ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.210 by root, Sat Feb 9 00:34:11 2008 UTC vs.
Revision 1.433 by root, Tue May 15 13:03:20 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
141#else 184#else
142# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
143#endif 197#endif
144 198
145#ifndef _WIN32 199#ifndef _WIN32
146# include <sys/time.h> 200# include <sys/time.h>
147# include <sys/wait.h> 201# include <sys/wait.h>
148# include <unistd.h> 202# include <unistd.h>
149#else 203#else
204# include <io.h>
150# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
151# include <windows.h> 207# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
154# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
155#endif 261# endif
156 262#endif
157/**/
158 263
159#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
160# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
161#endif 270#endif
162 271
163#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 274#endif
166 275
167#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
168# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
169#endif 282#endif
170 283
171#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 286#endif
174 287
175#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
176# ifdef _WIN32 289# ifdef _WIN32
177# define EV_USE_POLL 0 290# define EV_USE_POLL 0
178# else 291# else
179# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 293# endif
181#endif 294#endif
182 295
183#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
184# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
185#endif 302#endif
186 303
187#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
189#endif 306#endif
191#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 309# define EV_USE_PORT 0
193#endif 310#endif
194 311
195#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
196# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
317# endif
197#endif 318#endif
198 319
199#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 331# else
203# define EV_PID_HASHSIZE 16 332# define EV_USE_EVENTFD 0
204# endif 333# endif
205#endif 334#endif
206 335
207#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 338# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 339# else
211# define EV_INOTIFY_HASHSIZE 16 340# define EV_USE_SIGNALFD 0
212# endif 341# endif
213#endif 342#endif
214 343
215/**/ 344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
216 383
217#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
220#endif 387#endif
228# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
230#endif 397#endif
231 398
232#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
234# include <sys/select.h> 402# include <sys/select.h>
235# endif 403# endif
236#endif 404#endif
237 405
238#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
239# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
240#endif 413# endif
414#endif
241 415
242#if EV_SELECT_IS_WINSOCKET 416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
243# include <winsock.h> 418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
244#endif 452#endif
245 453
246/**/ 454/**/
247 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
248/* 462/*
249 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 465 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 468
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509#ifdef _WIN32
510 typedef signed char int8_t;
511 typedef unsigned char uint8_t;
512 typedef signed short int16_t;
513 typedef unsigned short uint16_t;
514 typedef signed int int32_t;
515 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 516 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 517 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 518 typedef unsigned long long uint64_t;
519 #else /* _MSC_VER || __BORLANDC__ */
520 typedef signed __int64 int64_t;
521 typedef unsigned __int64 uint64_t;
522 #endif
265#else 523#else
266# define expect(expr,value) (expr) 524 #include <inttypes.h>
267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif 525#endif
526
527/* many compilers define _GNUC_ to some versions but then only implement
528 * what their idiot authors think are the "more important" extensions,
529 * causing enormous grief in return for some better fake benchmark numbers.
530 * or so.
531 * we try to detect these and simply assume they are not gcc - if they have
532 * an issue with that they should have done it right in the first place.
533 */
534#ifndef ECB_GCC_VERSION
535 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
536 #define ECB_GCC_VERSION(major,minor) 0
537 #else
538 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
271#endif 539 #endif
540#endif
272 541
542/*****************************************************************************/
543
544/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
545/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
546
547#if ECB_NO_THREADS
548# define ECB_NO_SMP 1
549#endif
550
551#if ECB_NO_THREADS || ECB_NO_SMP
552 #define ECB_MEMORY_FENCE do { } while (0)
553#endif
554
555#ifndef ECB_MEMORY_FENCE
556 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
557 #if __i386 || __i386__
558 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
559 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
560 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
561 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
565 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
567 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
568 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
570 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
571 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
573 #elif __sparc || __sparc__
574 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
575 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
576 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
577 #elif defined __s390__ || defined __s390x__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
579 #elif defined __mips__
580 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
581 #elif defined __alpha__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
583 #endif
584 #endif
585#endif
586
587#ifndef ECB_MEMORY_FENCE
588 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
589 #define ECB_MEMORY_FENCE __sync_synchronize ()
590 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
591 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
592 #elif _MSC_VER >= 1400 /* VC++ 2005 */
593 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
594 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
595 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
596 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
597 #elif defined _WIN32
598 #include <WinNT.h>
599 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
600 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
601 #include <mbarrier.h>
602 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
603 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
604 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
605 #elif __xlC__
606 #define ECB_MEMORY_FENCE __sync ()
607 #endif
608#endif
609
610#ifndef ECB_MEMORY_FENCE
611 #if !ECB_AVOID_PTHREADS
612 /*
613 * if you get undefined symbol references to pthread_mutex_lock,
614 * or failure to find pthread.h, then you should implement
615 * the ECB_MEMORY_FENCE operations for your cpu/compiler
616 * OR provide pthread.h and link against the posix thread library
617 * of your system.
618 */
619 #include <pthread.h>
620 #define ECB_NEEDS_PTHREADS 1
621 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
622
623 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
624 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
625 #endif
626#endif
627
628#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
629 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
630#endif
631
632#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
634#endif
635
636/*****************************************************************************/
637
638#define ECB_C99 (__STDC_VERSION__ >= 199901L)
639
640#if __cplusplus
641 #define ecb_inline static inline
642#elif ECB_GCC_VERSION(2,5)
643 #define ecb_inline static __inline__
644#elif ECB_C99
645 #define ecb_inline static inline
646#else
647 #define ecb_inline static
648#endif
649
650#if ECB_GCC_VERSION(3,3)
651 #define ecb_restrict __restrict__
652#elif ECB_C99
653 #define ecb_restrict restrict
654#else
655 #define ecb_restrict
656#endif
657
658typedef int ecb_bool;
659
660#define ECB_CONCAT_(a, b) a ## b
661#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
662#define ECB_STRINGIFY_(a) # a
663#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
664
665#define ecb_function_ ecb_inline
666
667#if ECB_GCC_VERSION(3,1)
668 #define ecb_attribute(attrlist) __attribute__(attrlist)
669 #define ecb_is_constant(expr) __builtin_constant_p (expr)
670 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
671 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
672#else
673 #define ecb_attribute(attrlist)
674 #define ecb_is_constant(expr) 0
675 #define ecb_expect(expr,value) (expr)
676 #define ecb_prefetch(addr,rw,locality)
677#endif
678
679/* no emulation for ecb_decltype */
680#if ECB_GCC_VERSION(4,5)
681 #define ecb_decltype(x) __decltype(x)
682#elif ECB_GCC_VERSION(3,0)
683 #define ecb_decltype(x) __typeof(x)
684#endif
685
686#define ecb_noinline ecb_attribute ((__noinline__))
687#define ecb_noreturn ecb_attribute ((__noreturn__))
688#define ecb_unused ecb_attribute ((__unused__))
689#define ecb_const ecb_attribute ((__const__))
690#define ecb_pure ecb_attribute ((__pure__))
691
692#if ECB_GCC_VERSION(4,3)
693 #define ecb_artificial ecb_attribute ((__artificial__))
694 #define ecb_hot ecb_attribute ((__hot__))
695 #define ecb_cold ecb_attribute ((__cold__))
696#else
697 #define ecb_artificial
698 #define ecb_hot
699 #define ecb_cold
700#endif
701
702/* put around conditional expressions if you are very sure that the */
703/* expression is mostly true or mostly false. note that these return */
704/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 705#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 706#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
707/* for compatibility to the rest of the world */
708#define ecb_likely(expr) ecb_expect_true (expr)
709#define ecb_unlikely(expr) ecb_expect_false (expr)
710
711/* count trailing zero bits and count # of one bits */
712#if ECB_GCC_VERSION(3,4)
713 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
714 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
715 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
716 #define ecb_ctz32(x) __builtin_ctz (x)
717 #define ecb_ctz64(x) __builtin_ctzll (x)
718 #define ecb_popcount32(x) __builtin_popcount (x)
719 /* no popcountll */
720#else
721 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
722 ecb_function_ int
723 ecb_ctz32 (uint32_t x)
724 {
725 int r = 0;
726
727 x &= ~x + 1; /* this isolates the lowest bit */
728
729#if ECB_branchless_on_i386
730 r += !!(x & 0xaaaaaaaa) << 0;
731 r += !!(x & 0xcccccccc) << 1;
732 r += !!(x & 0xf0f0f0f0) << 2;
733 r += !!(x & 0xff00ff00) << 3;
734 r += !!(x & 0xffff0000) << 4;
735#else
736 if (x & 0xaaaaaaaa) r += 1;
737 if (x & 0xcccccccc) r += 2;
738 if (x & 0xf0f0f0f0) r += 4;
739 if (x & 0xff00ff00) r += 8;
740 if (x & 0xffff0000) r += 16;
741#endif
742
743 return r;
744 }
745
746 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
747 ecb_function_ int
748 ecb_ctz64 (uint64_t x)
749 {
750 int shift = x & 0xffffffffU ? 0 : 32;
751 return ecb_ctz32 (x >> shift) + shift;
752 }
753
754 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
755 ecb_function_ int
756 ecb_popcount32 (uint32_t x)
757 {
758 x -= (x >> 1) & 0x55555555;
759 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
760 x = ((x >> 4) + x) & 0x0f0f0f0f;
761 x *= 0x01010101;
762
763 return x >> 24;
764 }
765
766 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
767 ecb_function_ int ecb_ld32 (uint32_t x)
768 {
769 int r = 0;
770
771 if (x >> 16) { x >>= 16; r += 16; }
772 if (x >> 8) { x >>= 8; r += 8; }
773 if (x >> 4) { x >>= 4; r += 4; }
774 if (x >> 2) { x >>= 2; r += 2; }
775 if (x >> 1) { r += 1; }
776
777 return r;
778 }
779
780 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
781 ecb_function_ int ecb_ld64 (uint64_t x)
782 {
783 int r = 0;
784
785 if (x >> 32) { x >>= 32; r += 32; }
786
787 return r + ecb_ld32 (x);
788 }
789#endif
790
791ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
792ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
793{
794 return ( (x * 0x0802U & 0x22110U)
795 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
796}
797
798ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
799ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
800{
801 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
802 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
803 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
804 x = ( x >> 8 ) | ( x << 8);
805
806 return x;
807}
808
809ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
810ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
811{
812 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
813 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
814 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
815 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
816 x = ( x >> 16 ) | ( x << 16);
817
818 return x;
819}
820
821/* popcount64 is only available on 64 bit cpus as gcc builtin */
822/* so for this version we are lazy */
823ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
824ecb_function_ int
825ecb_popcount64 (uint64_t x)
826{
827 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
828}
829
830ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
831ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
832ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
833ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
834ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
835ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
836ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
837ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
838
839ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
840ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
841ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
842ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
843ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
844ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
845ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
846ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
847
848#if ECB_GCC_VERSION(4,3)
849 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
850 #define ecb_bswap32(x) __builtin_bswap32 (x)
851 #define ecb_bswap64(x) __builtin_bswap64 (x)
852#else
853 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
854 ecb_function_ uint16_t
855 ecb_bswap16 (uint16_t x)
856 {
857 return ecb_rotl16 (x, 8);
858 }
859
860 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
861 ecb_function_ uint32_t
862 ecb_bswap32 (uint32_t x)
863 {
864 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
865 }
866
867 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
868 ecb_function_ uint64_t
869 ecb_bswap64 (uint64_t x)
870 {
871 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
872 }
873#endif
874
875#if ECB_GCC_VERSION(4,5)
876 #define ecb_unreachable() __builtin_unreachable ()
877#else
878 /* this seems to work fine, but gcc always emits a warning for it :/ */
879 ecb_inline void ecb_unreachable (void) ecb_noreturn;
880 ecb_inline void ecb_unreachable (void) { }
881#endif
882
883/* try to tell the compiler that some condition is definitely true */
884#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
885
886ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
887ecb_inline unsigned char
888ecb_byteorder_helper (void)
889{
890 const uint32_t u = 0x11223344;
891 return *(unsigned char *)&u;
892}
893
894ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
895ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
896ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
897ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
898
899#if ECB_GCC_VERSION(3,0) || ECB_C99
900 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
901#else
902 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
903#endif
904
905#if __cplusplus
906 template<typename T>
907 static inline T ecb_div_rd (T val, T div)
908 {
909 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
910 }
911 template<typename T>
912 static inline T ecb_div_ru (T val, T div)
913 {
914 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
915 }
916#else
917 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
918 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
919#endif
920
921#if ecb_cplusplus_does_not_suck
922 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
923 template<typename T, int N>
924 static inline int ecb_array_length (const T (&arr)[N])
925 {
926 return N;
927 }
928#else
929 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
930#endif
931
932#endif
933
934/* ECB.H END */
935
936#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
937/* if your architecture doesn't need memory fences, e.g. because it is
938 * single-cpu/core, or if you use libev in a project that doesn't use libev
939 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
940 * libev, in which cases the memory fences become nops.
941 * alternatively, you can remove this #error and link against libpthread,
942 * which will then provide the memory fences.
943 */
944# error "memory fences not defined for your architecture, please report"
945#endif
946
947#ifndef ECB_MEMORY_FENCE
948# define ECB_MEMORY_FENCE do { } while (0)
949# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
950# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
951#endif
952
953#define expect_false(cond) ecb_expect_false (cond)
954#define expect_true(cond) ecb_expect_true (cond)
955#define noinline ecb_noinline
956
275#define inline_size static inline 957#define inline_size ecb_inline
276 958
277#if EV_MINIMAL 959#if EV_FEATURE_CODE
960# define inline_speed ecb_inline
961#else
278# define inline_speed static noinline 962# define inline_speed static noinline
963#endif
964
965#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
966
967#if EV_MINPRI == EV_MAXPRI
968# define ABSPRI(w) (((W)w), 0)
279#else 969#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 970# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
971#endif
285 972
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 973#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 974#define EMPTY2(a,b) /* used to suppress some warnings */
288 975
289typedef ev_watcher *W; 976typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 977typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 978typedef ev_watcher_time *WT;
292 979
980#define ev_active(w) ((W)(w))->active
981#define ev_at(w) ((WT)(w))->at
982
983#if EV_USE_REALTIME
984/* sig_atomic_t is used to avoid per-thread variables or locking but still */
985/* giving it a reasonably high chance of working on typical architectures */
986static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
987#endif
988
293#if EV_USE_MONOTONIC 989#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 990static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
991#endif
992
993#ifndef EV_FD_TO_WIN32_HANDLE
994# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
995#endif
996#ifndef EV_WIN32_HANDLE_TO_FD
997# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
998#endif
999#ifndef EV_WIN32_CLOSE_FD
1000# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1001#endif
298 1002
299#ifdef _WIN32 1003#ifdef _WIN32
300# include "ev_win32.c" 1004# include "ev_win32.c"
301#endif 1005#endif
302 1006
303/*****************************************************************************/ 1007/*****************************************************************************/
304 1008
1009/* define a suitable floor function (only used by periodics atm) */
1010
1011#if EV_USE_FLOOR
1012# include <math.h>
1013# define ev_floor(v) floor (v)
1014#else
1015
1016#include <float.h>
1017
1018/* a floor() replacement function, should be independent of ev_tstamp type */
1019static ev_tstamp noinline
1020ev_floor (ev_tstamp v)
1021{
1022 /* the choice of shift factor is not terribly important */
1023#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1024 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1025#else
1026 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1027#endif
1028
1029 /* argument too large for an unsigned long? */
1030 if (expect_false (v >= shift))
1031 {
1032 ev_tstamp f;
1033
1034 if (v == v - 1.)
1035 return v; /* very large number */
1036
1037 f = shift * ev_floor (v * (1. / shift));
1038 return f + ev_floor (v - f);
1039 }
1040
1041 /* special treatment for negative args? */
1042 if (expect_false (v < 0.))
1043 {
1044 ev_tstamp f = -ev_floor (-v);
1045
1046 return f - (f == v ? 0 : 1);
1047 }
1048
1049 /* fits into an unsigned long */
1050 return (unsigned long)v;
1051}
1052
1053#endif
1054
1055/*****************************************************************************/
1056
1057#ifdef __linux
1058# include <sys/utsname.h>
1059#endif
1060
1061static unsigned int noinline ecb_cold
1062ev_linux_version (void)
1063{
1064#ifdef __linux
1065 unsigned int v = 0;
1066 struct utsname buf;
1067 int i;
1068 char *p = buf.release;
1069
1070 if (uname (&buf))
1071 return 0;
1072
1073 for (i = 3+1; --i; )
1074 {
1075 unsigned int c = 0;
1076
1077 for (;;)
1078 {
1079 if (*p >= '0' && *p <= '9')
1080 c = c * 10 + *p++ - '0';
1081 else
1082 {
1083 p += *p == '.';
1084 break;
1085 }
1086 }
1087
1088 v = (v << 8) | c;
1089 }
1090
1091 return v;
1092#else
1093 return 0;
1094#endif
1095}
1096
1097/*****************************************************************************/
1098
1099#if EV_AVOID_STDIO
1100static void noinline ecb_cold
1101ev_printerr (const char *msg)
1102{
1103 write (STDERR_FILENO, msg, strlen (msg));
1104}
1105#endif
1106
305static void (*syserr_cb)(const char *msg); 1107static void (*syserr_cb)(const char *msg) EV_THROW;
306 1108
307void 1109void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1110ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
309{ 1111{
310 syserr_cb = cb; 1112 syserr_cb = cb;
311} 1113}
312 1114
313static void noinline 1115static void noinline ecb_cold
314syserr (const char *msg) 1116ev_syserr (const char *msg)
315{ 1117{
316 if (!msg) 1118 if (!msg)
317 msg = "(libev) system error"; 1119 msg = "(libev) system error";
318 1120
319 if (syserr_cb) 1121 if (syserr_cb)
320 syserr_cb (msg); 1122 syserr_cb (msg);
321 else 1123 else
322 { 1124 {
1125#if EV_AVOID_STDIO
1126 ev_printerr (msg);
1127 ev_printerr (": ");
1128 ev_printerr (strerror (errno));
1129 ev_printerr ("\n");
1130#else
323 perror (msg); 1131 perror (msg);
1132#endif
324 abort (); 1133 abort ();
325 } 1134 }
326} 1135}
327 1136
1137static void *
1138ev_realloc_emul (void *ptr, long size)
1139{
1140#if __GLIBC__
1141 return realloc (ptr, size);
1142#else
1143 /* some systems, notably openbsd and darwin, fail to properly
1144 * implement realloc (x, 0) (as required by both ansi c-89 and
1145 * the single unix specification, so work around them here.
1146 */
1147
1148 if (size)
1149 return realloc (ptr, size);
1150
1151 free (ptr);
1152 return 0;
1153#endif
1154}
1155
328static void *(*alloc)(void *ptr, long size); 1156static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
329 1157
330void 1158void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1159ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
332{ 1160{
333 alloc = cb; 1161 alloc = cb;
334} 1162}
335 1163
336inline_speed void * 1164inline_speed void *
337ev_realloc (void *ptr, long size) 1165ev_realloc (void *ptr, long size)
338{ 1166{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1167 ptr = alloc (ptr, size);
340 1168
341 if (!ptr && size) 1169 if (!ptr && size)
342 { 1170 {
1171#if EV_AVOID_STDIO
1172 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1173#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1174 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1175#endif
344 abort (); 1176 abort ();
345 } 1177 }
346 1178
347 return ptr; 1179 return ptr;
348} 1180}
350#define ev_malloc(size) ev_realloc (0, (size)) 1182#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1183#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1184
353/*****************************************************************************/ 1185/*****************************************************************************/
354 1186
1187/* set in reify when reification needed */
1188#define EV_ANFD_REIFY 1
1189
1190/* file descriptor info structure */
355typedef struct 1191typedef struct
356{ 1192{
357 WL head; 1193 WL head;
358 unsigned char events; 1194 unsigned char events; /* the events watched for */
1195 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1196 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1197 unsigned char unused;
1198#if EV_USE_EPOLL
1199 unsigned int egen; /* generation counter to counter epoll bugs */
1200#endif
360#if EV_SELECT_IS_WINSOCKET 1201#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1202 SOCKET handle;
362#endif 1203#endif
1204#if EV_USE_IOCP
1205 OVERLAPPED or, ow;
1206#endif
363} ANFD; 1207} ANFD;
364 1208
1209/* stores the pending event set for a given watcher */
365typedef struct 1210typedef struct
366{ 1211{
367 W w; 1212 W w;
368 int events; 1213 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1214} ANPENDING;
370 1215
371#if EV_USE_INOTIFY 1216#if EV_USE_INOTIFY
1217/* hash table entry per inotify-id */
372typedef struct 1218typedef struct
373{ 1219{
374 WL head; 1220 WL head;
375} ANFS; 1221} ANFS;
1222#endif
1223
1224/* Heap Entry */
1225#if EV_HEAP_CACHE_AT
1226 /* a heap element */
1227 typedef struct {
1228 ev_tstamp at;
1229 WT w;
1230 } ANHE;
1231
1232 #define ANHE_w(he) (he).w /* access watcher, read-write */
1233 #define ANHE_at(he) (he).at /* access cached at, read-only */
1234 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1235#else
1236 /* a heap element */
1237 typedef WT ANHE;
1238
1239 #define ANHE_w(he) (he)
1240 #define ANHE_at(he) (he)->at
1241 #define ANHE_at_cache(he)
376#endif 1242#endif
377 1243
378#if EV_MULTIPLICITY 1244#if EV_MULTIPLICITY
379 1245
380 struct ev_loop 1246 struct ev_loop
386 #undef VAR 1252 #undef VAR
387 }; 1253 };
388 #include "ev_wrap.h" 1254 #include "ev_wrap.h"
389 1255
390 static struct ev_loop default_loop_struct; 1256 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1257 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1258
393#else 1259#else
394 1260
395 ev_tstamp ev_rt_now; 1261 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1262 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1263 #include "ev_vars.h"
398 #undef VAR 1264 #undef VAR
399 1265
400 static int ev_default_loop_ptr; 1266 static int ev_default_loop_ptr;
401 1267
402#endif 1268#endif
403 1269
1270#if EV_FEATURE_API
1271# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1272# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1273# define EV_INVOKE_PENDING invoke_cb (EV_A)
1274#else
1275# define EV_RELEASE_CB (void)0
1276# define EV_ACQUIRE_CB (void)0
1277# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1278#endif
1279
1280#define EVBREAK_RECURSE 0x80
1281
404/*****************************************************************************/ 1282/*****************************************************************************/
405 1283
1284#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1285ev_tstamp
407ev_time (void) 1286ev_time (void) EV_THROW
408{ 1287{
409#if EV_USE_REALTIME 1288#if EV_USE_REALTIME
1289 if (expect_true (have_realtime))
1290 {
410 struct timespec ts; 1291 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1292 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1293 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1294 }
1295#endif
1296
414 struct timeval tv; 1297 struct timeval tv;
415 gettimeofday (&tv, 0); 1298 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1299 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1300}
1301#endif
419 1302
420ev_tstamp inline_size 1303inline_size ev_tstamp
421get_clock (void) 1304get_clock (void)
422{ 1305{
423#if EV_USE_MONOTONIC 1306#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1307 if (expect_true (have_monotonic))
425 { 1308 {
432 return ev_time (); 1315 return ev_time ();
433} 1316}
434 1317
435#if EV_MULTIPLICITY 1318#if EV_MULTIPLICITY
436ev_tstamp 1319ev_tstamp
437ev_now (EV_P) 1320ev_now (EV_P) EV_THROW
438{ 1321{
439 return ev_rt_now; 1322 return ev_rt_now;
440} 1323}
441#endif 1324#endif
442 1325
443void 1326void
444ev_sleep (ev_tstamp delay) 1327ev_sleep (ev_tstamp delay) EV_THROW
445{ 1328{
446 if (delay > 0.) 1329 if (delay > 0.)
447 { 1330 {
448#if EV_USE_NANOSLEEP 1331#if EV_USE_NANOSLEEP
449 struct timespec ts; 1332 struct timespec ts;
450 1333
451 ts.tv_sec = (time_t)delay; 1334 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1335 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1336#elif defined _WIN32
456 Sleep (delay * 1e3); 1337 Sleep ((unsigned long)(delay * 1e3));
457#else 1338#else
458 struct timeval tv; 1339 struct timeval tv;
459 1340
460 tv.tv_sec = (time_t)delay; 1341 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1342 /* something not guaranteed by newer posix versions, but guaranteed */
462 1343 /* by older ones */
1344 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1345 select (0, 0, 0, 0, &tv);
464#endif 1346#endif
465 } 1347 }
466} 1348}
467 1349
468/*****************************************************************************/ 1350/*****************************************************************************/
469 1351
470int inline_size 1352#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1353
1354/* find a suitable new size for the given array, */
1355/* hopefully by rounding to a nice-to-malloc size */
1356inline_size int
471array_nextsize (int elem, int cur, int cnt) 1357array_nextsize (int elem, int cur, int cnt)
472{ 1358{
473 int ncur = cur + 1; 1359 int ncur = cur + 1;
474 1360
475 do 1361 do
476 ncur <<= 1; 1362 ncur <<= 1;
477 while (cnt > ncur); 1363 while (cnt > ncur);
478 1364
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1365 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1366 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1367 {
482 ncur *= elem; 1368 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1369 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1370 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1371 ncur /= elem;
486 } 1372 }
487 1373
488 return ncur; 1374 return ncur;
489} 1375}
490 1376
491static noinline void * 1377static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1378array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1379{
494 *cur = array_nextsize (elem, *cur, cnt); 1380 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1381 return ev_realloc (base, elem * *cur);
496} 1382}
1383
1384#define array_init_zero(base,count) \
1385 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1386
498#define array_needsize(type,base,cur,cnt,init) \ 1387#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1388 if (expect_false ((cnt) > (cur))) \
500 { \ 1389 { \
501 int ocur_ = (cur); \ 1390 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1391 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1392 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1393 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1394 }
506 1395
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1402 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1403 }
515#endif 1404#endif
516 1405
517#define array_free(stem, idx) \ 1406#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1407 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1408
520/*****************************************************************************/ 1409/*****************************************************************************/
521 1410
1411/* dummy callback for pending events */
1412static void noinline
1413pendingcb (EV_P_ ev_prepare *w, int revents)
1414{
1415}
1416
522void noinline 1417void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1418ev_feed_event (EV_P_ void *w, int revents) EV_THROW
524{ 1419{
525 W w_ = (W)w; 1420 W w_ = (W)w;
526 int pri = ABSPRI (w_); 1421 int pri = ABSPRI (w_);
527 1422
528 if (expect_false (w_->pending)) 1423 if (expect_false (w_->pending))
532 w_->pending = ++pendingcnt [pri]; 1427 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1428 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_; 1429 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1430 pendings [pri][w_->pending - 1].events = revents;
536 } 1431 }
537}
538 1432
539void inline_speed 1433 pendingpri = NUMPRI - 1;
1434}
1435
1436inline_speed void
1437feed_reverse (EV_P_ W w)
1438{
1439 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1440 rfeeds [rfeedcnt++] = w;
1441}
1442
1443inline_size void
1444feed_reverse_done (EV_P_ int revents)
1445{
1446 do
1447 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1448 while (rfeedcnt);
1449}
1450
1451inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1452queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1453{
542 int i; 1454 int i;
543 1455
544 for (i = 0; i < eventcnt; ++i) 1456 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1457 ev_feed_event (EV_A_ events [i], type);
546} 1458}
547 1459
548/*****************************************************************************/ 1460/*****************************************************************************/
549 1461
550void inline_size 1462inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1463fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1464{
566 ANFD *anfd = anfds + fd; 1465 ANFD *anfd = anfds + fd;
567 ev_io *w; 1466 ev_io *w;
568 1467
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1468 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1472 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1473 ev_feed_event (EV_A_ (W)w, ev);
575 } 1474 }
576} 1475}
577 1476
1477/* do not submit kernel events for fds that have reify set */
1478/* because that means they changed while we were polling for new events */
1479inline_speed void
1480fd_event (EV_P_ int fd, int revents)
1481{
1482 ANFD *anfd = anfds + fd;
1483
1484 if (expect_true (!anfd->reify))
1485 fd_event_nocheck (EV_A_ fd, revents);
1486}
1487
578void 1488void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1489ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
580{ 1490{
581 if (fd >= 0 && fd < anfdmax) 1491 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1492 fd_event_nocheck (EV_A_ fd, revents);
583} 1493}
584 1494
585void inline_size 1495/* make sure the external fd watch events are in-sync */
1496/* with the kernel/libev internal state */
1497inline_size void
586fd_reify (EV_P) 1498fd_reify (EV_P)
587{ 1499{
588 int i; 1500 int i;
1501
1502#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1503 for (i = 0; i < fdchangecnt; ++i)
1504 {
1505 int fd = fdchanges [i];
1506 ANFD *anfd = anfds + fd;
1507
1508 if (anfd->reify & EV__IOFDSET && anfd->head)
1509 {
1510 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1511
1512 if (handle != anfd->handle)
1513 {
1514 unsigned long arg;
1515
1516 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1517
1518 /* handle changed, but fd didn't - we need to do it in two steps */
1519 backend_modify (EV_A_ fd, anfd->events, 0);
1520 anfd->events = 0;
1521 anfd->handle = handle;
1522 }
1523 }
1524 }
1525#endif
589 1526
590 for (i = 0; i < fdchangecnt; ++i) 1527 for (i = 0; i < fdchangecnt; ++i)
591 { 1528 {
592 int fd = fdchanges [i]; 1529 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1530 ANFD *anfd = anfds + fd;
594 ev_io *w; 1531 ev_io *w;
595 1532
596 unsigned char events = 0; 1533 unsigned char o_events = anfd->events;
1534 unsigned char o_reify = anfd->reify;
597 1535
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1536 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1537
601#if EV_SELECT_IS_WINSOCKET 1538 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1539 {
604 unsigned long argp; 1540 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1541
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1542 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1543 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1544
609 #endif 1545 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1546 o_reify = EV__IOFDSET; /* actually |= */
611 } 1547 }
612#endif
613 1548
614 { 1549 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1550 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1551 }
625 1552
626 fdchangecnt = 0; 1553 fdchangecnt = 0;
627} 1554}
628 1555
629void inline_size 1556/* something about the given fd changed */
1557inline_size void
630fd_change (EV_P_ int fd, int flags) 1558fd_change (EV_P_ int fd, int flags)
631{ 1559{
632 unsigned char reify = anfds [fd].reify; 1560 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1561 anfds [fd].reify |= flags;
634 1562
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1566 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1567 fdchanges [fdchangecnt - 1] = fd;
640 } 1568 }
641} 1569}
642 1570
643void inline_speed 1571/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1572inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 1573fd_kill (EV_P_ int fd)
645{ 1574{
646 ev_io *w; 1575 ev_io *w;
647 1576
648 while ((w = (ev_io *)anfds [fd].head)) 1577 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1579 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1580 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1581 }
653} 1582}
654 1583
655int inline_size 1584/* check whether the given fd is actually valid, for error recovery */
1585inline_size int ecb_cold
656fd_valid (int fd) 1586fd_valid (int fd)
657{ 1587{
658#ifdef _WIN32 1588#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1589 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1590#else
661 return fcntl (fd, F_GETFD) != -1; 1591 return fcntl (fd, F_GETFD) != -1;
662#endif 1592#endif
663} 1593}
664 1594
665/* called on EBADF to verify fds */ 1595/* called on EBADF to verify fds */
666static void noinline 1596static void noinline ecb_cold
667fd_ebadf (EV_P) 1597fd_ebadf (EV_P)
668{ 1598{
669 int fd; 1599 int fd;
670 1600
671 for (fd = 0; fd < anfdmax; ++fd) 1601 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1602 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1603 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1604 fd_kill (EV_A_ fd);
675} 1605}
676 1606
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1607/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1608static void noinline ecb_cold
679fd_enomem (EV_P) 1609fd_enomem (EV_P)
680{ 1610{
681 int fd; 1611 int fd;
682 1612
683 for (fd = anfdmax; fd--; ) 1613 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1614 if (anfds [fd].events)
685 { 1615 {
686 fd_kill (EV_A_ fd); 1616 fd_kill (EV_A_ fd);
687 return; 1617 break;
688 } 1618 }
689} 1619}
690 1620
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1621/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1622static void noinline
696 1626
697 for (fd = 0; fd < anfdmax; ++fd) 1627 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1628 if (anfds [fd].events)
699 { 1629 {
700 anfds [fd].events = 0; 1630 anfds [fd].events = 0;
1631 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1632 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1633 }
703} 1634}
704 1635
705/*****************************************************************************/ 1636/* used to prepare libev internal fd's */
706 1637/* this is not fork-safe */
707void inline_speed 1638inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 1639fd_intern (int fd)
792{ 1640{
793#ifdef _WIN32 1641#ifdef _WIN32
794 int arg = 1; 1642 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1643 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1644#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1645 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1646 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1647#endif
800} 1648}
801 1649
1650/*****************************************************************************/
1651
1652/*
1653 * the heap functions want a real array index. array index 0 is guaranteed to not
1654 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1655 * the branching factor of the d-tree.
1656 */
1657
1658/*
1659 * at the moment we allow libev the luxury of two heaps,
1660 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1661 * which is more cache-efficient.
1662 * the difference is about 5% with 50000+ watchers.
1663 */
1664#if EV_USE_4HEAP
1665
1666#define DHEAP 4
1667#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1668#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1669#define UPHEAP_DONE(p,k) ((p) == (k))
1670
1671/* away from the root */
1672inline_speed void
1673downheap (ANHE *heap, int N, int k)
1674{
1675 ANHE he = heap [k];
1676 ANHE *E = heap + N + HEAP0;
1677
1678 for (;;)
1679 {
1680 ev_tstamp minat;
1681 ANHE *minpos;
1682 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1683
1684 /* find minimum child */
1685 if (expect_true (pos + DHEAP - 1 < E))
1686 {
1687 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1690 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1691 }
1692 else if (pos < E)
1693 {
1694 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1695 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1696 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1697 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1698 }
1699 else
1700 break;
1701
1702 if (ANHE_at (he) <= minat)
1703 break;
1704
1705 heap [k] = *minpos;
1706 ev_active (ANHE_w (*minpos)) = k;
1707
1708 k = minpos - heap;
1709 }
1710
1711 heap [k] = he;
1712 ev_active (ANHE_w (he)) = k;
1713}
1714
1715#else /* 4HEAP */
1716
1717#define HEAP0 1
1718#define HPARENT(k) ((k) >> 1)
1719#define UPHEAP_DONE(p,k) (!(p))
1720
1721/* away from the root */
1722inline_speed void
1723downheap (ANHE *heap, int N, int k)
1724{
1725 ANHE he = heap [k];
1726
1727 for (;;)
1728 {
1729 int c = k << 1;
1730
1731 if (c >= N + HEAP0)
1732 break;
1733
1734 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1735 ? 1 : 0;
1736
1737 if (ANHE_at (he) <= ANHE_at (heap [c]))
1738 break;
1739
1740 heap [k] = heap [c];
1741 ev_active (ANHE_w (heap [k])) = k;
1742
1743 k = c;
1744 }
1745
1746 heap [k] = he;
1747 ev_active (ANHE_w (he)) = k;
1748}
1749#endif
1750
1751/* towards the root */
1752inline_speed void
1753upheap (ANHE *heap, int k)
1754{
1755 ANHE he = heap [k];
1756
1757 for (;;)
1758 {
1759 int p = HPARENT (k);
1760
1761 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1762 break;
1763
1764 heap [k] = heap [p];
1765 ev_active (ANHE_w (heap [k])) = k;
1766 k = p;
1767 }
1768
1769 heap [k] = he;
1770 ev_active (ANHE_w (he)) = k;
1771}
1772
1773/* move an element suitably so it is in a correct place */
1774inline_size void
1775adjustheap (ANHE *heap, int N, int k)
1776{
1777 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1778 upheap (heap, k);
1779 else
1780 downheap (heap, N, k);
1781}
1782
1783/* rebuild the heap: this function is used only once and executed rarely */
1784inline_size void
1785reheap (ANHE *heap, int N)
1786{
1787 int i;
1788
1789 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1790 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1791 for (i = 0; i < N; ++i)
1792 upheap (heap, i + HEAP0);
1793}
1794
1795/*****************************************************************************/
1796
1797/* associate signal watchers to a signal signal */
1798typedef struct
1799{
1800 EV_ATOMIC_T pending;
1801#if EV_MULTIPLICITY
1802 EV_P;
1803#endif
1804 WL head;
1805} ANSIG;
1806
1807static ANSIG signals [EV_NSIG - 1];
1808
1809/*****************************************************************************/
1810
1811#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1812
802static void noinline 1813static void noinline ecb_cold
803evpipe_init (EV_P) 1814evpipe_init (EV_P)
804{ 1815{
805 if (!ev_is_active (&pipeev)) 1816 if (!ev_is_active (&pipe_w))
806 { 1817 {
1818# if EV_USE_EVENTFD
1819 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1820 if (evfd < 0 && errno == EINVAL)
1821 evfd = eventfd (0, 0);
1822
1823 if (evfd >= 0)
1824 {
1825 evpipe [0] = -1;
1826 fd_intern (evfd); /* doing it twice doesn't hurt */
1827 ev_io_set (&pipe_w, evfd, EV_READ);
1828 }
1829 else
1830# endif
1831 {
807 while (pipe (evpipe)) 1832 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1833 ev_syserr ("(libev) error creating signal/async pipe");
809 1834
810 fd_intern (evpipe [0]); 1835 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1836 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1837 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1838 }
1839
814 ev_io_start (EV_A_ &pipeev); 1840 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1841 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1842 }
817} 1843}
818 1844
819void inline_size 1845inline_speed void
820evpipe_write (EV_P_ int sig, int async) 1846evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1847{
822 if (!(gotasync || gotsig)) 1848 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1849
1850 if (expect_true (*flag))
1851 return;
1852
1853 *flag = 1;
1854
1855 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1856
1857 pipe_write_skipped = 1;
1858
1859 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1860
1861 if (pipe_write_wanted)
823 { 1862 {
1863 int old_errno;
1864
1865 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1866
824 int old_errno = errno; /* save errno becaue write might clobber it */ 1867 old_errno = errno; /* save errno because write will clobber it */
825 1868
826 if (sig) gotsig = 1; 1869#if EV_USE_EVENTFD
827 if (async) gotasync = 1; 1870 if (evfd >= 0)
828 1871 {
829 write (evpipe [1], &old_errno, 1); 1872 uint64_t counter = 1;
1873 write (evfd, &counter, sizeof (uint64_t));
1874 }
1875 else
1876#endif
1877 {
1878#ifdef _WIN32
1879 WSABUF buf;
1880 DWORD sent;
1881 buf.buf = &buf;
1882 buf.len = 1;
1883 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1884#else
1885 write (evpipe [1], &(evpipe [1]), 1);
1886#endif
1887 }
830 1888
831 errno = old_errno; 1889 errno = old_errno;
832 } 1890 }
833} 1891}
834 1892
1893/* called whenever the libev signal pipe */
1894/* got some events (signal, async) */
835static void 1895static void
836pipecb (EV_P_ ev_io *iow, int revents) 1896pipecb (EV_P_ ev_io *iow, int revents)
837{ 1897{
1898 int i;
1899
1900 if (revents & EV_READ)
838 { 1901 {
839 int dummy; 1902#if EV_USE_EVENTFD
1903 if (evfd >= 0)
1904 {
1905 uint64_t counter;
1906 read (evfd, &counter, sizeof (uint64_t));
1907 }
1908 else
1909#endif
1910 {
1911 char dummy[4];
1912#ifdef _WIN32
1913 WSABUF buf;
1914 DWORD recvd;
1915 DWORD flags = 0;
1916 buf.buf = dummy;
1917 buf.len = sizeof (dummy);
1918 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1919#else
840 read (evpipe [0], &dummy, 1); 1920 read (evpipe [0], &dummy, sizeof (dummy));
1921#endif
1922 }
841 } 1923 }
842 1924
843 if (gotsig) 1925 pipe_write_skipped = 0;
844 {
845 int signum;
846 gotsig = 0;
847 1926
848 for (signum = signalmax; signum--; ) 1927 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
849 if (signals [signum].gotsig) 1928
1929#if EV_SIGNAL_ENABLE
1930 if (sig_pending)
1931 {
1932 sig_pending = 0;
1933
1934 ECB_MEMORY_FENCE_RELEASE;
1935
1936 for (i = EV_NSIG - 1; i--; )
1937 if (expect_false (signals [i].pending))
850 ev_feed_signal_event (EV_A_ signum + 1); 1938 ev_feed_signal_event (EV_A_ i + 1);
851 } 1939 }
1940#endif
852 1941
853#if EV_ASYNC_ENABLE 1942#if EV_ASYNC_ENABLE
854 if (gotasync) 1943 if (async_pending)
855 { 1944 {
856 int i; 1945 async_pending = 0;
857 gotasync = 0; 1946
1947 ECB_MEMORY_FENCE_RELEASE;
858 1948
859 for (i = asynccnt; i--; ) 1949 for (i = asynccnt; i--; )
860 if (asyncs [i]->sent) 1950 if (asyncs [i]->sent)
861 { 1951 {
862 asyncs [i]->sent = 0; 1952 asyncs [i]->sent = 0;
866#endif 1956#endif
867} 1957}
868 1958
869/*****************************************************************************/ 1959/*****************************************************************************/
870 1960
1961void
1962ev_feed_signal (int signum) EV_THROW
1963{
1964#if EV_MULTIPLICITY
1965 EV_P = signals [signum - 1].loop;
1966
1967 if (!EV_A)
1968 return;
1969#endif
1970
1971 if (!ev_active (&pipe_w))
1972 return;
1973
1974 signals [signum - 1].pending = 1;
1975 evpipe_write (EV_A_ &sig_pending);
1976}
1977
871static void 1978static void
872sighandler (int signum) 1979ev_sighandler (int signum)
873{ 1980{
1981#ifdef _WIN32
1982 signal (signum, ev_sighandler);
1983#endif
1984
1985 ev_feed_signal (signum);
1986}
1987
1988void noinline
1989ev_feed_signal_event (EV_P_ int signum) EV_THROW
1990{
1991 WL w;
1992
1993 if (expect_false (signum <= 0 || signum > EV_NSIG))
1994 return;
1995
1996 --signum;
1997
874#if EV_MULTIPLICITY 1998#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 1999 /* it is permissible to try to feed a signal to the wrong loop */
876#endif 2000 /* or, likely more useful, feeding a signal nobody is waiting for */
877 2001
878#if _WIN32 2002 if (expect_false (signals [signum].loop != EV_A))
879 signal (signum, sighandler);
880#endif
881
882 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0);
884}
885
886void noinline
887ev_feed_signal_event (EV_P_ int signum)
888{
889 WL w;
890
891#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
893#endif
894
895 --signum;
896
897 if (signum < 0 || signum >= signalmax)
898 return; 2003 return;
2004#endif
899 2005
900 signals [signum].gotsig = 0; 2006 signals [signum].pending = 0;
901 2007
902 for (w = signals [signum].head; w; w = w->next) 2008 for (w = signals [signum].head; w; w = w->next)
903 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2009 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
904} 2010}
905 2011
2012#if EV_USE_SIGNALFD
2013static void
2014sigfdcb (EV_P_ ev_io *iow, int revents)
2015{
2016 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2017
2018 for (;;)
2019 {
2020 ssize_t res = read (sigfd, si, sizeof (si));
2021
2022 /* not ISO-C, as res might be -1, but works with SuS */
2023 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2024 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2025
2026 if (res < (ssize_t)sizeof (si))
2027 break;
2028 }
2029}
2030#endif
2031
2032#endif
2033
906/*****************************************************************************/ 2034/*****************************************************************************/
907 2035
2036#if EV_CHILD_ENABLE
908static WL childs [EV_PID_HASHSIZE]; 2037static WL childs [EV_PID_HASHSIZE];
909
910#ifndef _WIN32
911 2038
912static ev_signal childev; 2039static ev_signal childev;
913 2040
914#ifndef WIFCONTINUED 2041#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 2042# define WIFCONTINUED(status) 0
916#endif 2043#endif
917 2044
918void inline_speed 2045/* handle a single child status event */
2046inline_speed void
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2047child_reap (EV_P_ int chain, int pid, int status)
920{ 2048{
921 ev_child *w; 2049 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2050 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 2051
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2052 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 2053 {
926 if ((w->pid == pid || !w->pid) 2054 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 2055 && (!traced || (w->flags & 1)))
928 { 2056 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2057 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 2058 w->rpid = pid;
931 w->rstatus = status; 2059 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2060 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 2061 }
934 } 2062 }
936 2064
937#ifndef WCONTINUED 2065#ifndef WCONTINUED
938# define WCONTINUED 0 2066# define WCONTINUED 0
939#endif 2067#endif
940 2068
2069/* called on sigchld etc., calls waitpid */
941static void 2070static void
942childcb (EV_P_ ev_signal *sw, int revents) 2071childcb (EV_P_ ev_signal *sw, int revents)
943{ 2072{
944 int pid, status; 2073 int pid, status;
945 2074
948 if (!WCONTINUED 2077 if (!WCONTINUED
949 || errno != EINVAL 2078 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2079 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 2080 return;
952 2081
953 /* make sure we are called again until all childs have been reaped */ 2082 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 2083 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2084 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 2085
957 child_reap (EV_A_ sw, pid, pid, status); 2086 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 2087 if ((EV_PID_HASHSIZE) > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2088 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 2089}
961 2090
962#endif 2091#endif
963 2092
964/*****************************************************************************/ 2093/*****************************************************************************/
965 2094
2095#if EV_USE_IOCP
2096# include "ev_iocp.c"
2097#endif
966#if EV_USE_PORT 2098#if EV_USE_PORT
967# include "ev_port.c" 2099# include "ev_port.c"
968#endif 2100#endif
969#if EV_USE_KQUEUE 2101#if EV_USE_KQUEUE
970# include "ev_kqueue.c" 2102# include "ev_kqueue.c"
977#endif 2109#endif
978#if EV_USE_SELECT 2110#if EV_USE_SELECT
979# include "ev_select.c" 2111# include "ev_select.c"
980#endif 2112#endif
981 2113
982int 2114int ecb_cold
983ev_version_major (void) 2115ev_version_major (void) EV_THROW
984{ 2116{
985 return EV_VERSION_MAJOR; 2117 return EV_VERSION_MAJOR;
986} 2118}
987 2119
988int 2120int ecb_cold
989ev_version_minor (void) 2121ev_version_minor (void) EV_THROW
990{ 2122{
991 return EV_VERSION_MINOR; 2123 return EV_VERSION_MINOR;
992} 2124}
993 2125
994/* return true if we are running with elevated privileges and should ignore env variables */ 2126/* return true if we are running with elevated privileges and should ignore env variables */
995int inline_size 2127int inline_size ecb_cold
996enable_secure (void) 2128enable_secure (void)
997{ 2129{
998#ifdef _WIN32 2130#ifdef _WIN32
999 return 0; 2131 return 0;
1000#else 2132#else
1001 return getuid () != geteuid () 2133 return getuid () != geteuid ()
1002 || getgid () != getegid (); 2134 || getgid () != getegid ();
1003#endif 2135#endif
1004} 2136}
1005 2137
1006unsigned int 2138unsigned int ecb_cold
1007ev_supported_backends (void) 2139ev_supported_backends (void) EV_THROW
1008{ 2140{
1009 unsigned int flags = 0; 2141 unsigned int flags = 0;
1010 2142
1011 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2143 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1012 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2144 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1015 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2147 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1016 2148
1017 return flags; 2149 return flags;
1018} 2150}
1019 2151
1020unsigned int 2152unsigned int ecb_cold
1021ev_recommended_backends (void) 2153ev_recommended_backends (void) EV_THROW
1022{ 2154{
1023 unsigned int flags = ev_supported_backends (); 2155 unsigned int flags = ev_supported_backends ();
1024 2156
1025#ifndef __NetBSD__ 2157#ifndef __NetBSD__
1026 /* kqueue is borked on everything but netbsd apparently */ 2158 /* kqueue is borked on everything but netbsd apparently */
1027 /* it usually doesn't work correctly on anything but sockets and pipes */ 2159 /* it usually doesn't work correctly on anything but sockets and pipes */
1028 flags &= ~EVBACKEND_KQUEUE; 2160 flags &= ~EVBACKEND_KQUEUE;
1029#endif 2161#endif
1030#ifdef __APPLE__ 2162#ifdef __APPLE__
1031 // flags &= ~EVBACKEND_KQUEUE; for documentation 2163 /* only select works correctly on that "unix-certified" platform */
1032 flags &= ~EVBACKEND_POLL; 2164 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2165 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2166#endif
2167#ifdef __FreeBSD__
2168 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1033#endif 2169#endif
1034 2170
1035 return flags; 2171 return flags;
1036} 2172}
1037 2173
2174unsigned int ecb_cold
2175ev_embeddable_backends (void) EV_THROW
2176{
2177 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2178
2179 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2180 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2181 flags &= ~EVBACKEND_EPOLL;
2182
2183 return flags;
2184}
2185
1038unsigned int 2186unsigned int
1039ev_embeddable_backends (void) 2187ev_backend (EV_P) EV_THROW
1040{ 2188{
1041 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2189 return backend;
1042
1043 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1044 /* please fix it and tell me how to detect the fix */
1045 flags &= ~EVBACKEND_EPOLL;
1046
1047 return flags;
1048} 2190}
1049 2191
2192#if EV_FEATURE_API
1050unsigned int 2193unsigned int
1051ev_backend (EV_P) 2194ev_iteration (EV_P) EV_THROW
1052{ 2195{
1053 return backend; 2196 return loop_count;
1054} 2197}
1055 2198
1056unsigned int 2199unsigned int
1057ev_loop_count (EV_P) 2200ev_depth (EV_P) EV_THROW
1058{ 2201{
1059 return loop_count; 2202 return loop_depth;
1060} 2203}
1061 2204
1062void 2205void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2206ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1064{ 2207{
1065 io_blocktime = interval; 2208 io_blocktime = interval;
1066} 2209}
1067 2210
1068void 2211void
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2212ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1070{ 2213{
1071 timeout_blocktime = interval; 2214 timeout_blocktime = interval;
1072} 2215}
1073 2216
2217void
2218ev_set_userdata (EV_P_ void *data) EV_THROW
2219{
2220 userdata = data;
2221}
2222
2223void *
2224ev_userdata (EV_P) EV_THROW
2225{
2226 return userdata;
2227}
2228
2229void
2230ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2231{
2232 invoke_cb = invoke_pending_cb;
2233}
2234
2235void
2236ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2237{
2238 release_cb = release;
2239 acquire_cb = acquire;
2240}
2241#endif
2242
2243/* initialise a loop structure, must be zero-initialised */
1074static void noinline 2244static void noinline ecb_cold
1075loop_init (EV_P_ unsigned int flags) 2245loop_init (EV_P_ unsigned int flags) EV_THROW
1076{ 2246{
1077 if (!backend) 2247 if (!backend)
1078 { 2248 {
2249 origflags = flags;
2250
2251#if EV_USE_REALTIME
2252 if (!have_realtime)
2253 {
2254 struct timespec ts;
2255
2256 if (!clock_gettime (CLOCK_REALTIME, &ts))
2257 have_realtime = 1;
2258 }
2259#endif
2260
1079#if EV_USE_MONOTONIC 2261#if EV_USE_MONOTONIC
2262 if (!have_monotonic)
1080 { 2263 {
1081 struct timespec ts; 2264 struct timespec ts;
2265
1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2266 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1083 have_monotonic = 1; 2267 have_monotonic = 1;
1084 } 2268 }
1085#endif
1086
1087 ev_rt_now = ev_time ();
1088 mn_now = get_clock ();
1089 now_floor = mn_now;
1090 rtmn_diff = ev_rt_now - mn_now;
1091
1092 io_blocktime = 0.;
1093 timeout_blocktime = 0.;
1094 backend = 0;
1095 backend_fd = -1;
1096 gotasync = 0;
1097#if EV_USE_INOTIFY
1098 fs_fd = -2;
1099#endif 2269#endif
1100 2270
1101 /* pid check not overridable via env */ 2271 /* pid check not overridable via env */
1102#ifndef _WIN32 2272#ifndef _WIN32
1103 if (flags & EVFLAG_FORKCHECK) 2273 if (flags & EVFLAG_FORKCHECK)
1107 if (!(flags & EVFLAG_NOENV) 2277 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure () 2278 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS")) 2279 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS")); 2280 flags = atoi (getenv ("LIBEV_FLAGS"));
1111 2281
1112 if (!(flags & 0x0000ffffUL)) 2282 ev_rt_now = ev_time ();
2283 mn_now = get_clock ();
2284 now_floor = mn_now;
2285 rtmn_diff = ev_rt_now - mn_now;
2286#if EV_FEATURE_API
2287 invoke_cb = ev_invoke_pending;
2288#endif
2289
2290 io_blocktime = 0.;
2291 timeout_blocktime = 0.;
2292 backend = 0;
2293 backend_fd = -1;
2294 sig_pending = 0;
2295#if EV_ASYNC_ENABLE
2296 async_pending = 0;
2297#endif
2298 pipe_write_skipped = 0;
2299 pipe_write_wanted = 0;
2300#if EV_USE_INOTIFY
2301 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2302#endif
2303#if EV_USE_SIGNALFD
2304 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2305#endif
2306
2307 if (!(flags & EVBACKEND_MASK))
1113 flags |= ev_recommended_backends (); 2308 flags |= ev_recommended_backends ();
1114 2309
2310#if EV_USE_IOCP
2311 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2312#endif
1115#if EV_USE_PORT 2313#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2314 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 2315#endif
1118#if EV_USE_KQUEUE 2316#if EV_USE_KQUEUE
1119 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2317 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1126#endif 2324#endif
1127#if EV_USE_SELECT 2325#if EV_USE_SELECT
1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2326 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1129#endif 2327#endif
1130 2328
2329 ev_prepare_init (&pending_w, pendingcb);
2330
2331#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1131 ev_init (&pipeev, pipecb); 2332 ev_init (&pipe_w, pipecb);
1132 ev_set_priority (&pipeev, EV_MAXPRI); 2333 ev_set_priority (&pipe_w, EV_MAXPRI);
2334#endif
1133 } 2335 }
1134} 2336}
1135 2337
1136static void noinline 2338/* free up a loop structure */
2339void ecb_cold
1137loop_destroy (EV_P) 2340ev_loop_destroy (EV_P)
1138{ 2341{
1139 int i; 2342 int i;
1140 2343
2344#if EV_MULTIPLICITY
2345 /* mimic free (0) */
2346 if (!EV_A)
2347 return;
2348#endif
2349
2350#if EV_CLEANUP_ENABLE
2351 /* queue cleanup watchers (and execute them) */
2352 if (expect_false (cleanupcnt))
2353 {
2354 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2355 EV_INVOKE_PENDING;
2356 }
2357#endif
2358
2359#if EV_CHILD_ENABLE
2360 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2361 {
2362 ev_ref (EV_A); /* child watcher */
2363 ev_signal_stop (EV_A_ &childev);
2364 }
2365#endif
2366
1141 if (ev_is_active (&pipeev)) 2367 if (ev_is_active (&pipe_w))
1142 { 2368 {
1143 ev_ref (EV_A); /* signal watcher */ 2369 /*ev_ref (EV_A);*/
1144 ev_io_stop (EV_A_ &pipeev); 2370 /*ev_io_stop (EV_A_ &pipe_w);*/
1145 2371
1146 close (evpipe [0]); evpipe [0] = 0; 2372#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 2373 if (evfd >= 0)
2374 close (evfd);
2375#endif
2376
2377 if (evpipe [0] >= 0)
2378 {
2379 EV_WIN32_CLOSE_FD (evpipe [0]);
2380 EV_WIN32_CLOSE_FD (evpipe [1]);
2381 }
1148 } 2382 }
2383
2384#if EV_USE_SIGNALFD
2385 if (ev_is_active (&sigfd_w))
2386 close (sigfd);
2387#endif
1149 2388
1150#if EV_USE_INOTIFY 2389#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 2390 if (fs_fd >= 0)
1152 close (fs_fd); 2391 close (fs_fd);
1153#endif 2392#endif
1154 2393
1155 if (backend_fd >= 0) 2394 if (backend_fd >= 0)
1156 close (backend_fd); 2395 close (backend_fd);
1157 2396
2397#if EV_USE_IOCP
2398 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2399#endif
1158#if EV_USE_PORT 2400#if EV_USE_PORT
1159 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2401 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1160#endif 2402#endif
1161#if EV_USE_KQUEUE 2403#if EV_USE_KQUEUE
1162 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2404 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1177#if EV_IDLE_ENABLE 2419#if EV_IDLE_ENABLE
1178 array_free (idle, [i]); 2420 array_free (idle, [i]);
1179#endif 2421#endif
1180 } 2422 }
1181 2423
1182 ev_free (anfds); anfdmax = 0; 2424 ev_free (anfds); anfds = 0; anfdmax = 0;
1183 2425
1184 /* have to use the microsoft-never-gets-it-right macro */ 2426 /* have to use the microsoft-never-gets-it-right macro */
2427 array_free (rfeed, EMPTY);
1185 array_free (fdchange, EMPTY); 2428 array_free (fdchange, EMPTY);
1186 array_free (timer, EMPTY); 2429 array_free (timer, EMPTY);
1187#if EV_PERIODIC_ENABLE 2430#if EV_PERIODIC_ENABLE
1188 array_free (periodic, EMPTY); 2431 array_free (periodic, EMPTY);
1189#endif 2432#endif
1190#if EV_FORK_ENABLE 2433#if EV_FORK_ENABLE
1191 array_free (fork, EMPTY); 2434 array_free (fork, EMPTY);
1192#endif 2435#endif
2436#if EV_CLEANUP_ENABLE
2437 array_free (cleanup, EMPTY);
2438#endif
1193 array_free (prepare, EMPTY); 2439 array_free (prepare, EMPTY);
1194 array_free (check, EMPTY); 2440 array_free (check, EMPTY);
1195#if EV_ASYNC_ENABLE 2441#if EV_ASYNC_ENABLE
1196 array_free (async, EMPTY); 2442 array_free (async, EMPTY);
1197#endif 2443#endif
1198 2444
1199 backend = 0; 2445 backend = 0;
1200}
1201 2446
2447#if EV_MULTIPLICITY
2448 if (ev_is_default_loop (EV_A))
2449#endif
2450 ev_default_loop_ptr = 0;
2451#if EV_MULTIPLICITY
2452 else
2453 ev_free (EV_A);
2454#endif
2455}
2456
2457#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 2458inline_size void infy_fork (EV_P);
2459#endif
1203 2460
1204void inline_size 2461inline_size void
1205loop_fork (EV_P) 2462loop_fork (EV_P)
1206{ 2463{
1207#if EV_USE_PORT 2464#if EV_USE_PORT
1208 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2465 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1209#endif 2466#endif
1215#endif 2472#endif
1216#if EV_USE_INOTIFY 2473#if EV_USE_INOTIFY
1217 infy_fork (EV_A); 2474 infy_fork (EV_A);
1218#endif 2475#endif
1219 2476
1220 if (ev_is_active (&pipeev)) 2477 if (ev_is_active (&pipe_w))
1221 { 2478 {
1222 /* this "locks" the handlers against writing to the pipe */ 2479 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1223 gotsig = gotasync = 1;
1224 2480
1225 ev_ref (EV_A); 2481 ev_ref (EV_A);
1226 ev_io_stop (EV_A_ &pipeev); 2482 ev_io_stop (EV_A_ &pipe_w);
1227 close (evpipe [0]);
1228 close (evpipe [1]);
1229 2483
2484#if EV_USE_EVENTFD
2485 if (evfd >= 0)
2486 close (evfd);
2487#endif
2488
2489 if (evpipe [0] >= 0)
2490 {
2491 EV_WIN32_CLOSE_FD (evpipe [0]);
2492 EV_WIN32_CLOSE_FD (evpipe [1]);
2493 }
2494
2495#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1230 evpipe_init (EV_A); 2496 evpipe_init (EV_A);
1231 /* now iterate over everything, in case we missed something */ 2497 /* now iterate over everything, in case we missed something */
1232 pipecb (EV_A_ &pipeev, EV_READ); 2498 pipecb (EV_A_ &pipe_w, EV_READ);
2499#endif
1233 } 2500 }
1234 2501
1235 postfork = 0; 2502 postfork = 0;
1236} 2503}
1237 2504
1238#if EV_MULTIPLICITY 2505#if EV_MULTIPLICITY
2506
1239struct ev_loop * 2507struct ev_loop * ecb_cold
1240ev_loop_new (unsigned int flags) 2508ev_loop_new (unsigned int flags) EV_THROW
1241{ 2509{
1242 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2510 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1243 2511
1244 memset (loop, 0, sizeof (struct ev_loop)); 2512 memset (EV_A, 0, sizeof (struct ev_loop));
1245
1246 loop_init (EV_A_ flags); 2513 loop_init (EV_A_ flags);
1247 2514
1248 if (ev_backend (EV_A)) 2515 if (ev_backend (EV_A))
1249 return loop; 2516 return EV_A;
1250 2517
2518 ev_free (EV_A);
1251 return 0; 2519 return 0;
1252} 2520}
1253 2521
1254void 2522#endif /* multiplicity */
1255ev_loop_destroy (EV_P)
1256{
1257 loop_destroy (EV_A);
1258 ev_free (loop);
1259}
1260 2523
1261void 2524#if EV_VERIFY
1262ev_loop_fork (EV_P) 2525static void noinline ecb_cold
2526verify_watcher (EV_P_ W w)
1263{ 2527{
1264 postfork = 1; /* must be in line with ev_default_fork */ 2528 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1265}
1266 2529
2530 if (w->pending)
2531 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2532}
2533
2534static void noinline ecb_cold
2535verify_heap (EV_P_ ANHE *heap, int N)
2536{
2537 int i;
2538
2539 for (i = HEAP0; i < N + HEAP0; ++i)
2540 {
2541 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2542 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2543 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2544
2545 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2546 }
2547}
2548
2549static void noinline ecb_cold
2550array_verify (EV_P_ W *ws, int cnt)
2551{
2552 while (cnt--)
2553 {
2554 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2555 verify_watcher (EV_A_ ws [cnt]);
2556 }
2557}
2558#endif
2559
2560#if EV_FEATURE_API
2561void ecb_cold
2562ev_verify (EV_P) EV_THROW
2563{
2564#if EV_VERIFY
2565 int i;
2566 WL w, w2;
2567
2568 assert (activecnt >= -1);
2569
2570 assert (fdchangemax >= fdchangecnt);
2571 for (i = 0; i < fdchangecnt; ++i)
2572 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2573
2574 assert (anfdmax >= 0);
2575 for (i = 0; i < anfdmax; ++i)
2576 {
2577 int j = 0;
2578
2579 for (w = w2 = anfds [i].head; w; w = w->next)
2580 {
2581 verify_watcher (EV_A_ (W)w);
2582
2583 if (j++ & 1)
2584 {
2585 assert (("libev: io watcher list contains a loop", w != w2));
2586 w2 = w2->next;
2587 }
2588
2589 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2590 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2591 }
2592 }
2593
2594 assert (timermax >= timercnt);
2595 verify_heap (EV_A_ timers, timercnt);
2596
2597#if EV_PERIODIC_ENABLE
2598 assert (periodicmax >= periodiccnt);
2599 verify_heap (EV_A_ periodics, periodiccnt);
2600#endif
2601
2602 for (i = NUMPRI; i--; )
2603 {
2604 assert (pendingmax [i] >= pendingcnt [i]);
2605#if EV_IDLE_ENABLE
2606 assert (idleall >= 0);
2607 assert (idlemax [i] >= idlecnt [i]);
2608 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2609#endif
2610 }
2611
2612#if EV_FORK_ENABLE
2613 assert (forkmax >= forkcnt);
2614 array_verify (EV_A_ (W *)forks, forkcnt);
2615#endif
2616
2617#if EV_CLEANUP_ENABLE
2618 assert (cleanupmax >= cleanupcnt);
2619 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2620#endif
2621
2622#if EV_ASYNC_ENABLE
2623 assert (asyncmax >= asynccnt);
2624 array_verify (EV_A_ (W *)asyncs, asynccnt);
2625#endif
2626
2627#if EV_PREPARE_ENABLE
2628 assert (preparemax >= preparecnt);
2629 array_verify (EV_A_ (W *)prepares, preparecnt);
2630#endif
2631
2632#if EV_CHECK_ENABLE
2633 assert (checkmax >= checkcnt);
2634 array_verify (EV_A_ (W *)checks, checkcnt);
2635#endif
2636
2637# if 0
2638#if EV_CHILD_ENABLE
2639 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2640 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2641#endif
2642# endif
2643#endif
2644}
1267#endif 2645#endif
1268 2646
1269#if EV_MULTIPLICITY 2647#if EV_MULTIPLICITY
1270struct ev_loop * 2648struct ev_loop * ecb_cold
1271ev_default_loop_init (unsigned int flags)
1272#else 2649#else
1273int 2650int
2651#endif
1274ev_default_loop (unsigned int flags) 2652ev_default_loop (unsigned int flags) EV_THROW
1275#endif
1276{ 2653{
1277 if (!ev_default_loop_ptr) 2654 if (!ev_default_loop_ptr)
1278 { 2655 {
1279#if EV_MULTIPLICITY 2656#if EV_MULTIPLICITY
1280 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2657 EV_P = ev_default_loop_ptr = &default_loop_struct;
1281#else 2658#else
1282 ev_default_loop_ptr = 1; 2659 ev_default_loop_ptr = 1;
1283#endif 2660#endif
1284 2661
1285 loop_init (EV_A_ flags); 2662 loop_init (EV_A_ flags);
1286 2663
1287 if (ev_backend (EV_A)) 2664 if (ev_backend (EV_A))
1288 { 2665 {
1289#ifndef _WIN32 2666#if EV_CHILD_ENABLE
1290 ev_signal_init (&childev, childcb, SIGCHLD); 2667 ev_signal_init (&childev, childcb, SIGCHLD);
1291 ev_set_priority (&childev, EV_MAXPRI); 2668 ev_set_priority (&childev, EV_MAXPRI);
1292 ev_signal_start (EV_A_ &childev); 2669 ev_signal_start (EV_A_ &childev);
1293 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2670 ev_unref (EV_A); /* child watcher should not keep loop alive */
1294#endif 2671#endif
1299 2676
1300 return ev_default_loop_ptr; 2677 return ev_default_loop_ptr;
1301} 2678}
1302 2679
1303void 2680void
1304ev_default_destroy (void) 2681ev_loop_fork (EV_P) EV_THROW
1305{ 2682{
1306#if EV_MULTIPLICITY
1307 struct ev_loop *loop = ev_default_loop_ptr;
1308#endif
1309
1310#ifndef _WIN32
1311 ev_ref (EV_A); /* child watcher */
1312 ev_signal_stop (EV_A_ &childev);
1313#endif
1314
1315 loop_destroy (EV_A);
1316}
1317
1318void
1319ev_default_fork (void)
1320{
1321#if EV_MULTIPLICITY
1322 struct ev_loop *loop = ev_default_loop_ptr;
1323#endif
1324
1325 if (backend)
1326 postfork = 1; /* must be in line with ev_loop_fork */ 2683 postfork = 1; /* must be in line with ev_default_fork */
1327} 2684}
1328 2685
1329/*****************************************************************************/ 2686/*****************************************************************************/
1330 2687
1331void 2688void
1332ev_invoke (EV_P_ void *w, int revents) 2689ev_invoke (EV_P_ void *w, int revents)
1333{ 2690{
1334 EV_CB_INVOKE ((W)w, revents); 2691 EV_CB_INVOKE ((W)w, revents);
1335} 2692}
1336 2693
1337void inline_speed 2694unsigned int
1338call_pending (EV_P) 2695ev_pending_count (EV_P) EV_THROW
1339{ 2696{
1340 int pri; 2697 int pri;
2698 unsigned int count = 0;
1341 2699
1342 for (pri = NUMPRI; pri--; ) 2700 for (pri = NUMPRI; pri--; )
2701 count += pendingcnt [pri];
2702
2703 return count;
2704}
2705
2706void noinline
2707ev_invoke_pending (EV_P)
2708{
2709 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1343 while (pendingcnt [pri]) 2710 while (pendingcnt [pendingpri])
1344 { 2711 {
1345 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2712 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1346 2713
1347 if (expect_true (p->w))
1348 {
1349 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1350
1351 p->w->pending = 0; 2714 p->w->pending = 0;
1352 EV_CB_INVOKE (p->w, p->events); 2715 EV_CB_INVOKE (p->w, p->events);
1353 } 2716 EV_FREQUENT_CHECK;
1354 } 2717 }
1355} 2718}
1356 2719
1357void inline_size
1358timers_reify (EV_P)
1359{
1360 while (timercnt && ((WT)timers [0])->at <= mn_now)
1361 {
1362 ev_timer *w = (ev_timer *)timers [0];
1363
1364 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1365
1366 /* first reschedule or stop timer */
1367 if (w->repeat)
1368 {
1369 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1370
1371 ((WT)w)->at += w->repeat;
1372 if (((WT)w)->at < mn_now)
1373 ((WT)w)->at = mn_now;
1374
1375 downheap (timers, timercnt, 0);
1376 }
1377 else
1378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1379
1380 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1381 }
1382}
1383
1384#if EV_PERIODIC_ENABLE
1385void inline_size
1386periodics_reify (EV_P)
1387{
1388 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1389 {
1390 ev_periodic *w = (ev_periodic *)periodics [0];
1391
1392 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1393
1394 /* first reschedule or stop timer */
1395 if (w->reschedule_cb)
1396 {
1397 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1398 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1399 downheap (periodics, periodiccnt, 0);
1400 }
1401 else if (w->interval)
1402 {
1403 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1405 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1406 downheap (periodics, periodiccnt, 0);
1407 }
1408 else
1409 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1410
1411 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1412 }
1413}
1414
1415static void noinline
1416periodics_reschedule (EV_P)
1417{
1418 int i;
1419
1420 /* adjust periodics after time jump */
1421 for (i = 0; i < periodiccnt; ++i)
1422 {
1423 ev_periodic *w = (ev_periodic *)periodics [i];
1424
1425 if (w->reschedule_cb)
1426 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1427 else if (w->interval)
1428 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1429 }
1430
1431 /* now rebuild the heap */
1432 for (i = periodiccnt >> 1; i--; )
1433 downheap (periodics, periodiccnt, i);
1434}
1435#endif
1436
1437#if EV_IDLE_ENABLE 2720#if EV_IDLE_ENABLE
1438void inline_size 2721/* make idle watchers pending. this handles the "call-idle */
2722/* only when higher priorities are idle" logic */
2723inline_size void
1439idle_reify (EV_P) 2724idle_reify (EV_P)
1440{ 2725{
1441 if (expect_false (idleall)) 2726 if (expect_false (idleall))
1442 { 2727 {
1443 int pri; 2728 int pri;
1455 } 2740 }
1456 } 2741 }
1457} 2742}
1458#endif 2743#endif
1459 2744
1460void inline_speed 2745/* make timers pending */
2746inline_size void
2747timers_reify (EV_P)
2748{
2749 EV_FREQUENT_CHECK;
2750
2751 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2752 {
2753 do
2754 {
2755 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2756
2757 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2758
2759 /* first reschedule or stop timer */
2760 if (w->repeat)
2761 {
2762 ev_at (w) += w->repeat;
2763 if (ev_at (w) < mn_now)
2764 ev_at (w) = mn_now;
2765
2766 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2767
2768 ANHE_at_cache (timers [HEAP0]);
2769 downheap (timers, timercnt, HEAP0);
2770 }
2771 else
2772 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2773
2774 EV_FREQUENT_CHECK;
2775 feed_reverse (EV_A_ (W)w);
2776 }
2777 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2778
2779 feed_reverse_done (EV_A_ EV_TIMER);
2780 }
2781}
2782
2783#if EV_PERIODIC_ENABLE
2784
2785static void noinline
2786periodic_recalc (EV_P_ ev_periodic *w)
2787{
2788 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2789 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2790
2791 /* the above almost always errs on the low side */
2792 while (at <= ev_rt_now)
2793 {
2794 ev_tstamp nat = at + w->interval;
2795
2796 /* when resolution fails us, we use ev_rt_now */
2797 if (expect_false (nat == at))
2798 {
2799 at = ev_rt_now;
2800 break;
2801 }
2802
2803 at = nat;
2804 }
2805
2806 ev_at (w) = at;
2807}
2808
2809/* make periodics pending */
2810inline_size void
2811periodics_reify (EV_P)
2812{
2813 EV_FREQUENT_CHECK;
2814
2815 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2816 {
2817 int feed_count = 0;
2818
2819 do
2820 {
2821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2822
2823 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2824
2825 /* first reschedule or stop timer */
2826 if (w->reschedule_cb)
2827 {
2828 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2829
2830 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2831
2832 ANHE_at_cache (periodics [HEAP0]);
2833 downheap (periodics, periodiccnt, HEAP0);
2834 }
2835 else if (w->interval)
2836 {
2837 periodic_recalc (EV_A_ w);
2838 ANHE_at_cache (periodics [HEAP0]);
2839 downheap (periodics, periodiccnt, HEAP0);
2840 }
2841 else
2842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2843
2844 EV_FREQUENT_CHECK;
2845 feed_reverse (EV_A_ (W)w);
2846 }
2847 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2848
2849 feed_reverse_done (EV_A_ EV_PERIODIC);
2850 }
2851}
2852
2853/* simply recalculate all periodics */
2854/* TODO: maybe ensure that at least one event happens when jumping forward? */
2855static void noinline ecb_cold
2856periodics_reschedule (EV_P)
2857{
2858 int i;
2859
2860 /* adjust periodics after time jump */
2861 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2862 {
2863 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2864
2865 if (w->reschedule_cb)
2866 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2867 else if (w->interval)
2868 periodic_recalc (EV_A_ w);
2869
2870 ANHE_at_cache (periodics [i]);
2871 }
2872
2873 reheap (periodics, periodiccnt);
2874}
2875#endif
2876
2877/* adjust all timers by a given offset */
2878static void noinline ecb_cold
2879timers_reschedule (EV_P_ ev_tstamp adjust)
2880{
2881 int i;
2882
2883 for (i = 0; i < timercnt; ++i)
2884 {
2885 ANHE *he = timers + i + HEAP0;
2886 ANHE_w (*he)->at += adjust;
2887 ANHE_at_cache (*he);
2888 }
2889}
2890
2891/* fetch new monotonic and realtime times from the kernel */
2892/* also detect if there was a timejump, and act accordingly */
2893inline_speed void
1461time_update (EV_P_ ev_tstamp max_block) 2894time_update (EV_P_ ev_tstamp max_block)
1462{ 2895{
1463 int i;
1464
1465#if EV_USE_MONOTONIC 2896#if EV_USE_MONOTONIC
1466 if (expect_true (have_monotonic)) 2897 if (expect_true (have_monotonic))
1467 { 2898 {
2899 int i;
1468 ev_tstamp odiff = rtmn_diff; 2900 ev_tstamp odiff = rtmn_diff;
1469 2901
1470 mn_now = get_clock (); 2902 mn_now = get_clock ();
1471 2903
1472 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2904 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1488 * doesn't hurt either as we only do this on time-jumps or 2920 * doesn't hurt either as we only do this on time-jumps or
1489 * in the unlikely event of having been preempted here. 2921 * in the unlikely event of having been preempted here.
1490 */ 2922 */
1491 for (i = 4; --i; ) 2923 for (i = 4; --i; )
1492 { 2924 {
2925 ev_tstamp diff;
1493 rtmn_diff = ev_rt_now - mn_now; 2926 rtmn_diff = ev_rt_now - mn_now;
1494 2927
1495 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2928 diff = odiff - rtmn_diff;
2929
2930 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1496 return; /* all is well */ 2931 return; /* all is well */
1497 2932
1498 ev_rt_now = ev_time (); 2933 ev_rt_now = ev_time ();
1499 mn_now = get_clock (); 2934 mn_now = get_clock ();
1500 now_floor = mn_now; 2935 now_floor = mn_now;
1501 } 2936 }
1502 2937
2938 /* no timer adjustment, as the monotonic clock doesn't jump */
2939 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1503# if EV_PERIODIC_ENABLE 2940# if EV_PERIODIC_ENABLE
1504 periodics_reschedule (EV_A); 2941 periodics_reschedule (EV_A);
1505# endif 2942# endif
1506 /* no timer adjustment, as the monotonic clock doesn't jump */
1507 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1508 } 2943 }
1509 else 2944 else
1510#endif 2945#endif
1511 { 2946 {
1512 ev_rt_now = ev_time (); 2947 ev_rt_now = ev_time ();
1513 2948
1514 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2949 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1515 { 2950 {
2951 /* adjust timers. this is easy, as the offset is the same for all of them */
2952 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1516#if EV_PERIODIC_ENABLE 2953#if EV_PERIODIC_ENABLE
1517 periodics_reschedule (EV_A); 2954 periodics_reschedule (EV_A);
1518#endif 2955#endif
1519 /* adjust timers. this is easy, as the offset is the same for all of them */
1520 for (i = 0; i < timercnt; ++i)
1521 ((WT)timers [i])->at += ev_rt_now - mn_now;
1522 } 2956 }
1523 2957
1524 mn_now = ev_rt_now; 2958 mn_now = ev_rt_now;
1525 } 2959 }
1526} 2960}
1527 2961
1528void 2962int
1529ev_ref (EV_P)
1530{
1531 ++activecnt;
1532}
1533
1534void
1535ev_unref (EV_P)
1536{
1537 --activecnt;
1538}
1539
1540static int loop_done;
1541
1542void
1543ev_loop (EV_P_ int flags) 2963ev_run (EV_P_ int flags)
1544{ 2964{
1545 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2965#if EV_FEATURE_API
1546 ? EVUNLOOP_ONE 2966 ++loop_depth;
1547 : EVUNLOOP_CANCEL; 2967#endif
1548 2968
2969 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2970
2971 loop_done = EVBREAK_CANCEL;
2972
1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2973 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1550 2974
1551 do 2975 do
1552 { 2976 {
2977#if EV_VERIFY >= 2
2978 ev_verify (EV_A);
2979#endif
2980
1553#ifndef _WIN32 2981#ifndef _WIN32
1554 if (expect_false (curpid)) /* penalise the forking check even more */ 2982 if (expect_false (curpid)) /* penalise the forking check even more */
1555 if (expect_false (getpid () != curpid)) 2983 if (expect_false (getpid () != curpid))
1556 { 2984 {
1557 curpid = getpid (); 2985 curpid = getpid ();
1563 /* we might have forked, so queue fork handlers */ 2991 /* we might have forked, so queue fork handlers */
1564 if (expect_false (postfork)) 2992 if (expect_false (postfork))
1565 if (forkcnt) 2993 if (forkcnt)
1566 { 2994 {
1567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2995 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1568 call_pending (EV_A); 2996 EV_INVOKE_PENDING;
1569 } 2997 }
1570#endif 2998#endif
1571 2999
3000#if EV_PREPARE_ENABLE
1572 /* queue prepare watchers (and execute them) */ 3001 /* queue prepare watchers (and execute them) */
1573 if (expect_false (preparecnt)) 3002 if (expect_false (preparecnt))
1574 { 3003 {
1575 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3004 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1576 call_pending (EV_A); 3005 EV_INVOKE_PENDING;
1577 } 3006 }
3007#endif
1578 3008
1579 if (expect_false (!activecnt)) 3009 if (expect_false (loop_done))
1580 break; 3010 break;
1581 3011
1582 /* we might have forked, so reify kernel state if necessary */ 3012 /* we might have forked, so reify kernel state if necessary */
1583 if (expect_false (postfork)) 3013 if (expect_false (postfork))
1584 loop_fork (EV_A); 3014 loop_fork (EV_A);
1589 /* calculate blocking time */ 3019 /* calculate blocking time */
1590 { 3020 {
1591 ev_tstamp waittime = 0.; 3021 ev_tstamp waittime = 0.;
1592 ev_tstamp sleeptime = 0.; 3022 ev_tstamp sleeptime = 0.;
1593 3023
3024 /* remember old timestamp for io_blocktime calculation */
3025 ev_tstamp prev_mn_now = mn_now;
3026
3027 /* update time to cancel out callback processing overhead */
3028 time_update (EV_A_ 1e100);
3029
3030 /* from now on, we want a pipe-wake-up */
3031 pipe_write_wanted = 1;
3032
3033 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3034
1594 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3035 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1595 { 3036 {
1596 /* update time to cancel out callback processing overhead */
1597 time_update (EV_A_ 1e100);
1598
1599 waittime = MAX_BLOCKTIME; 3037 waittime = MAX_BLOCKTIME;
1600 3038
1601 if (timercnt) 3039 if (timercnt)
1602 { 3040 {
1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3041 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1604 if (waittime > to) waittime = to; 3042 if (waittime > to) waittime = to;
1605 } 3043 }
1606 3044
1607#if EV_PERIODIC_ENABLE 3045#if EV_PERIODIC_ENABLE
1608 if (periodiccnt) 3046 if (periodiccnt)
1609 { 3047 {
1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3048 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1611 if (waittime > to) waittime = to; 3049 if (waittime > to) waittime = to;
1612 } 3050 }
1613#endif 3051#endif
1614 3052
3053 /* don't let timeouts decrease the waittime below timeout_blocktime */
1615 if (expect_false (waittime < timeout_blocktime)) 3054 if (expect_false (waittime < timeout_blocktime))
1616 waittime = timeout_blocktime; 3055 waittime = timeout_blocktime;
1617 3056
1618 sleeptime = waittime - backend_fudge; 3057 /* at this point, we NEED to wait, so we have to ensure */
3058 /* to pass a minimum nonzero value to the backend */
3059 if (expect_false (waittime < backend_mintime))
3060 waittime = backend_mintime;
1619 3061
3062 /* extra check because io_blocktime is commonly 0 */
1620 if (expect_true (sleeptime > io_blocktime)) 3063 if (expect_false (io_blocktime))
1621 sleeptime = io_blocktime;
1622
1623 if (sleeptime)
1624 { 3064 {
3065 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3066
3067 if (sleeptime > waittime - backend_mintime)
3068 sleeptime = waittime - backend_mintime;
3069
3070 if (expect_true (sleeptime > 0.))
3071 {
1625 ev_sleep (sleeptime); 3072 ev_sleep (sleeptime);
1626 waittime -= sleeptime; 3073 waittime -= sleeptime;
3074 }
1627 } 3075 }
1628 } 3076 }
1629 3077
3078#if EV_FEATURE_API
1630 ++loop_count; 3079 ++loop_count;
3080#endif
3081 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1631 backend_poll (EV_A_ waittime); 3082 backend_poll (EV_A_ waittime);
3083 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3084
3085 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3086
3087 if (pipe_write_skipped)
3088 {
3089 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3090 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3091 }
3092
1632 3093
1633 /* update ev_rt_now, do magic */ 3094 /* update ev_rt_now, do magic */
1634 time_update (EV_A_ waittime + sleeptime); 3095 time_update (EV_A_ waittime + sleeptime);
1635 } 3096 }
1636 3097
1643#if EV_IDLE_ENABLE 3104#if EV_IDLE_ENABLE
1644 /* queue idle watchers unless other events are pending */ 3105 /* queue idle watchers unless other events are pending */
1645 idle_reify (EV_A); 3106 idle_reify (EV_A);
1646#endif 3107#endif
1647 3108
3109#if EV_CHECK_ENABLE
1648 /* queue check watchers, to be executed first */ 3110 /* queue check watchers, to be executed first */
1649 if (expect_false (checkcnt)) 3111 if (expect_false (checkcnt))
1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3112 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3113#endif
1651 3114
1652 call_pending (EV_A); 3115 EV_INVOKE_PENDING;
1653
1654 } 3116 }
1655 while (expect_true (activecnt && !loop_done)); 3117 while (expect_true (
3118 activecnt
3119 && !loop_done
3120 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3121 ));
1656 3122
1657 if (loop_done == EVUNLOOP_ONE) 3123 if (loop_done == EVBREAK_ONE)
1658 loop_done = EVUNLOOP_CANCEL; 3124 loop_done = EVBREAK_CANCEL;
3125
3126#if EV_FEATURE_API
3127 --loop_depth;
3128#endif
3129
3130 return activecnt;
1659} 3131}
1660 3132
1661void 3133void
1662ev_unloop (EV_P_ int how) 3134ev_break (EV_P_ int how) EV_THROW
1663{ 3135{
1664 loop_done = how; 3136 loop_done = how;
1665} 3137}
1666 3138
3139void
3140ev_ref (EV_P) EV_THROW
3141{
3142 ++activecnt;
3143}
3144
3145void
3146ev_unref (EV_P) EV_THROW
3147{
3148 --activecnt;
3149}
3150
3151void
3152ev_now_update (EV_P) EV_THROW
3153{
3154 time_update (EV_A_ 1e100);
3155}
3156
3157void
3158ev_suspend (EV_P) EV_THROW
3159{
3160 ev_now_update (EV_A);
3161}
3162
3163void
3164ev_resume (EV_P) EV_THROW
3165{
3166 ev_tstamp mn_prev = mn_now;
3167
3168 ev_now_update (EV_A);
3169 timers_reschedule (EV_A_ mn_now - mn_prev);
3170#if EV_PERIODIC_ENABLE
3171 /* TODO: really do this? */
3172 periodics_reschedule (EV_A);
3173#endif
3174}
3175
1667/*****************************************************************************/ 3176/*****************************************************************************/
3177/* singly-linked list management, used when the expected list length is short */
1668 3178
1669void inline_size 3179inline_size void
1670wlist_add (WL *head, WL elem) 3180wlist_add (WL *head, WL elem)
1671{ 3181{
1672 elem->next = *head; 3182 elem->next = *head;
1673 *head = elem; 3183 *head = elem;
1674} 3184}
1675 3185
1676void inline_size 3186inline_size void
1677wlist_del (WL *head, WL elem) 3187wlist_del (WL *head, WL elem)
1678{ 3188{
1679 while (*head) 3189 while (*head)
1680 { 3190 {
1681 if (*head == elem) 3191 if (expect_true (*head == elem))
1682 { 3192 {
1683 *head = elem->next; 3193 *head = elem->next;
1684 return; 3194 break;
1685 } 3195 }
1686 3196
1687 head = &(*head)->next; 3197 head = &(*head)->next;
1688 } 3198 }
1689} 3199}
1690 3200
1691void inline_speed 3201/* internal, faster, version of ev_clear_pending */
3202inline_speed void
1692clear_pending (EV_P_ W w) 3203clear_pending (EV_P_ W w)
1693{ 3204{
1694 if (w->pending) 3205 if (w->pending)
1695 { 3206 {
1696 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3207 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1697 w->pending = 0; 3208 w->pending = 0;
1698 } 3209 }
1699} 3210}
1700 3211
1701int 3212int
1702ev_clear_pending (EV_P_ void *w) 3213ev_clear_pending (EV_P_ void *w) EV_THROW
1703{ 3214{
1704 W w_ = (W)w; 3215 W w_ = (W)w;
1705 int pending = w_->pending; 3216 int pending = w_->pending;
1706 3217
1707 if (expect_true (pending)) 3218 if (expect_true (pending))
1708 { 3219 {
1709 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3220 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3221 p->w = (W)&pending_w;
1710 w_->pending = 0; 3222 w_->pending = 0;
1711 p->w = 0;
1712 return p->events; 3223 return p->events;
1713 } 3224 }
1714 else 3225 else
1715 return 0; 3226 return 0;
1716} 3227}
1717 3228
1718void inline_size 3229inline_size void
1719pri_adjust (EV_P_ W w) 3230pri_adjust (EV_P_ W w)
1720{ 3231{
1721 int pri = w->priority; 3232 int pri = ev_priority (w);
1722 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3233 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1723 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3234 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1724 w->priority = pri; 3235 ev_set_priority (w, pri);
1725} 3236}
1726 3237
1727void inline_speed 3238inline_speed void
1728ev_start (EV_P_ W w, int active) 3239ev_start (EV_P_ W w, int active)
1729{ 3240{
1730 pri_adjust (EV_A_ w); 3241 pri_adjust (EV_A_ w);
1731 w->active = active; 3242 w->active = active;
1732 ev_ref (EV_A); 3243 ev_ref (EV_A);
1733} 3244}
1734 3245
1735void inline_size 3246inline_size void
1736ev_stop (EV_P_ W w) 3247ev_stop (EV_P_ W w)
1737{ 3248{
1738 ev_unref (EV_A); 3249 ev_unref (EV_A);
1739 w->active = 0; 3250 w->active = 0;
1740} 3251}
1741 3252
1742/*****************************************************************************/ 3253/*****************************************************************************/
1743 3254
1744void noinline 3255void noinline
1745ev_io_start (EV_P_ ev_io *w) 3256ev_io_start (EV_P_ ev_io *w) EV_THROW
1746{ 3257{
1747 int fd = w->fd; 3258 int fd = w->fd;
1748 3259
1749 if (expect_false (ev_is_active (w))) 3260 if (expect_false (ev_is_active (w)))
1750 return; 3261 return;
1751 3262
1752 assert (("ev_io_start called with negative fd", fd >= 0)); 3263 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3264 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3265
3266 EV_FREQUENT_CHECK;
1753 3267
1754 ev_start (EV_A_ (W)w, 1); 3268 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3269 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1756 wlist_add (&anfds[fd].head, (WL)w); 3270 wlist_add (&anfds[fd].head, (WL)w);
1757 3271
3272 /* common bug, apparently */
3273 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3274
1758 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3275 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1759 w->events &= ~EV_IOFDSET; 3276 w->events &= ~EV__IOFDSET;
3277
3278 EV_FREQUENT_CHECK;
1760} 3279}
1761 3280
1762void noinline 3281void noinline
1763ev_io_stop (EV_P_ ev_io *w) 3282ev_io_stop (EV_P_ ev_io *w) EV_THROW
1764{ 3283{
1765 clear_pending (EV_A_ (W)w); 3284 clear_pending (EV_A_ (W)w);
1766 if (expect_false (!ev_is_active (w))) 3285 if (expect_false (!ev_is_active (w)))
1767 return; 3286 return;
1768 3287
1769 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3288 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3289
3290 EV_FREQUENT_CHECK;
1770 3291
1771 wlist_del (&anfds[w->fd].head, (WL)w); 3292 wlist_del (&anfds[w->fd].head, (WL)w);
1772 ev_stop (EV_A_ (W)w); 3293 ev_stop (EV_A_ (W)w);
1773 3294
1774 fd_change (EV_A_ w->fd, 1); 3295 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3296
3297 EV_FREQUENT_CHECK;
1775} 3298}
1776 3299
1777void noinline 3300void noinline
1778ev_timer_start (EV_P_ ev_timer *w) 3301ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1779{ 3302{
1780 if (expect_false (ev_is_active (w))) 3303 if (expect_false (ev_is_active (w)))
1781 return; 3304 return;
1782 3305
1783 ((WT)w)->at += mn_now; 3306 ev_at (w) += mn_now;
1784 3307
1785 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3308 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1786 3309
3310 EV_FREQUENT_CHECK;
3311
3312 ++timercnt;
1787 ev_start (EV_A_ (W)w, ++timercnt); 3313 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1788 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3314 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1789 timers [timercnt - 1] = (WT)w; 3315 ANHE_w (timers [ev_active (w)]) = (WT)w;
1790 upheap (timers, timercnt - 1); 3316 ANHE_at_cache (timers [ev_active (w)]);
3317 upheap (timers, ev_active (w));
1791 3318
3319 EV_FREQUENT_CHECK;
3320
1792 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3321 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1793} 3322}
1794 3323
1795void noinline 3324void noinline
1796ev_timer_stop (EV_P_ ev_timer *w) 3325ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1797{ 3326{
1798 clear_pending (EV_A_ (W)w); 3327 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 3328 if (expect_false (!ev_is_active (w)))
1800 return; 3329 return;
1801 3330
1802 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3331 EV_FREQUENT_CHECK;
1803 3332
1804 { 3333 {
1805 int active = ((W)w)->active; 3334 int active = ev_active (w);
1806 3335
3336 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3337
3338 --timercnt;
3339
1807 if (expect_true (--active < --timercnt)) 3340 if (expect_true (active < timercnt + HEAP0))
1808 { 3341 {
1809 timers [active] = timers [timercnt]; 3342 timers [active] = timers [timercnt + HEAP0];
1810 adjustheap (timers, timercnt, active); 3343 adjustheap (timers, timercnt, active);
1811 } 3344 }
1812 } 3345 }
1813 3346
1814 ((WT)w)->at -= mn_now; 3347 ev_at (w) -= mn_now;
1815 3348
1816 ev_stop (EV_A_ (W)w); 3349 ev_stop (EV_A_ (W)w);
3350
3351 EV_FREQUENT_CHECK;
1817} 3352}
1818 3353
1819void noinline 3354void noinline
1820ev_timer_again (EV_P_ ev_timer *w) 3355ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1821{ 3356{
3357 EV_FREQUENT_CHECK;
3358
3359 clear_pending (EV_A_ (W)w);
3360
1822 if (ev_is_active (w)) 3361 if (ev_is_active (w))
1823 { 3362 {
1824 if (w->repeat) 3363 if (w->repeat)
1825 { 3364 {
1826 ((WT)w)->at = mn_now + w->repeat; 3365 ev_at (w) = mn_now + w->repeat;
3366 ANHE_at_cache (timers [ev_active (w)]);
1827 adjustheap (timers, timercnt, ((W)w)->active - 1); 3367 adjustheap (timers, timercnt, ev_active (w));
1828 } 3368 }
1829 else 3369 else
1830 ev_timer_stop (EV_A_ w); 3370 ev_timer_stop (EV_A_ w);
1831 } 3371 }
1832 else if (w->repeat) 3372 else if (w->repeat)
1833 { 3373 {
1834 w->at = w->repeat; 3374 ev_at (w) = w->repeat;
1835 ev_timer_start (EV_A_ w); 3375 ev_timer_start (EV_A_ w);
1836 } 3376 }
3377
3378 EV_FREQUENT_CHECK;
3379}
3380
3381ev_tstamp
3382ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3383{
3384 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1837} 3385}
1838 3386
1839#if EV_PERIODIC_ENABLE 3387#if EV_PERIODIC_ENABLE
1840void noinline 3388void noinline
1841ev_periodic_start (EV_P_ ev_periodic *w) 3389ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1842{ 3390{
1843 if (expect_false (ev_is_active (w))) 3391 if (expect_false (ev_is_active (w)))
1844 return; 3392 return;
1845 3393
1846 if (w->reschedule_cb) 3394 if (w->reschedule_cb)
1847 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3395 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1848 else if (w->interval) 3396 else if (w->interval)
1849 { 3397 {
1850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3398 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1851 /* this formula differs from the one in periodic_reify because we do not always round up */ 3399 periodic_recalc (EV_A_ w);
1852 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1853 } 3400 }
1854 else 3401 else
1855 ((WT)w)->at = w->offset; 3402 ev_at (w) = w->offset;
1856 3403
3404 EV_FREQUENT_CHECK;
3405
3406 ++periodiccnt;
1857 ev_start (EV_A_ (W)w, ++periodiccnt); 3407 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1858 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3408 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1859 periodics [periodiccnt - 1] = (WT)w; 3409 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1860 upheap (periodics, periodiccnt - 1); 3410 ANHE_at_cache (periodics [ev_active (w)]);
3411 upheap (periodics, ev_active (w));
1861 3412
3413 EV_FREQUENT_CHECK;
3414
1862 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3415 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1863} 3416}
1864 3417
1865void noinline 3418void noinline
1866ev_periodic_stop (EV_P_ ev_periodic *w) 3419ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1867{ 3420{
1868 clear_pending (EV_A_ (W)w); 3421 clear_pending (EV_A_ (W)w);
1869 if (expect_false (!ev_is_active (w))) 3422 if (expect_false (!ev_is_active (w)))
1870 return; 3423 return;
1871 3424
1872 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3425 EV_FREQUENT_CHECK;
1873 3426
1874 { 3427 {
1875 int active = ((W)w)->active; 3428 int active = ev_active (w);
1876 3429
3430 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3431
3432 --periodiccnt;
3433
1877 if (expect_true (--active < --periodiccnt)) 3434 if (expect_true (active < periodiccnt + HEAP0))
1878 { 3435 {
1879 periodics [active] = periodics [periodiccnt]; 3436 periodics [active] = periodics [periodiccnt + HEAP0];
1880 adjustheap (periodics, periodiccnt, active); 3437 adjustheap (periodics, periodiccnt, active);
1881 } 3438 }
1882 } 3439 }
1883 3440
1884 ev_stop (EV_A_ (W)w); 3441 ev_stop (EV_A_ (W)w);
3442
3443 EV_FREQUENT_CHECK;
1885} 3444}
1886 3445
1887void noinline 3446void noinline
1888ev_periodic_again (EV_P_ ev_periodic *w) 3447ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1889{ 3448{
1890 /* TODO: use adjustheap and recalculation */ 3449 /* TODO: use adjustheap and recalculation */
1891 ev_periodic_stop (EV_A_ w); 3450 ev_periodic_stop (EV_A_ w);
1892 ev_periodic_start (EV_A_ w); 3451 ev_periodic_start (EV_A_ w);
1893} 3452}
1895 3454
1896#ifndef SA_RESTART 3455#ifndef SA_RESTART
1897# define SA_RESTART 0 3456# define SA_RESTART 0
1898#endif 3457#endif
1899 3458
3459#if EV_SIGNAL_ENABLE
3460
1900void noinline 3461void noinline
1901ev_signal_start (EV_P_ ev_signal *w) 3462ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1902{ 3463{
1903#if EV_MULTIPLICITY
1904 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1905#endif
1906 if (expect_false (ev_is_active (w))) 3464 if (expect_false (ev_is_active (w)))
1907 return; 3465 return;
1908 3466
1909 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3467 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1910 3468
1911 evpipe_init (EV_A); 3469#if EV_MULTIPLICITY
3470 assert (("libev: a signal must not be attached to two different loops",
3471 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1912 3472
3473 signals [w->signum - 1].loop = EV_A;
3474#endif
3475
3476 EV_FREQUENT_CHECK;
3477
3478#if EV_USE_SIGNALFD
3479 if (sigfd == -2)
1913 { 3480 {
1914#ifndef _WIN32 3481 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1915 sigset_t full, prev; 3482 if (sigfd < 0 && errno == EINVAL)
1916 sigfillset (&full); 3483 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1917 sigprocmask (SIG_SETMASK, &full, &prev);
1918#endif
1919 3484
1920 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3485 if (sigfd >= 0)
3486 {
3487 fd_intern (sigfd); /* doing it twice will not hurt */
1921 3488
1922#ifndef _WIN32 3489 sigemptyset (&sigfd_set);
1923 sigprocmask (SIG_SETMASK, &prev, 0); 3490
1924#endif 3491 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3492 ev_set_priority (&sigfd_w, EV_MAXPRI);
3493 ev_io_start (EV_A_ &sigfd_w);
3494 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3495 }
1925 } 3496 }
3497
3498 if (sigfd >= 0)
3499 {
3500 /* TODO: check .head */
3501 sigaddset (&sigfd_set, w->signum);
3502 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3503
3504 signalfd (sigfd, &sigfd_set, 0);
3505 }
3506#endif
1926 3507
1927 ev_start (EV_A_ (W)w, 1); 3508 ev_start (EV_A_ (W)w, 1);
1928 wlist_add (&signals [w->signum - 1].head, (WL)w); 3509 wlist_add (&signals [w->signum - 1].head, (WL)w);
1929 3510
1930 if (!((WL)w)->next) 3511 if (!((WL)w)->next)
3512# if EV_USE_SIGNALFD
3513 if (sigfd < 0) /*TODO*/
3514# endif
1931 { 3515 {
1932#if _WIN32 3516# ifdef _WIN32
3517 evpipe_init (EV_A);
3518
1933 signal (w->signum, sighandler); 3519 signal (w->signum, ev_sighandler);
1934#else 3520# else
1935 struct sigaction sa; 3521 struct sigaction sa;
3522
3523 evpipe_init (EV_A);
3524
1936 sa.sa_handler = sighandler; 3525 sa.sa_handler = ev_sighandler;
1937 sigfillset (&sa.sa_mask); 3526 sigfillset (&sa.sa_mask);
1938 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3527 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1939 sigaction (w->signum, &sa, 0); 3528 sigaction (w->signum, &sa, 0);
3529
3530 if (origflags & EVFLAG_NOSIGMASK)
3531 {
3532 sigemptyset (&sa.sa_mask);
3533 sigaddset (&sa.sa_mask, w->signum);
3534 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3535 }
1940#endif 3536#endif
1941 } 3537 }
3538
3539 EV_FREQUENT_CHECK;
1942} 3540}
1943 3541
1944void noinline 3542void noinline
1945ev_signal_stop (EV_P_ ev_signal *w) 3543ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1946{ 3544{
1947 clear_pending (EV_A_ (W)w); 3545 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 3546 if (expect_false (!ev_is_active (w)))
1949 return; 3547 return;
1950 3548
3549 EV_FREQUENT_CHECK;
3550
1951 wlist_del (&signals [w->signum - 1].head, (WL)w); 3551 wlist_del (&signals [w->signum - 1].head, (WL)w);
1952 ev_stop (EV_A_ (W)w); 3552 ev_stop (EV_A_ (W)w);
1953 3553
1954 if (!signals [w->signum - 1].head) 3554 if (!signals [w->signum - 1].head)
3555 {
3556#if EV_MULTIPLICITY
3557 signals [w->signum - 1].loop = 0; /* unattach from signal */
3558#endif
3559#if EV_USE_SIGNALFD
3560 if (sigfd >= 0)
3561 {
3562 sigset_t ss;
3563
3564 sigemptyset (&ss);
3565 sigaddset (&ss, w->signum);
3566 sigdelset (&sigfd_set, w->signum);
3567
3568 signalfd (sigfd, &sigfd_set, 0);
3569 sigprocmask (SIG_UNBLOCK, &ss, 0);
3570 }
3571 else
3572#endif
1955 signal (w->signum, SIG_DFL); 3573 signal (w->signum, SIG_DFL);
3574 }
3575
3576 EV_FREQUENT_CHECK;
1956} 3577}
3578
3579#endif
3580
3581#if EV_CHILD_ENABLE
1957 3582
1958void 3583void
1959ev_child_start (EV_P_ ev_child *w) 3584ev_child_start (EV_P_ ev_child *w) EV_THROW
1960{ 3585{
1961#if EV_MULTIPLICITY 3586#if EV_MULTIPLICITY
1962 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3587 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1963#endif 3588#endif
1964 if (expect_false (ev_is_active (w))) 3589 if (expect_false (ev_is_active (w)))
1965 return; 3590 return;
1966 3591
3592 EV_FREQUENT_CHECK;
3593
1967 ev_start (EV_A_ (W)w, 1); 3594 ev_start (EV_A_ (W)w, 1);
1968 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3595 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3596
3597 EV_FREQUENT_CHECK;
1969} 3598}
1970 3599
1971void 3600void
1972ev_child_stop (EV_P_ ev_child *w) 3601ev_child_stop (EV_P_ ev_child *w) EV_THROW
1973{ 3602{
1974 clear_pending (EV_A_ (W)w); 3603 clear_pending (EV_A_ (W)w);
1975 if (expect_false (!ev_is_active (w))) 3604 if (expect_false (!ev_is_active (w)))
1976 return; 3605 return;
1977 3606
3607 EV_FREQUENT_CHECK;
3608
1978 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3609 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1979 ev_stop (EV_A_ (W)w); 3610 ev_stop (EV_A_ (W)w);
3611
3612 EV_FREQUENT_CHECK;
1980} 3613}
3614
3615#endif
1981 3616
1982#if EV_STAT_ENABLE 3617#if EV_STAT_ENABLE
1983 3618
1984# ifdef _WIN32 3619# ifdef _WIN32
1985# undef lstat 3620# undef lstat
1986# define lstat(a,b) _stati64 (a,b) 3621# define lstat(a,b) _stati64 (a,b)
1987# endif 3622# endif
1988 3623
1989#define DEF_STAT_INTERVAL 5.0074891 3624#define DEF_STAT_INTERVAL 5.0074891
3625#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1990#define MIN_STAT_INTERVAL 0.1074891 3626#define MIN_STAT_INTERVAL 0.1074891
1991 3627
1992static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3628static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1993 3629
1994#if EV_USE_INOTIFY 3630#if EV_USE_INOTIFY
1995# define EV_INOTIFY_BUFSIZE 8192 3631
3632/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3633# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1996 3634
1997static void noinline 3635static void noinline
1998infy_add (EV_P_ ev_stat *w) 3636infy_add (EV_P_ ev_stat *w)
1999{ 3637{
2000 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3638 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2001 3639
2002 if (w->wd < 0) 3640 if (w->wd >= 0)
3641 {
3642 struct statfs sfs;
3643
3644 /* now local changes will be tracked by inotify, but remote changes won't */
3645 /* unless the filesystem is known to be local, we therefore still poll */
3646 /* also do poll on <2.6.25, but with normal frequency */
3647
3648 if (!fs_2625)
3649 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3650 else if (!statfs (w->path, &sfs)
3651 && (sfs.f_type == 0x1373 /* devfs */
3652 || sfs.f_type == 0xEF53 /* ext2/3 */
3653 || sfs.f_type == 0x3153464a /* jfs */
3654 || sfs.f_type == 0x52654973 /* reiser3 */
3655 || sfs.f_type == 0x01021994 /* tempfs */
3656 || sfs.f_type == 0x58465342 /* xfs */))
3657 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3658 else
3659 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2003 { 3660 }
2004 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3661 else
3662 {
3663 /* can't use inotify, continue to stat */
3664 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2005 3665
2006 /* monitor some parent directory for speedup hints */ 3666 /* if path is not there, monitor some parent directory for speedup hints */
3667 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3668 /* but an efficiency issue only */
2007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3669 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2008 { 3670 {
2009 char path [4096]; 3671 char path [4096];
2010 strcpy (path, w->path); 3672 strcpy (path, w->path);
2011 3673
2014 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3676 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2015 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3677 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2016 3678
2017 char *pend = strrchr (path, '/'); 3679 char *pend = strrchr (path, '/');
2018 3680
2019 if (!pend) 3681 if (!pend || pend == path)
2020 break; /* whoops, no '/', complain to your admin */ 3682 break;
2021 3683
2022 *pend = 0; 3684 *pend = 0;
2023 w->wd = inotify_add_watch (fs_fd, path, mask); 3685 w->wd = inotify_add_watch (fs_fd, path, mask);
2024 } 3686 }
2025 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3687 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2026 } 3688 }
2027 } 3689 }
2028 else
2029 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2030 3690
2031 if (w->wd >= 0) 3691 if (w->wd >= 0)
2032 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3692 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3693
3694 /* now re-arm timer, if required */
3695 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3696 ev_timer_again (EV_A_ &w->timer);
3697 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2033} 3698}
2034 3699
2035static void noinline 3700static void noinline
2036infy_del (EV_P_ ev_stat *w) 3701infy_del (EV_P_ ev_stat *w)
2037{ 3702{
2040 3705
2041 if (wd < 0) 3706 if (wd < 0)
2042 return; 3707 return;
2043 3708
2044 w->wd = -2; 3709 w->wd = -2;
2045 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3710 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2046 wlist_del (&fs_hash [slot].head, (WL)w); 3711 wlist_del (&fs_hash [slot].head, (WL)w);
2047 3712
2048 /* remove this watcher, if others are watching it, they will rearm */ 3713 /* remove this watcher, if others are watching it, they will rearm */
2049 inotify_rm_watch (fs_fd, wd); 3714 inotify_rm_watch (fs_fd, wd);
2050} 3715}
2051 3716
2052static void noinline 3717static void noinline
2053infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3718infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2054{ 3719{
2055 if (slot < 0) 3720 if (slot < 0)
2056 /* overflow, need to check for all hahs slots */ 3721 /* overflow, need to check for all hash slots */
2057 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3722 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2058 infy_wd (EV_A_ slot, wd, ev); 3723 infy_wd (EV_A_ slot, wd, ev);
2059 else 3724 else
2060 { 3725 {
2061 WL w_; 3726 WL w_;
2062 3727
2063 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3728 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2064 { 3729 {
2065 ev_stat *w = (ev_stat *)w_; 3730 ev_stat *w = (ev_stat *)w_;
2066 w_ = w_->next; /* lets us remove this watcher and all before it */ 3731 w_ = w_->next; /* lets us remove this watcher and all before it */
2067 3732
2068 if (w->wd == wd || wd == -1) 3733 if (w->wd == wd || wd == -1)
2069 { 3734 {
2070 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3735 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2071 { 3736 {
3737 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2072 w->wd = -1; 3738 w->wd = -1;
2073 infy_add (EV_A_ w); /* re-add, no matter what */ 3739 infy_add (EV_A_ w); /* re-add, no matter what */
2074 } 3740 }
2075 3741
2076 stat_timer_cb (EV_A_ &w->timer, 0); 3742 stat_timer_cb (EV_A_ &w->timer, 0);
2081 3747
2082static void 3748static void
2083infy_cb (EV_P_ ev_io *w, int revents) 3749infy_cb (EV_P_ ev_io *w, int revents)
2084{ 3750{
2085 char buf [EV_INOTIFY_BUFSIZE]; 3751 char buf [EV_INOTIFY_BUFSIZE];
2086 struct inotify_event *ev = (struct inotify_event *)buf;
2087 int ofs; 3752 int ofs;
2088 int len = read (fs_fd, buf, sizeof (buf)); 3753 int len = read (fs_fd, buf, sizeof (buf));
2089 3754
2090 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3755 for (ofs = 0; ofs < len; )
3756 {
3757 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2091 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3758 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3759 ofs += sizeof (struct inotify_event) + ev->len;
3760 }
2092} 3761}
2093 3762
2094void inline_size 3763inline_size void ecb_cold
3764ev_check_2625 (EV_P)
3765{
3766 /* kernels < 2.6.25 are borked
3767 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3768 */
3769 if (ev_linux_version () < 0x020619)
3770 return;
3771
3772 fs_2625 = 1;
3773}
3774
3775inline_size int
3776infy_newfd (void)
3777{
3778#if defined IN_CLOEXEC && defined IN_NONBLOCK
3779 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3780 if (fd >= 0)
3781 return fd;
3782#endif
3783 return inotify_init ();
3784}
3785
3786inline_size void
2095infy_init (EV_P) 3787infy_init (EV_P)
2096{ 3788{
2097 if (fs_fd != -2) 3789 if (fs_fd != -2)
2098 return; 3790 return;
2099 3791
3792 fs_fd = -1;
3793
3794 ev_check_2625 (EV_A);
3795
2100 fs_fd = inotify_init (); 3796 fs_fd = infy_newfd ();
2101 3797
2102 if (fs_fd >= 0) 3798 if (fs_fd >= 0)
2103 { 3799 {
3800 fd_intern (fs_fd);
2104 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3801 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2105 ev_set_priority (&fs_w, EV_MAXPRI); 3802 ev_set_priority (&fs_w, EV_MAXPRI);
2106 ev_io_start (EV_A_ &fs_w); 3803 ev_io_start (EV_A_ &fs_w);
3804 ev_unref (EV_A);
2107 } 3805 }
2108} 3806}
2109 3807
2110void inline_size 3808inline_size void
2111infy_fork (EV_P) 3809infy_fork (EV_P)
2112{ 3810{
2113 int slot; 3811 int slot;
2114 3812
2115 if (fs_fd < 0) 3813 if (fs_fd < 0)
2116 return; 3814 return;
2117 3815
3816 ev_ref (EV_A);
3817 ev_io_stop (EV_A_ &fs_w);
2118 close (fs_fd); 3818 close (fs_fd);
2119 fs_fd = inotify_init (); 3819 fs_fd = infy_newfd ();
2120 3820
3821 if (fs_fd >= 0)
3822 {
3823 fd_intern (fs_fd);
3824 ev_io_set (&fs_w, fs_fd, EV_READ);
3825 ev_io_start (EV_A_ &fs_w);
3826 ev_unref (EV_A);
3827 }
3828
2121 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3829 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2122 { 3830 {
2123 WL w_ = fs_hash [slot].head; 3831 WL w_ = fs_hash [slot].head;
2124 fs_hash [slot].head = 0; 3832 fs_hash [slot].head = 0;
2125 3833
2126 while (w_) 3834 while (w_)
2131 w->wd = -1; 3839 w->wd = -1;
2132 3840
2133 if (fs_fd >= 0) 3841 if (fs_fd >= 0)
2134 infy_add (EV_A_ w); /* re-add, no matter what */ 3842 infy_add (EV_A_ w); /* re-add, no matter what */
2135 else 3843 else
3844 {
3845 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3846 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2136 ev_timer_start (EV_A_ &w->timer); 3847 ev_timer_again (EV_A_ &w->timer);
3848 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3849 }
2137 } 3850 }
2138
2139 } 3851 }
2140} 3852}
2141 3853
3854#endif
3855
3856#ifdef _WIN32
3857# define EV_LSTAT(p,b) _stati64 (p, b)
3858#else
3859# define EV_LSTAT(p,b) lstat (p, b)
2142#endif 3860#endif
2143 3861
2144void 3862void
2145ev_stat_stat (EV_P_ ev_stat *w) 3863ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2146{ 3864{
2147 if (lstat (w->path, &w->attr) < 0) 3865 if (lstat (w->path, &w->attr) < 0)
2148 w->attr.st_nlink = 0; 3866 w->attr.st_nlink = 0;
2149 else if (!w->attr.st_nlink) 3867 else if (!w->attr.st_nlink)
2150 w->attr.st_nlink = 1; 3868 w->attr.st_nlink = 1;
2153static void noinline 3871static void noinline
2154stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3872stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2155{ 3873{
2156 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3874 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2157 3875
2158 /* we copy this here each the time so that */ 3876 ev_statdata prev = w->attr;
2159 /* prev has the old value when the callback gets invoked */
2160 w->prev = w->attr;
2161 ev_stat_stat (EV_A_ w); 3877 ev_stat_stat (EV_A_ w);
2162 3878
2163 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3879 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2164 if ( 3880 if (
2165 w->prev.st_dev != w->attr.st_dev 3881 prev.st_dev != w->attr.st_dev
2166 || w->prev.st_ino != w->attr.st_ino 3882 || prev.st_ino != w->attr.st_ino
2167 || w->prev.st_mode != w->attr.st_mode 3883 || prev.st_mode != w->attr.st_mode
2168 || w->prev.st_nlink != w->attr.st_nlink 3884 || prev.st_nlink != w->attr.st_nlink
2169 || w->prev.st_uid != w->attr.st_uid 3885 || prev.st_uid != w->attr.st_uid
2170 || w->prev.st_gid != w->attr.st_gid 3886 || prev.st_gid != w->attr.st_gid
2171 || w->prev.st_rdev != w->attr.st_rdev 3887 || prev.st_rdev != w->attr.st_rdev
2172 || w->prev.st_size != w->attr.st_size 3888 || prev.st_size != w->attr.st_size
2173 || w->prev.st_atime != w->attr.st_atime 3889 || prev.st_atime != w->attr.st_atime
2174 || w->prev.st_mtime != w->attr.st_mtime 3890 || prev.st_mtime != w->attr.st_mtime
2175 || w->prev.st_ctime != w->attr.st_ctime 3891 || prev.st_ctime != w->attr.st_ctime
2176 ) { 3892 ) {
3893 /* we only update w->prev on actual differences */
3894 /* in case we test more often than invoke the callback, */
3895 /* to ensure that prev is always different to attr */
3896 w->prev = prev;
3897
2177 #if EV_USE_INOTIFY 3898 #if EV_USE_INOTIFY
3899 if (fs_fd >= 0)
3900 {
2178 infy_del (EV_A_ w); 3901 infy_del (EV_A_ w);
2179 infy_add (EV_A_ w); 3902 infy_add (EV_A_ w);
2180 ev_stat_stat (EV_A_ w); /* avoid race... */ 3903 ev_stat_stat (EV_A_ w); /* avoid race... */
3904 }
2181 #endif 3905 #endif
2182 3906
2183 ev_feed_event (EV_A_ w, EV_STAT); 3907 ev_feed_event (EV_A_ w, EV_STAT);
2184 } 3908 }
2185} 3909}
2186 3910
2187void 3911void
2188ev_stat_start (EV_P_ ev_stat *w) 3912ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2189{ 3913{
2190 if (expect_false (ev_is_active (w))) 3914 if (expect_false (ev_is_active (w)))
2191 return; 3915 return;
2192 3916
2193 /* since we use memcmp, we need to clear any padding data etc. */
2194 memset (&w->prev, 0, sizeof (ev_statdata));
2195 memset (&w->attr, 0, sizeof (ev_statdata));
2196
2197 ev_stat_stat (EV_A_ w); 3917 ev_stat_stat (EV_A_ w);
2198 3918
3919 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2199 if (w->interval < MIN_STAT_INTERVAL) 3920 w->interval = MIN_STAT_INTERVAL;
2200 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2201 3921
2202 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3922 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2203 ev_set_priority (&w->timer, ev_priority (w)); 3923 ev_set_priority (&w->timer, ev_priority (w));
2204 3924
2205#if EV_USE_INOTIFY 3925#if EV_USE_INOTIFY
2206 infy_init (EV_A); 3926 infy_init (EV_A);
2207 3927
2208 if (fs_fd >= 0) 3928 if (fs_fd >= 0)
2209 infy_add (EV_A_ w); 3929 infy_add (EV_A_ w);
2210 else 3930 else
2211#endif 3931#endif
3932 {
2212 ev_timer_start (EV_A_ &w->timer); 3933 ev_timer_again (EV_A_ &w->timer);
3934 ev_unref (EV_A);
3935 }
2213 3936
2214 ev_start (EV_A_ (W)w, 1); 3937 ev_start (EV_A_ (W)w, 1);
3938
3939 EV_FREQUENT_CHECK;
2215} 3940}
2216 3941
2217void 3942void
2218ev_stat_stop (EV_P_ ev_stat *w) 3943ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2219{ 3944{
2220 clear_pending (EV_A_ (W)w); 3945 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 3946 if (expect_false (!ev_is_active (w)))
2222 return; 3947 return;
2223 3948
3949 EV_FREQUENT_CHECK;
3950
2224#if EV_USE_INOTIFY 3951#if EV_USE_INOTIFY
2225 infy_del (EV_A_ w); 3952 infy_del (EV_A_ w);
2226#endif 3953#endif
3954
3955 if (ev_is_active (&w->timer))
3956 {
3957 ev_ref (EV_A);
2227 ev_timer_stop (EV_A_ &w->timer); 3958 ev_timer_stop (EV_A_ &w->timer);
3959 }
2228 3960
2229 ev_stop (EV_A_ (W)w); 3961 ev_stop (EV_A_ (W)w);
3962
3963 EV_FREQUENT_CHECK;
2230} 3964}
2231#endif 3965#endif
2232 3966
2233#if EV_IDLE_ENABLE 3967#if EV_IDLE_ENABLE
2234void 3968void
2235ev_idle_start (EV_P_ ev_idle *w) 3969ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2236{ 3970{
2237 if (expect_false (ev_is_active (w))) 3971 if (expect_false (ev_is_active (w)))
2238 return; 3972 return;
2239 3973
2240 pri_adjust (EV_A_ (W)w); 3974 pri_adjust (EV_A_ (W)w);
3975
3976 EV_FREQUENT_CHECK;
2241 3977
2242 { 3978 {
2243 int active = ++idlecnt [ABSPRI (w)]; 3979 int active = ++idlecnt [ABSPRI (w)];
2244 3980
2245 ++idleall; 3981 ++idleall;
2246 ev_start (EV_A_ (W)w, active); 3982 ev_start (EV_A_ (W)w, active);
2247 3983
2248 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3984 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2249 idles [ABSPRI (w)][active - 1] = w; 3985 idles [ABSPRI (w)][active - 1] = w;
2250 } 3986 }
3987
3988 EV_FREQUENT_CHECK;
2251} 3989}
2252 3990
2253void 3991void
2254ev_idle_stop (EV_P_ ev_idle *w) 3992ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2255{ 3993{
2256 clear_pending (EV_A_ (W)w); 3994 clear_pending (EV_A_ (W)w);
2257 if (expect_false (!ev_is_active (w))) 3995 if (expect_false (!ev_is_active (w)))
2258 return; 3996 return;
2259 3997
3998 EV_FREQUENT_CHECK;
3999
2260 { 4000 {
2261 int active = ((W)w)->active; 4001 int active = ev_active (w);
2262 4002
2263 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4003 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2264 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4004 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2265 4005
2266 ev_stop (EV_A_ (W)w); 4006 ev_stop (EV_A_ (W)w);
2267 --idleall; 4007 --idleall;
2268 } 4008 }
2269}
2270#endif
2271 4009
4010 EV_FREQUENT_CHECK;
4011}
4012#endif
4013
4014#if EV_PREPARE_ENABLE
2272void 4015void
2273ev_prepare_start (EV_P_ ev_prepare *w) 4016ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2274{ 4017{
2275 if (expect_false (ev_is_active (w))) 4018 if (expect_false (ev_is_active (w)))
2276 return; 4019 return;
4020
4021 EV_FREQUENT_CHECK;
2277 4022
2278 ev_start (EV_A_ (W)w, ++preparecnt); 4023 ev_start (EV_A_ (W)w, ++preparecnt);
2279 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4024 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2280 prepares [preparecnt - 1] = w; 4025 prepares [preparecnt - 1] = w;
4026
4027 EV_FREQUENT_CHECK;
2281} 4028}
2282 4029
2283void 4030void
2284ev_prepare_stop (EV_P_ ev_prepare *w) 4031ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2285{ 4032{
2286 clear_pending (EV_A_ (W)w); 4033 clear_pending (EV_A_ (W)w);
2287 if (expect_false (!ev_is_active (w))) 4034 if (expect_false (!ev_is_active (w)))
2288 return; 4035 return;
2289 4036
4037 EV_FREQUENT_CHECK;
4038
2290 { 4039 {
2291 int active = ((W)w)->active; 4040 int active = ev_active (w);
4041
2292 prepares [active - 1] = prepares [--preparecnt]; 4042 prepares [active - 1] = prepares [--preparecnt];
2293 ((W)prepares [active - 1])->active = active; 4043 ev_active (prepares [active - 1]) = active;
2294 } 4044 }
2295 4045
2296 ev_stop (EV_A_ (W)w); 4046 ev_stop (EV_A_ (W)w);
2297}
2298 4047
4048 EV_FREQUENT_CHECK;
4049}
4050#endif
4051
4052#if EV_CHECK_ENABLE
2299void 4053void
2300ev_check_start (EV_P_ ev_check *w) 4054ev_check_start (EV_P_ ev_check *w) EV_THROW
2301{ 4055{
2302 if (expect_false (ev_is_active (w))) 4056 if (expect_false (ev_is_active (w)))
2303 return; 4057 return;
4058
4059 EV_FREQUENT_CHECK;
2304 4060
2305 ev_start (EV_A_ (W)w, ++checkcnt); 4061 ev_start (EV_A_ (W)w, ++checkcnt);
2306 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4062 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2307 checks [checkcnt - 1] = w; 4063 checks [checkcnt - 1] = w;
4064
4065 EV_FREQUENT_CHECK;
2308} 4066}
2309 4067
2310void 4068void
2311ev_check_stop (EV_P_ ev_check *w) 4069ev_check_stop (EV_P_ ev_check *w) EV_THROW
2312{ 4070{
2313 clear_pending (EV_A_ (W)w); 4071 clear_pending (EV_A_ (W)w);
2314 if (expect_false (!ev_is_active (w))) 4072 if (expect_false (!ev_is_active (w)))
2315 return; 4073 return;
2316 4074
4075 EV_FREQUENT_CHECK;
4076
2317 { 4077 {
2318 int active = ((W)w)->active; 4078 int active = ev_active (w);
4079
2319 checks [active - 1] = checks [--checkcnt]; 4080 checks [active - 1] = checks [--checkcnt];
2320 ((W)checks [active - 1])->active = active; 4081 ev_active (checks [active - 1]) = active;
2321 } 4082 }
2322 4083
2323 ev_stop (EV_A_ (W)w); 4084 ev_stop (EV_A_ (W)w);
4085
4086 EV_FREQUENT_CHECK;
2324} 4087}
4088#endif
2325 4089
2326#if EV_EMBED_ENABLE 4090#if EV_EMBED_ENABLE
2327void noinline 4091void noinline
2328ev_embed_sweep (EV_P_ ev_embed *w) 4092ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2329{ 4093{
2330 ev_loop (w->other, EVLOOP_NONBLOCK); 4094 ev_run (w->other, EVRUN_NOWAIT);
2331} 4095}
2332 4096
2333static void 4097static void
2334embed_io_cb (EV_P_ ev_io *io, int revents) 4098embed_io_cb (EV_P_ ev_io *io, int revents)
2335{ 4099{
2336 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4100 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2337 4101
2338 if (ev_cb (w)) 4102 if (ev_cb (w))
2339 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4103 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2340 else 4104 else
2341 ev_loop (w->other, EVLOOP_NONBLOCK); 4105 ev_run (w->other, EVRUN_NOWAIT);
2342} 4106}
2343 4107
2344static void 4108static void
2345embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4109embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2346{ 4110{
2347 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4111 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2348 4112
2349 { 4113 {
2350 struct ev_loop *loop = w->other; 4114 EV_P = w->other;
2351 4115
2352 while (fdchangecnt) 4116 while (fdchangecnt)
2353 { 4117 {
2354 fd_reify (EV_A); 4118 fd_reify (EV_A);
2355 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4119 ev_run (EV_A_ EVRUN_NOWAIT);
2356 } 4120 }
2357 } 4121 }
4122}
4123
4124static void
4125embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4126{
4127 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4128
4129 ev_embed_stop (EV_A_ w);
4130
4131 {
4132 EV_P = w->other;
4133
4134 ev_loop_fork (EV_A);
4135 ev_run (EV_A_ EVRUN_NOWAIT);
4136 }
4137
4138 ev_embed_start (EV_A_ w);
2358} 4139}
2359 4140
2360#if 0 4141#if 0
2361static void 4142static void
2362embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4143embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2364 ev_idle_stop (EV_A_ idle); 4145 ev_idle_stop (EV_A_ idle);
2365} 4146}
2366#endif 4147#endif
2367 4148
2368void 4149void
2369ev_embed_start (EV_P_ ev_embed *w) 4150ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2370{ 4151{
2371 if (expect_false (ev_is_active (w))) 4152 if (expect_false (ev_is_active (w)))
2372 return; 4153 return;
2373 4154
2374 { 4155 {
2375 struct ev_loop *loop = w->other; 4156 EV_P = w->other;
2376 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4157 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2377 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4158 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2378 } 4159 }
4160
4161 EV_FREQUENT_CHECK;
2379 4162
2380 ev_set_priority (&w->io, ev_priority (w)); 4163 ev_set_priority (&w->io, ev_priority (w));
2381 ev_io_start (EV_A_ &w->io); 4164 ev_io_start (EV_A_ &w->io);
2382 4165
2383 ev_prepare_init (&w->prepare, embed_prepare_cb); 4166 ev_prepare_init (&w->prepare, embed_prepare_cb);
2384 ev_set_priority (&w->prepare, EV_MINPRI); 4167 ev_set_priority (&w->prepare, EV_MINPRI);
2385 ev_prepare_start (EV_A_ &w->prepare); 4168 ev_prepare_start (EV_A_ &w->prepare);
2386 4169
4170 ev_fork_init (&w->fork, embed_fork_cb);
4171 ev_fork_start (EV_A_ &w->fork);
4172
2387 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4173 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2388 4174
2389 ev_start (EV_A_ (W)w, 1); 4175 ev_start (EV_A_ (W)w, 1);
4176
4177 EV_FREQUENT_CHECK;
2390} 4178}
2391 4179
2392void 4180void
2393ev_embed_stop (EV_P_ ev_embed *w) 4181ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2394{ 4182{
2395 clear_pending (EV_A_ (W)w); 4183 clear_pending (EV_A_ (W)w);
2396 if (expect_false (!ev_is_active (w))) 4184 if (expect_false (!ev_is_active (w)))
2397 return; 4185 return;
2398 4186
4187 EV_FREQUENT_CHECK;
4188
2399 ev_io_stop (EV_A_ &w->io); 4189 ev_io_stop (EV_A_ &w->io);
2400 ev_prepare_stop (EV_A_ &w->prepare); 4190 ev_prepare_stop (EV_A_ &w->prepare);
4191 ev_fork_stop (EV_A_ &w->fork);
2401 4192
2402 ev_stop (EV_A_ (W)w); 4193 ev_stop (EV_A_ (W)w);
4194
4195 EV_FREQUENT_CHECK;
2403} 4196}
2404#endif 4197#endif
2405 4198
2406#if EV_FORK_ENABLE 4199#if EV_FORK_ENABLE
2407void 4200void
2408ev_fork_start (EV_P_ ev_fork *w) 4201ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2409{ 4202{
2410 if (expect_false (ev_is_active (w))) 4203 if (expect_false (ev_is_active (w)))
2411 return; 4204 return;
4205
4206 EV_FREQUENT_CHECK;
2412 4207
2413 ev_start (EV_A_ (W)w, ++forkcnt); 4208 ev_start (EV_A_ (W)w, ++forkcnt);
2414 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4209 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2415 forks [forkcnt - 1] = w; 4210 forks [forkcnt - 1] = w;
4211
4212 EV_FREQUENT_CHECK;
2416} 4213}
2417 4214
2418void 4215void
2419ev_fork_stop (EV_P_ ev_fork *w) 4216ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2420{ 4217{
2421 clear_pending (EV_A_ (W)w); 4218 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w))) 4219 if (expect_false (!ev_is_active (w)))
2423 return; 4220 return;
2424 4221
4222 EV_FREQUENT_CHECK;
4223
2425 { 4224 {
2426 int active = ((W)w)->active; 4225 int active = ev_active (w);
4226
2427 forks [active - 1] = forks [--forkcnt]; 4227 forks [active - 1] = forks [--forkcnt];
2428 ((W)forks [active - 1])->active = active; 4228 ev_active (forks [active - 1]) = active;
2429 } 4229 }
2430 4230
2431 ev_stop (EV_A_ (W)w); 4231 ev_stop (EV_A_ (W)w);
4232
4233 EV_FREQUENT_CHECK;
4234}
4235#endif
4236
4237#if EV_CLEANUP_ENABLE
4238void
4239ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4240{
4241 if (expect_false (ev_is_active (w)))
4242 return;
4243
4244 EV_FREQUENT_CHECK;
4245
4246 ev_start (EV_A_ (W)w, ++cleanupcnt);
4247 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4248 cleanups [cleanupcnt - 1] = w;
4249
4250 /* cleanup watchers should never keep a refcount on the loop */
4251 ev_unref (EV_A);
4252 EV_FREQUENT_CHECK;
4253}
4254
4255void
4256ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4257{
4258 clear_pending (EV_A_ (W)w);
4259 if (expect_false (!ev_is_active (w)))
4260 return;
4261
4262 EV_FREQUENT_CHECK;
4263 ev_ref (EV_A);
4264
4265 {
4266 int active = ev_active (w);
4267
4268 cleanups [active - 1] = cleanups [--cleanupcnt];
4269 ev_active (cleanups [active - 1]) = active;
4270 }
4271
4272 ev_stop (EV_A_ (W)w);
4273
4274 EV_FREQUENT_CHECK;
2432} 4275}
2433#endif 4276#endif
2434 4277
2435#if EV_ASYNC_ENABLE 4278#if EV_ASYNC_ENABLE
2436void 4279void
2437ev_async_start (EV_P_ ev_async *w) 4280ev_async_start (EV_P_ ev_async *w) EV_THROW
2438{ 4281{
2439 if (expect_false (ev_is_active (w))) 4282 if (expect_false (ev_is_active (w)))
2440 return; 4283 return;
2441 4284
4285 w->sent = 0;
4286
2442 evpipe_init (EV_A); 4287 evpipe_init (EV_A);
4288
4289 EV_FREQUENT_CHECK;
2443 4290
2444 ev_start (EV_A_ (W)w, ++asynccnt); 4291 ev_start (EV_A_ (W)w, ++asynccnt);
2445 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4292 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2446 asyncs [asynccnt - 1] = w; 4293 asyncs [asynccnt - 1] = w;
4294
4295 EV_FREQUENT_CHECK;
2447} 4296}
2448 4297
2449void 4298void
2450ev_async_stop (EV_P_ ev_async *w) 4299ev_async_stop (EV_P_ ev_async *w) EV_THROW
2451{ 4300{
2452 clear_pending (EV_A_ (W)w); 4301 clear_pending (EV_A_ (W)w);
2453 if (expect_false (!ev_is_active (w))) 4302 if (expect_false (!ev_is_active (w)))
2454 return; 4303 return;
2455 4304
4305 EV_FREQUENT_CHECK;
4306
2456 { 4307 {
2457 int active = ((W)w)->active; 4308 int active = ev_active (w);
4309
2458 asyncs [active - 1] = asyncs [--asynccnt]; 4310 asyncs [active - 1] = asyncs [--asynccnt];
2459 ((W)asyncs [active - 1])->active = active; 4311 ev_active (asyncs [active - 1]) = active;
2460 } 4312 }
2461 4313
2462 ev_stop (EV_A_ (W)w); 4314 ev_stop (EV_A_ (W)w);
4315
4316 EV_FREQUENT_CHECK;
2463} 4317}
2464 4318
2465void 4319void
2466ev_async_send (EV_P_ ev_async *w) 4320ev_async_send (EV_P_ ev_async *w) EV_THROW
2467{ 4321{
2468 w->sent = 1; 4322 w->sent = 1;
2469 evpipe_write (EV_A_ 0, 1); 4323 evpipe_write (EV_A_ &async_pending);
2470} 4324}
2471#endif 4325#endif
2472 4326
2473/*****************************************************************************/ 4327/*****************************************************************************/
2474 4328
2484once_cb (EV_P_ struct ev_once *once, int revents) 4338once_cb (EV_P_ struct ev_once *once, int revents)
2485{ 4339{
2486 void (*cb)(int revents, void *arg) = once->cb; 4340 void (*cb)(int revents, void *arg) = once->cb;
2487 void *arg = once->arg; 4341 void *arg = once->arg;
2488 4342
2489 ev_io_stop (EV_A_ &once->io); 4343 ev_io_stop (EV_A_ &once->io);
2490 ev_timer_stop (EV_A_ &once->to); 4344 ev_timer_stop (EV_A_ &once->to);
2491 ev_free (once); 4345 ev_free (once);
2492 4346
2493 cb (revents, arg); 4347 cb (revents, arg);
2494} 4348}
2495 4349
2496static void 4350static void
2497once_cb_io (EV_P_ ev_io *w, int revents) 4351once_cb_io (EV_P_ ev_io *w, int revents)
2498{ 4352{
2499 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4353 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4354
4355 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2500} 4356}
2501 4357
2502static void 4358static void
2503once_cb_to (EV_P_ ev_timer *w, int revents) 4359once_cb_to (EV_P_ ev_timer *w, int revents)
2504{ 4360{
2505 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4361 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4362
4363 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2506} 4364}
2507 4365
2508void 4366void
2509ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4367ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2510{ 4368{
2511 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4369 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2512 4370
2513 if (expect_false (!once)) 4371 if (expect_false (!once))
2514 { 4372 {
2515 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4373 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2516 return; 4374 return;
2517 } 4375 }
2518 4376
2519 once->cb = cb; 4377 once->cb = cb;
2520 once->arg = arg; 4378 once->arg = arg;
2532 ev_timer_set (&once->to, timeout, 0.); 4390 ev_timer_set (&once->to, timeout, 0.);
2533 ev_timer_start (EV_A_ &once->to); 4391 ev_timer_start (EV_A_ &once->to);
2534 } 4392 }
2535} 4393}
2536 4394
4395/*****************************************************************************/
4396
4397#if EV_WALK_ENABLE
4398void ecb_cold
4399ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4400{
4401 int i, j;
4402 ev_watcher_list *wl, *wn;
4403
4404 if (types & (EV_IO | EV_EMBED))
4405 for (i = 0; i < anfdmax; ++i)
4406 for (wl = anfds [i].head; wl; )
4407 {
4408 wn = wl->next;
4409
4410#if EV_EMBED_ENABLE
4411 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4412 {
4413 if (types & EV_EMBED)
4414 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4415 }
4416 else
4417#endif
4418#if EV_USE_INOTIFY
4419 if (ev_cb ((ev_io *)wl) == infy_cb)
4420 ;
4421 else
4422#endif
4423 if ((ev_io *)wl != &pipe_w)
4424 if (types & EV_IO)
4425 cb (EV_A_ EV_IO, wl);
4426
4427 wl = wn;
4428 }
4429
4430 if (types & (EV_TIMER | EV_STAT))
4431 for (i = timercnt + HEAP0; i-- > HEAP0; )
4432#if EV_STAT_ENABLE
4433 /*TODO: timer is not always active*/
4434 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4435 {
4436 if (types & EV_STAT)
4437 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4438 }
4439 else
4440#endif
4441 if (types & EV_TIMER)
4442 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4443
4444#if EV_PERIODIC_ENABLE
4445 if (types & EV_PERIODIC)
4446 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4447 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4448#endif
4449
4450#if EV_IDLE_ENABLE
4451 if (types & EV_IDLE)
4452 for (j = NUMPRI; j--; )
4453 for (i = idlecnt [j]; i--; )
4454 cb (EV_A_ EV_IDLE, idles [j][i]);
4455#endif
4456
4457#if EV_FORK_ENABLE
4458 if (types & EV_FORK)
4459 for (i = forkcnt; i--; )
4460 if (ev_cb (forks [i]) != embed_fork_cb)
4461 cb (EV_A_ EV_FORK, forks [i]);
4462#endif
4463
4464#if EV_ASYNC_ENABLE
4465 if (types & EV_ASYNC)
4466 for (i = asynccnt; i--; )
4467 cb (EV_A_ EV_ASYNC, asyncs [i]);
4468#endif
4469
4470#if EV_PREPARE_ENABLE
4471 if (types & EV_PREPARE)
4472 for (i = preparecnt; i--; )
4473# if EV_EMBED_ENABLE
4474 if (ev_cb (prepares [i]) != embed_prepare_cb)
4475# endif
4476 cb (EV_A_ EV_PREPARE, prepares [i]);
4477#endif
4478
4479#if EV_CHECK_ENABLE
4480 if (types & EV_CHECK)
4481 for (i = checkcnt; i--; )
4482 cb (EV_A_ EV_CHECK, checks [i]);
4483#endif
4484
4485#if EV_SIGNAL_ENABLE
4486 if (types & EV_SIGNAL)
4487 for (i = 0; i < EV_NSIG - 1; ++i)
4488 for (wl = signals [i].head; wl; )
4489 {
4490 wn = wl->next;
4491 cb (EV_A_ EV_SIGNAL, wl);
4492 wl = wn;
4493 }
4494#endif
4495
4496#if EV_CHILD_ENABLE
4497 if (types & EV_CHILD)
4498 for (i = (EV_PID_HASHSIZE); i--; )
4499 for (wl = childs [i]; wl; )
4500 {
4501 wn = wl->next;
4502 cb (EV_A_ EV_CHILD, wl);
4503 wl = wn;
4504 }
4505#endif
4506/* EV_STAT 0x00001000 /* stat data changed */
4507/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4508}
4509#endif
4510
2537#if EV_MULTIPLICITY 4511#if EV_MULTIPLICITY
2538 #include "ev_wrap.h" 4512 #include "ev_wrap.h"
2539#endif 4513#endif
2540 4514
2541#ifdef __cplusplus
2542}
2543#endif
2544

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines