ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.107 by root, Mon Nov 12 01:20:25 2007 UTC vs.
Revision 1.211 by root, Tue Feb 19 17:09:28 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
36#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
37# include "config.h" 48# include "config.h"
49# endif
38 50
39# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 52# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
42# endif 54# endif
43# ifndef EV_USE_REALTIME 55# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 56# define EV_USE_REALTIME 1
45# endif 57# endif
58# else
59# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0
61# endif
62# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0
64# endif
46# endif 65# endif
47 66
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
72# endif
50# endif 73# endif
51 74
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 75# ifndef EV_USE_SELECT
76# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif
54# endif 81# endif
55 82
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 85# define EV_USE_POLL 1
86# else
87# define EV_USE_POLL 0
88# endif
58# endif 89# endif
59 90
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1
94# else
95# define EV_USE_EPOLL 0
96# endif
97# endif
98
99# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif
105# endif
106
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif
113# endif
114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
62# endif 121# endif
63 122
64#endif 123#endif
65 124
66#include <math.h> 125#include <math.h>
75#include <sys/types.h> 134#include <sys/types.h>
76#include <time.h> 135#include <time.h>
77 136
78#include <signal.h> 137#include <signal.h>
79 138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
80#ifndef _WIN32 145#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 146# include <sys/time.h>
83# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
84#else 149#else
85# define WIN32_LEAN_AND_MEAN 150# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 151# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 152# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 153# define EV_SELECT_IS_WINSOCKET 1
90#endif 155#endif
91 156
92/**/ 157/**/
93 158
94#ifndef EV_USE_MONOTONIC 159#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 160# define EV_USE_MONOTONIC 0
161#endif
162
163#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0
165#endif
166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
96#endif 169#endif
97 170
98#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 173#endif
102 174
103#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
104# ifdef _WIN32 176# ifdef _WIN32
105# define EV_USE_POLL 0 177# define EV_USE_POLL 0
114 186
115#ifndef EV_USE_KQUEUE 187#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 188# define EV_USE_KQUEUE 0
117#endif 189#endif
118 190
119#ifndef EV_USE_REALTIME 191#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 192# define EV_USE_PORT 0
193#endif
194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
202# else
203# define EV_PID_HASHSIZE 16
204# endif
205#endif
206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
121#endif 213#endif
122 214
123/**/ 215/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
130 216
131#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 218# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 219# define EV_USE_MONOTONIC 0
134#endif 220#endif
136#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
139#endif 225#endif
140 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
141#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 243# include <winsock.h>
143#endif 244#endif
144 245
145/**/ 246/**/
146 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
151 261
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157
158#if __GNUC__ >= 3 262#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 264# define noinline __attribute__ ((noinline))
161#else 265#else
162# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
163# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
164#endif 271#endif
165 272
166#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
168 282
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
171 285
172#define EMPTY /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */
173 288
174typedef struct ev_watcher *W; 289typedef ev_watcher *W;
175typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
176typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
177 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
178static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
179 298
180#ifdef _WIN32 299#ifdef _WIN32
181# include "ev_win32.c" 300# include "ev_win32.c"
182#endif 301#endif
183 302
184/*****************************************************************************/ 303/*****************************************************************************/
185 304
186static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
187 306
307void
188void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
189{ 309{
190 syserr_cb = cb; 310 syserr_cb = cb;
191} 311}
192 312
193static void 313static void noinline
194syserr (const char *msg) 314syserr (const char *msg)
195{ 315{
196 if (!msg) 316 if (!msg)
197 msg = "(libev) system error"; 317 msg = "(libev) system error";
198 318
205 } 325 }
206} 326}
207 327
208static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
209 329
330void
210void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
211{ 332{
212 alloc = cb; 333 alloc = cb;
213} 334}
214 335
215static void * 336inline_speed void *
216ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
217{ 338{
218 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
219 340
220 if (!ptr && size) 341 if (!ptr && size)
244typedef struct 365typedef struct
245{ 366{
246 W w; 367 W w;
247 int events; 368 int events;
248} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
249 377
250#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
251 379
252 struct ev_loop 380 struct ev_loop
253 { 381 {
257 #include "ev_vars.h" 385 #include "ev_vars.h"
258 #undef VAR 386 #undef VAR
259 }; 387 };
260 #include "ev_wrap.h" 388 #include "ev_wrap.h"
261 389
262 struct ev_loop default_loop_struct; 390 static struct ev_loop default_loop_struct;
263 static struct ev_loop *default_loop; 391 struct ev_loop *ev_default_loop_ptr;
264 392
265#else 393#else
266 394
267 ev_tstamp ev_rt_now; 395 ev_tstamp ev_rt_now;
268 #define VAR(name,decl) static decl; 396 #define VAR(name,decl) static decl;
269 #include "ev_vars.h" 397 #include "ev_vars.h"
270 #undef VAR 398 #undef VAR
271 399
272 static int default_loop; 400 static int ev_default_loop_ptr;
273 401
274#endif 402#endif
275 403
276/*****************************************************************************/ 404/*****************************************************************************/
277 405
287 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
288 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
289#endif 417#endif
290} 418}
291 419
292inline ev_tstamp 420ev_tstamp inline_size
293get_clock (void) 421get_clock (void)
294{ 422{
295#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
296 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
297 { 425 {
310{ 438{
311 return ev_rt_now; 439 return ev_rt_now;
312} 440}
313#endif 441#endif
314 442
315#define array_roundsize(type,n) ((n) | 4 & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
316 497
317#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
318 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
319 { \ 500 { \
320 int newcnt = cur; \ 501 int ocur_ = (cur); \
321 do \ 502 (base) = (type *)array_realloc \
322 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
323 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
324 } \
325 while ((cnt) > newcnt); \
326 \
327 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
328 init (base + cur, newcnt - cur); \
329 cur = newcnt; \
330 } 505 }
331 506
507#if 0
332#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
333 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
334 { \ 510 { \
335 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
336 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
337 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
338 } 514 }
515#endif
339 516
340#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
341 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
342 519
343/*****************************************************************************/ 520/*****************************************************************************/
344 521
345static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
346anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
347{ 552{
348 while (count--) 553 while (count--)
349 { 554 {
350 base->head = 0; 555 base->head = 0;
353 558
354 ++base; 559 ++base;
355 } 560 }
356} 561}
357 562
358void 563void inline_speed
359ev_feed_event (EV_P_ void *w, int revents)
360{
361 W w_ = (W)w;
362
363 if (w_->pending)
364 {
365 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
366 return;
367 }
368
369 w_->pending = ++pendingcnt [ABSPRI (w_)];
370 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
371 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
372 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
373}
374
375static void
376queue_events (EV_P_ W *events, int eventcnt, int type)
377{
378 int i;
379
380 for (i = 0; i < eventcnt; ++i)
381 ev_feed_event (EV_A_ events [i], type);
382}
383
384inline void
385fd_event (EV_P_ int fd, int revents) 564fd_event (EV_P_ int fd, int revents)
386{ 565{
387 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 567 ev_io *w;
389 568
390 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
391 { 570 {
392 int ev = w->events & revents; 571 int ev = w->events & revents;
393 572
394 if (ev) 573 if (ev)
395 ev_feed_event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
397} 576}
398 577
399void 578void
400ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
401{ 580{
581 if (fd >= 0 && fd < anfdmax)
402 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
403} 583}
404 584
405/*****************************************************************************/ 585void inline_size
406
407static void
408fd_reify (EV_P) 586fd_reify (EV_P)
409{ 587{
410 int i; 588 int i;
411 589
412 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
413 { 591 {
414 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
415 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
416 struct ev_io *w; 594 ev_io *w;
417 595
418 int events = 0; 596 unsigned char events = 0;
419 597
420 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
421 events |= w->events; 599 events |= (unsigned char)w->events;
422 600
423#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
424 if (events) 602 if (events)
425 { 603 {
426 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
427 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
428 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
429 } 611 }
430#endif 612#endif
431 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
432 anfd->reify = 0; 618 anfd->reify = 0;
433
434 method_modify (EV_A_ fd, anfd->events, events);
435 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
436 } 624 }
437 625
438 fdchangecnt = 0; 626 fdchangecnt = 0;
439} 627}
440 628
441static void 629void inline_size
442fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
443{ 631{
444 if (anfds [fd].reify) 632 unsigned char reify = anfds [fd].reify;
445 return;
446
447 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
448 634
635 if (expect_true (!reify))
636 {
449 ++fdchangecnt; 637 ++fdchangecnt;
450 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
451 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
452} 641}
453 642
454static void 643void inline_speed
455fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
456{ 645{
457 struct ev_io *w; 646 ev_io *w;
458 647
459 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
460 { 649 {
461 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
462 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
463 } 652 }
464} 653}
465 654
466static int 655int inline_size
467fd_valid (int fd) 656fd_valid (int fd)
468{ 657{
469#ifdef _WIN32 658#ifdef _WIN32
470 return _get_osfhandle (fd) != -1; 659 return _get_osfhandle (fd) != -1;
471#else 660#else
472 return fcntl (fd, F_GETFD) != -1; 661 return fcntl (fd, F_GETFD) != -1;
473#endif 662#endif
474} 663}
475 664
476/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
477static void 666static void noinline
478fd_ebadf (EV_P) 667fd_ebadf (EV_P)
479{ 668{
480 int fd; 669 int fd;
481 670
482 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
484 if (!fd_valid (fd) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
485 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
486} 675}
487 676
488/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
489static void 678static void noinline
490fd_enomem (EV_P) 679fd_enomem (EV_P)
491{ 680{
492 int fd; 681 int fd;
493 682
494 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
497 fd_kill (EV_A_ fd); 686 fd_kill (EV_A_ fd);
498 return; 687 return;
499 } 688 }
500} 689}
501 690
502/* usually called after fork if method needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
503static void 692static void noinline
504fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
505{ 694{
506 int fd; 695 int fd;
507 696
508 /* this should be highly optimised to not do anything but set a flag */
509 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
510 if (anfds [fd].events) 698 if (anfds [fd].events)
511 { 699 {
512 anfds [fd].events = 0; 700 anfds [fd].events = 0;
513 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
514 } 702 }
515} 703}
516 704
517/*****************************************************************************/ 705/*****************************************************************************/
518 706
519static void 707void inline_speed
520upheap (WT *heap, int k) 708upheap (WT *heap, int k)
521{ 709{
522 WT w = heap [k]; 710 WT w = heap [k];
523 711
524 while (k && heap [k >> 1]->at > w->at) 712 while (k)
525 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
526 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
527 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
528 k >>= 1; 721 k = p;
529 } 722 }
530 723
531 heap [k] = w; 724 heap [k] = w;
532 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
533
534} 726}
535 727
536static void 728void inline_speed
537downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
538{ 730{
539 WT w = heap [k]; 731 WT w = heap [k];
540 732
541 while (k < (N >> 1)) 733 for (;;)
542 { 734 {
543 int j = k << 1; 735 int c = (k << 1) + 1;
544 736
545 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
546 ++j;
547
548 if (w->at <= heap [j]->at)
549 break; 738 break;
550 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
551 heap [k] = heap [j]; 746 heap [k] = heap [c];
552 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
553 k = j; 749 k = c;
554 } 750 }
555 751
556 heap [k] = w; 752 heap [k] = w;
557 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
558} 754}
559 755
560inline void 756void inline_size
561adjustheap (WT *heap, int N, int k) 757adjustheap (WT *heap, int N, int k)
562{ 758{
563 upheap (heap, k); 759 upheap (heap, k);
564 downheap (heap, N, k); 760 downheap (heap, N, k);
565} 761}
567/*****************************************************************************/ 763/*****************************************************************************/
568 764
569typedef struct 765typedef struct
570{ 766{
571 WL head; 767 WL head;
572 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
573} ANSIG; 769} ANSIG;
574 770
575static ANSIG *signals; 771static ANSIG *signals;
576static int signalmax; 772static int signalmax;
577 773
578static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
579static sig_atomic_t volatile gotsig;
580static struct ev_io sigev;
581 775
582static void 776void inline_size
583signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
584{ 778{
585 while (count--) 779 while (count--)
586 { 780 {
587 base->head = 0; 781 base->head = 0;
589 783
590 ++base; 784 ++base;
591 } 785 }
592} 786}
593 787
594static void 788/*****************************************************************************/
595sighandler (int signum)
596{
597#if _WIN32
598 signal (signum, sighandler);
599#endif
600 789
601 signals [signum - 1].gotsig = 1; 790void inline_speed
602
603 if (!gotsig)
604 {
605 int old_errno = errno;
606 gotsig = 1;
607 write (sigpipe [1], &signum, 1);
608 errno = old_errno;
609 }
610}
611
612void
613ev_feed_signal_event (EV_P_ int signum)
614{
615 WL w;
616
617#if EV_MULTIPLICITY
618 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
619#endif
620
621 --signum;
622
623 if (signum < 0 || signum >= signalmax)
624 return;
625
626 signals [signum].gotsig = 0;
627
628 for (w = signals [signum].head; w; w = w->next)
629 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
630}
631
632static void
633sigcb (EV_P_ struct ev_io *iow, int revents)
634{
635 int signum;
636
637 read (sigpipe [0], &revents, 1);
638 gotsig = 0;
639
640 for (signum = signalmax; signum--; )
641 if (signals [signum].gotsig)
642 ev_feed_signal_event (EV_A_ signum + 1);
643}
644
645inline void
646fd_intern (int fd) 791fd_intern (int fd)
647{ 792{
648#ifdef _WIN32 793#ifdef _WIN32
649 int arg = 1; 794 int arg = 1;
650 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
652 fcntl (fd, F_SETFD, FD_CLOEXEC); 797 fcntl (fd, F_SETFD, FD_CLOEXEC);
653 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
654#endif 799#endif
655} 800}
656 801
802static void noinline
803evpipe_init (EV_P)
804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
810 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ);
814 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */
816
817 /* in case we received the signal before we had the chance of installing a handler */
818 ev_feed_event (EV_A_ &pipeev, 0);
819 }
820}
821
822void inline_size
823evpipe_write (EV_P_ int sig, int async)
824{
825 if (!(gotasync || gotsig))
826 {
827 int old_errno = errno; /* save errno becaue write might clobber it */
828
829 if (sig) gotsig = 1;
830 if (async) gotasync = 1;
831
832 write (evpipe [1], &old_errno, 1);
833
834 errno = old_errno;
835 }
836}
837
657static void 838static void
658siginit (EV_P) 839pipecb (EV_P_ ev_io *iow, int revents)
659{ 840{
660 fd_intern (sigpipe [0]); 841 {
661 fd_intern (sigpipe [1]); 842 int dummy;
843 read (evpipe [0], &dummy, 1);
844 }
662 845
663 ev_io_set (&sigev, sigpipe [0], EV_READ); 846 if (gotsig && ev_is_default_loop (EV_A))
664 ev_io_start (EV_A_ &sigev); 847 {
665 ev_unref (EV_A); /* child watcher should not keep loop alive */ 848 int signum;
849 gotsig = 0;
850
851 for (signum = signalmax; signum--; )
852 if (signals [signum].gotsig)
853 ev_feed_signal_event (EV_A_ signum + 1);
854 }
855
856#if EV_ASYNC_ENABLE
857 if (gotasync)
858 {
859 int i;
860 gotasync = 0;
861
862 for (i = asynccnt; i--; )
863 if (asyncs [i]->sent)
864 {
865 asyncs [i]->sent = 0;
866 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
867 }
868 }
869#endif
666} 870}
667 871
668/*****************************************************************************/ 872/*****************************************************************************/
669 873
670static struct ev_child *childs [PID_HASHSIZE]; 874static void
875sighandler (int signum)
876{
877#if EV_MULTIPLICITY
878 struct ev_loop *loop = &default_loop_struct;
879#endif
880
881#if _WIN32
882 signal (signum, sighandler);
883#endif
884
885 signals [signum - 1].gotsig = 1;
886 evpipe_write (EV_A_ 1, 0);
887}
888
889void noinline
890ev_feed_signal_event (EV_P_ int signum)
891{
892 WL w;
893
894#if EV_MULTIPLICITY
895 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
896#endif
897
898 --signum;
899
900 if (signum < 0 || signum >= signalmax)
901 return;
902
903 signals [signum].gotsig = 0;
904
905 for (w = signals [signum].head; w; w = w->next)
906 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
907}
908
909/*****************************************************************************/
910
911static WL childs [EV_PID_HASHSIZE];
671 912
672#ifndef _WIN32 913#ifndef _WIN32
673 914
674static struct ev_signal childev; 915static ev_signal childev;
916
917#ifndef WIFCONTINUED
918# define WIFCONTINUED(status) 0
919#endif
920
921void inline_speed
922child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
923{
924 ev_child *w;
925 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
926
927 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
928 {
929 if ((w->pid == pid || !w->pid)
930 && (!traced || (w->flags & 1)))
931 {
932 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
933 w->rpid = pid;
934 w->rstatus = status;
935 ev_feed_event (EV_A_ (W)w, EV_CHILD);
936 }
937 }
938}
675 939
676#ifndef WCONTINUED 940#ifndef WCONTINUED
677# define WCONTINUED 0 941# define WCONTINUED 0
678#endif 942#endif
679 943
680static void 944static void
681child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
682{
683 struct ev_child *w;
684
685 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
686 if (w->pid == pid || !w->pid)
687 {
688 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
689 w->rpid = pid;
690 w->rstatus = status;
691 ev_feed_event (EV_A_ (W)w, EV_CHILD);
692 }
693}
694
695static void
696childcb (EV_P_ struct ev_signal *sw, int revents) 945childcb (EV_P_ ev_signal *sw, int revents)
697{ 946{
698 int pid, status; 947 int pid, status;
699 948
949 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
700 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 950 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
701 { 951 if (!WCONTINUED
952 || errno != EINVAL
953 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
954 return;
955
702 /* make sure we are called again until all childs have been reaped */ 956 /* make sure we are called again until all childs have been reaped */
957 /* we need to do it this way so that the callback gets called before we continue */
703 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 958 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
704 959
705 child_reap (EV_A_ sw, pid, pid, status); 960 child_reap (EV_A_ sw, pid, pid, status);
961 if (EV_PID_HASHSIZE > 1)
706 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 962 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
707 }
708} 963}
709 964
710#endif 965#endif
711 966
712/*****************************************************************************/ 967/*****************************************************************************/
713 968
969#if EV_USE_PORT
970# include "ev_port.c"
971#endif
714#if EV_USE_KQUEUE 972#if EV_USE_KQUEUE
715# include "ev_kqueue.c" 973# include "ev_kqueue.c"
716#endif 974#endif
717#if EV_USE_EPOLL 975#if EV_USE_EPOLL
718# include "ev_epoll.c" 976# include "ev_epoll.c"
735{ 993{
736 return EV_VERSION_MINOR; 994 return EV_VERSION_MINOR;
737} 995}
738 996
739/* return true if we are running with elevated privileges and should ignore env variables */ 997/* return true if we are running with elevated privileges and should ignore env variables */
740static int 998int inline_size
741enable_secure (void) 999enable_secure (void)
742{ 1000{
743#ifdef _WIN32 1001#ifdef _WIN32
744 return 0; 1002 return 0;
745#else 1003#else
746 return getuid () != geteuid () 1004 return getuid () != geteuid ()
747 || getgid () != getegid (); 1005 || getgid () != getegid ();
748#endif 1006#endif
749} 1007}
750 1008
751int 1009unsigned int
752ev_method (EV_P) 1010ev_supported_backends (void)
753{ 1011{
754 return method; 1012 unsigned int flags = 0;
755}
756 1013
757static void 1014 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
758loop_init (EV_P_ int methods) 1015 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1016 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1017 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1018 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1019
1020 return flags;
1021}
1022
1023unsigned int
1024ev_recommended_backends (void)
759{ 1025{
760 if (!method) 1026 unsigned int flags = ev_supported_backends ();
1027
1028#ifndef __NetBSD__
1029 /* kqueue is borked on everything but netbsd apparently */
1030 /* it usually doesn't work correctly on anything but sockets and pipes */
1031 flags &= ~EVBACKEND_KQUEUE;
1032#endif
1033#ifdef __APPLE__
1034 // flags &= ~EVBACKEND_KQUEUE; for documentation
1035 flags &= ~EVBACKEND_POLL;
1036#endif
1037
1038 return flags;
1039}
1040
1041unsigned int
1042ev_embeddable_backends (void)
1043{
1044 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1045
1046 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1047 /* please fix it and tell me how to detect the fix */
1048 flags &= ~EVBACKEND_EPOLL;
1049
1050 return flags;
1051}
1052
1053unsigned int
1054ev_backend (EV_P)
1055{
1056 return backend;
1057}
1058
1059unsigned int
1060ev_loop_count (EV_P)
1061{
1062 return loop_count;
1063}
1064
1065void
1066ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1067{
1068 io_blocktime = interval;
1069}
1070
1071void
1072ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1073{
1074 timeout_blocktime = interval;
1075}
1076
1077static void noinline
1078loop_init (EV_P_ unsigned int flags)
1079{
1080 if (!backend)
761 { 1081 {
762#if EV_USE_MONOTONIC 1082#if EV_USE_MONOTONIC
763 { 1083 {
764 struct timespec ts; 1084 struct timespec ts;
765 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1085 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
766 have_monotonic = 1; 1086 have_monotonic = 1;
767 } 1087 }
768#endif 1088#endif
769 1089
770 ev_rt_now = ev_time (); 1090 ev_rt_now = ev_time ();
771 mn_now = get_clock (); 1091 mn_now = get_clock ();
772 now_floor = mn_now; 1092 now_floor = mn_now;
773 rtmn_diff = ev_rt_now - mn_now; 1093 rtmn_diff = ev_rt_now - mn_now;
774 1094
775 if (methods == EVMETHOD_AUTO) 1095 io_blocktime = 0.;
776 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1096 timeout_blocktime = 0.;
1097 backend = 0;
1098 backend_fd = -1;
1099 gotasync = 0;
1100#if EV_USE_INOTIFY
1101 fs_fd = -2;
1102#endif
1103
1104 /* pid check not overridable via env */
1105#ifndef _WIN32
1106 if (flags & EVFLAG_FORKCHECK)
1107 curpid = getpid ();
1108#endif
1109
1110 if (!(flags & EVFLAG_NOENV)
1111 && !enable_secure ()
1112 && getenv ("LIBEV_FLAGS"))
777 methods = atoi (getenv ("LIBEV_METHODS")); 1113 flags = atoi (getenv ("LIBEV_FLAGS"));
778 else
779 methods = EVMETHOD_ANY;
780 1114
781 method = 0; 1115 if (!(flags & 0x0000ffffUL))
1116 flags |= ev_recommended_backends ();
1117
1118#if EV_USE_PORT
1119 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1120#endif
782#if EV_USE_KQUEUE 1121#if EV_USE_KQUEUE
783 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1122 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
784#endif 1123#endif
785#if EV_USE_EPOLL 1124#if EV_USE_EPOLL
786 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1125 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
787#endif 1126#endif
788#if EV_USE_POLL 1127#if EV_USE_POLL
789 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1128 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
790#endif 1129#endif
791#if EV_USE_SELECT 1130#if EV_USE_SELECT
792 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1131 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
793#endif 1132#endif
794 1133
795 ev_init (&sigev, sigcb); 1134 ev_init (&pipeev, pipecb);
796 ev_set_priority (&sigev, EV_MAXPRI); 1135 ev_set_priority (&pipeev, EV_MAXPRI);
797 } 1136 }
798} 1137}
799 1138
800void 1139static void noinline
801loop_destroy (EV_P) 1140loop_destroy (EV_P)
802{ 1141{
803 int i; 1142 int i;
804 1143
1144 if (ev_is_active (&pipeev))
1145 {
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &pipeev);
1148
1149 close (evpipe [0]); evpipe [0] = 0;
1150 close (evpipe [1]); evpipe [1] = 0;
1151 }
1152
1153#if EV_USE_INOTIFY
1154 if (fs_fd >= 0)
1155 close (fs_fd);
1156#endif
1157
1158 if (backend_fd >= 0)
1159 close (backend_fd);
1160
1161#if EV_USE_PORT
1162 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1163#endif
805#if EV_USE_KQUEUE 1164#if EV_USE_KQUEUE
806 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1165 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
807#endif 1166#endif
808#if EV_USE_EPOLL 1167#if EV_USE_EPOLL
809 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1168 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
810#endif 1169#endif
811#if EV_USE_POLL 1170#if EV_USE_POLL
812 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1171 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
813#endif 1172#endif
814#if EV_USE_SELECT 1173#if EV_USE_SELECT
815 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1174 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
816#endif 1175#endif
817 1176
818 for (i = NUMPRI; i--; ) 1177 for (i = NUMPRI; i--; )
1178 {
819 array_free (pending, [i]); 1179 array_free (pending, [i]);
1180#if EV_IDLE_ENABLE
1181 array_free (idle, [i]);
1182#endif
1183 }
1184
1185 ev_free (anfds); anfdmax = 0;
820 1186
821 /* have to use the microsoft-never-gets-it-right macro */ 1187 /* have to use the microsoft-never-gets-it-right macro */
822 array_free (fdchange, EMPTY); 1188 array_free (fdchange, EMPTY);
823 array_free (timer, EMPTY); 1189 array_free (timer, EMPTY);
824#if EV_PERIODICS 1190#if EV_PERIODIC_ENABLE
825 array_free (periodic, EMPTY); 1191 array_free (periodic, EMPTY);
826#endif 1192#endif
1193#if EV_FORK_ENABLE
827 array_free (idle, EMPTY); 1194 array_free (fork, EMPTY);
1195#endif
828 array_free (prepare, EMPTY); 1196 array_free (prepare, EMPTY);
829 array_free (check, EMPTY); 1197 array_free (check, EMPTY);
1198#if EV_ASYNC_ENABLE
1199 array_free (async, EMPTY);
1200#endif
830 1201
831 method = 0; 1202 backend = 0;
832} 1203}
833 1204
834static void 1205void inline_size infy_fork (EV_P);
1206
1207void inline_size
835loop_fork (EV_P) 1208loop_fork (EV_P)
836{ 1209{
1210#if EV_USE_PORT
1211 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1212#endif
1213#if EV_USE_KQUEUE
1214 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1215#endif
837#if EV_USE_EPOLL 1216#if EV_USE_EPOLL
838 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1217 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
839#endif 1218#endif
840#if EV_USE_KQUEUE 1219#if EV_USE_INOTIFY
841 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1220 infy_fork (EV_A);
842#endif 1221#endif
843 1222
844 if (ev_is_active (&sigev)) 1223 if (ev_is_active (&pipeev))
845 { 1224 {
846 /* default loop */ 1225 /* this "locks" the handlers against writing to the pipe */
1226 gotsig = gotasync = 1;
847 1227
848 ev_ref (EV_A); 1228 ev_ref (EV_A);
849 ev_io_stop (EV_A_ &sigev); 1229 ev_io_stop (EV_A_ &pipeev);
850 close (sigpipe [0]); 1230 close (evpipe [0]);
851 close (sigpipe [1]); 1231 close (evpipe [1]);
852 1232
853 while (pipe (sigpipe))
854 syserr ("(libev) error creating pipe");
855
856 siginit (EV_A); 1233 evpipe_init (EV_A);
1234 /* now iterate over everything, in case we missed something */
1235 pipecb (EV_A_ &pipeev, EV_READ);
857 } 1236 }
858 1237
859 postfork = 0; 1238 postfork = 0;
860} 1239}
861 1240
862#if EV_MULTIPLICITY 1241#if EV_MULTIPLICITY
863struct ev_loop * 1242struct ev_loop *
864ev_loop_new (int methods) 1243ev_loop_new (unsigned int flags)
865{ 1244{
866 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1245 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
867 1246
868 memset (loop, 0, sizeof (struct ev_loop)); 1247 memset (loop, 0, sizeof (struct ev_loop));
869 1248
870 loop_init (EV_A_ methods); 1249 loop_init (EV_A_ flags);
871 1250
872 if (ev_method (EV_A)) 1251 if (ev_backend (EV_A))
873 return loop; 1252 return loop;
874 1253
875 return 0; 1254 return 0;
876} 1255}
877 1256
883} 1262}
884 1263
885void 1264void
886ev_loop_fork (EV_P) 1265ev_loop_fork (EV_P)
887{ 1266{
888 postfork = 1; 1267 postfork = 1; /* must be in line with ev_default_fork */
889} 1268}
890 1269
891#endif 1270#endif
892 1271
893#if EV_MULTIPLICITY 1272#if EV_MULTIPLICITY
894struct ev_loop * 1273struct ev_loop *
1274ev_default_loop_init (unsigned int flags)
895#else 1275#else
896int 1276int
1277ev_default_loop (unsigned int flags)
897#endif 1278#endif
898ev_default_loop (int methods)
899{ 1279{
900 if (sigpipe [0] == sigpipe [1])
901 if (pipe (sigpipe))
902 return 0;
903
904 if (!default_loop) 1280 if (!ev_default_loop_ptr)
905 { 1281 {
906#if EV_MULTIPLICITY 1282#if EV_MULTIPLICITY
907 struct ev_loop *loop = default_loop = &default_loop_struct; 1283 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
908#else 1284#else
909 default_loop = 1; 1285 ev_default_loop_ptr = 1;
910#endif 1286#endif
911 1287
912 loop_init (EV_A_ methods); 1288 loop_init (EV_A_ flags);
913 1289
914 if (ev_method (EV_A)) 1290 if (ev_backend (EV_A))
915 { 1291 {
916 siginit (EV_A);
917
918#ifndef _WIN32 1292#ifndef _WIN32
919 ev_signal_init (&childev, childcb, SIGCHLD); 1293 ev_signal_init (&childev, childcb, SIGCHLD);
920 ev_set_priority (&childev, EV_MAXPRI); 1294 ev_set_priority (&childev, EV_MAXPRI);
921 ev_signal_start (EV_A_ &childev); 1295 ev_signal_start (EV_A_ &childev);
922 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* child watcher should not keep loop alive */
923#endif 1297#endif
924 } 1298 }
925 else 1299 else
926 default_loop = 0; 1300 ev_default_loop_ptr = 0;
927 } 1301 }
928 1302
929 return default_loop; 1303 return ev_default_loop_ptr;
930} 1304}
931 1305
932void 1306void
933ev_default_destroy (void) 1307ev_default_destroy (void)
934{ 1308{
935#if EV_MULTIPLICITY 1309#if EV_MULTIPLICITY
936 struct ev_loop *loop = default_loop; 1310 struct ev_loop *loop = ev_default_loop_ptr;
937#endif 1311#endif
938 1312
939#ifndef _WIN32 1313#ifndef _WIN32
940 ev_ref (EV_A); /* child watcher */ 1314 ev_ref (EV_A); /* child watcher */
941 ev_signal_stop (EV_A_ &childev); 1315 ev_signal_stop (EV_A_ &childev);
942#endif 1316#endif
943 1317
944 ev_ref (EV_A); /* signal watcher */
945 ev_io_stop (EV_A_ &sigev);
946
947 close (sigpipe [0]); sigpipe [0] = 0;
948 close (sigpipe [1]); sigpipe [1] = 0;
949
950 loop_destroy (EV_A); 1318 loop_destroy (EV_A);
951} 1319}
952 1320
953void 1321void
954ev_default_fork (void) 1322ev_default_fork (void)
955{ 1323{
956#if EV_MULTIPLICITY 1324#if EV_MULTIPLICITY
957 struct ev_loop *loop = default_loop; 1325 struct ev_loop *loop = ev_default_loop_ptr;
958#endif 1326#endif
959 1327
960 if (method) 1328 if (backend)
961 postfork = 1; 1329 postfork = 1; /* must be in line with ev_loop_fork */
962} 1330}
963 1331
964/*****************************************************************************/ 1332/*****************************************************************************/
965 1333
966static int 1334void
967any_pending (EV_P) 1335ev_invoke (EV_P_ void *w, int revents)
968{ 1336{
969 int pri; 1337 EV_CB_INVOKE ((W)w, revents);
970
971 for (pri = NUMPRI; pri--; )
972 if (pendingcnt [pri])
973 return 1;
974
975 return 0;
976} 1338}
977 1339
978static void 1340void inline_speed
979call_pending (EV_P) 1341call_pending (EV_P)
980{ 1342{
981 int pri; 1343 int pri;
982 1344
983 for (pri = NUMPRI; pri--; ) 1345 for (pri = NUMPRI; pri--; )
984 while (pendingcnt [pri]) 1346 while (pendingcnt [pri])
985 { 1347 {
986 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1348 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
987 1349
988 if (p->w) 1350 if (expect_true (p->w))
989 { 1351 {
1352 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1353
990 p->w->pending = 0; 1354 p->w->pending = 0;
991 EV_CB_INVOKE (p->w, p->events); 1355 EV_CB_INVOKE (p->w, p->events);
992 } 1356 }
993 } 1357 }
994} 1358}
995 1359
996static void 1360void inline_size
997timers_reify (EV_P) 1361timers_reify (EV_P)
998{ 1362{
999 while (timercnt && ((WT)timers [0])->at <= mn_now) 1363 while (timercnt && ((WT)timers [0])->at <= mn_now)
1000 { 1364 {
1001 struct ev_timer *w = timers [0]; 1365 ev_timer *w = (ev_timer *)timers [0];
1002 1366
1003 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1367 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1004 1368
1005 /* first reschedule or stop timer */ 1369 /* first reschedule or stop timer */
1006 if (w->repeat) 1370 if (w->repeat)
1007 { 1371 {
1008 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1372 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1009 1373
1010 ((WT)w)->at += w->repeat; 1374 ((WT)w)->at += w->repeat;
1011 if (((WT)w)->at < mn_now) 1375 if (((WT)w)->at < mn_now)
1012 ((WT)w)->at = mn_now; 1376 ((WT)w)->at = mn_now;
1013 1377
1014 downheap ((WT *)timers, timercnt, 0); 1378 downheap (timers, timercnt, 0);
1015 } 1379 }
1016 else 1380 else
1017 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1381 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1018 1382
1019 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1383 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1020 } 1384 }
1021} 1385}
1022 1386
1023#if EV_PERIODICS 1387#if EV_PERIODIC_ENABLE
1024static void 1388void inline_size
1025periodics_reify (EV_P) 1389periodics_reify (EV_P)
1026{ 1390{
1027 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1391 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1028 { 1392 {
1029 struct ev_periodic *w = periodics [0]; 1393 ev_periodic *w = (ev_periodic *)periodics [0];
1030 1394
1031 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1395 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1032 1396
1033 /* first reschedule or stop timer */ 1397 /* first reschedule or stop timer */
1034 if (w->reschedule_cb) 1398 if (w->reschedule_cb)
1035 { 1399 {
1036 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1400 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1037
1038 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1401 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0); 1402 downheap (periodics, periodiccnt, 0);
1040 } 1403 }
1041 else if (w->interval) 1404 else if (w->interval)
1042 { 1405 {
1043 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1406 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1407 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1044 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1408 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1045 downheap ((WT *)periodics, periodiccnt, 0); 1409 downheap (periodics, periodiccnt, 0);
1046 } 1410 }
1047 else 1411 else
1048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1412 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1049 1413
1050 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1414 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1051 } 1415 }
1052} 1416}
1053 1417
1054static void 1418static void noinline
1055periodics_reschedule (EV_P) 1419periodics_reschedule (EV_P)
1056{ 1420{
1057 int i; 1421 int i;
1058 1422
1059 /* adjust periodics after time jump */ 1423 /* adjust periodics after time jump */
1060 for (i = 0; i < periodiccnt; ++i) 1424 for (i = 0; i < periodiccnt; ++i)
1061 { 1425 {
1062 struct ev_periodic *w = periodics [i]; 1426 ev_periodic *w = (ev_periodic *)periodics [i];
1063 1427
1064 if (w->reschedule_cb) 1428 if (w->reschedule_cb)
1065 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1429 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1066 else if (w->interval) 1430 else if (w->interval)
1067 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1431 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1068 } 1432 }
1069 1433
1070 /* now rebuild the heap */ 1434 /* now rebuild the heap */
1071 for (i = periodiccnt >> 1; i--; ) 1435 for (i = periodiccnt >> 1; i--; )
1072 downheap ((WT *)periodics, periodiccnt, i); 1436 downheap (periodics, periodiccnt, i);
1073} 1437}
1074#endif 1438#endif
1075 1439
1076inline int 1440#if EV_IDLE_ENABLE
1077time_update_monotonic (EV_P) 1441void inline_size
1442idle_reify (EV_P)
1078{ 1443{
1444 if (expect_false (idleall))
1445 {
1446 int pri;
1447
1448 for (pri = NUMPRI; pri--; )
1449 {
1450 if (pendingcnt [pri])
1451 break;
1452
1453 if (idlecnt [pri])
1454 {
1455 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1456 break;
1457 }
1458 }
1459 }
1460}
1461#endif
1462
1463void inline_speed
1464time_update (EV_P_ ev_tstamp max_block)
1465{
1466 int i;
1467
1468#if EV_USE_MONOTONIC
1469 if (expect_true (have_monotonic))
1470 {
1471 ev_tstamp odiff = rtmn_diff;
1472
1079 mn_now = get_clock (); 1473 mn_now = get_clock ();
1080 1474
1475 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1476 /* interpolate in the meantime */
1081 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1477 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1082 { 1478 {
1083 ev_rt_now = rtmn_diff + mn_now; 1479 ev_rt_now = rtmn_diff + mn_now;
1084 return 0; 1480 return;
1085 } 1481 }
1086 else 1482
1087 {
1088 now_floor = mn_now; 1483 now_floor = mn_now;
1089 ev_rt_now = ev_time (); 1484 ev_rt_now = ev_time ();
1090 return 1;
1091 }
1092}
1093 1485
1094static void 1486 /* loop a few times, before making important decisions.
1095time_update (EV_P) 1487 * on the choice of "4": one iteration isn't enough,
1096{ 1488 * in case we get preempted during the calls to
1097 int i; 1489 * ev_time and get_clock. a second call is almost guaranteed
1098 1490 * to succeed in that case, though. and looping a few more times
1099#if EV_USE_MONOTONIC 1491 * doesn't hurt either as we only do this on time-jumps or
1100 if (expect_true (have_monotonic)) 1492 * in the unlikely event of having been preempted here.
1101 { 1493 */
1102 if (time_update_monotonic (EV_A)) 1494 for (i = 4; --i; )
1103 { 1495 {
1104 ev_tstamp odiff = rtmn_diff;
1105
1106 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1107 {
1108 rtmn_diff = ev_rt_now - mn_now; 1496 rtmn_diff = ev_rt_now - mn_now;
1109 1497
1110 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1498 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1111 return; /* all is well */ 1499 return; /* all is well */
1112 1500
1113 ev_rt_now = ev_time (); 1501 ev_rt_now = ev_time ();
1114 mn_now = get_clock (); 1502 mn_now = get_clock ();
1115 now_floor = mn_now; 1503 now_floor = mn_now;
1116 } 1504 }
1117 1505
1118# if EV_PERIODICS 1506# if EV_PERIODIC_ENABLE
1507 periodics_reschedule (EV_A);
1508# endif
1509 /* no timer adjustment, as the monotonic clock doesn't jump */
1510 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1511 }
1512 else
1513#endif
1514 {
1515 ev_rt_now = ev_time ();
1516
1517 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1518 {
1519#if EV_PERIODIC_ENABLE
1119 periodics_reschedule (EV_A); 1520 periodics_reschedule (EV_A);
1120# endif 1521#endif
1121 /* no timer adjustment, as the monotonic clock doesn't jump */
1122 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1123 }
1124 }
1125 else
1126#endif
1127 {
1128 ev_rt_now = ev_time ();
1129
1130 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1131 {
1132#if EV_PERIODICS
1133 periodics_reschedule (EV_A);
1134#endif
1135
1136 /* adjust timers. this is easy, as the offset is the same for all */ 1522 /* adjust timers. this is easy, as the offset is the same for all of them */
1137 for (i = 0; i < timercnt; ++i) 1523 for (i = 0; i < timercnt; ++i)
1138 ((WT)timers [i])->at += ev_rt_now - mn_now; 1524 ((WT)timers [i])->at += ev_rt_now - mn_now;
1139 } 1525 }
1140 1526
1141 mn_now = ev_rt_now; 1527 mn_now = ev_rt_now;
1157static int loop_done; 1543static int loop_done;
1158 1544
1159void 1545void
1160ev_loop (EV_P_ int flags) 1546ev_loop (EV_P_ int flags)
1161{ 1547{
1162 double block;
1163 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1548 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1549 ? EVUNLOOP_ONE
1550 : EVUNLOOP_CANCEL;
1551
1552 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1164 1553
1165 do 1554 do
1166 { 1555 {
1556#ifndef _WIN32
1557 if (expect_false (curpid)) /* penalise the forking check even more */
1558 if (expect_false (getpid () != curpid))
1559 {
1560 curpid = getpid ();
1561 postfork = 1;
1562 }
1563#endif
1564
1565#if EV_FORK_ENABLE
1566 /* we might have forked, so queue fork handlers */
1567 if (expect_false (postfork))
1568 if (forkcnt)
1569 {
1570 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1571 call_pending (EV_A);
1572 }
1573#endif
1574
1167 /* queue check watchers (and execute them) */ 1575 /* queue prepare watchers (and execute them) */
1168 if (expect_false (preparecnt)) 1576 if (expect_false (preparecnt))
1169 { 1577 {
1170 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1578 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1171 call_pending (EV_A); 1579 call_pending (EV_A);
1172 } 1580 }
1173 1581
1582 if (expect_false (!activecnt))
1583 break;
1584
1174 /* we might have forked, so reify kernel state if necessary */ 1585 /* we might have forked, so reify kernel state if necessary */
1175 if (expect_false (postfork)) 1586 if (expect_false (postfork))
1176 loop_fork (EV_A); 1587 loop_fork (EV_A);
1177 1588
1178 /* update fd-related kernel structures */ 1589 /* update fd-related kernel structures */
1179 fd_reify (EV_A); 1590 fd_reify (EV_A);
1180 1591
1181 /* calculate blocking time */ 1592 /* calculate blocking time */
1593 {
1594 ev_tstamp waittime = 0.;
1595 ev_tstamp sleeptime = 0.;
1182 1596
1183 /* we only need this for !monotonic clock or timers, but as we basically 1597 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1184 always have timers, we just calculate it always */
1185#if EV_USE_MONOTONIC
1186 if (expect_true (have_monotonic))
1187 time_update_monotonic (EV_A);
1188 else
1189#endif
1190 { 1598 {
1191 ev_rt_now = ev_time (); 1599 /* update time to cancel out callback processing overhead */
1192 mn_now = ev_rt_now; 1600 time_update (EV_A_ 1e100);
1193 }
1194 1601
1195 if (flags & EVLOOP_NONBLOCK || idlecnt)
1196 block = 0.;
1197 else
1198 {
1199 block = MAX_BLOCKTIME; 1602 waittime = MAX_BLOCKTIME;
1200 1603
1201 if (timercnt) 1604 if (timercnt)
1202 { 1605 {
1203 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1606 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1204 if (block > to) block = to; 1607 if (waittime > to) waittime = to;
1205 } 1608 }
1206 1609
1207#if EV_PERIODICS 1610#if EV_PERIODIC_ENABLE
1208 if (periodiccnt) 1611 if (periodiccnt)
1209 { 1612 {
1210 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1613 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1211 if (block > to) block = to; 1614 if (waittime > to) waittime = to;
1212 } 1615 }
1213#endif 1616#endif
1214 1617
1215 if (block < 0.) block = 0.; 1618 if (expect_false (waittime < timeout_blocktime))
1619 waittime = timeout_blocktime;
1620
1621 sleeptime = waittime - backend_fudge;
1622
1623 if (expect_true (sleeptime > io_blocktime))
1624 sleeptime = io_blocktime;
1625
1626 if (sleeptime)
1627 {
1628 ev_sleep (sleeptime);
1629 waittime -= sleeptime;
1630 }
1216 } 1631 }
1217 1632
1218 method_poll (EV_A_ block); 1633 ++loop_count;
1634 backend_poll (EV_A_ waittime);
1219 1635
1220 /* update ev_rt_now, do magic */ 1636 /* update ev_rt_now, do magic */
1221 time_update (EV_A); 1637 time_update (EV_A_ waittime + sleeptime);
1638 }
1222 1639
1223 /* queue pending timers and reschedule them */ 1640 /* queue pending timers and reschedule them */
1224 timers_reify (EV_A); /* relative timers called last */ 1641 timers_reify (EV_A); /* relative timers called last */
1225#if EV_PERIODICS 1642#if EV_PERIODIC_ENABLE
1226 periodics_reify (EV_A); /* absolute timers called first */ 1643 periodics_reify (EV_A); /* absolute timers called first */
1227#endif 1644#endif
1228 1645
1646#if EV_IDLE_ENABLE
1229 /* queue idle watchers unless io or timers are pending */ 1647 /* queue idle watchers unless other events are pending */
1230 if (idlecnt && !any_pending (EV_A)) 1648 idle_reify (EV_A);
1231 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1649#endif
1232 1650
1233 /* queue check watchers, to be executed first */ 1651 /* queue check watchers, to be executed first */
1234 if (checkcnt) 1652 if (expect_false (checkcnt))
1235 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1653 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1236 1654
1237 call_pending (EV_A); 1655 call_pending (EV_A);
1656
1238 } 1657 }
1239 while (activecnt && !loop_done); 1658 while (expect_true (activecnt && !loop_done));
1240 1659
1241 if (loop_done != 2) 1660 if (loop_done == EVUNLOOP_ONE)
1242 loop_done = 0; 1661 loop_done = EVUNLOOP_CANCEL;
1243} 1662}
1244 1663
1245void 1664void
1246ev_unloop (EV_P_ int how) 1665ev_unloop (EV_P_ int how)
1247{ 1666{
1248 loop_done = how; 1667 loop_done = how;
1249} 1668}
1250 1669
1251/*****************************************************************************/ 1670/*****************************************************************************/
1252 1671
1253inline void 1672void inline_size
1254wlist_add (WL *head, WL elem) 1673wlist_add (WL *head, WL elem)
1255{ 1674{
1256 elem->next = *head; 1675 elem->next = *head;
1257 *head = elem; 1676 *head = elem;
1258} 1677}
1259 1678
1260inline void 1679void inline_size
1261wlist_del (WL *head, WL elem) 1680wlist_del (WL *head, WL elem)
1262{ 1681{
1263 while (*head) 1682 while (*head)
1264 { 1683 {
1265 if (*head == elem) 1684 if (*head == elem)
1270 1689
1271 head = &(*head)->next; 1690 head = &(*head)->next;
1272 } 1691 }
1273} 1692}
1274 1693
1275inline void 1694void inline_speed
1276ev_clear_pending (EV_P_ W w) 1695clear_pending (EV_P_ W w)
1277{ 1696{
1278 if (w->pending) 1697 if (w->pending)
1279 { 1698 {
1280 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1699 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1281 w->pending = 0; 1700 w->pending = 0;
1282 } 1701 }
1283} 1702}
1284 1703
1285inline void 1704int
1705ev_clear_pending (EV_P_ void *w)
1706{
1707 W w_ = (W)w;
1708 int pending = w_->pending;
1709
1710 if (expect_true (pending))
1711 {
1712 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1713 w_->pending = 0;
1714 p->w = 0;
1715 return p->events;
1716 }
1717 else
1718 return 0;
1719}
1720
1721void inline_size
1722pri_adjust (EV_P_ W w)
1723{
1724 int pri = w->priority;
1725 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1726 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1727 w->priority = pri;
1728}
1729
1730void inline_speed
1286ev_start (EV_P_ W w, int active) 1731ev_start (EV_P_ W w, int active)
1287{ 1732{
1288 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1733 pri_adjust (EV_A_ w);
1289 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1290
1291 w->active = active; 1734 w->active = active;
1292 ev_ref (EV_A); 1735 ev_ref (EV_A);
1293} 1736}
1294 1737
1295inline void 1738void inline_size
1296ev_stop (EV_P_ W w) 1739ev_stop (EV_P_ W w)
1297{ 1740{
1298 ev_unref (EV_A); 1741 ev_unref (EV_A);
1299 w->active = 0; 1742 w->active = 0;
1300} 1743}
1301 1744
1302/*****************************************************************************/ 1745/*****************************************************************************/
1303 1746
1304void 1747void noinline
1305ev_io_start (EV_P_ struct ev_io *w) 1748ev_io_start (EV_P_ ev_io *w)
1306{ 1749{
1307 int fd = w->fd; 1750 int fd = w->fd;
1308 1751
1309 if (ev_is_active (w)) 1752 if (expect_false (ev_is_active (w)))
1310 return; 1753 return;
1311 1754
1312 assert (("ev_io_start called with negative fd", fd >= 0)); 1755 assert (("ev_io_start called with negative fd", fd >= 0));
1313 1756
1314 ev_start (EV_A_ (W)w, 1); 1757 ev_start (EV_A_ (W)w, 1);
1315 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1758 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1316 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1759 wlist_add (&anfds[fd].head, (WL)w);
1317 1760
1318 fd_change (EV_A_ fd); 1761 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1762 w->events &= ~EV_IOFDSET;
1319} 1763}
1320 1764
1321void 1765void noinline
1322ev_io_stop (EV_P_ struct ev_io *w) 1766ev_io_stop (EV_P_ ev_io *w)
1323{ 1767{
1324 ev_clear_pending (EV_A_ (W)w); 1768 clear_pending (EV_A_ (W)w);
1325 if (!ev_is_active (w)) 1769 if (expect_false (!ev_is_active (w)))
1326 return; 1770 return;
1327 1771
1328 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1772 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1329 1773
1330 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1774 wlist_del (&anfds[w->fd].head, (WL)w);
1331 ev_stop (EV_A_ (W)w); 1775 ev_stop (EV_A_ (W)w);
1332 1776
1333 fd_change (EV_A_ w->fd); 1777 fd_change (EV_A_ w->fd, 1);
1334} 1778}
1335 1779
1336void 1780void noinline
1337ev_timer_start (EV_P_ struct ev_timer *w) 1781ev_timer_start (EV_P_ ev_timer *w)
1338{ 1782{
1339 if (ev_is_active (w)) 1783 if (expect_false (ev_is_active (w)))
1340 return; 1784 return;
1341 1785
1342 ((WT)w)->at += mn_now; 1786 ((WT)w)->at += mn_now;
1343 1787
1344 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1788 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1345 1789
1346 ev_start (EV_A_ (W)w, ++timercnt); 1790 ev_start (EV_A_ (W)w, ++timercnt);
1347 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1791 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1348 timers [timercnt - 1] = w; 1792 timers [timercnt - 1] = (WT)w;
1349 upheap ((WT *)timers, timercnt - 1); 1793 upheap (timers, timercnt - 1);
1350 1794
1351 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1795 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1352} 1796}
1353 1797
1354void 1798void noinline
1355ev_timer_stop (EV_P_ struct ev_timer *w) 1799ev_timer_stop (EV_P_ ev_timer *w)
1356{ 1800{
1357 ev_clear_pending (EV_A_ (W)w); 1801 clear_pending (EV_A_ (W)w);
1358 if (!ev_is_active (w)) 1802 if (expect_false (!ev_is_active (w)))
1359 return; 1803 return;
1360 1804
1361 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1805 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1362 1806
1363 if (((W)w)->active < timercnt--) 1807 {
1808 int active = ((W)w)->active;
1809
1810 if (expect_true (--active < --timercnt))
1364 { 1811 {
1365 timers [((W)w)->active - 1] = timers [timercnt]; 1812 timers [active] = timers [timercnt];
1366 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1813 adjustheap (timers, timercnt, active);
1367 } 1814 }
1815 }
1368 1816
1369 ((WT)w)->at -= mn_now; 1817 ((WT)w)->at -= mn_now;
1370 1818
1371 ev_stop (EV_A_ (W)w); 1819 ev_stop (EV_A_ (W)w);
1372} 1820}
1373 1821
1374void 1822void noinline
1375ev_timer_again (EV_P_ struct ev_timer *w) 1823ev_timer_again (EV_P_ ev_timer *w)
1376{ 1824{
1377 if (ev_is_active (w)) 1825 if (ev_is_active (w))
1378 { 1826 {
1379 if (w->repeat) 1827 if (w->repeat)
1380 { 1828 {
1381 ((WT)w)->at = mn_now + w->repeat; 1829 ((WT)w)->at = mn_now + w->repeat;
1382 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1830 adjustheap (timers, timercnt, ((W)w)->active - 1);
1383 } 1831 }
1384 else 1832 else
1385 ev_timer_stop (EV_A_ w); 1833 ev_timer_stop (EV_A_ w);
1386 } 1834 }
1387 else if (w->repeat) 1835 else if (w->repeat)
1836 {
1837 w->at = w->repeat;
1388 ev_timer_start (EV_A_ w); 1838 ev_timer_start (EV_A_ w);
1839 }
1389} 1840}
1390 1841
1391#if EV_PERIODICS 1842#if EV_PERIODIC_ENABLE
1392void 1843void noinline
1393ev_periodic_start (EV_P_ struct ev_periodic *w) 1844ev_periodic_start (EV_P_ ev_periodic *w)
1394{ 1845{
1395 if (ev_is_active (w)) 1846 if (expect_false (ev_is_active (w)))
1396 return; 1847 return;
1397 1848
1398 if (w->reschedule_cb) 1849 if (w->reschedule_cb)
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1850 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1400 else if (w->interval) 1851 else if (w->interval)
1401 { 1852 {
1402 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1853 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1403 /* this formula differs from the one in periodic_reify because we do not always round up */ 1854 /* this formula differs from the one in periodic_reify because we do not always round up */
1404 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1855 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1405 } 1856 }
1857 else
1858 ((WT)w)->at = w->offset;
1406 1859
1407 ev_start (EV_A_ (W)w, ++periodiccnt); 1860 ev_start (EV_A_ (W)w, ++periodiccnt);
1408 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1861 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1409 periodics [periodiccnt - 1] = w; 1862 periodics [periodiccnt - 1] = (WT)w;
1410 upheap ((WT *)periodics, periodiccnt - 1); 1863 upheap (periodics, periodiccnt - 1);
1411 1864
1412 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1865 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1413} 1866}
1414 1867
1415void 1868void noinline
1416ev_periodic_stop (EV_P_ struct ev_periodic *w) 1869ev_periodic_stop (EV_P_ ev_periodic *w)
1417{ 1870{
1418 ev_clear_pending (EV_A_ (W)w); 1871 clear_pending (EV_A_ (W)w);
1419 if (!ev_is_active (w)) 1872 if (expect_false (!ev_is_active (w)))
1420 return; 1873 return;
1421 1874
1422 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1875 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1423 1876
1424 if (((W)w)->active < periodiccnt--) 1877 {
1878 int active = ((W)w)->active;
1879
1880 if (expect_true (--active < --periodiccnt))
1425 { 1881 {
1426 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1882 periodics [active] = periodics [periodiccnt];
1427 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1883 adjustheap (periodics, periodiccnt, active);
1428 } 1884 }
1885 }
1429 1886
1430 ev_stop (EV_A_ (W)w); 1887 ev_stop (EV_A_ (W)w);
1431} 1888}
1432 1889
1433void 1890void noinline
1434ev_periodic_again (EV_P_ struct ev_periodic *w) 1891ev_periodic_again (EV_P_ ev_periodic *w)
1435{ 1892{
1436 /* TODO: use adjustheap and recalculation */ 1893 /* TODO: use adjustheap and recalculation */
1437 ev_periodic_stop (EV_A_ w); 1894 ev_periodic_stop (EV_A_ w);
1438 ev_periodic_start (EV_A_ w); 1895 ev_periodic_start (EV_A_ w);
1439} 1896}
1440#endif 1897#endif
1441 1898
1442void
1443ev_idle_start (EV_P_ struct ev_idle *w)
1444{
1445 if (ev_is_active (w))
1446 return;
1447
1448 ev_start (EV_A_ (W)w, ++idlecnt);
1449 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1450 idles [idlecnt - 1] = w;
1451}
1452
1453void
1454ev_idle_stop (EV_P_ struct ev_idle *w)
1455{
1456 ev_clear_pending (EV_A_ (W)w);
1457 if (!ev_is_active (w))
1458 return;
1459
1460 idles [((W)w)->active - 1] = idles [--idlecnt];
1461 ev_stop (EV_A_ (W)w);
1462}
1463
1464void
1465ev_prepare_start (EV_P_ struct ev_prepare *w)
1466{
1467 if (ev_is_active (w))
1468 return;
1469
1470 ev_start (EV_A_ (W)w, ++preparecnt);
1471 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1472 prepares [preparecnt - 1] = w;
1473}
1474
1475void
1476ev_prepare_stop (EV_P_ struct ev_prepare *w)
1477{
1478 ev_clear_pending (EV_A_ (W)w);
1479 if (!ev_is_active (w))
1480 return;
1481
1482 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1483 ev_stop (EV_A_ (W)w);
1484}
1485
1486void
1487ev_check_start (EV_P_ struct ev_check *w)
1488{
1489 if (ev_is_active (w))
1490 return;
1491
1492 ev_start (EV_A_ (W)w, ++checkcnt);
1493 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1494 checks [checkcnt - 1] = w;
1495}
1496
1497void
1498ev_check_stop (EV_P_ struct ev_check *w)
1499{
1500 ev_clear_pending (EV_A_ (W)w);
1501 if (!ev_is_active (w))
1502 return;
1503
1504 checks [((W)w)->active - 1] = checks [--checkcnt];
1505 ev_stop (EV_A_ (W)w);
1506}
1507
1508#ifndef SA_RESTART 1899#ifndef SA_RESTART
1509# define SA_RESTART 0 1900# define SA_RESTART 0
1510#endif 1901#endif
1511 1902
1512void 1903void noinline
1513ev_signal_start (EV_P_ struct ev_signal *w) 1904ev_signal_start (EV_P_ ev_signal *w)
1514{ 1905{
1515#if EV_MULTIPLICITY 1906#if EV_MULTIPLICITY
1516 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1907 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1517#endif 1908#endif
1518 if (ev_is_active (w)) 1909 if (expect_false (ev_is_active (w)))
1519 return; 1910 return;
1520 1911
1521 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1912 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1522 1913
1914 evpipe_init (EV_A);
1915
1916 {
1917#ifndef _WIN32
1918 sigset_t full, prev;
1919 sigfillset (&full);
1920 sigprocmask (SIG_SETMASK, &full, &prev);
1921#endif
1922
1923 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1924
1925#ifndef _WIN32
1926 sigprocmask (SIG_SETMASK, &prev, 0);
1927#endif
1928 }
1929
1523 ev_start (EV_A_ (W)w, 1); 1930 ev_start (EV_A_ (W)w, 1);
1524 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1525 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1931 wlist_add (&signals [w->signum - 1].head, (WL)w);
1526 1932
1527 if (!((WL)w)->next) 1933 if (!((WL)w)->next)
1528 { 1934 {
1529#if _WIN32 1935#if _WIN32
1530 signal (w->signum, sighandler); 1936 signal (w->signum, sighandler);
1536 sigaction (w->signum, &sa, 0); 1942 sigaction (w->signum, &sa, 0);
1537#endif 1943#endif
1538 } 1944 }
1539} 1945}
1540 1946
1541void 1947void noinline
1542ev_signal_stop (EV_P_ struct ev_signal *w) 1948ev_signal_stop (EV_P_ ev_signal *w)
1543{ 1949{
1544 ev_clear_pending (EV_A_ (W)w); 1950 clear_pending (EV_A_ (W)w);
1545 if (!ev_is_active (w)) 1951 if (expect_false (!ev_is_active (w)))
1546 return; 1952 return;
1547 1953
1548 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1954 wlist_del (&signals [w->signum - 1].head, (WL)w);
1549 ev_stop (EV_A_ (W)w); 1955 ev_stop (EV_A_ (W)w);
1550 1956
1551 if (!signals [w->signum - 1].head) 1957 if (!signals [w->signum - 1].head)
1552 signal (w->signum, SIG_DFL); 1958 signal (w->signum, SIG_DFL);
1553} 1959}
1554 1960
1555void 1961void
1556ev_child_start (EV_P_ struct ev_child *w) 1962ev_child_start (EV_P_ ev_child *w)
1557{ 1963{
1558#if EV_MULTIPLICITY 1964#if EV_MULTIPLICITY
1559 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1965 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1560#endif 1966#endif
1561 if (ev_is_active (w)) 1967 if (expect_false (ev_is_active (w)))
1562 return; 1968 return;
1563 1969
1564 ev_start (EV_A_ (W)w, 1); 1970 ev_start (EV_A_ (W)w, 1);
1565 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1971 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1566} 1972}
1567 1973
1568void 1974void
1569ev_child_stop (EV_P_ struct ev_child *w) 1975ev_child_stop (EV_P_ ev_child *w)
1570{ 1976{
1571 ev_clear_pending (EV_A_ (W)w); 1977 clear_pending (EV_A_ (W)w);
1572 if (!ev_is_active (w)) 1978 if (expect_false (!ev_is_active (w)))
1573 return; 1979 return;
1574 1980
1575 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1981 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1576 ev_stop (EV_A_ (W)w); 1982 ev_stop (EV_A_ (W)w);
1577} 1983}
1578 1984
1985#if EV_STAT_ENABLE
1986
1987# ifdef _WIN32
1988# undef lstat
1989# define lstat(a,b) _stati64 (a,b)
1990# endif
1991
1992#define DEF_STAT_INTERVAL 5.0074891
1993#define MIN_STAT_INTERVAL 0.1074891
1994
1995static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1996
1997#if EV_USE_INOTIFY
1998# define EV_INOTIFY_BUFSIZE 8192
1999
2000static void noinline
2001infy_add (EV_P_ ev_stat *w)
2002{
2003 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2004
2005 if (w->wd < 0)
2006 {
2007 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2008
2009 /* monitor some parent directory for speedup hints */
2010 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2011 {
2012 char path [4096];
2013 strcpy (path, w->path);
2014
2015 do
2016 {
2017 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2018 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2019
2020 char *pend = strrchr (path, '/');
2021
2022 if (!pend)
2023 break; /* whoops, no '/', complain to your admin */
2024
2025 *pend = 0;
2026 w->wd = inotify_add_watch (fs_fd, path, mask);
2027 }
2028 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2029 }
2030 }
2031 else
2032 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2033
2034 if (w->wd >= 0)
2035 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2036}
2037
2038static void noinline
2039infy_del (EV_P_ ev_stat *w)
2040{
2041 int slot;
2042 int wd = w->wd;
2043
2044 if (wd < 0)
2045 return;
2046
2047 w->wd = -2;
2048 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2049 wlist_del (&fs_hash [slot].head, (WL)w);
2050
2051 /* remove this watcher, if others are watching it, they will rearm */
2052 inotify_rm_watch (fs_fd, wd);
2053}
2054
2055static void noinline
2056infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2057{
2058 if (slot < 0)
2059 /* overflow, need to check for all hahs slots */
2060 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2061 infy_wd (EV_A_ slot, wd, ev);
2062 else
2063 {
2064 WL w_;
2065
2066 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2067 {
2068 ev_stat *w = (ev_stat *)w_;
2069 w_ = w_->next; /* lets us remove this watcher and all before it */
2070
2071 if (w->wd == wd || wd == -1)
2072 {
2073 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2074 {
2075 w->wd = -1;
2076 infy_add (EV_A_ w); /* re-add, no matter what */
2077 }
2078
2079 stat_timer_cb (EV_A_ &w->timer, 0);
2080 }
2081 }
2082 }
2083}
2084
2085static void
2086infy_cb (EV_P_ ev_io *w, int revents)
2087{
2088 char buf [EV_INOTIFY_BUFSIZE];
2089 struct inotify_event *ev = (struct inotify_event *)buf;
2090 int ofs;
2091 int len = read (fs_fd, buf, sizeof (buf));
2092
2093 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2094 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2095}
2096
2097void inline_size
2098infy_init (EV_P)
2099{
2100 if (fs_fd != -2)
2101 return;
2102
2103 fs_fd = inotify_init ();
2104
2105 if (fs_fd >= 0)
2106 {
2107 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2108 ev_set_priority (&fs_w, EV_MAXPRI);
2109 ev_io_start (EV_A_ &fs_w);
2110 }
2111}
2112
2113void inline_size
2114infy_fork (EV_P)
2115{
2116 int slot;
2117
2118 if (fs_fd < 0)
2119 return;
2120
2121 close (fs_fd);
2122 fs_fd = inotify_init ();
2123
2124 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2125 {
2126 WL w_ = fs_hash [slot].head;
2127 fs_hash [slot].head = 0;
2128
2129 while (w_)
2130 {
2131 ev_stat *w = (ev_stat *)w_;
2132 w_ = w_->next; /* lets us add this watcher */
2133
2134 w->wd = -1;
2135
2136 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); /* re-add, no matter what */
2138 else
2139 ev_timer_start (EV_A_ &w->timer);
2140 }
2141
2142 }
2143}
2144
2145#endif
2146
2147void
2148ev_stat_stat (EV_P_ ev_stat *w)
2149{
2150 if (lstat (w->path, &w->attr) < 0)
2151 w->attr.st_nlink = 0;
2152 else if (!w->attr.st_nlink)
2153 w->attr.st_nlink = 1;
2154}
2155
2156static void noinline
2157stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2158{
2159 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2160
2161 /* we copy this here each the time so that */
2162 /* prev has the old value when the callback gets invoked */
2163 w->prev = w->attr;
2164 ev_stat_stat (EV_A_ w);
2165
2166 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2167 if (
2168 w->prev.st_dev != w->attr.st_dev
2169 || w->prev.st_ino != w->attr.st_ino
2170 || w->prev.st_mode != w->attr.st_mode
2171 || w->prev.st_nlink != w->attr.st_nlink
2172 || w->prev.st_uid != w->attr.st_uid
2173 || w->prev.st_gid != w->attr.st_gid
2174 || w->prev.st_rdev != w->attr.st_rdev
2175 || w->prev.st_size != w->attr.st_size
2176 || w->prev.st_atime != w->attr.st_atime
2177 || w->prev.st_mtime != w->attr.st_mtime
2178 || w->prev.st_ctime != w->attr.st_ctime
2179 ) {
2180 #if EV_USE_INOTIFY
2181 infy_del (EV_A_ w);
2182 infy_add (EV_A_ w);
2183 ev_stat_stat (EV_A_ w); /* avoid race... */
2184 #endif
2185
2186 ev_feed_event (EV_A_ w, EV_STAT);
2187 }
2188}
2189
2190void
2191ev_stat_start (EV_P_ ev_stat *w)
2192{
2193 if (expect_false (ev_is_active (w)))
2194 return;
2195
2196 /* since we use memcmp, we need to clear any padding data etc. */
2197 memset (&w->prev, 0, sizeof (ev_statdata));
2198 memset (&w->attr, 0, sizeof (ev_statdata));
2199
2200 ev_stat_stat (EV_A_ w);
2201
2202 if (w->interval < MIN_STAT_INTERVAL)
2203 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2204
2205 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2206 ev_set_priority (&w->timer, ev_priority (w));
2207
2208#if EV_USE_INOTIFY
2209 infy_init (EV_A);
2210
2211 if (fs_fd >= 0)
2212 infy_add (EV_A_ w);
2213 else
2214#endif
2215 ev_timer_start (EV_A_ &w->timer);
2216
2217 ev_start (EV_A_ (W)w, 1);
2218}
2219
2220void
2221ev_stat_stop (EV_P_ ev_stat *w)
2222{
2223 clear_pending (EV_A_ (W)w);
2224 if (expect_false (!ev_is_active (w)))
2225 return;
2226
2227#if EV_USE_INOTIFY
2228 infy_del (EV_A_ w);
2229#endif
2230 ev_timer_stop (EV_A_ &w->timer);
2231
2232 ev_stop (EV_A_ (W)w);
2233}
2234#endif
2235
2236#if EV_IDLE_ENABLE
2237void
2238ev_idle_start (EV_P_ ev_idle *w)
2239{
2240 if (expect_false (ev_is_active (w)))
2241 return;
2242
2243 pri_adjust (EV_A_ (W)w);
2244
2245 {
2246 int active = ++idlecnt [ABSPRI (w)];
2247
2248 ++idleall;
2249 ev_start (EV_A_ (W)w, active);
2250
2251 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2252 idles [ABSPRI (w)][active - 1] = w;
2253 }
2254}
2255
2256void
2257ev_idle_stop (EV_P_ ev_idle *w)
2258{
2259 clear_pending (EV_A_ (W)w);
2260 if (expect_false (!ev_is_active (w)))
2261 return;
2262
2263 {
2264 int active = ((W)w)->active;
2265
2266 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2267 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2268
2269 ev_stop (EV_A_ (W)w);
2270 --idleall;
2271 }
2272}
2273#endif
2274
2275void
2276ev_prepare_start (EV_P_ ev_prepare *w)
2277{
2278 if (expect_false (ev_is_active (w)))
2279 return;
2280
2281 ev_start (EV_A_ (W)w, ++preparecnt);
2282 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2283 prepares [preparecnt - 1] = w;
2284}
2285
2286void
2287ev_prepare_stop (EV_P_ ev_prepare *w)
2288{
2289 clear_pending (EV_A_ (W)w);
2290 if (expect_false (!ev_is_active (w)))
2291 return;
2292
2293 {
2294 int active = ((W)w)->active;
2295 prepares [active - 1] = prepares [--preparecnt];
2296 ((W)prepares [active - 1])->active = active;
2297 }
2298
2299 ev_stop (EV_A_ (W)w);
2300}
2301
2302void
2303ev_check_start (EV_P_ ev_check *w)
2304{
2305 if (expect_false (ev_is_active (w)))
2306 return;
2307
2308 ev_start (EV_A_ (W)w, ++checkcnt);
2309 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2310 checks [checkcnt - 1] = w;
2311}
2312
2313void
2314ev_check_stop (EV_P_ ev_check *w)
2315{
2316 clear_pending (EV_A_ (W)w);
2317 if (expect_false (!ev_is_active (w)))
2318 return;
2319
2320 {
2321 int active = ((W)w)->active;
2322 checks [active - 1] = checks [--checkcnt];
2323 ((W)checks [active - 1])->active = active;
2324 }
2325
2326 ev_stop (EV_A_ (W)w);
2327}
2328
2329#if EV_EMBED_ENABLE
2330void noinline
2331ev_embed_sweep (EV_P_ ev_embed *w)
2332{
2333 ev_loop (w->other, EVLOOP_NONBLOCK);
2334}
2335
2336static void
2337embed_io_cb (EV_P_ ev_io *io, int revents)
2338{
2339 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2340
2341 if (ev_cb (w))
2342 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2343 else
2344 ev_loop (w->other, EVLOOP_NONBLOCK);
2345}
2346
2347static void
2348embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2349{
2350 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2351
2352 {
2353 struct ev_loop *loop = w->other;
2354
2355 while (fdchangecnt)
2356 {
2357 fd_reify (EV_A);
2358 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2359 }
2360 }
2361}
2362
2363#if 0
2364static void
2365embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2366{
2367 ev_idle_stop (EV_A_ idle);
2368}
2369#endif
2370
2371void
2372ev_embed_start (EV_P_ ev_embed *w)
2373{
2374 if (expect_false (ev_is_active (w)))
2375 return;
2376
2377 {
2378 struct ev_loop *loop = w->other;
2379 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2380 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2381 }
2382
2383 ev_set_priority (&w->io, ev_priority (w));
2384 ev_io_start (EV_A_ &w->io);
2385
2386 ev_prepare_init (&w->prepare, embed_prepare_cb);
2387 ev_set_priority (&w->prepare, EV_MINPRI);
2388 ev_prepare_start (EV_A_ &w->prepare);
2389
2390 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2391
2392 ev_start (EV_A_ (W)w, 1);
2393}
2394
2395void
2396ev_embed_stop (EV_P_ ev_embed *w)
2397{
2398 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w)))
2400 return;
2401
2402 ev_io_stop (EV_A_ &w->io);
2403 ev_prepare_stop (EV_A_ &w->prepare);
2404
2405 ev_stop (EV_A_ (W)w);
2406}
2407#endif
2408
2409#if EV_FORK_ENABLE
2410void
2411ev_fork_start (EV_P_ ev_fork *w)
2412{
2413 if (expect_false (ev_is_active (w)))
2414 return;
2415
2416 ev_start (EV_A_ (W)w, ++forkcnt);
2417 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2418 forks [forkcnt - 1] = w;
2419}
2420
2421void
2422ev_fork_stop (EV_P_ ev_fork *w)
2423{
2424 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w)))
2426 return;
2427
2428 {
2429 int active = ((W)w)->active;
2430 forks [active - 1] = forks [--forkcnt];
2431 ((W)forks [active - 1])->active = active;
2432 }
2433
2434 ev_stop (EV_A_ (W)w);
2435}
2436#endif
2437
2438#if EV_ASYNC_ENABLE
2439void
2440ev_async_start (EV_P_ ev_async *w)
2441{
2442 if (expect_false (ev_is_active (w)))
2443 return;
2444
2445 evpipe_init (EV_A);
2446
2447 ev_start (EV_A_ (W)w, ++asynccnt);
2448 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2449 asyncs [asynccnt - 1] = w;
2450}
2451
2452void
2453ev_async_stop (EV_P_ ev_async *w)
2454{
2455 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w)))
2457 return;
2458
2459 {
2460 int active = ((W)w)->active;
2461 asyncs [active - 1] = asyncs [--asynccnt];
2462 ((W)asyncs [active - 1])->active = active;
2463 }
2464
2465 ev_stop (EV_A_ (W)w);
2466}
2467
2468void
2469ev_async_send (EV_P_ ev_async *w)
2470{
2471 w->sent = 1;
2472 evpipe_write (EV_A_ 0, 1);
2473}
2474#endif
2475
1579/*****************************************************************************/ 2476/*****************************************************************************/
1580 2477
1581struct ev_once 2478struct ev_once
1582{ 2479{
1583 struct ev_io io; 2480 ev_io io;
1584 struct ev_timer to; 2481 ev_timer to;
1585 void (*cb)(int revents, void *arg); 2482 void (*cb)(int revents, void *arg);
1586 void *arg; 2483 void *arg;
1587}; 2484};
1588 2485
1589static void 2486static void
1598 2495
1599 cb (revents, arg); 2496 cb (revents, arg);
1600} 2497}
1601 2498
1602static void 2499static void
1603once_cb_io (EV_P_ struct ev_io *w, int revents) 2500once_cb_io (EV_P_ ev_io *w, int revents)
1604{ 2501{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2502 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1606} 2503}
1607 2504
1608static void 2505static void
1609once_cb_to (EV_P_ struct ev_timer *w, int revents) 2506once_cb_to (EV_P_ ev_timer *w, int revents)
1610{ 2507{
1611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2508 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1612} 2509}
1613 2510
1614void 2511void
1615ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2512ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1616{ 2513{
1617 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2514 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1618 2515
1619 if (!once) 2516 if (expect_false (!once))
2517 {
1620 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2518 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1621 else 2519 return;
1622 { 2520 }
2521
1623 once->cb = cb; 2522 once->cb = cb;
1624 once->arg = arg; 2523 once->arg = arg;
1625 2524
1626 ev_init (&once->io, once_cb_io); 2525 ev_init (&once->io, once_cb_io);
1627 if (fd >= 0) 2526 if (fd >= 0)
1628 { 2527 {
1629 ev_io_set (&once->io, fd, events); 2528 ev_io_set (&once->io, fd, events);
1630 ev_io_start (EV_A_ &once->io); 2529 ev_io_start (EV_A_ &once->io);
1631 } 2530 }
1632 2531
1633 ev_init (&once->to, once_cb_to); 2532 ev_init (&once->to, once_cb_to);
1634 if (timeout >= 0.) 2533 if (timeout >= 0.)
1635 { 2534 {
1636 ev_timer_set (&once->to, timeout, 0.); 2535 ev_timer_set (&once->to, timeout, 0.);
1637 ev_timer_start (EV_A_ &once->to); 2536 ev_timer_start (EV_A_ &once->to);
1638 }
1639 } 2537 }
1640} 2538}
2539
2540#if EV_MULTIPLICITY
2541 #include "ev_wrap.h"
2542#endif
1641 2543
1642#ifdef __cplusplus 2544#ifdef __cplusplus
1643} 2545}
1644#endif 2546#endif
1645 2547

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines