ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.212 by root, Tue Feb 19 19:01:13 2008 UTC vs.
Revision 1.313 by root, Wed Aug 19 23:44:51 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
123#endif 154#endif
124 155
125#include <math.h> 156#include <math.h>
126#include <stdlib.h> 157#include <stdlib.h>
127#include <fcntl.h> 158#include <fcntl.h>
145#ifndef _WIN32 176#ifndef _WIN32
146# include <sys/time.h> 177# include <sys/time.h>
147# include <sys/wait.h> 178# include <sys/wait.h>
148# include <unistd.h> 179# include <unistd.h>
149#else 180#else
181# include <io.h>
150# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 183# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
154# endif 186# endif
155#endif 187#endif
156 188
157/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
158 225
159#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
160# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
161#endif 232#endif
162 233
163#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 236#endif
166 237
167#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
168# define EV_USE_NANOSLEEP 0 242# define EV_USE_NANOSLEEP 0
243# endif
169#endif 244#endif
170 245
171#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
173#endif 248#endif
179# define EV_USE_POLL 1 254# define EV_USE_POLL 1
180# endif 255# endif
181#endif 256#endif
182 257
183#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
184# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
185#endif 264#endif
186 265
187#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
189#endif 268#endif
191#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 271# define EV_USE_PORT 0
193#endif 272#endif
194 273
195#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
196# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
197#endif 280#endif
198 281
199#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 283# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
210# else 293# else
211# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
212# endif 295# endif
213#endif 296#endif
214 297
215/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 347
217#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
220#endif 351#endif
234# include <sys/select.h> 365# include <sys/select.h>
235# endif 366# endif
236#endif 367#endif
237 368
238#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
239# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
240#endif 378#endif
241 379
242#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 381# include <winsock.h>
244#endif 382#endif
245 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif
409
246/**/ 410/**/
411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
247 417
248/* 418/*
249 * This is used to avoid floating point rounding problems. 419 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 420 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 421 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 433# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 434# define noinline __attribute__ ((noinline))
265#else 435#else
266# define expect(expr,value) (expr) 436# define expect(expr,value) (expr)
267# define noinline 437# define noinline
268# if __STDC_VERSION__ < 199901L 438# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 439# define inline
270# endif 440# endif
271#endif 441#endif
272 442
273#define expect_false(expr) expect ((expr) != 0, 0) 443#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 448# define inline_speed static noinline
279#else 449#else
280# define inline_speed static inline 450# define inline_speed static inline
281#endif 451#endif
282 452
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
285 460
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 461#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 462#define EMPTY2(a,b) /* used to suppress some warnings */
288 463
289typedef ev_watcher *W; 464typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 465typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
292 467
293#if EV_USE_MONOTONIC 468#define ev_active(w) ((W)(w))->active
469#define ev_at(w) ((WT)(w))->at
470
471#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
476
477#if EV_USE_MONOTONIC
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
479#endif
480
481#ifndef EV_FD_TO_WIN32_HANDLE
482# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
483#endif
484#ifndef EV_WIN32_HANDLE_TO_FD
485# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
486#endif
487#ifndef EV_WIN32_CLOSE_FD
488# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 489#endif
298 490
299#ifdef _WIN32 491#ifdef _WIN32
300# include "ev_win32.c" 492# include "ev_win32.c"
301#endif 493#endif
309{ 501{
310 syserr_cb = cb; 502 syserr_cb = cb;
311} 503}
312 504
313static void noinline 505static void noinline
314syserr (const char *msg) 506ev_syserr (const char *msg)
315{ 507{
316 if (!msg) 508 if (!msg)
317 msg = "(libev) system error"; 509 msg = "(libev) system error";
318 510
319 if (syserr_cb) 511 if (syserr_cb)
323 perror (msg); 515 perror (msg);
324 abort (); 516 abort ();
325 } 517 }
326} 518}
327 519
520static void *
521ev_realloc_emul (void *ptr, long size)
522{
523 /* some systems, notably openbsd and darwin, fail to properly
524 * implement realloc (x, 0) (as required by both ansi c-98 and
525 * the single unix specification, so work around them here.
526 */
527
528 if (size)
529 return realloc (ptr, size);
530
531 free (ptr);
532 return 0;
533}
534
328static void *(*alloc)(void *ptr, long size); 535static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 536
330void 537void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 538ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 539{
333 alloc = cb; 540 alloc = cb;
334} 541}
335 542
336inline_speed void * 543inline_speed void *
337ev_realloc (void *ptr, long size) 544ev_realloc (void *ptr, long size)
338{ 545{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 546 ptr = alloc (ptr, size);
340 547
341 if (!ptr && size) 548 if (!ptr && size)
342 { 549 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 550 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 551 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 557#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 558#define ev_free(ptr) ev_realloc ((ptr), 0)
352 559
353/*****************************************************************************/ 560/*****************************************************************************/
354 561
562/* set in reify when reification needed */
563#define EV_ANFD_REIFY 1
564
565/* file descriptor info structure */
355typedef struct 566typedef struct
356{ 567{
357 WL head; 568 WL head;
358 unsigned char events; 569 unsigned char events; /* the events watched for */
570 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
571 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 572 unsigned char unused;
573#if EV_USE_EPOLL
574 unsigned int egen; /* generation counter to counter epoll bugs */
575#endif
360#if EV_SELECT_IS_WINSOCKET 576#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 577 SOCKET handle;
362#endif 578#endif
363} ANFD; 579} ANFD;
364 580
581/* stores the pending event set for a given watcher */
365typedef struct 582typedef struct
366{ 583{
367 W w; 584 W w;
368 int events; 585 int events; /* the pending event set for the given watcher */
369} ANPENDING; 586} ANPENDING;
370 587
371#if EV_USE_INOTIFY 588#if EV_USE_INOTIFY
589/* hash table entry per inotify-id */
372typedef struct 590typedef struct
373{ 591{
374 WL head; 592 WL head;
375} ANFS; 593} ANFS;
594#endif
595
596/* Heap Entry */
597#if EV_HEAP_CACHE_AT
598 /* a heap element */
599 typedef struct {
600 ev_tstamp at;
601 WT w;
602 } ANHE;
603
604 #define ANHE_w(he) (he).w /* access watcher, read-write */
605 #define ANHE_at(he) (he).at /* access cached at, read-only */
606 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
607#else
608 /* a heap element */
609 typedef WT ANHE;
610
611 #define ANHE_w(he) (he)
612 #define ANHE_at(he) (he)->at
613 #define ANHE_at_cache(he)
376#endif 614#endif
377 615
378#if EV_MULTIPLICITY 616#if EV_MULTIPLICITY
379 617
380 struct ev_loop 618 struct ev_loop
399 637
400 static int ev_default_loop_ptr; 638 static int ev_default_loop_ptr;
401 639
402#endif 640#endif
403 641
642#if EV_MINIMAL < 2
643# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
644# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
645# define EV_INVOKE_PENDING invoke_cb (EV_A)
646#else
647# define EV_RELEASE_CB (void)0
648# define EV_ACQUIRE_CB (void)0
649# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
650#endif
651
652#define EVUNLOOP_RECURSE 0x80
653
404/*****************************************************************************/ 654/*****************************************************************************/
405 655
656#ifndef EV_HAVE_EV_TIME
406ev_tstamp 657ev_tstamp
407ev_time (void) 658ev_time (void)
408{ 659{
409#if EV_USE_REALTIME 660#if EV_USE_REALTIME
661 if (expect_true (have_realtime))
662 {
410 struct timespec ts; 663 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 664 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 665 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 666 }
667#endif
668
414 struct timeval tv; 669 struct timeval tv;
415 gettimeofday (&tv, 0); 670 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 671 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 672}
673#endif
419 674
420ev_tstamp inline_size 675inline_size ev_tstamp
421get_clock (void) 676get_clock (void)
422{ 677{
423#if EV_USE_MONOTONIC 678#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 679 if (expect_true (have_monotonic))
425 { 680 {
451 ts.tv_sec = (time_t)delay; 706 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 707 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 708
454 nanosleep (&ts, 0); 709 nanosleep (&ts, 0);
455#elif defined(_WIN32) 710#elif defined(_WIN32)
456 Sleep (delay * 1e3); 711 Sleep ((unsigned long)(delay * 1e3));
457#else 712#else
458 struct timeval tv; 713 struct timeval tv;
459 714
460 tv.tv_sec = (time_t)delay; 715 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 716 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 717
718 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
719 /* something not guaranteed by newer posix versions, but guaranteed */
720 /* by older ones */
463 select (0, 0, 0, 0, &tv); 721 select (0, 0, 0, 0, &tv);
464#endif 722#endif
465 } 723 }
466} 724}
467 725
468/*****************************************************************************/ 726/*****************************************************************************/
469 727
470int inline_size 728#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
729
730/* find a suitable new size for the given array, */
731/* hopefully by rounding to a ncie-to-malloc size */
732inline_size int
471array_nextsize (int elem, int cur, int cnt) 733array_nextsize (int elem, int cur, int cnt)
472{ 734{
473 int ncur = cur + 1; 735 int ncur = cur + 1;
474 736
475 do 737 do
476 ncur <<= 1; 738 ncur <<= 1;
477 while (cnt > ncur); 739 while (cnt > ncur);
478 740
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 741 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 742 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 743 {
482 ncur *= elem; 744 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 745 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 746 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 747 ncur /= elem;
486 } 748 }
487 749
488 return ncur; 750 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 754array_realloc (int elem, void *base, int *cur, int cnt)
493{ 755{
494 *cur = array_nextsize (elem, *cur, cnt); 756 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 757 return ev_realloc (base, elem * *cur);
496} 758}
759
760#define array_init_zero(base,count) \
761 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 762
498#define array_needsize(type,base,cur,cnt,init) \ 763#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 764 if (expect_false ((cnt) > (cur))) \
500 { \ 765 { \
501 int ocur_ = (cur); \ 766 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 778 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 779 }
515#endif 780#endif
516 781
517#define array_free(stem, idx) \ 782#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 783 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 784
520/*****************************************************************************/ 785/*****************************************************************************/
786
787/* dummy callback for pending events */
788static void noinline
789pendingcb (EV_P_ ev_prepare *w, int revents)
790{
791}
521 792
522void noinline 793void noinline
523ev_feed_event (EV_P_ void *w, int revents) 794ev_feed_event (EV_P_ void *w, int revents)
524{ 795{
525 W w_ = (W)w; 796 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 805 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 806 pendings [pri][w_->pending - 1].events = revents;
536 } 807 }
537} 808}
538 809
539void inline_speed 810inline_speed void
811feed_reverse (EV_P_ W w)
812{
813 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
814 rfeeds [rfeedcnt++] = w;
815}
816
817inline_size void
818feed_reverse_done (EV_P_ int revents)
819{
820 do
821 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
822 while (rfeedcnt);
823}
824
825inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 826queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 827{
542 int i; 828 int i;
543 829
544 for (i = 0; i < eventcnt; ++i) 830 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 831 ev_feed_event (EV_A_ events [i], type);
546} 832}
547 833
548/*****************************************************************************/ 834/*****************************************************************************/
549 835
550void inline_size 836inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 837fd_event_nc (EV_P_ int fd, int revents)
565{ 838{
566 ANFD *anfd = anfds + fd; 839 ANFD *anfd = anfds + fd;
567 ev_io *w; 840 ev_io *w;
568 841
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 842 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 846 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 847 ev_feed_event (EV_A_ (W)w, ev);
575 } 848 }
576} 849}
577 850
851/* do not submit kernel events for fds that have reify set */
852/* because that means they changed while we were polling for new events */
853inline_speed void
854fd_event (EV_P_ int fd, int revents)
855{
856 ANFD *anfd = anfds + fd;
857
858 if (expect_true (!anfd->reify))
859 fd_event_nc (EV_A_ fd, revents);
860}
861
578void 862void
579ev_feed_fd_event (EV_P_ int fd, int revents) 863ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 864{
581 if (fd >= 0 && fd < anfdmax) 865 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 866 fd_event_nc (EV_A_ fd, revents);
583} 867}
584 868
585void inline_size 869/* make sure the external fd watch events are in-sync */
870/* with the kernel/libev internal state */
871inline_size void
586fd_reify (EV_P) 872fd_reify (EV_P)
587{ 873{
588 int i; 874 int i;
589 875
590 for (i = 0; i < fdchangecnt; ++i) 876 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 885 events |= (unsigned char)w->events;
600 886
601#if EV_SELECT_IS_WINSOCKET 887#if EV_SELECT_IS_WINSOCKET
602 if (events) 888 if (events)
603 { 889 {
604 unsigned long argp; 890 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 891 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 892 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 893 }
612#endif 894#endif
613 895
614 { 896 {
615 unsigned char o_events = anfd->events; 897 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 898 unsigned char o_reify = anfd->reify;
617 899
618 anfd->reify = 0; 900 anfd->reify = 0;
619 anfd->events = events; 901 anfd->events = events;
620 902
621 if (o_events != events || o_reify & EV_IOFDSET) 903 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 904 backend_modify (EV_A_ fd, o_events, events);
623 } 905 }
624 } 906 }
625 907
626 fdchangecnt = 0; 908 fdchangecnt = 0;
627} 909}
628 910
629void inline_size 911/* something about the given fd changed */
912inline_size void
630fd_change (EV_P_ int fd, int flags) 913fd_change (EV_P_ int fd, int flags)
631{ 914{
632 unsigned char reify = anfds [fd].reify; 915 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 916 anfds [fd].reify |= flags;
634 917
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 921 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 922 fdchanges [fdchangecnt - 1] = fd;
640 } 923 }
641} 924}
642 925
643void inline_speed 926/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
927inline_speed void
644fd_kill (EV_P_ int fd) 928fd_kill (EV_P_ int fd)
645{ 929{
646 ev_io *w; 930 ev_io *w;
647 931
648 while ((w = (ev_io *)anfds [fd].head)) 932 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 934 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 935 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 936 }
653} 937}
654 938
655int inline_size 939/* check whether the given fd is atcually valid, for error recovery */
940inline_size int
656fd_valid (int fd) 941fd_valid (int fd)
657{ 942{
658#ifdef _WIN32 943#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 944 return _get_osfhandle (fd) != -1;
660#else 945#else
668{ 953{
669 int fd; 954 int fd;
670 955
671 for (fd = 0; fd < anfdmax; ++fd) 956 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 957 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 958 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 959 fd_kill (EV_A_ fd);
675} 960}
676 961
677/* called on ENOMEM in select/poll to kill some fds and retry */ 962/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 963static void noinline
682 967
683 for (fd = anfdmax; fd--; ) 968 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 969 if (anfds [fd].events)
685 { 970 {
686 fd_kill (EV_A_ fd); 971 fd_kill (EV_A_ fd);
687 return; 972 break;
688 } 973 }
689} 974}
690 975
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 976/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 977static void noinline
696 981
697 for (fd = 0; fd < anfdmax; ++fd) 982 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 983 if (anfds [fd].events)
699 { 984 {
700 anfds [fd].events = 0; 985 anfds [fd].events = 0;
986 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 987 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 988 }
703} 989}
704 990
705/*****************************************************************************/ 991/*****************************************************************************/
706 992
707void inline_speed 993/*
708upheap (WT *heap, int k) 994 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 995 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 996 * the branching factor of the d-tree.
997 */
711 998
712 while (k) 999/*
713 { 1000 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 1001 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1002 * which is more cache-efficient.
1003 * the difference is about 5% with 50000+ watchers.
1004 */
1005#if EV_USE_4HEAP
715 1006
716 if (heap [p]->at <= w->at) 1007#define DHEAP 4
1008#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1009#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1010#define UPHEAP_DONE(p,k) ((p) == (k))
1011
1012/* away from the root */
1013inline_speed void
1014downheap (ANHE *heap, int N, int k)
1015{
1016 ANHE he = heap [k];
1017 ANHE *E = heap + N + HEAP0;
1018
1019 for (;;)
1020 {
1021 ev_tstamp minat;
1022 ANHE *minpos;
1023 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1024
1025 /* find minimum child */
1026 if (expect_true (pos + DHEAP - 1 < E))
1027 {
1028 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1029 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1030 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1031 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1032 }
1033 else if (pos < E)
1034 {
1035 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1036 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1037 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1038 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1039 }
1040 else
717 break; 1041 break;
718 1042
1043 if (ANHE_at (he) <= minat)
1044 break;
1045
1046 heap [k] = *minpos;
1047 ev_active (ANHE_w (*minpos)) = k;
1048
1049 k = minpos - heap;
1050 }
1051
1052 heap [k] = he;
1053 ev_active (ANHE_w (he)) = k;
1054}
1055
1056#else /* 4HEAP */
1057
1058#define HEAP0 1
1059#define HPARENT(k) ((k) >> 1)
1060#define UPHEAP_DONE(p,k) (!(p))
1061
1062/* away from the root */
1063inline_speed void
1064downheap (ANHE *heap, int N, int k)
1065{
1066 ANHE he = heap [k];
1067
1068 for (;;)
1069 {
1070 int c = k << 1;
1071
1072 if (c >= N + HEAP0)
1073 break;
1074
1075 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1076 ? 1 : 0;
1077
1078 if (ANHE_at (he) <= ANHE_at (heap [c]))
1079 break;
1080
1081 heap [k] = heap [c];
1082 ev_active (ANHE_w (heap [k])) = k;
1083
1084 k = c;
1085 }
1086
1087 heap [k] = he;
1088 ev_active (ANHE_w (he)) = k;
1089}
1090#endif
1091
1092/* towards the root */
1093inline_speed void
1094upheap (ANHE *heap, int k)
1095{
1096 ANHE he = heap [k];
1097
1098 for (;;)
1099 {
1100 int p = HPARENT (k);
1101
1102 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1103 break;
1104
719 heap [k] = heap [p]; 1105 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1106 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1107 k = p;
722 } 1108 }
723 1109
724 heap [k] = w; 1110 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1111 ev_active (ANHE_w (he)) = k;
726} 1112}
727 1113
728void inline_speed 1114/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1115inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1116adjustheap (ANHE *heap, int N, int k)
758{ 1117{
1118 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
759 upheap (heap, k); 1119 upheap (heap, k);
1120 else
760 downheap (heap, N, k); 1121 downheap (heap, N, k);
1122}
1123
1124/* rebuild the heap: this function is used only once and executed rarely */
1125inline_size void
1126reheap (ANHE *heap, int N)
1127{
1128 int i;
1129
1130 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1131 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1132 for (i = 0; i < N; ++i)
1133 upheap (heap, i + HEAP0);
761} 1134}
762 1135
763/*****************************************************************************/ 1136/*****************************************************************************/
764 1137
1138/* associate signal watchers to a signal signal */
765typedef struct 1139typedef struct
766{ 1140{
1141 EV_ATOMIC_T pending;
1142#if EV_MULTIPLICITY
1143 EV_P;
1144#endif
767 WL head; 1145 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG; 1146} ANSIG;
770 1147
771static ANSIG *signals; 1148static ANSIG signals [EV_NSIG - 1];
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787 1149
788/*****************************************************************************/ 1150/*****************************************************************************/
789 1151
790void inline_speed 1152/* used to prepare libev internal fd's */
1153/* this is not fork-safe */
1154inline_speed void
791fd_intern (int fd) 1155fd_intern (int fd)
792{ 1156{
793#ifdef _WIN32 1157#ifdef _WIN32
794 int arg = 1; 1158 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1159 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 1160#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1161 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1162 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1163#endif
800} 1164}
801 1165
802static void noinline 1166static void noinline
803evpipe_init (EV_P) 1167evpipe_init (EV_P)
804{ 1168{
805 if (!ev_is_active (&pipeev)) 1169 if (!ev_is_active (&pipe_w))
806 { 1170 {
1171#if EV_USE_EVENTFD
1172 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1173 if (evfd < 0 && errno == EINVAL)
1174 evfd = eventfd (0, 0);
1175
1176 if (evfd >= 0)
1177 {
1178 evpipe [0] = -1;
1179 fd_intern (evfd); /* doing it twice doesn't hurt */
1180 ev_io_set (&pipe_w, evfd, EV_READ);
1181 }
1182 else
1183#endif
1184 {
807 while (pipe (evpipe)) 1185 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1186 ev_syserr ("(libev) error creating signal/async pipe");
809 1187
810 fd_intern (evpipe [0]); 1188 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1189 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1190 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1191 }
1192
814 ev_io_start (EV_A_ &pipeev); 1193 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1194 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1195 }
817} 1196}
818 1197
819void inline_size 1198inline_size void
820evpipe_write (EV_P_ int sig, int async) 1199evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1200{
822 if (!(gotasync || gotsig)) 1201 if (!*flag)
823 { 1202 {
824 int old_errno = errno; /* save errno becaue write might clobber it */ 1203 int old_errno = errno; /* save errno because write might clobber it */
825 1204
826 if (sig) gotsig = 1; 1205 *flag = 1;
827 if (async) gotasync = 1;
828 1206
1207#if EV_USE_EVENTFD
1208 if (evfd >= 0)
1209 {
1210 uint64_t counter = 1;
1211 write (evfd, &counter, sizeof (uint64_t));
1212 }
1213 else
1214#endif
829 write (evpipe [1], &old_errno, 1); 1215 write (evpipe [1], &old_errno, 1);
830 1216
831 errno = old_errno; 1217 errno = old_errno;
832 } 1218 }
833} 1219}
834 1220
1221/* called whenever the libev signal pipe */
1222/* got some events (signal, async) */
835static void 1223static void
836pipecb (EV_P_ ev_io *iow, int revents) 1224pipecb (EV_P_ ev_io *iow, int revents)
837{ 1225{
1226 int i;
1227
1228#if EV_USE_EVENTFD
1229 if (evfd >= 0)
838 { 1230 {
839 int dummy; 1231 uint64_t counter;
1232 read (evfd, &counter, sizeof (uint64_t));
1233 }
1234 else
1235#endif
1236 {
1237 char dummy;
840 read (evpipe [0], &dummy, 1); 1238 read (evpipe [0], &dummy, 1);
841 } 1239 }
842 1240
843 if (gotsig && ev_is_default_loop (EV_A)) 1241 if (sig_pending)
844 { 1242 {
845 int signum; 1243 sig_pending = 0;
846 gotsig = 0;
847 1244
848 for (signum = signalmax; signum--; ) 1245 for (i = EV_NSIG - 1; i--; )
849 if (signals [signum].gotsig) 1246 if (expect_false (signals [i].pending))
850 ev_feed_signal_event (EV_A_ signum + 1); 1247 ev_feed_signal_event (EV_A_ i + 1);
851 } 1248 }
852 1249
853#if EV_ASYNC_ENABLE 1250#if EV_ASYNC_ENABLE
854 if (gotasync) 1251 if (async_pending)
855 { 1252 {
856 int i; 1253 async_pending = 0;
857 gotasync = 0;
858 1254
859 for (i = asynccnt; i--; ) 1255 for (i = asynccnt; i--; )
860 if (asyncs [i]->sent) 1256 if (asyncs [i]->sent)
861 { 1257 {
862 asyncs [i]->sent = 0; 1258 asyncs [i]->sent = 0;
867} 1263}
868 1264
869/*****************************************************************************/ 1265/*****************************************************************************/
870 1266
871static void 1267static void
872sighandler (int signum) 1268ev_sighandler (int signum)
873{ 1269{
874#if EV_MULTIPLICITY 1270#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 1271 EV_P = signals [signum - 1].loop;
876#endif 1272#endif
877 1273
878#if _WIN32 1274#if _WIN32
879 signal (signum, sighandler); 1275 signal (signum, ev_sighandler);
880#endif 1276#endif
881 1277
882 signals [signum - 1].gotsig = 1; 1278 signals [signum - 1].pending = 1;
883 evpipe_write (EV_A_ 1, 0); 1279 evpipe_write (EV_A_ &sig_pending);
884} 1280}
885 1281
886void noinline 1282void noinline
887ev_feed_signal_event (EV_P_ int signum) 1283ev_feed_signal_event (EV_P_ int signum)
888{ 1284{
889 WL w; 1285 WL w;
890 1286
1287 if (expect_false (signum <= 0 || signum > EV_NSIG))
1288 return;
1289
1290 --signum;
1291
891#if EV_MULTIPLICITY 1292#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1293 /* it is permissible to try to feed a signal to the wrong loop */
893#endif 1294 /* or, likely more useful, feeding a signal nobody is waiting for */
894 1295
895 --signum; 1296 if (expect_false (signals [signum].loop != EV_A))
896
897 if (signum < 0 || signum >= signalmax)
898 return; 1297 return;
1298#endif
899 1299
900 signals [signum].gotsig = 0; 1300 signals [signum].pending = 0;
901 1301
902 for (w = signals [signum].head; w; w = w->next) 1302 for (w = signals [signum].head; w; w = w->next)
903 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1303 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
904} 1304}
905 1305
1306#if EV_USE_SIGNALFD
1307static void
1308sigfdcb (EV_P_ ev_io *iow, int revents)
1309{
1310 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1311
1312 for (;;)
1313 {
1314 ssize_t res = read (sigfd, si, sizeof (si));
1315
1316 /* not ISO-C, as res might be -1, but works with SuS */
1317 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1318 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1319
1320 if (res < (ssize_t)sizeof (si))
1321 break;
1322 }
1323}
1324#endif
1325
906/*****************************************************************************/ 1326/*****************************************************************************/
907 1327
908static WL childs [EV_PID_HASHSIZE]; 1328static WL childs [EV_PID_HASHSIZE];
909 1329
910#ifndef _WIN32 1330#ifndef _WIN32
913 1333
914#ifndef WIFCONTINUED 1334#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 1335# define WIFCONTINUED(status) 0
916#endif 1336#endif
917 1337
918void inline_speed 1338/* handle a single child status event */
1339inline_speed void
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1340child_reap (EV_P_ int chain, int pid, int status)
920{ 1341{
921 ev_child *w; 1342 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1343 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 1344
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1345 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 1346 {
926 if ((w->pid == pid || !w->pid) 1347 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 1348 && (!traced || (w->flags & 1)))
928 { 1349 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1350 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 1351 w->rpid = pid;
931 w->rstatus = status; 1352 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1353 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 1354 }
934 } 1355 }
936 1357
937#ifndef WCONTINUED 1358#ifndef WCONTINUED
938# define WCONTINUED 0 1359# define WCONTINUED 0
939#endif 1360#endif
940 1361
1362/* called on sigchld etc., calls waitpid */
941static void 1363static void
942childcb (EV_P_ ev_signal *sw, int revents) 1364childcb (EV_P_ ev_signal *sw, int revents)
943{ 1365{
944 int pid, status; 1366 int pid, status;
945 1367
948 if (!WCONTINUED 1370 if (!WCONTINUED
949 || errno != EINVAL 1371 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1372 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 1373 return;
952 1374
953 /* make sure we are called again until all childs have been reaped */ 1375 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 1376 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1377 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 1378
957 child_reap (EV_A_ sw, pid, pid, status); 1379 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 1380 if (EV_PID_HASHSIZE > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1381 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 1382}
961 1383
962#endif 1384#endif
963 1385
964/*****************************************************************************/ 1386/*****************************************************************************/
1026 /* kqueue is borked on everything but netbsd apparently */ 1448 /* kqueue is borked on everything but netbsd apparently */
1027 /* it usually doesn't work correctly on anything but sockets and pipes */ 1449 /* it usually doesn't work correctly on anything but sockets and pipes */
1028 flags &= ~EVBACKEND_KQUEUE; 1450 flags &= ~EVBACKEND_KQUEUE;
1029#endif 1451#endif
1030#ifdef __APPLE__ 1452#ifdef __APPLE__
1031 // flags &= ~EVBACKEND_KQUEUE; for documentation 1453 /* only select works correctly on that "unix-certified" platform */
1032 flags &= ~EVBACKEND_POLL; 1454 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1455 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1033#endif 1456#endif
1034 1457
1035 return flags; 1458 return flags;
1036} 1459}
1037 1460
1051ev_backend (EV_P) 1474ev_backend (EV_P)
1052{ 1475{
1053 return backend; 1476 return backend;
1054} 1477}
1055 1478
1479#if EV_MINIMAL < 2
1056unsigned int 1480unsigned int
1057ev_loop_count (EV_P) 1481ev_loop_count (EV_P)
1058{ 1482{
1059 return loop_count; 1483 return loop_count;
1060} 1484}
1061 1485
1486unsigned int
1487ev_loop_depth (EV_P)
1488{
1489 return loop_depth;
1490}
1491
1062void 1492void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1493ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1064{ 1494{
1065 io_blocktime = interval; 1495 io_blocktime = interval;
1066} 1496}
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1499ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1070{ 1500{
1071 timeout_blocktime = interval; 1501 timeout_blocktime = interval;
1072} 1502}
1073 1503
1504void
1505ev_set_userdata (EV_P_ void *data)
1506{
1507 userdata = data;
1508}
1509
1510void *
1511ev_userdata (EV_P)
1512{
1513 return userdata;
1514}
1515
1516void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1517{
1518 invoke_cb = invoke_pending_cb;
1519}
1520
1521void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1522{
1523 release_cb = release;
1524 acquire_cb = acquire;
1525}
1526#endif
1527
1528/* initialise a loop structure, must be zero-initialised */
1074static void noinline 1529static void noinline
1075loop_init (EV_P_ unsigned int flags) 1530loop_init (EV_P_ unsigned int flags)
1076{ 1531{
1077 if (!backend) 1532 if (!backend)
1078 { 1533 {
1534#if EV_USE_REALTIME
1535 if (!have_realtime)
1536 {
1537 struct timespec ts;
1538
1539 if (!clock_gettime (CLOCK_REALTIME, &ts))
1540 have_realtime = 1;
1541 }
1542#endif
1543
1079#if EV_USE_MONOTONIC 1544#if EV_USE_MONOTONIC
1545 if (!have_monotonic)
1080 { 1546 {
1081 struct timespec ts; 1547 struct timespec ts;
1548
1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1549 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1083 have_monotonic = 1; 1550 have_monotonic = 1;
1084 } 1551 }
1085#endif 1552#endif
1553
1554 /* pid check not overridable via env */
1555#ifndef _WIN32
1556 if (flags & EVFLAG_FORKCHECK)
1557 curpid = getpid ();
1558#endif
1559
1560 if (!(flags & EVFLAG_NOENV)
1561 && !enable_secure ()
1562 && getenv ("LIBEV_FLAGS"))
1563 flags = atoi (getenv ("LIBEV_FLAGS"));
1086 1564
1087 ev_rt_now = ev_time (); 1565 ev_rt_now = ev_time ();
1088 mn_now = get_clock (); 1566 mn_now = get_clock ();
1089 now_floor = mn_now; 1567 now_floor = mn_now;
1090 rtmn_diff = ev_rt_now - mn_now; 1568 rtmn_diff = ev_rt_now - mn_now;
1569#if EV_MINIMAL < 2
1570 invoke_cb = ev_invoke_pending;
1571#endif
1091 1572
1092 io_blocktime = 0.; 1573 io_blocktime = 0.;
1093 timeout_blocktime = 0.; 1574 timeout_blocktime = 0.;
1094 backend = 0; 1575 backend = 0;
1095 backend_fd = -1; 1576 backend_fd = -1;
1096 gotasync = 0; 1577 sig_pending = 0;
1578#if EV_ASYNC_ENABLE
1579 async_pending = 0;
1580#endif
1097#if EV_USE_INOTIFY 1581#if EV_USE_INOTIFY
1098 fs_fd = -2; 1582 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1099#endif 1583#endif
1100 1584#if EV_USE_SIGNALFD
1101 /* pid check not overridable via env */ 1585 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1102#ifndef _WIN32
1103 if (flags & EVFLAG_FORKCHECK)
1104 curpid = getpid ();
1105#endif 1586#endif
1106 1587
1107 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS"));
1111
1112 if (!(flags & 0x0000ffffUL)) 1588 if (!(flags & 0x0000ffffU))
1113 flags |= ev_recommended_backends (); 1589 flags |= ev_recommended_backends ();
1114 1590
1115#if EV_USE_PORT 1591#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1592 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 1593#endif
1126#endif 1602#endif
1127#if EV_USE_SELECT 1603#if EV_USE_SELECT
1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1604 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1129#endif 1605#endif
1130 1606
1607 ev_prepare_init (&pending_w, pendingcb);
1608
1131 ev_init (&pipeev, pipecb); 1609 ev_init (&pipe_w, pipecb);
1132 ev_set_priority (&pipeev, EV_MAXPRI); 1610 ev_set_priority (&pipe_w, EV_MAXPRI);
1133 } 1611 }
1134} 1612}
1135 1613
1614/* free up a loop structure */
1136static void noinline 1615static void noinline
1137loop_destroy (EV_P) 1616loop_destroy (EV_P)
1138{ 1617{
1139 int i; 1618 int i;
1140 1619
1141 if (ev_is_active (&pipeev)) 1620 if (ev_is_active (&pipe_w))
1142 { 1621 {
1143 ev_ref (EV_A); /* signal watcher */ 1622 /*ev_ref (EV_A);*/
1144 ev_io_stop (EV_A_ &pipeev); 1623 /*ev_io_stop (EV_A_ &pipe_w);*/
1145 1624
1146 close (evpipe [0]); evpipe [0] = 0; 1625#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1632 EV_WIN32_CLOSE_FD (evpipe [0]);
1633 EV_WIN32_CLOSE_FD (evpipe [1]);
1634 }
1635 }
1636
1637#if EV_USE_SIGNALFD
1638 if (ev_is_active (&sigfd_w))
1148 } 1639 {
1640 /*ev_ref (EV_A);*/
1641 /*ev_io_stop (EV_A_ &sigfd_w);*/
1642
1643 close (sigfd);
1644 }
1645#endif
1149 1646
1150#if EV_USE_INOTIFY 1647#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 1648 if (fs_fd >= 0)
1152 close (fs_fd); 1649 close (fs_fd);
1153#endif 1650#endif
1177#if EV_IDLE_ENABLE 1674#if EV_IDLE_ENABLE
1178 array_free (idle, [i]); 1675 array_free (idle, [i]);
1179#endif 1676#endif
1180 } 1677 }
1181 1678
1182 ev_free (anfds); anfdmax = 0; 1679 ev_free (anfds); anfds = 0; anfdmax = 0;
1183 1680
1184 /* have to use the microsoft-never-gets-it-right macro */ 1681 /* have to use the microsoft-never-gets-it-right macro */
1682 array_free (rfeed, EMPTY);
1185 array_free (fdchange, EMPTY); 1683 array_free (fdchange, EMPTY);
1186 array_free (timer, EMPTY); 1684 array_free (timer, EMPTY);
1187#if EV_PERIODIC_ENABLE 1685#if EV_PERIODIC_ENABLE
1188 array_free (periodic, EMPTY); 1686 array_free (periodic, EMPTY);
1189#endif 1687#endif
1197#endif 1695#endif
1198 1696
1199 backend = 0; 1697 backend = 0;
1200} 1698}
1201 1699
1700#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 1701inline_size void infy_fork (EV_P);
1702#endif
1203 1703
1204void inline_size 1704inline_size void
1205loop_fork (EV_P) 1705loop_fork (EV_P)
1206{ 1706{
1207#if EV_USE_PORT 1707#if EV_USE_PORT
1208 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1708 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1209#endif 1709#endif
1215#endif 1715#endif
1216#if EV_USE_INOTIFY 1716#if EV_USE_INOTIFY
1217 infy_fork (EV_A); 1717 infy_fork (EV_A);
1218#endif 1718#endif
1219 1719
1220 if (ev_is_active (&pipeev)) 1720 if (ev_is_active (&pipe_w))
1221 { 1721 {
1222 /* this "locks" the handlers against writing to the pipe */ 1722 /* this "locks" the handlers against writing to the pipe */
1223 /* while we modify the fd vars */ 1723 /* while we modify the fd vars */
1224 gotsig = 1; 1724 sig_pending = 1;
1225#if EV_ASYNC_ENABLE 1725#if EV_ASYNC_ENABLE
1226 gotasync = 1; 1726 async_pending = 1;
1227#endif 1727#endif
1228 1728
1229 ev_ref (EV_A); 1729 ev_ref (EV_A);
1230 ev_io_stop (EV_A_ &pipeev); 1730 ev_io_stop (EV_A_ &pipe_w);
1231 close (evpipe [0]); 1731
1232 close (evpipe [1]); 1732#if EV_USE_EVENTFD
1733 if (evfd >= 0)
1734 close (evfd);
1735#endif
1736
1737 if (evpipe [0] >= 0)
1738 {
1739 EV_WIN32_CLOSE_FD (evpipe [0]);
1740 EV_WIN32_CLOSE_FD (evpipe [1]);
1741 }
1233 1742
1234 evpipe_init (EV_A); 1743 evpipe_init (EV_A);
1235 /* now iterate over everything, in case we missed something */ 1744 /* now iterate over everything, in case we missed something */
1236 pipecb (EV_A_ &pipeev, EV_READ); 1745 pipecb (EV_A_ &pipe_w, EV_READ);
1237 } 1746 }
1238 1747
1239 postfork = 0; 1748 postfork = 0;
1240} 1749}
1241 1750
1242#if EV_MULTIPLICITY 1751#if EV_MULTIPLICITY
1752
1243struct ev_loop * 1753struct ev_loop *
1244ev_loop_new (unsigned int flags) 1754ev_loop_new (unsigned int flags)
1245{ 1755{
1246 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1756 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1247 1757
1248 memset (loop, 0, sizeof (struct ev_loop)); 1758 memset (EV_A, 0, sizeof (struct ev_loop));
1249
1250 loop_init (EV_A_ flags); 1759 loop_init (EV_A_ flags);
1251 1760
1252 if (ev_backend (EV_A)) 1761 if (ev_backend (EV_A))
1253 return loop; 1762 return EV_A;
1254 1763
1255 return 0; 1764 return 0;
1256} 1765}
1257 1766
1258void 1767void
1265void 1774void
1266ev_loop_fork (EV_P) 1775ev_loop_fork (EV_P)
1267{ 1776{
1268 postfork = 1; /* must be in line with ev_default_fork */ 1777 postfork = 1; /* must be in line with ev_default_fork */
1269} 1778}
1779#endif /* multiplicity */
1270 1780
1781#if EV_VERIFY
1782static void noinline
1783verify_watcher (EV_P_ W w)
1784{
1785 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1786
1787 if (w->pending)
1788 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1789}
1790
1791static void noinline
1792verify_heap (EV_P_ ANHE *heap, int N)
1793{
1794 int i;
1795
1796 for (i = HEAP0; i < N + HEAP0; ++i)
1797 {
1798 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1799 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1800 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1801
1802 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1803 }
1804}
1805
1806static void noinline
1807array_verify (EV_P_ W *ws, int cnt)
1808{
1809 while (cnt--)
1810 {
1811 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1812 verify_watcher (EV_A_ ws [cnt]);
1813 }
1814}
1815#endif
1816
1817#if EV_MINIMAL < 2
1818void
1819ev_loop_verify (EV_P)
1820{
1821#if EV_VERIFY
1822 int i;
1823 WL w;
1824
1825 assert (activecnt >= -1);
1826
1827 assert (fdchangemax >= fdchangecnt);
1828 for (i = 0; i < fdchangecnt; ++i)
1829 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1830
1831 assert (anfdmax >= 0);
1832 for (i = 0; i < anfdmax; ++i)
1833 for (w = anfds [i].head; w; w = w->next)
1834 {
1835 verify_watcher (EV_A_ (W)w);
1836 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1837 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1838 }
1839
1840 assert (timermax >= timercnt);
1841 verify_heap (EV_A_ timers, timercnt);
1842
1843#if EV_PERIODIC_ENABLE
1844 assert (periodicmax >= periodiccnt);
1845 verify_heap (EV_A_ periodics, periodiccnt);
1846#endif
1847
1848 for (i = NUMPRI; i--; )
1849 {
1850 assert (pendingmax [i] >= pendingcnt [i]);
1851#if EV_IDLE_ENABLE
1852 assert (idleall >= 0);
1853 assert (idlemax [i] >= idlecnt [i]);
1854 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1855#endif
1856 }
1857
1858#if EV_FORK_ENABLE
1859 assert (forkmax >= forkcnt);
1860 array_verify (EV_A_ (W *)forks, forkcnt);
1861#endif
1862
1863#if EV_ASYNC_ENABLE
1864 assert (asyncmax >= asynccnt);
1865 array_verify (EV_A_ (W *)asyncs, asynccnt);
1866#endif
1867
1868 assert (preparemax >= preparecnt);
1869 array_verify (EV_A_ (W *)prepares, preparecnt);
1870
1871 assert (checkmax >= checkcnt);
1872 array_verify (EV_A_ (W *)checks, checkcnt);
1873
1874# if 0
1875 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1876 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1877# endif
1878#endif
1879}
1271#endif 1880#endif
1272 1881
1273#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
1274struct ev_loop * 1883struct ev_loop *
1275ev_default_loop_init (unsigned int flags) 1884ev_default_loop_init (unsigned int flags)
1279#endif 1888#endif
1280{ 1889{
1281 if (!ev_default_loop_ptr) 1890 if (!ev_default_loop_ptr)
1282 { 1891 {
1283#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
1284 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1893 EV_P = ev_default_loop_ptr = &default_loop_struct;
1285#else 1894#else
1286 ev_default_loop_ptr = 1; 1895 ev_default_loop_ptr = 1;
1287#endif 1896#endif
1288 1897
1289 loop_init (EV_A_ flags); 1898 loop_init (EV_A_ flags);
1306 1915
1307void 1916void
1308ev_default_destroy (void) 1917ev_default_destroy (void)
1309{ 1918{
1310#if EV_MULTIPLICITY 1919#if EV_MULTIPLICITY
1311 struct ev_loop *loop = ev_default_loop_ptr; 1920 EV_P = ev_default_loop_ptr;
1312#endif 1921#endif
1922
1923 ev_default_loop_ptr = 0;
1313 1924
1314#ifndef _WIN32 1925#ifndef _WIN32
1315 ev_ref (EV_A); /* child watcher */ 1926 ev_ref (EV_A); /* child watcher */
1316 ev_signal_stop (EV_A_ &childev); 1927 ev_signal_stop (EV_A_ &childev);
1317#endif 1928#endif
1321 1932
1322void 1933void
1323ev_default_fork (void) 1934ev_default_fork (void)
1324{ 1935{
1325#if EV_MULTIPLICITY 1936#if EV_MULTIPLICITY
1326 struct ev_loop *loop = ev_default_loop_ptr; 1937 EV_P = ev_default_loop_ptr;
1327#endif 1938#endif
1328 1939
1329 if (backend)
1330 postfork = 1; /* must be in line with ev_loop_fork */ 1940 postfork = 1; /* must be in line with ev_loop_fork */
1331} 1941}
1332 1942
1333/*****************************************************************************/ 1943/*****************************************************************************/
1334 1944
1335void 1945void
1336ev_invoke (EV_P_ void *w, int revents) 1946ev_invoke (EV_P_ void *w, int revents)
1337{ 1947{
1338 EV_CB_INVOKE ((W)w, revents); 1948 EV_CB_INVOKE ((W)w, revents);
1339} 1949}
1340 1950
1341void inline_speed 1951unsigned int
1342call_pending (EV_P) 1952ev_pending_count (EV_P)
1953{
1954 int pri;
1955 unsigned int count = 0;
1956
1957 for (pri = NUMPRI; pri--; )
1958 count += pendingcnt [pri];
1959
1960 return count;
1961}
1962
1963void noinline
1964ev_invoke_pending (EV_P)
1343{ 1965{
1344 int pri; 1966 int pri;
1345 1967
1346 for (pri = NUMPRI; pri--; ) 1968 for (pri = NUMPRI; pri--; )
1347 while (pendingcnt [pri]) 1969 while (pendingcnt [pri])
1348 { 1970 {
1349 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1350 1972
1351 if (expect_true (p->w))
1352 {
1353 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1973 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1974 /* ^ this is no longer true, as pending_w could be here */
1354 1975
1355 p->w->pending = 0; 1976 p->w->pending = 0;
1356 EV_CB_INVOKE (p->w, p->events); 1977 EV_CB_INVOKE (p->w, p->events);
1357 } 1978 EV_FREQUENT_CHECK;
1358 } 1979 }
1359} 1980}
1360 1981
1361void inline_size
1362timers_reify (EV_P)
1363{
1364 while (timercnt && ((WT)timers [0])->at <= mn_now)
1365 {
1366 ev_timer *w = (ev_timer *)timers [0];
1367
1368 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1369
1370 /* first reschedule or stop timer */
1371 if (w->repeat)
1372 {
1373 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1374
1375 ((WT)w)->at += w->repeat;
1376 if (((WT)w)->at < mn_now)
1377 ((WT)w)->at = mn_now;
1378
1379 downheap (timers, timercnt, 0);
1380 }
1381 else
1382 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1383
1384 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1385 }
1386}
1387
1388#if EV_PERIODIC_ENABLE
1389void inline_size
1390periodics_reify (EV_P)
1391{
1392 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1393 {
1394 ev_periodic *w = (ev_periodic *)periodics [0];
1395
1396 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1397
1398 /* first reschedule or stop timer */
1399 if (w->reschedule_cb)
1400 {
1401 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1402 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1403 downheap (periodics, periodiccnt, 0);
1404 }
1405 else if (w->interval)
1406 {
1407 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1408 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1409 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1410 downheap (periodics, periodiccnt, 0);
1411 }
1412 else
1413 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1414
1415 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1416 }
1417}
1418
1419static void noinline
1420periodics_reschedule (EV_P)
1421{
1422 int i;
1423
1424 /* adjust periodics after time jump */
1425 for (i = 0; i < periodiccnt; ++i)
1426 {
1427 ev_periodic *w = (ev_periodic *)periodics [i];
1428
1429 if (w->reschedule_cb)
1430 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1431 else if (w->interval)
1432 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1433 }
1434
1435 /* now rebuild the heap */
1436 for (i = periodiccnt >> 1; i--; )
1437 downheap (periodics, periodiccnt, i);
1438}
1439#endif
1440
1441#if EV_IDLE_ENABLE 1982#if EV_IDLE_ENABLE
1442void inline_size 1983/* make idle watchers pending. this handles the "call-idle */
1984/* only when higher priorities are idle" logic */
1985inline_size void
1443idle_reify (EV_P) 1986idle_reify (EV_P)
1444{ 1987{
1445 if (expect_false (idleall)) 1988 if (expect_false (idleall))
1446 { 1989 {
1447 int pri; 1990 int pri;
1459 } 2002 }
1460 } 2003 }
1461} 2004}
1462#endif 2005#endif
1463 2006
1464void inline_speed 2007/* make timers pending */
2008inline_size void
2009timers_reify (EV_P)
2010{
2011 EV_FREQUENT_CHECK;
2012
2013 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2014 {
2015 do
2016 {
2017 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2018
2019 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2020
2021 /* first reschedule or stop timer */
2022 if (w->repeat)
2023 {
2024 ev_at (w) += w->repeat;
2025 if (ev_at (w) < mn_now)
2026 ev_at (w) = mn_now;
2027
2028 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2029
2030 ANHE_at_cache (timers [HEAP0]);
2031 downheap (timers, timercnt, HEAP0);
2032 }
2033 else
2034 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2035
2036 EV_FREQUENT_CHECK;
2037 feed_reverse (EV_A_ (W)w);
2038 }
2039 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2040
2041 feed_reverse_done (EV_A_ EV_TIMEOUT);
2042 }
2043}
2044
2045#if EV_PERIODIC_ENABLE
2046/* make periodics pending */
2047inline_size void
2048periodics_reify (EV_P)
2049{
2050 EV_FREQUENT_CHECK;
2051
2052 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2053 {
2054 int feed_count = 0;
2055
2056 do
2057 {
2058 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2059
2060 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2061
2062 /* first reschedule or stop timer */
2063 if (w->reschedule_cb)
2064 {
2065 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2066
2067 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2068
2069 ANHE_at_cache (periodics [HEAP0]);
2070 downheap (periodics, periodiccnt, HEAP0);
2071 }
2072 else if (w->interval)
2073 {
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075 /* if next trigger time is not sufficiently in the future, put it there */
2076 /* this might happen because of floating point inexactness */
2077 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2078 {
2079 ev_at (w) += w->interval;
2080
2081 /* if interval is unreasonably low we might still have a time in the past */
2082 /* so correct this. this will make the periodic very inexact, but the user */
2083 /* has effectively asked to get triggered more often than possible */
2084 if (ev_at (w) < ev_rt_now)
2085 ev_at (w) = ev_rt_now;
2086 }
2087
2088 ANHE_at_cache (periodics [HEAP0]);
2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else
2092 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2093
2094 EV_FREQUENT_CHECK;
2095 feed_reverse (EV_A_ (W)w);
2096 }
2097 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2098
2099 feed_reverse_done (EV_A_ EV_PERIODIC);
2100 }
2101}
2102
2103/* simply recalculate all periodics */
2104/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2105static void noinline
2106periodics_reschedule (EV_P)
2107{
2108 int i;
2109
2110 /* adjust periodics after time jump */
2111 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2112 {
2113 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2114
2115 if (w->reschedule_cb)
2116 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2117 else if (w->interval)
2118 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2119
2120 ANHE_at_cache (periodics [i]);
2121 }
2122
2123 reheap (periodics, periodiccnt);
2124}
2125#endif
2126
2127/* adjust all timers by a given offset */
2128static void noinline
2129timers_reschedule (EV_P_ ev_tstamp adjust)
2130{
2131 int i;
2132
2133 for (i = 0; i < timercnt; ++i)
2134 {
2135 ANHE *he = timers + i + HEAP0;
2136 ANHE_w (*he)->at += adjust;
2137 ANHE_at_cache (*he);
2138 }
2139}
2140
2141/* fetch new monotonic and realtime times from the kernel */
2142/* also detetc if there was a timejump, and act accordingly */
2143inline_speed void
1465time_update (EV_P_ ev_tstamp max_block) 2144time_update (EV_P_ ev_tstamp max_block)
1466{ 2145{
1467 int i;
1468
1469#if EV_USE_MONOTONIC 2146#if EV_USE_MONOTONIC
1470 if (expect_true (have_monotonic)) 2147 if (expect_true (have_monotonic))
1471 { 2148 {
2149 int i;
1472 ev_tstamp odiff = rtmn_diff; 2150 ev_tstamp odiff = rtmn_diff;
1473 2151
1474 mn_now = get_clock (); 2152 mn_now = get_clock ();
1475 2153
1476 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2154 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1494 */ 2172 */
1495 for (i = 4; --i; ) 2173 for (i = 4; --i; )
1496 { 2174 {
1497 rtmn_diff = ev_rt_now - mn_now; 2175 rtmn_diff = ev_rt_now - mn_now;
1498 2176
1499 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2177 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1500 return; /* all is well */ 2178 return; /* all is well */
1501 2179
1502 ev_rt_now = ev_time (); 2180 ev_rt_now = ev_time ();
1503 mn_now = get_clock (); 2181 mn_now = get_clock ();
1504 now_floor = mn_now; 2182 now_floor = mn_now;
1505 } 2183 }
1506 2184
2185 /* no timer adjustment, as the monotonic clock doesn't jump */
2186 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1507# if EV_PERIODIC_ENABLE 2187# if EV_PERIODIC_ENABLE
1508 periodics_reschedule (EV_A); 2188 periodics_reschedule (EV_A);
1509# endif 2189# endif
1510 /* no timer adjustment, as the monotonic clock doesn't jump */
1511 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1512 } 2190 }
1513 else 2191 else
1514#endif 2192#endif
1515 { 2193 {
1516 ev_rt_now = ev_time (); 2194 ev_rt_now = ev_time ();
1517 2195
1518 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2196 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1519 { 2197 {
2198 /* adjust timers. this is easy, as the offset is the same for all of them */
2199 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1520#if EV_PERIODIC_ENABLE 2200#if EV_PERIODIC_ENABLE
1521 periodics_reschedule (EV_A); 2201 periodics_reschedule (EV_A);
1522#endif 2202#endif
1523 /* adjust timers. this is easy, as the offset is the same for all of them */
1524 for (i = 0; i < timercnt; ++i)
1525 ((WT)timers [i])->at += ev_rt_now - mn_now;
1526 } 2203 }
1527 2204
1528 mn_now = ev_rt_now; 2205 mn_now = ev_rt_now;
1529 } 2206 }
1530} 2207}
1531 2208
1532void 2209void
1533ev_ref (EV_P)
1534{
1535 ++activecnt;
1536}
1537
1538void
1539ev_unref (EV_P)
1540{
1541 --activecnt;
1542}
1543
1544static int loop_done;
1545
1546void
1547ev_loop (EV_P_ int flags) 2210ev_loop (EV_P_ int flags)
1548{ 2211{
1549 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2212#if EV_MINIMAL < 2
1550 ? EVUNLOOP_ONE 2213 ++loop_depth;
1551 : EVUNLOOP_CANCEL; 2214#endif
1552 2215
2216 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2217
2218 loop_done = EVUNLOOP_CANCEL;
2219
1553 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2220 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1554 2221
1555 do 2222 do
1556 { 2223 {
2224#if EV_VERIFY >= 2
2225 ev_loop_verify (EV_A);
2226#endif
2227
1557#ifndef _WIN32 2228#ifndef _WIN32
1558 if (expect_false (curpid)) /* penalise the forking check even more */ 2229 if (expect_false (curpid)) /* penalise the forking check even more */
1559 if (expect_false (getpid () != curpid)) 2230 if (expect_false (getpid () != curpid))
1560 { 2231 {
1561 curpid = getpid (); 2232 curpid = getpid ();
1567 /* we might have forked, so queue fork handlers */ 2238 /* we might have forked, so queue fork handlers */
1568 if (expect_false (postfork)) 2239 if (expect_false (postfork))
1569 if (forkcnt) 2240 if (forkcnt)
1570 { 2241 {
1571 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2242 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1572 call_pending (EV_A); 2243 EV_INVOKE_PENDING;
1573 } 2244 }
1574#endif 2245#endif
1575 2246
1576 /* queue prepare watchers (and execute them) */ 2247 /* queue prepare watchers (and execute them) */
1577 if (expect_false (preparecnt)) 2248 if (expect_false (preparecnt))
1578 { 2249 {
1579 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1580 call_pending (EV_A); 2251 EV_INVOKE_PENDING;
1581 } 2252 }
1582 2253
1583 if (expect_false (!activecnt)) 2254 if (expect_false (loop_done))
1584 break; 2255 break;
1585 2256
1586 /* we might have forked, so reify kernel state if necessary */ 2257 /* we might have forked, so reify kernel state if necessary */
1587 if (expect_false (postfork)) 2258 if (expect_false (postfork))
1588 loop_fork (EV_A); 2259 loop_fork (EV_A);
1595 ev_tstamp waittime = 0.; 2266 ev_tstamp waittime = 0.;
1596 ev_tstamp sleeptime = 0.; 2267 ev_tstamp sleeptime = 0.;
1597 2268
1598 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2269 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1599 { 2270 {
2271 /* remember old timestamp for io_blocktime calculation */
2272 ev_tstamp prev_mn_now = mn_now;
2273
1600 /* update time to cancel out callback processing overhead */ 2274 /* update time to cancel out callback processing overhead */
1601 time_update (EV_A_ 1e100); 2275 time_update (EV_A_ 1e100);
1602 2276
1603 waittime = MAX_BLOCKTIME; 2277 waittime = MAX_BLOCKTIME;
1604 2278
1605 if (timercnt) 2279 if (timercnt)
1606 { 2280 {
1607 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2281 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1608 if (waittime > to) waittime = to; 2282 if (waittime > to) waittime = to;
1609 } 2283 }
1610 2284
1611#if EV_PERIODIC_ENABLE 2285#if EV_PERIODIC_ENABLE
1612 if (periodiccnt) 2286 if (periodiccnt)
1613 { 2287 {
1614 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2288 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1615 if (waittime > to) waittime = to; 2289 if (waittime > to) waittime = to;
1616 } 2290 }
1617#endif 2291#endif
1618 2292
2293 /* don't let timeouts decrease the waittime below timeout_blocktime */
1619 if (expect_false (waittime < timeout_blocktime)) 2294 if (expect_false (waittime < timeout_blocktime))
1620 waittime = timeout_blocktime; 2295 waittime = timeout_blocktime;
1621 2296
1622 sleeptime = waittime - backend_fudge; 2297 /* extra check because io_blocktime is commonly 0 */
1623
1624 if (expect_true (sleeptime > io_blocktime)) 2298 if (expect_false (io_blocktime))
1625 sleeptime = io_blocktime;
1626
1627 if (sleeptime)
1628 { 2299 {
2300 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2301
2302 if (sleeptime > waittime - backend_fudge)
2303 sleeptime = waittime - backend_fudge;
2304
2305 if (expect_true (sleeptime > 0.))
2306 {
1629 ev_sleep (sleeptime); 2307 ev_sleep (sleeptime);
1630 waittime -= sleeptime; 2308 waittime -= sleeptime;
2309 }
1631 } 2310 }
1632 } 2311 }
1633 2312
2313#if EV_MINIMAL < 2
1634 ++loop_count; 2314 ++loop_count;
2315#endif
2316 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1635 backend_poll (EV_A_ waittime); 2317 backend_poll (EV_A_ waittime);
2318 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1636 2319
1637 /* update ev_rt_now, do magic */ 2320 /* update ev_rt_now, do magic */
1638 time_update (EV_A_ waittime + sleeptime); 2321 time_update (EV_A_ waittime + sleeptime);
1639 } 2322 }
1640 2323
1651 2334
1652 /* queue check watchers, to be executed first */ 2335 /* queue check watchers, to be executed first */
1653 if (expect_false (checkcnt)) 2336 if (expect_false (checkcnt))
1654 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2337 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1655 2338
1656 call_pending (EV_A); 2339 EV_INVOKE_PENDING;
1657
1658 } 2340 }
1659 while (expect_true (activecnt && !loop_done)); 2341 while (expect_true (
2342 activecnt
2343 && !loop_done
2344 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2345 ));
1660 2346
1661 if (loop_done == EVUNLOOP_ONE) 2347 if (loop_done == EVUNLOOP_ONE)
1662 loop_done = EVUNLOOP_CANCEL; 2348 loop_done = EVUNLOOP_CANCEL;
2349
2350#if EV_MINIMAL < 2
2351 --loop_depth;
2352#endif
1663} 2353}
1664 2354
1665void 2355void
1666ev_unloop (EV_P_ int how) 2356ev_unloop (EV_P_ int how)
1667{ 2357{
1668 loop_done = how; 2358 loop_done = how;
1669} 2359}
1670 2360
2361void
2362ev_ref (EV_P)
2363{
2364 ++activecnt;
2365}
2366
2367void
2368ev_unref (EV_P)
2369{
2370 --activecnt;
2371}
2372
2373void
2374ev_now_update (EV_P)
2375{
2376 time_update (EV_A_ 1e100);
2377}
2378
2379void
2380ev_suspend (EV_P)
2381{
2382 ev_now_update (EV_A);
2383}
2384
2385void
2386ev_resume (EV_P)
2387{
2388 ev_tstamp mn_prev = mn_now;
2389
2390 ev_now_update (EV_A);
2391 timers_reschedule (EV_A_ mn_now - mn_prev);
2392#if EV_PERIODIC_ENABLE
2393 /* TODO: really do this? */
2394 periodics_reschedule (EV_A);
2395#endif
2396}
2397
1671/*****************************************************************************/ 2398/*****************************************************************************/
2399/* singly-linked list management, used when the expected list length is short */
1672 2400
1673void inline_size 2401inline_size void
1674wlist_add (WL *head, WL elem) 2402wlist_add (WL *head, WL elem)
1675{ 2403{
1676 elem->next = *head; 2404 elem->next = *head;
1677 *head = elem; 2405 *head = elem;
1678} 2406}
1679 2407
1680void inline_size 2408inline_size void
1681wlist_del (WL *head, WL elem) 2409wlist_del (WL *head, WL elem)
1682{ 2410{
1683 while (*head) 2411 while (*head)
1684 { 2412 {
1685 if (*head == elem) 2413 if (expect_true (*head == elem))
1686 { 2414 {
1687 *head = elem->next; 2415 *head = elem->next;
1688 return; 2416 break;
1689 } 2417 }
1690 2418
1691 head = &(*head)->next; 2419 head = &(*head)->next;
1692 } 2420 }
1693} 2421}
1694 2422
1695void inline_speed 2423/* internal, faster, version of ev_clear_pending */
2424inline_speed void
1696clear_pending (EV_P_ W w) 2425clear_pending (EV_P_ W w)
1697{ 2426{
1698 if (w->pending) 2427 if (w->pending)
1699 { 2428 {
1700 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2429 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1701 w->pending = 0; 2430 w->pending = 0;
1702 } 2431 }
1703} 2432}
1704 2433
1705int 2434int
1709 int pending = w_->pending; 2438 int pending = w_->pending;
1710 2439
1711 if (expect_true (pending)) 2440 if (expect_true (pending))
1712 { 2441 {
1713 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2442 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2443 p->w = (W)&pending_w;
1714 w_->pending = 0; 2444 w_->pending = 0;
1715 p->w = 0;
1716 return p->events; 2445 return p->events;
1717 } 2446 }
1718 else 2447 else
1719 return 0; 2448 return 0;
1720} 2449}
1721 2450
1722void inline_size 2451inline_size void
1723pri_adjust (EV_P_ W w) 2452pri_adjust (EV_P_ W w)
1724{ 2453{
1725 int pri = w->priority; 2454 int pri = ev_priority (w);
1726 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2455 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1727 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2456 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1728 w->priority = pri; 2457 ev_set_priority (w, pri);
1729} 2458}
1730 2459
1731void inline_speed 2460inline_speed void
1732ev_start (EV_P_ W w, int active) 2461ev_start (EV_P_ W w, int active)
1733{ 2462{
1734 pri_adjust (EV_A_ w); 2463 pri_adjust (EV_A_ w);
1735 w->active = active; 2464 w->active = active;
1736 ev_ref (EV_A); 2465 ev_ref (EV_A);
1737} 2466}
1738 2467
1739void inline_size 2468inline_size void
1740ev_stop (EV_P_ W w) 2469ev_stop (EV_P_ W w)
1741{ 2470{
1742 ev_unref (EV_A); 2471 ev_unref (EV_A);
1743 w->active = 0; 2472 w->active = 0;
1744} 2473}
1751 int fd = w->fd; 2480 int fd = w->fd;
1752 2481
1753 if (expect_false (ev_is_active (w))) 2482 if (expect_false (ev_is_active (w)))
1754 return; 2483 return;
1755 2484
1756 assert (("ev_io_start called with negative fd", fd >= 0)); 2485 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2486 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2487
2488 EV_FREQUENT_CHECK;
1757 2489
1758 ev_start (EV_A_ (W)w, 1); 2490 ev_start (EV_A_ (W)w, 1);
1759 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2491 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1760 wlist_add (&anfds[fd].head, (WL)w); 2492 wlist_add (&anfds[fd].head, (WL)w);
1761 2493
1762 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2494 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1763 w->events &= ~EV_IOFDSET; 2495 w->events &= ~EV__IOFDSET;
2496
2497 EV_FREQUENT_CHECK;
1764} 2498}
1765 2499
1766void noinline 2500void noinline
1767ev_io_stop (EV_P_ ev_io *w) 2501ev_io_stop (EV_P_ ev_io *w)
1768{ 2502{
1769 clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 2504 if (expect_false (!ev_is_active (w)))
1771 return; 2505 return;
1772 2506
1773 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2507 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2508
2509 EV_FREQUENT_CHECK;
1774 2510
1775 wlist_del (&anfds[w->fd].head, (WL)w); 2511 wlist_del (&anfds[w->fd].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 2512 ev_stop (EV_A_ (W)w);
1777 2513
1778 fd_change (EV_A_ w->fd, 1); 2514 fd_change (EV_A_ w->fd, 1);
2515
2516 EV_FREQUENT_CHECK;
1779} 2517}
1780 2518
1781void noinline 2519void noinline
1782ev_timer_start (EV_P_ ev_timer *w) 2520ev_timer_start (EV_P_ ev_timer *w)
1783{ 2521{
1784 if (expect_false (ev_is_active (w))) 2522 if (expect_false (ev_is_active (w)))
1785 return; 2523 return;
1786 2524
1787 ((WT)w)->at += mn_now; 2525 ev_at (w) += mn_now;
1788 2526
1789 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2527 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1790 2528
2529 EV_FREQUENT_CHECK;
2530
2531 ++timercnt;
1791 ev_start (EV_A_ (W)w, ++timercnt); 2532 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1792 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2533 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1793 timers [timercnt - 1] = (WT)w; 2534 ANHE_w (timers [ev_active (w)]) = (WT)w;
1794 upheap (timers, timercnt - 1); 2535 ANHE_at_cache (timers [ev_active (w)]);
2536 upheap (timers, ev_active (w));
1795 2537
2538 EV_FREQUENT_CHECK;
2539
1796 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2540 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1797} 2541}
1798 2542
1799void noinline 2543void noinline
1800ev_timer_stop (EV_P_ ev_timer *w) 2544ev_timer_stop (EV_P_ ev_timer *w)
1801{ 2545{
1802 clear_pending (EV_A_ (W)w); 2546 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 2547 if (expect_false (!ev_is_active (w)))
1804 return; 2548 return;
1805 2549
1806 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2550 EV_FREQUENT_CHECK;
1807 2551
1808 { 2552 {
1809 int active = ((W)w)->active; 2553 int active = ev_active (w);
1810 2554
2555 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2556
2557 --timercnt;
2558
1811 if (expect_true (--active < --timercnt)) 2559 if (expect_true (active < timercnt + HEAP0))
1812 { 2560 {
1813 timers [active] = timers [timercnt]; 2561 timers [active] = timers [timercnt + HEAP0];
1814 adjustheap (timers, timercnt, active); 2562 adjustheap (timers, timercnt, active);
1815 } 2563 }
1816 } 2564 }
1817 2565
1818 ((WT)w)->at -= mn_now; 2566 EV_FREQUENT_CHECK;
2567
2568 ev_at (w) -= mn_now;
1819 2569
1820 ev_stop (EV_A_ (W)w); 2570 ev_stop (EV_A_ (W)w);
1821} 2571}
1822 2572
1823void noinline 2573void noinline
1824ev_timer_again (EV_P_ ev_timer *w) 2574ev_timer_again (EV_P_ ev_timer *w)
1825{ 2575{
2576 EV_FREQUENT_CHECK;
2577
1826 if (ev_is_active (w)) 2578 if (ev_is_active (w))
1827 { 2579 {
1828 if (w->repeat) 2580 if (w->repeat)
1829 { 2581 {
1830 ((WT)w)->at = mn_now + w->repeat; 2582 ev_at (w) = mn_now + w->repeat;
2583 ANHE_at_cache (timers [ev_active (w)]);
1831 adjustheap (timers, timercnt, ((W)w)->active - 1); 2584 adjustheap (timers, timercnt, ev_active (w));
1832 } 2585 }
1833 else 2586 else
1834 ev_timer_stop (EV_A_ w); 2587 ev_timer_stop (EV_A_ w);
1835 } 2588 }
1836 else if (w->repeat) 2589 else if (w->repeat)
1837 { 2590 {
1838 w->at = w->repeat; 2591 ev_at (w) = w->repeat;
1839 ev_timer_start (EV_A_ w); 2592 ev_timer_start (EV_A_ w);
1840 } 2593 }
2594
2595 EV_FREQUENT_CHECK;
2596}
2597
2598ev_tstamp
2599ev_timer_remaining (EV_P_ ev_timer *w)
2600{
2601 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1841} 2602}
1842 2603
1843#if EV_PERIODIC_ENABLE 2604#if EV_PERIODIC_ENABLE
1844void noinline 2605void noinline
1845ev_periodic_start (EV_P_ ev_periodic *w) 2606ev_periodic_start (EV_P_ ev_periodic *w)
1846{ 2607{
1847 if (expect_false (ev_is_active (w))) 2608 if (expect_false (ev_is_active (w)))
1848 return; 2609 return;
1849 2610
1850 if (w->reschedule_cb) 2611 if (w->reschedule_cb)
1851 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2612 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1852 else if (w->interval) 2613 else if (w->interval)
1853 { 2614 {
1854 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2615 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1855 /* this formula differs from the one in periodic_reify because we do not always round up */ 2616 /* this formula differs from the one in periodic_reify because we do not always round up */
1856 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1857 } 2618 }
1858 else 2619 else
1859 ((WT)w)->at = w->offset; 2620 ev_at (w) = w->offset;
1860 2621
2622 EV_FREQUENT_CHECK;
2623
2624 ++periodiccnt;
1861 ev_start (EV_A_ (W)w, ++periodiccnt); 2625 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1862 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2626 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1863 periodics [periodiccnt - 1] = (WT)w; 2627 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1864 upheap (periodics, periodiccnt - 1); 2628 ANHE_at_cache (periodics [ev_active (w)]);
2629 upheap (periodics, ev_active (w));
1865 2630
2631 EV_FREQUENT_CHECK;
2632
1866 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2633 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1867} 2634}
1868 2635
1869void noinline 2636void noinline
1870ev_periodic_stop (EV_P_ ev_periodic *w) 2637ev_periodic_stop (EV_P_ ev_periodic *w)
1871{ 2638{
1872 clear_pending (EV_A_ (W)w); 2639 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2640 if (expect_false (!ev_is_active (w)))
1874 return; 2641 return;
1875 2642
1876 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2643 EV_FREQUENT_CHECK;
1877 2644
1878 { 2645 {
1879 int active = ((W)w)->active; 2646 int active = ev_active (w);
1880 2647
2648 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2649
2650 --periodiccnt;
2651
1881 if (expect_true (--active < --periodiccnt)) 2652 if (expect_true (active < periodiccnt + HEAP0))
1882 { 2653 {
1883 periodics [active] = periodics [periodiccnt]; 2654 periodics [active] = periodics [periodiccnt + HEAP0];
1884 adjustheap (periodics, periodiccnt, active); 2655 adjustheap (periodics, periodiccnt, active);
1885 } 2656 }
1886 } 2657 }
1887 2658
2659 EV_FREQUENT_CHECK;
2660
1888 ev_stop (EV_A_ (W)w); 2661 ev_stop (EV_A_ (W)w);
1889} 2662}
1890 2663
1891void noinline 2664void noinline
1892ev_periodic_again (EV_P_ ev_periodic *w) 2665ev_periodic_again (EV_P_ ev_periodic *w)
1902#endif 2675#endif
1903 2676
1904void noinline 2677void noinline
1905ev_signal_start (EV_P_ ev_signal *w) 2678ev_signal_start (EV_P_ ev_signal *w)
1906{ 2679{
1907#if EV_MULTIPLICITY
1908 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1909#endif
1910 if (expect_false (ev_is_active (w))) 2680 if (expect_false (ev_is_active (w)))
1911 return; 2681 return;
1912 2682
1913 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2683 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1914 2684
1915 evpipe_init (EV_A); 2685#if EV_MULTIPLICITY
2686 assert (("libev: a signal must not be attached to two different loops",
2687 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1916 2688
2689 signals [w->signum - 1].loop = EV_A;
2690#endif
2691
2692 EV_FREQUENT_CHECK;
2693
2694#if EV_USE_SIGNALFD
2695 if (sigfd == -2)
1917 { 2696 {
1918#ifndef _WIN32 2697 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1919 sigset_t full, prev; 2698 if (sigfd < 0 && errno == EINVAL)
1920 sigfillset (&full); 2699 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1921 sigprocmask (SIG_SETMASK, &full, &prev);
1922#endif
1923 2700
1924 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2701 if (sigfd >= 0)
2702 {
2703 fd_intern (sigfd); /* doing it twice will not hurt */
1925 2704
1926#ifndef _WIN32 2705 sigemptyset (&sigfd_set);
1927 sigprocmask (SIG_SETMASK, &prev, 0); 2706
1928#endif 2707 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2708 ev_set_priority (&sigfd_w, EV_MAXPRI);
2709 ev_io_start (EV_A_ &sigfd_w);
2710 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2711 }
1929 } 2712 }
2713
2714 if (sigfd >= 0)
2715 {
2716 /* TODO: check .head */
2717 sigaddset (&sigfd_set, w->signum);
2718 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2719
2720 signalfd (sigfd, &sigfd_set, 0);
2721 }
2722#endif
1930 2723
1931 ev_start (EV_A_ (W)w, 1); 2724 ev_start (EV_A_ (W)w, 1);
1932 wlist_add (&signals [w->signum - 1].head, (WL)w); 2725 wlist_add (&signals [w->signum - 1].head, (WL)w);
1933 2726
1934 if (!((WL)w)->next) 2727 if (!((WL)w)->next)
2728# if EV_USE_SIGNALFD
2729 if (sigfd < 0) /*TODO*/
2730# endif
1935 { 2731 {
1936#if _WIN32 2732# if _WIN32
1937 signal (w->signum, sighandler); 2733 signal (w->signum, ev_sighandler);
1938#else 2734# else
1939 struct sigaction sa; 2735 struct sigaction sa;
2736
2737 evpipe_init (EV_A);
2738
1940 sa.sa_handler = sighandler; 2739 sa.sa_handler = ev_sighandler;
1941 sigfillset (&sa.sa_mask); 2740 sigfillset (&sa.sa_mask);
1942 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2741 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1943 sigaction (w->signum, &sa, 0); 2742 sigaction (w->signum, &sa, 0);
2743
2744 sigemptyset (&sa.sa_mask);
2745 sigaddset (&sa.sa_mask, w->signum);
2746 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1944#endif 2747#endif
1945 } 2748 }
2749
2750 EV_FREQUENT_CHECK;
1946} 2751}
1947 2752
1948void noinline 2753void noinline
1949ev_signal_stop (EV_P_ ev_signal *w) 2754ev_signal_stop (EV_P_ ev_signal *w)
1950{ 2755{
1951 clear_pending (EV_A_ (W)w); 2756 clear_pending (EV_A_ (W)w);
1952 if (expect_false (!ev_is_active (w))) 2757 if (expect_false (!ev_is_active (w)))
1953 return; 2758 return;
1954 2759
2760 EV_FREQUENT_CHECK;
2761
1955 wlist_del (&signals [w->signum - 1].head, (WL)w); 2762 wlist_del (&signals [w->signum - 1].head, (WL)w);
1956 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
1957 2764
1958 if (!signals [w->signum - 1].head) 2765 if (!signals [w->signum - 1].head)
2766 {
2767#if EV_MULTIPLICITY
2768 signals [w->signum - 1].loop = 0; /* unattach from signal */
2769#endif
2770#if EV_USE_SIGNALFD
2771 if (sigfd >= 0)
2772 {
2773 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2774 sigdelset (&sigfd_set, w->signum);
2775 signalfd (sigfd, &sigfd_set, 0);
2776 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2777 /*TODO: maybe unblock signal? */
2778 }
2779 else
2780#endif
1959 signal (w->signum, SIG_DFL); 2781 signal (w->signum, SIG_DFL);
2782 }
2783
2784 EV_FREQUENT_CHECK;
1960} 2785}
1961 2786
1962void 2787void
1963ev_child_start (EV_P_ ev_child *w) 2788ev_child_start (EV_P_ ev_child *w)
1964{ 2789{
1965#if EV_MULTIPLICITY 2790#if EV_MULTIPLICITY
1966 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2791 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1967#endif 2792#endif
1968 if (expect_false (ev_is_active (w))) 2793 if (expect_false (ev_is_active (w)))
1969 return; 2794 return;
1970 2795
2796 EV_FREQUENT_CHECK;
2797
1971 ev_start (EV_A_ (W)w, 1); 2798 ev_start (EV_A_ (W)w, 1);
1972 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2799 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2800
2801 EV_FREQUENT_CHECK;
1973} 2802}
1974 2803
1975void 2804void
1976ev_child_stop (EV_P_ ev_child *w) 2805ev_child_stop (EV_P_ ev_child *w)
1977{ 2806{
1978 clear_pending (EV_A_ (W)w); 2807 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2808 if (expect_false (!ev_is_active (w)))
1980 return; 2809 return;
1981 2810
2811 EV_FREQUENT_CHECK;
2812
1982 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2813 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1983 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
2815
2816 EV_FREQUENT_CHECK;
1984} 2817}
1985 2818
1986#if EV_STAT_ENABLE 2819#if EV_STAT_ENABLE
1987 2820
1988# ifdef _WIN32 2821# ifdef _WIN32
1989# undef lstat 2822# undef lstat
1990# define lstat(a,b) _stati64 (a,b) 2823# define lstat(a,b) _stati64 (a,b)
1991# endif 2824# endif
1992 2825
1993#define DEF_STAT_INTERVAL 5.0074891 2826#define DEF_STAT_INTERVAL 5.0074891
2827#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1994#define MIN_STAT_INTERVAL 0.1074891 2828#define MIN_STAT_INTERVAL 0.1074891
1995 2829
1996static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2830static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1997 2831
1998#if EV_USE_INOTIFY 2832#if EV_USE_INOTIFY
1999# define EV_INOTIFY_BUFSIZE 8192 2833# define EV_INOTIFY_BUFSIZE 8192
2003{ 2837{
2004 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2838 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2005 2839
2006 if (w->wd < 0) 2840 if (w->wd < 0)
2007 { 2841 {
2842 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2008 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2843 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2009 2844
2010 /* monitor some parent directory for speedup hints */ 2845 /* monitor some parent directory for speedup hints */
2846 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2847 /* but an efficiency issue only */
2011 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2848 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2012 { 2849 {
2013 char path [4096]; 2850 char path [4096];
2014 strcpy (path, w->path); 2851 strcpy (path, w->path);
2015 2852
2018 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2855 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2019 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2856 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2020 2857
2021 char *pend = strrchr (path, '/'); 2858 char *pend = strrchr (path, '/');
2022 2859
2023 if (!pend) 2860 if (!pend || pend == path)
2024 break; /* whoops, no '/', complain to your admin */ 2861 break;
2025 2862
2026 *pend = 0; 2863 *pend = 0;
2027 w->wd = inotify_add_watch (fs_fd, path, mask); 2864 w->wd = inotify_add_watch (fs_fd, path, mask);
2028 } 2865 }
2029 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2866 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2030 } 2867 }
2031 } 2868 }
2032 else
2033 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2034 2869
2035 if (w->wd >= 0) 2870 if (w->wd >= 0)
2871 {
2872 struct statfs sfs;
2873
2036 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2874 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2875
2876 /* now local changes will be tracked by inotify, but remote changes won't */
2877 /* unless the filesystem it known to be local, we therefore still poll */
2878 /* also do poll on <2.6.25, but with normal frequency */
2879
2880 if (fs_2625 && !statfs (w->path, &sfs))
2881 if (sfs.f_type == 0x1373 /* devfs */
2882 || sfs.f_type == 0xEF53 /* ext2/3 */
2883 || sfs.f_type == 0x3153464a /* jfs */
2884 || sfs.f_type == 0x52654973 /* reiser3 */
2885 || sfs.f_type == 0x01021994 /* tempfs */
2886 || sfs.f_type == 0x58465342 /* xfs */)
2887 return;
2888
2889 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2890 ev_timer_again (EV_A_ &w->timer);
2891 }
2037} 2892}
2038 2893
2039static void noinline 2894static void noinline
2040infy_del (EV_P_ ev_stat *w) 2895infy_del (EV_P_ ev_stat *w)
2041{ 2896{
2055 2910
2056static void noinline 2911static void noinline
2057infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2912infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2058{ 2913{
2059 if (slot < 0) 2914 if (slot < 0)
2060 /* overflow, need to check for all hahs slots */ 2915 /* overflow, need to check for all hash slots */
2061 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2916 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2062 infy_wd (EV_A_ slot, wd, ev); 2917 infy_wd (EV_A_ slot, wd, ev);
2063 else 2918 else
2064 { 2919 {
2065 WL w_; 2920 WL w_;
2071 2926
2072 if (w->wd == wd || wd == -1) 2927 if (w->wd == wd || wd == -1)
2073 { 2928 {
2074 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2929 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2075 { 2930 {
2931 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2076 w->wd = -1; 2932 w->wd = -1;
2077 infy_add (EV_A_ w); /* re-add, no matter what */ 2933 infy_add (EV_A_ w); /* re-add, no matter what */
2078 } 2934 }
2079 2935
2080 stat_timer_cb (EV_A_ &w->timer, 0); 2936 stat_timer_cb (EV_A_ &w->timer, 0);
2093 2949
2094 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2950 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2095 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2951 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2096} 2952}
2097 2953
2098void inline_size 2954inline_size void
2955check_2625 (EV_P)
2956{
2957 /* kernels < 2.6.25 are borked
2958 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2959 */
2960 struct utsname buf;
2961 int major, minor, micro;
2962
2963 if (uname (&buf))
2964 return;
2965
2966 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2967 return;
2968
2969 if (major < 2
2970 || (major == 2 && minor < 6)
2971 || (major == 2 && minor == 6 && micro < 25))
2972 return;
2973
2974 fs_2625 = 1;
2975}
2976
2977inline_size void
2099infy_init (EV_P) 2978infy_init (EV_P)
2100{ 2979{
2101 if (fs_fd != -2) 2980 if (fs_fd != -2)
2102 return; 2981 return;
2982
2983 fs_fd = -1;
2984
2985 check_2625 (EV_A);
2103 2986
2104 fs_fd = inotify_init (); 2987 fs_fd = inotify_init ();
2105 2988
2106 if (fs_fd >= 0) 2989 if (fs_fd >= 0)
2107 { 2990 {
2109 ev_set_priority (&fs_w, EV_MAXPRI); 2992 ev_set_priority (&fs_w, EV_MAXPRI);
2110 ev_io_start (EV_A_ &fs_w); 2993 ev_io_start (EV_A_ &fs_w);
2111 } 2994 }
2112} 2995}
2113 2996
2114void inline_size 2997inline_size void
2115infy_fork (EV_P) 2998infy_fork (EV_P)
2116{ 2999{
2117 int slot; 3000 int slot;
2118 3001
2119 if (fs_fd < 0) 3002 if (fs_fd < 0)
2135 w->wd = -1; 3018 w->wd = -1;
2136 3019
2137 if (fs_fd >= 0) 3020 if (fs_fd >= 0)
2138 infy_add (EV_A_ w); /* re-add, no matter what */ 3021 infy_add (EV_A_ w); /* re-add, no matter what */
2139 else 3022 else
2140 ev_timer_start (EV_A_ &w->timer); 3023 ev_timer_again (EV_A_ &w->timer);
2141 } 3024 }
2142
2143 } 3025 }
2144} 3026}
2145 3027
3028#endif
3029
3030#ifdef _WIN32
3031# define EV_LSTAT(p,b) _stati64 (p, b)
3032#else
3033# define EV_LSTAT(p,b) lstat (p, b)
2146#endif 3034#endif
2147 3035
2148void 3036void
2149ev_stat_stat (EV_P_ ev_stat *w) 3037ev_stat_stat (EV_P_ ev_stat *w)
2150{ 3038{
2177 || w->prev.st_atime != w->attr.st_atime 3065 || w->prev.st_atime != w->attr.st_atime
2178 || w->prev.st_mtime != w->attr.st_mtime 3066 || w->prev.st_mtime != w->attr.st_mtime
2179 || w->prev.st_ctime != w->attr.st_ctime 3067 || w->prev.st_ctime != w->attr.st_ctime
2180 ) { 3068 ) {
2181 #if EV_USE_INOTIFY 3069 #if EV_USE_INOTIFY
3070 if (fs_fd >= 0)
3071 {
2182 infy_del (EV_A_ w); 3072 infy_del (EV_A_ w);
2183 infy_add (EV_A_ w); 3073 infy_add (EV_A_ w);
2184 ev_stat_stat (EV_A_ w); /* avoid race... */ 3074 ev_stat_stat (EV_A_ w); /* avoid race... */
3075 }
2185 #endif 3076 #endif
2186 3077
2187 ev_feed_event (EV_A_ w, EV_STAT); 3078 ev_feed_event (EV_A_ w, EV_STAT);
2188 } 3079 }
2189} 3080}
2192ev_stat_start (EV_P_ ev_stat *w) 3083ev_stat_start (EV_P_ ev_stat *w)
2193{ 3084{
2194 if (expect_false (ev_is_active (w))) 3085 if (expect_false (ev_is_active (w)))
2195 return; 3086 return;
2196 3087
2197 /* since we use memcmp, we need to clear any padding data etc. */
2198 memset (&w->prev, 0, sizeof (ev_statdata));
2199 memset (&w->attr, 0, sizeof (ev_statdata));
2200
2201 ev_stat_stat (EV_A_ w); 3088 ev_stat_stat (EV_A_ w);
2202 3089
3090 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2203 if (w->interval < MIN_STAT_INTERVAL) 3091 w->interval = MIN_STAT_INTERVAL;
2204 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2205 3092
2206 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3093 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2207 ev_set_priority (&w->timer, ev_priority (w)); 3094 ev_set_priority (&w->timer, ev_priority (w));
2208 3095
2209#if EV_USE_INOTIFY 3096#if EV_USE_INOTIFY
2210 infy_init (EV_A); 3097 infy_init (EV_A);
2211 3098
2212 if (fs_fd >= 0) 3099 if (fs_fd >= 0)
2213 infy_add (EV_A_ w); 3100 infy_add (EV_A_ w);
2214 else 3101 else
2215#endif 3102#endif
2216 ev_timer_start (EV_A_ &w->timer); 3103 ev_timer_again (EV_A_ &w->timer);
2217 3104
2218 ev_start (EV_A_ (W)w, 1); 3105 ev_start (EV_A_ (W)w, 1);
3106
3107 EV_FREQUENT_CHECK;
2219} 3108}
2220 3109
2221void 3110void
2222ev_stat_stop (EV_P_ ev_stat *w) 3111ev_stat_stop (EV_P_ ev_stat *w)
2223{ 3112{
2224 clear_pending (EV_A_ (W)w); 3113 clear_pending (EV_A_ (W)w);
2225 if (expect_false (!ev_is_active (w))) 3114 if (expect_false (!ev_is_active (w)))
2226 return; 3115 return;
2227 3116
3117 EV_FREQUENT_CHECK;
3118
2228#if EV_USE_INOTIFY 3119#if EV_USE_INOTIFY
2229 infy_del (EV_A_ w); 3120 infy_del (EV_A_ w);
2230#endif 3121#endif
2231 ev_timer_stop (EV_A_ &w->timer); 3122 ev_timer_stop (EV_A_ &w->timer);
2232 3123
2233 ev_stop (EV_A_ (W)w); 3124 ev_stop (EV_A_ (W)w);
3125
3126 EV_FREQUENT_CHECK;
2234} 3127}
2235#endif 3128#endif
2236 3129
2237#if EV_IDLE_ENABLE 3130#if EV_IDLE_ENABLE
2238void 3131void
2240{ 3133{
2241 if (expect_false (ev_is_active (w))) 3134 if (expect_false (ev_is_active (w)))
2242 return; 3135 return;
2243 3136
2244 pri_adjust (EV_A_ (W)w); 3137 pri_adjust (EV_A_ (W)w);
3138
3139 EV_FREQUENT_CHECK;
2245 3140
2246 { 3141 {
2247 int active = ++idlecnt [ABSPRI (w)]; 3142 int active = ++idlecnt [ABSPRI (w)];
2248 3143
2249 ++idleall; 3144 ++idleall;
2250 ev_start (EV_A_ (W)w, active); 3145 ev_start (EV_A_ (W)w, active);
2251 3146
2252 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3147 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2253 idles [ABSPRI (w)][active - 1] = w; 3148 idles [ABSPRI (w)][active - 1] = w;
2254 } 3149 }
3150
3151 EV_FREQUENT_CHECK;
2255} 3152}
2256 3153
2257void 3154void
2258ev_idle_stop (EV_P_ ev_idle *w) 3155ev_idle_stop (EV_P_ ev_idle *w)
2259{ 3156{
2260 clear_pending (EV_A_ (W)w); 3157 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w))) 3158 if (expect_false (!ev_is_active (w)))
2262 return; 3159 return;
2263 3160
3161 EV_FREQUENT_CHECK;
3162
2264 { 3163 {
2265 int active = ((W)w)->active; 3164 int active = ev_active (w);
2266 3165
2267 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3166 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2268 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3167 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2269 3168
2270 ev_stop (EV_A_ (W)w); 3169 ev_stop (EV_A_ (W)w);
2271 --idleall; 3170 --idleall;
2272 } 3171 }
3172
3173 EV_FREQUENT_CHECK;
2273} 3174}
2274#endif 3175#endif
2275 3176
2276void 3177void
2277ev_prepare_start (EV_P_ ev_prepare *w) 3178ev_prepare_start (EV_P_ ev_prepare *w)
2278{ 3179{
2279 if (expect_false (ev_is_active (w))) 3180 if (expect_false (ev_is_active (w)))
2280 return; 3181 return;
3182
3183 EV_FREQUENT_CHECK;
2281 3184
2282 ev_start (EV_A_ (W)w, ++preparecnt); 3185 ev_start (EV_A_ (W)w, ++preparecnt);
2283 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3186 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2284 prepares [preparecnt - 1] = w; 3187 prepares [preparecnt - 1] = w;
3188
3189 EV_FREQUENT_CHECK;
2285} 3190}
2286 3191
2287void 3192void
2288ev_prepare_stop (EV_P_ ev_prepare *w) 3193ev_prepare_stop (EV_P_ ev_prepare *w)
2289{ 3194{
2290 clear_pending (EV_A_ (W)w); 3195 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 3196 if (expect_false (!ev_is_active (w)))
2292 return; 3197 return;
2293 3198
3199 EV_FREQUENT_CHECK;
3200
2294 { 3201 {
2295 int active = ((W)w)->active; 3202 int active = ev_active (w);
3203
2296 prepares [active - 1] = prepares [--preparecnt]; 3204 prepares [active - 1] = prepares [--preparecnt];
2297 ((W)prepares [active - 1])->active = active; 3205 ev_active (prepares [active - 1]) = active;
2298 } 3206 }
2299 3207
2300 ev_stop (EV_A_ (W)w); 3208 ev_stop (EV_A_ (W)w);
3209
3210 EV_FREQUENT_CHECK;
2301} 3211}
2302 3212
2303void 3213void
2304ev_check_start (EV_P_ ev_check *w) 3214ev_check_start (EV_P_ ev_check *w)
2305{ 3215{
2306 if (expect_false (ev_is_active (w))) 3216 if (expect_false (ev_is_active (w)))
2307 return; 3217 return;
3218
3219 EV_FREQUENT_CHECK;
2308 3220
2309 ev_start (EV_A_ (W)w, ++checkcnt); 3221 ev_start (EV_A_ (W)w, ++checkcnt);
2310 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3222 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2311 checks [checkcnt - 1] = w; 3223 checks [checkcnt - 1] = w;
3224
3225 EV_FREQUENT_CHECK;
2312} 3226}
2313 3227
2314void 3228void
2315ev_check_stop (EV_P_ ev_check *w) 3229ev_check_stop (EV_P_ ev_check *w)
2316{ 3230{
2317 clear_pending (EV_A_ (W)w); 3231 clear_pending (EV_A_ (W)w);
2318 if (expect_false (!ev_is_active (w))) 3232 if (expect_false (!ev_is_active (w)))
2319 return; 3233 return;
2320 3234
3235 EV_FREQUENT_CHECK;
3236
2321 { 3237 {
2322 int active = ((W)w)->active; 3238 int active = ev_active (w);
3239
2323 checks [active - 1] = checks [--checkcnt]; 3240 checks [active - 1] = checks [--checkcnt];
2324 ((W)checks [active - 1])->active = active; 3241 ev_active (checks [active - 1]) = active;
2325 } 3242 }
2326 3243
2327 ev_stop (EV_A_ (W)w); 3244 ev_stop (EV_A_ (W)w);
3245
3246 EV_FREQUENT_CHECK;
2328} 3247}
2329 3248
2330#if EV_EMBED_ENABLE 3249#if EV_EMBED_ENABLE
2331void noinline 3250void noinline
2332ev_embed_sweep (EV_P_ ev_embed *w) 3251ev_embed_sweep (EV_P_ ev_embed *w)
2349embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3268embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2350{ 3269{
2351 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3270 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2352 3271
2353 { 3272 {
2354 struct ev_loop *loop = w->other; 3273 EV_P = w->other;
2355 3274
2356 while (fdchangecnt) 3275 while (fdchangecnt)
2357 { 3276 {
2358 fd_reify (EV_A); 3277 fd_reify (EV_A);
2359 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3278 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2360 } 3279 }
2361 } 3280 }
2362} 3281}
2363 3282
3283static void
3284embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3285{
3286 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3287
3288 ev_embed_stop (EV_A_ w);
3289
3290 {
3291 EV_P = w->other;
3292
3293 ev_loop_fork (EV_A);
3294 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3295 }
3296
3297 ev_embed_start (EV_A_ w);
3298}
3299
2364#if 0 3300#if 0
2365static void 3301static void
2366embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3302embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2367{ 3303{
2368 ev_idle_stop (EV_A_ idle); 3304 ev_idle_stop (EV_A_ idle);
2374{ 3310{
2375 if (expect_false (ev_is_active (w))) 3311 if (expect_false (ev_is_active (w)))
2376 return; 3312 return;
2377 3313
2378 { 3314 {
2379 struct ev_loop *loop = w->other; 3315 EV_P = w->other;
2380 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3316 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2381 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3317 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2382 } 3318 }
3319
3320 EV_FREQUENT_CHECK;
2383 3321
2384 ev_set_priority (&w->io, ev_priority (w)); 3322 ev_set_priority (&w->io, ev_priority (w));
2385 ev_io_start (EV_A_ &w->io); 3323 ev_io_start (EV_A_ &w->io);
2386 3324
2387 ev_prepare_init (&w->prepare, embed_prepare_cb); 3325 ev_prepare_init (&w->prepare, embed_prepare_cb);
2388 ev_set_priority (&w->prepare, EV_MINPRI); 3326 ev_set_priority (&w->prepare, EV_MINPRI);
2389 ev_prepare_start (EV_A_ &w->prepare); 3327 ev_prepare_start (EV_A_ &w->prepare);
2390 3328
3329 ev_fork_init (&w->fork, embed_fork_cb);
3330 ev_fork_start (EV_A_ &w->fork);
3331
2391 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3332 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2392 3333
2393 ev_start (EV_A_ (W)w, 1); 3334 ev_start (EV_A_ (W)w, 1);
3335
3336 EV_FREQUENT_CHECK;
2394} 3337}
2395 3338
2396void 3339void
2397ev_embed_stop (EV_P_ ev_embed *w) 3340ev_embed_stop (EV_P_ ev_embed *w)
2398{ 3341{
2399 clear_pending (EV_A_ (W)w); 3342 clear_pending (EV_A_ (W)w);
2400 if (expect_false (!ev_is_active (w))) 3343 if (expect_false (!ev_is_active (w)))
2401 return; 3344 return;
2402 3345
3346 EV_FREQUENT_CHECK;
3347
2403 ev_io_stop (EV_A_ &w->io); 3348 ev_io_stop (EV_A_ &w->io);
2404 ev_prepare_stop (EV_A_ &w->prepare); 3349 ev_prepare_stop (EV_A_ &w->prepare);
3350 ev_fork_stop (EV_A_ &w->fork);
2405 3351
2406 ev_stop (EV_A_ (W)w); 3352 EV_FREQUENT_CHECK;
2407} 3353}
2408#endif 3354#endif
2409 3355
2410#if EV_FORK_ENABLE 3356#if EV_FORK_ENABLE
2411void 3357void
2412ev_fork_start (EV_P_ ev_fork *w) 3358ev_fork_start (EV_P_ ev_fork *w)
2413{ 3359{
2414 if (expect_false (ev_is_active (w))) 3360 if (expect_false (ev_is_active (w)))
2415 return; 3361 return;
3362
3363 EV_FREQUENT_CHECK;
2416 3364
2417 ev_start (EV_A_ (W)w, ++forkcnt); 3365 ev_start (EV_A_ (W)w, ++forkcnt);
2418 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3366 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2419 forks [forkcnt - 1] = w; 3367 forks [forkcnt - 1] = w;
3368
3369 EV_FREQUENT_CHECK;
2420} 3370}
2421 3371
2422void 3372void
2423ev_fork_stop (EV_P_ ev_fork *w) 3373ev_fork_stop (EV_P_ ev_fork *w)
2424{ 3374{
2425 clear_pending (EV_A_ (W)w); 3375 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w))) 3376 if (expect_false (!ev_is_active (w)))
2427 return; 3377 return;
2428 3378
3379 EV_FREQUENT_CHECK;
3380
2429 { 3381 {
2430 int active = ((W)w)->active; 3382 int active = ev_active (w);
3383
2431 forks [active - 1] = forks [--forkcnt]; 3384 forks [active - 1] = forks [--forkcnt];
2432 ((W)forks [active - 1])->active = active; 3385 ev_active (forks [active - 1]) = active;
2433 } 3386 }
2434 3387
2435 ev_stop (EV_A_ (W)w); 3388 ev_stop (EV_A_ (W)w);
3389
3390 EV_FREQUENT_CHECK;
2436} 3391}
2437#endif 3392#endif
2438 3393
2439#if EV_ASYNC_ENABLE 3394#if EV_ASYNC_ENABLE
2440void 3395void
2442{ 3397{
2443 if (expect_false (ev_is_active (w))) 3398 if (expect_false (ev_is_active (w)))
2444 return; 3399 return;
2445 3400
2446 evpipe_init (EV_A); 3401 evpipe_init (EV_A);
3402
3403 EV_FREQUENT_CHECK;
2447 3404
2448 ev_start (EV_A_ (W)w, ++asynccnt); 3405 ev_start (EV_A_ (W)w, ++asynccnt);
2449 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3406 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2450 asyncs [asynccnt - 1] = w; 3407 asyncs [asynccnt - 1] = w;
3408
3409 EV_FREQUENT_CHECK;
2451} 3410}
2452 3411
2453void 3412void
2454ev_async_stop (EV_P_ ev_async *w) 3413ev_async_stop (EV_P_ ev_async *w)
2455{ 3414{
2456 clear_pending (EV_A_ (W)w); 3415 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w))) 3416 if (expect_false (!ev_is_active (w)))
2458 return; 3417 return;
2459 3418
3419 EV_FREQUENT_CHECK;
3420
2460 { 3421 {
2461 int active = ((W)w)->active; 3422 int active = ev_active (w);
3423
2462 asyncs [active - 1] = asyncs [--asynccnt]; 3424 asyncs [active - 1] = asyncs [--asynccnt];
2463 ((W)asyncs [active - 1])->active = active; 3425 ev_active (asyncs [active - 1]) = active;
2464 } 3426 }
2465 3427
2466 ev_stop (EV_A_ (W)w); 3428 ev_stop (EV_A_ (W)w);
3429
3430 EV_FREQUENT_CHECK;
2467} 3431}
2468 3432
2469void 3433void
2470ev_async_send (EV_P_ ev_async *w) 3434ev_async_send (EV_P_ ev_async *w)
2471{ 3435{
2472 w->sent = 1; 3436 w->sent = 1;
2473 evpipe_write (EV_A_ 0, 1); 3437 evpipe_write (EV_A_ &async_pending);
2474} 3438}
2475#endif 3439#endif
2476 3440
2477/*****************************************************************************/ 3441/*****************************************************************************/
2478 3442
2488once_cb (EV_P_ struct ev_once *once, int revents) 3452once_cb (EV_P_ struct ev_once *once, int revents)
2489{ 3453{
2490 void (*cb)(int revents, void *arg) = once->cb; 3454 void (*cb)(int revents, void *arg) = once->cb;
2491 void *arg = once->arg; 3455 void *arg = once->arg;
2492 3456
2493 ev_io_stop (EV_A_ &once->io); 3457 ev_io_stop (EV_A_ &once->io);
2494 ev_timer_stop (EV_A_ &once->to); 3458 ev_timer_stop (EV_A_ &once->to);
2495 ev_free (once); 3459 ev_free (once);
2496 3460
2497 cb (revents, arg); 3461 cb (revents, arg);
2498} 3462}
2499 3463
2500static void 3464static void
2501once_cb_io (EV_P_ ev_io *w, int revents) 3465once_cb_io (EV_P_ ev_io *w, int revents)
2502{ 3466{
2503 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3467 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3468
3469 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2504} 3470}
2505 3471
2506static void 3472static void
2507once_cb_to (EV_P_ ev_timer *w, int revents) 3473once_cb_to (EV_P_ ev_timer *w, int revents)
2508{ 3474{
2509 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3475 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3476
3477 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2510} 3478}
2511 3479
2512void 3480void
2513ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2514{ 3482{
2536 ev_timer_set (&once->to, timeout, 0.); 3504 ev_timer_set (&once->to, timeout, 0.);
2537 ev_timer_start (EV_A_ &once->to); 3505 ev_timer_start (EV_A_ &once->to);
2538 } 3506 }
2539} 3507}
2540 3508
3509/*****************************************************************************/
3510
3511#if EV_WALK_ENABLE
3512void
3513ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3514{
3515 int i, j;
3516 ev_watcher_list *wl, *wn;
3517
3518 if (types & (EV_IO | EV_EMBED))
3519 for (i = 0; i < anfdmax; ++i)
3520 for (wl = anfds [i].head; wl; )
3521 {
3522 wn = wl->next;
3523
3524#if EV_EMBED_ENABLE
3525 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3526 {
3527 if (types & EV_EMBED)
3528 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3529 }
3530 else
3531#endif
3532#if EV_USE_INOTIFY
3533 if (ev_cb ((ev_io *)wl) == infy_cb)
3534 ;
3535 else
3536#endif
3537 if ((ev_io *)wl != &pipe_w)
3538 if (types & EV_IO)
3539 cb (EV_A_ EV_IO, wl);
3540
3541 wl = wn;
3542 }
3543
3544 if (types & (EV_TIMER | EV_STAT))
3545 for (i = timercnt + HEAP0; i-- > HEAP0; )
3546#if EV_STAT_ENABLE
3547 /*TODO: timer is not always active*/
3548 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3549 {
3550 if (types & EV_STAT)
3551 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3552 }
3553 else
3554#endif
3555 if (types & EV_TIMER)
3556 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3557
3558#if EV_PERIODIC_ENABLE
3559 if (types & EV_PERIODIC)
3560 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3561 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3562#endif
3563
3564#if EV_IDLE_ENABLE
3565 if (types & EV_IDLE)
3566 for (j = NUMPRI; i--; )
3567 for (i = idlecnt [j]; i--; )
3568 cb (EV_A_ EV_IDLE, idles [j][i]);
3569#endif
3570
3571#if EV_FORK_ENABLE
3572 if (types & EV_FORK)
3573 for (i = forkcnt; i--; )
3574 if (ev_cb (forks [i]) != embed_fork_cb)
3575 cb (EV_A_ EV_FORK, forks [i]);
3576#endif
3577
3578#if EV_ASYNC_ENABLE
3579 if (types & EV_ASYNC)
3580 for (i = asynccnt; i--; )
3581 cb (EV_A_ EV_ASYNC, asyncs [i]);
3582#endif
3583
3584 if (types & EV_PREPARE)
3585 for (i = preparecnt; i--; )
3586#if EV_EMBED_ENABLE
3587 if (ev_cb (prepares [i]) != embed_prepare_cb)
3588#endif
3589 cb (EV_A_ EV_PREPARE, prepares [i]);
3590
3591 if (types & EV_CHECK)
3592 for (i = checkcnt; i--; )
3593 cb (EV_A_ EV_CHECK, checks [i]);
3594
3595 if (types & EV_SIGNAL)
3596 for (i = 0; i < EV_NSIG - 1; ++i)
3597 for (wl = signals [i].head; wl; )
3598 {
3599 wn = wl->next;
3600 cb (EV_A_ EV_SIGNAL, wl);
3601 wl = wn;
3602 }
3603
3604 if (types & EV_CHILD)
3605 for (i = EV_PID_HASHSIZE; i--; )
3606 for (wl = childs [i]; wl; )
3607 {
3608 wn = wl->next;
3609 cb (EV_A_ EV_CHILD, wl);
3610 wl = wn;
3611 }
3612/* EV_STAT 0x00001000 /* stat data changed */
3613/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3614}
3615#endif
3616
2541#if EV_MULTIPLICITY 3617#if EV_MULTIPLICITY
2542 #include "ev_wrap.h" 3618 #include "ev_wrap.h"
2543#endif 3619#endif
2544 3620
2545#ifdef __cplusplus 3621#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines