ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.210 by root, Sat Feb 9 00:34:11 2008 UTC vs.
Revision 1.288 by root, Sat Apr 25 14:12:48 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
51# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
54# endif 67# endif
55# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
57# endif 70# endif
58# else 71# else
59# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
61# endif 74# endif
118# else 131# else
119# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
120# endif 133# endif
121# endif 134# endif
122 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
123#endif 144#endif
124 145
125#include <math.h> 146#include <math.h>
126#include <stdlib.h> 147#include <stdlib.h>
127#include <fcntl.h> 148#include <fcntl.h>
145#ifndef _WIN32 166#ifndef _WIN32
146# include <sys/time.h> 167# include <sys/time.h>
147# include <sys/wait.h> 168# include <sys/wait.h>
148# include <unistd.h> 169# include <unistd.h>
149#else 170#else
171# include <io.h>
150# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 173# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
154# endif 176# endif
155#endif 177#endif
156 178
157/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
158 188
159#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
160# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
161#endif 195#endif
162 196
163#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 199#endif
166 200
167#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
168# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
169#endif 207#endif
170 208
171#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
173#endif 211#endif
179# define EV_USE_POLL 1 217# define EV_USE_POLL 1
180# endif 218# endif
181#endif 219#endif
182 220
183#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
184# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
185#endif 227#endif
186 228
187#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
189#endif 231#endif
191#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 234# define EV_USE_PORT 0
193#endif 235#endif
194 236
195#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
196# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
197#endif 243#endif
198 244
199#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 246# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
210# else 256# else
211# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
212# endif 258# endif
213#endif 259#endif
214 260
215/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 288
217#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
220#endif 292#endif
234# include <sys/select.h> 306# include <sys/select.h>
235# endif 307# endif
236#endif 308#endif
237 309
238#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
239# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
240#endif 319#endif
241 320
242#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 322# include <winsock.h>
244#endif 323#endif
245 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
246/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
247 353
248/* 354/*
249 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
265#else 371#else
266# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
267# define noinline 373# define noinline
268# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 375# define inline
270# endif 376# endif
271#endif 377#endif
272 378
273#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
288 394
289typedef ev_watcher *W; 395typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
292 398
293#if EV_USE_MONOTONIC 399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 410#endif
298 411
299#ifdef _WIN32 412#ifdef _WIN32
300# include "ev_win32.c" 413# include "ev_win32.c"
309{ 422{
310 syserr_cb = cb; 423 syserr_cb = cb;
311} 424}
312 425
313static void noinline 426static void noinline
314syserr (const char *msg) 427ev_syserr (const char *msg)
315{ 428{
316 if (!msg) 429 if (!msg)
317 msg = "(libev) system error"; 430 msg = "(libev) system error";
318 431
319 if (syserr_cb) 432 if (syserr_cb)
323 perror (msg); 436 perror (msg);
324 abort (); 437 abort ();
325 } 438 }
326} 439}
327 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
328static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 457
330void 458void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 460{
333 alloc = cb; 461 alloc = cb;
334} 462}
335 463
336inline_speed void * 464inline_speed void *
337ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
338{ 466{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
340 468
341 if (!ptr && size) 469 if (!ptr && size)
342 { 470 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 472 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
352 480
353/*****************************************************************************/ 481/*****************************************************************************/
354 482
483/* file descriptor info structure */
355typedef struct 484typedef struct
356{ 485{
357 WL head; 486 WL head;
358 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
360#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 495 SOCKET handle;
362#endif 496#endif
363} ANFD; 497} ANFD;
364 498
499/* stores the pending event set for a given watcher */
365typedef struct 500typedef struct
366{ 501{
367 W w; 502 W w;
368 int events; 503 int events; /* the pending event set for the given watcher */
369} ANPENDING; 504} ANPENDING;
370 505
371#if EV_USE_INOTIFY 506#if EV_USE_INOTIFY
507/* hash table entry per inotify-id */
372typedef struct 508typedef struct
373{ 509{
374 WL head; 510 WL head;
375} ANFS; 511} ANFS;
512#endif
513
514/* Heap Entry */
515#if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525#else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
376#endif 532#endif
377 533
378#if EV_MULTIPLICITY 534#if EV_MULTIPLICITY
379 535
380 struct ev_loop 536 struct ev_loop
405 561
406ev_tstamp 562ev_tstamp
407ev_time (void) 563ev_time (void)
408{ 564{
409#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
410 struct timespec ts; 568 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 571 }
572#endif
573
414 struct timeval tv; 574 struct timeval tv;
415 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 577}
419 578
420ev_tstamp inline_size 579inline_size ev_tstamp
421get_clock (void) 580get_clock (void)
422{ 581{
423#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
425 { 584 {
451 ts.tv_sec = (time_t)delay; 610 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 611 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 612
454 nanosleep (&ts, 0); 613 nanosleep (&ts, 0);
455#elif defined(_WIN32) 614#elif defined(_WIN32)
456 Sleep (delay * 1e3); 615 Sleep ((unsigned long)(delay * 1e3));
457#else 616#else
458 struct timeval tv; 617 struct timeval tv;
459 618
460 tv.tv_sec = (time_t)delay; 619 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
463 select (0, 0, 0, 0, &tv); 625 select (0, 0, 0, 0, &tv);
464#endif 626#endif
465 } 627 }
466} 628}
467 629
468/*****************************************************************************/ 630/*****************************************************************************/
469 631
470int inline_size 632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633
634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
471array_nextsize (int elem, int cur, int cnt) 637array_nextsize (int elem, int cur, int cnt)
472{ 638{
473 int ncur = cur + 1; 639 int ncur = cur + 1;
474 640
475 do 641 do
476 ncur <<= 1; 642 ncur <<= 1;
477 while (cnt > ncur); 643 while (cnt > ncur);
478 644
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 645 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 646 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 647 {
482 ncur *= elem; 648 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 649 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 650 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 651 ncur /= elem;
486 } 652 }
487 653
488 return ncur; 654 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 658array_realloc (int elem, void *base, int *cur, int cnt)
493{ 659{
494 *cur = array_nextsize (elem, *cur, cnt); 660 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 661 return ev_realloc (base, elem * *cur);
496} 662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 666
498#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 668 if (expect_false ((cnt) > (cur))) \
500 { \ 669 { \
501 int ocur_ = (cur); \ 670 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 683 }
515#endif 684#endif
516 685
517#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 688
520/*****************************************************************************/ 689/*****************************************************************************/
690
691/* dummy callback for pending events */
692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
694{
695}
521 696
522void noinline 697void noinline
523ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
524{ 699{
525 W w_ = (W)w; 700 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 709 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 710 pendings [pri][w_->pending - 1].events = revents;
536 } 711 }
537} 712}
538 713
539void inline_speed 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 731{
542 int i; 732 int i;
543 733
544 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
546} 736}
547 737
548/*****************************************************************************/ 738/*****************************************************************************/
549 739
550void inline_size 740inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
565{ 742{
566 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
567 ev_io *w; 744 ev_io *w;
568 745
580{ 757{
581 if (fd >= 0 && fd < anfdmax) 758 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
583} 760}
584 761
585void inline_size 762/* make sure the external fd watch events are in-sync */
763/* with the kernel/libev internal state */
764inline_size void
586fd_reify (EV_P) 765fd_reify (EV_P)
587{ 766{
588 int i; 767 int i;
589 768
590 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 778 events |= (unsigned char)w->events;
600 779
601#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET
602 if (events) 781 if (events)
603 { 782 {
604 unsigned long argp; 783 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 784 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 786 #else
608 anfd->handle = _get_osfhandle (fd); 787 anfd->handle = _get_osfhandle (fd);
609 #endif 788 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 790 }
612#endif 791#endif
613 792
614 { 793 {
615 unsigned char o_events = anfd->events; 794 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 795 unsigned char o_reify = anfd->reify;
617 796
618 anfd->reify = 0; 797 anfd->reify = 0;
619 anfd->events = events; 798 anfd->events = events;
620 799
621 if (o_events != events || o_reify & EV_IOFDSET) 800 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 801 backend_modify (EV_A_ fd, o_events, events);
623 } 802 }
624 } 803 }
625 804
626 fdchangecnt = 0; 805 fdchangecnt = 0;
627} 806}
628 807
629void inline_size 808/* something about the given fd changed */
809inline_size void
630fd_change (EV_P_ int fd, int flags) 810fd_change (EV_P_ int fd, int flags)
631{ 811{
632 unsigned char reify = anfds [fd].reify; 812 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 813 anfds [fd].reify |= flags;
634 814
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
640 } 820 }
641} 821}
642 822
643void inline_speed 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
644fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
645{ 826{
646 ev_io *w; 827 ev_io *w;
647 828
648 while ((w = (ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 833 }
653} 834}
654 835
655int inline_size 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
656fd_valid (int fd) 838fd_valid (int fd)
657{ 839{
658#ifdef _WIN32 840#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
660#else 842#else
668{ 850{
669 int fd; 851 int fd;
670 852
671 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 854 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
675} 857}
676 858
677/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 860static void noinline
696 878
697 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 880 if (anfds [fd].events)
699 { 881 {
700 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
702 } 885 }
703} 886}
704 887
705/*****************************************************************************/ 888/*****************************************************************************/
706 889
707void inline_speed 890/*
708upheap (WT *heap, int k) 891 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 893 * the branching factor of the d-tree.
894 */
711 895
712 while (k) 896/*
713 { 897 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
899 * which is more cache-efficient.
900 * the difference is about 5% with 50000+ watchers.
901 */
902#if EV_USE_4HEAP
715 903
716 if (heap [p]->at <= w->at) 904#define DHEAP 4
905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907#define UPHEAP_DONE(p,k) ((p) == (k))
908
909/* away from the root */
910inline_speed void
911downheap (ANHE *heap, int N, int k)
912{
913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
915
916 for (;;)
917 {
918 ev_tstamp minat;
919 ANHE *minpos;
920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
921
922 /* find minimum child */
923 if (expect_true (pos + DHEAP - 1 < E))
924 {
925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else
717 break; 938 break;
718 939
940 if (ANHE_at (he) <= minat)
941 break;
942
943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
945
946 k = minpos - heap;
947 }
948
949 heap [k] = he;
950 ev_active (ANHE_w (he)) = k;
951}
952
953#else /* 4HEAP */
954
955#define HEAP0 1
956#define HPARENT(k) ((k) >> 1)
957#define UPHEAP_DONE(p,k) (!(p))
958
959/* away from the root */
960inline_speed void
961downheap (ANHE *heap, int N, int k)
962{
963 ANHE he = heap [k];
964
965 for (;;)
966 {
967 int c = k << 1;
968
969 if (c > N + HEAP0 - 1)
970 break;
971
972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973 ? 1 : 0;
974
975 if (ANHE_at (he) <= ANHE_at (heap [c]))
976 break;
977
978 heap [k] = heap [c];
979 ev_active (ANHE_w (heap [k])) = k;
980
981 k = c;
982 }
983
984 heap [k] = he;
985 ev_active (ANHE_w (he)) = k;
986}
987#endif
988
989/* towards the root */
990inline_speed void
991upheap (ANHE *heap, int k)
992{
993 ANHE he = heap [k];
994
995 for (;;)
996 {
997 int p = HPARENT (k);
998
999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1000 break;
1001
719 heap [k] = heap [p]; 1002 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1003 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1004 k = p;
722 } 1005 }
723 1006
724 heap [k] = w; 1007 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1008 ev_active (ANHE_w (he)) = k;
726} 1009}
727 1010
728void inline_speed 1011/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1012inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
758{ 1014{
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 1016 upheap (heap, k);
1017 else
760 downheap (heap, N, k); 1018 downheap (heap, N, k);
1019}
1020
1021/* rebuild the heap: this function is used only once and executed rarely */
1022inline_size void
1023reheap (ANHE *heap, int N)
1024{
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
761} 1031}
762 1032
763/*****************************************************************************/ 1033/*****************************************************************************/
764 1034
1035/* associate signal watchers to a signal signal */
765typedef struct 1036typedef struct
766{ 1037{
767 WL head; 1038 WL head;
768 EV_ATOMIC_T gotsig; 1039 EV_ATOMIC_T gotsig;
769} ANSIG; 1040} ANSIG;
771static ANSIG *signals; 1042static ANSIG *signals;
772static int signalmax; 1043static int signalmax;
773 1044
774static EV_ATOMIC_T gotsig; 1045static EV_ATOMIC_T gotsig;
775 1046
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/ 1047/*****************************************************************************/
789 1048
790void inline_speed 1049/* used to prepare libev internal fd's */
1050/* this is not fork-safe */
1051inline_speed void
791fd_intern (int fd) 1052fd_intern (int fd)
792{ 1053{
793#ifdef _WIN32 1054#ifdef _WIN32
794 int arg = 1; 1055 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 1057#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1059 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1060#endif
800} 1061}
801 1062
802static void noinline 1063static void noinline
803evpipe_init (EV_P) 1064evpipe_init (EV_P)
804{ 1065{
805 if (!ev_is_active (&pipeev)) 1066 if (!ev_is_active (&pipe_w))
806 { 1067 {
1068#if EV_USE_EVENTFD
1069 if ((evfd = eventfd (0, 0)) >= 0)
1070 {
1071 evpipe [0] = -1;
1072 fd_intern (evfd);
1073 ev_io_set (&pipe_w, evfd, EV_READ);
1074 }
1075 else
1076#endif
1077 {
807 while (pipe (evpipe)) 1078 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1079 ev_syserr ("(libev) error creating signal/async pipe");
809 1080
810 fd_intern (evpipe [0]); 1081 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1082 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1084 }
1085
814 ev_io_start (EV_A_ &pipeev); 1086 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1087 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1088 }
817} 1089}
818 1090
819void inline_size 1091inline_size void
820evpipe_write (EV_P_ int sig, int async) 1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1093{
822 if (!(gotasync || gotsig)) 1094 if (!*flag)
823 { 1095 {
824 int old_errno = errno; /* save errno becaue write might clobber it */ 1096 int old_errno = errno; /* save errno because write might clobber it */
825 1097
826 if (sig) gotsig = 1; 1098 *flag = 1;
827 if (async) gotasync = 1;
828 1099
1100#if EV_USE_EVENTFD
1101 if (evfd >= 0)
1102 {
1103 uint64_t counter = 1;
1104 write (evfd, &counter, sizeof (uint64_t));
1105 }
1106 else
1107#endif
829 write (evpipe [1], &old_errno, 1); 1108 write (evpipe [1], &old_errno, 1);
830 1109
831 errno = old_errno; 1110 errno = old_errno;
832 } 1111 }
833} 1112}
834 1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
835static void 1116static void
836pipecb (EV_P_ ev_io *iow, int revents) 1117pipecb (EV_P_ ev_io *iow, int revents)
837{ 1118{
1119#if EV_USE_EVENTFD
1120 if (evfd >= 0)
838 { 1121 {
839 int dummy; 1122 uint64_t counter;
1123 read (evfd, &counter, sizeof (uint64_t));
1124 }
1125 else
1126#endif
1127 {
1128 char dummy;
840 read (evpipe [0], &dummy, 1); 1129 read (evpipe [0], &dummy, 1);
841 } 1130 }
842 1131
843 if (gotsig) 1132 if (gotsig && ev_is_default_loop (EV_A))
844 { 1133 {
845 int signum; 1134 int signum;
846 gotsig = 0; 1135 gotsig = 0;
847 1136
848 for (signum = signalmax; signum--; ) 1137 for (signum = signalmax; signum--; )
867} 1156}
868 1157
869/*****************************************************************************/ 1158/*****************************************************************************/
870 1159
871static void 1160static void
872sighandler (int signum) 1161ev_sighandler (int signum)
873{ 1162{
874#if EV_MULTIPLICITY 1163#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 1164 struct ev_loop *loop = &default_loop_struct;
876#endif 1165#endif
877 1166
878#if _WIN32 1167#if _WIN32
879 signal (signum, sighandler); 1168 signal (signum, ev_sighandler);
880#endif 1169#endif
881 1170
882 signals [signum - 1].gotsig = 1; 1171 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0); 1172 evpipe_write (EV_A_ &gotsig);
884} 1173}
885 1174
886void noinline 1175void noinline
887ev_feed_signal_event (EV_P_ int signum) 1176ev_feed_signal_event (EV_P_ int signum)
888{ 1177{
889 WL w; 1178 WL w;
890 1179
891#if EV_MULTIPLICITY 1180#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
893#endif 1182#endif
894 1183
895 --signum; 1184 --signum;
896 1185
897 if (signum < 0 || signum >= signalmax) 1186 if (signum < 0 || signum >= signalmax)
913 1202
914#ifndef WIFCONTINUED 1203#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 1204# define WIFCONTINUED(status) 0
916#endif 1205#endif
917 1206
918void inline_speed 1207/* handle a single child status event */
1208inline_speed void
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1209child_reap (EV_P_ int chain, int pid, int status)
920{ 1210{
921 ev_child *w; 1211 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 1213
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1214 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 1215 {
926 if ((w->pid == pid || !w->pid) 1216 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 1217 && (!traced || (w->flags & 1)))
928 { 1218 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1219 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 1220 w->rpid = pid;
931 w->rstatus = status; 1221 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1222 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 1223 }
934 } 1224 }
936 1226
937#ifndef WCONTINUED 1227#ifndef WCONTINUED
938# define WCONTINUED 0 1228# define WCONTINUED 0
939#endif 1229#endif
940 1230
1231/* called on sigchld etc., calls waitpid */
941static void 1232static void
942childcb (EV_P_ ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
943{ 1234{
944 int pid, status; 1235 int pid, status;
945 1236
948 if (!WCONTINUED 1239 if (!WCONTINUED
949 || errno != EINVAL 1240 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1241 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 1242 return;
952 1243
953 /* make sure we are called again until all childs have been reaped */ 1244 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 1245 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1246 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 1247
957 child_reap (EV_A_ sw, pid, pid, status); 1248 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 1249 if (EV_PID_HASHSIZE > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1250 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 1251}
961 1252
962#endif 1253#endif
963 1254
964/*****************************************************************************/ 1255/*****************************************************************************/
1026 /* kqueue is borked on everything but netbsd apparently */ 1317 /* kqueue is borked on everything but netbsd apparently */
1027 /* it usually doesn't work correctly on anything but sockets and pipes */ 1318 /* it usually doesn't work correctly on anything but sockets and pipes */
1028 flags &= ~EVBACKEND_KQUEUE; 1319 flags &= ~EVBACKEND_KQUEUE;
1029#endif 1320#endif
1030#ifdef __APPLE__ 1321#ifdef __APPLE__
1031 // flags &= ~EVBACKEND_KQUEUE; for documentation 1322 /* only select works correctly on that "unix-certified" platform */
1032 flags &= ~EVBACKEND_POLL; 1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1033#endif 1325#endif
1034 1326
1035 return flags; 1327 return flags;
1036} 1328}
1037 1329
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1070{ 1362{
1071 timeout_blocktime = interval; 1363 timeout_blocktime = interval;
1072} 1364}
1073 1365
1366/* initialise a loop structure, must be zero-initialised */
1074static void noinline 1367static void noinline
1075loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
1076{ 1369{
1077 if (!backend) 1370 if (!backend)
1078 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
1079#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
1080 { 1384 {
1081 struct timespec ts; 1385 struct timespec ts;
1386
1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1083 have_monotonic = 1; 1388 have_monotonic = 1;
1084 } 1389 }
1085#endif 1390#endif
1086 1391
1087 ev_rt_now = ev_time (); 1392 ev_rt_now = ev_time ();
1088 mn_now = get_clock (); 1393 mn_now = get_clock ();
1089 now_floor = mn_now; 1394 now_floor = mn_now;
1107 if (!(flags & EVFLAG_NOENV) 1412 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure () 1413 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS")) 1414 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS")); 1415 flags = atoi (getenv ("LIBEV_FLAGS"));
1111 1416
1112 if (!(flags & 0x0000ffffUL)) 1417 if (!(flags & 0x0000ffffU))
1113 flags |= ev_recommended_backends (); 1418 flags |= ev_recommended_backends ();
1114 1419
1115#if EV_USE_PORT 1420#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1421 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 1422#endif
1126#endif 1431#endif
1127#if EV_USE_SELECT 1432#if EV_USE_SELECT
1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1129#endif 1434#endif
1130 1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1131 ev_init (&pipeev, pipecb); 1438 ev_init (&pipe_w, pipecb);
1132 ev_set_priority (&pipeev, EV_MAXPRI); 1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1133 } 1440 }
1134} 1441}
1135 1442
1443/* free up a loop structure */
1136static void noinline 1444static void noinline
1137loop_destroy (EV_P) 1445loop_destroy (EV_P)
1138{ 1446{
1139 int i; 1447 int i;
1140 1448
1141 if (ev_is_active (&pipeev)) 1449 if (ev_is_active (&pipe_w))
1142 { 1450 {
1143 ev_ref (EV_A); /* signal watcher */ 1451 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev); 1452 ev_io_stop (EV_A_ &pipe_w);
1145 1453
1146 close (evpipe [0]); evpipe [0] = 0; 1454#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1461 close (evpipe [0]);
1462 close (evpipe [1]);
1463 }
1148 } 1464 }
1149 1465
1150#if EV_USE_INOTIFY 1466#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 1467 if (fs_fd >= 0)
1152 close (fs_fd); 1468 close (fs_fd);
1180 } 1496 }
1181 1497
1182 ev_free (anfds); anfdmax = 0; 1498 ev_free (anfds); anfdmax = 0;
1183 1499
1184 /* have to use the microsoft-never-gets-it-right macro */ 1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1185 array_free (fdchange, EMPTY); 1502 array_free (fdchange, EMPTY);
1186 array_free (timer, EMPTY); 1503 array_free (timer, EMPTY);
1187#if EV_PERIODIC_ENABLE 1504#if EV_PERIODIC_ENABLE
1188 array_free (periodic, EMPTY); 1505 array_free (periodic, EMPTY);
1189#endif 1506#endif
1197#endif 1514#endif
1198 1515
1199 backend = 0; 1516 backend = 0;
1200} 1517}
1201 1518
1519#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 1520inline_size void infy_fork (EV_P);
1521#endif
1203 1522
1204void inline_size 1523inline_size void
1205loop_fork (EV_P) 1524loop_fork (EV_P)
1206{ 1525{
1207#if EV_USE_PORT 1526#if EV_USE_PORT
1208 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1209#endif 1528#endif
1215#endif 1534#endif
1216#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
1217 infy_fork (EV_A); 1536 infy_fork (EV_A);
1218#endif 1537#endif
1219 1538
1220 if (ev_is_active (&pipeev)) 1539 if (ev_is_active (&pipe_w))
1221 { 1540 {
1222 /* this "locks" the handlers against writing to the pipe */ 1541 /* this "locks" the handlers against writing to the pipe */
1542 /* while we modify the fd vars */
1543 gotsig = 1;
1544#if EV_ASYNC_ENABLE
1223 gotsig = gotasync = 1; 1545 gotasync = 1;
1546#endif
1224 1547
1225 ev_ref (EV_A); 1548 ev_ref (EV_A);
1226 ev_io_stop (EV_A_ &pipeev); 1549 ev_io_stop (EV_A_ &pipe_w);
1550
1551#if EV_USE_EVENTFD
1552 if (evfd >= 0)
1553 close (evfd);
1554#endif
1555
1556 if (evpipe [0] >= 0)
1557 {
1227 close (evpipe [0]); 1558 close (evpipe [0]);
1228 close (evpipe [1]); 1559 close (evpipe [1]);
1560 }
1229 1561
1230 evpipe_init (EV_A); 1562 evpipe_init (EV_A);
1231 /* now iterate over everything, in case we missed something */ 1563 /* now iterate over everything, in case we missed something */
1232 pipecb (EV_A_ &pipeev, EV_READ); 1564 pipecb (EV_A_ &pipe_w, EV_READ);
1233 } 1565 }
1234 1566
1235 postfork = 0; 1567 postfork = 0;
1236} 1568}
1237 1569
1238#if EV_MULTIPLICITY 1570#if EV_MULTIPLICITY
1571
1239struct ev_loop * 1572struct ev_loop *
1240ev_loop_new (unsigned int flags) 1573ev_loop_new (unsigned int flags)
1241{ 1574{
1242 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1243 1576
1262ev_loop_fork (EV_P) 1595ev_loop_fork (EV_P)
1263{ 1596{
1264 postfork = 1; /* must be in line with ev_default_fork */ 1597 postfork = 1; /* must be in line with ev_default_fork */
1265} 1598}
1266 1599
1600#if EV_VERIFY
1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1626array_verify (EV_P_ W *ws, int cnt)
1627{
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633}
1634#endif
1635
1636void
1637ev_loop_verify (EV_P)
1638{
1639#if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
1652 {
1653 verify_watcher (EV_A_ (W)w);
1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1656 }
1657
1658 assert (timermax >= timercnt);
1659 verify_heap (EV_A_ timers, timercnt);
1660
1661#if EV_PERIODIC_ENABLE
1662 assert (periodicmax >= periodiccnt);
1663 verify_heap (EV_A_ periodics, periodiccnt);
1664#endif
1665
1666 for (i = NUMPRI; i--; )
1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669#if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673#endif
1674 }
1675
1676#if EV_FORK_ENABLE
1677 assert (forkmax >= forkcnt);
1678 array_verify (EV_A_ (W *)forks, forkcnt);
1679#endif
1680
1681#if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1267#endif 1695# endif
1696#endif
1697}
1698
1699#endif /* multiplicity */
1268 1700
1269#if EV_MULTIPLICITY 1701#if EV_MULTIPLICITY
1270struct ev_loop * 1702struct ev_loop *
1271ev_default_loop_init (unsigned int flags) 1703ev_default_loop_init (unsigned int flags)
1272#else 1704#else
1305{ 1737{
1306#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
1307 struct ev_loop *loop = ev_default_loop_ptr; 1739 struct ev_loop *loop = ev_default_loop_ptr;
1308#endif 1740#endif
1309 1741
1742 ev_default_loop_ptr = 0;
1743
1310#ifndef _WIN32 1744#ifndef _WIN32
1311 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
1312 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
1313#endif 1747#endif
1314 1748
1320{ 1754{
1321#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
1322 struct ev_loop *loop = ev_default_loop_ptr; 1756 struct ev_loop *loop = ev_default_loop_ptr;
1323#endif 1757#endif
1324 1758
1325 if (backend)
1326 postfork = 1; /* must be in line with ev_loop_fork */ 1759 postfork = 1; /* must be in line with ev_loop_fork */
1327} 1760}
1328 1761
1329/*****************************************************************************/ 1762/*****************************************************************************/
1330 1763
1331void 1764void
1332ev_invoke (EV_P_ void *w, int revents) 1765ev_invoke (EV_P_ void *w, int revents)
1333{ 1766{
1334 EV_CB_INVOKE ((W)w, revents); 1767 EV_CB_INVOKE ((W)w, revents);
1335} 1768}
1336 1769
1337void inline_speed 1770inline_speed void
1338call_pending (EV_P) 1771call_pending (EV_P)
1339{ 1772{
1340 int pri; 1773 int pri;
1341 1774
1342 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1343 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1344 { 1777 {
1345 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1346 1779
1347 if (expect_true (p->w))
1348 {
1349 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1350 1782
1351 p->w->pending = 0; 1783 p->w->pending = 0;
1352 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1353 } 1785 EV_FREQUENT_CHECK;
1354 } 1786 }
1355} 1787}
1356 1788
1357void inline_size
1358timers_reify (EV_P)
1359{
1360 while (timercnt && ((WT)timers [0])->at <= mn_now)
1361 {
1362 ev_timer *w = (ev_timer *)timers [0];
1363
1364 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1365
1366 /* first reschedule or stop timer */
1367 if (w->repeat)
1368 {
1369 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1370
1371 ((WT)w)->at += w->repeat;
1372 if (((WT)w)->at < mn_now)
1373 ((WT)w)->at = mn_now;
1374
1375 downheap (timers, timercnt, 0);
1376 }
1377 else
1378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1379
1380 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1381 }
1382}
1383
1384#if EV_PERIODIC_ENABLE
1385void inline_size
1386periodics_reify (EV_P)
1387{
1388 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1389 {
1390 ev_periodic *w = (ev_periodic *)periodics [0];
1391
1392 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1393
1394 /* first reschedule or stop timer */
1395 if (w->reschedule_cb)
1396 {
1397 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1398 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1399 downheap (periodics, periodiccnt, 0);
1400 }
1401 else if (w->interval)
1402 {
1403 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1405 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1406 downheap (periodics, periodiccnt, 0);
1407 }
1408 else
1409 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1410
1411 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1412 }
1413}
1414
1415static void noinline
1416periodics_reschedule (EV_P)
1417{
1418 int i;
1419
1420 /* adjust periodics after time jump */
1421 for (i = 0; i < periodiccnt; ++i)
1422 {
1423 ev_periodic *w = (ev_periodic *)periodics [i];
1424
1425 if (w->reschedule_cb)
1426 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1427 else if (w->interval)
1428 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1429 }
1430
1431 /* now rebuild the heap */
1432 for (i = periodiccnt >> 1; i--; )
1433 downheap (periodics, periodiccnt, i);
1434}
1435#endif
1436
1437#if EV_IDLE_ENABLE 1789#if EV_IDLE_ENABLE
1438void inline_size 1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1439idle_reify (EV_P) 1793idle_reify (EV_P)
1440{ 1794{
1441 if (expect_false (idleall)) 1795 if (expect_false (idleall))
1442 { 1796 {
1443 int pri; 1797 int pri;
1455 } 1809 }
1456 } 1810 }
1457} 1811}
1458#endif 1812#endif
1459 1813
1460void inline_speed 1814/* make timers pending */
1815inline_size void
1816timers_reify (EV_P)
1817{
1818 EV_FREQUENT_CHECK;
1819
1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1821 {
1822 do
1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1836
1837 ANHE_at_cache (timers [HEAP0]);
1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1845 }
1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1847
1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1849 }
1850}
1851
1852#if EV_PERIODIC_ENABLE
1853/* make periodics pending */
1854inline_size void
1855periodics_reify (EV_P)
1856{
1857 EV_FREQUENT_CHECK;
1858
1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1860 {
1861 int feed_count = 0;
1862
1863 do
1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1903 }
1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1905
1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1907 }
1908}
1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1912static void noinline
1913periodics_reschedule (EV_P)
1914{
1915 int i;
1916
1917 /* adjust periodics after time jump */
1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1919 {
1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1921
1922 if (w->reschedule_cb)
1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1924 else if (w->interval)
1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926
1927 ANHE_at_cache (periodics [i]);
1928 }
1929
1930 reheap (periodics, periodiccnt);
1931}
1932#endif
1933
1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1941 {
1942 ANHE *he = timers + i + HEAP0;
1943 ANHE_w (*he)->at += adjust;
1944 ANHE_at_cache (*he);
1945 }
1946}
1947
1948/* fetch new monotonic and realtime times from the kernel */
1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1461time_update (EV_P_ ev_tstamp max_block) 1951time_update (EV_P_ ev_tstamp max_block)
1462{ 1952{
1463 int i; 1953 int i;
1464 1954
1465#if EV_USE_MONOTONIC 1955#if EV_USE_MONOTONIC
1490 */ 1980 */
1491 for (i = 4; --i; ) 1981 for (i = 4; --i; )
1492 { 1982 {
1493 rtmn_diff = ev_rt_now - mn_now; 1983 rtmn_diff = ev_rt_now - mn_now;
1494 1984
1495 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1985 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1496 return; /* all is well */ 1986 return; /* all is well */
1497 1987
1498 ev_rt_now = ev_time (); 1988 ev_rt_now = ev_time ();
1499 mn_now = get_clock (); 1989 mn_now = get_clock ();
1500 now_floor = mn_now; 1990 now_floor = mn_now;
1501 } 1991 }
1502 1992
1993 /* no timer adjustment, as the monotonic clock doesn't jump */
1994 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1503# if EV_PERIODIC_ENABLE 1995# if EV_PERIODIC_ENABLE
1504 periodics_reschedule (EV_A); 1996 periodics_reschedule (EV_A);
1505# endif 1997# endif
1506 /* no timer adjustment, as the monotonic clock doesn't jump */
1507 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1508 } 1998 }
1509 else 1999 else
1510#endif 2000#endif
1511 { 2001 {
1512 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1513 2003
1514 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2004 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1515 { 2005 {
2006 /* adjust timers. this is easy, as the offset is the same for all of them */
2007 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1516#if EV_PERIODIC_ENABLE 2008#if EV_PERIODIC_ENABLE
1517 periodics_reschedule (EV_A); 2009 periodics_reschedule (EV_A);
1518#endif 2010#endif
1519 /* adjust timers. this is easy, as the offset is the same for all of them */
1520 for (i = 0; i < timercnt; ++i)
1521 ((WT)timers [i])->at += ev_rt_now - mn_now;
1522 } 2011 }
1523 2012
1524 mn_now = ev_rt_now; 2013 mn_now = ev_rt_now;
1525 } 2014 }
1526} 2015}
1527 2016
1528void
1529ev_ref (EV_P)
1530{
1531 ++activecnt;
1532}
1533
1534void
1535ev_unref (EV_P)
1536{
1537 --activecnt;
1538}
1539
1540static int loop_done; 2017static int loop_done;
1541 2018
1542void 2019void
1543ev_loop (EV_P_ int flags) 2020ev_loop (EV_P_ int flags)
1544{ 2021{
1545 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2022 loop_done = EVUNLOOP_CANCEL;
1546 ? EVUNLOOP_ONE
1547 : EVUNLOOP_CANCEL;
1548 2023
1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2024 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1550 2025
1551 do 2026 do
1552 { 2027 {
2028#if EV_VERIFY >= 2
2029 ev_loop_verify (EV_A);
2030#endif
2031
1553#ifndef _WIN32 2032#ifndef _WIN32
1554 if (expect_false (curpid)) /* penalise the forking check even more */ 2033 if (expect_false (curpid)) /* penalise the forking check even more */
1555 if (expect_false (getpid () != curpid)) 2034 if (expect_false (getpid () != curpid))
1556 { 2035 {
1557 curpid = getpid (); 2036 curpid = getpid ();
1574 { 2053 {
1575 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2054 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1576 call_pending (EV_A); 2055 call_pending (EV_A);
1577 } 2056 }
1578 2057
1579 if (expect_false (!activecnt))
1580 break;
1581
1582 /* we might have forked, so reify kernel state if necessary */ 2058 /* we might have forked, so reify kernel state if necessary */
1583 if (expect_false (postfork)) 2059 if (expect_false (postfork))
1584 loop_fork (EV_A); 2060 loop_fork (EV_A);
1585 2061
1586 /* update fd-related kernel structures */ 2062 /* update fd-related kernel structures */
1598 2074
1599 waittime = MAX_BLOCKTIME; 2075 waittime = MAX_BLOCKTIME;
1600 2076
1601 if (timercnt) 2077 if (timercnt)
1602 { 2078 {
1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2079 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1604 if (waittime > to) waittime = to; 2080 if (waittime > to) waittime = to;
1605 } 2081 }
1606 2082
1607#if EV_PERIODIC_ENABLE 2083#if EV_PERIODIC_ENABLE
1608 if (periodiccnt) 2084 if (periodiccnt)
1609 { 2085 {
1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2086 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1611 if (waittime > to) waittime = to; 2087 if (waittime > to) waittime = to;
1612 } 2088 }
1613#endif 2089#endif
1614 2090
1615 if (expect_false (waittime < timeout_blocktime)) 2091 if (expect_false (waittime < timeout_blocktime))
1648 /* queue check watchers, to be executed first */ 2124 /* queue check watchers, to be executed first */
1649 if (expect_false (checkcnt)) 2125 if (expect_false (checkcnt))
1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2126 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1651 2127
1652 call_pending (EV_A); 2128 call_pending (EV_A);
1653
1654 } 2129 }
1655 while (expect_true (activecnt && !loop_done)); 2130 while (expect_true (
2131 activecnt
2132 && !loop_done
2133 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2134 ));
1656 2135
1657 if (loop_done == EVUNLOOP_ONE) 2136 if (loop_done == EVUNLOOP_ONE)
1658 loop_done = EVUNLOOP_CANCEL; 2137 loop_done = EVUNLOOP_CANCEL;
1659} 2138}
1660 2139
1662ev_unloop (EV_P_ int how) 2141ev_unloop (EV_P_ int how)
1663{ 2142{
1664 loop_done = how; 2143 loop_done = how;
1665} 2144}
1666 2145
2146void
2147ev_ref (EV_P)
2148{
2149 ++activecnt;
2150}
2151
2152void
2153ev_unref (EV_P)
2154{
2155 --activecnt;
2156}
2157
2158void
2159ev_now_update (EV_P)
2160{
2161 time_update (EV_A_ 1e100);
2162}
2163
2164void
2165ev_suspend (EV_P)
2166{
2167 ev_now_update (EV_A);
2168}
2169
2170void
2171ev_resume (EV_P)
2172{
2173 ev_tstamp mn_prev = mn_now;
2174
2175 ev_now_update (EV_A);
2176 timers_reschedule (EV_A_ mn_now - mn_prev);
2177#if EV_PERIODIC_ENABLE
2178 /* TODO: really do this? */
2179 periodics_reschedule (EV_A);
2180#endif
2181}
2182
1667/*****************************************************************************/ 2183/*****************************************************************************/
2184/* singly-linked list management, used when the expected list length is short */
1668 2185
1669void inline_size 2186inline_size void
1670wlist_add (WL *head, WL elem) 2187wlist_add (WL *head, WL elem)
1671{ 2188{
1672 elem->next = *head; 2189 elem->next = *head;
1673 *head = elem; 2190 *head = elem;
1674} 2191}
1675 2192
1676void inline_size 2193inline_size void
1677wlist_del (WL *head, WL elem) 2194wlist_del (WL *head, WL elem)
1678{ 2195{
1679 while (*head) 2196 while (*head)
1680 { 2197 {
1681 if (*head == elem) 2198 if (*head == elem)
1686 2203
1687 head = &(*head)->next; 2204 head = &(*head)->next;
1688 } 2205 }
1689} 2206}
1690 2207
1691void inline_speed 2208/* internal, faster, version of ev_clear_pending */
2209inline_speed void
1692clear_pending (EV_P_ W w) 2210clear_pending (EV_P_ W w)
1693{ 2211{
1694 if (w->pending) 2212 if (w->pending)
1695 { 2213 {
1696 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2214 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1697 w->pending = 0; 2215 w->pending = 0;
1698 } 2216 }
1699} 2217}
1700 2218
1701int 2219int
1705 int pending = w_->pending; 2223 int pending = w_->pending;
1706 2224
1707 if (expect_true (pending)) 2225 if (expect_true (pending))
1708 { 2226 {
1709 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2227 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2228 p->w = (W)&pending_w;
1710 w_->pending = 0; 2229 w_->pending = 0;
1711 p->w = 0;
1712 return p->events; 2230 return p->events;
1713 } 2231 }
1714 else 2232 else
1715 return 0; 2233 return 0;
1716} 2234}
1717 2235
1718void inline_size 2236inline_size void
1719pri_adjust (EV_P_ W w) 2237pri_adjust (EV_P_ W w)
1720{ 2238{
1721 int pri = w->priority; 2239 int pri = w->priority;
1722 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2240 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1723 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2241 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1724 w->priority = pri; 2242 w->priority = pri;
1725} 2243}
1726 2244
1727void inline_speed 2245inline_speed void
1728ev_start (EV_P_ W w, int active) 2246ev_start (EV_P_ W w, int active)
1729{ 2247{
1730 pri_adjust (EV_A_ w); 2248 pri_adjust (EV_A_ w);
1731 w->active = active; 2249 w->active = active;
1732 ev_ref (EV_A); 2250 ev_ref (EV_A);
1733} 2251}
1734 2252
1735void inline_size 2253inline_size void
1736ev_stop (EV_P_ W w) 2254ev_stop (EV_P_ W w)
1737{ 2255{
1738 ev_unref (EV_A); 2256 ev_unref (EV_A);
1739 w->active = 0; 2257 w->active = 0;
1740} 2258}
1747 int fd = w->fd; 2265 int fd = w->fd;
1748 2266
1749 if (expect_false (ev_is_active (w))) 2267 if (expect_false (ev_is_active (w)))
1750 return; 2268 return;
1751 2269
1752 assert (("ev_io_start called with negative fd", fd >= 0)); 2270 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2271 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2272
2273 EV_FREQUENT_CHECK;
1753 2274
1754 ev_start (EV_A_ (W)w, 1); 2275 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2276 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1756 wlist_add (&anfds[fd].head, (WL)w); 2277 wlist_add (&anfds[fd].head, (WL)w);
1757 2278
1758 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2279 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1759 w->events &= ~EV_IOFDSET; 2280 w->events &= ~EV__IOFDSET;
2281
2282 EV_FREQUENT_CHECK;
1760} 2283}
1761 2284
1762void noinline 2285void noinline
1763ev_io_stop (EV_P_ ev_io *w) 2286ev_io_stop (EV_P_ ev_io *w)
1764{ 2287{
1765 clear_pending (EV_A_ (W)w); 2288 clear_pending (EV_A_ (W)w);
1766 if (expect_false (!ev_is_active (w))) 2289 if (expect_false (!ev_is_active (w)))
1767 return; 2290 return;
1768 2291
1769 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2292 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2293
2294 EV_FREQUENT_CHECK;
1770 2295
1771 wlist_del (&anfds[w->fd].head, (WL)w); 2296 wlist_del (&anfds[w->fd].head, (WL)w);
1772 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
1773 2298
1774 fd_change (EV_A_ w->fd, 1); 2299 fd_change (EV_A_ w->fd, 1);
2300
2301 EV_FREQUENT_CHECK;
1775} 2302}
1776 2303
1777void noinline 2304void noinline
1778ev_timer_start (EV_P_ ev_timer *w) 2305ev_timer_start (EV_P_ ev_timer *w)
1779{ 2306{
1780 if (expect_false (ev_is_active (w))) 2307 if (expect_false (ev_is_active (w)))
1781 return; 2308 return;
1782 2309
1783 ((WT)w)->at += mn_now; 2310 ev_at (w) += mn_now;
1784 2311
1785 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2312 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1786 2313
2314 EV_FREQUENT_CHECK;
2315
2316 ++timercnt;
1787 ev_start (EV_A_ (W)w, ++timercnt); 2317 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1788 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2318 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1789 timers [timercnt - 1] = (WT)w; 2319 ANHE_w (timers [ev_active (w)]) = (WT)w;
1790 upheap (timers, timercnt - 1); 2320 ANHE_at_cache (timers [ev_active (w)]);
2321 upheap (timers, ev_active (w));
1791 2322
2323 EV_FREQUENT_CHECK;
2324
1792 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2325 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1793} 2326}
1794 2327
1795void noinline 2328void noinline
1796ev_timer_stop (EV_P_ ev_timer *w) 2329ev_timer_stop (EV_P_ ev_timer *w)
1797{ 2330{
1798 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1800 return; 2333 return;
1801 2334
1802 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2335 EV_FREQUENT_CHECK;
1803 2336
1804 { 2337 {
1805 int active = ((W)w)->active; 2338 int active = ev_active (w);
1806 2339
2340 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2341
2342 --timercnt;
2343
1807 if (expect_true (--active < --timercnt)) 2344 if (expect_true (active < timercnt + HEAP0))
1808 { 2345 {
1809 timers [active] = timers [timercnt]; 2346 timers [active] = timers [timercnt + HEAP0];
1810 adjustheap (timers, timercnt, active); 2347 adjustheap (timers, timercnt, active);
1811 } 2348 }
1812 } 2349 }
1813 2350
1814 ((WT)w)->at -= mn_now; 2351 EV_FREQUENT_CHECK;
2352
2353 ev_at (w) -= mn_now;
1815 2354
1816 ev_stop (EV_A_ (W)w); 2355 ev_stop (EV_A_ (W)w);
1817} 2356}
1818 2357
1819void noinline 2358void noinline
1820ev_timer_again (EV_P_ ev_timer *w) 2359ev_timer_again (EV_P_ ev_timer *w)
1821{ 2360{
2361 EV_FREQUENT_CHECK;
2362
1822 if (ev_is_active (w)) 2363 if (ev_is_active (w))
1823 { 2364 {
1824 if (w->repeat) 2365 if (w->repeat)
1825 { 2366 {
1826 ((WT)w)->at = mn_now + w->repeat; 2367 ev_at (w) = mn_now + w->repeat;
2368 ANHE_at_cache (timers [ev_active (w)]);
1827 adjustheap (timers, timercnt, ((W)w)->active - 1); 2369 adjustheap (timers, timercnt, ev_active (w));
1828 } 2370 }
1829 else 2371 else
1830 ev_timer_stop (EV_A_ w); 2372 ev_timer_stop (EV_A_ w);
1831 } 2373 }
1832 else if (w->repeat) 2374 else if (w->repeat)
1833 { 2375 {
1834 w->at = w->repeat; 2376 ev_at (w) = w->repeat;
1835 ev_timer_start (EV_A_ w); 2377 ev_timer_start (EV_A_ w);
1836 } 2378 }
2379
2380 EV_FREQUENT_CHECK;
1837} 2381}
1838 2382
1839#if EV_PERIODIC_ENABLE 2383#if EV_PERIODIC_ENABLE
1840void noinline 2384void noinline
1841ev_periodic_start (EV_P_ ev_periodic *w) 2385ev_periodic_start (EV_P_ ev_periodic *w)
1842{ 2386{
1843 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
1844 return; 2388 return;
1845 2389
1846 if (w->reschedule_cb) 2390 if (w->reschedule_cb)
1847 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1848 else if (w->interval) 2392 else if (w->interval)
1849 { 2393 {
1850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1851 /* this formula differs from the one in periodic_reify because we do not always round up */ 2395 /* this formula differs from the one in periodic_reify because we do not always round up */
1852 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2396 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1853 } 2397 }
1854 else 2398 else
1855 ((WT)w)->at = w->offset; 2399 ev_at (w) = w->offset;
1856 2400
2401 EV_FREQUENT_CHECK;
2402
2403 ++periodiccnt;
1857 ev_start (EV_A_ (W)w, ++periodiccnt); 2404 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1858 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2405 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1859 periodics [periodiccnt - 1] = (WT)w; 2406 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1860 upheap (periodics, periodiccnt - 1); 2407 ANHE_at_cache (periodics [ev_active (w)]);
2408 upheap (periodics, ev_active (w));
1861 2409
2410 EV_FREQUENT_CHECK;
2411
1862 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2412 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1863} 2413}
1864 2414
1865void noinline 2415void noinline
1866ev_periodic_stop (EV_P_ ev_periodic *w) 2416ev_periodic_stop (EV_P_ ev_periodic *w)
1867{ 2417{
1868 clear_pending (EV_A_ (W)w); 2418 clear_pending (EV_A_ (W)w);
1869 if (expect_false (!ev_is_active (w))) 2419 if (expect_false (!ev_is_active (w)))
1870 return; 2420 return;
1871 2421
1872 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2422 EV_FREQUENT_CHECK;
1873 2423
1874 { 2424 {
1875 int active = ((W)w)->active; 2425 int active = ev_active (w);
1876 2426
2427 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2428
2429 --periodiccnt;
2430
1877 if (expect_true (--active < --periodiccnt)) 2431 if (expect_true (active < periodiccnt + HEAP0))
1878 { 2432 {
1879 periodics [active] = periodics [periodiccnt]; 2433 periodics [active] = periodics [periodiccnt + HEAP0];
1880 adjustheap (periodics, periodiccnt, active); 2434 adjustheap (periodics, periodiccnt, active);
1881 } 2435 }
1882 } 2436 }
1883 2437
2438 EV_FREQUENT_CHECK;
2439
1884 ev_stop (EV_A_ (W)w); 2440 ev_stop (EV_A_ (W)w);
1885} 2441}
1886 2442
1887void noinline 2443void noinline
1888ev_periodic_again (EV_P_ ev_periodic *w) 2444ev_periodic_again (EV_P_ ev_periodic *w)
1899 2455
1900void noinline 2456void noinline
1901ev_signal_start (EV_P_ ev_signal *w) 2457ev_signal_start (EV_P_ ev_signal *w)
1902{ 2458{
1903#if EV_MULTIPLICITY 2459#if EV_MULTIPLICITY
1904 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2460 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1905#endif 2461#endif
1906 if (expect_false (ev_is_active (w))) 2462 if (expect_false (ev_is_active (w)))
1907 return; 2463 return;
1908 2464
1909 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2465 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
1910 2466
1911 evpipe_init (EV_A); 2467 evpipe_init (EV_A);
2468
2469 EV_FREQUENT_CHECK;
1912 2470
1913 { 2471 {
1914#ifndef _WIN32 2472#ifndef _WIN32
1915 sigset_t full, prev; 2473 sigset_t full, prev;
1916 sigfillset (&full); 2474 sigfillset (&full);
1917 sigprocmask (SIG_SETMASK, &full, &prev); 2475 sigprocmask (SIG_SETMASK, &full, &prev);
1918#endif 2476#endif
1919 2477
1920 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2478 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1921 2479
1922#ifndef _WIN32 2480#ifndef _WIN32
1923 sigprocmask (SIG_SETMASK, &prev, 0); 2481 sigprocmask (SIG_SETMASK, &prev, 0);
1924#endif 2482#endif
1925 } 2483 }
1928 wlist_add (&signals [w->signum - 1].head, (WL)w); 2486 wlist_add (&signals [w->signum - 1].head, (WL)w);
1929 2487
1930 if (!((WL)w)->next) 2488 if (!((WL)w)->next)
1931 { 2489 {
1932#if _WIN32 2490#if _WIN32
1933 signal (w->signum, sighandler); 2491 signal (w->signum, ev_sighandler);
1934#else 2492#else
1935 struct sigaction sa; 2493 struct sigaction sa;
1936 sa.sa_handler = sighandler; 2494 sa.sa_handler = ev_sighandler;
1937 sigfillset (&sa.sa_mask); 2495 sigfillset (&sa.sa_mask);
1938 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2496 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1939 sigaction (w->signum, &sa, 0); 2497 sigaction (w->signum, &sa, 0);
1940#endif 2498#endif
1941 } 2499 }
2500
2501 EV_FREQUENT_CHECK;
1942} 2502}
1943 2503
1944void noinline 2504void noinline
1945ev_signal_stop (EV_P_ ev_signal *w) 2505ev_signal_stop (EV_P_ ev_signal *w)
1946{ 2506{
1947 clear_pending (EV_A_ (W)w); 2507 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 2508 if (expect_false (!ev_is_active (w)))
1949 return; 2509 return;
1950 2510
2511 EV_FREQUENT_CHECK;
2512
1951 wlist_del (&signals [w->signum - 1].head, (WL)w); 2513 wlist_del (&signals [w->signum - 1].head, (WL)w);
1952 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
1953 2515
1954 if (!signals [w->signum - 1].head) 2516 if (!signals [w->signum - 1].head)
1955 signal (w->signum, SIG_DFL); 2517 signal (w->signum, SIG_DFL);
2518
2519 EV_FREQUENT_CHECK;
1956} 2520}
1957 2521
1958void 2522void
1959ev_child_start (EV_P_ ev_child *w) 2523ev_child_start (EV_P_ ev_child *w)
1960{ 2524{
1961#if EV_MULTIPLICITY 2525#if EV_MULTIPLICITY
1962 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2526 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1963#endif 2527#endif
1964 if (expect_false (ev_is_active (w))) 2528 if (expect_false (ev_is_active (w)))
1965 return; 2529 return;
1966 2530
2531 EV_FREQUENT_CHECK;
2532
1967 ev_start (EV_A_ (W)w, 1); 2533 ev_start (EV_A_ (W)w, 1);
1968 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2534 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2535
2536 EV_FREQUENT_CHECK;
1969} 2537}
1970 2538
1971void 2539void
1972ev_child_stop (EV_P_ ev_child *w) 2540ev_child_stop (EV_P_ ev_child *w)
1973{ 2541{
1974 clear_pending (EV_A_ (W)w); 2542 clear_pending (EV_A_ (W)w);
1975 if (expect_false (!ev_is_active (w))) 2543 if (expect_false (!ev_is_active (w)))
1976 return; 2544 return;
1977 2545
2546 EV_FREQUENT_CHECK;
2547
1978 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2548 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1979 ev_stop (EV_A_ (W)w); 2549 ev_stop (EV_A_ (W)w);
2550
2551 EV_FREQUENT_CHECK;
1980} 2552}
1981 2553
1982#if EV_STAT_ENABLE 2554#if EV_STAT_ENABLE
1983 2555
1984# ifdef _WIN32 2556# ifdef _WIN32
1985# undef lstat 2557# undef lstat
1986# define lstat(a,b) _stati64 (a,b) 2558# define lstat(a,b) _stati64 (a,b)
1987# endif 2559# endif
1988 2560
1989#define DEF_STAT_INTERVAL 5.0074891 2561#define DEF_STAT_INTERVAL 5.0074891
2562#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1990#define MIN_STAT_INTERVAL 0.1074891 2563#define MIN_STAT_INTERVAL 0.1074891
1991 2564
1992static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2565static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1993 2566
1994#if EV_USE_INOTIFY 2567#if EV_USE_INOTIFY
1995# define EV_INOTIFY_BUFSIZE 8192 2568# define EV_INOTIFY_BUFSIZE 8192
1999{ 2572{
2000 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2573 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2001 2574
2002 if (w->wd < 0) 2575 if (w->wd < 0)
2003 { 2576 {
2577 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2004 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2578 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2005 2579
2006 /* monitor some parent directory for speedup hints */ 2580 /* monitor some parent directory for speedup hints */
2581 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2582 /* but an efficiency issue only */
2007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2583 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2008 { 2584 {
2009 char path [4096]; 2585 char path [4096];
2010 strcpy (path, w->path); 2586 strcpy (path, w->path);
2011 2587
2014 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2590 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2015 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2591 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2016 2592
2017 char *pend = strrchr (path, '/'); 2593 char *pend = strrchr (path, '/');
2018 2594
2019 if (!pend) 2595 if (!pend || pend == path)
2020 break; /* whoops, no '/', complain to your admin */ 2596 break;
2021 2597
2022 *pend = 0; 2598 *pend = 0;
2023 w->wd = inotify_add_watch (fs_fd, path, mask); 2599 w->wd = inotify_add_watch (fs_fd, path, mask);
2024 } 2600 }
2025 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2601 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2026 } 2602 }
2027 } 2603 }
2028 else
2029 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2030 2604
2031 if (w->wd >= 0) 2605 if (w->wd >= 0)
2606 {
2032 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2607 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2608
2609 /* now local changes will be tracked by inotify, but remote changes won't */
2610 /* unless the filesystem it known to be local, we therefore still poll */
2611 /* also do poll on <2.6.25, but with normal frequency */
2612 struct statfs sfs;
2613
2614 if (fs_2625 && !statfs (w->path, &sfs))
2615 if (sfs.f_type == 0x1373 /* devfs */
2616 || sfs.f_type == 0xEF53 /* ext2/3 */
2617 || sfs.f_type == 0x3153464a /* jfs */
2618 || sfs.f_type == 0x52654973 /* reiser3 */
2619 || sfs.f_type == 0x01021994 /* tempfs */
2620 || sfs.f_type == 0x58465342 /* xfs */)
2621 return;
2622
2623 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2624 ev_timer_again (EV_A_ &w->timer);
2625 }
2033} 2626}
2034 2627
2035static void noinline 2628static void noinline
2036infy_del (EV_P_ ev_stat *w) 2629infy_del (EV_P_ ev_stat *w)
2037{ 2630{
2051 2644
2052static void noinline 2645static void noinline
2053infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2646infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2054{ 2647{
2055 if (slot < 0) 2648 if (slot < 0)
2056 /* overflow, need to check for all hahs slots */ 2649 /* overflow, need to check for all hash slots */
2057 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2058 infy_wd (EV_A_ slot, wd, ev); 2651 infy_wd (EV_A_ slot, wd, ev);
2059 else 2652 else
2060 { 2653 {
2061 WL w_; 2654 WL w_;
2067 2660
2068 if (w->wd == wd || wd == -1) 2661 if (w->wd == wd || wd == -1)
2069 { 2662 {
2070 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2663 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2071 { 2664 {
2665 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2072 w->wd = -1; 2666 w->wd = -1;
2073 infy_add (EV_A_ w); /* re-add, no matter what */ 2667 infy_add (EV_A_ w); /* re-add, no matter what */
2074 } 2668 }
2075 2669
2076 stat_timer_cb (EV_A_ &w->timer, 0); 2670 stat_timer_cb (EV_A_ &w->timer, 0);
2089 2683
2090 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2684 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2091 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2685 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2092} 2686}
2093 2687
2094void inline_size 2688inline_size void
2689check_2625 (EV_P)
2690{
2691 /* kernels < 2.6.25 are borked
2692 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2693 */
2694 struct utsname buf;
2695 int major, minor, micro;
2696
2697 if (uname (&buf))
2698 return;
2699
2700 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2701 return;
2702
2703 if (major < 2
2704 || (major == 2 && minor < 6)
2705 || (major == 2 && minor == 6 && micro < 25))
2706 return;
2707
2708 fs_2625 = 1;
2709}
2710
2711inline_size void
2095infy_init (EV_P) 2712infy_init (EV_P)
2096{ 2713{
2097 if (fs_fd != -2) 2714 if (fs_fd != -2)
2098 return; 2715 return;
2716
2717 fs_fd = -1;
2718
2719 check_2625 (EV_A);
2099 2720
2100 fs_fd = inotify_init (); 2721 fs_fd = inotify_init ();
2101 2722
2102 if (fs_fd >= 0) 2723 if (fs_fd >= 0)
2103 { 2724 {
2105 ev_set_priority (&fs_w, EV_MAXPRI); 2726 ev_set_priority (&fs_w, EV_MAXPRI);
2106 ev_io_start (EV_A_ &fs_w); 2727 ev_io_start (EV_A_ &fs_w);
2107 } 2728 }
2108} 2729}
2109 2730
2110void inline_size 2731inline_size void
2111infy_fork (EV_P) 2732infy_fork (EV_P)
2112{ 2733{
2113 int slot; 2734 int slot;
2114 2735
2115 if (fs_fd < 0) 2736 if (fs_fd < 0)
2131 w->wd = -1; 2752 w->wd = -1;
2132 2753
2133 if (fs_fd >= 0) 2754 if (fs_fd >= 0)
2134 infy_add (EV_A_ w); /* re-add, no matter what */ 2755 infy_add (EV_A_ w); /* re-add, no matter what */
2135 else 2756 else
2136 ev_timer_start (EV_A_ &w->timer); 2757 ev_timer_again (EV_A_ &w->timer);
2137 } 2758 }
2138
2139 } 2759 }
2140} 2760}
2141 2761
2762#endif
2763
2764#ifdef _WIN32
2765# define EV_LSTAT(p,b) _stati64 (p, b)
2766#else
2767# define EV_LSTAT(p,b) lstat (p, b)
2142#endif 2768#endif
2143 2769
2144void 2770void
2145ev_stat_stat (EV_P_ ev_stat *w) 2771ev_stat_stat (EV_P_ ev_stat *w)
2146{ 2772{
2173 || w->prev.st_atime != w->attr.st_atime 2799 || w->prev.st_atime != w->attr.st_atime
2174 || w->prev.st_mtime != w->attr.st_mtime 2800 || w->prev.st_mtime != w->attr.st_mtime
2175 || w->prev.st_ctime != w->attr.st_ctime 2801 || w->prev.st_ctime != w->attr.st_ctime
2176 ) { 2802 ) {
2177 #if EV_USE_INOTIFY 2803 #if EV_USE_INOTIFY
2804 if (fs_fd >= 0)
2805 {
2178 infy_del (EV_A_ w); 2806 infy_del (EV_A_ w);
2179 infy_add (EV_A_ w); 2807 infy_add (EV_A_ w);
2180 ev_stat_stat (EV_A_ w); /* avoid race... */ 2808 ev_stat_stat (EV_A_ w); /* avoid race... */
2809 }
2181 #endif 2810 #endif
2182 2811
2183 ev_feed_event (EV_A_ w, EV_STAT); 2812 ev_feed_event (EV_A_ w, EV_STAT);
2184 } 2813 }
2185} 2814}
2188ev_stat_start (EV_P_ ev_stat *w) 2817ev_stat_start (EV_P_ ev_stat *w)
2189{ 2818{
2190 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2191 return; 2820 return;
2192 2821
2193 /* since we use memcmp, we need to clear any padding data etc. */
2194 memset (&w->prev, 0, sizeof (ev_statdata));
2195 memset (&w->attr, 0, sizeof (ev_statdata));
2196
2197 ev_stat_stat (EV_A_ w); 2822 ev_stat_stat (EV_A_ w);
2198 2823
2824 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2199 if (w->interval < MIN_STAT_INTERVAL) 2825 w->interval = MIN_STAT_INTERVAL;
2200 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2201 2826
2202 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2827 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2203 ev_set_priority (&w->timer, ev_priority (w)); 2828 ev_set_priority (&w->timer, ev_priority (w));
2204 2829
2205#if EV_USE_INOTIFY 2830#if EV_USE_INOTIFY
2206 infy_init (EV_A); 2831 infy_init (EV_A);
2207 2832
2208 if (fs_fd >= 0) 2833 if (fs_fd >= 0)
2209 infy_add (EV_A_ w); 2834 infy_add (EV_A_ w);
2210 else 2835 else
2211#endif 2836#endif
2212 ev_timer_start (EV_A_ &w->timer); 2837 ev_timer_again (EV_A_ &w->timer);
2213 2838
2214 ev_start (EV_A_ (W)w, 1); 2839 ev_start (EV_A_ (W)w, 1);
2840
2841 EV_FREQUENT_CHECK;
2215} 2842}
2216 2843
2217void 2844void
2218ev_stat_stop (EV_P_ ev_stat *w) 2845ev_stat_stop (EV_P_ ev_stat *w)
2219{ 2846{
2220 clear_pending (EV_A_ (W)w); 2847 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 2848 if (expect_false (!ev_is_active (w)))
2222 return; 2849 return;
2223 2850
2851 EV_FREQUENT_CHECK;
2852
2224#if EV_USE_INOTIFY 2853#if EV_USE_INOTIFY
2225 infy_del (EV_A_ w); 2854 infy_del (EV_A_ w);
2226#endif 2855#endif
2227 ev_timer_stop (EV_A_ &w->timer); 2856 ev_timer_stop (EV_A_ &w->timer);
2228 2857
2229 ev_stop (EV_A_ (W)w); 2858 ev_stop (EV_A_ (W)w);
2859
2860 EV_FREQUENT_CHECK;
2230} 2861}
2231#endif 2862#endif
2232 2863
2233#if EV_IDLE_ENABLE 2864#if EV_IDLE_ENABLE
2234void 2865void
2236{ 2867{
2237 if (expect_false (ev_is_active (w))) 2868 if (expect_false (ev_is_active (w)))
2238 return; 2869 return;
2239 2870
2240 pri_adjust (EV_A_ (W)w); 2871 pri_adjust (EV_A_ (W)w);
2872
2873 EV_FREQUENT_CHECK;
2241 2874
2242 { 2875 {
2243 int active = ++idlecnt [ABSPRI (w)]; 2876 int active = ++idlecnt [ABSPRI (w)];
2244 2877
2245 ++idleall; 2878 ++idleall;
2246 ev_start (EV_A_ (W)w, active); 2879 ev_start (EV_A_ (W)w, active);
2247 2880
2248 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2881 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2249 idles [ABSPRI (w)][active - 1] = w; 2882 idles [ABSPRI (w)][active - 1] = w;
2250 } 2883 }
2884
2885 EV_FREQUENT_CHECK;
2251} 2886}
2252 2887
2253void 2888void
2254ev_idle_stop (EV_P_ ev_idle *w) 2889ev_idle_stop (EV_P_ ev_idle *w)
2255{ 2890{
2256 clear_pending (EV_A_ (W)w); 2891 clear_pending (EV_A_ (W)w);
2257 if (expect_false (!ev_is_active (w))) 2892 if (expect_false (!ev_is_active (w)))
2258 return; 2893 return;
2259 2894
2895 EV_FREQUENT_CHECK;
2896
2260 { 2897 {
2261 int active = ((W)w)->active; 2898 int active = ev_active (w);
2262 2899
2263 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2900 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2264 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2901 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2265 2902
2266 ev_stop (EV_A_ (W)w); 2903 ev_stop (EV_A_ (W)w);
2267 --idleall; 2904 --idleall;
2268 } 2905 }
2906
2907 EV_FREQUENT_CHECK;
2269} 2908}
2270#endif 2909#endif
2271 2910
2272void 2911void
2273ev_prepare_start (EV_P_ ev_prepare *w) 2912ev_prepare_start (EV_P_ ev_prepare *w)
2274{ 2913{
2275 if (expect_false (ev_is_active (w))) 2914 if (expect_false (ev_is_active (w)))
2276 return; 2915 return;
2916
2917 EV_FREQUENT_CHECK;
2277 2918
2278 ev_start (EV_A_ (W)w, ++preparecnt); 2919 ev_start (EV_A_ (W)w, ++preparecnt);
2279 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2920 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2280 prepares [preparecnt - 1] = w; 2921 prepares [preparecnt - 1] = w;
2922
2923 EV_FREQUENT_CHECK;
2281} 2924}
2282 2925
2283void 2926void
2284ev_prepare_stop (EV_P_ ev_prepare *w) 2927ev_prepare_stop (EV_P_ ev_prepare *w)
2285{ 2928{
2286 clear_pending (EV_A_ (W)w); 2929 clear_pending (EV_A_ (W)w);
2287 if (expect_false (!ev_is_active (w))) 2930 if (expect_false (!ev_is_active (w)))
2288 return; 2931 return;
2289 2932
2933 EV_FREQUENT_CHECK;
2934
2290 { 2935 {
2291 int active = ((W)w)->active; 2936 int active = ev_active (w);
2937
2292 prepares [active - 1] = prepares [--preparecnt]; 2938 prepares [active - 1] = prepares [--preparecnt];
2293 ((W)prepares [active - 1])->active = active; 2939 ev_active (prepares [active - 1]) = active;
2294 } 2940 }
2295 2941
2296 ev_stop (EV_A_ (W)w); 2942 ev_stop (EV_A_ (W)w);
2943
2944 EV_FREQUENT_CHECK;
2297} 2945}
2298 2946
2299void 2947void
2300ev_check_start (EV_P_ ev_check *w) 2948ev_check_start (EV_P_ ev_check *w)
2301{ 2949{
2302 if (expect_false (ev_is_active (w))) 2950 if (expect_false (ev_is_active (w)))
2303 return; 2951 return;
2952
2953 EV_FREQUENT_CHECK;
2304 2954
2305 ev_start (EV_A_ (W)w, ++checkcnt); 2955 ev_start (EV_A_ (W)w, ++checkcnt);
2306 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2956 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2307 checks [checkcnt - 1] = w; 2957 checks [checkcnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2308} 2960}
2309 2961
2310void 2962void
2311ev_check_stop (EV_P_ ev_check *w) 2963ev_check_stop (EV_P_ ev_check *w)
2312{ 2964{
2313 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2314 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2315 return; 2967 return;
2316 2968
2969 EV_FREQUENT_CHECK;
2970
2317 { 2971 {
2318 int active = ((W)w)->active; 2972 int active = ev_active (w);
2973
2319 checks [active - 1] = checks [--checkcnt]; 2974 checks [active - 1] = checks [--checkcnt];
2320 ((W)checks [active - 1])->active = active; 2975 ev_active (checks [active - 1]) = active;
2321 } 2976 }
2322 2977
2323 ev_stop (EV_A_ (W)w); 2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2324} 2981}
2325 2982
2326#if EV_EMBED_ENABLE 2983#if EV_EMBED_ENABLE
2327void noinline 2984void noinline
2328ev_embed_sweep (EV_P_ ev_embed *w) 2985ev_embed_sweep (EV_P_ ev_embed *w)
2355 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3012 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2356 } 3013 }
2357 } 3014 }
2358} 3015}
2359 3016
3017static void
3018embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3019{
3020 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3021
3022 ev_embed_stop (EV_A_ w);
3023
3024 {
3025 struct ev_loop *loop = w->other;
3026
3027 ev_loop_fork (EV_A);
3028 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3029 }
3030
3031 ev_embed_start (EV_A_ w);
3032}
3033
2360#if 0 3034#if 0
2361static void 3035static void
2362embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3036embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2363{ 3037{
2364 ev_idle_stop (EV_A_ idle); 3038 ev_idle_stop (EV_A_ idle);
2371 if (expect_false (ev_is_active (w))) 3045 if (expect_false (ev_is_active (w)))
2372 return; 3046 return;
2373 3047
2374 { 3048 {
2375 struct ev_loop *loop = w->other; 3049 struct ev_loop *loop = w->other;
2376 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3050 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2377 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3051 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2378 } 3052 }
3053
3054 EV_FREQUENT_CHECK;
2379 3055
2380 ev_set_priority (&w->io, ev_priority (w)); 3056 ev_set_priority (&w->io, ev_priority (w));
2381 ev_io_start (EV_A_ &w->io); 3057 ev_io_start (EV_A_ &w->io);
2382 3058
2383 ev_prepare_init (&w->prepare, embed_prepare_cb); 3059 ev_prepare_init (&w->prepare, embed_prepare_cb);
2384 ev_set_priority (&w->prepare, EV_MINPRI); 3060 ev_set_priority (&w->prepare, EV_MINPRI);
2385 ev_prepare_start (EV_A_ &w->prepare); 3061 ev_prepare_start (EV_A_ &w->prepare);
2386 3062
3063 ev_fork_init (&w->fork, embed_fork_cb);
3064 ev_fork_start (EV_A_ &w->fork);
3065
2387 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3066 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2388 3067
2389 ev_start (EV_A_ (W)w, 1); 3068 ev_start (EV_A_ (W)w, 1);
3069
3070 EV_FREQUENT_CHECK;
2390} 3071}
2391 3072
2392void 3073void
2393ev_embed_stop (EV_P_ ev_embed *w) 3074ev_embed_stop (EV_P_ ev_embed *w)
2394{ 3075{
2395 clear_pending (EV_A_ (W)w); 3076 clear_pending (EV_A_ (W)w);
2396 if (expect_false (!ev_is_active (w))) 3077 if (expect_false (!ev_is_active (w)))
2397 return; 3078 return;
2398 3079
3080 EV_FREQUENT_CHECK;
3081
2399 ev_io_stop (EV_A_ &w->io); 3082 ev_io_stop (EV_A_ &w->io);
2400 ev_prepare_stop (EV_A_ &w->prepare); 3083 ev_prepare_stop (EV_A_ &w->prepare);
3084 ev_fork_stop (EV_A_ &w->fork);
2401 3085
2402 ev_stop (EV_A_ (W)w); 3086 EV_FREQUENT_CHECK;
2403} 3087}
2404#endif 3088#endif
2405 3089
2406#if EV_FORK_ENABLE 3090#if EV_FORK_ENABLE
2407void 3091void
2408ev_fork_start (EV_P_ ev_fork *w) 3092ev_fork_start (EV_P_ ev_fork *w)
2409{ 3093{
2410 if (expect_false (ev_is_active (w))) 3094 if (expect_false (ev_is_active (w)))
2411 return; 3095 return;
3096
3097 EV_FREQUENT_CHECK;
2412 3098
2413 ev_start (EV_A_ (W)w, ++forkcnt); 3099 ev_start (EV_A_ (W)w, ++forkcnt);
2414 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3100 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2415 forks [forkcnt - 1] = w; 3101 forks [forkcnt - 1] = w;
3102
3103 EV_FREQUENT_CHECK;
2416} 3104}
2417 3105
2418void 3106void
2419ev_fork_stop (EV_P_ ev_fork *w) 3107ev_fork_stop (EV_P_ ev_fork *w)
2420{ 3108{
2421 clear_pending (EV_A_ (W)w); 3109 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w))) 3110 if (expect_false (!ev_is_active (w)))
2423 return; 3111 return;
2424 3112
3113 EV_FREQUENT_CHECK;
3114
2425 { 3115 {
2426 int active = ((W)w)->active; 3116 int active = ev_active (w);
3117
2427 forks [active - 1] = forks [--forkcnt]; 3118 forks [active - 1] = forks [--forkcnt];
2428 ((W)forks [active - 1])->active = active; 3119 ev_active (forks [active - 1]) = active;
2429 } 3120 }
2430 3121
2431 ev_stop (EV_A_ (W)w); 3122 ev_stop (EV_A_ (W)w);
3123
3124 EV_FREQUENT_CHECK;
2432} 3125}
2433#endif 3126#endif
2434 3127
2435#if EV_ASYNC_ENABLE 3128#if EV_ASYNC_ENABLE
2436void 3129void
2438{ 3131{
2439 if (expect_false (ev_is_active (w))) 3132 if (expect_false (ev_is_active (w)))
2440 return; 3133 return;
2441 3134
2442 evpipe_init (EV_A); 3135 evpipe_init (EV_A);
3136
3137 EV_FREQUENT_CHECK;
2443 3138
2444 ev_start (EV_A_ (W)w, ++asynccnt); 3139 ev_start (EV_A_ (W)w, ++asynccnt);
2445 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3140 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2446 asyncs [asynccnt - 1] = w; 3141 asyncs [asynccnt - 1] = w;
3142
3143 EV_FREQUENT_CHECK;
2447} 3144}
2448 3145
2449void 3146void
2450ev_async_stop (EV_P_ ev_async *w) 3147ev_async_stop (EV_P_ ev_async *w)
2451{ 3148{
2452 clear_pending (EV_A_ (W)w); 3149 clear_pending (EV_A_ (W)w);
2453 if (expect_false (!ev_is_active (w))) 3150 if (expect_false (!ev_is_active (w)))
2454 return; 3151 return;
2455 3152
3153 EV_FREQUENT_CHECK;
3154
2456 { 3155 {
2457 int active = ((W)w)->active; 3156 int active = ev_active (w);
3157
2458 asyncs [active - 1] = asyncs [--asynccnt]; 3158 asyncs [active - 1] = asyncs [--asynccnt];
2459 ((W)asyncs [active - 1])->active = active; 3159 ev_active (asyncs [active - 1]) = active;
2460 } 3160 }
2461 3161
2462 ev_stop (EV_A_ (W)w); 3162 ev_stop (EV_A_ (W)w);
3163
3164 EV_FREQUENT_CHECK;
2463} 3165}
2464 3166
2465void 3167void
2466ev_async_send (EV_P_ ev_async *w) 3168ev_async_send (EV_P_ ev_async *w)
2467{ 3169{
2468 w->sent = 1; 3170 w->sent = 1;
2469 evpipe_write (EV_A_ 0, 1); 3171 evpipe_write (EV_A_ &gotasync);
2470} 3172}
2471#endif 3173#endif
2472 3174
2473/*****************************************************************************/ 3175/*****************************************************************************/
2474 3176
2484once_cb (EV_P_ struct ev_once *once, int revents) 3186once_cb (EV_P_ struct ev_once *once, int revents)
2485{ 3187{
2486 void (*cb)(int revents, void *arg) = once->cb; 3188 void (*cb)(int revents, void *arg) = once->cb;
2487 void *arg = once->arg; 3189 void *arg = once->arg;
2488 3190
2489 ev_io_stop (EV_A_ &once->io); 3191 ev_io_stop (EV_A_ &once->io);
2490 ev_timer_stop (EV_A_ &once->to); 3192 ev_timer_stop (EV_A_ &once->to);
2491 ev_free (once); 3193 ev_free (once);
2492 3194
2493 cb (revents, arg); 3195 cb (revents, arg);
2494} 3196}
2495 3197
2496static void 3198static void
2497once_cb_io (EV_P_ ev_io *w, int revents) 3199once_cb_io (EV_P_ ev_io *w, int revents)
2498{ 3200{
2499 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3201 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3202
3203 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2500} 3204}
2501 3205
2502static void 3206static void
2503once_cb_to (EV_P_ ev_timer *w, int revents) 3207once_cb_to (EV_P_ ev_timer *w, int revents)
2504{ 3208{
2505 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2506} 3212}
2507 3213
2508void 3214void
2509ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3215ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2510{ 3216{
2532 ev_timer_set (&once->to, timeout, 0.); 3238 ev_timer_set (&once->to, timeout, 0.);
2533 ev_timer_start (EV_A_ &once->to); 3239 ev_timer_start (EV_A_ &once->to);
2534 } 3240 }
2535} 3241}
2536 3242
3243/*****************************************************************************/
3244
3245#if EV_WALK_ENABLE
3246void
3247ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3248{
3249 int i, j;
3250 ev_watcher_list *wl, *wn;
3251
3252 if (types & (EV_IO | EV_EMBED))
3253 for (i = 0; i < anfdmax; ++i)
3254 for (wl = anfds [i].head; wl; )
3255 {
3256 wn = wl->next;
3257
3258#if EV_EMBED_ENABLE
3259 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3260 {
3261 if (types & EV_EMBED)
3262 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3263 }
3264 else
3265#endif
3266#if EV_USE_INOTIFY
3267 if (ev_cb ((ev_io *)wl) == infy_cb)
3268 ;
3269 else
3270#endif
3271 if ((ev_io *)wl != &pipe_w)
3272 if (types & EV_IO)
3273 cb (EV_A_ EV_IO, wl);
3274
3275 wl = wn;
3276 }
3277
3278 if (types & (EV_TIMER | EV_STAT))
3279 for (i = timercnt + HEAP0; i-- > HEAP0; )
3280#if EV_STAT_ENABLE
3281 /*TODO: timer is not always active*/
3282 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3283 {
3284 if (types & EV_STAT)
3285 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3286 }
3287 else
3288#endif
3289 if (types & EV_TIMER)
3290 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3291
3292#if EV_PERIODIC_ENABLE
3293 if (types & EV_PERIODIC)
3294 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3295 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3296#endif
3297
3298#if EV_IDLE_ENABLE
3299 if (types & EV_IDLE)
3300 for (j = NUMPRI; i--; )
3301 for (i = idlecnt [j]; i--; )
3302 cb (EV_A_ EV_IDLE, idles [j][i]);
3303#endif
3304
3305#if EV_FORK_ENABLE
3306 if (types & EV_FORK)
3307 for (i = forkcnt; i--; )
3308 if (ev_cb (forks [i]) != embed_fork_cb)
3309 cb (EV_A_ EV_FORK, forks [i]);
3310#endif
3311
3312#if EV_ASYNC_ENABLE
3313 if (types & EV_ASYNC)
3314 for (i = asynccnt; i--; )
3315 cb (EV_A_ EV_ASYNC, asyncs [i]);
3316#endif
3317
3318 if (types & EV_PREPARE)
3319 for (i = preparecnt; i--; )
3320#if EV_EMBED_ENABLE
3321 if (ev_cb (prepares [i]) != embed_prepare_cb)
3322#endif
3323 cb (EV_A_ EV_PREPARE, prepares [i]);
3324
3325 if (types & EV_CHECK)
3326 for (i = checkcnt; i--; )
3327 cb (EV_A_ EV_CHECK, checks [i]);
3328
3329 if (types & EV_SIGNAL)
3330 for (i = 0; i < signalmax; ++i)
3331 for (wl = signals [i].head; wl; )
3332 {
3333 wn = wl->next;
3334 cb (EV_A_ EV_SIGNAL, wl);
3335 wl = wn;
3336 }
3337
3338 if (types & EV_CHILD)
3339 for (i = EV_PID_HASHSIZE; i--; )
3340 for (wl = childs [i]; wl; )
3341 {
3342 wn = wl->next;
3343 cb (EV_A_ EV_CHILD, wl);
3344 wl = wn;
3345 }
3346/* EV_STAT 0x00001000 /* stat data changed */
3347/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3348}
3349#endif
3350
2537#if EV_MULTIPLICITY 3351#if EV_MULTIPLICITY
2538 #include "ev_wrap.h" 3352 #include "ev_wrap.h"
2539#endif 3353#endif
2540 3354
2541#ifdef __cplusplus 3355#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines