ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.212 by root, Tue Feb 19 19:01:13 2008 UTC vs.
Revision 1.310 by root, Sun Jul 26 04:43:03 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
123#endif 154#endif
124 155
125#include <math.h> 156#include <math.h>
126#include <stdlib.h> 157#include <stdlib.h>
127#include <fcntl.h> 158#include <fcntl.h>
145#ifndef _WIN32 176#ifndef _WIN32
146# include <sys/time.h> 177# include <sys/time.h>
147# include <sys/wait.h> 178# include <sys/wait.h>
148# include <unistd.h> 179# include <unistd.h>
149#else 180#else
181# include <io.h>
150# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 183# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
154# endif 186# endif
155#endif 187#endif
156 188
157/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
158 225
159#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
160# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
161#endif 232#endif
162 233
163#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 236#endif
166 237
167#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
168# define EV_USE_NANOSLEEP 0 242# define EV_USE_NANOSLEEP 0
243# endif
169#endif 244#endif
170 245
171#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
173#endif 248#endif
179# define EV_USE_POLL 1 254# define EV_USE_POLL 1
180# endif 255# endif
181#endif 256#endif
182 257
183#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
184# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
185#endif 264#endif
186 265
187#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
189#endif 268#endif
191#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 271# define EV_USE_PORT 0
193#endif 272#endif
194 273
195#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
196# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
197#endif 280#endif
198 281
199#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 283# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
210# else 293# else
211# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
212# endif 295# endif
213#endif 296#endif
214 297
215/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 347
217#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
220#endif 351#endif
234# include <sys/select.h> 365# include <sys/select.h>
235# endif 366# endif
236#endif 367#endif
237 368
238#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
239# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
240#endif 378#endif
241 379
242#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 381# include <winsock.h>
244#endif 382#endif
245 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# define EFD_CLOEXEC O_CLOEXEC
392# endif
393# ifdef __cplusplus
394extern "C" {
395# endif
396int eventfd (unsigned int initval, int flags);
397# ifdef __cplusplus
398}
399# endif
400#endif
401
402#if EV_USE_SIGNALFD
403# include <sys/signalfd.h>
404#endif
405
246/**/ 406/**/
407
408#if EV_VERIFY >= 3
409# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
410#else
411# define EV_FREQUENT_CHECK do { } while (0)
412#endif
247 413
248/* 414/*
249 * This is used to avoid floating point rounding problems. 415 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 416 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 417 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 429# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 430# define noinline __attribute__ ((noinline))
265#else 431#else
266# define expect(expr,value) (expr) 432# define expect(expr,value) (expr)
267# define noinline 433# define noinline
268# if __STDC_VERSION__ < 199901L 434# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 435# define inline
270# endif 436# endif
271#endif 437#endif
272 438
273#define expect_false(expr) expect ((expr) != 0, 0) 439#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 444# define inline_speed static noinline
279#else 445#else
280# define inline_speed static inline 446# define inline_speed static inline
281#endif 447#endif
282 448
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 449#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
450
451#if EV_MINPRI == EV_MAXPRI
452# define ABSPRI(w) (((W)w), 0)
453#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 454# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
455#endif
285 456
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 457#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 458#define EMPTY2(a,b) /* used to suppress some warnings */
288 459
289typedef ev_watcher *W; 460typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 461typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 462typedef ev_watcher_time *WT;
292 463
293#if EV_USE_MONOTONIC 464#define ev_active(w) ((W)(w))->active
465#define ev_at(w) ((WT)(w))->at
466
467#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 468/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 469/* giving it a reasonably high chance of working on typical architetcures */
470static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
471#endif
472
473#if EV_USE_MONOTONIC
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 474static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 475#endif
298 476
299#ifdef _WIN32 477#ifdef _WIN32
300# include "ev_win32.c" 478# include "ev_win32.c"
309{ 487{
310 syserr_cb = cb; 488 syserr_cb = cb;
311} 489}
312 490
313static void noinline 491static void noinline
314syserr (const char *msg) 492ev_syserr (const char *msg)
315{ 493{
316 if (!msg) 494 if (!msg)
317 msg = "(libev) system error"; 495 msg = "(libev) system error";
318 496
319 if (syserr_cb) 497 if (syserr_cb)
323 perror (msg); 501 perror (msg);
324 abort (); 502 abort ();
325 } 503 }
326} 504}
327 505
506static void *
507ev_realloc_emul (void *ptr, long size)
508{
509 /* some systems, notably openbsd and darwin, fail to properly
510 * implement realloc (x, 0) (as required by both ansi c-98 and
511 * the single unix specification, so work around them here.
512 */
513
514 if (size)
515 return realloc (ptr, size);
516
517 free (ptr);
518 return 0;
519}
520
328static void *(*alloc)(void *ptr, long size); 521static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 522
330void 523void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 524ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 525{
333 alloc = cb; 526 alloc = cb;
334} 527}
335 528
336inline_speed void * 529inline_speed void *
337ev_realloc (void *ptr, long size) 530ev_realloc (void *ptr, long size)
338{ 531{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 532 ptr = alloc (ptr, size);
340 533
341 if (!ptr && size) 534 if (!ptr && size)
342 { 535 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 536 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 537 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 543#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 544#define ev_free(ptr) ev_realloc ((ptr), 0)
352 545
353/*****************************************************************************/ 546/*****************************************************************************/
354 547
548/* set in reify when reification needed */
549#define EV_ANFD_REIFY 1
550
551/* file descriptor info structure */
355typedef struct 552typedef struct
356{ 553{
357 WL head; 554 WL head;
358 unsigned char events; 555 unsigned char events; /* the events watched for */
556 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
557 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 558 unsigned char unused;
559#if EV_USE_EPOLL
560 unsigned int egen; /* generation counter to counter epoll bugs */
561#endif
360#if EV_SELECT_IS_WINSOCKET 562#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 563 SOCKET handle;
362#endif 564#endif
363} ANFD; 565} ANFD;
364 566
567/* stores the pending event set for a given watcher */
365typedef struct 568typedef struct
366{ 569{
367 W w; 570 W w;
368 int events; 571 int events; /* the pending event set for the given watcher */
369} ANPENDING; 572} ANPENDING;
370 573
371#if EV_USE_INOTIFY 574#if EV_USE_INOTIFY
575/* hash table entry per inotify-id */
372typedef struct 576typedef struct
373{ 577{
374 WL head; 578 WL head;
375} ANFS; 579} ANFS;
580#endif
581
582/* Heap Entry */
583#if EV_HEAP_CACHE_AT
584 /* a heap element */
585 typedef struct {
586 ev_tstamp at;
587 WT w;
588 } ANHE;
589
590 #define ANHE_w(he) (he).w /* access watcher, read-write */
591 #define ANHE_at(he) (he).at /* access cached at, read-only */
592 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
593#else
594 /* a heap element */
595 typedef WT ANHE;
596
597 #define ANHE_w(he) (he)
598 #define ANHE_at(he) (he)->at
599 #define ANHE_at_cache(he)
376#endif 600#endif
377 601
378#if EV_MULTIPLICITY 602#if EV_MULTIPLICITY
379 603
380 struct ev_loop 604 struct ev_loop
399 623
400 static int ev_default_loop_ptr; 624 static int ev_default_loop_ptr;
401 625
402#endif 626#endif
403 627
628#if EV_MINIMAL < 2
629# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
630# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
631# define EV_INVOKE_PENDING invoke_cb (EV_A)
632#else
633# define EV_RELEASE_CB (void)0
634# define EV_ACQUIRE_CB (void)0
635# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
636#endif
637
638#define EVUNLOOP_RECURSE 0x80
639
404/*****************************************************************************/ 640/*****************************************************************************/
405 641
642#ifndef EV_HAVE_EV_TIME
406ev_tstamp 643ev_tstamp
407ev_time (void) 644ev_time (void)
408{ 645{
409#if EV_USE_REALTIME 646#if EV_USE_REALTIME
647 if (expect_true (have_realtime))
648 {
410 struct timespec ts; 649 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 650 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 651 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 652 }
653#endif
654
414 struct timeval tv; 655 struct timeval tv;
415 gettimeofday (&tv, 0); 656 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 657 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 658}
659#endif
419 660
420ev_tstamp inline_size 661inline_size ev_tstamp
421get_clock (void) 662get_clock (void)
422{ 663{
423#if EV_USE_MONOTONIC 664#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 665 if (expect_true (have_monotonic))
425 { 666 {
451 ts.tv_sec = (time_t)delay; 692 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 693 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 694
454 nanosleep (&ts, 0); 695 nanosleep (&ts, 0);
455#elif defined(_WIN32) 696#elif defined(_WIN32)
456 Sleep (delay * 1e3); 697 Sleep ((unsigned long)(delay * 1e3));
457#else 698#else
458 struct timeval tv; 699 struct timeval tv;
459 700
460 tv.tv_sec = (time_t)delay; 701 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 702 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 703
704 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
705 /* something not guaranteed by newer posix versions, but guaranteed */
706 /* by older ones */
463 select (0, 0, 0, 0, &tv); 707 select (0, 0, 0, 0, &tv);
464#endif 708#endif
465 } 709 }
466} 710}
467 711
468/*****************************************************************************/ 712/*****************************************************************************/
469 713
470int inline_size 714#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
715
716/* find a suitable new size for the given array, */
717/* hopefully by rounding to a ncie-to-malloc size */
718inline_size int
471array_nextsize (int elem, int cur, int cnt) 719array_nextsize (int elem, int cur, int cnt)
472{ 720{
473 int ncur = cur + 1; 721 int ncur = cur + 1;
474 722
475 do 723 do
476 ncur <<= 1; 724 ncur <<= 1;
477 while (cnt > ncur); 725 while (cnt > ncur);
478 726
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 727 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 728 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 729 {
482 ncur *= elem; 730 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 731 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 732 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 733 ncur /= elem;
486 } 734 }
487 735
488 return ncur; 736 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 740array_realloc (int elem, void *base, int *cur, int cnt)
493{ 741{
494 *cur = array_nextsize (elem, *cur, cnt); 742 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 743 return ev_realloc (base, elem * *cur);
496} 744}
745
746#define array_init_zero(base,count) \
747 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 748
498#define array_needsize(type,base,cur,cnt,init) \ 749#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 750 if (expect_false ((cnt) > (cur))) \
500 { \ 751 { \
501 int ocur_ = (cur); \ 752 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 764 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 765 }
515#endif 766#endif
516 767
517#define array_free(stem, idx) \ 768#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 769 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 770
520/*****************************************************************************/ 771/*****************************************************************************/
772
773/* dummy callback for pending events */
774static void noinline
775pendingcb (EV_P_ ev_prepare *w, int revents)
776{
777}
521 778
522void noinline 779void noinline
523ev_feed_event (EV_P_ void *w, int revents) 780ev_feed_event (EV_P_ void *w, int revents)
524{ 781{
525 W w_ = (W)w; 782 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 791 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 792 pendings [pri][w_->pending - 1].events = revents;
536 } 793 }
537} 794}
538 795
539void inline_speed 796inline_speed void
797feed_reverse (EV_P_ W w)
798{
799 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
800 rfeeds [rfeedcnt++] = w;
801}
802
803inline_size void
804feed_reverse_done (EV_P_ int revents)
805{
806 do
807 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
808 while (rfeedcnt);
809}
810
811inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 812queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 813{
542 int i; 814 int i;
543 815
544 for (i = 0; i < eventcnt; ++i) 816 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 817 ev_feed_event (EV_A_ events [i], type);
546} 818}
547 819
548/*****************************************************************************/ 820/*****************************************************************************/
549 821
550void inline_size 822inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 823fd_event_nc (EV_P_ int fd, int revents)
565{ 824{
566 ANFD *anfd = anfds + fd; 825 ANFD *anfd = anfds + fd;
567 ev_io *w; 826 ev_io *w;
568 827
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 828 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 832 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 833 ev_feed_event (EV_A_ (W)w, ev);
575 } 834 }
576} 835}
577 836
837/* do not submit kernel events for fds that have reify set */
838/* because that means they changed while we were polling for new events */
839inline_speed void
840fd_event (EV_P_ int fd, int revents)
841{
842 ANFD *anfd = anfds + fd;
843
844 if (expect_true (!anfd->reify))
845 fd_event_nc (EV_A_ fd, revents);
846}
847
578void 848void
579ev_feed_fd_event (EV_P_ int fd, int revents) 849ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 850{
581 if (fd >= 0 && fd < anfdmax) 851 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 852 fd_event_nc (EV_A_ fd, revents);
583} 853}
584 854
585void inline_size 855/* make sure the external fd watch events are in-sync */
856/* with the kernel/libev internal state */
857inline_size void
586fd_reify (EV_P) 858fd_reify (EV_P)
587{ 859{
588 int i; 860 int i;
589 861
590 for (i = 0; i < fdchangecnt; ++i) 862 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 871 events |= (unsigned char)w->events;
600 872
601#if EV_SELECT_IS_WINSOCKET 873#if EV_SELECT_IS_WINSOCKET
602 if (events) 874 if (events)
603 { 875 {
604 unsigned long argp; 876 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 877 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 878 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 879 #else
608 anfd->handle = _get_osfhandle (fd); 880 anfd->handle = _get_osfhandle (fd);
609 #endif 881 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 882 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 883 }
612#endif 884#endif
613 885
614 { 886 {
615 unsigned char o_events = anfd->events; 887 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 888 unsigned char o_reify = anfd->reify;
617 889
618 anfd->reify = 0; 890 anfd->reify = 0;
619 anfd->events = events; 891 anfd->events = events;
620 892
621 if (o_events != events || o_reify & EV_IOFDSET) 893 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 894 backend_modify (EV_A_ fd, o_events, events);
623 } 895 }
624 } 896 }
625 897
626 fdchangecnt = 0; 898 fdchangecnt = 0;
627} 899}
628 900
629void inline_size 901/* something about the given fd changed */
902inline_size void
630fd_change (EV_P_ int fd, int flags) 903fd_change (EV_P_ int fd, int flags)
631{ 904{
632 unsigned char reify = anfds [fd].reify; 905 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 906 anfds [fd].reify |= flags;
634 907
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 911 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 912 fdchanges [fdchangecnt - 1] = fd;
640 } 913 }
641} 914}
642 915
643void inline_speed 916/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
917inline_speed void
644fd_kill (EV_P_ int fd) 918fd_kill (EV_P_ int fd)
645{ 919{
646 ev_io *w; 920 ev_io *w;
647 921
648 while ((w = (ev_io *)anfds [fd].head)) 922 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 924 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 925 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 926 }
653} 927}
654 928
655int inline_size 929/* check whether the given fd is atcually valid, for error recovery */
930inline_size int
656fd_valid (int fd) 931fd_valid (int fd)
657{ 932{
658#ifdef _WIN32 933#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 934 return _get_osfhandle (fd) != -1;
660#else 935#else
668{ 943{
669 int fd; 944 int fd;
670 945
671 for (fd = 0; fd < anfdmax; ++fd) 946 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 947 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 948 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 949 fd_kill (EV_A_ fd);
675} 950}
676 951
677/* called on ENOMEM in select/poll to kill some fds and retry */ 952/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 953static void noinline
682 957
683 for (fd = anfdmax; fd--; ) 958 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 959 if (anfds [fd].events)
685 { 960 {
686 fd_kill (EV_A_ fd); 961 fd_kill (EV_A_ fd);
687 return; 962 break;
688 } 963 }
689} 964}
690 965
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 966/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 967static void noinline
696 971
697 for (fd = 0; fd < anfdmax; ++fd) 972 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 973 if (anfds [fd].events)
699 { 974 {
700 anfds [fd].events = 0; 975 anfds [fd].events = 0;
976 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 977 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 978 }
703} 979}
704 980
705/*****************************************************************************/ 981/*****************************************************************************/
706 982
707void inline_speed 983/*
708upheap (WT *heap, int k) 984 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 985 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 986 * the branching factor of the d-tree.
987 */
711 988
712 while (k) 989/*
713 { 990 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 991 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
992 * which is more cache-efficient.
993 * the difference is about 5% with 50000+ watchers.
994 */
995#if EV_USE_4HEAP
715 996
716 if (heap [p]->at <= w->at) 997#define DHEAP 4
998#define HEAP0 (DHEAP - 1) /* index of first element in heap */
999#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1000#define UPHEAP_DONE(p,k) ((p) == (k))
1001
1002/* away from the root */
1003inline_speed void
1004downheap (ANHE *heap, int N, int k)
1005{
1006 ANHE he = heap [k];
1007 ANHE *E = heap + N + HEAP0;
1008
1009 for (;;)
1010 {
1011 ev_tstamp minat;
1012 ANHE *minpos;
1013 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1014
1015 /* find minimum child */
1016 if (expect_true (pos + DHEAP - 1 < E))
1017 {
1018 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1019 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1020 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1021 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1022 }
1023 else if (pos < E)
1024 {
1025 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1026 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1027 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1028 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1029 }
1030 else
717 break; 1031 break;
718 1032
1033 if (ANHE_at (he) <= minat)
1034 break;
1035
1036 heap [k] = *minpos;
1037 ev_active (ANHE_w (*minpos)) = k;
1038
1039 k = minpos - heap;
1040 }
1041
1042 heap [k] = he;
1043 ev_active (ANHE_w (he)) = k;
1044}
1045
1046#else /* 4HEAP */
1047
1048#define HEAP0 1
1049#define HPARENT(k) ((k) >> 1)
1050#define UPHEAP_DONE(p,k) (!(p))
1051
1052/* away from the root */
1053inline_speed void
1054downheap (ANHE *heap, int N, int k)
1055{
1056 ANHE he = heap [k];
1057
1058 for (;;)
1059 {
1060 int c = k << 1;
1061
1062 if (c >= N + HEAP0)
1063 break;
1064
1065 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1066 ? 1 : 0;
1067
1068 if (ANHE_at (he) <= ANHE_at (heap [c]))
1069 break;
1070
1071 heap [k] = heap [c];
1072 ev_active (ANHE_w (heap [k])) = k;
1073
1074 k = c;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080#endif
1081
1082/* towards the root */
1083inline_speed void
1084upheap (ANHE *heap, int k)
1085{
1086 ANHE he = heap [k];
1087
1088 for (;;)
1089 {
1090 int p = HPARENT (k);
1091
1092 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1093 break;
1094
719 heap [k] = heap [p]; 1095 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1096 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1097 k = p;
722 } 1098 }
723 1099
724 heap [k] = w; 1100 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1101 ev_active (ANHE_w (he)) = k;
726} 1102}
727 1103
728void inline_speed 1104/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1105inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1106adjustheap (ANHE *heap, int N, int k)
758{ 1107{
1108 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
759 upheap (heap, k); 1109 upheap (heap, k);
1110 else
760 downheap (heap, N, k); 1111 downheap (heap, N, k);
1112}
1113
1114/* rebuild the heap: this function is used only once and executed rarely */
1115inline_size void
1116reheap (ANHE *heap, int N)
1117{
1118 int i;
1119
1120 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1121 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1122 for (i = 0; i < N; ++i)
1123 upheap (heap, i + HEAP0);
761} 1124}
762 1125
763/*****************************************************************************/ 1126/*****************************************************************************/
764 1127
1128/* associate signal watchers to a signal signal */
765typedef struct 1129typedef struct
766{ 1130{
1131 EV_ATOMIC_T pending;
1132#if EV_MULTIPLICITY
1133 EV_P;
1134#endif
767 WL head; 1135 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG; 1136} ANSIG;
770 1137
771static ANSIG *signals; 1138static ANSIG signals [EV_NSIG - 1];
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787 1139
788/*****************************************************************************/ 1140/*****************************************************************************/
789 1141
790void inline_speed 1142/* used to prepare libev internal fd's */
1143/* this is not fork-safe */
1144inline_speed void
791fd_intern (int fd) 1145fd_intern (int fd)
792{ 1146{
793#ifdef _WIN32 1147#ifdef _WIN32
794 int arg = 1; 1148 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1149 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 1150#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1151 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1152 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1153#endif
800} 1154}
801 1155
802static void noinline 1156static void noinline
803evpipe_init (EV_P) 1157evpipe_init (EV_P)
804{ 1158{
805 if (!ev_is_active (&pipeev)) 1159 if (!ev_is_active (&pipe_w))
806 { 1160 {
1161#if EV_USE_EVENTFD
1162 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1163 if (evfd < 0 && errno == EINVAL)
1164 evfd = eventfd (0, 0);
1165
1166 if (evfd >= 0)
1167 {
1168 evpipe [0] = -1;
1169 fd_intern (evfd); /* doing it twice doesn't hurt */
1170 ev_io_set (&pipe_w, evfd, EV_READ);
1171 }
1172 else
1173#endif
1174 {
807 while (pipe (evpipe)) 1175 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1176 ev_syserr ("(libev) error creating signal/async pipe");
809 1177
810 fd_intern (evpipe [0]); 1178 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1179 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1180 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1181 }
1182
814 ev_io_start (EV_A_ &pipeev); 1183 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1184 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1185 }
817} 1186}
818 1187
819void inline_size 1188inline_size void
820evpipe_write (EV_P_ int sig, int async) 1189evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1190{
822 if (!(gotasync || gotsig)) 1191 if (!*flag)
823 { 1192 {
824 int old_errno = errno; /* save errno becaue write might clobber it */ 1193 int old_errno = errno; /* save errno because write might clobber it */
825 1194
826 if (sig) gotsig = 1; 1195 *flag = 1;
827 if (async) gotasync = 1;
828 1196
1197#if EV_USE_EVENTFD
1198 if (evfd >= 0)
1199 {
1200 uint64_t counter = 1;
1201 write (evfd, &counter, sizeof (uint64_t));
1202 }
1203 else
1204#endif
829 write (evpipe [1], &old_errno, 1); 1205 write (evpipe [1], &old_errno, 1);
830 1206
831 errno = old_errno; 1207 errno = old_errno;
832 } 1208 }
833} 1209}
834 1210
1211/* called whenever the libev signal pipe */
1212/* got some events (signal, async) */
835static void 1213static void
836pipecb (EV_P_ ev_io *iow, int revents) 1214pipecb (EV_P_ ev_io *iow, int revents)
837{ 1215{
1216 int i;
1217
1218#if EV_USE_EVENTFD
1219 if (evfd >= 0)
838 { 1220 {
839 int dummy; 1221 uint64_t counter;
1222 read (evfd, &counter, sizeof (uint64_t));
1223 }
1224 else
1225#endif
1226 {
1227 char dummy;
840 read (evpipe [0], &dummy, 1); 1228 read (evpipe [0], &dummy, 1);
841 } 1229 }
842 1230
843 if (gotsig && ev_is_default_loop (EV_A)) 1231 if (sig_pending)
844 { 1232 {
845 int signum; 1233 sig_pending = 0;
846 gotsig = 0;
847 1234
848 for (signum = signalmax; signum--; ) 1235 for (i = EV_NSIG - 1; i--; )
849 if (signals [signum].gotsig) 1236 if (expect_false (signals [i].pending))
850 ev_feed_signal_event (EV_A_ signum + 1); 1237 ev_feed_signal_event (EV_A_ i + 1);
851 } 1238 }
852 1239
853#if EV_ASYNC_ENABLE 1240#if EV_ASYNC_ENABLE
854 if (gotasync) 1241 if (async_pending)
855 { 1242 {
856 int i; 1243 async_pending = 0;
857 gotasync = 0;
858 1244
859 for (i = asynccnt; i--; ) 1245 for (i = asynccnt; i--; )
860 if (asyncs [i]->sent) 1246 if (asyncs [i]->sent)
861 { 1247 {
862 asyncs [i]->sent = 0; 1248 asyncs [i]->sent = 0;
867} 1253}
868 1254
869/*****************************************************************************/ 1255/*****************************************************************************/
870 1256
871static void 1257static void
872sighandler (int signum) 1258ev_sighandler (int signum)
873{ 1259{
874#if EV_MULTIPLICITY 1260#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 1261 EV_P = signals [signum - 1].loop;
876#endif 1262#endif
877 1263
878#if _WIN32 1264#if _WIN32
879 signal (signum, sighandler); 1265 signal (signum, ev_sighandler);
880#endif 1266#endif
881 1267
882 signals [signum - 1].gotsig = 1; 1268 signals [signum - 1].pending = 1;
883 evpipe_write (EV_A_ 1, 0); 1269 evpipe_write (EV_A_ &sig_pending);
884} 1270}
885 1271
886void noinline 1272void noinline
887ev_feed_signal_event (EV_P_ int signum) 1273ev_feed_signal_event (EV_P_ int signum)
888{ 1274{
889 WL w; 1275 WL w;
890 1276
1277 if (expect_false (signum <= 0 || signum > EV_NSIG))
1278 return;
1279
1280 --signum;
1281
891#if EV_MULTIPLICITY 1282#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1283 /* it is permissible to try to feed a signal to the wrong loop */
893#endif 1284 /* or, likely more useful, feeding a signal nobody is waiting for */
894 1285
895 --signum; 1286 if (expect_false (signals [signum].loop != EV_A))
896
897 if (signum < 0 || signum >= signalmax)
898 return; 1287 return;
1288#endif
899 1289
900 signals [signum].gotsig = 0; 1290 signals [signum].pending = 0;
901 1291
902 for (w = signals [signum].head; w; w = w->next) 1292 for (w = signals [signum].head; w; w = w->next)
903 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1293 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
904} 1294}
905 1295
1296#if EV_USE_SIGNALFD
1297static void
1298sigfdcb (EV_P_ ev_io *iow, int revents)
1299{
1300 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1301
1302 for (;;)
1303 {
1304 ssize_t res = read (sigfd, si, sizeof (si));
1305
1306 /* not ISO-C, as res might be -1, but works with SuS */
1307 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1308 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1309
1310 if (res < (ssize_t)sizeof (si))
1311 break;
1312 }
1313}
1314#endif
1315
906/*****************************************************************************/ 1316/*****************************************************************************/
907 1317
908static WL childs [EV_PID_HASHSIZE]; 1318static WL childs [EV_PID_HASHSIZE];
909 1319
910#ifndef _WIN32 1320#ifndef _WIN32
913 1323
914#ifndef WIFCONTINUED 1324#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 1325# define WIFCONTINUED(status) 0
916#endif 1326#endif
917 1327
918void inline_speed 1328/* handle a single child status event */
1329inline_speed void
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1330child_reap (EV_P_ int chain, int pid, int status)
920{ 1331{
921 ev_child *w; 1332 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1333 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 1334
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1335 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 1336 {
926 if ((w->pid == pid || !w->pid) 1337 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 1338 && (!traced || (w->flags & 1)))
928 { 1339 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1340 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 1341 w->rpid = pid;
931 w->rstatus = status; 1342 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1343 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 1344 }
934 } 1345 }
936 1347
937#ifndef WCONTINUED 1348#ifndef WCONTINUED
938# define WCONTINUED 0 1349# define WCONTINUED 0
939#endif 1350#endif
940 1351
1352/* called on sigchld etc., calls waitpid */
941static void 1353static void
942childcb (EV_P_ ev_signal *sw, int revents) 1354childcb (EV_P_ ev_signal *sw, int revents)
943{ 1355{
944 int pid, status; 1356 int pid, status;
945 1357
948 if (!WCONTINUED 1360 if (!WCONTINUED
949 || errno != EINVAL 1361 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1362 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 1363 return;
952 1364
953 /* make sure we are called again until all childs have been reaped */ 1365 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 1366 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1367 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 1368
957 child_reap (EV_A_ sw, pid, pid, status); 1369 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 1370 if (EV_PID_HASHSIZE > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1371 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 1372}
961 1373
962#endif 1374#endif
963 1375
964/*****************************************************************************/ 1376/*****************************************************************************/
1026 /* kqueue is borked on everything but netbsd apparently */ 1438 /* kqueue is borked on everything but netbsd apparently */
1027 /* it usually doesn't work correctly on anything but sockets and pipes */ 1439 /* it usually doesn't work correctly on anything but sockets and pipes */
1028 flags &= ~EVBACKEND_KQUEUE; 1440 flags &= ~EVBACKEND_KQUEUE;
1029#endif 1441#endif
1030#ifdef __APPLE__ 1442#ifdef __APPLE__
1031 // flags &= ~EVBACKEND_KQUEUE; for documentation 1443 /* only select works correctly on that "unix-certified" platform */
1032 flags &= ~EVBACKEND_POLL; 1444 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1445 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1033#endif 1446#endif
1034 1447
1035 return flags; 1448 return flags;
1036} 1449}
1037 1450
1051ev_backend (EV_P) 1464ev_backend (EV_P)
1052{ 1465{
1053 return backend; 1466 return backend;
1054} 1467}
1055 1468
1469#if EV_MINIMAL < 2
1056unsigned int 1470unsigned int
1057ev_loop_count (EV_P) 1471ev_loop_count (EV_P)
1058{ 1472{
1059 return loop_count; 1473 return loop_count;
1060} 1474}
1061 1475
1476unsigned int
1477ev_loop_depth (EV_P)
1478{
1479 return loop_depth;
1480}
1481
1062void 1482void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1483ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1064{ 1484{
1065 io_blocktime = interval; 1485 io_blocktime = interval;
1066} 1486}
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1489ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1070{ 1490{
1071 timeout_blocktime = interval; 1491 timeout_blocktime = interval;
1072} 1492}
1073 1493
1494void
1495ev_set_userdata (EV_P_ void *data)
1496{
1497 userdata = data;
1498}
1499
1500void *
1501ev_userdata (EV_P)
1502{
1503 return userdata;
1504}
1505
1506void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1507{
1508 invoke_cb = invoke_pending_cb;
1509}
1510
1511void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1512{
1513 release_cb = release;
1514 acquire_cb = acquire;
1515}
1516#endif
1517
1518/* initialise a loop structure, must be zero-initialised */
1074static void noinline 1519static void noinline
1075loop_init (EV_P_ unsigned int flags) 1520loop_init (EV_P_ unsigned int flags)
1076{ 1521{
1077 if (!backend) 1522 if (!backend)
1078 { 1523 {
1524#if EV_USE_REALTIME
1525 if (!have_realtime)
1526 {
1527 struct timespec ts;
1528
1529 if (!clock_gettime (CLOCK_REALTIME, &ts))
1530 have_realtime = 1;
1531 }
1532#endif
1533
1079#if EV_USE_MONOTONIC 1534#if EV_USE_MONOTONIC
1535 if (!have_monotonic)
1080 { 1536 {
1081 struct timespec ts; 1537 struct timespec ts;
1538
1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1539 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1083 have_monotonic = 1; 1540 have_monotonic = 1;
1084 } 1541 }
1085#endif 1542#endif
1543
1544 /* pid check not overridable via env */
1545#ifndef _WIN32
1546 if (flags & EVFLAG_FORKCHECK)
1547 curpid = getpid ();
1548#endif
1549
1550 if (!(flags & EVFLAG_NOENV)
1551 && !enable_secure ()
1552 && getenv ("LIBEV_FLAGS"))
1553 flags = atoi (getenv ("LIBEV_FLAGS"));
1086 1554
1087 ev_rt_now = ev_time (); 1555 ev_rt_now = ev_time ();
1088 mn_now = get_clock (); 1556 mn_now = get_clock ();
1089 now_floor = mn_now; 1557 now_floor = mn_now;
1090 rtmn_diff = ev_rt_now - mn_now; 1558 rtmn_diff = ev_rt_now - mn_now;
1559#if EV_MINIMAL < 2
1560 invoke_cb = ev_invoke_pending;
1561#endif
1091 1562
1092 io_blocktime = 0.; 1563 io_blocktime = 0.;
1093 timeout_blocktime = 0.; 1564 timeout_blocktime = 0.;
1094 backend = 0; 1565 backend = 0;
1095 backend_fd = -1; 1566 backend_fd = -1;
1096 gotasync = 0; 1567 sig_pending = 0;
1568#if EV_ASYNC_ENABLE
1569 async_pending = 0;
1570#endif
1097#if EV_USE_INOTIFY 1571#if EV_USE_INOTIFY
1098 fs_fd = -2; 1572 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1099#endif 1573#endif
1100 1574#if EV_USE_SIGNALFD
1101 /* pid check not overridable via env */ 1575 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1102#ifndef _WIN32
1103 if (flags & EVFLAG_FORKCHECK)
1104 curpid = getpid ();
1105#endif 1576#endif
1106 1577
1107 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS"));
1111
1112 if (!(flags & 0x0000ffffUL)) 1578 if (!(flags & 0x0000ffffU))
1113 flags |= ev_recommended_backends (); 1579 flags |= ev_recommended_backends ();
1114 1580
1115#if EV_USE_PORT 1581#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1582 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 1583#endif
1126#endif 1592#endif
1127#if EV_USE_SELECT 1593#if EV_USE_SELECT
1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1129#endif 1595#endif
1130 1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
1131 ev_init (&pipeev, pipecb); 1599 ev_init (&pipe_w, pipecb);
1132 ev_set_priority (&pipeev, EV_MAXPRI); 1600 ev_set_priority (&pipe_w, EV_MAXPRI);
1133 } 1601 }
1134} 1602}
1135 1603
1604/* free up a loop structure */
1136static void noinline 1605static void noinline
1137loop_destroy (EV_P) 1606loop_destroy (EV_P)
1138{ 1607{
1139 int i; 1608 int i;
1140 1609
1141 if (ev_is_active (&pipeev)) 1610 if (ev_is_active (&pipe_w))
1142 { 1611 {
1143 ev_ref (EV_A); /* signal watcher */ 1612 /*ev_ref (EV_A);*/
1144 ev_io_stop (EV_A_ &pipeev); 1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1145 1614
1146 close (evpipe [0]); evpipe [0] = 0; 1615#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 1616 if (evfd >= 0)
1617 close (evfd);
1618#endif
1619
1620 if (evpipe [0] >= 0)
1621 {
1622 close (evpipe [0]);
1623 close (evpipe [1]);
1624 }
1625 }
1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1148 } 1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
1149 1636
1150#if EV_USE_INOTIFY 1637#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 1638 if (fs_fd >= 0)
1152 close (fs_fd); 1639 close (fs_fd);
1153#endif 1640#endif
1177#if EV_IDLE_ENABLE 1664#if EV_IDLE_ENABLE
1178 array_free (idle, [i]); 1665 array_free (idle, [i]);
1179#endif 1666#endif
1180 } 1667 }
1181 1668
1182 ev_free (anfds); anfdmax = 0; 1669 ev_free (anfds); anfds = 0; anfdmax = 0;
1183 1670
1184 /* have to use the microsoft-never-gets-it-right macro */ 1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
1185 array_free (fdchange, EMPTY); 1673 array_free (fdchange, EMPTY);
1186 array_free (timer, EMPTY); 1674 array_free (timer, EMPTY);
1187#if EV_PERIODIC_ENABLE 1675#if EV_PERIODIC_ENABLE
1188 array_free (periodic, EMPTY); 1676 array_free (periodic, EMPTY);
1189#endif 1677#endif
1197#endif 1685#endif
1198 1686
1199 backend = 0; 1687 backend = 0;
1200} 1688}
1201 1689
1690#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 1691inline_size void infy_fork (EV_P);
1692#endif
1203 1693
1204void inline_size 1694inline_size void
1205loop_fork (EV_P) 1695loop_fork (EV_P)
1206{ 1696{
1207#if EV_USE_PORT 1697#if EV_USE_PORT
1208 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1209#endif 1699#endif
1215#endif 1705#endif
1216#if EV_USE_INOTIFY 1706#if EV_USE_INOTIFY
1217 infy_fork (EV_A); 1707 infy_fork (EV_A);
1218#endif 1708#endif
1219 1709
1220 if (ev_is_active (&pipeev)) 1710 if (ev_is_active (&pipe_w))
1221 { 1711 {
1222 /* this "locks" the handlers against writing to the pipe */ 1712 /* this "locks" the handlers against writing to the pipe */
1223 /* while we modify the fd vars */ 1713 /* while we modify the fd vars */
1224 gotsig = 1; 1714 sig_pending = 1;
1225#if EV_ASYNC_ENABLE 1715#if EV_ASYNC_ENABLE
1226 gotasync = 1; 1716 async_pending = 1;
1227#endif 1717#endif
1228 1718
1229 ev_ref (EV_A); 1719 ev_ref (EV_A);
1230 ev_io_stop (EV_A_ &pipeev); 1720 ev_io_stop (EV_A_ &pipe_w);
1721
1722#if EV_USE_EVENTFD
1723 if (evfd >= 0)
1724 close (evfd);
1725#endif
1726
1727 if (evpipe [0] >= 0)
1728 {
1231 close (evpipe [0]); 1729 close (evpipe [0]);
1232 close (evpipe [1]); 1730 close (evpipe [1]);
1731 }
1233 1732
1234 evpipe_init (EV_A); 1733 evpipe_init (EV_A);
1235 /* now iterate over everything, in case we missed something */ 1734 /* now iterate over everything, in case we missed something */
1236 pipecb (EV_A_ &pipeev, EV_READ); 1735 pipecb (EV_A_ &pipe_w, EV_READ);
1237 } 1736 }
1238 1737
1239 postfork = 0; 1738 postfork = 0;
1240} 1739}
1241 1740
1242#if EV_MULTIPLICITY 1741#if EV_MULTIPLICITY
1742
1243struct ev_loop * 1743struct ev_loop *
1244ev_loop_new (unsigned int flags) 1744ev_loop_new (unsigned int flags)
1245{ 1745{
1246 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1746 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1247 1747
1248 memset (loop, 0, sizeof (struct ev_loop)); 1748 memset (EV_A, 0, sizeof (struct ev_loop));
1249
1250 loop_init (EV_A_ flags); 1749 loop_init (EV_A_ flags);
1251 1750
1252 if (ev_backend (EV_A)) 1751 if (ev_backend (EV_A))
1253 return loop; 1752 return EV_A;
1254 1753
1255 return 0; 1754 return 0;
1256} 1755}
1257 1756
1258void 1757void
1265void 1764void
1266ev_loop_fork (EV_P) 1765ev_loop_fork (EV_P)
1267{ 1766{
1268 postfork = 1; /* must be in line with ev_default_fork */ 1767 postfork = 1; /* must be in line with ev_default_fork */
1269} 1768}
1769#endif /* multiplicity */
1270 1770
1771#if EV_VERIFY
1772static void noinline
1773verify_watcher (EV_P_ W w)
1774{
1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776
1777 if (w->pending)
1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779}
1780
1781static void noinline
1782verify_heap (EV_P_ ANHE *heap, int N)
1783{
1784 int i;
1785
1786 for (i = HEAP0; i < N + HEAP0; ++i)
1787 {
1788 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1789 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1790 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1791
1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793 }
1794}
1795
1796static void noinline
1797array_verify (EV_P_ W *ws, int cnt)
1798{
1799 while (cnt--)
1800 {
1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 verify_watcher (EV_A_ ws [cnt]);
1803 }
1804}
1805#endif
1806
1807#if EV_MINIMAL < 2
1808void
1809ev_loop_verify (EV_P)
1810{
1811#if EV_VERIFY
1812 int i;
1813 WL w;
1814
1815 assert (activecnt >= -1);
1816
1817 assert (fdchangemax >= fdchangecnt);
1818 for (i = 0; i < fdchangecnt; ++i)
1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820
1821 assert (anfdmax >= 0);
1822 for (i = 0; i < anfdmax; ++i)
1823 for (w = anfds [i].head; w; w = w->next)
1824 {
1825 verify_watcher (EV_A_ (W)w);
1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1828 }
1829
1830 assert (timermax >= timercnt);
1831 verify_heap (EV_A_ timers, timercnt);
1832
1833#if EV_PERIODIC_ENABLE
1834 assert (periodicmax >= periodiccnt);
1835 verify_heap (EV_A_ periodics, periodiccnt);
1836#endif
1837
1838 for (i = NUMPRI; i--; )
1839 {
1840 assert (pendingmax [i] >= pendingcnt [i]);
1841#if EV_IDLE_ENABLE
1842 assert (idleall >= 0);
1843 assert (idlemax [i] >= idlecnt [i]);
1844 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1845#endif
1846 }
1847
1848#if EV_FORK_ENABLE
1849 assert (forkmax >= forkcnt);
1850 array_verify (EV_A_ (W *)forks, forkcnt);
1851#endif
1852
1853#if EV_ASYNC_ENABLE
1854 assert (asyncmax >= asynccnt);
1855 array_verify (EV_A_ (W *)asyncs, asynccnt);
1856#endif
1857
1858 assert (preparemax >= preparecnt);
1859 array_verify (EV_A_ (W *)prepares, preparecnt);
1860
1861 assert (checkmax >= checkcnt);
1862 array_verify (EV_A_ (W *)checks, checkcnt);
1863
1864# if 0
1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1866 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1867# endif
1868#endif
1869}
1271#endif 1870#endif
1272 1871
1273#if EV_MULTIPLICITY 1872#if EV_MULTIPLICITY
1274struct ev_loop * 1873struct ev_loop *
1275ev_default_loop_init (unsigned int flags) 1874ev_default_loop_init (unsigned int flags)
1279#endif 1878#endif
1280{ 1879{
1281 if (!ev_default_loop_ptr) 1880 if (!ev_default_loop_ptr)
1282 { 1881 {
1283#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
1284 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1883 EV_P = ev_default_loop_ptr = &default_loop_struct;
1285#else 1884#else
1286 ev_default_loop_ptr = 1; 1885 ev_default_loop_ptr = 1;
1287#endif 1886#endif
1288 1887
1289 loop_init (EV_A_ flags); 1888 loop_init (EV_A_ flags);
1306 1905
1307void 1906void
1308ev_default_destroy (void) 1907ev_default_destroy (void)
1309{ 1908{
1310#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1311 struct ev_loop *loop = ev_default_loop_ptr; 1910 EV_P = ev_default_loop_ptr;
1312#endif 1911#endif
1912
1913 ev_default_loop_ptr = 0;
1313 1914
1314#ifndef _WIN32 1915#ifndef _WIN32
1315 ev_ref (EV_A); /* child watcher */ 1916 ev_ref (EV_A); /* child watcher */
1316 ev_signal_stop (EV_A_ &childev); 1917 ev_signal_stop (EV_A_ &childev);
1317#endif 1918#endif
1321 1922
1322void 1923void
1323ev_default_fork (void) 1924ev_default_fork (void)
1324{ 1925{
1325#if EV_MULTIPLICITY 1926#if EV_MULTIPLICITY
1326 struct ev_loop *loop = ev_default_loop_ptr; 1927 EV_P = ev_default_loop_ptr;
1327#endif 1928#endif
1328 1929
1329 if (backend)
1330 postfork = 1; /* must be in line with ev_loop_fork */ 1930 postfork = 1; /* must be in line with ev_loop_fork */
1331} 1931}
1332 1932
1333/*****************************************************************************/ 1933/*****************************************************************************/
1334 1934
1335void 1935void
1336ev_invoke (EV_P_ void *w, int revents) 1936ev_invoke (EV_P_ void *w, int revents)
1337{ 1937{
1338 EV_CB_INVOKE ((W)w, revents); 1938 EV_CB_INVOKE ((W)w, revents);
1339} 1939}
1340 1940
1341void inline_speed 1941unsigned int
1342call_pending (EV_P) 1942ev_pending_count (EV_P)
1943{
1944 int pri;
1945 unsigned int count = 0;
1946
1947 for (pri = NUMPRI; pri--; )
1948 count += pendingcnt [pri];
1949
1950 return count;
1951}
1952
1953void noinline
1954ev_invoke_pending (EV_P)
1343{ 1955{
1344 int pri; 1956 int pri;
1345 1957
1346 for (pri = NUMPRI; pri--; ) 1958 for (pri = NUMPRI; pri--; )
1347 while (pendingcnt [pri]) 1959 while (pendingcnt [pri])
1348 { 1960 {
1349 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1350 1962
1351 if (expect_true (p->w))
1352 {
1353 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1964 /* ^ this is no longer true, as pending_w could be here */
1354 1965
1355 p->w->pending = 0; 1966 p->w->pending = 0;
1356 EV_CB_INVOKE (p->w, p->events); 1967 EV_CB_INVOKE (p->w, p->events);
1357 } 1968 EV_FREQUENT_CHECK;
1358 } 1969 }
1359} 1970}
1360 1971
1361void inline_size
1362timers_reify (EV_P)
1363{
1364 while (timercnt && ((WT)timers [0])->at <= mn_now)
1365 {
1366 ev_timer *w = (ev_timer *)timers [0];
1367
1368 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1369
1370 /* first reschedule or stop timer */
1371 if (w->repeat)
1372 {
1373 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1374
1375 ((WT)w)->at += w->repeat;
1376 if (((WT)w)->at < mn_now)
1377 ((WT)w)->at = mn_now;
1378
1379 downheap (timers, timercnt, 0);
1380 }
1381 else
1382 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1383
1384 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1385 }
1386}
1387
1388#if EV_PERIODIC_ENABLE
1389void inline_size
1390periodics_reify (EV_P)
1391{
1392 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1393 {
1394 ev_periodic *w = (ev_periodic *)periodics [0];
1395
1396 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1397
1398 /* first reschedule or stop timer */
1399 if (w->reschedule_cb)
1400 {
1401 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1402 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1403 downheap (periodics, periodiccnt, 0);
1404 }
1405 else if (w->interval)
1406 {
1407 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1408 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1409 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1410 downheap (periodics, periodiccnt, 0);
1411 }
1412 else
1413 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1414
1415 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1416 }
1417}
1418
1419static void noinline
1420periodics_reschedule (EV_P)
1421{
1422 int i;
1423
1424 /* adjust periodics after time jump */
1425 for (i = 0; i < periodiccnt; ++i)
1426 {
1427 ev_periodic *w = (ev_periodic *)periodics [i];
1428
1429 if (w->reschedule_cb)
1430 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1431 else if (w->interval)
1432 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1433 }
1434
1435 /* now rebuild the heap */
1436 for (i = periodiccnt >> 1; i--; )
1437 downheap (periodics, periodiccnt, i);
1438}
1439#endif
1440
1441#if EV_IDLE_ENABLE 1972#if EV_IDLE_ENABLE
1442void inline_size 1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1975inline_size void
1443idle_reify (EV_P) 1976idle_reify (EV_P)
1444{ 1977{
1445 if (expect_false (idleall)) 1978 if (expect_false (idleall))
1446 { 1979 {
1447 int pri; 1980 int pri;
1459 } 1992 }
1460 } 1993 }
1461} 1994}
1462#endif 1995#endif
1463 1996
1464void inline_speed 1997/* make timers pending */
1998inline_size void
1999timers_reify (EV_P)
2000{
2001 EV_FREQUENT_CHECK;
2002
2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2004 {
2005 do
2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
2014 ev_at (w) += w->repeat;
2015 if (ev_at (w) < mn_now)
2016 ev_at (w) = mn_now;
2017
2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2019
2020 ANHE_at_cache (timers [HEAP0]);
2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
2028 }
2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2030
2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
2032 }
2033}
2034
2035#if EV_PERIODIC_ENABLE
2036/* make periodics pending */
2037inline_size void
2038periodics_reify (EV_P)
2039{
2040 EV_FREQUENT_CHECK;
2041
2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2043 {
2044 int feed_count = 0;
2045
2046 do
2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2051
2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2056
2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2058
2059 ANHE_at_cache (periodics [HEAP0]);
2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
2086 }
2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2088
2089 feed_reverse_done (EV_A_ EV_PERIODIC);
2090 }
2091}
2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2095static void noinline
2096periodics_reschedule (EV_P)
2097{
2098 int i;
2099
2100 /* adjust periodics after time jump */
2101 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2102 {
2103 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2104
2105 if (w->reschedule_cb)
2106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2107 else if (w->interval)
2108 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2109
2110 ANHE_at_cache (periodics [i]);
2111 }
2112
2113 reheap (periodics, periodiccnt);
2114}
2115#endif
2116
2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
2120{
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
2124 {
2125 ANHE *he = timers + i + HEAP0;
2126 ANHE_w (*he)->at += adjust;
2127 ANHE_at_cache (*he);
2128 }
2129}
2130
2131/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
1465time_update (EV_P_ ev_tstamp max_block) 2134time_update (EV_P_ ev_tstamp max_block)
1466{ 2135{
1467 int i;
1468
1469#if EV_USE_MONOTONIC 2136#if EV_USE_MONOTONIC
1470 if (expect_true (have_monotonic)) 2137 if (expect_true (have_monotonic))
1471 { 2138 {
2139 int i;
1472 ev_tstamp odiff = rtmn_diff; 2140 ev_tstamp odiff = rtmn_diff;
1473 2141
1474 mn_now = get_clock (); 2142 mn_now = get_clock ();
1475 2143
1476 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1494 */ 2162 */
1495 for (i = 4; --i; ) 2163 for (i = 4; --i; )
1496 { 2164 {
1497 rtmn_diff = ev_rt_now - mn_now; 2165 rtmn_diff = ev_rt_now - mn_now;
1498 2166
1499 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2167 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1500 return; /* all is well */ 2168 return; /* all is well */
1501 2169
1502 ev_rt_now = ev_time (); 2170 ev_rt_now = ev_time ();
1503 mn_now = get_clock (); 2171 mn_now = get_clock ();
1504 now_floor = mn_now; 2172 now_floor = mn_now;
1505 } 2173 }
1506 2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1507# if EV_PERIODIC_ENABLE 2177# if EV_PERIODIC_ENABLE
1508 periodics_reschedule (EV_A); 2178 periodics_reschedule (EV_A);
1509# endif 2179# endif
1510 /* no timer adjustment, as the monotonic clock doesn't jump */
1511 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1512 } 2180 }
1513 else 2181 else
1514#endif 2182#endif
1515 { 2183 {
1516 ev_rt_now = ev_time (); 2184 ev_rt_now = ev_time ();
1517 2185
1518 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1519 { 2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1520#if EV_PERIODIC_ENABLE 2190#if EV_PERIODIC_ENABLE
1521 periodics_reschedule (EV_A); 2191 periodics_reschedule (EV_A);
1522#endif 2192#endif
1523 /* adjust timers. this is easy, as the offset is the same for all of them */
1524 for (i = 0; i < timercnt; ++i)
1525 ((WT)timers [i])->at += ev_rt_now - mn_now;
1526 } 2193 }
1527 2194
1528 mn_now = ev_rt_now; 2195 mn_now = ev_rt_now;
1529 } 2196 }
1530} 2197}
1531 2198
1532void 2199void
1533ev_ref (EV_P)
1534{
1535 ++activecnt;
1536}
1537
1538void
1539ev_unref (EV_P)
1540{
1541 --activecnt;
1542}
1543
1544static int loop_done;
1545
1546void
1547ev_loop (EV_P_ int flags) 2200ev_loop (EV_P_ int flags)
1548{ 2201{
1549 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2202#if EV_MINIMAL < 2
1550 ? EVUNLOOP_ONE 2203 ++loop_depth;
1551 : EVUNLOOP_CANCEL; 2204#endif
1552 2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
2208 loop_done = EVUNLOOP_CANCEL;
2209
1553 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1554 2211
1555 do 2212 do
1556 { 2213 {
2214#if EV_VERIFY >= 2
2215 ev_loop_verify (EV_A);
2216#endif
2217
1557#ifndef _WIN32 2218#ifndef _WIN32
1558 if (expect_false (curpid)) /* penalise the forking check even more */ 2219 if (expect_false (curpid)) /* penalise the forking check even more */
1559 if (expect_false (getpid () != curpid)) 2220 if (expect_false (getpid () != curpid))
1560 { 2221 {
1561 curpid = getpid (); 2222 curpid = getpid ();
1567 /* we might have forked, so queue fork handlers */ 2228 /* we might have forked, so queue fork handlers */
1568 if (expect_false (postfork)) 2229 if (expect_false (postfork))
1569 if (forkcnt) 2230 if (forkcnt)
1570 { 2231 {
1571 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1572 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1573 } 2234 }
1574#endif 2235#endif
1575 2236
1576 /* queue prepare watchers (and execute them) */ 2237 /* queue prepare watchers (and execute them) */
1577 if (expect_false (preparecnt)) 2238 if (expect_false (preparecnt))
1578 { 2239 {
1579 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1580 call_pending (EV_A); 2241 EV_INVOKE_PENDING;
1581 } 2242 }
1582 2243
1583 if (expect_false (!activecnt)) 2244 if (expect_false (loop_done))
1584 break; 2245 break;
1585 2246
1586 /* we might have forked, so reify kernel state if necessary */ 2247 /* we might have forked, so reify kernel state if necessary */
1587 if (expect_false (postfork)) 2248 if (expect_false (postfork))
1588 loop_fork (EV_A); 2249 loop_fork (EV_A);
1595 ev_tstamp waittime = 0.; 2256 ev_tstamp waittime = 0.;
1596 ev_tstamp sleeptime = 0.; 2257 ev_tstamp sleeptime = 0.;
1597 2258
1598 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1599 { 2260 {
2261 /* remember old timestamp for io_blocktime calculation */
2262 ev_tstamp prev_mn_now = mn_now;
2263
1600 /* update time to cancel out callback processing overhead */ 2264 /* update time to cancel out callback processing overhead */
1601 time_update (EV_A_ 1e100); 2265 time_update (EV_A_ 1e100);
1602 2266
1603 waittime = MAX_BLOCKTIME; 2267 waittime = MAX_BLOCKTIME;
1604 2268
1605 if (timercnt) 2269 if (timercnt)
1606 { 2270 {
1607 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2271 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1608 if (waittime > to) waittime = to; 2272 if (waittime > to) waittime = to;
1609 } 2273 }
1610 2274
1611#if EV_PERIODIC_ENABLE 2275#if EV_PERIODIC_ENABLE
1612 if (periodiccnt) 2276 if (periodiccnt)
1613 { 2277 {
1614 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1615 if (waittime > to) waittime = to; 2279 if (waittime > to) waittime = to;
1616 } 2280 }
1617#endif 2281#endif
1618 2282
2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
1619 if (expect_false (waittime < timeout_blocktime)) 2284 if (expect_false (waittime < timeout_blocktime))
1620 waittime = timeout_blocktime; 2285 waittime = timeout_blocktime;
1621 2286
1622 sleeptime = waittime - backend_fudge; 2287 /* extra check because io_blocktime is commonly 0 */
1623
1624 if (expect_true (sleeptime > io_blocktime)) 2288 if (expect_false (io_blocktime))
1625 sleeptime = io_blocktime;
1626
1627 if (sleeptime)
1628 { 2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
1629 ev_sleep (sleeptime); 2297 ev_sleep (sleeptime);
1630 waittime -= sleeptime; 2298 waittime -= sleeptime;
2299 }
1631 } 2300 }
1632 } 2301 }
1633 2302
2303#if EV_MINIMAL < 2
1634 ++loop_count; 2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1635 backend_poll (EV_A_ waittime); 2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1636 2309
1637 /* update ev_rt_now, do magic */ 2310 /* update ev_rt_now, do magic */
1638 time_update (EV_A_ waittime + sleeptime); 2311 time_update (EV_A_ waittime + sleeptime);
1639 } 2312 }
1640 2313
1651 2324
1652 /* queue check watchers, to be executed first */ 2325 /* queue check watchers, to be executed first */
1653 if (expect_false (checkcnt)) 2326 if (expect_false (checkcnt))
1654 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1655 2328
1656 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1657
1658 } 2330 }
1659 while (expect_true (activecnt && !loop_done)); 2331 while (expect_true (
2332 activecnt
2333 && !loop_done
2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2335 ));
1660 2336
1661 if (loop_done == EVUNLOOP_ONE) 2337 if (loop_done == EVUNLOOP_ONE)
1662 loop_done = EVUNLOOP_CANCEL; 2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
1663} 2343}
1664 2344
1665void 2345void
1666ev_unloop (EV_P_ int how) 2346ev_unloop (EV_P_ int how)
1667{ 2347{
1668 loop_done = how; 2348 loop_done = how;
1669} 2349}
1670 2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
2386}
2387
1671/*****************************************************************************/ 2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
1672 2390
1673void inline_size 2391inline_size void
1674wlist_add (WL *head, WL elem) 2392wlist_add (WL *head, WL elem)
1675{ 2393{
1676 elem->next = *head; 2394 elem->next = *head;
1677 *head = elem; 2395 *head = elem;
1678} 2396}
1679 2397
1680void inline_size 2398inline_size void
1681wlist_del (WL *head, WL elem) 2399wlist_del (WL *head, WL elem)
1682{ 2400{
1683 while (*head) 2401 while (*head)
1684 { 2402 {
1685 if (*head == elem) 2403 if (expect_true (*head == elem))
1686 { 2404 {
1687 *head = elem->next; 2405 *head = elem->next;
1688 return; 2406 break;
1689 } 2407 }
1690 2408
1691 head = &(*head)->next; 2409 head = &(*head)->next;
1692 } 2410 }
1693} 2411}
1694 2412
1695void inline_speed 2413/* internal, faster, version of ev_clear_pending */
2414inline_speed void
1696clear_pending (EV_P_ W w) 2415clear_pending (EV_P_ W w)
1697{ 2416{
1698 if (w->pending) 2417 if (w->pending)
1699 { 2418 {
1700 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1701 w->pending = 0; 2420 w->pending = 0;
1702 } 2421 }
1703} 2422}
1704 2423
1705int 2424int
1709 int pending = w_->pending; 2428 int pending = w_->pending;
1710 2429
1711 if (expect_true (pending)) 2430 if (expect_true (pending))
1712 { 2431 {
1713 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
1714 w_->pending = 0; 2434 w_->pending = 0;
1715 p->w = 0;
1716 return p->events; 2435 return p->events;
1717 } 2436 }
1718 else 2437 else
1719 return 0; 2438 return 0;
1720} 2439}
1721 2440
1722void inline_size 2441inline_size void
1723pri_adjust (EV_P_ W w) 2442pri_adjust (EV_P_ W w)
1724{ 2443{
1725 int pri = w->priority; 2444 int pri = ev_priority (w);
1726 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1727 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1728 w->priority = pri; 2447 ev_set_priority (w, pri);
1729} 2448}
1730 2449
1731void inline_speed 2450inline_speed void
1732ev_start (EV_P_ W w, int active) 2451ev_start (EV_P_ W w, int active)
1733{ 2452{
1734 pri_adjust (EV_A_ w); 2453 pri_adjust (EV_A_ w);
1735 w->active = active; 2454 w->active = active;
1736 ev_ref (EV_A); 2455 ev_ref (EV_A);
1737} 2456}
1738 2457
1739void inline_size 2458inline_size void
1740ev_stop (EV_P_ W w) 2459ev_stop (EV_P_ W w)
1741{ 2460{
1742 ev_unref (EV_A); 2461 ev_unref (EV_A);
1743 w->active = 0; 2462 w->active = 0;
1744} 2463}
1751 int fd = w->fd; 2470 int fd = w->fd;
1752 2471
1753 if (expect_false (ev_is_active (w))) 2472 if (expect_false (ev_is_active (w)))
1754 return; 2473 return;
1755 2474
1756 assert (("ev_io_start called with negative fd", fd >= 0)); 2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2477
2478 EV_FREQUENT_CHECK;
1757 2479
1758 ev_start (EV_A_ (W)w, 1); 2480 ev_start (EV_A_ (W)w, 1);
1759 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1760 wlist_add (&anfds[fd].head, (WL)w); 2482 wlist_add (&anfds[fd].head, (WL)w);
1761 2483
1762 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1763 w->events &= ~EV_IOFDSET; 2485 w->events &= ~EV__IOFDSET;
2486
2487 EV_FREQUENT_CHECK;
1764} 2488}
1765 2489
1766void noinline 2490void noinline
1767ev_io_stop (EV_P_ ev_io *w) 2491ev_io_stop (EV_P_ ev_io *w)
1768{ 2492{
1769 clear_pending (EV_A_ (W)w); 2493 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 2494 if (expect_false (!ev_is_active (w)))
1771 return; 2495 return;
1772 2496
1773 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2497 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2498
2499 EV_FREQUENT_CHECK;
1774 2500
1775 wlist_del (&anfds[w->fd].head, (WL)w); 2501 wlist_del (&anfds[w->fd].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 2502 ev_stop (EV_A_ (W)w);
1777 2503
1778 fd_change (EV_A_ w->fd, 1); 2504 fd_change (EV_A_ w->fd, 1);
2505
2506 EV_FREQUENT_CHECK;
1779} 2507}
1780 2508
1781void noinline 2509void noinline
1782ev_timer_start (EV_P_ ev_timer *w) 2510ev_timer_start (EV_P_ ev_timer *w)
1783{ 2511{
1784 if (expect_false (ev_is_active (w))) 2512 if (expect_false (ev_is_active (w)))
1785 return; 2513 return;
1786 2514
1787 ((WT)w)->at += mn_now; 2515 ev_at (w) += mn_now;
1788 2516
1789 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2517 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1790 2518
2519 EV_FREQUENT_CHECK;
2520
2521 ++timercnt;
1791 ev_start (EV_A_ (W)w, ++timercnt); 2522 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1792 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2523 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1793 timers [timercnt - 1] = (WT)w; 2524 ANHE_w (timers [ev_active (w)]) = (WT)w;
1794 upheap (timers, timercnt - 1); 2525 ANHE_at_cache (timers [ev_active (w)]);
2526 upheap (timers, ev_active (w));
1795 2527
2528 EV_FREQUENT_CHECK;
2529
1796 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1797} 2531}
1798 2532
1799void noinline 2533void noinline
1800ev_timer_stop (EV_P_ ev_timer *w) 2534ev_timer_stop (EV_P_ ev_timer *w)
1801{ 2535{
1802 clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 2537 if (expect_false (!ev_is_active (w)))
1804 return; 2538 return;
1805 2539
1806 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2540 EV_FREQUENT_CHECK;
1807 2541
1808 { 2542 {
1809 int active = ((W)w)->active; 2543 int active = ev_active (w);
1810 2544
2545 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2546
2547 --timercnt;
2548
1811 if (expect_true (--active < --timercnt)) 2549 if (expect_true (active < timercnt + HEAP0))
1812 { 2550 {
1813 timers [active] = timers [timercnt]; 2551 timers [active] = timers [timercnt + HEAP0];
1814 adjustheap (timers, timercnt, active); 2552 adjustheap (timers, timercnt, active);
1815 } 2553 }
1816 } 2554 }
1817 2555
1818 ((WT)w)->at -= mn_now; 2556 EV_FREQUENT_CHECK;
2557
2558 ev_at (w) -= mn_now;
1819 2559
1820 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
1821} 2561}
1822 2562
1823void noinline 2563void noinline
1824ev_timer_again (EV_P_ ev_timer *w) 2564ev_timer_again (EV_P_ ev_timer *w)
1825{ 2565{
2566 EV_FREQUENT_CHECK;
2567
1826 if (ev_is_active (w)) 2568 if (ev_is_active (w))
1827 { 2569 {
1828 if (w->repeat) 2570 if (w->repeat)
1829 { 2571 {
1830 ((WT)w)->at = mn_now + w->repeat; 2572 ev_at (w) = mn_now + w->repeat;
2573 ANHE_at_cache (timers [ev_active (w)]);
1831 adjustheap (timers, timercnt, ((W)w)->active - 1); 2574 adjustheap (timers, timercnt, ev_active (w));
1832 } 2575 }
1833 else 2576 else
1834 ev_timer_stop (EV_A_ w); 2577 ev_timer_stop (EV_A_ w);
1835 } 2578 }
1836 else if (w->repeat) 2579 else if (w->repeat)
1837 { 2580 {
1838 w->at = w->repeat; 2581 ev_at (w) = w->repeat;
1839 ev_timer_start (EV_A_ w); 2582 ev_timer_start (EV_A_ w);
1840 } 2583 }
2584
2585 EV_FREQUENT_CHECK;
2586}
2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1841} 2592}
1842 2593
1843#if EV_PERIODIC_ENABLE 2594#if EV_PERIODIC_ENABLE
1844void noinline 2595void noinline
1845ev_periodic_start (EV_P_ ev_periodic *w) 2596ev_periodic_start (EV_P_ ev_periodic *w)
1846{ 2597{
1847 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
1848 return; 2599 return;
1849 2600
1850 if (w->reschedule_cb) 2601 if (w->reschedule_cb)
1851 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1852 else if (w->interval) 2603 else if (w->interval)
1853 { 2604 {
1854 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1855 /* this formula differs from the one in periodic_reify because we do not always round up */ 2606 /* this formula differs from the one in periodic_reify because we do not always round up */
1856 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1857 } 2608 }
1858 else 2609 else
1859 ((WT)w)->at = w->offset; 2610 ev_at (w) = w->offset;
1860 2611
2612 EV_FREQUENT_CHECK;
2613
2614 ++periodiccnt;
1861 ev_start (EV_A_ (W)w, ++periodiccnt); 2615 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1862 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2616 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1863 periodics [periodiccnt - 1] = (WT)w; 2617 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1864 upheap (periodics, periodiccnt - 1); 2618 ANHE_at_cache (periodics [ev_active (w)]);
2619 upheap (periodics, ev_active (w));
1865 2620
2621 EV_FREQUENT_CHECK;
2622
1866 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1867} 2624}
1868 2625
1869void noinline 2626void noinline
1870ev_periodic_stop (EV_P_ ev_periodic *w) 2627ev_periodic_stop (EV_P_ ev_periodic *w)
1871{ 2628{
1872 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
1874 return; 2631 return;
1875 2632
1876 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2633 EV_FREQUENT_CHECK;
1877 2634
1878 { 2635 {
1879 int active = ((W)w)->active; 2636 int active = ev_active (w);
1880 2637
2638 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2639
2640 --periodiccnt;
2641
1881 if (expect_true (--active < --periodiccnt)) 2642 if (expect_true (active < periodiccnt + HEAP0))
1882 { 2643 {
1883 periodics [active] = periodics [periodiccnt]; 2644 periodics [active] = periodics [periodiccnt + HEAP0];
1884 adjustheap (periodics, periodiccnt, active); 2645 adjustheap (periodics, periodiccnt, active);
1885 } 2646 }
1886 } 2647 }
1887 2648
2649 EV_FREQUENT_CHECK;
2650
1888 ev_stop (EV_A_ (W)w); 2651 ev_stop (EV_A_ (W)w);
1889} 2652}
1890 2653
1891void noinline 2654void noinline
1892ev_periodic_again (EV_P_ ev_periodic *w) 2655ev_periodic_again (EV_P_ ev_periodic *w)
1902#endif 2665#endif
1903 2666
1904void noinline 2667void noinline
1905ev_signal_start (EV_P_ ev_signal *w) 2668ev_signal_start (EV_P_ ev_signal *w)
1906{ 2669{
1907#if EV_MULTIPLICITY
1908 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1909#endif
1910 if (expect_false (ev_is_active (w))) 2670 if (expect_false (ev_is_active (w)))
1911 return; 2671 return;
1912 2672
1913 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2673 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1914 2674
1915 evpipe_init (EV_A); 2675#if EV_MULTIPLICITY
2676 assert (("libev: a signal must not be attached to two different loops",
2677 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1916 2678
2679 signals [w->signum - 1].loop = EV_A;
2680#endif
2681
2682 EV_FREQUENT_CHECK;
2683
2684#if EV_USE_SIGNALFD
2685 if (sigfd == -2)
1917 { 2686 {
1918#ifndef _WIN32 2687 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1919 sigset_t full, prev; 2688 if (sigfd < 0 && errno == EINVAL)
1920 sigfillset (&full); 2689 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1921 sigprocmask (SIG_SETMASK, &full, &prev);
1922#endif
1923 2690
1924 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2691 if (sigfd >= 0)
2692 {
2693 fd_intern (sigfd); /* doing it twice will not hurt */
1925 2694
1926#ifndef _WIN32 2695 sigemptyset (&sigfd_set);
1927 sigprocmask (SIG_SETMASK, &prev, 0); 2696
1928#endif 2697 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2698 ev_set_priority (&sigfd_w, EV_MAXPRI);
2699 ev_io_start (EV_A_ &sigfd_w);
2700 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2701 }
1929 } 2702 }
2703
2704 if (sigfd >= 0)
2705 {
2706 /* TODO: check .head */
2707 sigaddset (&sigfd_set, w->signum);
2708 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2709
2710 signalfd (sigfd, &sigfd_set, 0);
2711 }
2712#endif
1930 2713
1931 ev_start (EV_A_ (W)w, 1); 2714 ev_start (EV_A_ (W)w, 1);
1932 wlist_add (&signals [w->signum - 1].head, (WL)w); 2715 wlist_add (&signals [w->signum - 1].head, (WL)w);
1933 2716
1934 if (!((WL)w)->next) 2717 if (!((WL)w)->next)
2718# if EV_USE_SIGNALFD
2719 if (sigfd < 0) /*TODO*/
2720# endif
1935 { 2721 {
1936#if _WIN32 2722# if _WIN32
1937 signal (w->signum, sighandler); 2723 signal (w->signum, ev_sighandler);
1938#else 2724# else
1939 struct sigaction sa; 2725 struct sigaction sa;
2726
2727 evpipe_init (EV_A);
2728
1940 sa.sa_handler = sighandler; 2729 sa.sa_handler = ev_sighandler;
1941 sigfillset (&sa.sa_mask); 2730 sigfillset (&sa.sa_mask);
1942 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2731 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1943 sigaction (w->signum, &sa, 0); 2732 sigaction (w->signum, &sa, 0);
2733
2734 sigemptyset (&sa.sa_mask);
2735 sigaddset (&sa.sa_mask, w->signum);
2736 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1944#endif 2737#endif
1945 } 2738 }
2739
2740 EV_FREQUENT_CHECK;
1946} 2741}
1947 2742
1948void noinline 2743void noinline
1949ev_signal_stop (EV_P_ ev_signal *w) 2744ev_signal_stop (EV_P_ ev_signal *w)
1950{ 2745{
1951 clear_pending (EV_A_ (W)w); 2746 clear_pending (EV_A_ (W)w);
1952 if (expect_false (!ev_is_active (w))) 2747 if (expect_false (!ev_is_active (w)))
1953 return; 2748 return;
1954 2749
2750 EV_FREQUENT_CHECK;
2751
1955 wlist_del (&signals [w->signum - 1].head, (WL)w); 2752 wlist_del (&signals [w->signum - 1].head, (WL)w);
1956 ev_stop (EV_A_ (W)w); 2753 ev_stop (EV_A_ (W)w);
1957 2754
1958 if (!signals [w->signum - 1].head) 2755 if (!signals [w->signum - 1].head)
2756 {
2757#if EV_MULTIPLICITY
2758 signals [w->signum - 1].loop = 0; /* unattach from signal */
2759#endif
2760#if EV_USE_SIGNALFD
2761 if (sigfd >= 0)
2762 {
2763 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2764 sigdelset (&sigfd_set, w->signum);
2765 signalfd (sigfd, &sigfd_set, 0);
2766 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2767 /*TODO: maybe unblock signal? */
2768 }
2769 else
2770#endif
1959 signal (w->signum, SIG_DFL); 2771 signal (w->signum, SIG_DFL);
2772 }
2773
2774 EV_FREQUENT_CHECK;
1960} 2775}
1961 2776
1962void 2777void
1963ev_child_start (EV_P_ ev_child *w) 2778ev_child_start (EV_P_ ev_child *w)
1964{ 2779{
1965#if EV_MULTIPLICITY 2780#if EV_MULTIPLICITY
1966 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2781 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1967#endif 2782#endif
1968 if (expect_false (ev_is_active (w))) 2783 if (expect_false (ev_is_active (w)))
1969 return; 2784 return;
1970 2785
2786 EV_FREQUENT_CHECK;
2787
1971 ev_start (EV_A_ (W)w, 1); 2788 ev_start (EV_A_ (W)w, 1);
1972 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2789 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2790
2791 EV_FREQUENT_CHECK;
1973} 2792}
1974 2793
1975void 2794void
1976ev_child_stop (EV_P_ ev_child *w) 2795ev_child_stop (EV_P_ ev_child *w)
1977{ 2796{
1978 clear_pending (EV_A_ (W)w); 2797 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2798 if (expect_false (!ev_is_active (w)))
1980 return; 2799 return;
1981 2800
2801 EV_FREQUENT_CHECK;
2802
1982 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2803 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1983 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
1984} 2807}
1985 2808
1986#if EV_STAT_ENABLE 2809#if EV_STAT_ENABLE
1987 2810
1988# ifdef _WIN32 2811# ifdef _WIN32
1989# undef lstat 2812# undef lstat
1990# define lstat(a,b) _stati64 (a,b) 2813# define lstat(a,b) _stati64 (a,b)
1991# endif 2814# endif
1992 2815
1993#define DEF_STAT_INTERVAL 5.0074891 2816#define DEF_STAT_INTERVAL 5.0074891
2817#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1994#define MIN_STAT_INTERVAL 0.1074891 2818#define MIN_STAT_INTERVAL 0.1074891
1995 2819
1996static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2820static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1997 2821
1998#if EV_USE_INOTIFY 2822#if EV_USE_INOTIFY
1999# define EV_INOTIFY_BUFSIZE 8192 2823# define EV_INOTIFY_BUFSIZE 8192
2003{ 2827{
2004 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2828 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2005 2829
2006 if (w->wd < 0) 2830 if (w->wd < 0)
2007 { 2831 {
2832 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2008 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2833 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2009 2834
2010 /* monitor some parent directory for speedup hints */ 2835 /* monitor some parent directory for speedup hints */
2836 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2837 /* but an efficiency issue only */
2011 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2838 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2012 { 2839 {
2013 char path [4096]; 2840 char path [4096];
2014 strcpy (path, w->path); 2841 strcpy (path, w->path);
2015 2842
2018 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2845 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2019 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2846 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2020 2847
2021 char *pend = strrchr (path, '/'); 2848 char *pend = strrchr (path, '/');
2022 2849
2023 if (!pend) 2850 if (!pend || pend == path)
2024 break; /* whoops, no '/', complain to your admin */ 2851 break;
2025 2852
2026 *pend = 0; 2853 *pend = 0;
2027 w->wd = inotify_add_watch (fs_fd, path, mask); 2854 w->wd = inotify_add_watch (fs_fd, path, mask);
2028 } 2855 }
2029 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2856 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2030 } 2857 }
2031 } 2858 }
2032 else
2033 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2034 2859
2035 if (w->wd >= 0) 2860 if (w->wd >= 0)
2861 {
2036 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2862 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2863
2864 /* now local changes will be tracked by inotify, but remote changes won't */
2865 /* unless the filesystem it known to be local, we therefore still poll */
2866 /* also do poll on <2.6.25, but with normal frequency */
2867 struct statfs sfs;
2868
2869 if (fs_2625 && !statfs (w->path, &sfs))
2870 if (sfs.f_type == 0x1373 /* devfs */
2871 || sfs.f_type == 0xEF53 /* ext2/3 */
2872 || sfs.f_type == 0x3153464a /* jfs */
2873 || sfs.f_type == 0x52654973 /* reiser3 */
2874 || sfs.f_type == 0x01021994 /* tempfs */
2875 || sfs.f_type == 0x58465342 /* xfs */)
2876 return;
2877
2878 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2879 ev_timer_again (EV_A_ &w->timer);
2880 }
2037} 2881}
2038 2882
2039static void noinline 2883static void noinline
2040infy_del (EV_P_ ev_stat *w) 2884infy_del (EV_P_ ev_stat *w)
2041{ 2885{
2055 2899
2056static void noinline 2900static void noinline
2057infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2901infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2058{ 2902{
2059 if (slot < 0) 2903 if (slot < 0)
2060 /* overflow, need to check for all hahs slots */ 2904 /* overflow, need to check for all hash slots */
2061 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2905 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2062 infy_wd (EV_A_ slot, wd, ev); 2906 infy_wd (EV_A_ slot, wd, ev);
2063 else 2907 else
2064 { 2908 {
2065 WL w_; 2909 WL w_;
2071 2915
2072 if (w->wd == wd || wd == -1) 2916 if (w->wd == wd || wd == -1)
2073 { 2917 {
2074 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2918 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2075 { 2919 {
2920 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2076 w->wd = -1; 2921 w->wd = -1;
2077 infy_add (EV_A_ w); /* re-add, no matter what */ 2922 infy_add (EV_A_ w); /* re-add, no matter what */
2078 } 2923 }
2079 2924
2080 stat_timer_cb (EV_A_ &w->timer, 0); 2925 stat_timer_cb (EV_A_ &w->timer, 0);
2093 2938
2094 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2939 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2095 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2940 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2096} 2941}
2097 2942
2098void inline_size 2943inline_size void
2944check_2625 (EV_P)
2945{
2946 /* kernels < 2.6.25 are borked
2947 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2948 */
2949 struct utsname buf;
2950 int major, minor, micro;
2951
2952 if (uname (&buf))
2953 return;
2954
2955 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2956 return;
2957
2958 if (major < 2
2959 || (major == 2 && minor < 6)
2960 || (major == 2 && minor == 6 && micro < 25))
2961 return;
2962
2963 fs_2625 = 1;
2964}
2965
2966inline_size void
2099infy_init (EV_P) 2967infy_init (EV_P)
2100{ 2968{
2101 if (fs_fd != -2) 2969 if (fs_fd != -2)
2102 return; 2970 return;
2971
2972 fs_fd = -1;
2973
2974 check_2625 (EV_A);
2103 2975
2104 fs_fd = inotify_init (); 2976 fs_fd = inotify_init ();
2105 2977
2106 if (fs_fd >= 0) 2978 if (fs_fd >= 0)
2107 { 2979 {
2109 ev_set_priority (&fs_w, EV_MAXPRI); 2981 ev_set_priority (&fs_w, EV_MAXPRI);
2110 ev_io_start (EV_A_ &fs_w); 2982 ev_io_start (EV_A_ &fs_w);
2111 } 2983 }
2112} 2984}
2113 2985
2114void inline_size 2986inline_size void
2115infy_fork (EV_P) 2987infy_fork (EV_P)
2116{ 2988{
2117 int slot; 2989 int slot;
2118 2990
2119 if (fs_fd < 0) 2991 if (fs_fd < 0)
2135 w->wd = -1; 3007 w->wd = -1;
2136 3008
2137 if (fs_fd >= 0) 3009 if (fs_fd >= 0)
2138 infy_add (EV_A_ w); /* re-add, no matter what */ 3010 infy_add (EV_A_ w); /* re-add, no matter what */
2139 else 3011 else
2140 ev_timer_start (EV_A_ &w->timer); 3012 ev_timer_again (EV_A_ &w->timer);
2141 } 3013 }
2142
2143 } 3014 }
2144} 3015}
2145 3016
3017#endif
3018
3019#ifdef _WIN32
3020# define EV_LSTAT(p,b) _stati64 (p, b)
3021#else
3022# define EV_LSTAT(p,b) lstat (p, b)
2146#endif 3023#endif
2147 3024
2148void 3025void
2149ev_stat_stat (EV_P_ ev_stat *w) 3026ev_stat_stat (EV_P_ ev_stat *w)
2150{ 3027{
2177 || w->prev.st_atime != w->attr.st_atime 3054 || w->prev.st_atime != w->attr.st_atime
2178 || w->prev.st_mtime != w->attr.st_mtime 3055 || w->prev.st_mtime != w->attr.st_mtime
2179 || w->prev.st_ctime != w->attr.st_ctime 3056 || w->prev.st_ctime != w->attr.st_ctime
2180 ) { 3057 ) {
2181 #if EV_USE_INOTIFY 3058 #if EV_USE_INOTIFY
3059 if (fs_fd >= 0)
3060 {
2182 infy_del (EV_A_ w); 3061 infy_del (EV_A_ w);
2183 infy_add (EV_A_ w); 3062 infy_add (EV_A_ w);
2184 ev_stat_stat (EV_A_ w); /* avoid race... */ 3063 ev_stat_stat (EV_A_ w); /* avoid race... */
3064 }
2185 #endif 3065 #endif
2186 3066
2187 ev_feed_event (EV_A_ w, EV_STAT); 3067 ev_feed_event (EV_A_ w, EV_STAT);
2188 } 3068 }
2189} 3069}
2192ev_stat_start (EV_P_ ev_stat *w) 3072ev_stat_start (EV_P_ ev_stat *w)
2193{ 3073{
2194 if (expect_false (ev_is_active (w))) 3074 if (expect_false (ev_is_active (w)))
2195 return; 3075 return;
2196 3076
2197 /* since we use memcmp, we need to clear any padding data etc. */
2198 memset (&w->prev, 0, sizeof (ev_statdata));
2199 memset (&w->attr, 0, sizeof (ev_statdata));
2200
2201 ev_stat_stat (EV_A_ w); 3077 ev_stat_stat (EV_A_ w);
2202 3078
3079 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2203 if (w->interval < MIN_STAT_INTERVAL) 3080 w->interval = MIN_STAT_INTERVAL;
2204 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2205 3081
2206 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3082 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2207 ev_set_priority (&w->timer, ev_priority (w)); 3083 ev_set_priority (&w->timer, ev_priority (w));
2208 3084
2209#if EV_USE_INOTIFY 3085#if EV_USE_INOTIFY
2210 infy_init (EV_A); 3086 infy_init (EV_A);
2211 3087
2212 if (fs_fd >= 0) 3088 if (fs_fd >= 0)
2213 infy_add (EV_A_ w); 3089 infy_add (EV_A_ w);
2214 else 3090 else
2215#endif 3091#endif
2216 ev_timer_start (EV_A_ &w->timer); 3092 ev_timer_again (EV_A_ &w->timer);
2217 3093
2218 ev_start (EV_A_ (W)w, 1); 3094 ev_start (EV_A_ (W)w, 1);
3095
3096 EV_FREQUENT_CHECK;
2219} 3097}
2220 3098
2221void 3099void
2222ev_stat_stop (EV_P_ ev_stat *w) 3100ev_stat_stop (EV_P_ ev_stat *w)
2223{ 3101{
2224 clear_pending (EV_A_ (W)w); 3102 clear_pending (EV_A_ (W)w);
2225 if (expect_false (!ev_is_active (w))) 3103 if (expect_false (!ev_is_active (w)))
2226 return; 3104 return;
2227 3105
3106 EV_FREQUENT_CHECK;
3107
2228#if EV_USE_INOTIFY 3108#if EV_USE_INOTIFY
2229 infy_del (EV_A_ w); 3109 infy_del (EV_A_ w);
2230#endif 3110#endif
2231 ev_timer_stop (EV_A_ &w->timer); 3111 ev_timer_stop (EV_A_ &w->timer);
2232 3112
2233 ev_stop (EV_A_ (W)w); 3113 ev_stop (EV_A_ (W)w);
3114
3115 EV_FREQUENT_CHECK;
2234} 3116}
2235#endif 3117#endif
2236 3118
2237#if EV_IDLE_ENABLE 3119#if EV_IDLE_ENABLE
2238void 3120void
2240{ 3122{
2241 if (expect_false (ev_is_active (w))) 3123 if (expect_false (ev_is_active (w)))
2242 return; 3124 return;
2243 3125
2244 pri_adjust (EV_A_ (W)w); 3126 pri_adjust (EV_A_ (W)w);
3127
3128 EV_FREQUENT_CHECK;
2245 3129
2246 { 3130 {
2247 int active = ++idlecnt [ABSPRI (w)]; 3131 int active = ++idlecnt [ABSPRI (w)];
2248 3132
2249 ++idleall; 3133 ++idleall;
2250 ev_start (EV_A_ (W)w, active); 3134 ev_start (EV_A_ (W)w, active);
2251 3135
2252 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3136 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2253 idles [ABSPRI (w)][active - 1] = w; 3137 idles [ABSPRI (w)][active - 1] = w;
2254 } 3138 }
3139
3140 EV_FREQUENT_CHECK;
2255} 3141}
2256 3142
2257void 3143void
2258ev_idle_stop (EV_P_ ev_idle *w) 3144ev_idle_stop (EV_P_ ev_idle *w)
2259{ 3145{
2260 clear_pending (EV_A_ (W)w); 3146 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w))) 3147 if (expect_false (!ev_is_active (w)))
2262 return; 3148 return;
2263 3149
3150 EV_FREQUENT_CHECK;
3151
2264 { 3152 {
2265 int active = ((W)w)->active; 3153 int active = ev_active (w);
2266 3154
2267 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3155 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2268 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3156 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2269 3157
2270 ev_stop (EV_A_ (W)w); 3158 ev_stop (EV_A_ (W)w);
2271 --idleall; 3159 --idleall;
2272 } 3160 }
3161
3162 EV_FREQUENT_CHECK;
2273} 3163}
2274#endif 3164#endif
2275 3165
2276void 3166void
2277ev_prepare_start (EV_P_ ev_prepare *w) 3167ev_prepare_start (EV_P_ ev_prepare *w)
2278{ 3168{
2279 if (expect_false (ev_is_active (w))) 3169 if (expect_false (ev_is_active (w)))
2280 return; 3170 return;
3171
3172 EV_FREQUENT_CHECK;
2281 3173
2282 ev_start (EV_A_ (W)w, ++preparecnt); 3174 ev_start (EV_A_ (W)w, ++preparecnt);
2283 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3175 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2284 prepares [preparecnt - 1] = w; 3176 prepares [preparecnt - 1] = w;
3177
3178 EV_FREQUENT_CHECK;
2285} 3179}
2286 3180
2287void 3181void
2288ev_prepare_stop (EV_P_ ev_prepare *w) 3182ev_prepare_stop (EV_P_ ev_prepare *w)
2289{ 3183{
2290 clear_pending (EV_A_ (W)w); 3184 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 3185 if (expect_false (!ev_is_active (w)))
2292 return; 3186 return;
2293 3187
3188 EV_FREQUENT_CHECK;
3189
2294 { 3190 {
2295 int active = ((W)w)->active; 3191 int active = ev_active (w);
3192
2296 prepares [active - 1] = prepares [--preparecnt]; 3193 prepares [active - 1] = prepares [--preparecnt];
2297 ((W)prepares [active - 1])->active = active; 3194 ev_active (prepares [active - 1]) = active;
2298 } 3195 }
2299 3196
2300 ev_stop (EV_A_ (W)w); 3197 ev_stop (EV_A_ (W)w);
3198
3199 EV_FREQUENT_CHECK;
2301} 3200}
2302 3201
2303void 3202void
2304ev_check_start (EV_P_ ev_check *w) 3203ev_check_start (EV_P_ ev_check *w)
2305{ 3204{
2306 if (expect_false (ev_is_active (w))) 3205 if (expect_false (ev_is_active (w)))
2307 return; 3206 return;
3207
3208 EV_FREQUENT_CHECK;
2308 3209
2309 ev_start (EV_A_ (W)w, ++checkcnt); 3210 ev_start (EV_A_ (W)w, ++checkcnt);
2310 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3211 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2311 checks [checkcnt - 1] = w; 3212 checks [checkcnt - 1] = w;
3213
3214 EV_FREQUENT_CHECK;
2312} 3215}
2313 3216
2314void 3217void
2315ev_check_stop (EV_P_ ev_check *w) 3218ev_check_stop (EV_P_ ev_check *w)
2316{ 3219{
2317 clear_pending (EV_A_ (W)w); 3220 clear_pending (EV_A_ (W)w);
2318 if (expect_false (!ev_is_active (w))) 3221 if (expect_false (!ev_is_active (w)))
2319 return; 3222 return;
2320 3223
3224 EV_FREQUENT_CHECK;
3225
2321 { 3226 {
2322 int active = ((W)w)->active; 3227 int active = ev_active (w);
3228
2323 checks [active - 1] = checks [--checkcnt]; 3229 checks [active - 1] = checks [--checkcnt];
2324 ((W)checks [active - 1])->active = active; 3230 ev_active (checks [active - 1]) = active;
2325 } 3231 }
2326 3232
2327 ev_stop (EV_A_ (W)w); 3233 ev_stop (EV_A_ (W)w);
3234
3235 EV_FREQUENT_CHECK;
2328} 3236}
2329 3237
2330#if EV_EMBED_ENABLE 3238#if EV_EMBED_ENABLE
2331void noinline 3239void noinline
2332ev_embed_sweep (EV_P_ ev_embed *w) 3240ev_embed_sweep (EV_P_ ev_embed *w)
2349embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3257embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2350{ 3258{
2351 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3259 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2352 3260
2353 { 3261 {
2354 struct ev_loop *loop = w->other; 3262 EV_P = w->other;
2355 3263
2356 while (fdchangecnt) 3264 while (fdchangecnt)
2357 { 3265 {
2358 fd_reify (EV_A); 3266 fd_reify (EV_A);
2359 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3267 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2360 } 3268 }
2361 } 3269 }
2362} 3270}
2363 3271
3272static void
3273embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3274{
3275 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3276
3277 ev_embed_stop (EV_A_ w);
3278
3279 {
3280 EV_P = w->other;
3281
3282 ev_loop_fork (EV_A);
3283 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3284 }
3285
3286 ev_embed_start (EV_A_ w);
3287}
3288
2364#if 0 3289#if 0
2365static void 3290static void
2366embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3291embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2367{ 3292{
2368 ev_idle_stop (EV_A_ idle); 3293 ev_idle_stop (EV_A_ idle);
2374{ 3299{
2375 if (expect_false (ev_is_active (w))) 3300 if (expect_false (ev_is_active (w)))
2376 return; 3301 return;
2377 3302
2378 { 3303 {
2379 struct ev_loop *loop = w->other; 3304 EV_P = w->other;
2380 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3305 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2381 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3306 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2382 } 3307 }
3308
3309 EV_FREQUENT_CHECK;
2383 3310
2384 ev_set_priority (&w->io, ev_priority (w)); 3311 ev_set_priority (&w->io, ev_priority (w));
2385 ev_io_start (EV_A_ &w->io); 3312 ev_io_start (EV_A_ &w->io);
2386 3313
2387 ev_prepare_init (&w->prepare, embed_prepare_cb); 3314 ev_prepare_init (&w->prepare, embed_prepare_cb);
2388 ev_set_priority (&w->prepare, EV_MINPRI); 3315 ev_set_priority (&w->prepare, EV_MINPRI);
2389 ev_prepare_start (EV_A_ &w->prepare); 3316 ev_prepare_start (EV_A_ &w->prepare);
2390 3317
3318 ev_fork_init (&w->fork, embed_fork_cb);
3319 ev_fork_start (EV_A_ &w->fork);
3320
2391 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2392 3322
2393 ev_start (EV_A_ (W)w, 1); 3323 ev_start (EV_A_ (W)w, 1);
3324
3325 EV_FREQUENT_CHECK;
2394} 3326}
2395 3327
2396void 3328void
2397ev_embed_stop (EV_P_ ev_embed *w) 3329ev_embed_stop (EV_P_ ev_embed *w)
2398{ 3330{
2399 clear_pending (EV_A_ (W)w); 3331 clear_pending (EV_A_ (W)w);
2400 if (expect_false (!ev_is_active (w))) 3332 if (expect_false (!ev_is_active (w)))
2401 return; 3333 return;
2402 3334
3335 EV_FREQUENT_CHECK;
3336
2403 ev_io_stop (EV_A_ &w->io); 3337 ev_io_stop (EV_A_ &w->io);
2404 ev_prepare_stop (EV_A_ &w->prepare); 3338 ev_prepare_stop (EV_A_ &w->prepare);
3339 ev_fork_stop (EV_A_ &w->fork);
2405 3340
2406 ev_stop (EV_A_ (W)w); 3341 EV_FREQUENT_CHECK;
2407} 3342}
2408#endif 3343#endif
2409 3344
2410#if EV_FORK_ENABLE 3345#if EV_FORK_ENABLE
2411void 3346void
2412ev_fork_start (EV_P_ ev_fork *w) 3347ev_fork_start (EV_P_ ev_fork *w)
2413{ 3348{
2414 if (expect_false (ev_is_active (w))) 3349 if (expect_false (ev_is_active (w)))
2415 return; 3350 return;
3351
3352 EV_FREQUENT_CHECK;
2416 3353
2417 ev_start (EV_A_ (W)w, ++forkcnt); 3354 ev_start (EV_A_ (W)w, ++forkcnt);
2418 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3355 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2419 forks [forkcnt - 1] = w; 3356 forks [forkcnt - 1] = w;
3357
3358 EV_FREQUENT_CHECK;
2420} 3359}
2421 3360
2422void 3361void
2423ev_fork_stop (EV_P_ ev_fork *w) 3362ev_fork_stop (EV_P_ ev_fork *w)
2424{ 3363{
2425 clear_pending (EV_A_ (W)w); 3364 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w))) 3365 if (expect_false (!ev_is_active (w)))
2427 return; 3366 return;
2428 3367
3368 EV_FREQUENT_CHECK;
3369
2429 { 3370 {
2430 int active = ((W)w)->active; 3371 int active = ev_active (w);
3372
2431 forks [active - 1] = forks [--forkcnt]; 3373 forks [active - 1] = forks [--forkcnt];
2432 ((W)forks [active - 1])->active = active; 3374 ev_active (forks [active - 1]) = active;
2433 } 3375 }
2434 3376
2435 ev_stop (EV_A_ (W)w); 3377 ev_stop (EV_A_ (W)w);
3378
3379 EV_FREQUENT_CHECK;
2436} 3380}
2437#endif 3381#endif
2438 3382
2439#if EV_ASYNC_ENABLE 3383#if EV_ASYNC_ENABLE
2440void 3384void
2442{ 3386{
2443 if (expect_false (ev_is_active (w))) 3387 if (expect_false (ev_is_active (w)))
2444 return; 3388 return;
2445 3389
2446 evpipe_init (EV_A); 3390 evpipe_init (EV_A);
3391
3392 EV_FREQUENT_CHECK;
2447 3393
2448 ev_start (EV_A_ (W)w, ++asynccnt); 3394 ev_start (EV_A_ (W)w, ++asynccnt);
2449 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3395 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2450 asyncs [asynccnt - 1] = w; 3396 asyncs [asynccnt - 1] = w;
3397
3398 EV_FREQUENT_CHECK;
2451} 3399}
2452 3400
2453void 3401void
2454ev_async_stop (EV_P_ ev_async *w) 3402ev_async_stop (EV_P_ ev_async *w)
2455{ 3403{
2456 clear_pending (EV_A_ (W)w); 3404 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w))) 3405 if (expect_false (!ev_is_active (w)))
2458 return; 3406 return;
2459 3407
3408 EV_FREQUENT_CHECK;
3409
2460 { 3410 {
2461 int active = ((W)w)->active; 3411 int active = ev_active (w);
3412
2462 asyncs [active - 1] = asyncs [--asynccnt]; 3413 asyncs [active - 1] = asyncs [--asynccnt];
2463 ((W)asyncs [active - 1])->active = active; 3414 ev_active (asyncs [active - 1]) = active;
2464 } 3415 }
2465 3416
2466 ev_stop (EV_A_ (W)w); 3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
2467} 3420}
2468 3421
2469void 3422void
2470ev_async_send (EV_P_ ev_async *w) 3423ev_async_send (EV_P_ ev_async *w)
2471{ 3424{
2472 w->sent = 1; 3425 w->sent = 1;
2473 evpipe_write (EV_A_ 0, 1); 3426 evpipe_write (EV_A_ &async_pending);
2474} 3427}
2475#endif 3428#endif
2476 3429
2477/*****************************************************************************/ 3430/*****************************************************************************/
2478 3431
2488once_cb (EV_P_ struct ev_once *once, int revents) 3441once_cb (EV_P_ struct ev_once *once, int revents)
2489{ 3442{
2490 void (*cb)(int revents, void *arg) = once->cb; 3443 void (*cb)(int revents, void *arg) = once->cb;
2491 void *arg = once->arg; 3444 void *arg = once->arg;
2492 3445
2493 ev_io_stop (EV_A_ &once->io); 3446 ev_io_stop (EV_A_ &once->io);
2494 ev_timer_stop (EV_A_ &once->to); 3447 ev_timer_stop (EV_A_ &once->to);
2495 ev_free (once); 3448 ev_free (once);
2496 3449
2497 cb (revents, arg); 3450 cb (revents, arg);
2498} 3451}
2499 3452
2500static void 3453static void
2501once_cb_io (EV_P_ ev_io *w, int revents) 3454once_cb_io (EV_P_ ev_io *w, int revents)
2502{ 3455{
2503 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3456 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3457
3458 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2504} 3459}
2505 3460
2506static void 3461static void
2507once_cb_to (EV_P_ ev_timer *w, int revents) 3462once_cb_to (EV_P_ ev_timer *w, int revents)
2508{ 3463{
2509 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3464 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3465
3466 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2510} 3467}
2511 3468
2512void 3469void
2513ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3470ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2514{ 3471{
2536 ev_timer_set (&once->to, timeout, 0.); 3493 ev_timer_set (&once->to, timeout, 0.);
2537 ev_timer_start (EV_A_ &once->to); 3494 ev_timer_start (EV_A_ &once->to);
2538 } 3495 }
2539} 3496}
2540 3497
3498/*****************************************************************************/
3499
3500#if EV_WALK_ENABLE
3501void
3502ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3503{
3504 int i, j;
3505 ev_watcher_list *wl, *wn;
3506
3507 if (types & (EV_IO | EV_EMBED))
3508 for (i = 0; i < anfdmax; ++i)
3509 for (wl = anfds [i].head; wl; )
3510 {
3511 wn = wl->next;
3512
3513#if EV_EMBED_ENABLE
3514 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3515 {
3516 if (types & EV_EMBED)
3517 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3518 }
3519 else
3520#endif
3521#if EV_USE_INOTIFY
3522 if (ev_cb ((ev_io *)wl) == infy_cb)
3523 ;
3524 else
3525#endif
3526 if ((ev_io *)wl != &pipe_w)
3527 if (types & EV_IO)
3528 cb (EV_A_ EV_IO, wl);
3529
3530 wl = wn;
3531 }
3532
3533 if (types & (EV_TIMER | EV_STAT))
3534 for (i = timercnt + HEAP0; i-- > HEAP0; )
3535#if EV_STAT_ENABLE
3536 /*TODO: timer is not always active*/
3537 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3538 {
3539 if (types & EV_STAT)
3540 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3541 }
3542 else
3543#endif
3544 if (types & EV_TIMER)
3545 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3546
3547#if EV_PERIODIC_ENABLE
3548 if (types & EV_PERIODIC)
3549 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3550 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3551#endif
3552
3553#if EV_IDLE_ENABLE
3554 if (types & EV_IDLE)
3555 for (j = NUMPRI; i--; )
3556 for (i = idlecnt [j]; i--; )
3557 cb (EV_A_ EV_IDLE, idles [j][i]);
3558#endif
3559
3560#if EV_FORK_ENABLE
3561 if (types & EV_FORK)
3562 for (i = forkcnt; i--; )
3563 if (ev_cb (forks [i]) != embed_fork_cb)
3564 cb (EV_A_ EV_FORK, forks [i]);
3565#endif
3566
3567#if EV_ASYNC_ENABLE
3568 if (types & EV_ASYNC)
3569 for (i = asynccnt; i--; )
3570 cb (EV_A_ EV_ASYNC, asyncs [i]);
3571#endif
3572
3573 if (types & EV_PREPARE)
3574 for (i = preparecnt; i--; )
3575#if EV_EMBED_ENABLE
3576 if (ev_cb (prepares [i]) != embed_prepare_cb)
3577#endif
3578 cb (EV_A_ EV_PREPARE, prepares [i]);
3579
3580 if (types & EV_CHECK)
3581 for (i = checkcnt; i--; )
3582 cb (EV_A_ EV_CHECK, checks [i]);
3583
3584 if (types & EV_SIGNAL)
3585 for (i = 0; i < EV_NSIG - 1; ++i)
3586 for (wl = signals [i].head; wl; )
3587 {
3588 wn = wl->next;
3589 cb (EV_A_ EV_SIGNAL, wl);
3590 wl = wn;
3591 }
3592
3593 if (types & EV_CHILD)
3594 for (i = EV_PID_HASHSIZE; i--; )
3595 for (wl = childs [i]; wl; )
3596 {
3597 wn = wl->next;
3598 cb (EV_A_ EV_CHILD, wl);
3599 wl = wn;
3600 }
3601/* EV_STAT 0x00001000 /* stat data changed */
3602/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3603}
3604#endif
3605
2541#if EV_MULTIPLICITY 3606#if EV_MULTIPLICITY
2542 #include "ev_wrap.h" 3607 #include "ev_wrap.h"
2543#endif 3608#endif
2544 3609
2545#ifdef __cplusplus 3610#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines