC_ENABLE
1587 assert (asyncmax >= asynccnt);
1588 array_verify (EV_A_ (W *)asyncs, asynccnt);
1589#endif
1590
1591 assert (preparemax >= preparecnt);
1592 array_verify (EV_A_ (W *)prepares, preparecnt);
1593
1594 assert (checkmax >= checkcnt);
1595 array_verify (EV_A_ (W *)checks, checkcnt);
1596
1597# if 0
1598 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1599 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1267#endif 1600# endif
1601#endif
1602}
1603
1604#endif /* multiplicity */
1268 1605
1269#if EV_MULTIPLICITY 1606#if EV_MULTIPLICITY
1270struct ev_loop * 1607struct ev_loop *
1271ev_default_loop_init (unsigned int flags) 1608ev_default_loop_init (unsigned int flags)
1272#else 1609#else
1305{ 1642{
1306#if EV_MULTIPLICITY 1643#if EV_MULTIPLICITY
1307 struct ev_loop *loop = ev_default_loop_ptr; 1644 struct ev_loop *loop = ev_default_loop_ptr;
1308#endif 1645#endif
1309 1646
1647 ev_default_loop_ptr = 0;
1648
1310#ifndef _WIN32 1649#ifndef _WIN32
1311 ev_ref (EV_A); /* child watcher */ 1650 ev_ref (EV_A); /* child watcher */
1312 ev_signal_stop (EV_A_ &childev); 1651 ev_signal_stop (EV_A_ &childev);
1313#endif 1652#endif
1314 1653
1320{ 1659{
1321#if EV_MULTIPLICITY 1660#if EV_MULTIPLICITY
1322 struct ev_loop *loop = ev_default_loop_ptr; 1661 struct ev_loop *loop = ev_default_loop_ptr;
1323#endif 1662#endif
1324 1663
1325 if (backend) 1664 ev_loop_fork (EV_A);
1326 postfork = 1; /* must be in line with ev_loop_fork */
1327} 1665}
1328 1666
1329/*****************************************************************************/ 1667/*****************************************************************************/
1330 1668
1331void 1669void
1348 { 1686 {
1349 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1687 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1350 1688
1351 p->w->pending = 0; 1689 p->w->pending = 0;
1352 EV_CB_INVOKE (p->w, p->events); 1690 EV_CB_INVOKE (p->w, p->events);
1691 EV_FREQUENT_CHECK;
1353 } 1692 }
1354 } 1693 }
1355} 1694}
1356
1357void inline_size
1358timers_reify (EV_P)
1359{
1360 while (timercnt && ((WT)timers [0])->at <= mn_now)
1361 {
1362 ev_timer *w = (ev_timer *)timers [0];
1363
1364 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1365
1366 /* first reschedule or stop timer */
1367 if (w->repeat)
1368 {
1369 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1370
1371 ((WT)w)->at += w->repeat;
1372 if (((WT)w)->at < mn_now)
1373 ((WT)w)->at = mn_now;
1374
1375 downheap (timers, timercnt, 0);
1376 }
1377 else
1378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1379
1380 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1381 }
1382}
1383
1384#if EV_PERIODIC_ENABLE
1385void inline_size
1386periodics_reify (EV_P)
1387{
1388 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1389 {
1390 ev_periodic *w = (ev_periodic *)periodics [0];
1391
1392 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1393
1394 /* first reschedule or stop timer */
1395 if (w->reschedule_cb)
1396 {
1397 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1398 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1399 downheap (periodics, periodiccnt, 0);
1400 }
1401 else if (w->interval)
1402 {
1403 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1405 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1406 downheap (periodics, periodiccnt, 0);
1407 }
1408 else
1409 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1410
1411 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1412 }
1413}
1414
1415static void noinline
1416periodics_reschedule (EV_P)
1417{
1418 int i;
1419
1420 /* adjust periodics after time jump */
1421 for (i = 0; i < periodiccnt; ++i)
1422 {
1423 ev_periodic *w = (ev_periodic *)periodics [i];
1424
1425 if (w->reschedule_cb)
1426 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1427 else if (w->interval)
1428 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1429 }
1430
1431 /* now rebuild the heap */
1432 for (i = periodiccnt >> 1; i--; )
1433 downheap (periodics, periodiccnt, i);
1434}
1435#endif
1436 1695
1437#if EV_IDLE_ENABLE 1696#if EV_IDLE_ENABLE
1438void inline_size 1697void inline_size
1439idle_reify (EV_P) 1698idle_reify (EV_P)
1440{ 1699{
1452 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1711 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1453 break; 1712 break;
1454 } 1713 }
1455 } 1714 }
1456 } 1715 }
1716}
1717#endif
1718
1719void inline_size
1720timers_reify (EV_P)
1721{
1722 EV_FREQUENT_CHECK;
1723
1724 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1725 {
1726 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1727
1728 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1729
1730 /* first reschedule or stop timer */
1731 if (w->repeat)
1732 {
1733 ev_at (w) += w->repeat;
1734 if (ev_at (w) < mn_now)
1735 ev_at (w) = mn_now;
1736
1737 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1738
1739 ANHE_at_cache (timers [HEAP0]);
1740 downheap (timers, timercnt, HEAP0);
1741 }
1742 else
1743 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1744
1745 EV_FREQUENT_CHECK;
1746 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1747 }
1748}
1749
1750#if EV_PERIODIC_ENABLE
1751void inline_size
1752periodics_reify (EV_P)
1753{
1754 EV_FREQUENT_CHECK;
1755
1756 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1757 {
1758 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1759
1760 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1761
1762 /* first reschedule or stop timer */
1763 if (w->reschedule_cb)
1764 {
1765 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1766
1767 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1768
1769 ANHE_at_cache (periodics [HEAP0]);
1770 downheap (periodics, periodiccnt, HEAP0);
1771 }
1772 else if (w->interval)
1773 {
1774 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1775 /* if next trigger time is not sufficiently in the future, put it there */
1776 /* this might happen because of floating point inexactness */
1777 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1778 {
1779 ev_at (w) += w->interval;
1780
1781 /* if interval is unreasonably low we might still have a time in the past */
1782 /* so correct this. this will make the periodic very inexact, but the user */
1783 /* has effectively asked to get triggered more often than possible */
1784 if (ev_at (w) < ev_rt_now)
1785 ev_at (w) = ev_rt_now;
1786 }
1787
1788 ANHE_at_cache (periodics [HEAP0]);
1789 downheap (periodics, periodiccnt, HEAP0);
1790 }
1791 else
1792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1793
1794 EV_FREQUENT_CHECK;
1795 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1796 }
1797}
1798
1799static void noinline
1800periodics_reschedule (EV_P)
1801{
1802 int i;
1803
1804 /* adjust periodics after time jump */
1805 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1806 {
1807 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1808
1809 if (w->reschedule_cb)
1810 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1811 else if (w->interval)
1812 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1813
1814 ANHE_at_cache (periodics [i]);
1815 }
1816
1817 reheap (periodics, periodiccnt);
1457} 1818}
1458#endif 1819#endif
1459 1820
1460void inline_speed 1821void inline_speed
1461time_update (EV_P_ ev_tstamp max_block) 1822time_update (EV_P_ ev_tstamp max_block)
1490 */ 1851 */
1491 for (i = 4; --i; ) 1852 for (i = 4; --i; )
1492 { 1853 {
1493 rtmn_diff = ev_rt_now - mn_now; 1854 rtmn_diff = ev_rt_now - mn_now;
1494 1855
1495 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1856 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1496 return; /* all is well */ 1857 return; /* all is well */
1497 1858
1498 ev_rt_now = ev_time (); 1859 ev_rt_now = ev_time ();
1499 mn_now = get_clock (); 1860 mn_now = get_clock ();
1500 now_floor = mn_now; 1861 now_floor = mn_now;
1516#if EV_PERIODIC_ENABLE 1877#if EV_PERIODIC_ENABLE
1517 periodics_reschedule (EV_A); 1878 periodics_reschedule (EV_A);
1518#endif 1879#endif
1519 /* adjust timers. this is easy, as the offset is the same for all of them */ 1880 /* adjust timers. this is easy, as the offset is the same for all of them */
1520 for (i = 0; i < timercnt; ++i) 1881 for (i = 0; i < timercnt; ++i)
1882 {
1883 ANHE *he = timers + i + HEAP0;
1521 ((WT)timers [i])->at += ev_rt_now - mn_now; 1884 ANHE_w (*he)->at += ev_rt_now - mn_now;
1885 ANHE_at_cache (*he);
1886 }
1522 } 1887 }
1523 1888
1524 mn_now = ev_rt_now; 1889 mn_now = ev_rt_now;
1525 } 1890 }
1526} 1891}
1535ev_unref (EV_P) 1900ev_unref (EV_P)
1536{ 1901{
1537 --activecnt; 1902 --activecnt;
1538} 1903}
1539 1904
1905void
1906ev_now_update (EV_P)
1907{
1908 time_update (EV_A_ 1e100);
1909}
1910
1540static int loop_done; 1911static int loop_done;
1541 1912
1542void 1913void
1543ev_loop (EV_P_ int flags) 1914ev_loop (EV_P_ int flags)
1544{ 1915{
1545 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1916 loop_done = EVUNLOOP_CANCEL;
1546 ? EVUNLOOP_ONE
1547 : EVUNLOOP_CANCEL;
1548 1917
1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1550 1919
1551 do 1920 do
1552 { 1921 {
1922#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A);
1924#endif
1925
1553#ifndef _WIN32 1926#ifndef _WIN32
1554 if (expect_false (curpid)) /* penalise the forking check even more */ 1927 if (expect_false (curpid)) /* penalise the forking check even more */
1555 if (expect_false (getpid () != curpid)) 1928 if (expect_false (getpid () != curpid))
1556 { 1929 {
1557 curpid = getpid (); 1930 curpid = getpid ();
1598 1971
1599 waittime = MAX_BLOCKTIME; 1972 waittime = MAX_BLOCKTIME;
1600 1973
1601 if (timercnt) 1974 if (timercnt)
1602 { 1975 {
1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1604 if (waittime > to) waittime = to; 1977 if (waittime > to) waittime = to;
1605 } 1978 }
1606 1979
1607#if EV_PERIODIC_ENABLE 1980#if EV_PERIODIC_ENABLE
1608 if (periodiccnt) 1981 if (periodiccnt)
1609 { 1982 {
1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1611 if (waittime > to) waittime = to; 1984 if (waittime > to) waittime = to;
1612 } 1985 }
1613#endif 1986#endif
1614 1987
1615 if (expect_false (waittime < timeout_blocktime)) 1988 if (expect_false (waittime < timeout_blocktime))
1648 /* queue check watchers, to be executed first */ 2021 /* queue check watchers, to be executed first */
1649 if (expect_false (checkcnt)) 2022 if (expect_false (checkcnt))
1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1651 2024
1652 call_pending (EV_A); 2025 call_pending (EV_A);
1653
1654 } 2026 }
1655 while (expect_true (activecnt && !loop_done)); 2027 while (expect_true (
2028 activecnt
2029 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2031 ));
1656 2032
1657 if (loop_done == EVUNLOOP_ONE) 2033 if (loop_done == EVUNLOOP_ONE)
1658 loop_done = EVUNLOOP_CANCEL; 2034 loop_done = EVUNLOOP_CANCEL;
1659} 2035}
1660 2036
1748 2124
1749 if (expect_false (ev_is_active (w))) 2125 if (expect_false (ev_is_active (w)))
1750 return; 2126 return;
1751 2127
1752 assert (("ev_io_start called with negative fd", fd >= 0)); 2128 assert (("ev_io_start called with negative fd", fd >= 0));
2129 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2130
2131 EV_FREQUENT_CHECK;
1753 2132
1754 ev_start (EV_A_ (W)w, 1); 2133 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2134 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1756 wlist_add (&anfds[fd].head, (WL)w); 2135 wlist_add (&anfds[fd].head, (WL)w);
1757 2136
1758 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2137 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1759 w->events &= ~EV_IOFDSET; 2138 w->events &= ~EV_IOFDSET;
2139
2140 EV_FREQUENT_CHECK;
1760} 2141}
1761 2142
1762void noinline 2143void noinline
1763ev_io_stop (EV_P_ ev_io *w) 2144ev_io_stop (EV_P_ ev_io *w)
1764{ 2145{
1765 clear_pending (EV_A_ (W)w); 2146 clear_pending (EV_A_ (W)w);
1766 if (expect_false (!ev_is_active (w))) 2147 if (expect_false (!ev_is_active (w)))
1767 return; 2148 return;
1768 2149
1769 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2150 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2151
2152 EV_FREQUENT_CHECK;
1770 2153
1771 wlist_del (&anfds[w->fd].head, (WL)w); 2154 wlist_del (&anfds[w->fd].head, (WL)w);
1772 ev_stop (EV_A_ (W)w); 2155 ev_stop (EV_A_ (W)w);
1773 2156
1774 fd_change (EV_A_ w->fd, 1); 2157 fd_change (EV_A_ w->fd, 1);
2158
2159 EV_FREQUENT_CHECK;
1775} 2160}
1776 2161
1777void noinline 2162void noinline
1778ev_timer_start (EV_P_ ev_timer *w) 2163ev_timer_start (EV_P_ ev_timer *w)
1779{ 2164{
1780 if (expect_false (ev_is_active (w))) 2165 if (expect_false (ev_is_active (w)))
1781 return; 2166 return;
1782 2167
1783 ((WT)w)->at += mn_now; 2168 ev_at (w) += mn_now;
1784 2169
1785 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2170 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1786 2171
2172 EV_FREQUENT_CHECK;
2173
2174 ++timercnt;
1787 ev_start (EV_A_ (W)w, ++timercnt); 2175 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1788 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2176 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1789 timers [timercnt - 1] = (WT)w; 2177 ANHE_w (timers [ev_active (w)]) = (WT)w;
1790 upheap (timers, timercnt - 1); 2178 ANHE_at_cache (timers [ev_active (w)]);
2179 upheap (timers, ev_active (w));
1791 2180
2181 EV_FREQUENT_CHECK;
2182
1792 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2183 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1793} 2184}
1794 2185
1795void noinline 2186void noinline
1796ev_timer_stop (EV_P_ ev_timer *w) 2187ev_timer_stop (EV_P_ ev_timer *w)
1797{ 2188{
1798 clear_pending (EV_A_ (W)w); 2189 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2190 if (expect_false (!ev_is_active (w)))
1800 return; 2191 return;
1801 2192
1802 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2193 EV_FREQUENT_CHECK;
1803 2194
1804 { 2195 {
1805 int active = ((W)w)->active; 2196 int active = ev_active (w);
1806 2197
2198 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2199
2200 --timercnt;
2201
1807 if (expect_true (--active < --timercnt)) 2202 if (expect_true (active < timercnt + HEAP0))
1808 { 2203 {
1809 timers [active] = timers [timercnt]; 2204 timers [active] = timers [timercnt + HEAP0];
1810 adjustheap (timers, timercnt, active); 2205 adjustheap (timers, timercnt, active);
1811 } 2206 }
1812 } 2207 }
1813 2208
1814 ((WT)w)->at -= mn_now; 2209 EV_FREQUENT_CHECK;
2210
2211 ev_at (w) -= mn_now;
1815 2212
1816 ev_stop (EV_A_ (W)w); 2213 ev_stop (EV_A_ (W)w);
1817} 2214}
1818 2215
1819void noinline 2216void noinline
1820ev_timer_again (EV_P_ ev_timer *w) 2217ev_timer_again (EV_P_ ev_timer *w)
1821{ 2218{
2219 EV_FREQUENT_CHECK;
2220
1822 if (ev_is_active (w)) 2221 if (ev_is_active (w))
1823 { 2222 {
1824 if (w->repeat) 2223 if (w->repeat)
1825 { 2224 {
1826 ((WT)w)->at = mn_now + w->repeat; 2225 ev_at (w) = mn_now + w->repeat;
2226 ANHE_at_cache (timers [ev_active (w)]);
1827 adjustheap (timers, timercnt, ((W)w)->active - 1); 2227 adjustheap (timers, timercnt, ev_active (w));
1828 } 2228 }
1829 else 2229 else
1830 ev_timer_stop (EV_A_ w); 2230 ev_timer_stop (EV_A_ w);
1831 } 2231 }
1832 else if (w->repeat) 2232 else if (w->repeat)
1833 { 2233 {
1834 w->at = w->repeat; 2234 ev_at (w) = w->repeat;
1835 ev_timer_start (EV_A_ w); 2235 ev_timer_start (EV_A_ w);
1836 } 2236 }
2237
2238 EV_FREQUENT_CHECK;
1837} 2239}
1838 2240
1839#if EV_PERIODIC_ENABLE 2241#if EV_PERIODIC_ENABLE
1840void noinline 2242void noinline
1841ev_periodic_start (EV_P_ ev_periodic *w) 2243ev_periodic_start (EV_P_ ev_periodic *w)
1842{ 2244{
1843 if (expect_false (ev_is_active (w))) 2245 if (expect_false (ev_is_active (w)))
1844 return; 2246 return;
1845 2247
1846 if (w->reschedule_cb) 2248 if (w->reschedule_cb)
1847 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2249 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1848 else if (w->interval) 2250 else if (w->interval)
1849 { 2251 {
1850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2252 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1851 /* this formula differs from the one in periodic_reify because we do not always round up */ 2253 /* this formula differs from the one in periodic_reify because we do not always round up */
1852 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2254 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1853 } 2255 }
1854 else 2256 else
1855 ((WT)w)->at = w->offset; 2257 ev_at (w) = w->offset;
1856 2258
2259 EV_FREQUENT_CHECK;
2260
2261 ++periodiccnt;
1857 ev_start (EV_A_ (W)w, ++periodiccnt); 2262 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1858 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2263 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1859 periodics [periodiccnt - 1] = (WT)w; 2264 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1860 upheap (periodics, periodiccnt - 1); 2265 ANHE_at_cache (periodics [ev_active (w)]);
2266 upheap (periodics, ev_active (w));
1861 2267
2268 EV_FREQUENT_CHECK;
2269
1862 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2270 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1863} 2271}
1864 2272
1865void noinline 2273void noinline
1866ev_periodic_stop (EV_P_ ev_periodic *w) 2274ev_periodic_stop (EV_P_ ev_periodic *w)
1867{ 2275{
1868 clear_pending (EV_A_ (W)w); 2276 clear_pending (EV_A_ (W)w);
1869 if (expect_false (!ev_is_active (w))) 2277 if (expect_false (!ev_is_active (w)))
1870 return; 2278 return;
1871 2279
1872 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2280 EV_FREQUENT_CHECK;
1873 2281
1874 { 2282 {
1875 int active = ((W)w)->active; 2283 int active = ev_active (w);
1876 2284
2285 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2286
2287 --periodiccnt;
2288
1877 if (expect_true (--active < --periodiccnt)) 2289 if (expect_true (active < periodiccnt + HEAP0))
1878 { 2290 {
1879 periodics [active] = periodics [periodiccnt]; 2291 periodics [active] = periodics [periodiccnt + HEAP0];
1880 adjustheap (periodics, periodiccnt, active); 2292 adjustheap (periodics, periodiccnt, active);
1881 } 2293 }
1882 } 2294 }
1883 2295
2296 EV_FREQUENT_CHECK;
2297
1884 ev_stop (EV_A_ (W)w); 2298 ev_stop (EV_A_ (W)w);
1885} 2299}
1886 2300
1887void noinline 2301void noinline
1888ev_periodic_again (EV_P_ ev_periodic *w) 2302ev_periodic_again (EV_P_ ev_periodic *w)
1907 return; 2321 return;
1908 2322
1909 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2323 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1910 2324
1911 evpipe_init (EV_A); 2325 evpipe_init (EV_A);
2326
2327 EV_FREQUENT_CHECK;
1912 2328
1913 { 2329 {
1914#ifndef _WIN32 2330#ifndef _WIN32
1915 sigset_t full, prev; 2331 sigset_t full, prev;
1916 sigfillset (&full); 2332 sigfillset (&full);
1917 sigprocmask (SIG_SETMASK, &full, &prev); 2333 sigprocmask (SIG_SETMASK, &full, &prev);
1918#endif 2334#endif
1919 2335
1920 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2336 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1921 2337
1922#ifndef _WIN32 2338#ifndef _WIN32
1923 sigprocmask (SIG_SETMASK, &prev, 0); 2339 sigprocmask (SIG_SETMASK, &prev, 0);
1924#endif 2340#endif
1925 } 2341 }
1928 wlist_add (&signals [w->signum - 1].head, (WL)w); 2344 wlist_add (&signals [w->signum - 1].head, (WL)w);
1929 2345
1930 if (!((WL)w)->next) 2346 if (!((WL)w)->next)
1931 { 2347 {
1932#if _WIN32 2348#if _WIN32
1933 signal (w->signum, sighandler); 2349 signal (w->signum, ev_sighandler);
1934#else 2350#else
1935 struct sigaction sa; 2351 struct sigaction sa;
1936 sa.sa_handler = sighandler; 2352 sa.sa_handler = ev_sighandler;
1937 sigfillset (&sa.sa_mask); 2353 sigfillset (&sa.sa_mask);
1938 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2354 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1939 sigaction (w->signum, &sa, 0); 2355 sigaction (w->signum, &sa, 0);
1940#endif 2356#endif
1941 } 2357 }
2358
2359 EV_FREQUENT_CHECK;
1942} 2360}
1943 2361
1944void noinline 2362void noinline
1945ev_signal_stop (EV_P_ ev_signal *w) 2363ev_signal_stop (EV_P_ ev_signal *w)
1946{ 2364{
1947 clear_pending (EV_A_ (W)w); 2365 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 2366 if (expect_false (!ev_is_active (w)))
1949 return; 2367 return;
1950 2368
2369 EV_FREQUENT_CHECK;
2370
1951 wlist_del (&signals [w->signum - 1].head, (WL)w); 2371 wlist_del (&signals [w->signum - 1].head, (WL)w);
1952 ev_stop (EV_A_ (W)w); 2372 ev_stop (EV_A_ (W)w);
1953 2373
1954 if (!signals [w->signum - 1].head) 2374 if (!signals [w->signum - 1].head)
1955 signal (w->signum, SIG_DFL); 2375 signal (w->signum, SIG_DFL);
2376
2377 EV_FREQUENT_CHECK;
1956} 2378}
1957 2379
1958void 2380void
1959ev_child_start (EV_P_ ev_child *w) 2381ev_child_start (EV_P_ ev_child *w)
1960{ 2382{
1962 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2384 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1963#endif 2385#endif
1964 if (expect_false (ev_is_active (w))) 2386 if (expect_false (ev_is_active (w)))
1965 return; 2387 return;
1966 2388
2389 EV_FREQUENT_CHECK;
2390
1967 ev_start (EV_A_ (W)w, 1); 2391 ev_start (EV_A_ (W)w, 1);
1968 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2392 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2393
2394 EV_FREQUENT_CHECK;
1969} 2395}
1970 2396
1971void 2397void
1972ev_child_stop (EV_P_ ev_child *w) 2398ev_child_stop (EV_P_ ev_child *w)
1973{ 2399{
1974 clear_pending (EV_A_ (W)w); 2400 clear_pending (EV_A_ (W)w);
1975 if (expect_false (!ev_is_active (w))) 2401 if (expect_false (!ev_is_active (w)))
1976 return; 2402 return;
1977 2403
2404 EV_FREQUENT_CHECK;
2405
1978 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2406 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1979 ev_stop (EV_A_ (W)w); 2407 ev_stop (EV_A_ (W)w);
2408
2409 EV_FREQUENT_CHECK;
1980} 2410}
1981 2411
1982#if EV_STAT_ENABLE 2412#if EV_STAT_ENABLE
1983 2413
1984# ifdef _WIN32 2414# ifdef _WIN32
2002 if (w->wd < 0) 2432 if (w->wd < 0)
2003 { 2433 {
2004 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2434 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2005 2435
2006 /* monitor some parent directory for speedup hints */ 2436 /* monitor some parent directory for speedup hints */
2437 /* note that exceeding the hardcoded limit is not a correctness issue, */
2438 /* but an efficiency issue only */
2007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2439 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2008 { 2440 {
2009 char path [4096]; 2441 char path [4096];
2010 strcpy (path, w->path); 2442 strcpy (path, w->path);
2011 2443
2051 2483
2052static void noinline 2484static void noinline
2053infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2485infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2054{ 2486{
2055 if (slot < 0) 2487 if (slot < 0)
2056 /* overflow, need to check for all hahs slots */ 2488 /* overflow, need to check for all hash slots */
2057 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2489 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2058 infy_wd (EV_A_ slot, wd, ev); 2490 infy_wd (EV_A_ slot, wd, ev);
2059 else 2491 else
2060 { 2492 {
2061 WL w_; 2493 WL w_;
2095infy_init (EV_P) 2527infy_init (EV_P)
2096{ 2528{
2097 if (fs_fd != -2) 2529 if (fs_fd != -2)
2098 return; 2530 return;
2099 2531
2532 /* kernels < 2.6.25 are borked
2533 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2534 */
2535 {
2536 struct utsname buf;
2537 int major, minor, micro;
2538
2539 fs_fd = -1;
2540
2541 if (uname (&buf))
2542 return;
2543
2544 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2545 return;
2546
2547 if (major < 2
2548 || (major == 2 && minor < 6)
2549 || (major == 2 && minor == 6 && micro < 25))
2550 return;
2551 }
2552
2100 fs_fd = inotify_init (); 2553 fs_fd = inotify_init ();
2101 2554
2102 if (fs_fd >= 0) 2555 if (fs_fd >= 0)
2103 { 2556 {
2104 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2557 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2133 if (fs_fd >= 0) 2586 if (fs_fd >= 0)
2134 infy_add (EV_A_ w); /* re-add, no matter what */ 2587 infy_add (EV_A_ w); /* re-add, no matter what */
2135 else 2588 else
2136 ev_timer_start (EV_A_ &w->timer); 2589 ev_timer_start (EV_A_ &w->timer);
2137 } 2590 }
2138
2139 } 2591 }
2140} 2592}
2141 2593
2594#endif
2595
2596#ifdef _WIN32
2597# define EV_LSTAT(p,b) _stati64 (p, b)
2598#else
2599# define EV_LSTAT(p,b) lstat (p, b)
2142#endif 2600#endif
2143 2601
2144void 2602void
2145ev_stat_stat (EV_P_ ev_stat *w) 2603ev_stat_stat (EV_P_ ev_stat *w)
2146{ 2604{
2173 || w->prev.st_atime != w->attr.st_atime 2631 || w->prev.st_atime != w->attr.st_atime
2174 || w->prev.st_mtime != w->attr.st_mtime 2632 || w->prev.st_mtime != w->attr.st_mtime
2175 || w->prev.st_ctime != w->attr.st_ctime 2633 || w->prev.st_ctime != w->attr.st_ctime
2176 ) { 2634 ) {
2177 #if EV_USE_INOTIFY 2635 #if EV_USE_INOTIFY
2636 if (fs_fd >= 0)
2637 {
2178 infy_del (EV_A_ w); 2638 infy_del (EV_A_ w);
2179 infy_add (EV_A_ w); 2639 infy_add (EV_A_ w);
2180 ev_stat_stat (EV_A_ w); /* avoid race... */ 2640 ev_stat_stat (EV_A_ w); /* avoid race... */
2641 }
2181 #endif 2642 #endif
2182 2643
2183 ev_feed_event (EV_A_ w, EV_STAT); 2644 ev_feed_event (EV_A_ w, EV_STAT);
2184 } 2645 }
2185} 2646}
2210 else 2671 else
2211#endif 2672#endif
2212 ev_timer_start (EV_A_ &w->timer); 2673 ev_timer_start (EV_A_ &w->timer);
2213 2674
2214 ev_start (EV_A_ (W)w, 1); 2675 ev_start (EV_A_ (W)w, 1);
2676
2677 EV_FREQUENT_CHECK;
2215} 2678}
2216 2679
2217void 2680void
2218ev_stat_stop (EV_P_ ev_stat *w) 2681ev_stat_stop (EV_P_ ev_stat *w)
2219{ 2682{
2220 clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
2222 return; 2685 return;
2223 2686
2687 EV_FREQUENT_CHECK;
2688
2224#if EV_USE_INOTIFY 2689#if EV_USE_INOTIFY
2225 infy_del (EV_A_ w); 2690 infy_del (EV_A_ w);
2226#endif 2691#endif
2227 ev_timer_stop (EV_A_ &w->timer); 2692 ev_timer_stop (EV_A_ &w->timer);
2228 2693
2229 ev_stop (EV_A_ (W)w); 2694 ev_stop (EV_A_ (W)w);
2695
2696 EV_FREQUENT_CHECK;
2230} 2697}
2231#endif 2698#endif
2232 2699
2233#if EV_IDLE_ENABLE 2700#if EV_IDLE_ENABLE
2234void 2701void
2236{ 2703{
2237 if (expect_false (ev_is_active (w))) 2704 if (expect_false (ev_is_active (w)))
2238 return; 2705 return;
2239 2706
2240 pri_adjust (EV_A_ (W)w); 2707 pri_adjust (EV_A_ (W)w);
2708
2709 EV_FREQUENT_CHECK;
2241 2710
2242 { 2711 {
2243 int active = ++idlecnt [ABSPRI (w)]; 2712 int active = ++idlecnt [ABSPRI (w)];
2244 2713
2245 ++idleall; 2714 ++idleall;
2246 ev_start (EV_A_ (W)w, active); 2715 ev_start (EV_A_ (W)w, active);
2247 2716
2248 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2717 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2249 idles [ABSPRI (w)][active - 1] = w; 2718 idles [ABSPRI (w)][active - 1] = w;
2250 } 2719 }
2720
2721 EV_FREQUENT_CHECK;
2251} 2722}
2252 2723
2253void 2724void
2254ev_idle_stop (EV_P_ ev_idle *w) 2725ev_idle_stop (EV_P_ ev_idle *w)
2255{ 2726{
2256 clear_pending (EV_A_ (W)w); 2727 clear_pending (EV_A_ (W)w);
2257 if (expect_false (!ev_is_active (w))) 2728 if (expect_false (!ev_is_active (w)))
2258 return; 2729 return;
2259 2730
2731 EV_FREQUENT_CHECK;
2732
2260 { 2733 {
2261 int active = ((W)w)->active; 2734 int active = ev_active (w);
2262 2735
2263 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2736 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2264 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2737 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2265 2738
2266 ev_stop (EV_A_ (W)w); 2739 ev_stop (EV_A_ (W)w);
2267 --idleall; 2740 --idleall;
2268 } 2741 }
2742
2743 EV_FREQUENT_CHECK;
2269} 2744}
2270#endif 2745#endif
2271 2746
2272void 2747void
2273ev_prepare_start (EV_P_ ev_prepare *w) 2748ev_prepare_start (EV_P_ ev_prepare *w)
2274{ 2749{
2275 if (expect_false (ev_is_active (w))) 2750 if (expect_false (ev_is_active (w)))
2276 return; 2751 return;
2752
2753 EV_FREQUENT_CHECK;
2277 2754
2278 ev_start (EV_A_ (W)w, ++preparecnt); 2755 ev_start (EV_A_ (W)w, ++preparecnt);
2279 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2756 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2280 prepares [preparecnt - 1] = w; 2757 prepares [preparecnt - 1] = w;
2758
2759 EV_FREQUENT_CHECK;
2281} 2760}
2282 2761
2283void 2762void
2284ev_prepare_stop (EV_P_ ev_prepare *w) 2763ev_prepare_stop (EV_P_ ev_prepare *w)
2285{ 2764{
2286 clear_pending (EV_A_ (W)w); 2765 clear_pending (EV_A_ (W)w);
2287 if (expect_false (!ev_is_active (w))) 2766 if (expect_false (!ev_is_active (w)))
2288 return; 2767 return;
2289 2768
2769 EV_FREQUENT_CHECK;
2770
2290 { 2771 {
2291 int active = ((W)w)->active; 2772 int active = ev_active (w);
2773
2292 prepares [active - 1] = prepares [--preparecnt]; 2774 prepares [active - 1] = prepares [--preparecnt];
2293 ((W)prepares [active - 1])->active = active; 2775 ev_active (prepares [active - 1]) = active;
2294 } 2776 }
2295 2777
2296 ev_stop (EV_A_ (W)w); 2778 ev_stop (EV_A_ (W)w);
2779
2780 EV_FREQUENT_CHECK;
2297} 2781}
2298 2782
2299void 2783void
2300ev_check_start (EV_P_ ev_check *w) 2784ev_check_start (EV_P_ ev_check *w)
2301{ 2785{
2302 if (expect_false (ev_is_active (w))) 2786 if (expect_false (ev_is_active (w)))
2303 return; 2787 return;
2788
2789 EV_FREQUENT_CHECK;
2304 2790
2305 ev_start (EV_A_ (W)w, ++checkcnt); 2791 ev_start (EV_A_ (W)w, ++checkcnt);
2306 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2792 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2307 checks [checkcnt - 1] = w; 2793 checks [checkcnt - 1] = w;
2794
2795 EV_FREQUENT_CHECK;
2308} 2796}
2309 2797
2310void 2798void
2311ev_check_stop (EV_P_ ev_check *w) 2799ev_check_stop (EV_P_ ev_check *w)
2312{ 2800{
2313 clear_pending (EV_A_ (W)w); 2801 clear_pending (EV_A_ (W)w);
2314 if (expect_false (!ev_is_active (w))) 2802 if (expect_false (!ev_is_active (w)))
2315 return; 2803 return;
2316 2804
2805 EV_FREQUENT_CHECK;
2806
2317 { 2807 {
2318 int active = ((W)w)->active; 2808 int active = ev_active (w);
2809
2319 checks [active - 1] = checks [--checkcnt]; 2810 checks [active - 1] = checks [--checkcnt];
2320 ((W)checks [active - 1])->active = active; 2811 ev_active (checks [active - 1]) = active;
2321 } 2812 }
2322 2813
2323 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
2815
2816 EV_FREQUENT_CHECK;
2324} 2817}
2325 2818
2326#if EV_EMBED_ENABLE 2819#if EV_EMBED_ENABLE
2327void noinline 2820void noinline
2328ev_embed_sweep (EV_P_ ev_embed *w) 2821ev_embed_sweep (EV_P_ ev_embed *w)
2355 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2848 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2356 } 2849 }
2357 } 2850 }
2358} 2851}
2359 2852
2853static void
2854embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2855{
2856 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2857
2858 {
2859 struct ev_loop *loop = w->other;
2860
2861 ev_loop_fork (EV_A);
2862 }
2863}
2864
2360#if 0 2865#if 0
2361static void 2866static void
2362embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2867embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2363{ 2868{
2364 ev_idle_stop (EV_A_ idle); 2869 ev_idle_stop (EV_A_ idle);
2375 struct ev_loop *loop = w->other; 2880 struct ev_loop *loop = w->other;
2376 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2881 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2377 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2882 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2378 } 2883 }
2379 2884
2885 EV_FREQUENT_CHECK;
2886
2380 ev_set_priority (&w->io, ev_priority (w)); 2887 ev_set_priority (&w->io, ev_priority (w));
2381 ev_io_start (EV_A_ &w->io); 2888 ev_io_start (EV_A_ &w->io);
2382 2889
2383 ev_prepare_init (&w->prepare, embed_prepare_cb); 2890 ev_prepare_init (&w->prepare, embed_prepare_cb);
2384 ev_set_priority (&w->prepare, EV_MINPRI); 2891 ev_set_priority (&w->prepare, EV_MINPRI);
2385 ev_prepare_start (EV_A_ &w->prepare); 2892 ev_prepare_start (EV_A_ &w->prepare);
2386 2893
2894 ev_fork_init (&w->fork, embed_fork_cb);
2895 ev_fork_start (EV_A_ &w->fork);
2896
2387 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2897 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2388 2898
2389 ev_start (EV_A_ (W)w, 1); 2899 ev_start (EV_A_ (W)w, 1);
2900
2901 EV_FREQUENT_CHECK;
2390} 2902}
2391 2903
2392void 2904void
2393ev_embed_stop (EV_P_ ev_embed *w) 2905ev_embed_stop (EV_P_ ev_embed *w)
2394{ 2906{
2395 clear_pending (EV_A_ (W)w); 2907 clear_pending (EV_A_ (W)w);
2396 if (expect_false (!ev_is_active (w))) 2908 if (expect_false (!ev_is_active (w)))
2397 return; 2909 return;
2398 2910
2911 EV_FREQUENT_CHECK;
2912
2399 ev_io_stop (EV_A_ &w->io); 2913 ev_io_stop (EV_A_ &w->io);
2400 ev_prepare_stop (EV_A_ &w->prepare); 2914 ev_prepare_stop (EV_A_ &w->prepare);
2915 ev_fork_stop (EV_A_ &w->fork);
2401 2916
2402 ev_stop (EV_A_ (W)w); 2917 EV_FREQUENT_CHECK;
2403} 2918}
2404#endif 2919#endif
2405 2920
2406#if EV_FORK_ENABLE 2921#if EV_FORK_ENABLE
2407void 2922void
2408ev_fork_start (EV_P_ ev_fork *w) 2923ev_fork_start (EV_P_ ev_fork *w)
2409{ 2924{
2410 if (expect_false (ev_is_active (w))) 2925 if (expect_false (ev_is_active (w)))
2411 return; 2926 return;
2927
2928 EV_FREQUENT_CHECK;
2412 2929
2413 ev_start (EV_A_ (W)w, ++forkcnt); 2930 ev_start (EV_A_ (W)w, ++forkcnt);
2414 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2931 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2415 forks [forkcnt - 1] = w; 2932 forks [forkcnt - 1] = w;
2933
2934 EV_FREQUENT_CHECK;
2416} 2935}
2417 2936
2418void 2937void
2419ev_fork_stop (EV_P_ ev_fork *w) 2938ev_fork_stop (EV_P_ ev_fork *w)
2420{ 2939{
2421 clear_pending (EV_A_ (W)w); 2940 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w))) 2941 if (expect_false (!ev_is_active (w)))
2423 return; 2942 return;
2424 2943
2944 EV_FREQUENT_CHECK;
2945
2425 { 2946 {
2426 int active = ((W)w)->active; 2947 int active = ev_active (w);
2948
2427 forks [active - 1] = forks [--forkcnt]; 2949 forks [active - 1] = forks [--forkcnt];
2428 ((W)forks [active - 1])->active = active; 2950 ev_active (forks [active - 1]) = active;
2429 } 2951 }
2430 2952
2431 ev_stop (EV_A_ (W)w); 2953 ev_stop (EV_A_ (W)w);
2954
2955 EV_FREQUENT_CHECK;
2432} 2956}
2433#endif 2957#endif
2434 2958
2435#if EV_ASYNC_ENABLE 2959#if EV_ASYNC_ENABLE
2436void 2960void
2438{ 2962{
2439 if (expect_false (ev_is_active (w))) 2963 if (expect_false (ev_is_active (w)))
2440 return; 2964 return;
2441 2965
2442 evpipe_init (EV_A); 2966 evpipe_init (EV_A);
2967
2968 EV_FREQUENT_CHECK;
2443 2969
2444 ev_start (EV_A_ (W)w, ++asynccnt); 2970 ev_start (EV_A_ (W)w, ++asynccnt);
2445 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2971 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2446 asyncs [asynccnt - 1] = w; 2972 asyncs [asynccnt - 1] = w;
2973
2974 EV_FREQUENT_CHECK;
2447} 2975}
2448 2976
2449void 2977void
2450ev_async_stop (EV_P_ ev_async *w) 2978ev_async_stop (EV_P_ ev_async *w)
2451{ 2979{
2452 clear_pending (EV_A_ (W)w); 2980 clear_pending (EV_A_ (W)w);
2453 if (expect_false (!ev_is_active (w))) 2981 if (expect_false (!ev_is_active (w)))
2454 return; 2982 return;
2455 2983
2984 EV_FREQUENT_CHECK;
2985
2456 { 2986 {
2457 int active = ((W)w)->active; 2987 int active = ev_active (w);
2988
2458 asyncs [active - 1] = asyncs [--asynccnt]; 2989 asyncs [active - 1] = asyncs [--asynccnt];
2459 ((W)asyncs [active - 1])->active = active; 2990 ev_active (asyncs [active - 1]) = active;
2460 } 2991 }
2461 2992
2462 ev_stop (EV_A_ (W)w); 2993 ev_stop (EV_A_ (W)w);
2994
2995 EV_FREQUENT_CHECK;
2463} 2996}
2464 2997
2465void 2998void
2466ev_async_send (EV_P_ ev_async *w) 2999ev_async_send (EV_P_ ev_async *w)
2467{ 3000{
2468 w->sent = 1; 3001 w->sent = 1;
2469 evpipe_write (EV_A_ 0, 1); 3002 evpipe_write (EV_A_ &gotasync);
2470} 3003}
2471#endif 3004#endif
2472 3005
2473/*****************************************************************************/ 3006/*****************************************************************************/
2474 3007
2484once_cb (EV_P_ struct ev_once *once, int revents) 3017once_cb (EV_P_ struct ev_once *once, int revents)
2485{ 3018{
2486 void (*cb)(int revents, void *arg) = once->cb; 3019 void (*cb)(int revents, void *arg) = once->cb;
2487 void *arg = once->arg; 3020 void *arg = once->arg;
2488 3021
2489 ev_io_stop (EV_A_ &once->io); 3022 ev_io_stop (EV_A_ &once->io);
2490 ev_timer_stop (EV_A_ &once->to); 3023 ev_timer_stop (EV_A_ &once->to);
2491 ev_free (once); 3024 ev_free (once);
2492 3025
2493 cb (revents, arg); 3026 cb (revents, arg);
2494} 3027}
2495 3028
2496static void 3029static void
2497once_cb_io (EV_P_ ev_io *w, int revents) 3030once_cb_io (EV_P_ ev_io *w, int revents)
2498{ 3031{
2499 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3032 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3033
3034 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2500} 3035}
2501 3036
2502static void 3037static void
2503once_cb_to (EV_P_ ev_timer *w, int revents) 3038once_cb_to (EV_P_ ev_timer *w, int revents)
2504{ 3039{
2505 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3040 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3041
3042 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2506} 3043}
2507 3044
2508void 3045void
2509ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3046ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2510{ 3047{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines