ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC vs.
Revision 1.211 by root, Tue Feb 19 17:09:28 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif 244#endif
210 245
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 246/**/
247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 257
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 261
225#if __GNUC__ >= 3 262#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 265#else
236# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
240#endif 271#endif
241 272
242#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
244 282
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 285
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
250 288
251typedef ev_watcher *W; 289typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
254 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
256 298
257#ifdef _WIN32 299#ifdef _WIN32
258# include "ev_win32.c" 300# include "ev_win32.c"
259#endif 301#endif
260 302
396{ 438{
397 return ev_rt_now; 439 return ev_rt_now;
398} 440}
399#endif 441#endif
400 442
401#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
402 497
403#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
405 { \ 500 { \
406 int newcnt = cur; \ 501 int ocur_ = (cur); \
407 do \ 502 (base) = (type *)array_realloc \
408 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 505 }
417 506
507#if 0
418#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 510 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 514 }
515#endif
425 516
426#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 519
429/*****************************************************************************/ 520/*****************************************************************************/
430 521
431void noinline 522void noinline
432ev_feed_event (EV_P_ void *w, int revents) 523ev_feed_event (EV_P_ void *w, int revents)
433{ 524{
434 W w_ = (W)w; 525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
435 527
436 if (expect_false (w_->pending)) 528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
437 { 531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 535 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 536 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 537}
447 538
448void inline_size 539void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 541{
451 int i; 542 int i;
452 543
453 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
485} 576}
486 577
487void 578void
488ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 580{
581 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
491} 583}
492 584
493void inline_size 585void inline_size
494fd_reify (EV_P) 586fd_reify (EV_P)
495{ 587{
499 { 591 {
500 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
502 ev_io *w; 594 ev_io *w;
503 595
504 int events = 0; 596 unsigned char events = 0;
505 597
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 599 events |= (unsigned char)w->events;
508 600
509#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
510 if (events) 602 if (events)
511 { 603 {
512 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
513 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 611 }
516#endif 612#endif
517 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
518 anfd->reify = 0; 618 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
522 } 624 }
523 625
524 fdchangecnt = 0; 626 fdchangecnt = 0;
525} 627}
526 628
527void inline_size 629void inline_size
528fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
529{ 631{
530 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
534 634
635 if (expect_true (!reify))
636 {
535 ++fdchangecnt; 637 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
538} 641}
539 642
540void inline_speed 643void inline_speed
541fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
542{ 645{
593 696
594 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 698 if (anfds [fd].events)
596 { 699 {
597 anfds [fd].events = 0; 700 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 702 }
600} 703}
601 704
602/*****************************************************************************/ 705/*****************************************************************************/
603 706
604void inline_speed 707void inline_speed
605upheap (WT *heap, int k) 708upheap (WT *heap, int k)
606{ 709{
607 WT w = heap [k]; 710 WT w = heap [k];
608 711
609 while (k && heap [k >> 1]->at > w->at) 712 while (k)
610 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
611 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
613 k >>= 1; 721 k = p;
614 } 722 }
615 723
616 heap [k] = w; 724 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
618
619} 726}
620 727
621void inline_speed 728void inline_speed
622downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
623{ 730{
624 WT w = heap [k]; 731 WT w = heap [k];
625 732
626 while (k < (N >> 1)) 733 for (;;)
627 { 734 {
628 int j = k << 1; 735 int c = (k << 1) + 1;
629 736
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 738 break;
635 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
636 heap [k] = heap [j]; 746 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
638 k = j; 749 k = c;
639 } 750 }
640 751
641 heap [k] = w; 752 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
643} 754}
652/*****************************************************************************/ 763/*****************************************************************************/
653 764
654typedef struct 765typedef struct
655{ 766{
656 WL head; 767 WL head;
657 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
658} ANSIG; 769} ANSIG;
659 770
660static ANSIG *signals; 771static ANSIG *signals;
661static int signalmax; 772static int signalmax;
662 773
663static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 775
667void inline_size 776void inline_size
668signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
669{ 778{
670 while (count--) 779 while (count--)
674 783
675 ++base; 784 ++base;
676 } 785 }
677} 786}
678 787
679static void 788/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 789
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 790void inline_speed
731fd_intern (int fd) 791fd_intern (int fd)
732{ 792{
733#ifdef _WIN32 793#ifdef _WIN32
734 int arg = 1; 794 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 799#endif
740} 800}
741 801
742static void noinline 802static void noinline
743siginit (EV_P) 803evpipe_init (EV_P)
744{ 804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
745 fd_intern (sigpipe [0]); 810 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 811 fd_intern (evpipe [1]);
747 812
748 ev_io_set (&sigev, sigpipe [0], EV_READ); 813 ev_io_set (&pipeev, evpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 814 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 815 ev_unref (EV_A); /* watcher should not keep loop alive */
816
817 /* in case we received the signal before we had the chance of installing a handler */
818 ev_feed_event (EV_A_ &pipeev, 0);
819 }
820}
821
822void inline_size
823evpipe_write (EV_P_ int sig, int async)
824{
825 if (!(gotasync || gotsig))
826 {
827 int old_errno = errno; /* save errno becaue write might clobber it */
828
829 if (sig) gotsig = 1;
830 if (async) gotasync = 1;
831
832 write (evpipe [1], &old_errno, 1);
833
834 errno = old_errno;
835 }
836}
837
838static void
839pipecb (EV_P_ ev_io *iow, int revents)
840{
841 {
842 int dummy;
843 read (evpipe [0], &dummy, 1);
844 }
845
846 if (gotsig && ev_is_default_loop (EV_A))
847 {
848 int signum;
849 gotsig = 0;
850
851 for (signum = signalmax; signum--; )
852 if (signals [signum].gotsig)
853 ev_feed_signal_event (EV_A_ signum + 1);
854 }
855
856#if EV_ASYNC_ENABLE
857 if (gotasync)
858 {
859 int i;
860 gotasync = 0;
861
862 for (i = asynccnt; i--; )
863 if (asyncs [i]->sent)
864 {
865 asyncs [i]->sent = 0;
866 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
867 }
868 }
869#endif
751} 870}
752 871
753/*****************************************************************************/ 872/*****************************************************************************/
754 873
874static void
875sighandler (int signum)
876{
877#if EV_MULTIPLICITY
878 struct ev_loop *loop = &default_loop_struct;
879#endif
880
881#if _WIN32
882 signal (signum, sighandler);
883#endif
884
885 signals [signum - 1].gotsig = 1;
886 evpipe_write (EV_A_ 1, 0);
887}
888
889void noinline
890ev_feed_signal_event (EV_P_ int signum)
891{
892 WL w;
893
894#if EV_MULTIPLICITY
895 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
896#endif
897
898 --signum;
899
900 if (signum < 0 || signum >= signalmax)
901 return;
902
903 signals [signum].gotsig = 0;
904
905 for (w = signals [signum].head; w; w = w->next)
906 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
907}
908
909/*****************************************************************************/
910
755static ev_child *childs [EV_PID_HASHSIZE]; 911static WL childs [EV_PID_HASHSIZE];
756 912
757#ifndef _WIN32 913#ifndef _WIN32
758 914
759static ev_signal childev; 915static ev_signal childev;
916
917#ifndef WIFCONTINUED
918# define WIFCONTINUED(status) 0
919#endif
760 920
761void inline_speed 921void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 922child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
763{ 923{
764 ev_child *w; 924 ev_child *w;
925 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 926
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 927 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
928 {
767 if (w->pid == pid || !w->pid) 929 if ((w->pid == pid || !w->pid)
930 && (!traced || (w->flags & 1)))
768 { 931 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 932 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
770 w->rpid = pid; 933 w->rpid = pid;
771 w->rstatus = status; 934 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 935 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 936 }
937 }
774} 938}
775 939
776#ifndef WCONTINUED 940#ifndef WCONTINUED
777# define WCONTINUED 0 941# define WCONTINUED 0
778#endif 942#endif
875} 1039}
876 1040
877unsigned int 1041unsigned int
878ev_embeddable_backends (void) 1042ev_embeddable_backends (void)
879{ 1043{
880 return EVBACKEND_EPOLL 1044 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1045
882 | EVBACKEND_PORT; 1046 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1047 /* please fix it and tell me how to detect the fix */
1048 flags &= ~EVBACKEND_EPOLL;
1049
1050 return flags;
883} 1051}
884 1052
885unsigned int 1053unsigned int
886ev_backend (EV_P) 1054ev_backend (EV_P)
887{ 1055{
888 return backend; 1056 return backend;
1057}
1058
1059unsigned int
1060ev_loop_count (EV_P)
1061{
1062 return loop_count;
1063}
1064
1065void
1066ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1067{
1068 io_blocktime = interval;
1069}
1070
1071void
1072ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1073{
1074 timeout_blocktime = interval;
889} 1075}
890 1076
891static void noinline 1077static void noinline
892loop_init (EV_P_ unsigned int flags) 1078loop_init (EV_P_ unsigned int flags)
893{ 1079{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1085 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1086 have_monotonic = 1;
901 } 1087 }
902#endif 1088#endif
903 1089
904 ev_rt_now = ev_time (); 1090 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1091 mn_now = get_clock ();
906 now_floor = mn_now; 1092 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1093 rtmn_diff = ev_rt_now - mn_now;
1094
1095 io_blocktime = 0.;
1096 timeout_blocktime = 0.;
1097 backend = 0;
1098 backend_fd = -1;
1099 gotasync = 0;
1100#if EV_USE_INOTIFY
1101 fs_fd = -2;
1102#endif
908 1103
909 /* pid check not overridable via env */ 1104 /* pid check not overridable via env */
910#ifndef _WIN32 1105#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1106 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1107 curpid = getpid ();
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1113 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1114
920 if (!(flags & 0x0000ffffUL)) 1115 if (!(flags & 0x0000ffffUL))
921 flags |= ev_recommended_backends (); 1116 flags |= ev_recommended_backends ();
922 1117
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928
929#if EV_USE_PORT 1118#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1119 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1120#endif
932#if EV_USE_KQUEUE 1121#if EV_USE_KQUEUE
933 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1122 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
940#endif 1129#endif
941#if EV_USE_SELECT 1130#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1131 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1132#endif
944 1133
945 ev_init (&sigev, sigcb); 1134 ev_init (&pipeev, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1135 ev_set_priority (&pipeev, EV_MAXPRI);
947 } 1136 }
948} 1137}
949 1138
950static void noinline 1139static void noinline
951loop_destroy (EV_P) 1140loop_destroy (EV_P)
952{ 1141{
953 int i; 1142 int i;
1143
1144 if (ev_is_active (&pipeev))
1145 {
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &pipeev);
1148
1149 close (evpipe [0]); evpipe [0] = 0;
1150 close (evpipe [1]); evpipe [1] = 0;
1151 }
954 1152
955#if EV_USE_INOTIFY 1153#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1154 if (fs_fd >= 0)
957 close (fs_fd); 1155 close (fs_fd);
958#endif 1156#endif
975#if EV_USE_SELECT 1173#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1174 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1175#endif
978 1176
979 for (i = NUMPRI; i--; ) 1177 for (i = NUMPRI; i--; )
1178 {
980 array_free (pending, [i]); 1179 array_free (pending, [i]);
1180#if EV_IDLE_ENABLE
1181 array_free (idle, [i]);
1182#endif
1183 }
1184
1185 ev_free (anfds); anfdmax = 0;
981 1186
982 /* have to use the microsoft-never-gets-it-right macro */ 1187 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1188 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1189 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1190#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1191 array_free (periodic, EMPTY);
987#endif 1192#endif
1193#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1194 array_free (fork, EMPTY);
1195#endif
989 array_free (prepare, EMPTY0); 1196 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1197 array_free (check, EMPTY);
1198#if EV_ASYNC_ENABLE
1199 array_free (async, EMPTY);
1200#endif
991 1201
992 backend = 0; 1202 backend = 0;
993} 1203}
994 1204
995void inline_size infy_fork (EV_P); 1205void inline_size infy_fork (EV_P);
1008#endif 1218#endif
1009#if EV_USE_INOTIFY 1219#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1220 infy_fork (EV_A);
1011#endif 1221#endif
1012 1222
1013 if (ev_is_active (&sigev)) 1223 if (ev_is_active (&pipeev))
1014 { 1224 {
1015 /* default loop */ 1225 /* this "locks" the handlers against writing to the pipe */
1226 gotsig = gotasync = 1;
1016 1227
1017 ev_ref (EV_A); 1228 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1229 ev_io_stop (EV_A_ &pipeev);
1019 close (sigpipe [0]); 1230 close (evpipe [0]);
1020 close (sigpipe [1]); 1231 close (evpipe [1]);
1021 1232
1022 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe");
1024
1025 siginit (EV_A); 1233 evpipe_init (EV_A);
1234 /* now iterate over everything, in case we missed something */
1235 pipecb (EV_A_ &pipeev, EV_READ);
1026 } 1236 }
1027 1237
1028 postfork = 0; 1238 postfork = 0;
1029} 1239}
1030 1240
1052} 1262}
1053 1263
1054void 1264void
1055ev_loop_fork (EV_P) 1265ev_loop_fork (EV_P)
1056{ 1266{
1057 postfork = 1; 1267 postfork = 1; /* must be in line with ev_default_fork */
1058} 1268}
1059 1269
1060#endif 1270#endif
1061 1271
1062#if EV_MULTIPLICITY 1272#if EV_MULTIPLICITY
1065#else 1275#else
1066int 1276int
1067ev_default_loop (unsigned int flags) 1277ev_default_loop (unsigned int flags)
1068#endif 1278#endif
1069{ 1279{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1280 if (!ev_default_loop_ptr)
1075 { 1281 {
1076#if EV_MULTIPLICITY 1282#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1283 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1078#else 1284#else
1081 1287
1082 loop_init (EV_A_ flags); 1288 loop_init (EV_A_ flags);
1083 1289
1084 if (ev_backend (EV_A)) 1290 if (ev_backend (EV_A))
1085 { 1291 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1292#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1293 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1294 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1295 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* child watcher should not keep loop alive */
1109#ifndef _WIN32 1313#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1314 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1315 ev_signal_stop (EV_A_ &childev);
1112#endif 1316#endif
1113 1317
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1318 loop_destroy (EV_A);
1121} 1319}
1122 1320
1123void 1321void
1124ev_default_fork (void) 1322ev_default_fork (void)
1126#if EV_MULTIPLICITY 1324#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1325 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1326#endif
1129 1327
1130 if (backend) 1328 if (backend)
1131 postfork = 1; 1329 postfork = 1; /* must be in line with ev_loop_fork */
1132} 1330}
1133 1331
1134/*****************************************************************************/ 1332/*****************************************************************************/
1135 1333
1136int inline_size 1334void
1137any_pending (EV_P) 1335ev_invoke (EV_P_ void *w, int revents)
1138{ 1336{
1139 int pri; 1337 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1338}
1147 1339
1148void inline_speed 1340void inline_speed
1149call_pending (EV_P) 1341call_pending (EV_P)
1150{ 1342{
1168void inline_size 1360void inline_size
1169timers_reify (EV_P) 1361timers_reify (EV_P)
1170{ 1362{
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1363 while (timercnt && ((WT)timers [0])->at <= mn_now)
1172 { 1364 {
1173 ev_timer *w = timers [0]; 1365 ev_timer *w = (ev_timer *)timers [0];
1174 1366
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1367 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1368
1177 /* first reschedule or stop timer */ 1369 /* first reschedule or stop timer */
1178 if (w->repeat) 1370 if (w->repeat)
1181 1373
1182 ((WT)w)->at += w->repeat; 1374 ((WT)w)->at += w->repeat;
1183 if (((WT)w)->at < mn_now) 1375 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now; 1376 ((WT)w)->at = mn_now;
1185 1377
1186 downheap ((WT *)timers, timercnt, 0); 1378 downheap (timers, timercnt, 0);
1187 } 1379 }
1188 else 1380 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1381 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1382
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1383 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1196void inline_size 1388void inline_size
1197periodics_reify (EV_P) 1389periodics_reify (EV_P)
1198{ 1390{
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1391 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1200 { 1392 {
1201 ev_periodic *w = periodics [0]; 1393 ev_periodic *w = (ev_periodic *)periodics [0];
1202 1394
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1395 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1396
1205 /* first reschedule or stop timer */ 1397 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1398 if (w->reschedule_cb)
1207 { 1399 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1400 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1401 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0); 1402 downheap (periodics, periodiccnt, 0);
1211 } 1403 }
1212 else if (w->interval) 1404 else if (w->interval)
1213 { 1405 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1406 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1407 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1408 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1409 downheap (periodics, periodiccnt, 0);
1217 } 1410 }
1218 else 1411 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1412 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1413
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1414 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1228 int i; 1421 int i;
1229 1422
1230 /* adjust periodics after time jump */ 1423 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1424 for (i = 0; i < periodiccnt; ++i)
1232 { 1425 {
1233 ev_periodic *w = periodics [i]; 1426 ev_periodic *w = (ev_periodic *)periodics [i];
1234 1427
1235 if (w->reschedule_cb) 1428 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1429 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1430 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1431 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1239 } 1432 }
1240 1433
1241 /* now rebuild the heap */ 1434 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; ) 1435 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i); 1436 downheap (periodics, periodiccnt, i);
1244} 1437}
1245#endif 1438#endif
1246 1439
1440#if EV_IDLE_ENABLE
1247int inline_size 1441void inline_size
1248time_update_monotonic (EV_P) 1442idle_reify (EV_P)
1249{ 1443{
1444 if (expect_false (idleall))
1445 {
1446 int pri;
1447
1448 for (pri = NUMPRI; pri--; )
1449 {
1450 if (pendingcnt [pri])
1451 break;
1452
1453 if (idlecnt [pri])
1454 {
1455 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1456 break;
1457 }
1458 }
1459 }
1460}
1461#endif
1462
1463void inline_speed
1464time_update (EV_P_ ev_tstamp max_block)
1465{
1466 int i;
1467
1468#if EV_USE_MONOTONIC
1469 if (expect_true (have_monotonic))
1470 {
1471 ev_tstamp odiff = rtmn_diff;
1472
1250 mn_now = get_clock (); 1473 mn_now = get_clock ();
1251 1474
1475 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1476 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1477 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1478 {
1254 ev_rt_now = rtmn_diff + mn_now; 1479 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1480 return;
1256 } 1481 }
1257 else 1482
1258 {
1259 now_floor = mn_now; 1483 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1484 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1485
1265void inline_size 1486 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1487 * on the choice of "4": one iteration isn't enough,
1267{ 1488 * in case we get preempted during the calls to
1268 int i; 1489 * ev_time and get_clock. a second call is almost guaranteed
1269 1490 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1491 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1492 * in the unlikely event of having been preempted here.
1272 { 1493 */
1273 if (time_update_monotonic (EV_A)) 1494 for (i = 4; --i; )
1274 { 1495 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1496 rtmn_diff = ev_rt_now - mn_now;
1288 1497
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1498 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1290 return; /* all is well */ 1499 return; /* all is well */
1291 1500
1292 ev_rt_now = ev_time (); 1501 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1502 mn_now = get_clock ();
1294 now_floor = mn_now; 1503 now_floor = mn_now;
1295 } 1504 }
1296 1505
1297# if EV_PERIODIC_ENABLE 1506# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1507 periodics_reschedule (EV_A);
1299# endif 1508# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1509 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1510 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1511 }
1304 else 1512 else
1305#endif 1513#endif
1306 { 1514 {
1307 ev_rt_now = ev_time (); 1515 ev_rt_now = ev_time ();
1308 1516
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1517 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1518 {
1311#if EV_PERIODIC_ENABLE 1519#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1520 periodics_reschedule (EV_A);
1313#endif 1521#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1522 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1523 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1524 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 1525 }
1319 1526
1342 ? EVUNLOOP_ONE 1549 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL; 1550 : EVUNLOOP_CANCEL;
1344 1551
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1552 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1553
1347 while (activecnt) 1554 do
1348 { 1555 {
1349#ifndef _WIN32 1556#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1557 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1558 if (expect_false (getpid () != curpid))
1352 { 1559 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1570 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1571 call_pending (EV_A);
1365 } 1572 }
1366#endif 1573#endif
1367 1574
1368 /* queue check watchers (and execute them) */ 1575 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1576 if (expect_false (preparecnt))
1370 { 1577 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1578 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1579 call_pending (EV_A);
1373 } 1580 }
1374 1581
1582 if (expect_false (!activecnt))
1583 break;
1584
1375 /* we might have forked, so reify kernel state if necessary */ 1585 /* we might have forked, so reify kernel state if necessary */
1376 if (expect_false (postfork)) 1586 if (expect_false (postfork))
1377 loop_fork (EV_A); 1587 loop_fork (EV_A);
1378 1588
1379 /* update fd-related kernel structures */ 1589 /* update fd-related kernel structures */
1380 fd_reify (EV_A); 1590 fd_reify (EV_A);
1381 1591
1382 /* calculate blocking time */ 1592 /* calculate blocking time */
1383 { 1593 {
1384 ev_tstamp block; 1594 ev_tstamp waittime = 0.;
1595 ev_tstamp sleeptime = 0.;
1385 1596
1386 if (flags & EVLOOP_NONBLOCK || idlecnt) 1597 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1387 block = 0.; /* do not block at all */
1388 else
1389 { 1598 {
1390 /* update time to cancel out callback processing overhead */ 1599 /* update time to cancel out callback processing overhead */
1391#if EV_USE_MONOTONIC
1392 if (expect_true (have_monotonic))
1393 time_update_monotonic (EV_A); 1600 time_update (EV_A_ 1e100);
1394 else
1395#endif
1396 {
1397 ev_rt_now = ev_time ();
1398 mn_now = ev_rt_now;
1399 }
1400 1601
1401 block = MAX_BLOCKTIME; 1602 waittime = MAX_BLOCKTIME;
1402 1603
1403 if (timercnt) 1604 if (timercnt)
1404 { 1605 {
1405 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1606 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1406 if (block > to) block = to; 1607 if (waittime > to) waittime = to;
1407 } 1608 }
1408 1609
1409#if EV_PERIODIC_ENABLE 1610#if EV_PERIODIC_ENABLE
1410 if (periodiccnt) 1611 if (periodiccnt)
1411 { 1612 {
1412 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1613 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1413 if (block > to) block = to; 1614 if (waittime > to) waittime = to;
1414 } 1615 }
1415#endif 1616#endif
1416 1617
1417 if (expect_false (block < 0.)) block = 0.; 1618 if (expect_false (waittime < timeout_blocktime))
1619 waittime = timeout_blocktime;
1620
1621 sleeptime = waittime - backend_fudge;
1622
1623 if (expect_true (sleeptime > io_blocktime))
1624 sleeptime = io_blocktime;
1625
1626 if (sleeptime)
1627 {
1628 ev_sleep (sleeptime);
1629 waittime -= sleeptime;
1630 }
1418 } 1631 }
1419 1632
1633 ++loop_count;
1420 backend_poll (EV_A_ block); 1634 backend_poll (EV_A_ waittime);
1635
1636 /* update ev_rt_now, do magic */
1637 time_update (EV_A_ waittime + sleeptime);
1421 } 1638 }
1422
1423 /* update ev_rt_now, do magic */
1424 time_update (EV_A);
1425 1639
1426 /* queue pending timers and reschedule them */ 1640 /* queue pending timers and reschedule them */
1427 timers_reify (EV_A); /* relative timers called last */ 1641 timers_reify (EV_A); /* relative timers called last */
1428#if EV_PERIODIC_ENABLE 1642#if EV_PERIODIC_ENABLE
1429 periodics_reify (EV_A); /* absolute timers called first */ 1643 periodics_reify (EV_A); /* absolute timers called first */
1430#endif 1644#endif
1431 1645
1646#if EV_IDLE_ENABLE
1432 /* queue idle watchers unless other events are pending */ 1647 /* queue idle watchers unless other events are pending */
1433 if (idlecnt && !any_pending (EV_A)) 1648 idle_reify (EV_A);
1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1649#endif
1435 1650
1436 /* queue check watchers, to be executed first */ 1651 /* queue check watchers, to be executed first */
1437 if (expect_false (checkcnt)) 1652 if (expect_false (checkcnt))
1438 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1653 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1439 1654
1440 call_pending (EV_A); 1655 call_pending (EV_A);
1441 1656
1442 if (expect_false (loop_done))
1443 break;
1444 } 1657 }
1658 while (expect_true (activecnt && !loop_done));
1445 1659
1446 if (loop_done == EVUNLOOP_ONE) 1660 if (loop_done == EVUNLOOP_ONE)
1447 loop_done = EVUNLOOP_CANCEL; 1661 loop_done = EVUNLOOP_CANCEL;
1448} 1662}
1449 1663
1476 head = &(*head)->next; 1690 head = &(*head)->next;
1477 } 1691 }
1478} 1692}
1479 1693
1480void inline_speed 1694void inline_speed
1481ev_clear_pending (EV_P_ W w) 1695clear_pending (EV_P_ W w)
1482{ 1696{
1483 if (w->pending) 1697 if (w->pending)
1484 { 1698 {
1485 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1699 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1486 w->pending = 0; 1700 w->pending = 0;
1487 } 1701 }
1488} 1702}
1489 1703
1704int
1705ev_clear_pending (EV_P_ void *w)
1706{
1707 W w_ = (W)w;
1708 int pending = w_->pending;
1709
1710 if (expect_true (pending))
1711 {
1712 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1713 w_->pending = 0;
1714 p->w = 0;
1715 return p->events;
1716 }
1717 else
1718 return 0;
1719}
1720
1721void inline_size
1722pri_adjust (EV_P_ W w)
1723{
1724 int pri = w->priority;
1725 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1726 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1727 w->priority = pri;
1728}
1729
1490void inline_speed 1730void inline_speed
1491ev_start (EV_P_ W w, int active) 1731ev_start (EV_P_ W w, int active)
1492{ 1732{
1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1733 pri_adjust (EV_A_ w);
1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1495
1496 w->active = active; 1734 w->active = active;
1497 ev_ref (EV_A); 1735 ev_ref (EV_A);
1498} 1736}
1499 1737
1500void inline_size 1738void inline_size
1504 w->active = 0; 1742 w->active = 0;
1505} 1743}
1506 1744
1507/*****************************************************************************/ 1745/*****************************************************************************/
1508 1746
1509void 1747void noinline
1510ev_io_start (EV_P_ ev_io *w) 1748ev_io_start (EV_P_ ev_io *w)
1511{ 1749{
1512 int fd = w->fd; 1750 int fd = w->fd;
1513 1751
1514 if (expect_false (ev_is_active (w))) 1752 if (expect_false (ev_is_active (w)))
1516 1754
1517 assert (("ev_io_start called with negative fd", fd >= 0)); 1755 assert (("ev_io_start called with negative fd", fd >= 0));
1518 1756
1519 ev_start (EV_A_ (W)w, 1); 1757 ev_start (EV_A_ (W)w, 1);
1520 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1758 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1521 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1759 wlist_add (&anfds[fd].head, (WL)w);
1522 1760
1523 fd_change (EV_A_ fd); 1761 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1762 w->events &= ~EV_IOFDSET;
1524} 1763}
1525 1764
1526void 1765void noinline
1527ev_io_stop (EV_P_ ev_io *w) 1766ev_io_stop (EV_P_ ev_io *w)
1528{ 1767{
1529 ev_clear_pending (EV_A_ (W)w); 1768 clear_pending (EV_A_ (W)w);
1530 if (expect_false (!ev_is_active (w))) 1769 if (expect_false (!ev_is_active (w)))
1531 return; 1770 return;
1532 1771
1533 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1772 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1534 1773
1535 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1774 wlist_del (&anfds[w->fd].head, (WL)w);
1536 ev_stop (EV_A_ (W)w); 1775 ev_stop (EV_A_ (W)w);
1537 1776
1538 fd_change (EV_A_ w->fd); 1777 fd_change (EV_A_ w->fd, 1);
1539} 1778}
1540 1779
1541void 1780void noinline
1542ev_timer_start (EV_P_ ev_timer *w) 1781ev_timer_start (EV_P_ ev_timer *w)
1543{ 1782{
1544 if (expect_false (ev_is_active (w))) 1783 if (expect_false (ev_is_active (w)))
1545 return; 1784 return;
1546 1785
1547 ((WT)w)->at += mn_now; 1786 ((WT)w)->at += mn_now;
1548 1787
1549 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1788 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1550 1789
1551 ev_start (EV_A_ (W)w, ++timercnt); 1790 ev_start (EV_A_ (W)w, ++timercnt);
1552 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1791 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1553 timers [timercnt - 1] = w; 1792 timers [timercnt - 1] = (WT)w;
1554 upheap ((WT *)timers, timercnt - 1); 1793 upheap (timers, timercnt - 1);
1555 1794
1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1795 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1557} 1796}
1558 1797
1559void 1798void noinline
1560ev_timer_stop (EV_P_ ev_timer *w) 1799ev_timer_stop (EV_P_ ev_timer *w)
1561{ 1800{
1562 ev_clear_pending (EV_A_ (W)w); 1801 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 1802 if (expect_false (!ev_is_active (w)))
1564 return; 1803 return;
1565 1804
1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1805 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1567 1806
1568 { 1807 {
1569 int active = ((W)w)->active; 1808 int active = ((W)w)->active;
1570 1809
1571 if (expect_true (--active < --timercnt)) 1810 if (expect_true (--active < --timercnt))
1572 { 1811 {
1573 timers [active] = timers [timercnt]; 1812 timers [active] = timers [timercnt];
1574 adjustheap ((WT *)timers, timercnt, active); 1813 adjustheap (timers, timercnt, active);
1575 } 1814 }
1576 } 1815 }
1577 1816
1578 ((WT)w)->at -= mn_now; 1817 ((WT)w)->at -= mn_now;
1579 1818
1580 ev_stop (EV_A_ (W)w); 1819 ev_stop (EV_A_ (W)w);
1581} 1820}
1582 1821
1583void 1822void noinline
1584ev_timer_again (EV_P_ ev_timer *w) 1823ev_timer_again (EV_P_ ev_timer *w)
1585{ 1824{
1586 if (ev_is_active (w)) 1825 if (ev_is_active (w))
1587 { 1826 {
1588 if (w->repeat) 1827 if (w->repeat)
1589 { 1828 {
1590 ((WT)w)->at = mn_now + w->repeat; 1829 ((WT)w)->at = mn_now + w->repeat;
1591 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1830 adjustheap (timers, timercnt, ((W)w)->active - 1);
1592 } 1831 }
1593 else 1832 else
1594 ev_timer_stop (EV_A_ w); 1833 ev_timer_stop (EV_A_ w);
1595 } 1834 }
1596 else if (w->repeat) 1835 else if (w->repeat)
1599 ev_timer_start (EV_A_ w); 1838 ev_timer_start (EV_A_ w);
1600 } 1839 }
1601} 1840}
1602 1841
1603#if EV_PERIODIC_ENABLE 1842#if EV_PERIODIC_ENABLE
1604void 1843void noinline
1605ev_periodic_start (EV_P_ ev_periodic *w) 1844ev_periodic_start (EV_P_ ev_periodic *w)
1606{ 1845{
1607 if (expect_false (ev_is_active (w))) 1846 if (expect_false (ev_is_active (w)))
1608 return; 1847 return;
1609 1848
1611 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1850 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1612 else if (w->interval) 1851 else if (w->interval)
1613 { 1852 {
1614 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1853 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1615 /* this formula differs from the one in periodic_reify because we do not always round up */ 1854 /* this formula differs from the one in periodic_reify because we do not always round up */
1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1855 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1617 } 1856 }
1857 else
1858 ((WT)w)->at = w->offset;
1618 1859
1619 ev_start (EV_A_ (W)w, ++periodiccnt); 1860 ev_start (EV_A_ (W)w, ++periodiccnt);
1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1861 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1621 periodics [periodiccnt - 1] = w; 1862 periodics [periodiccnt - 1] = (WT)w;
1622 upheap ((WT *)periodics, periodiccnt - 1); 1863 upheap (periodics, periodiccnt - 1);
1623 1864
1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1865 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1625} 1866}
1626 1867
1627void 1868void noinline
1628ev_periodic_stop (EV_P_ ev_periodic *w) 1869ev_periodic_stop (EV_P_ ev_periodic *w)
1629{ 1870{
1630 ev_clear_pending (EV_A_ (W)w); 1871 clear_pending (EV_A_ (W)w);
1631 if (expect_false (!ev_is_active (w))) 1872 if (expect_false (!ev_is_active (w)))
1632 return; 1873 return;
1633 1874
1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1875 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1635 1876
1636 { 1877 {
1637 int active = ((W)w)->active; 1878 int active = ((W)w)->active;
1638 1879
1639 if (expect_true (--active < --periodiccnt)) 1880 if (expect_true (--active < --periodiccnt))
1640 { 1881 {
1641 periodics [active] = periodics [periodiccnt]; 1882 periodics [active] = periodics [periodiccnt];
1642 adjustheap ((WT *)periodics, periodiccnt, active); 1883 adjustheap (periodics, periodiccnt, active);
1643 } 1884 }
1644 } 1885 }
1645 1886
1646 ev_stop (EV_A_ (W)w); 1887 ev_stop (EV_A_ (W)w);
1647} 1888}
1648 1889
1649void 1890void noinline
1650ev_periodic_again (EV_P_ ev_periodic *w) 1891ev_periodic_again (EV_P_ ev_periodic *w)
1651{ 1892{
1652 /* TODO: use adjustheap and recalculation */ 1893 /* TODO: use adjustheap and recalculation */
1653 ev_periodic_stop (EV_A_ w); 1894 ev_periodic_stop (EV_A_ w);
1654 ev_periodic_start (EV_A_ w); 1895 ev_periodic_start (EV_A_ w);
1657 1898
1658#ifndef SA_RESTART 1899#ifndef SA_RESTART
1659# define SA_RESTART 0 1900# define SA_RESTART 0
1660#endif 1901#endif
1661 1902
1662void 1903void noinline
1663ev_signal_start (EV_P_ ev_signal *w) 1904ev_signal_start (EV_P_ ev_signal *w)
1664{ 1905{
1665#if EV_MULTIPLICITY 1906#if EV_MULTIPLICITY
1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1907 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1667#endif 1908#endif
1668 if (expect_false (ev_is_active (w))) 1909 if (expect_false (ev_is_active (w)))
1669 return; 1910 return;
1670 1911
1671 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1912 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1672 1913
1914 evpipe_init (EV_A);
1915
1916 {
1917#ifndef _WIN32
1918 sigset_t full, prev;
1919 sigfillset (&full);
1920 sigprocmask (SIG_SETMASK, &full, &prev);
1921#endif
1922
1923 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1924
1925#ifndef _WIN32
1926 sigprocmask (SIG_SETMASK, &prev, 0);
1927#endif
1928 }
1929
1673 ev_start (EV_A_ (W)w, 1); 1930 ev_start (EV_A_ (W)w, 1);
1674 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1675 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1931 wlist_add (&signals [w->signum - 1].head, (WL)w);
1676 1932
1677 if (!((WL)w)->next) 1933 if (!((WL)w)->next)
1678 { 1934 {
1679#if _WIN32 1935#if _WIN32
1680 signal (w->signum, sighandler); 1936 signal (w->signum, sighandler);
1686 sigaction (w->signum, &sa, 0); 1942 sigaction (w->signum, &sa, 0);
1687#endif 1943#endif
1688 } 1944 }
1689} 1945}
1690 1946
1691void 1947void noinline
1692ev_signal_stop (EV_P_ ev_signal *w) 1948ev_signal_stop (EV_P_ ev_signal *w)
1693{ 1949{
1694 ev_clear_pending (EV_A_ (W)w); 1950 clear_pending (EV_A_ (W)w);
1695 if (expect_false (!ev_is_active (w))) 1951 if (expect_false (!ev_is_active (w)))
1696 return; 1952 return;
1697 1953
1698 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1954 wlist_del (&signals [w->signum - 1].head, (WL)w);
1699 ev_stop (EV_A_ (W)w); 1955 ev_stop (EV_A_ (W)w);
1700 1956
1701 if (!signals [w->signum - 1].head) 1957 if (!signals [w->signum - 1].head)
1702 signal (w->signum, SIG_DFL); 1958 signal (w->signum, SIG_DFL);
1703} 1959}
1710#endif 1966#endif
1711 if (expect_false (ev_is_active (w))) 1967 if (expect_false (ev_is_active (w)))
1712 return; 1968 return;
1713 1969
1714 ev_start (EV_A_ (W)w, 1); 1970 ev_start (EV_A_ (W)w, 1);
1715 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1971 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1716} 1972}
1717 1973
1718void 1974void
1719ev_child_stop (EV_P_ ev_child *w) 1975ev_child_stop (EV_P_ ev_child *w)
1720{ 1976{
1721 ev_clear_pending (EV_A_ (W)w); 1977 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 1978 if (expect_false (!ev_is_active (w)))
1723 return; 1979 return;
1724 1980
1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1981 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1726 ev_stop (EV_A_ (W)w); 1982 ev_stop (EV_A_ (W)w);
1727} 1983}
1728 1984
1729#if EV_STAT_ENABLE 1985#if EV_STAT_ENABLE
1730 1986
1962} 2218}
1963 2219
1964void 2220void
1965ev_stat_stop (EV_P_ ev_stat *w) 2221ev_stat_stop (EV_P_ ev_stat *w)
1966{ 2222{
1967 ev_clear_pending (EV_A_ (W)w); 2223 clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w))) 2224 if (expect_false (!ev_is_active (w)))
1969 return; 2225 return;
1970 2226
1971#if EV_USE_INOTIFY 2227#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w); 2228 infy_del (EV_A_ w);
1975 2231
1976 ev_stop (EV_A_ (W)w); 2232 ev_stop (EV_A_ (W)w);
1977} 2233}
1978#endif 2234#endif
1979 2235
2236#if EV_IDLE_ENABLE
1980void 2237void
1981ev_idle_start (EV_P_ ev_idle *w) 2238ev_idle_start (EV_P_ ev_idle *w)
1982{ 2239{
1983 if (expect_false (ev_is_active (w))) 2240 if (expect_false (ev_is_active (w)))
1984 return; 2241 return;
1985 2242
2243 pri_adjust (EV_A_ (W)w);
2244
2245 {
2246 int active = ++idlecnt [ABSPRI (w)];
2247
2248 ++idleall;
1986 ev_start (EV_A_ (W)w, ++idlecnt); 2249 ev_start (EV_A_ (W)w, active);
2250
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2251 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1988 idles [idlecnt - 1] = w; 2252 idles [ABSPRI (w)][active - 1] = w;
2253 }
1989} 2254}
1990 2255
1991void 2256void
1992ev_idle_stop (EV_P_ ev_idle *w) 2257ev_idle_stop (EV_P_ ev_idle *w)
1993{ 2258{
1994 ev_clear_pending (EV_A_ (W)w); 2259 clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w))) 2260 if (expect_false (!ev_is_active (w)))
1996 return; 2261 return;
1997 2262
1998 { 2263 {
1999 int active = ((W)w)->active; 2264 int active = ((W)w)->active;
2000 idles [active - 1] = idles [--idlecnt]; 2265
2266 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2001 ((W)idles [active - 1])->active = active; 2267 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2268
2269 ev_stop (EV_A_ (W)w);
2270 --idleall;
2002 } 2271 }
2003
2004 ev_stop (EV_A_ (W)w);
2005} 2272}
2273#endif
2006 2274
2007void 2275void
2008ev_prepare_start (EV_P_ ev_prepare *w) 2276ev_prepare_start (EV_P_ ev_prepare *w)
2009{ 2277{
2010 if (expect_false (ev_is_active (w))) 2278 if (expect_false (ev_is_active (w)))
2016} 2284}
2017 2285
2018void 2286void
2019ev_prepare_stop (EV_P_ ev_prepare *w) 2287ev_prepare_stop (EV_P_ ev_prepare *w)
2020{ 2288{
2021 ev_clear_pending (EV_A_ (W)w); 2289 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2290 if (expect_false (!ev_is_active (w)))
2023 return; 2291 return;
2024 2292
2025 { 2293 {
2026 int active = ((W)w)->active; 2294 int active = ((W)w)->active;
2043} 2311}
2044 2312
2045void 2313void
2046ev_check_stop (EV_P_ ev_check *w) 2314ev_check_stop (EV_P_ ev_check *w)
2047{ 2315{
2048 ev_clear_pending (EV_A_ (W)w); 2316 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 2317 if (expect_false (!ev_is_active (w)))
2050 return; 2318 return;
2051 2319
2052 { 2320 {
2053 int active = ((W)w)->active; 2321 int active = ((W)w)->active;
2060 2328
2061#if EV_EMBED_ENABLE 2329#if EV_EMBED_ENABLE
2062void noinline 2330void noinline
2063ev_embed_sweep (EV_P_ ev_embed *w) 2331ev_embed_sweep (EV_P_ ev_embed *w)
2064{ 2332{
2065 ev_loop (w->loop, EVLOOP_NONBLOCK); 2333 ev_loop (w->other, EVLOOP_NONBLOCK);
2066} 2334}
2067 2335
2068static void 2336static void
2069embed_cb (EV_P_ ev_io *io, int revents) 2337embed_io_cb (EV_P_ ev_io *io, int revents)
2070{ 2338{
2071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2339 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2072 2340
2073 if (ev_cb (w)) 2341 if (ev_cb (w))
2074 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2342 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2075 else 2343 else
2076 ev_embed_sweep (loop, w); 2344 ev_loop (w->other, EVLOOP_NONBLOCK);
2077} 2345}
2346
2347static void
2348embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2349{
2350 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2351
2352 {
2353 struct ev_loop *loop = w->other;
2354
2355 while (fdchangecnt)
2356 {
2357 fd_reify (EV_A);
2358 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2359 }
2360 }
2361}
2362
2363#if 0
2364static void
2365embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2366{
2367 ev_idle_stop (EV_A_ idle);
2368}
2369#endif
2078 2370
2079void 2371void
2080ev_embed_start (EV_P_ ev_embed *w) 2372ev_embed_start (EV_P_ ev_embed *w)
2081{ 2373{
2082 if (expect_false (ev_is_active (w))) 2374 if (expect_false (ev_is_active (w)))
2083 return; 2375 return;
2084 2376
2085 { 2377 {
2086 struct ev_loop *loop = w->loop; 2378 struct ev_loop *loop = w->other;
2087 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2379 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2088 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2380 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2089 } 2381 }
2090 2382
2091 ev_set_priority (&w->io, ev_priority (w)); 2383 ev_set_priority (&w->io, ev_priority (w));
2092 ev_io_start (EV_A_ &w->io); 2384 ev_io_start (EV_A_ &w->io);
2093 2385
2386 ev_prepare_init (&w->prepare, embed_prepare_cb);
2387 ev_set_priority (&w->prepare, EV_MINPRI);
2388 ev_prepare_start (EV_A_ &w->prepare);
2389
2390 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2391
2094 ev_start (EV_A_ (W)w, 1); 2392 ev_start (EV_A_ (W)w, 1);
2095} 2393}
2096 2394
2097void 2395void
2098ev_embed_stop (EV_P_ ev_embed *w) 2396ev_embed_stop (EV_P_ ev_embed *w)
2099{ 2397{
2100 ev_clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2102 return; 2400 return;
2103 2401
2104 ev_io_stop (EV_A_ &w->io); 2402 ev_io_stop (EV_A_ &w->io);
2403 ev_prepare_stop (EV_A_ &w->prepare);
2105 2404
2106 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2107} 2406}
2108#endif 2407#endif
2109 2408
2120} 2419}
2121 2420
2122void 2421void
2123ev_fork_stop (EV_P_ ev_fork *w) 2422ev_fork_stop (EV_P_ ev_fork *w)
2124{ 2423{
2125 ev_clear_pending (EV_A_ (W)w); 2424 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2425 if (expect_false (!ev_is_active (w)))
2127 return; 2426 return;
2128 2427
2129 { 2428 {
2130 int active = ((W)w)->active; 2429 int active = ((W)w)->active;
2134 2433
2135 ev_stop (EV_A_ (W)w); 2434 ev_stop (EV_A_ (W)w);
2136} 2435}
2137#endif 2436#endif
2138 2437
2438#if EV_ASYNC_ENABLE
2439void
2440ev_async_start (EV_P_ ev_async *w)
2441{
2442 if (expect_false (ev_is_active (w)))
2443 return;
2444
2445 evpipe_init (EV_A);
2446
2447 ev_start (EV_A_ (W)w, ++asynccnt);
2448 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2449 asyncs [asynccnt - 1] = w;
2450}
2451
2452void
2453ev_async_stop (EV_P_ ev_async *w)
2454{
2455 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w)))
2457 return;
2458
2459 {
2460 int active = ((W)w)->active;
2461 asyncs [active - 1] = asyncs [--asynccnt];
2462 ((W)asyncs [active - 1])->active = active;
2463 }
2464
2465 ev_stop (EV_A_ (W)w);
2466}
2467
2468void
2469ev_async_send (EV_P_ ev_async *w)
2470{
2471 w->sent = 1;
2472 evpipe_write (EV_A_ 0, 1);
2473}
2474#endif
2475
2139/*****************************************************************************/ 2476/*****************************************************************************/
2140 2477
2141struct ev_once 2478struct ev_once
2142{ 2479{
2143 ev_io io; 2480 ev_io io;
2198 ev_timer_set (&once->to, timeout, 0.); 2535 ev_timer_set (&once->to, timeout, 0.);
2199 ev_timer_start (EV_A_ &once->to); 2536 ev_timer_start (EV_A_ &once->to);
2200 } 2537 }
2201} 2538}
2202 2539
2540#if EV_MULTIPLICITY
2541 #include "ev_wrap.h"
2542#endif
2543
2203#ifdef __cplusplus 2544#ifdef __cplusplus
2204} 2545}
2205#endif 2546#endif
2206 2547

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines