ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.210 by root, Sat Feb 9 00:34:11 2008 UTC vs.
Revision 1.352 by root, Thu Oct 21 02:33:08 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
62# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
64# endif 79# endif
65# endif 80# endif
66 81
82# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
70# else 86# else
87# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
73# endif 98# endif
74 99
100# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 103# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 104# else
105# undef EV_USE_POLL
87# define EV_USE_POLL 0 106# define EV_USE_POLL 0
88# endif
89# endif 107# endif
90 108
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
94# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
97# endif 116# endif
98 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
105# endif 125# endif
106 126
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
110# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
113# endif 134# endif
114 135
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
121# endif 143# endif
122 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
123#endif 163#endif
124 164
125#include <math.h> 165#include <math.h>
126#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
127#include <fcntl.h> 168#include <fcntl.h>
128#include <stddef.h> 169#include <stddef.h>
129 170
130#include <stdio.h> 171#include <stdio.h>
131 172
132#include <assert.h> 173#include <assert.h>
133#include <errno.h> 174#include <errno.h>
134#include <sys/types.h> 175#include <sys/types.h>
135#include <time.h> 176#include <time.h>
177#include <limits.h>
136 178
137#include <signal.h> 179#include <signal.h>
138 180
139#ifdef EV_H 181#ifdef EV_H
140# include EV_H 182# include EV_H
145#ifndef _WIN32 187#ifndef _WIN32
146# include <sys/time.h> 188# include <sys/time.h>
147# include <sys/wait.h> 189# include <sys/wait.h>
148# include <unistd.h> 190# include <unistd.h>
149#else 191#else
192# include <io.h>
150# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 194# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
154# endif 197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
208
209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
155#endif 244# endif
156 245#endif
157/**/
158 246
159#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
160# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
161#endif 253#endif
162 254
163#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 257#endif
166 258
167#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
168# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
264# endif
169#endif 265#endif
170 266
171#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 269#endif
174 270
175#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
176# ifdef _WIN32 272# ifdef _WIN32
177# define EV_USE_POLL 0 273# define EV_USE_POLL 0
178# else 274# else
179# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 276# endif
181#endif 277#endif
182 278
183#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
282# else
184# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
284# endif
185#endif 285#endif
186 286
187#ifndef EV_USE_KQUEUE 287#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 288# define EV_USE_KQUEUE 0
189#endif 289#endif
191#ifndef EV_USE_PORT 291#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 292# define EV_USE_PORT 0
193#endif 293#endif
194 294
195#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_INOTIFY EV_FEATURE_OS
298# else
196# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
300# endif
197#endif 301#endif
198 302
199#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 305#endif
306
307#ifndef EV_INOTIFY_HASHSIZE
308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309#endif
310
311#ifndef EV_USE_EVENTFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 314# else
203# define EV_PID_HASHSIZE 16 315# define EV_USE_EVENTFD 0
204# endif 316# endif
205#endif 317#endif
206 318
207#ifndef EV_INOTIFY_HASHSIZE 319#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 321# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 322# else
211# define EV_INOTIFY_HASHSIZE 16 323# define EV_USE_SIGNALFD 0
212# endif 324# endif
213#endif 325#endif
214 326
215/**/ 327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
216 366
217#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
220#endif 370#endif
234# include <sys/select.h> 384# include <sys/select.h>
235# endif 385# endif
236#endif 386#endif
237 387
238#if EV_USE_INOTIFY 388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
239# include <sys/inotify.h> 391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
240#endif 397#endif
241 398
242#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 400# include <winsock.h>
244#endif 401#endif
245 402
403#if EV_USE_EVENTFD
404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
416# ifdef __cplusplus
417extern "C" {
418# endif
419int (eventfd) (unsigned int initval, int flags);
420# ifdef __cplusplus
421}
422# endif
423#endif
424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
246/**/ 453/**/
454
455#if EV_VERIFY >= 3
456# define EV_FREQUENT_CHECK ev_verify (EV_A)
457#else
458# define EV_FREQUENT_CHECK do { } while (0)
459#endif
247 460
248/* 461/*
249 * This is used to avoid floating point rounding problems. 462 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 463 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 464 * to ensure progress, time-wise, even when rounding
255 */ 468 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257 470
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 471#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 472#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 473
474#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
475#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
261 476
262#if __GNUC__ >= 4 477#if __GNUC__ >= 4
263# define expect(expr,value) __builtin_expect ((expr),(value)) 478# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 479# define noinline __attribute__ ((noinline))
265#else 480#else
266# define expect(expr,value) (expr) 481# define expect(expr,value) (expr)
267# define noinline 482# define noinline
268# if __STDC_VERSION__ < 199901L 483# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 484# define inline
270# endif 485# endif
271#endif 486#endif
272 487
273#define expect_false(expr) expect ((expr) != 0, 0) 488#define expect_false(expr) expect ((expr) != 0, 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 489#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline 490#define inline_size static inline
276 491
277#if EV_MINIMAL 492#if EV_FEATURE_CODE
493# define inline_speed static inline
494#else
278# define inline_speed static noinline 495# define inline_speed static noinline
496#endif
497
498#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
499
500#if EV_MINPRI == EV_MAXPRI
501# define ABSPRI(w) (((W)w), 0)
279#else 502#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 503# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
504#endif
285 505
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 506#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 507#define EMPTY2(a,b) /* used to suppress some warnings */
288 508
289typedef ev_watcher *W; 509typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 510typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 511typedef ev_watcher_time *WT;
292 512
513#define ev_active(w) ((W)(w))->active
514#define ev_at(w) ((WT)(w))->at
515
516#if EV_USE_REALTIME
517/* sig_atomic_t is used to avoid per-thread variables or locking but still */
518/* giving it a reasonably high chance of working on typical architectures */
519static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
520#endif
521
293#if EV_USE_MONOTONIC 522#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 523static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
524#endif
525
526#ifndef EV_FD_TO_WIN32_HANDLE
527# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
528#endif
529#ifndef EV_WIN32_HANDLE_TO_FD
530# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
531#endif
532#ifndef EV_WIN32_CLOSE_FD
533# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 534#endif
298 535
299#ifdef _WIN32 536#ifdef _WIN32
300# include "ev_win32.c" 537# include "ev_win32.c"
301#endif 538#endif
302 539
303/*****************************************************************************/ 540/*****************************************************************************/
304 541
542#if EV_AVOID_STDIO
543static void noinline
544ev_printerr (const char *msg)
545{
546 write (STDERR_FILENO, msg, strlen (msg));
547}
548#endif
549
305static void (*syserr_cb)(const char *msg); 550static void (*syserr_cb)(const char *msg);
306 551
307void 552void
308ev_set_syserr_cb (void (*cb)(const char *msg)) 553ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 554{
310 syserr_cb = cb; 555 syserr_cb = cb;
311} 556}
312 557
313static void noinline 558static void noinline
314syserr (const char *msg) 559ev_syserr (const char *msg)
315{ 560{
316 if (!msg) 561 if (!msg)
317 msg = "(libev) system error"; 562 msg = "(libev) system error";
318 563
319 if (syserr_cb) 564 if (syserr_cb)
320 syserr_cb (msg); 565 syserr_cb (msg);
321 else 566 else
322 { 567 {
568#if EV_AVOID_STDIO
569 const char *err = strerror (errno);
570
571 ev_printerr (msg);
572 ev_printerr (": ");
573 ev_printerr (err);
574 ev_printerr ("\n");
575#else
323 perror (msg); 576 perror (msg);
577#endif
324 abort (); 578 abort ();
325 } 579 }
326} 580}
327 581
582static void *
583ev_realloc_emul (void *ptr, long size)
584{
585#if __GLIBC__
586 return realloc (ptr, size);
587#else
588 /* some systems, notably openbsd and darwin, fail to properly
589 * implement realloc (x, 0) (as required by both ansi c-89 and
590 * the single unix specification, so work around them here.
591 */
592
593 if (size)
594 return realloc (ptr, size);
595
596 free (ptr);
597 return 0;
598#endif
599}
600
328static void *(*alloc)(void *ptr, long size); 601static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 602
330void 603void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 604ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 605{
333 alloc = cb; 606 alloc = cb;
334} 607}
335 608
336inline_speed void * 609inline_speed void *
337ev_realloc (void *ptr, long size) 610ev_realloc (void *ptr, long size)
338{ 611{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 612 ptr = alloc (ptr, size);
340 613
341 if (!ptr && size) 614 if (!ptr && size)
342 { 615 {
616#if EV_AVOID_STDIO
617 ev_printerr ("libev: memory allocation failed, aborting.\n");
618#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 619 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
620#endif
344 abort (); 621 abort ();
345 } 622 }
346 623
347 return ptr; 624 return ptr;
348} 625}
350#define ev_malloc(size) ev_realloc (0, (size)) 627#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 628#define ev_free(ptr) ev_realloc ((ptr), 0)
352 629
353/*****************************************************************************/ 630/*****************************************************************************/
354 631
632/* set in reify when reification needed */
633#define EV_ANFD_REIFY 1
634
635/* file descriptor info structure */
355typedef struct 636typedef struct
356{ 637{
357 WL head; 638 WL head;
358 unsigned char events; 639 unsigned char events; /* the events watched for */
640 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
641 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 642 unsigned char unused;
643#if EV_USE_EPOLL
644 unsigned int egen; /* generation counter to counter epoll bugs */
645#endif
360#if EV_SELECT_IS_WINSOCKET 646#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 647 SOCKET handle;
362#endif 648#endif
363} ANFD; 649} ANFD;
364 650
651/* stores the pending event set for a given watcher */
365typedef struct 652typedef struct
366{ 653{
367 W w; 654 W w;
368 int events; 655 int events; /* the pending event set for the given watcher */
369} ANPENDING; 656} ANPENDING;
370 657
371#if EV_USE_INOTIFY 658#if EV_USE_INOTIFY
659/* hash table entry per inotify-id */
372typedef struct 660typedef struct
373{ 661{
374 WL head; 662 WL head;
375} ANFS; 663} ANFS;
664#endif
665
666/* Heap Entry */
667#if EV_HEAP_CACHE_AT
668 /* a heap element */
669 typedef struct {
670 ev_tstamp at;
671 WT w;
672 } ANHE;
673
674 #define ANHE_w(he) (he).w /* access watcher, read-write */
675 #define ANHE_at(he) (he).at /* access cached at, read-only */
676 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
677#else
678 /* a heap element */
679 typedef WT ANHE;
680
681 #define ANHE_w(he) (he)
682 #define ANHE_at(he) (he)->at
683 #define ANHE_at_cache(he)
376#endif 684#endif
377 685
378#if EV_MULTIPLICITY 686#if EV_MULTIPLICITY
379 687
380 struct ev_loop 688 struct ev_loop
399 707
400 static int ev_default_loop_ptr; 708 static int ev_default_loop_ptr;
401 709
402#endif 710#endif
403 711
712#if EV_FEATURE_API
713# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
714# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
715# define EV_INVOKE_PENDING invoke_cb (EV_A)
716#else
717# define EV_RELEASE_CB (void)0
718# define EV_ACQUIRE_CB (void)0
719# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
720#endif
721
722#define EVUNLOOP_RECURSE 0x80
723
404/*****************************************************************************/ 724/*****************************************************************************/
405 725
726#ifndef EV_HAVE_EV_TIME
406ev_tstamp 727ev_tstamp
407ev_time (void) 728ev_time (void)
408{ 729{
409#if EV_USE_REALTIME 730#if EV_USE_REALTIME
731 if (expect_true (have_realtime))
732 {
410 struct timespec ts; 733 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 734 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 735 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 736 }
737#endif
738
414 struct timeval tv; 739 struct timeval tv;
415 gettimeofday (&tv, 0); 740 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 741 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 742}
743#endif
419 744
420ev_tstamp inline_size 745inline_size ev_tstamp
421get_clock (void) 746get_clock (void)
422{ 747{
423#if EV_USE_MONOTONIC 748#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 749 if (expect_true (have_monotonic))
425 { 750 {
446 if (delay > 0.) 771 if (delay > 0.)
447 { 772 {
448#if EV_USE_NANOSLEEP 773#if EV_USE_NANOSLEEP
449 struct timespec ts; 774 struct timespec ts;
450 775
451 ts.tv_sec = (time_t)delay; 776 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 777 nanosleep (&ts, 0);
455#elif defined(_WIN32) 778#elif defined(_WIN32)
456 Sleep (delay * 1e3); 779 Sleep ((unsigned long)(delay * 1e3));
457#else 780#else
458 struct timeval tv; 781 struct timeval tv;
459 782
460 tv.tv_sec = (time_t)delay; 783 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 784 /* something not guaranteed by newer posix versions, but guaranteed */
462 785 /* by older ones */
786 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 787 select (0, 0, 0, 0, &tv);
464#endif 788#endif
465 } 789 }
466} 790}
467 791
468/*****************************************************************************/ 792/*****************************************************************************/
469 793
470int inline_size 794#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
795
796/* find a suitable new size for the given array, */
797/* hopefully by rounding to a nice-to-malloc size */
798inline_size int
471array_nextsize (int elem, int cur, int cnt) 799array_nextsize (int elem, int cur, int cnt)
472{ 800{
473 int ncur = cur + 1; 801 int ncur = cur + 1;
474 802
475 do 803 do
476 ncur <<= 1; 804 ncur <<= 1;
477 while (cnt > ncur); 805 while (cnt > ncur);
478 806
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 807 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 808 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 809 {
482 ncur *= elem; 810 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 811 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 812 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 813 ncur /= elem;
486 } 814 }
487 815
488 return ncur; 816 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 820array_realloc (int elem, void *base, int *cur, int cnt)
493{ 821{
494 *cur = array_nextsize (elem, *cur, cnt); 822 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 823 return ev_realloc (base, elem * *cur);
496} 824}
825
826#define array_init_zero(base,count) \
827 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 828
498#define array_needsize(type,base,cur,cnt,init) \ 829#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 830 if (expect_false ((cnt) > (cur))) \
500 { \ 831 { \
501 int ocur_ = (cur); \ 832 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 844 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 845 }
515#endif 846#endif
516 847
517#define array_free(stem, idx) \ 848#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 849 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 850
520/*****************************************************************************/ 851/*****************************************************************************/
852
853/* dummy callback for pending events */
854static void noinline
855pendingcb (EV_P_ ev_prepare *w, int revents)
856{
857}
521 858
522void noinline 859void noinline
523ev_feed_event (EV_P_ void *w, int revents) 860ev_feed_event (EV_P_ void *w, int revents)
524{ 861{
525 W w_ = (W)w; 862 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 871 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 872 pendings [pri][w_->pending - 1].events = revents;
536 } 873 }
537} 874}
538 875
539void inline_speed 876inline_speed void
877feed_reverse (EV_P_ W w)
878{
879 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
880 rfeeds [rfeedcnt++] = w;
881}
882
883inline_size void
884feed_reverse_done (EV_P_ int revents)
885{
886 do
887 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
888 while (rfeedcnt);
889}
890
891inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 892queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 893{
542 int i; 894 int i;
543 895
544 for (i = 0; i < eventcnt; ++i) 896 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 897 ev_feed_event (EV_A_ events [i], type);
546} 898}
547 899
548/*****************************************************************************/ 900/*****************************************************************************/
549 901
550void inline_size 902inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 903fd_event_nocheck (EV_P_ int fd, int revents)
565{ 904{
566 ANFD *anfd = anfds + fd; 905 ANFD *anfd = anfds + fd;
567 ev_io *w; 906 ev_io *w;
568 907
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 912 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 913 ev_feed_event (EV_A_ (W)w, ev);
575 } 914 }
576} 915}
577 916
917/* do not submit kernel events for fds that have reify set */
918/* because that means they changed while we were polling for new events */
919inline_speed void
920fd_event (EV_P_ int fd, int revents)
921{
922 ANFD *anfd = anfds + fd;
923
924 if (expect_true (!anfd->reify))
925 fd_event_nocheck (EV_A_ fd, revents);
926}
927
578void 928void
579ev_feed_fd_event (EV_P_ int fd, int revents) 929ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 930{
581 if (fd >= 0 && fd < anfdmax) 931 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 932 fd_event_nocheck (EV_A_ fd, revents);
583} 933}
584 934
585void inline_size 935/* make sure the external fd watch events are in-sync */
936/* with the kernel/libev internal state */
937inline_size void
586fd_reify (EV_P) 938fd_reify (EV_P)
587{ 939{
588 int i; 940 int i;
589 941
590 for (i = 0; i < fdchangecnt; ++i) 942 for (i = 0; i < fdchangecnt; ++i)
591 { 943 {
592 int fd = fdchanges [i]; 944 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 945 ANFD *anfd = anfds + fd;
594 ev_io *w; 946 ev_io *w;
595 947
596 unsigned char events = 0; 948 unsigned char o_events = anfd->events;
949 unsigned char o_reify = anfd->reify;
597 950
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 951 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 952
601#if EV_SELECT_IS_WINSOCKET 953#if EV_SELECT_IS_WINSOCKET
602 if (events) 954 if (o_reify & EV__IOFDSET)
603 { 955 {
604 unsigned long argp; 956 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 957 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 958 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 959 }
612#endif 960#endif
613 961
962 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
614 { 963 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events; 964 anfd->events = 0;
620 965
621 if (o_events != events || o_reify & EV_IOFDSET) 966 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
967 anfd->events |= (unsigned char)w->events;
968
969 if (o_events != anfd->events)
970 o_reify = EV__IOFDSET; /* actually |= */
971 }
972
973 if (o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 974 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 975 }
625 976
626 fdchangecnt = 0; 977 fdchangecnt = 0;
627} 978}
628 979
629void inline_size 980/* something about the given fd changed */
981inline_size void
630fd_change (EV_P_ int fd, int flags) 982fd_change (EV_P_ int fd, int flags)
631{ 983{
632 unsigned char reify = anfds [fd].reify; 984 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 985 anfds [fd].reify |= flags;
634 986
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 990 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 991 fdchanges [fdchangecnt - 1] = fd;
640 } 992 }
641} 993}
642 994
643void inline_speed 995/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
996inline_speed void
644fd_kill (EV_P_ int fd) 997fd_kill (EV_P_ int fd)
645{ 998{
646 ev_io *w; 999 ev_io *w;
647 1000
648 while ((w = (ev_io *)anfds [fd].head)) 1001 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1003 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1004 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1005 }
653} 1006}
654 1007
655int inline_size 1008/* check whether the given fd is actually valid, for error recovery */
1009inline_size int
656fd_valid (int fd) 1010fd_valid (int fd)
657{ 1011{
658#ifdef _WIN32 1012#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1013 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1014#else
661 return fcntl (fd, F_GETFD) != -1; 1015 return fcntl (fd, F_GETFD) != -1;
662#endif 1016#endif
663} 1017}
664 1018
668{ 1022{
669 int fd; 1023 int fd;
670 1024
671 for (fd = 0; fd < anfdmax; ++fd) 1025 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1026 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1027 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1028 fd_kill (EV_A_ fd);
675} 1029}
676 1030
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1031/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1032static void noinline
682 1036
683 for (fd = anfdmax; fd--; ) 1037 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1038 if (anfds [fd].events)
685 { 1039 {
686 fd_kill (EV_A_ fd); 1040 fd_kill (EV_A_ fd);
687 return; 1041 break;
688 } 1042 }
689} 1043}
690 1044
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1045/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1046static void noinline
696 1050
697 for (fd = 0; fd < anfdmax; ++fd) 1051 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1052 if (anfds [fd].events)
699 { 1053 {
700 anfds [fd].events = 0; 1054 anfds [fd].events = 0;
1055 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1056 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1057 }
703} 1058}
704 1059
705/*****************************************************************************/ 1060/* used to prepare libev internal fd's */
706 1061/* this is not fork-safe */
707void inline_speed 1062inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 1063fd_intern (int fd)
792{ 1064{
793#ifdef _WIN32 1065#ifdef _WIN32
794 int arg = 1; 1066 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1067 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1068#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1069 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1070 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1071#endif
800} 1072}
801 1073
1074/*****************************************************************************/
1075
1076/*
1077 * the heap functions want a real array index. array index 0 is guaranteed to not
1078 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1079 * the branching factor of the d-tree.
1080 */
1081
1082/*
1083 * at the moment we allow libev the luxury of two heaps,
1084 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1085 * which is more cache-efficient.
1086 * the difference is about 5% with 50000+ watchers.
1087 */
1088#if EV_USE_4HEAP
1089
1090#define DHEAP 4
1091#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1092#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1093#define UPHEAP_DONE(p,k) ((p) == (k))
1094
1095/* away from the root */
1096inline_speed void
1097downheap (ANHE *heap, int N, int k)
1098{
1099 ANHE he = heap [k];
1100 ANHE *E = heap + N + HEAP0;
1101
1102 for (;;)
1103 {
1104 ev_tstamp minat;
1105 ANHE *minpos;
1106 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1107
1108 /* find minimum child */
1109 if (expect_true (pos + DHEAP - 1 < E))
1110 {
1111 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1112 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1113 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1114 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1115 }
1116 else if (pos < E)
1117 {
1118 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1119 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1120 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1121 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1122 }
1123 else
1124 break;
1125
1126 if (ANHE_at (he) <= minat)
1127 break;
1128
1129 heap [k] = *minpos;
1130 ev_active (ANHE_w (*minpos)) = k;
1131
1132 k = minpos - heap;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139#else /* 4HEAP */
1140
1141#define HEAP0 1
1142#define HPARENT(k) ((k) >> 1)
1143#define UPHEAP_DONE(p,k) (!(p))
1144
1145/* away from the root */
1146inline_speed void
1147downheap (ANHE *heap, int N, int k)
1148{
1149 ANHE he = heap [k];
1150
1151 for (;;)
1152 {
1153 int c = k << 1;
1154
1155 if (c >= N + HEAP0)
1156 break;
1157
1158 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1159 ? 1 : 0;
1160
1161 if (ANHE_at (he) <= ANHE_at (heap [c]))
1162 break;
1163
1164 heap [k] = heap [c];
1165 ev_active (ANHE_w (heap [k])) = k;
1166
1167 k = c;
1168 }
1169
1170 heap [k] = he;
1171 ev_active (ANHE_w (he)) = k;
1172}
1173#endif
1174
1175/* towards the root */
1176inline_speed void
1177upheap (ANHE *heap, int k)
1178{
1179 ANHE he = heap [k];
1180
1181 for (;;)
1182 {
1183 int p = HPARENT (k);
1184
1185 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1186 break;
1187
1188 heap [k] = heap [p];
1189 ev_active (ANHE_w (heap [k])) = k;
1190 k = p;
1191 }
1192
1193 heap [k] = he;
1194 ev_active (ANHE_w (he)) = k;
1195}
1196
1197/* move an element suitably so it is in a correct place */
1198inline_size void
1199adjustheap (ANHE *heap, int N, int k)
1200{
1201 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1202 upheap (heap, k);
1203 else
1204 downheap (heap, N, k);
1205}
1206
1207/* rebuild the heap: this function is used only once and executed rarely */
1208inline_size void
1209reheap (ANHE *heap, int N)
1210{
1211 int i;
1212
1213 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1214 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1215 for (i = 0; i < N; ++i)
1216 upheap (heap, i + HEAP0);
1217}
1218
1219/*****************************************************************************/
1220
1221/* associate signal watchers to a signal signal */
1222typedef struct
1223{
1224 EV_ATOMIC_T pending;
1225#if EV_MULTIPLICITY
1226 EV_P;
1227#endif
1228 WL head;
1229} ANSIG;
1230
1231static ANSIG signals [EV_NSIG - 1];
1232
1233/*****************************************************************************/
1234
1235#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1236
802static void noinline 1237static void noinline
803evpipe_init (EV_P) 1238evpipe_init (EV_P)
804{ 1239{
805 if (!ev_is_active (&pipeev)) 1240 if (!ev_is_active (&pipe_w))
806 { 1241 {
1242# if EV_USE_EVENTFD
1243 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1244 if (evfd < 0 && errno == EINVAL)
1245 evfd = eventfd (0, 0);
1246
1247 if (evfd >= 0)
1248 {
1249 evpipe [0] = -1;
1250 fd_intern (evfd); /* doing it twice doesn't hurt */
1251 ev_io_set (&pipe_w, evfd, EV_READ);
1252 }
1253 else
1254# endif
1255 {
807 while (pipe (evpipe)) 1256 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1257 ev_syserr ("(libev) error creating signal/async pipe");
809 1258
810 fd_intern (evpipe [0]); 1259 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1260 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1261 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1262 }
1263
814 ev_io_start (EV_A_ &pipeev); 1264 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1265 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1266 }
817} 1267}
818 1268
819void inline_size 1269inline_size void
820evpipe_write (EV_P_ int sig, int async) 1270evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1271{
822 if (!(gotasync || gotsig)) 1272 if (!*flag)
823 { 1273 {
824 int old_errno = errno; /* save errno becaue write might clobber it */ 1274 int old_errno = errno; /* save errno because write might clobber it */
1275 char dummy;
825 1276
826 if (sig) gotsig = 1; 1277 *flag = 1;
827 if (async) gotasync = 1;
828 1278
1279#if EV_USE_EVENTFD
1280 if (evfd >= 0)
1281 {
1282 uint64_t counter = 1;
1283 write (evfd, &counter, sizeof (uint64_t));
1284 }
1285 else
1286#endif
1287 /* win32 people keep sending patches that change this write() to send() */
1288 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1289 /* so when you think this write should be a send instead, please find out */
1290 /* where your send() is from - it's definitely not the microsoft send, and */
1291 /* tell me. thank you. */
829 write (evpipe [1], &old_errno, 1); 1292 write (evpipe [1], &dummy, 1);
830 1293
831 errno = old_errno; 1294 errno = old_errno;
832 } 1295 }
833} 1296}
834 1297
1298/* called whenever the libev signal pipe */
1299/* got some events (signal, async) */
835static void 1300static void
836pipecb (EV_P_ ev_io *iow, int revents) 1301pipecb (EV_P_ ev_io *iow, int revents)
837{ 1302{
1303 int i;
1304
1305#if EV_USE_EVENTFD
1306 if (evfd >= 0)
838 { 1307 {
839 int dummy; 1308 uint64_t counter;
1309 read (evfd, &counter, sizeof (uint64_t));
1310 }
1311 else
1312#endif
1313 {
1314 char dummy;
1315 /* see discussion in evpipe_write when you think this read should be recv in win32 */
840 read (evpipe [0], &dummy, 1); 1316 read (evpipe [0], &dummy, 1);
841 } 1317 }
842 1318
843 if (gotsig) 1319 if (sig_pending)
844 { 1320 {
845 int signum; 1321 sig_pending = 0;
846 gotsig = 0;
847 1322
848 for (signum = signalmax; signum--; ) 1323 for (i = EV_NSIG - 1; i--; )
849 if (signals [signum].gotsig) 1324 if (expect_false (signals [i].pending))
850 ev_feed_signal_event (EV_A_ signum + 1); 1325 ev_feed_signal_event (EV_A_ i + 1);
851 } 1326 }
852 1327
853#if EV_ASYNC_ENABLE 1328#if EV_ASYNC_ENABLE
854 if (gotasync) 1329 if (async_pending)
855 { 1330 {
856 int i; 1331 async_pending = 0;
857 gotasync = 0;
858 1332
859 for (i = asynccnt; i--; ) 1333 for (i = asynccnt; i--; )
860 if (asyncs [i]->sent) 1334 if (asyncs [i]->sent)
861 { 1335 {
862 asyncs [i]->sent = 0; 1336 asyncs [i]->sent = 0;
867} 1341}
868 1342
869/*****************************************************************************/ 1343/*****************************************************************************/
870 1344
871static void 1345static void
872sighandler (int signum) 1346ev_sighandler (int signum)
873{ 1347{
874#if EV_MULTIPLICITY 1348#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 1349 EV_P = signals [signum - 1].loop;
876#endif 1350#endif
877 1351
878#if _WIN32 1352#ifdef _WIN32
879 signal (signum, sighandler); 1353 signal (signum, ev_sighandler);
880#endif 1354#endif
881 1355
882 signals [signum - 1].gotsig = 1; 1356 signals [signum - 1].pending = 1;
883 evpipe_write (EV_A_ 1, 0); 1357 evpipe_write (EV_A_ &sig_pending);
884} 1358}
885 1359
886void noinline 1360void noinline
887ev_feed_signal_event (EV_P_ int signum) 1361ev_feed_signal_event (EV_P_ int signum)
888{ 1362{
889 WL w; 1363 WL w;
890 1364
1365 if (expect_false (signum <= 0 || signum > EV_NSIG))
1366 return;
1367
1368 --signum;
1369
891#if EV_MULTIPLICITY 1370#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1371 /* it is permissible to try to feed a signal to the wrong loop */
893#endif 1372 /* or, likely more useful, feeding a signal nobody is waiting for */
894 1373
895 --signum; 1374 if (expect_false (signals [signum].loop != EV_A))
896
897 if (signum < 0 || signum >= signalmax)
898 return; 1375 return;
1376#endif
899 1377
900 signals [signum].gotsig = 0; 1378 signals [signum].pending = 0;
901 1379
902 for (w = signals [signum].head; w; w = w->next) 1380 for (w = signals [signum].head; w; w = w->next)
903 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1381 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
904} 1382}
905 1383
1384#if EV_USE_SIGNALFD
1385static void
1386sigfdcb (EV_P_ ev_io *iow, int revents)
1387{
1388 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1389
1390 for (;;)
1391 {
1392 ssize_t res = read (sigfd, si, sizeof (si));
1393
1394 /* not ISO-C, as res might be -1, but works with SuS */
1395 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1396 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1397
1398 if (res < (ssize_t)sizeof (si))
1399 break;
1400 }
1401}
1402#endif
1403
1404#endif
1405
906/*****************************************************************************/ 1406/*****************************************************************************/
907 1407
1408#if EV_CHILD_ENABLE
908static WL childs [EV_PID_HASHSIZE]; 1409static WL childs [EV_PID_HASHSIZE];
909
910#ifndef _WIN32
911 1410
912static ev_signal childev; 1411static ev_signal childev;
913 1412
914#ifndef WIFCONTINUED 1413#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 1414# define WIFCONTINUED(status) 0
916#endif 1415#endif
917 1416
918void inline_speed 1417/* handle a single child status event */
1418inline_speed void
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1419child_reap (EV_P_ int chain, int pid, int status)
920{ 1420{
921 ev_child *w; 1421 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1422 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 1423
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1424 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 1425 {
926 if ((w->pid == pid || !w->pid) 1426 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 1427 && (!traced || (w->flags & 1)))
928 { 1428 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1429 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 1430 w->rpid = pid;
931 w->rstatus = status; 1431 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1432 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 1433 }
934 } 1434 }
936 1436
937#ifndef WCONTINUED 1437#ifndef WCONTINUED
938# define WCONTINUED 0 1438# define WCONTINUED 0
939#endif 1439#endif
940 1440
1441/* called on sigchld etc., calls waitpid */
941static void 1442static void
942childcb (EV_P_ ev_signal *sw, int revents) 1443childcb (EV_P_ ev_signal *sw, int revents)
943{ 1444{
944 int pid, status; 1445 int pid, status;
945 1446
948 if (!WCONTINUED 1449 if (!WCONTINUED
949 || errno != EINVAL 1450 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1451 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 1452 return;
952 1453
953 /* make sure we are called again until all childs have been reaped */ 1454 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 1455 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1456 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 1457
957 child_reap (EV_A_ sw, pid, pid, status); 1458 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 1459 if ((EV_PID_HASHSIZE) > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1460 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 1461}
961 1462
962#endif 1463#endif
963 1464
964/*****************************************************************************/ 1465/*****************************************************************************/
1026 /* kqueue is borked on everything but netbsd apparently */ 1527 /* kqueue is borked on everything but netbsd apparently */
1027 /* it usually doesn't work correctly on anything but sockets and pipes */ 1528 /* it usually doesn't work correctly on anything but sockets and pipes */
1028 flags &= ~EVBACKEND_KQUEUE; 1529 flags &= ~EVBACKEND_KQUEUE;
1029#endif 1530#endif
1030#ifdef __APPLE__ 1531#ifdef __APPLE__
1031 // flags &= ~EVBACKEND_KQUEUE; for documentation 1532 /* only select works correctly on that "unix-certified" platform */
1032 flags &= ~EVBACKEND_POLL; 1533 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1534 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1535#endif
1536#ifdef __FreeBSD__
1537 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1033#endif 1538#endif
1034 1539
1035 return flags; 1540 return flags;
1036} 1541}
1037 1542
1051ev_backend (EV_P) 1556ev_backend (EV_P)
1052{ 1557{
1053 return backend; 1558 return backend;
1054} 1559}
1055 1560
1561#if EV_FEATURE_API
1056unsigned int 1562unsigned int
1057ev_loop_count (EV_P) 1563ev_iteration (EV_P)
1058{ 1564{
1059 return loop_count; 1565 return loop_count;
1060} 1566}
1061 1567
1568unsigned int
1569ev_depth (EV_P)
1570{
1571 return loop_depth;
1572}
1573
1062void 1574void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1575ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1064{ 1576{
1065 io_blocktime = interval; 1577 io_blocktime = interval;
1066} 1578}
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1581ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1070{ 1582{
1071 timeout_blocktime = interval; 1583 timeout_blocktime = interval;
1072} 1584}
1073 1585
1586void
1587ev_set_userdata (EV_P_ void *data)
1588{
1589 userdata = data;
1590}
1591
1592void *
1593ev_userdata (EV_P)
1594{
1595 return userdata;
1596}
1597
1598void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1599{
1600 invoke_cb = invoke_pending_cb;
1601}
1602
1603void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1604{
1605 release_cb = release;
1606 acquire_cb = acquire;
1607}
1608#endif
1609
1610/* initialise a loop structure, must be zero-initialised */
1074static void noinline 1611static void noinline
1075loop_init (EV_P_ unsigned int flags) 1612loop_init (EV_P_ unsigned int flags)
1076{ 1613{
1077 if (!backend) 1614 if (!backend)
1078 { 1615 {
1616#if EV_USE_REALTIME
1617 if (!have_realtime)
1618 {
1619 struct timespec ts;
1620
1621 if (!clock_gettime (CLOCK_REALTIME, &ts))
1622 have_realtime = 1;
1623 }
1624#endif
1625
1079#if EV_USE_MONOTONIC 1626#if EV_USE_MONOTONIC
1627 if (!have_monotonic)
1080 { 1628 {
1081 struct timespec ts; 1629 struct timespec ts;
1630
1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1631 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1083 have_monotonic = 1; 1632 have_monotonic = 1;
1084 } 1633 }
1085#endif 1634#endif
1635
1636 /* pid check not overridable via env */
1637#ifndef _WIN32
1638 if (flags & EVFLAG_FORKCHECK)
1639 curpid = getpid ();
1640#endif
1641
1642 if (!(flags & EVFLAG_NOENV)
1643 && !enable_secure ()
1644 && getenv ("LIBEV_FLAGS"))
1645 flags = atoi (getenv ("LIBEV_FLAGS"));
1086 1646
1087 ev_rt_now = ev_time (); 1647 ev_rt_now = ev_time ();
1088 mn_now = get_clock (); 1648 mn_now = get_clock ();
1089 now_floor = mn_now; 1649 now_floor = mn_now;
1090 rtmn_diff = ev_rt_now - mn_now; 1650 rtmn_diff = ev_rt_now - mn_now;
1651#if EV_FEATURE_API
1652 invoke_cb = ev_invoke_pending;
1653#endif
1091 1654
1092 io_blocktime = 0.; 1655 io_blocktime = 0.;
1093 timeout_blocktime = 0.; 1656 timeout_blocktime = 0.;
1094 backend = 0; 1657 backend = 0;
1095 backend_fd = -1; 1658 backend_fd = -1;
1096 gotasync = 0; 1659 sig_pending = 0;
1660#if EV_ASYNC_ENABLE
1661 async_pending = 0;
1662#endif
1097#if EV_USE_INOTIFY 1663#if EV_USE_INOTIFY
1098 fs_fd = -2; 1664 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1099#endif 1665#endif
1100 1666#if EV_USE_SIGNALFD
1101 /* pid check not overridable via env */ 1667 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1102#ifndef _WIN32
1103 if (flags & EVFLAG_FORKCHECK)
1104 curpid = getpid ();
1105#endif 1668#endif
1106 1669
1107 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS"));
1111
1112 if (!(flags & 0x0000ffffUL)) 1670 if (!(flags & 0x0000ffffU))
1113 flags |= ev_recommended_backends (); 1671 flags |= ev_recommended_backends ();
1114 1672
1115#if EV_USE_PORT 1673#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1674 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 1675#endif
1126#endif 1684#endif
1127#if EV_USE_SELECT 1685#if EV_USE_SELECT
1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1686 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1129#endif 1687#endif
1130 1688
1689 ev_prepare_init (&pending_w, pendingcb);
1690
1691#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1131 ev_init (&pipeev, pipecb); 1692 ev_init (&pipe_w, pipecb);
1132 ev_set_priority (&pipeev, EV_MAXPRI); 1693 ev_set_priority (&pipe_w, EV_MAXPRI);
1694#endif
1133 } 1695 }
1134} 1696}
1135 1697
1698/* free up a loop structure */
1136static void noinline 1699static void noinline
1137loop_destroy (EV_P) 1700loop_destroy (EV_P)
1138{ 1701{
1139 int i; 1702 int i;
1140 1703
1141 if (ev_is_active (&pipeev)) 1704 if (ev_is_active (&pipe_w))
1142 { 1705 {
1143 ev_ref (EV_A); /* signal watcher */ 1706 /*ev_ref (EV_A);*/
1144 ev_io_stop (EV_A_ &pipeev); 1707 /*ev_io_stop (EV_A_ &pipe_w);*/
1145 1708
1146 close (evpipe [0]); evpipe [0] = 0; 1709#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 1710 if (evfd >= 0)
1711 close (evfd);
1712#endif
1713
1714 if (evpipe [0] >= 0)
1715 {
1716 EV_WIN32_CLOSE_FD (evpipe [0]);
1717 EV_WIN32_CLOSE_FD (evpipe [1]);
1718 }
1148 } 1719 }
1720
1721#if EV_USE_SIGNALFD
1722 if (ev_is_active (&sigfd_w))
1723 close (sigfd);
1724#endif
1149 1725
1150#if EV_USE_INOTIFY 1726#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 1727 if (fs_fd >= 0)
1152 close (fs_fd); 1728 close (fs_fd);
1153#endif 1729#endif
1177#if EV_IDLE_ENABLE 1753#if EV_IDLE_ENABLE
1178 array_free (idle, [i]); 1754 array_free (idle, [i]);
1179#endif 1755#endif
1180 } 1756 }
1181 1757
1182 ev_free (anfds); anfdmax = 0; 1758 ev_free (anfds); anfds = 0; anfdmax = 0;
1183 1759
1184 /* have to use the microsoft-never-gets-it-right macro */ 1760 /* have to use the microsoft-never-gets-it-right macro */
1761 array_free (rfeed, EMPTY);
1185 array_free (fdchange, EMPTY); 1762 array_free (fdchange, EMPTY);
1186 array_free (timer, EMPTY); 1763 array_free (timer, EMPTY);
1187#if EV_PERIODIC_ENABLE 1764#if EV_PERIODIC_ENABLE
1188 array_free (periodic, EMPTY); 1765 array_free (periodic, EMPTY);
1189#endif 1766#endif
1197#endif 1774#endif
1198 1775
1199 backend = 0; 1776 backend = 0;
1200} 1777}
1201 1778
1779#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 1780inline_size void infy_fork (EV_P);
1781#endif
1203 1782
1204void inline_size 1783inline_size void
1205loop_fork (EV_P) 1784loop_fork (EV_P)
1206{ 1785{
1207#if EV_USE_PORT 1786#if EV_USE_PORT
1208 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1787 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1209#endif 1788#endif
1215#endif 1794#endif
1216#if EV_USE_INOTIFY 1795#if EV_USE_INOTIFY
1217 infy_fork (EV_A); 1796 infy_fork (EV_A);
1218#endif 1797#endif
1219 1798
1220 if (ev_is_active (&pipeev)) 1799 if (ev_is_active (&pipe_w))
1221 { 1800 {
1222 /* this "locks" the handlers against writing to the pipe */ 1801 /* this "locks" the handlers against writing to the pipe */
1223 gotsig = gotasync = 1; 1802 /* while we modify the fd vars */
1803 sig_pending = 1;
1804#if EV_ASYNC_ENABLE
1805 async_pending = 1;
1806#endif
1224 1807
1225 ev_ref (EV_A); 1808 ev_ref (EV_A);
1226 ev_io_stop (EV_A_ &pipeev); 1809 ev_io_stop (EV_A_ &pipe_w);
1227 close (evpipe [0]);
1228 close (evpipe [1]);
1229 1810
1811#if EV_USE_EVENTFD
1812 if (evfd >= 0)
1813 close (evfd);
1814#endif
1815
1816 if (evpipe [0] >= 0)
1817 {
1818 EV_WIN32_CLOSE_FD (evpipe [0]);
1819 EV_WIN32_CLOSE_FD (evpipe [1]);
1820 }
1821
1822#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1230 evpipe_init (EV_A); 1823 evpipe_init (EV_A);
1231 /* now iterate over everything, in case we missed something */ 1824 /* now iterate over everything, in case we missed something */
1232 pipecb (EV_A_ &pipeev, EV_READ); 1825 pipecb (EV_A_ &pipe_w, EV_READ);
1826#endif
1233 } 1827 }
1234 1828
1235 postfork = 0; 1829 postfork = 0;
1236} 1830}
1237 1831
1238#if EV_MULTIPLICITY 1832#if EV_MULTIPLICITY
1833
1239struct ev_loop * 1834struct ev_loop *
1240ev_loop_new (unsigned int flags) 1835ev_loop_new (unsigned int flags)
1241{ 1836{
1242 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1837 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1243 1838
1244 memset (loop, 0, sizeof (struct ev_loop)); 1839 memset (EV_A, 0, sizeof (struct ev_loop));
1245
1246 loop_init (EV_A_ flags); 1840 loop_init (EV_A_ flags);
1247 1841
1248 if (ev_backend (EV_A)) 1842 if (ev_backend (EV_A))
1249 return loop; 1843 return EV_A;
1250 1844
1251 return 0; 1845 return 0;
1252} 1846}
1253 1847
1254void 1848void
1261void 1855void
1262ev_loop_fork (EV_P) 1856ev_loop_fork (EV_P)
1263{ 1857{
1264 postfork = 1; /* must be in line with ev_default_fork */ 1858 postfork = 1; /* must be in line with ev_default_fork */
1265} 1859}
1860#endif /* multiplicity */
1266 1861
1862#if EV_VERIFY
1863static void noinline
1864verify_watcher (EV_P_ W w)
1865{
1866 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1867
1868 if (w->pending)
1869 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1870}
1871
1872static void noinline
1873verify_heap (EV_P_ ANHE *heap, int N)
1874{
1875 int i;
1876
1877 for (i = HEAP0; i < N + HEAP0; ++i)
1878 {
1879 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1880 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1881 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1882
1883 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1884 }
1885}
1886
1887static void noinline
1888array_verify (EV_P_ W *ws, int cnt)
1889{
1890 while (cnt--)
1891 {
1892 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1893 verify_watcher (EV_A_ ws [cnt]);
1894 }
1895}
1896#endif
1897
1898#if EV_FEATURE_API
1899void
1900ev_verify (EV_P)
1901{
1902#if EV_VERIFY
1903 int i;
1904 WL w;
1905
1906 assert (activecnt >= -1);
1907
1908 assert (fdchangemax >= fdchangecnt);
1909 for (i = 0; i < fdchangecnt; ++i)
1910 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1911
1912 assert (anfdmax >= 0);
1913 for (i = 0; i < anfdmax; ++i)
1914 for (w = anfds [i].head; w; w = w->next)
1915 {
1916 verify_watcher (EV_A_ (W)w);
1917 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1918 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1919 }
1920
1921 assert (timermax >= timercnt);
1922 verify_heap (EV_A_ timers, timercnt);
1923
1924#if EV_PERIODIC_ENABLE
1925 assert (periodicmax >= periodiccnt);
1926 verify_heap (EV_A_ periodics, periodiccnt);
1927#endif
1928
1929 for (i = NUMPRI; i--; )
1930 {
1931 assert (pendingmax [i] >= pendingcnt [i]);
1932#if EV_IDLE_ENABLE
1933 assert (idleall >= 0);
1934 assert (idlemax [i] >= idlecnt [i]);
1935 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1936#endif
1937 }
1938
1939#if EV_FORK_ENABLE
1940 assert (forkmax >= forkcnt);
1941 array_verify (EV_A_ (W *)forks, forkcnt);
1942#endif
1943
1944#if EV_ASYNC_ENABLE
1945 assert (asyncmax >= asynccnt);
1946 array_verify (EV_A_ (W *)asyncs, asynccnt);
1947#endif
1948
1949#if EV_PREPARE_ENABLE
1950 assert (preparemax >= preparecnt);
1951 array_verify (EV_A_ (W *)prepares, preparecnt);
1952#endif
1953
1954#if EV_CHECK_ENABLE
1955 assert (checkmax >= checkcnt);
1956 array_verify (EV_A_ (W *)checks, checkcnt);
1957#endif
1958
1959# if 0
1960#if EV_CHILD_ENABLE
1961 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1962 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1963#endif
1964# endif
1965#endif
1966}
1267#endif 1967#endif
1268 1968
1269#if EV_MULTIPLICITY 1969#if EV_MULTIPLICITY
1270struct ev_loop * 1970struct ev_loop *
1271ev_default_loop_init (unsigned int flags) 1971ev_default_loop_init (unsigned int flags)
1275#endif 1975#endif
1276{ 1976{
1277 if (!ev_default_loop_ptr) 1977 if (!ev_default_loop_ptr)
1278 { 1978 {
1279#if EV_MULTIPLICITY 1979#if EV_MULTIPLICITY
1280 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1980 EV_P = ev_default_loop_ptr = &default_loop_struct;
1281#else 1981#else
1282 ev_default_loop_ptr = 1; 1982 ev_default_loop_ptr = 1;
1283#endif 1983#endif
1284 1984
1285 loop_init (EV_A_ flags); 1985 loop_init (EV_A_ flags);
1286 1986
1287 if (ev_backend (EV_A)) 1987 if (ev_backend (EV_A))
1288 { 1988 {
1289#ifndef _WIN32 1989#if EV_CHILD_ENABLE
1290 ev_signal_init (&childev, childcb, SIGCHLD); 1990 ev_signal_init (&childev, childcb, SIGCHLD);
1291 ev_set_priority (&childev, EV_MAXPRI); 1991 ev_set_priority (&childev, EV_MAXPRI);
1292 ev_signal_start (EV_A_ &childev); 1992 ev_signal_start (EV_A_ &childev);
1293 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1993 ev_unref (EV_A); /* child watcher should not keep loop alive */
1294#endif 1994#endif
1302 2002
1303void 2003void
1304ev_default_destroy (void) 2004ev_default_destroy (void)
1305{ 2005{
1306#if EV_MULTIPLICITY 2006#if EV_MULTIPLICITY
1307 struct ev_loop *loop = ev_default_loop_ptr; 2007 EV_P = ev_default_loop_ptr;
1308#endif 2008#endif
1309 2009
1310#ifndef _WIN32 2010 ev_default_loop_ptr = 0;
2011
2012#if EV_CHILD_ENABLE
1311 ev_ref (EV_A); /* child watcher */ 2013 ev_ref (EV_A); /* child watcher */
1312 ev_signal_stop (EV_A_ &childev); 2014 ev_signal_stop (EV_A_ &childev);
1313#endif 2015#endif
1314 2016
1315 loop_destroy (EV_A); 2017 loop_destroy (EV_A);
1317 2019
1318void 2020void
1319ev_default_fork (void) 2021ev_default_fork (void)
1320{ 2022{
1321#if EV_MULTIPLICITY 2023#if EV_MULTIPLICITY
1322 struct ev_loop *loop = ev_default_loop_ptr; 2024 EV_P = ev_default_loop_ptr;
1323#endif 2025#endif
1324 2026
1325 if (backend)
1326 postfork = 1; /* must be in line with ev_loop_fork */ 2027 postfork = 1; /* must be in line with ev_loop_fork */
1327} 2028}
1328 2029
1329/*****************************************************************************/ 2030/*****************************************************************************/
1330 2031
1331void 2032void
1332ev_invoke (EV_P_ void *w, int revents) 2033ev_invoke (EV_P_ void *w, int revents)
1333{ 2034{
1334 EV_CB_INVOKE ((W)w, revents); 2035 EV_CB_INVOKE ((W)w, revents);
1335} 2036}
1336 2037
1337void inline_speed 2038unsigned int
1338call_pending (EV_P) 2039ev_pending_count (EV_P)
2040{
2041 int pri;
2042 unsigned int count = 0;
2043
2044 for (pri = NUMPRI; pri--; )
2045 count += pendingcnt [pri];
2046
2047 return count;
2048}
2049
2050void noinline
2051ev_invoke_pending (EV_P)
1339{ 2052{
1340 int pri; 2053 int pri;
1341 2054
1342 for (pri = NUMPRI; pri--; ) 2055 for (pri = NUMPRI; pri--; )
1343 while (pendingcnt [pri]) 2056 while (pendingcnt [pri])
1344 { 2057 {
1345 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2058 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1346 2059
1347 if (expect_true (p->w))
1348 {
1349 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2060 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2061 /* ^ this is no longer true, as pending_w could be here */
1350 2062
1351 p->w->pending = 0; 2063 p->w->pending = 0;
1352 EV_CB_INVOKE (p->w, p->events); 2064 EV_CB_INVOKE (p->w, p->events);
1353 } 2065 EV_FREQUENT_CHECK;
1354 } 2066 }
1355} 2067}
1356 2068
1357void inline_size
1358timers_reify (EV_P)
1359{
1360 while (timercnt && ((WT)timers [0])->at <= mn_now)
1361 {
1362 ev_timer *w = (ev_timer *)timers [0];
1363
1364 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1365
1366 /* first reschedule or stop timer */
1367 if (w->repeat)
1368 {
1369 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1370
1371 ((WT)w)->at += w->repeat;
1372 if (((WT)w)->at < mn_now)
1373 ((WT)w)->at = mn_now;
1374
1375 downheap (timers, timercnt, 0);
1376 }
1377 else
1378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1379
1380 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1381 }
1382}
1383
1384#if EV_PERIODIC_ENABLE
1385void inline_size
1386periodics_reify (EV_P)
1387{
1388 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1389 {
1390 ev_periodic *w = (ev_periodic *)periodics [0];
1391
1392 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1393
1394 /* first reschedule or stop timer */
1395 if (w->reschedule_cb)
1396 {
1397 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1398 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1399 downheap (periodics, periodiccnt, 0);
1400 }
1401 else if (w->interval)
1402 {
1403 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1405 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1406 downheap (periodics, periodiccnt, 0);
1407 }
1408 else
1409 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1410
1411 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1412 }
1413}
1414
1415static void noinline
1416periodics_reschedule (EV_P)
1417{
1418 int i;
1419
1420 /* adjust periodics after time jump */
1421 for (i = 0; i < periodiccnt; ++i)
1422 {
1423 ev_periodic *w = (ev_periodic *)periodics [i];
1424
1425 if (w->reschedule_cb)
1426 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1427 else if (w->interval)
1428 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1429 }
1430
1431 /* now rebuild the heap */
1432 for (i = periodiccnt >> 1; i--; )
1433 downheap (periodics, periodiccnt, i);
1434}
1435#endif
1436
1437#if EV_IDLE_ENABLE 2069#if EV_IDLE_ENABLE
1438void inline_size 2070/* make idle watchers pending. this handles the "call-idle */
2071/* only when higher priorities are idle" logic */
2072inline_size void
1439idle_reify (EV_P) 2073idle_reify (EV_P)
1440{ 2074{
1441 if (expect_false (idleall)) 2075 if (expect_false (idleall))
1442 { 2076 {
1443 int pri; 2077 int pri;
1455 } 2089 }
1456 } 2090 }
1457} 2091}
1458#endif 2092#endif
1459 2093
1460void inline_speed 2094/* make timers pending */
2095inline_size void
2096timers_reify (EV_P)
2097{
2098 EV_FREQUENT_CHECK;
2099
2100 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2101 {
2102 do
2103 {
2104 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2105
2106 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2107
2108 /* first reschedule or stop timer */
2109 if (w->repeat)
2110 {
2111 ev_at (w) += w->repeat;
2112 if (ev_at (w) < mn_now)
2113 ev_at (w) = mn_now;
2114
2115 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2116
2117 ANHE_at_cache (timers [HEAP0]);
2118 downheap (timers, timercnt, HEAP0);
2119 }
2120 else
2121 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2122
2123 EV_FREQUENT_CHECK;
2124 feed_reverse (EV_A_ (W)w);
2125 }
2126 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2127
2128 feed_reverse_done (EV_A_ EV_TIMER);
2129 }
2130}
2131
2132#if EV_PERIODIC_ENABLE
2133/* make periodics pending */
2134inline_size void
2135periodics_reify (EV_P)
2136{
2137 EV_FREQUENT_CHECK;
2138
2139 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2140 {
2141 int feed_count = 0;
2142
2143 do
2144 {
2145 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2146
2147 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2148
2149 /* first reschedule or stop timer */
2150 if (w->reschedule_cb)
2151 {
2152 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2153
2154 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2155
2156 ANHE_at_cache (periodics [HEAP0]);
2157 downheap (periodics, periodiccnt, HEAP0);
2158 }
2159 else if (w->interval)
2160 {
2161 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2162 /* if next trigger time is not sufficiently in the future, put it there */
2163 /* this might happen because of floating point inexactness */
2164 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2165 {
2166 ev_at (w) += w->interval;
2167
2168 /* if interval is unreasonably low we might still have a time in the past */
2169 /* so correct this. this will make the periodic very inexact, but the user */
2170 /* has effectively asked to get triggered more often than possible */
2171 if (ev_at (w) < ev_rt_now)
2172 ev_at (w) = ev_rt_now;
2173 }
2174
2175 ANHE_at_cache (periodics [HEAP0]);
2176 downheap (periodics, periodiccnt, HEAP0);
2177 }
2178 else
2179 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2180
2181 EV_FREQUENT_CHECK;
2182 feed_reverse (EV_A_ (W)w);
2183 }
2184 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2185
2186 feed_reverse_done (EV_A_ EV_PERIODIC);
2187 }
2188}
2189
2190/* simply recalculate all periodics */
2191/* TODO: maybe ensure that at least one event happens when jumping forward? */
2192static void noinline
2193periodics_reschedule (EV_P)
2194{
2195 int i;
2196
2197 /* adjust periodics after time jump */
2198 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2199 {
2200 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2201
2202 if (w->reschedule_cb)
2203 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2204 else if (w->interval)
2205 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2206
2207 ANHE_at_cache (periodics [i]);
2208 }
2209
2210 reheap (periodics, periodiccnt);
2211}
2212#endif
2213
2214/* adjust all timers by a given offset */
2215static void noinline
2216timers_reschedule (EV_P_ ev_tstamp adjust)
2217{
2218 int i;
2219
2220 for (i = 0; i < timercnt; ++i)
2221 {
2222 ANHE *he = timers + i + HEAP0;
2223 ANHE_w (*he)->at += adjust;
2224 ANHE_at_cache (*he);
2225 }
2226}
2227
2228/* fetch new monotonic and realtime times from the kernel */
2229/* also detect if there was a timejump, and act accordingly */
2230inline_speed void
1461time_update (EV_P_ ev_tstamp max_block) 2231time_update (EV_P_ ev_tstamp max_block)
1462{ 2232{
1463 int i;
1464
1465#if EV_USE_MONOTONIC 2233#if EV_USE_MONOTONIC
1466 if (expect_true (have_monotonic)) 2234 if (expect_true (have_monotonic))
1467 { 2235 {
2236 int i;
1468 ev_tstamp odiff = rtmn_diff; 2237 ev_tstamp odiff = rtmn_diff;
1469 2238
1470 mn_now = get_clock (); 2239 mn_now = get_clock ();
1471 2240
1472 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2241 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1490 */ 2259 */
1491 for (i = 4; --i; ) 2260 for (i = 4; --i; )
1492 { 2261 {
1493 rtmn_diff = ev_rt_now - mn_now; 2262 rtmn_diff = ev_rt_now - mn_now;
1494 2263
1495 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2264 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1496 return; /* all is well */ 2265 return; /* all is well */
1497 2266
1498 ev_rt_now = ev_time (); 2267 ev_rt_now = ev_time ();
1499 mn_now = get_clock (); 2268 mn_now = get_clock ();
1500 now_floor = mn_now; 2269 now_floor = mn_now;
1501 } 2270 }
1502 2271
2272 /* no timer adjustment, as the monotonic clock doesn't jump */
2273 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1503# if EV_PERIODIC_ENABLE 2274# if EV_PERIODIC_ENABLE
1504 periodics_reschedule (EV_A); 2275 periodics_reschedule (EV_A);
1505# endif 2276# endif
1506 /* no timer adjustment, as the monotonic clock doesn't jump */
1507 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1508 } 2277 }
1509 else 2278 else
1510#endif 2279#endif
1511 { 2280 {
1512 ev_rt_now = ev_time (); 2281 ev_rt_now = ev_time ();
1513 2282
1514 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2283 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1515 { 2284 {
2285 /* adjust timers. this is easy, as the offset is the same for all of them */
2286 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1516#if EV_PERIODIC_ENABLE 2287#if EV_PERIODIC_ENABLE
1517 periodics_reschedule (EV_A); 2288 periodics_reschedule (EV_A);
1518#endif 2289#endif
1519 /* adjust timers. this is easy, as the offset is the same for all of them */
1520 for (i = 0; i < timercnt; ++i)
1521 ((WT)timers [i])->at += ev_rt_now - mn_now;
1522 } 2290 }
1523 2291
1524 mn_now = ev_rt_now; 2292 mn_now = ev_rt_now;
1525 } 2293 }
1526} 2294}
1527 2295
1528void 2296void
1529ev_ref (EV_P)
1530{
1531 ++activecnt;
1532}
1533
1534void
1535ev_unref (EV_P)
1536{
1537 --activecnt;
1538}
1539
1540static int loop_done;
1541
1542void
1543ev_loop (EV_P_ int flags) 2297ev_loop (EV_P_ int flags)
1544{ 2298{
1545 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2299#if EV_FEATURE_API
1546 ? EVUNLOOP_ONE 2300 ++loop_depth;
1547 : EVUNLOOP_CANCEL; 2301#endif
1548 2302
2303 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2304
2305 loop_done = EVUNLOOP_CANCEL;
2306
1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2307 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1550 2308
1551 do 2309 do
1552 { 2310 {
2311#if EV_VERIFY >= 2
2312 ev_verify (EV_A);
2313#endif
2314
1553#ifndef _WIN32 2315#ifndef _WIN32
1554 if (expect_false (curpid)) /* penalise the forking check even more */ 2316 if (expect_false (curpid)) /* penalise the forking check even more */
1555 if (expect_false (getpid () != curpid)) 2317 if (expect_false (getpid () != curpid))
1556 { 2318 {
1557 curpid = getpid (); 2319 curpid = getpid ();
1563 /* we might have forked, so queue fork handlers */ 2325 /* we might have forked, so queue fork handlers */
1564 if (expect_false (postfork)) 2326 if (expect_false (postfork))
1565 if (forkcnt) 2327 if (forkcnt)
1566 { 2328 {
1567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2329 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1568 call_pending (EV_A); 2330 EV_INVOKE_PENDING;
1569 } 2331 }
1570#endif 2332#endif
1571 2333
2334#if EV_PREPARE_ENABLE
1572 /* queue prepare watchers (and execute them) */ 2335 /* queue prepare watchers (and execute them) */
1573 if (expect_false (preparecnt)) 2336 if (expect_false (preparecnt))
1574 { 2337 {
1575 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2338 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1576 call_pending (EV_A); 2339 EV_INVOKE_PENDING;
1577 } 2340 }
2341#endif
1578 2342
1579 if (expect_false (!activecnt)) 2343 if (expect_false (loop_done))
1580 break; 2344 break;
1581 2345
1582 /* we might have forked, so reify kernel state if necessary */ 2346 /* we might have forked, so reify kernel state if necessary */
1583 if (expect_false (postfork)) 2347 if (expect_false (postfork))
1584 loop_fork (EV_A); 2348 loop_fork (EV_A);
1591 ev_tstamp waittime = 0.; 2355 ev_tstamp waittime = 0.;
1592 ev_tstamp sleeptime = 0.; 2356 ev_tstamp sleeptime = 0.;
1593 2357
1594 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2358 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1595 { 2359 {
2360 /* remember old timestamp for io_blocktime calculation */
2361 ev_tstamp prev_mn_now = mn_now;
2362
1596 /* update time to cancel out callback processing overhead */ 2363 /* update time to cancel out callback processing overhead */
1597 time_update (EV_A_ 1e100); 2364 time_update (EV_A_ 1e100);
1598 2365
1599 waittime = MAX_BLOCKTIME; 2366 waittime = MAX_BLOCKTIME;
1600 2367
1601 if (timercnt) 2368 if (timercnt)
1602 { 2369 {
1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2370 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1604 if (waittime > to) waittime = to; 2371 if (waittime > to) waittime = to;
1605 } 2372 }
1606 2373
1607#if EV_PERIODIC_ENABLE 2374#if EV_PERIODIC_ENABLE
1608 if (periodiccnt) 2375 if (periodiccnt)
1609 { 2376 {
1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1611 if (waittime > to) waittime = to; 2378 if (waittime > to) waittime = to;
1612 } 2379 }
1613#endif 2380#endif
1614 2381
2382 /* don't let timeouts decrease the waittime below timeout_blocktime */
1615 if (expect_false (waittime < timeout_blocktime)) 2383 if (expect_false (waittime < timeout_blocktime))
1616 waittime = timeout_blocktime; 2384 waittime = timeout_blocktime;
1617 2385
1618 sleeptime = waittime - backend_fudge; 2386 /* extra check because io_blocktime is commonly 0 */
1619
1620 if (expect_true (sleeptime > io_blocktime)) 2387 if (expect_false (io_blocktime))
1621 sleeptime = io_blocktime;
1622
1623 if (sleeptime)
1624 { 2388 {
2389 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2390
2391 if (sleeptime > waittime - backend_fudge)
2392 sleeptime = waittime - backend_fudge;
2393
2394 if (expect_true (sleeptime > 0.))
2395 {
1625 ev_sleep (sleeptime); 2396 ev_sleep (sleeptime);
1626 waittime -= sleeptime; 2397 waittime -= sleeptime;
2398 }
1627 } 2399 }
1628 } 2400 }
1629 2401
2402#if EV_FEATURE_API
1630 ++loop_count; 2403 ++loop_count;
2404#endif
2405 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1631 backend_poll (EV_A_ waittime); 2406 backend_poll (EV_A_ waittime);
2407 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1632 2408
1633 /* update ev_rt_now, do magic */ 2409 /* update ev_rt_now, do magic */
1634 time_update (EV_A_ waittime + sleeptime); 2410 time_update (EV_A_ waittime + sleeptime);
1635 } 2411 }
1636 2412
1643#if EV_IDLE_ENABLE 2419#if EV_IDLE_ENABLE
1644 /* queue idle watchers unless other events are pending */ 2420 /* queue idle watchers unless other events are pending */
1645 idle_reify (EV_A); 2421 idle_reify (EV_A);
1646#endif 2422#endif
1647 2423
2424#if EV_CHECK_ENABLE
1648 /* queue check watchers, to be executed first */ 2425 /* queue check watchers, to be executed first */
1649 if (expect_false (checkcnt)) 2426 if (expect_false (checkcnt))
1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2427 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2428#endif
1651 2429
1652 call_pending (EV_A); 2430 EV_INVOKE_PENDING;
1653
1654 } 2431 }
1655 while (expect_true (activecnt && !loop_done)); 2432 while (expect_true (
2433 activecnt
2434 && !loop_done
2435 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2436 ));
1656 2437
1657 if (loop_done == EVUNLOOP_ONE) 2438 if (loop_done == EVUNLOOP_ONE)
1658 loop_done = EVUNLOOP_CANCEL; 2439 loop_done = EVUNLOOP_CANCEL;
2440
2441#if EV_FEATURE_API
2442 --loop_depth;
2443#endif
1659} 2444}
1660 2445
1661void 2446void
1662ev_unloop (EV_P_ int how) 2447ev_unloop (EV_P_ int how)
1663{ 2448{
1664 loop_done = how; 2449 loop_done = how;
1665} 2450}
1666 2451
2452void
2453ev_ref (EV_P)
2454{
2455 ++activecnt;
2456}
2457
2458void
2459ev_unref (EV_P)
2460{
2461 --activecnt;
2462}
2463
2464void
2465ev_now_update (EV_P)
2466{
2467 time_update (EV_A_ 1e100);
2468}
2469
2470void
2471ev_suspend (EV_P)
2472{
2473 ev_now_update (EV_A);
2474}
2475
2476void
2477ev_resume (EV_P)
2478{
2479 ev_tstamp mn_prev = mn_now;
2480
2481 ev_now_update (EV_A);
2482 timers_reschedule (EV_A_ mn_now - mn_prev);
2483#if EV_PERIODIC_ENABLE
2484 /* TODO: really do this? */
2485 periodics_reschedule (EV_A);
2486#endif
2487}
2488
1667/*****************************************************************************/ 2489/*****************************************************************************/
2490/* singly-linked list management, used when the expected list length is short */
1668 2491
1669void inline_size 2492inline_size void
1670wlist_add (WL *head, WL elem) 2493wlist_add (WL *head, WL elem)
1671{ 2494{
1672 elem->next = *head; 2495 elem->next = *head;
1673 *head = elem; 2496 *head = elem;
1674} 2497}
1675 2498
1676void inline_size 2499inline_size void
1677wlist_del (WL *head, WL elem) 2500wlist_del (WL *head, WL elem)
1678{ 2501{
1679 while (*head) 2502 while (*head)
1680 { 2503 {
1681 if (*head == elem) 2504 if (expect_true (*head == elem))
1682 { 2505 {
1683 *head = elem->next; 2506 *head = elem->next;
1684 return; 2507 break;
1685 } 2508 }
1686 2509
1687 head = &(*head)->next; 2510 head = &(*head)->next;
1688 } 2511 }
1689} 2512}
1690 2513
1691void inline_speed 2514/* internal, faster, version of ev_clear_pending */
2515inline_speed void
1692clear_pending (EV_P_ W w) 2516clear_pending (EV_P_ W w)
1693{ 2517{
1694 if (w->pending) 2518 if (w->pending)
1695 { 2519 {
1696 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2520 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1697 w->pending = 0; 2521 w->pending = 0;
1698 } 2522 }
1699} 2523}
1700 2524
1701int 2525int
1705 int pending = w_->pending; 2529 int pending = w_->pending;
1706 2530
1707 if (expect_true (pending)) 2531 if (expect_true (pending))
1708 { 2532 {
1709 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2533 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2534 p->w = (W)&pending_w;
1710 w_->pending = 0; 2535 w_->pending = 0;
1711 p->w = 0;
1712 return p->events; 2536 return p->events;
1713 } 2537 }
1714 else 2538 else
1715 return 0; 2539 return 0;
1716} 2540}
1717 2541
1718void inline_size 2542inline_size void
1719pri_adjust (EV_P_ W w) 2543pri_adjust (EV_P_ W w)
1720{ 2544{
1721 int pri = w->priority; 2545 int pri = ev_priority (w);
1722 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2546 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1723 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2547 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1724 w->priority = pri; 2548 ev_set_priority (w, pri);
1725} 2549}
1726 2550
1727void inline_speed 2551inline_speed void
1728ev_start (EV_P_ W w, int active) 2552ev_start (EV_P_ W w, int active)
1729{ 2553{
1730 pri_adjust (EV_A_ w); 2554 pri_adjust (EV_A_ w);
1731 w->active = active; 2555 w->active = active;
1732 ev_ref (EV_A); 2556 ev_ref (EV_A);
1733} 2557}
1734 2558
1735void inline_size 2559inline_size void
1736ev_stop (EV_P_ W w) 2560ev_stop (EV_P_ W w)
1737{ 2561{
1738 ev_unref (EV_A); 2562 ev_unref (EV_A);
1739 w->active = 0; 2563 w->active = 0;
1740} 2564}
1747 int fd = w->fd; 2571 int fd = w->fd;
1748 2572
1749 if (expect_false (ev_is_active (w))) 2573 if (expect_false (ev_is_active (w)))
1750 return; 2574 return;
1751 2575
1752 assert (("ev_io_start called with negative fd", fd >= 0)); 2576 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2577 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2578
2579 EV_FREQUENT_CHECK;
1753 2580
1754 ev_start (EV_A_ (W)w, 1); 2581 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2582 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1756 wlist_add (&anfds[fd].head, (WL)w); 2583 wlist_add (&anfds[fd].head, (WL)w);
1757 2584
1758 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2585 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1759 w->events &= ~EV_IOFDSET; 2586 w->events &= ~EV__IOFDSET;
2587
2588 EV_FREQUENT_CHECK;
1760} 2589}
1761 2590
1762void noinline 2591void noinline
1763ev_io_stop (EV_P_ ev_io *w) 2592ev_io_stop (EV_P_ ev_io *w)
1764{ 2593{
1765 clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
1766 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
1767 return; 2596 return;
1768 2597
1769 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2598 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2599
2600 EV_FREQUENT_CHECK;
1770 2601
1771 wlist_del (&anfds[w->fd].head, (WL)w); 2602 wlist_del (&anfds[w->fd].head, (WL)w);
1772 ev_stop (EV_A_ (W)w); 2603 ev_stop (EV_A_ (W)w);
1773 2604
1774 fd_change (EV_A_ w->fd, 1); 2605 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2606
2607 EV_FREQUENT_CHECK;
1775} 2608}
1776 2609
1777void noinline 2610void noinline
1778ev_timer_start (EV_P_ ev_timer *w) 2611ev_timer_start (EV_P_ ev_timer *w)
1779{ 2612{
1780 if (expect_false (ev_is_active (w))) 2613 if (expect_false (ev_is_active (w)))
1781 return; 2614 return;
1782 2615
1783 ((WT)w)->at += mn_now; 2616 ev_at (w) += mn_now;
1784 2617
1785 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2618 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1786 2619
2620 EV_FREQUENT_CHECK;
2621
2622 ++timercnt;
1787 ev_start (EV_A_ (W)w, ++timercnt); 2623 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1788 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2624 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1789 timers [timercnt - 1] = (WT)w; 2625 ANHE_w (timers [ev_active (w)]) = (WT)w;
1790 upheap (timers, timercnt - 1); 2626 ANHE_at_cache (timers [ev_active (w)]);
2627 upheap (timers, ev_active (w));
1791 2628
2629 EV_FREQUENT_CHECK;
2630
1792 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2631 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1793} 2632}
1794 2633
1795void noinline 2634void noinline
1796ev_timer_stop (EV_P_ ev_timer *w) 2635ev_timer_stop (EV_P_ ev_timer *w)
1797{ 2636{
1798 clear_pending (EV_A_ (W)w); 2637 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2638 if (expect_false (!ev_is_active (w)))
1800 return; 2639 return;
1801 2640
1802 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2641 EV_FREQUENT_CHECK;
1803 2642
1804 { 2643 {
1805 int active = ((W)w)->active; 2644 int active = ev_active (w);
1806 2645
2646 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2647
2648 --timercnt;
2649
1807 if (expect_true (--active < --timercnt)) 2650 if (expect_true (active < timercnt + HEAP0))
1808 { 2651 {
1809 timers [active] = timers [timercnt]; 2652 timers [active] = timers [timercnt + HEAP0];
1810 adjustheap (timers, timercnt, active); 2653 adjustheap (timers, timercnt, active);
1811 } 2654 }
1812 } 2655 }
1813 2656
1814 ((WT)w)->at -= mn_now; 2657 ev_at (w) -= mn_now;
1815 2658
1816 ev_stop (EV_A_ (W)w); 2659 ev_stop (EV_A_ (W)w);
2660
2661 EV_FREQUENT_CHECK;
1817} 2662}
1818 2663
1819void noinline 2664void noinline
1820ev_timer_again (EV_P_ ev_timer *w) 2665ev_timer_again (EV_P_ ev_timer *w)
1821{ 2666{
2667 EV_FREQUENT_CHECK;
2668
1822 if (ev_is_active (w)) 2669 if (ev_is_active (w))
1823 { 2670 {
1824 if (w->repeat) 2671 if (w->repeat)
1825 { 2672 {
1826 ((WT)w)->at = mn_now + w->repeat; 2673 ev_at (w) = mn_now + w->repeat;
2674 ANHE_at_cache (timers [ev_active (w)]);
1827 adjustheap (timers, timercnt, ((W)w)->active - 1); 2675 adjustheap (timers, timercnt, ev_active (w));
1828 } 2676 }
1829 else 2677 else
1830 ev_timer_stop (EV_A_ w); 2678 ev_timer_stop (EV_A_ w);
1831 } 2679 }
1832 else if (w->repeat) 2680 else if (w->repeat)
1833 { 2681 {
1834 w->at = w->repeat; 2682 ev_at (w) = w->repeat;
1835 ev_timer_start (EV_A_ w); 2683 ev_timer_start (EV_A_ w);
1836 } 2684 }
2685
2686 EV_FREQUENT_CHECK;
2687}
2688
2689ev_tstamp
2690ev_timer_remaining (EV_P_ ev_timer *w)
2691{
2692 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1837} 2693}
1838 2694
1839#if EV_PERIODIC_ENABLE 2695#if EV_PERIODIC_ENABLE
1840void noinline 2696void noinline
1841ev_periodic_start (EV_P_ ev_periodic *w) 2697ev_periodic_start (EV_P_ ev_periodic *w)
1842{ 2698{
1843 if (expect_false (ev_is_active (w))) 2699 if (expect_false (ev_is_active (w)))
1844 return; 2700 return;
1845 2701
1846 if (w->reschedule_cb) 2702 if (w->reschedule_cb)
1847 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2703 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1848 else if (w->interval) 2704 else if (w->interval)
1849 { 2705 {
1850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2706 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1851 /* this formula differs from the one in periodic_reify because we do not always round up */ 2707 /* this formula differs from the one in periodic_reify because we do not always round up */
1852 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2708 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1853 } 2709 }
1854 else 2710 else
1855 ((WT)w)->at = w->offset; 2711 ev_at (w) = w->offset;
1856 2712
2713 EV_FREQUENT_CHECK;
2714
2715 ++periodiccnt;
1857 ev_start (EV_A_ (W)w, ++periodiccnt); 2716 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1858 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2717 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1859 periodics [periodiccnt - 1] = (WT)w; 2718 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1860 upheap (periodics, periodiccnt - 1); 2719 ANHE_at_cache (periodics [ev_active (w)]);
2720 upheap (periodics, ev_active (w));
1861 2721
2722 EV_FREQUENT_CHECK;
2723
1862 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2724 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1863} 2725}
1864 2726
1865void noinline 2727void noinline
1866ev_periodic_stop (EV_P_ ev_periodic *w) 2728ev_periodic_stop (EV_P_ ev_periodic *w)
1867{ 2729{
1868 clear_pending (EV_A_ (W)w); 2730 clear_pending (EV_A_ (W)w);
1869 if (expect_false (!ev_is_active (w))) 2731 if (expect_false (!ev_is_active (w)))
1870 return; 2732 return;
1871 2733
1872 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2734 EV_FREQUENT_CHECK;
1873 2735
1874 { 2736 {
1875 int active = ((W)w)->active; 2737 int active = ev_active (w);
1876 2738
2739 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2740
2741 --periodiccnt;
2742
1877 if (expect_true (--active < --periodiccnt)) 2743 if (expect_true (active < periodiccnt + HEAP0))
1878 { 2744 {
1879 periodics [active] = periodics [periodiccnt]; 2745 periodics [active] = periodics [periodiccnt + HEAP0];
1880 adjustheap (periodics, periodiccnt, active); 2746 adjustheap (periodics, periodiccnt, active);
1881 } 2747 }
1882 } 2748 }
1883 2749
1884 ev_stop (EV_A_ (W)w); 2750 ev_stop (EV_A_ (W)w);
2751
2752 EV_FREQUENT_CHECK;
1885} 2753}
1886 2754
1887void noinline 2755void noinline
1888ev_periodic_again (EV_P_ ev_periodic *w) 2756ev_periodic_again (EV_P_ ev_periodic *w)
1889{ 2757{
1895 2763
1896#ifndef SA_RESTART 2764#ifndef SA_RESTART
1897# define SA_RESTART 0 2765# define SA_RESTART 0
1898#endif 2766#endif
1899 2767
2768#if EV_SIGNAL_ENABLE
2769
1900void noinline 2770void noinline
1901ev_signal_start (EV_P_ ev_signal *w) 2771ev_signal_start (EV_P_ ev_signal *w)
1902{ 2772{
1903#if EV_MULTIPLICITY
1904 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1905#endif
1906 if (expect_false (ev_is_active (w))) 2773 if (expect_false (ev_is_active (w)))
1907 return; 2774 return;
1908 2775
1909 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2776 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1910 2777
1911 evpipe_init (EV_A); 2778#if EV_MULTIPLICITY
2779 assert (("libev: a signal must not be attached to two different loops",
2780 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1912 2781
2782 signals [w->signum - 1].loop = EV_A;
2783#endif
2784
2785 EV_FREQUENT_CHECK;
2786
2787#if EV_USE_SIGNALFD
2788 if (sigfd == -2)
1913 { 2789 {
1914#ifndef _WIN32 2790 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1915 sigset_t full, prev; 2791 if (sigfd < 0 && errno == EINVAL)
1916 sigfillset (&full); 2792 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1917 sigprocmask (SIG_SETMASK, &full, &prev);
1918#endif
1919 2793
1920 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2794 if (sigfd >= 0)
2795 {
2796 fd_intern (sigfd); /* doing it twice will not hurt */
1921 2797
1922#ifndef _WIN32 2798 sigemptyset (&sigfd_set);
1923 sigprocmask (SIG_SETMASK, &prev, 0); 2799
1924#endif 2800 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2801 ev_set_priority (&sigfd_w, EV_MAXPRI);
2802 ev_io_start (EV_A_ &sigfd_w);
2803 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2804 }
1925 } 2805 }
2806
2807 if (sigfd >= 0)
2808 {
2809 /* TODO: check .head */
2810 sigaddset (&sigfd_set, w->signum);
2811 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2812
2813 signalfd (sigfd, &sigfd_set, 0);
2814 }
2815#endif
1926 2816
1927 ev_start (EV_A_ (W)w, 1); 2817 ev_start (EV_A_ (W)w, 1);
1928 wlist_add (&signals [w->signum - 1].head, (WL)w); 2818 wlist_add (&signals [w->signum - 1].head, (WL)w);
1929 2819
1930 if (!((WL)w)->next) 2820 if (!((WL)w)->next)
2821# if EV_USE_SIGNALFD
2822 if (sigfd < 0) /*TODO*/
2823# endif
1931 { 2824 {
1932#if _WIN32 2825# ifdef _WIN32
2826 evpipe_init (EV_A);
2827
1933 signal (w->signum, sighandler); 2828 signal (w->signum, ev_sighandler);
1934#else 2829# else
1935 struct sigaction sa; 2830 struct sigaction sa;
2831
2832 evpipe_init (EV_A);
2833
1936 sa.sa_handler = sighandler; 2834 sa.sa_handler = ev_sighandler;
1937 sigfillset (&sa.sa_mask); 2835 sigfillset (&sa.sa_mask);
1938 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2836 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1939 sigaction (w->signum, &sa, 0); 2837 sigaction (w->signum, &sa, 0);
2838
2839 sigemptyset (&sa.sa_mask);
2840 sigaddset (&sa.sa_mask, w->signum);
2841 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1940#endif 2842#endif
1941 } 2843 }
2844
2845 EV_FREQUENT_CHECK;
1942} 2846}
1943 2847
1944void noinline 2848void noinline
1945ev_signal_stop (EV_P_ ev_signal *w) 2849ev_signal_stop (EV_P_ ev_signal *w)
1946{ 2850{
1947 clear_pending (EV_A_ (W)w); 2851 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 2852 if (expect_false (!ev_is_active (w)))
1949 return; 2853 return;
1950 2854
2855 EV_FREQUENT_CHECK;
2856
1951 wlist_del (&signals [w->signum - 1].head, (WL)w); 2857 wlist_del (&signals [w->signum - 1].head, (WL)w);
1952 ev_stop (EV_A_ (W)w); 2858 ev_stop (EV_A_ (W)w);
1953 2859
1954 if (!signals [w->signum - 1].head) 2860 if (!signals [w->signum - 1].head)
2861 {
2862#if EV_MULTIPLICITY
2863 signals [w->signum - 1].loop = 0; /* unattach from signal */
2864#endif
2865#if EV_USE_SIGNALFD
2866 if (sigfd >= 0)
2867 {
2868 sigset_t ss;
2869
2870 sigemptyset (&ss);
2871 sigaddset (&ss, w->signum);
2872 sigdelset (&sigfd_set, w->signum);
2873
2874 signalfd (sigfd, &sigfd_set, 0);
2875 sigprocmask (SIG_UNBLOCK, &ss, 0);
2876 }
2877 else
2878#endif
1955 signal (w->signum, SIG_DFL); 2879 signal (w->signum, SIG_DFL);
2880 }
2881
2882 EV_FREQUENT_CHECK;
1956} 2883}
2884
2885#endif
2886
2887#if EV_CHILD_ENABLE
1957 2888
1958void 2889void
1959ev_child_start (EV_P_ ev_child *w) 2890ev_child_start (EV_P_ ev_child *w)
1960{ 2891{
1961#if EV_MULTIPLICITY 2892#if EV_MULTIPLICITY
1962 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2893 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1963#endif 2894#endif
1964 if (expect_false (ev_is_active (w))) 2895 if (expect_false (ev_is_active (w)))
1965 return; 2896 return;
1966 2897
2898 EV_FREQUENT_CHECK;
2899
1967 ev_start (EV_A_ (W)w, 1); 2900 ev_start (EV_A_ (W)w, 1);
1968 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2901 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2902
2903 EV_FREQUENT_CHECK;
1969} 2904}
1970 2905
1971void 2906void
1972ev_child_stop (EV_P_ ev_child *w) 2907ev_child_stop (EV_P_ ev_child *w)
1973{ 2908{
1974 clear_pending (EV_A_ (W)w); 2909 clear_pending (EV_A_ (W)w);
1975 if (expect_false (!ev_is_active (w))) 2910 if (expect_false (!ev_is_active (w)))
1976 return; 2911 return;
1977 2912
2913 EV_FREQUENT_CHECK;
2914
1978 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2915 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1979 ev_stop (EV_A_ (W)w); 2916 ev_stop (EV_A_ (W)w);
2917
2918 EV_FREQUENT_CHECK;
1980} 2919}
2920
2921#endif
1981 2922
1982#if EV_STAT_ENABLE 2923#if EV_STAT_ENABLE
1983 2924
1984# ifdef _WIN32 2925# ifdef _WIN32
1985# undef lstat 2926# undef lstat
1986# define lstat(a,b) _stati64 (a,b) 2927# define lstat(a,b) _stati64 (a,b)
1987# endif 2928# endif
1988 2929
1989#define DEF_STAT_INTERVAL 5.0074891 2930#define DEF_STAT_INTERVAL 5.0074891
2931#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1990#define MIN_STAT_INTERVAL 0.1074891 2932#define MIN_STAT_INTERVAL 0.1074891
1991 2933
1992static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2934static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1993 2935
1994#if EV_USE_INOTIFY 2936#if EV_USE_INOTIFY
1995# define EV_INOTIFY_BUFSIZE 8192 2937
2938/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2939# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1996 2940
1997static void noinline 2941static void noinline
1998infy_add (EV_P_ ev_stat *w) 2942infy_add (EV_P_ ev_stat *w)
1999{ 2943{
2000 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2001 2945
2002 if (w->wd < 0) 2946 if (w->wd >= 0)
2947 {
2948 struct statfs sfs;
2949
2950 /* now local changes will be tracked by inotify, but remote changes won't */
2951 /* unless the filesystem is known to be local, we therefore still poll */
2952 /* also do poll on <2.6.25, but with normal frequency */
2953
2954 if (!fs_2625)
2955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2956 else if (!statfs (w->path, &sfs)
2957 && (sfs.f_type == 0x1373 /* devfs */
2958 || sfs.f_type == 0xEF53 /* ext2/3 */
2959 || sfs.f_type == 0x3153464a /* jfs */
2960 || sfs.f_type == 0x52654973 /* reiser3 */
2961 || sfs.f_type == 0x01021994 /* tempfs */
2962 || sfs.f_type == 0x58465342 /* xfs */))
2963 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2964 else
2965 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2003 { 2966 }
2004 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2967 else
2968 {
2969 /* can't use inotify, continue to stat */
2970 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2005 2971
2006 /* monitor some parent directory for speedup hints */ 2972 /* if path is not there, monitor some parent directory for speedup hints */
2973 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2974 /* but an efficiency issue only */
2007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2975 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2008 { 2976 {
2009 char path [4096]; 2977 char path [4096];
2010 strcpy (path, w->path); 2978 strcpy (path, w->path);
2011 2979
2014 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2982 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2015 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2983 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2016 2984
2017 char *pend = strrchr (path, '/'); 2985 char *pend = strrchr (path, '/');
2018 2986
2019 if (!pend) 2987 if (!pend || pend == path)
2020 break; /* whoops, no '/', complain to your admin */ 2988 break;
2021 2989
2022 *pend = 0; 2990 *pend = 0;
2023 w->wd = inotify_add_watch (fs_fd, path, mask); 2991 w->wd = inotify_add_watch (fs_fd, path, mask);
2024 } 2992 }
2025 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2993 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2026 } 2994 }
2027 } 2995 }
2028 else
2029 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2030 2996
2031 if (w->wd >= 0) 2997 if (w->wd >= 0)
2032 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2998 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2999
3000 /* now re-arm timer, if required */
3001 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3002 ev_timer_again (EV_A_ &w->timer);
3003 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2033} 3004}
2034 3005
2035static void noinline 3006static void noinline
2036infy_del (EV_P_ ev_stat *w) 3007infy_del (EV_P_ ev_stat *w)
2037{ 3008{
2040 3011
2041 if (wd < 0) 3012 if (wd < 0)
2042 return; 3013 return;
2043 3014
2044 w->wd = -2; 3015 w->wd = -2;
2045 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3016 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2046 wlist_del (&fs_hash [slot].head, (WL)w); 3017 wlist_del (&fs_hash [slot].head, (WL)w);
2047 3018
2048 /* remove this watcher, if others are watching it, they will rearm */ 3019 /* remove this watcher, if others are watching it, they will rearm */
2049 inotify_rm_watch (fs_fd, wd); 3020 inotify_rm_watch (fs_fd, wd);
2050} 3021}
2051 3022
2052static void noinline 3023static void noinline
2053infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3024infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2054{ 3025{
2055 if (slot < 0) 3026 if (slot < 0)
2056 /* overflow, need to check for all hahs slots */ 3027 /* overflow, need to check for all hash slots */
2057 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3028 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2058 infy_wd (EV_A_ slot, wd, ev); 3029 infy_wd (EV_A_ slot, wd, ev);
2059 else 3030 else
2060 { 3031 {
2061 WL w_; 3032 WL w_;
2062 3033
2063 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3034 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2064 { 3035 {
2065 ev_stat *w = (ev_stat *)w_; 3036 ev_stat *w = (ev_stat *)w_;
2066 w_ = w_->next; /* lets us remove this watcher and all before it */ 3037 w_ = w_->next; /* lets us remove this watcher and all before it */
2067 3038
2068 if (w->wd == wd || wd == -1) 3039 if (w->wd == wd || wd == -1)
2069 { 3040 {
2070 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3041 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2071 { 3042 {
3043 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2072 w->wd = -1; 3044 w->wd = -1;
2073 infy_add (EV_A_ w); /* re-add, no matter what */ 3045 infy_add (EV_A_ w); /* re-add, no matter what */
2074 } 3046 }
2075 3047
2076 stat_timer_cb (EV_A_ &w->timer, 0); 3048 stat_timer_cb (EV_A_ &w->timer, 0);
2081 3053
2082static void 3054static void
2083infy_cb (EV_P_ ev_io *w, int revents) 3055infy_cb (EV_P_ ev_io *w, int revents)
2084{ 3056{
2085 char buf [EV_INOTIFY_BUFSIZE]; 3057 char buf [EV_INOTIFY_BUFSIZE];
2086 struct inotify_event *ev = (struct inotify_event *)buf;
2087 int ofs; 3058 int ofs;
2088 int len = read (fs_fd, buf, sizeof (buf)); 3059 int len = read (fs_fd, buf, sizeof (buf));
2089 3060
2090 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3061 for (ofs = 0; ofs < len; )
3062 {
3063 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2091 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3064 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3065 ofs += sizeof (struct inotify_event) + ev->len;
3066 }
2092} 3067}
2093 3068
2094void inline_size 3069inline_size unsigned int
3070ev_linux_version (void)
3071{
3072 struct utsname buf;
3073 unsigned int v;
3074 int i;
3075 char *p = buf.release;
3076
3077 if (uname (&buf))
3078 return 0;
3079
3080 for (i = 3+1; --i; )
3081 {
3082 unsigned int c = 0;
3083
3084 for (;;)
3085 {
3086 if (*p >= '0' && *p <= '9')
3087 c = c * 10 + *p++ - '0';
3088 else
3089 {
3090 p += *p == '.';
3091 break;
3092 }
3093 }
3094
3095 v = (v << 8) | c;
3096 }
3097
3098 return v;
3099}
3100
3101inline_size void
3102ev_check_2625 (EV_P)
3103{
3104 /* kernels < 2.6.25 are borked
3105 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3106 */
3107 if (ev_linux_version () < 0x020619)
3108 return;
3109
3110 fs_2625 = 1;
3111}
3112
3113inline_size int
3114infy_newfd (void)
3115{
3116#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3117 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3118 if (fd >= 0)
3119 return fd;
3120#endif
3121 return inotify_init ();
3122}
3123
3124inline_size void
2095infy_init (EV_P) 3125infy_init (EV_P)
2096{ 3126{
2097 if (fs_fd != -2) 3127 if (fs_fd != -2)
2098 return; 3128 return;
2099 3129
3130 fs_fd = -1;
3131
3132 ev_check_2625 (EV_A);
3133
2100 fs_fd = inotify_init (); 3134 fs_fd = infy_newfd ();
2101 3135
2102 if (fs_fd >= 0) 3136 if (fs_fd >= 0)
2103 { 3137 {
3138 fd_intern (fs_fd);
2104 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3139 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2105 ev_set_priority (&fs_w, EV_MAXPRI); 3140 ev_set_priority (&fs_w, EV_MAXPRI);
2106 ev_io_start (EV_A_ &fs_w); 3141 ev_io_start (EV_A_ &fs_w);
3142 ev_unref (EV_A);
2107 } 3143 }
2108} 3144}
2109 3145
2110void inline_size 3146inline_size void
2111infy_fork (EV_P) 3147infy_fork (EV_P)
2112{ 3148{
2113 int slot; 3149 int slot;
2114 3150
2115 if (fs_fd < 0) 3151 if (fs_fd < 0)
2116 return; 3152 return;
2117 3153
3154 ev_ref (EV_A);
3155 ev_io_stop (EV_A_ &fs_w);
2118 close (fs_fd); 3156 close (fs_fd);
2119 fs_fd = inotify_init (); 3157 fs_fd = infy_newfd ();
2120 3158
3159 if (fs_fd >= 0)
3160 {
3161 fd_intern (fs_fd);
3162 ev_io_set (&fs_w, fs_fd, EV_READ);
3163 ev_io_start (EV_A_ &fs_w);
3164 ev_unref (EV_A);
3165 }
3166
2121 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3167 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2122 { 3168 {
2123 WL w_ = fs_hash [slot].head; 3169 WL w_ = fs_hash [slot].head;
2124 fs_hash [slot].head = 0; 3170 fs_hash [slot].head = 0;
2125 3171
2126 while (w_) 3172 while (w_)
2131 w->wd = -1; 3177 w->wd = -1;
2132 3178
2133 if (fs_fd >= 0) 3179 if (fs_fd >= 0)
2134 infy_add (EV_A_ w); /* re-add, no matter what */ 3180 infy_add (EV_A_ w); /* re-add, no matter what */
2135 else 3181 else
3182 {
3183 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3184 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2136 ev_timer_start (EV_A_ &w->timer); 3185 ev_timer_again (EV_A_ &w->timer);
3186 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3187 }
2137 } 3188 }
2138
2139 } 3189 }
2140} 3190}
2141 3191
3192#endif
3193
3194#ifdef _WIN32
3195# define EV_LSTAT(p,b) _stati64 (p, b)
3196#else
3197# define EV_LSTAT(p,b) lstat (p, b)
2142#endif 3198#endif
2143 3199
2144void 3200void
2145ev_stat_stat (EV_P_ ev_stat *w) 3201ev_stat_stat (EV_P_ ev_stat *w)
2146{ 3202{
2153static void noinline 3209static void noinline
2154stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3210stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2155{ 3211{
2156 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3212 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2157 3213
2158 /* we copy this here each the time so that */ 3214 ev_statdata prev = w->attr;
2159 /* prev has the old value when the callback gets invoked */
2160 w->prev = w->attr;
2161 ev_stat_stat (EV_A_ w); 3215 ev_stat_stat (EV_A_ w);
2162 3216
2163 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3217 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2164 if ( 3218 if (
2165 w->prev.st_dev != w->attr.st_dev 3219 prev.st_dev != w->attr.st_dev
2166 || w->prev.st_ino != w->attr.st_ino 3220 || prev.st_ino != w->attr.st_ino
2167 || w->prev.st_mode != w->attr.st_mode 3221 || prev.st_mode != w->attr.st_mode
2168 || w->prev.st_nlink != w->attr.st_nlink 3222 || prev.st_nlink != w->attr.st_nlink
2169 || w->prev.st_uid != w->attr.st_uid 3223 || prev.st_uid != w->attr.st_uid
2170 || w->prev.st_gid != w->attr.st_gid 3224 || prev.st_gid != w->attr.st_gid
2171 || w->prev.st_rdev != w->attr.st_rdev 3225 || prev.st_rdev != w->attr.st_rdev
2172 || w->prev.st_size != w->attr.st_size 3226 || prev.st_size != w->attr.st_size
2173 || w->prev.st_atime != w->attr.st_atime 3227 || prev.st_atime != w->attr.st_atime
2174 || w->prev.st_mtime != w->attr.st_mtime 3228 || prev.st_mtime != w->attr.st_mtime
2175 || w->prev.st_ctime != w->attr.st_ctime 3229 || prev.st_ctime != w->attr.st_ctime
2176 ) { 3230 ) {
3231 /* we only update w->prev on actual differences */
3232 /* in case we test more often than invoke the callback, */
3233 /* to ensure that prev is always different to attr */
3234 w->prev = prev;
3235
2177 #if EV_USE_INOTIFY 3236 #if EV_USE_INOTIFY
3237 if (fs_fd >= 0)
3238 {
2178 infy_del (EV_A_ w); 3239 infy_del (EV_A_ w);
2179 infy_add (EV_A_ w); 3240 infy_add (EV_A_ w);
2180 ev_stat_stat (EV_A_ w); /* avoid race... */ 3241 ev_stat_stat (EV_A_ w); /* avoid race... */
3242 }
2181 #endif 3243 #endif
2182 3244
2183 ev_feed_event (EV_A_ w, EV_STAT); 3245 ev_feed_event (EV_A_ w, EV_STAT);
2184 } 3246 }
2185} 3247}
2188ev_stat_start (EV_P_ ev_stat *w) 3250ev_stat_start (EV_P_ ev_stat *w)
2189{ 3251{
2190 if (expect_false (ev_is_active (w))) 3252 if (expect_false (ev_is_active (w)))
2191 return; 3253 return;
2192 3254
2193 /* since we use memcmp, we need to clear any padding data etc. */
2194 memset (&w->prev, 0, sizeof (ev_statdata));
2195 memset (&w->attr, 0, sizeof (ev_statdata));
2196
2197 ev_stat_stat (EV_A_ w); 3255 ev_stat_stat (EV_A_ w);
2198 3256
3257 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2199 if (w->interval < MIN_STAT_INTERVAL) 3258 w->interval = MIN_STAT_INTERVAL;
2200 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2201 3259
2202 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3260 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2203 ev_set_priority (&w->timer, ev_priority (w)); 3261 ev_set_priority (&w->timer, ev_priority (w));
2204 3262
2205#if EV_USE_INOTIFY 3263#if EV_USE_INOTIFY
2206 infy_init (EV_A); 3264 infy_init (EV_A);
2207 3265
2208 if (fs_fd >= 0) 3266 if (fs_fd >= 0)
2209 infy_add (EV_A_ w); 3267 infy_add (EV_A_ w);
2210 else 3268 else
2211#endif 3269#endif
3270 {
2212 ev_timer_start (EV_A_ &w->timer); 3271 ev_timer_again (EV_A_ &w->timer);
3272 ev_unref (EV_A);
3273 }
2213 3274
2214 ev_start (EV_A_ (W)w, 1); 3275 ev_start (EV_A_ (W)w, 1);
3276
3277 EV_FREQUENT_CHECK;
2215} 3278}
2216 3279
2217void 3280void
2218ev_stat_stop (EV_P_ ev_stat *w) 3281ev_stat_stop (EV_P_ ev_stat *w)
2219{ 3282{
2220 clear_pending (EV_A_ (W)w); 3283 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 3284 if (expect_false (!ev_is_active (w)))
2222 return; 3285 return;
2223 3286
3287 EV_FREQUENT_CHECK;
3288
2224#if EV_USE_INOTIFY 3289#if EV_USE_INOTIFY
2225 infy_del (EV_A_ w); 3290 infy_del (EV_A_ w);
2226#endif 3291#endif
3292
3293 if (ev_is_active (&w->timer))
3294 {
3295 ev_ref (EV_A);
2227 ev_timer_stop (EV_A_ &w->timer); 3296 ev_timer_stop (EV_A_ &w->timer);
3297 }
2228 3298
2229 ev_stop (EV_A_ (W)w); 3299 ev_stop (EV_A_ (W)w);
3300
3301 EV_FREQUENT_CHECK;
2230} 3302}
2231#endif 3303#endif
2232 3304
2233#if EV_IDLE_ENABLE 3305#if EV_IDLE_ENABLE
2234void 3306void
2236{ 3308{
2237 if (expect_false (ev_is_active (w))) 3309 if (expect_false (ev_is_active (w)))
2238 return; 3310 return;
2239 3311
2240 pri_adjust (EV_A_ (W)w); 3312 pri_adjust (EV_A_ (W)w);
3313
3314 EV_FREQUENT_CHECK;
2241 3315
2242 { 3316 {
2243 int active = ++idlecnt [ABSPRI (w)]; 3317 int active = ++idlecnt [ABSPRI (w)];
2244 3318
2245 ++idleall; 3319 ++idleall;
2246 ev_start (EV_A_ (W)w, active); 3320 ev_start (EV_A_ (W)w, active);
2247 3321
2248 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3322 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2249 idles [ABSPRI (w)][active - 1] = w; 3323 idles [ABSPRI (w)][active - 1] = w;
2250 } 3324 }
3325
3326 EV_FREQUENT_CHECK;
2251} 3327}
2252 3328
2253void 3329void
2254ev_idle_stop (EV_P_ ev_idle *w) 3330ev_idle_stop (EV_P_ ev_idle *w)
2255{ 3331{
2256 clear_pending (EV_A_ (W)w); 3332 clear_pending (EV_A_ (W)w);
2257 if (expect_false (!ev_is_active (w))) 3333 if (expect_false (!ev_is_active (w)))
2258 return; 3334 return;
2259 3335
3336 EV_FREQUENT_CHECK;
3337
2260 { 3338 {
2261 int active = ((W)w)->active; 3339 int active = ev_active (w);
2262 3340
2263 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2264 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3342 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2265 3343
2266 ev_stop (EV_A_ (W)w); 3344 ev_stop (EV_A_ (W)w);
2267 --idleall; 3345 --idleall;
2268 } 3346 }
2269}
2270#endif
2271 3347
3348 EV_FREQUENT_CHECK;
3349}
3350#endif
3351
3352#if EV_PREPARE_ENABLE
2272void 3353void
2273ev_prepare_start (EV_P_ ev_prepare *w) 3354ev_prepare_start (EV_P_ ev_prepare *w)
2274{ 3355{
2275 if (expect_false (ev_is_active (w))) 3356 if (expect_false (ev_is_active (w)))
2276 return; 3357 return;
3358
3359 EV_FREQUENT_CHECK;
2277 3360
2278 ev_start (EV_A_ (W)w, ++preparecnt); 3361 ev_start (EV_A_ (W)w, ++preparecnt);
2279 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3362 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2280 prepares [preparecnt - 1] = w; 3363 prepares [preparecnt - 1] = w;
3364
3365 EV_FREQUENT_CHECK;
2281} 3366}
2282 3367
2283void 3368void
2284ev_prepare_stop (EV_P_ ev_prepare *w) 3369ev_prepare_stop (EV_P_ ev_prepare *w)
2285{ 3370{
2286 clear_pending (EV_A_ (W)w); 3371 clear_pending (EV_A_ (W)w);
2287 if (expect_false (!ev_is_active (w))) 3372 if (expect_false (!ev_is_active (w)))
2288 return; 3373 return;
2289 3374
3375 EV_FREQUENT_CHECK;
3376
2290 { 3377 {
2291 int active = ((W)w)->active; 3378 int active = ev_active (w);
3379
2292 prepares [active - 1] = prepares [--preparecnt]; 3380 prepares [active - 1] = prepares [--preparecnt];
2293 ((W)prepares [active - 1])->active = active; 3381 ev_active (prepares [active - 1]) = active;
2294 } 3382 }
2295 3383
2296 ev_stop (EV_A_ (W)w); 3384 ev_stop (EV_A_ (W)w);
2297}
2298 3385
3386 EV_FREQUENT_CHECK;
3387}
3388#endif
3389
3390#if EV_CHECK_ENABLE
2299void 3391void
2300ev_check_start (EV_P_ ev_check *w) 3392ev_check_start (EV_P_ ev_check *w)
2301{ 3393{
2302 if (expect_false (ev_is_active (w))) 3394 if (expect_false (ev_is_active (w)))
2303 return; 3395 return;
3396
3397 EV_FREQUENT_CHECK;
2304 3398
2305 ev_start (EV_A_ (W)w, ++checkcnt); 3399 ev_start (EV_A_ (W)w, ++checkcnt);
2306 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3400 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2307 checks [checkcnt - 1] = w; 3401 checks [checkcnt - 1] = w;
3402
3403 EV_FREQUENT_CHECK;
2308} 3404}
2309 3405
2310void 3406void
2311ev_check_stop (EV_P_ ev_check *w) 3407ev_check_stop (EV_P_ ev_check *w)
2312{ 3408{
2313 clear_pending (EV_A_ (W)w); 3409 clear_pending (EV_A_ (W)w);
2314 if (expect_false (!ev_is_active (w))) 3410 if (expect_false (!ev_is_active (w)))
2315 return; 3411 return;
2316 3412
3413 EV_FREQUENT_CHECK;
3414
2317 { 3415 {
2318 int active = ((W)w)->active; 3416 int active = ev_active (w);
3417
2319 checks [active - 1] = checks [--checkcnt]; 3418 checks [active - 1] = checks [--checkcnt];
2320 ((W)checks [active - 1])->active = active; 3419 ev_active (checks [active - 1]) = active;
2321 } 3420 }
2322 3421
2323 ev_stop (EV_A_ (W)w); 3422 ev_stop (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
2324} 3425}
3426#endif
2325 3427
2326#if EV_EMBED_ENABLE 3428#if EV_EMBED_ENABLE
2327void noinline 3429void noinline
2328ev_embed_sweep (EV_P_ ev_embed *w) 3430ev_embed_sweep (EV_P_ ev_embed *w)
2329{ 3431{
2345embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2346{ 3448{
2347 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2348 3450
2349 { 3451 {
2350 struct ev_loop *loop = w->other; 3452 EV_P = w->other;
2351 3453
2352 while (fdchangecnt) 3454 while (fdchangecnt)
2353 { 3455 {
2354 fd_reify (EV_A); 3456 fd_reify (EV_A);
2355 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3457 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2356 } 3458 }
2357 } 3459 }
2358} 3460}
2359 3461
3462static void
3463embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3464{
3465 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3466
3467 ev_embed_stop (EV_A_ w);
3468
3469 {
3470 EV_P = w->other;
3471
3472 ev_loop_fork (EV_A);
3473 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3474 }
3475
3476 ev_embed_start (EV_A_ w);
3477}
3478
2360#if 0 3479#if 0
2361static void 3480static void
2362embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3481embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2363{ 3482{
2364 ev_idle_stop (EV_A_ idle); 3483 ev_idle_stop (EV_A_ idle);
2370{ 3489{
2371 if (expect_false (ev_is_active (w))) 3490 if (expect_false (ev_is_active (w)))
2372 return; 3491 return;
2373 3492
2374 { 3493 {
2375 struct ev_loop *loop = w->other; 3494 EV_P = w->other;
2376 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3495 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2377 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3496 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2378 } 3497 }
3498
3499 EV_FREQUENT_CHECK;
2379 3500
2380 ev_set_priority (&w->io, ev_priority (w)); 3501 ev_set_priority (&w->io, ev_priority (w));
2381 ev_io_start (EV_A_ &w->io); 3502 ev_io_start (EV_A_ &w->io);
2382 3503
2383 ev_prepare_init (&w->prepare, embed_prepare_cb); 3504 ev_prepare_init (&w->prepare, embed_prepare_cb);
2384 ev_set_priority (&w->prepare, EV_MINPRI); 3505 ev_set_priority (&w->prepare, EV_MINPRI);
2385 ev_prepare_start (EV_A_ &w->prepare); 3506 ev_prepare_start (EV_A_ &w->prepare);
2386 3507
3508 ev_fork_init (&w->fork, embed_fork_cb);
3509 ev_fork_start (EV_A_ &w->fork);
3510
2387 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3511 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2388 3512
2389 ev_start (EV_A_ (W)w, 1); 3513 ev_start (EV_A_ (W)w, 1);
3514
3515 EV_FREQUENT_CHECK;
2390} 3516}
2391 3517
2392void 3518void
2393ev_embed_stop (EV_P_ ev_embed *w) 3519ev_embed_stop (EV_P_ ev_embed *w)
2394{ 3520{
2395 clear_pending (EV_A_ (W)w); 3521 clear_pending (EV_A_ (W)w);
2396 if (expect_false (!ev_is_active (w))) 3522 if (expect_false (!ev_is_active (w)))
2397 return; 3523 return;
2398 3524
3525 EV_FREQUENT_CHECK;
3526
2399 ev_io_stop (EV_A_ &w->io); 3527 ev_io_stop (EV_A_ &w->io);
2400 ev_prepare_stop (EV_A_ &w->prepare); 3528 ev_prepare_stop (EV_A_ &w->prepare);
3529 ev_fork_stop (EV_A_ &w->fork);
2401 3530
2402 ev_stop (EV_A_ (W)w); 3531 ev_stop (EV_A_ (W)w);
3532
3533 EV_FREQUENT_CHECK;
2403} 3534}
2404#endif 3535#endif
2405 3536
2406#if EV_FORK_ENABLE 3537#if EV_FORK_ENABLE
2407void 3538void
2408ev_fork_start (EV_P_ ev_fork *w) 3539ev_fork_start (EV_P_ ev_fork *w)
2409{ 3540{
2410 if (expect_false (ev_is_active (w))) 3541 if (expect_false (ev_is_active (w)))
2411 return; 3542 return;
3543
3544 EV_FREQUENT_CHECK;
2412 3545
2413 ev_start (EV_A_ (W)w, ++forkcnt); 3546 ev_start (EV_A_ (W)w, ++forkcnt);
2414 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3547 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2415 forks [forkcnt - 1] = w; 3548 forks [forkcnt - 1] = w;
3549
3550 EV_FREQUENT_CHECK;
2416} 3551}
2417 3552
2418void 3553void
2419ev_fork_stop (EV_P_ ev_fork *w) 3554ev_fork_stop (EV_P_ ev_fork *w)
2420{ 3555{
2421 clear_pending (EV_A_ (W)w); 3556 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w))) 3557 if (expect_false (!ev_is_active (w)))
2423 return; 3558 return;
2424 3559
3560 EV_FREQUENT_CHECK;
3561
2425 { 3562 {
2426 int active = ((W)w)->active; 3563 int active = ev_active (w);
3564
2427 forks [active - 1] = forks [--forkcnt]; 3565 forks [active - 1] = forks [--forkcnt];
2428 ((W)forks [active - 1])->active = active; 3566 ev_active (forks [active - 1]) = active;
2429 } 3567 }
2430 3568
2431 ev_stop (EV_A_ (W)w); 3569 ev_stop (EV_A_ (W)w);
3570
3571 EV_FREQUENT_CHECK;
2432} 3572}
2433#endif 3573#endif
2434 3574
2435#if EV_ASYNC_ENABLE 3575#if EV_ASYNC_ENABLE
2436void 3576void
2437ev_async_start (EV_P_ ev_async *w) 3577ev_async_start (EV_P_ ev_async *w)
2438{ 3578{
2439 if (expect_false (ev_is_active (w))) 3579 if (expect_false (ev_is_active (w)))
2440 return; 3580 return;
2441 3581
3582 w->sent = 0;
3583
2442 evpipe_init (EV_A); 3584 evpipe_init (EV_A);
3585
3586 EV_FREQUENT_CHECK;
2443 3587
2444 ev_start (EV_A_ (W)w, ++asynccnt); 3588 ev_start (EV_A_ (W)w, ++asynccnt);
2445 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3589 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2446 asyncs [asynccnt - 1] = w; 3590 asyncs [asynccnt - 1] = w;
3591
3592 EV_FREQUENT_CHECK;
2447} 3593}
2448 3594
2449void 3595void
2450ev_async_stop (EV_P_ ev_async *w) 3596ev_async_stop (EV_P_ ev_async *w)
2451{ 3597{
2452 clear_pending (EV_A_ (W)w); 3598 clear_pending (EV_A_ (W)w);
2453 if (expect_false (!ev_is_active (w))) 3599 if (expect_false (!ev_is_active (w)))
2454 return; 3600 return;
2455 3601
3602 EV_FREQUENT_CHECK;
3603
2456 { 3604 {
2457 int active = ((W)w)->active; 3605 int active = ev_active (w);
3606
2458 asyncs [active - 1] = asyncs [--asynccnt]; 3607 asyncs [active - 1] = asyncs [--asynccnt];
2459 ((W)asyncs [active - 1])->active = active; 3608 ev_active (asyncs [active - 1]) = active;
2460 } 3609 }
2461 3610
2462 ev_stop (EV_A_ (W)w); 3611 ev_stop (EV_A_ (W)w);
3612
3613 EV_FREQUENT_CHECK;
2463} 3614}
2464 3615
2465void 3616void
2466ev_async_send (EV_P_ ev_async *w) 3617ev_async_send (EV_P_ ev_async *w)
2467{ 3618{
2468 w->sent = 1; 3619 w->sent = 1;
2469 evpipe_write (EV_A_ 0, 1); 3620 evpipe_write (EV_A_ &async_pending);
2470} 3621}
2471#endif 3622#endif
2472 3623
2473/*****************************************************************************/ 3624/*****************************************************************************/
2474 3625
2484once_cb (EV_P_ struct ev_once *once, int revents) 3635once_cb (EV_P_ struct ev_once *once, int revents)
2485{ 3636{
2486 void (*cb)(int revents, void *arg) = once->cb; 3637 void (*cb)(int revents, void *arg) = once->cb;
2487 void *arg = once->arg; 3638 void *arg = once->arg;
2488 3639
2489 ev_io_stop (EV_A_ &once->io); 3640 ev_io_stop (EV_A_ &once->io);
2490 ev_timer_stop (EV_A_ &once->to); 3641 ev_timer_stop (EV_A_ &once->to);
2491 ev_free (once); 3642 ev_free (once);
2492 3643
2493 cb (revents, arg); 3644 cb (revents, arg);
2494} 3645}
2495 3646
2496static void 3647static void
2497once_cb_io (EV_P_ ev_io *w, int revents) 3648once_cb_io (EV_P_ ev_io *w, int revents)
2498{ 3649{
2499 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3650 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3651
3652 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2500} 3653}
2501 3654
2502static void 3655static void
2503once_cb_to (EV_P_ ev_timer *w, int revents) 3656once_cb_to (EV_P_ ev_timer *w, int revents)
2504{ 3657{
2505 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3658 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3659
3660 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2506} 3661}
2507 3662
2508void 3663void
2509ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3664ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2510{ 3665{
2511 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3666 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2512 3667
2513 if (expect_false (!once)) 3668 if (expect_false (!once))
2514 { 3669 {
2515 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3670 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2516 return; 3671 return;
2517 } 3672 }
2518 3673
2519 once->cb = cb; 3674 once->cb = cb;
2520 once->arg = arg; 3675 once->arg = arg;
2532 ev_timer_set (&once->to, timeout, 0.); 3687 ev_timer_set (&once->to, timeout, 0.);
2533 ev_timer_start (EV_A_ &once->to); 3688 ev_timer_start (EV_A_ &once->to);
2534 } 3689 }
2535} 3690}
2536 3691
3692/*****************************************************************************/
3693
3694#if EV_WALK_ENABLE
3695void
3696ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3697{
3698 int i, j;
3699 ev_watcher_list *wl, *wn;
3700
3701 if (types & (EV_IO | EV_EMBED))
3702 for (i = 0; i < anfdmax; ++i)
3703 for (wl = anfds [i].head; wl; )
3704 {
3705 wn = wl->next;
3706
3707#if EV_EMBED_ENABLE
3708 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3709 {
3710 if (types & EV_EMBED)
3711 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3712 }
3713 else
3714#endif
3715#if EV_USE_INOTIFY
3716 if (ev_cb ((ev_io *)wl) == infy_cb)
3717 ;
3718 else
3719#endif
3720 if ((ev_io *)wl != &pipe_w)
3721 if (types & EV_IO)
3722 cb (EV_A_ EV_IO, wl);
3723
3724 wl = wn;
3725 }
3726
3727 if (types & (EV_TIMER | EV_STAT))
3728 for (i = timercnt + HEAP0; i-- > HEAP0; )
3729#if EV_STAT_ENABLE
3730 /*TODO: timer is not always active*/
3731 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3732 {
3733 if (types & EV_STAT)
3734 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3735 }
3736 else
3737#endif
3738 if (types & EV_TIMER)
3739 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3740
3741#if EV_PERIODIC_ENABLE
3742 if (types & EV_PERIODIC)
3743 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3744 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3745#endif
3746
3747#if EV_IDLE_ENABLE
3748 if (types & EV_IDLE)
3749 for (j = NUMPRI; i--; )
3750 for (i = idlecnt [j]; i--; )
3751 cb (EV_A_ EV_IDLE, idles [j][i]);
3752#endif
3753
3754#if EV_FORK_ENABLE
3755 if (types & EV_FORK)
3756 for (i = forkcnt; i--; )
3757 if (ev_cb (forks [i]) != embed_fork_cb)
3758 cb (EV_A_ EV_FORK, forks [i]);
3759#endif
3760
3761#if EV_ASYNC_ENABLE
3762 if (types & EV_ASYNC)
3763 for (i = asynccnt; i--; )
3764 cb (EV_A_ EV_ASYNC, asyncs [i]);
3765#endif
3766
3767#if EV_PREPARE_ENABLE
3768 if (types & EV_PREPARE)
3769 for (i = preparecnt; i--; )
3770# if EV_EMBED_ENABLE
3771 if (ev_cb (prepares [i]) != embed_prepare_cb)
3772# endif
3773 cb (EV_A_ EV_PREPARE, prepares [i]);
3774#endif
3775
3776#if EV_CHECK_ENABLE
3777 if (types & EV_CHECK)
3778 for (i = checkcnt; i--; )
3779 cb (EV_A_ EV_CHECK, checks [i]);
3780#endif
3781
3782#if EV_SIGNAL_ENABLE
3783 if (types & EV_SIGNAL)
3784 for (i = 0; i < EV_NSIG - 1; ++i)
3785 for (wl = signals [i].head; wl; )
3786 {
3787 wn = wl->next;
3788 cb (EV_A_ EV_SIGNAL, wl);
3789 wl = wn;
3790 }
3791#endif
3792
3793#if EV_CHILD_ENABLE
3794 if (types & EV_CHILD)
3795 for (i = (EV_PID_HASHSIZE); i--; )
3796 for (wl = childs [i]; wl; )
3797 {
3798 wn = wl->next;
3799 cb (EV_A_ EV_CHILD, wl);
3800 wl = wn;
3801 }
3802#endif
3803/* EV_STAT 0x00001000 /* stat data changed */
3804/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3805}
3806#endif
3807
2537#if EV_MULTIPLICITY 3808#if EV_MULTIPLICITY
2538 #include "ev_wrap.h" 3809 #include "ev_wrap.h"
2539#endif 3810#endif
2540 3811
2541#ifdef __cplusplus 3812#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines