ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.213 by root, Tue Feb 19 19:13:50 2008 UTC vs.
Revision 1.234 by root, Tue May 6 23:42:16 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 241
217#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
220#endif 245#endif
239# include <sys/inotify.h> 264# include <sys/inotify.h>
240#endif 265#endif
241 266
242#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
244#endif 281#endif
245 282
246/**/ 283/**/
247 284
248/* 285/*
263# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
265#else 302#else
266# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
267# define noinline 304# define noinline
268# if __STDC_VERSION__ < 199901L 305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 306# define inline
270# endif 307# endif
271#endif 308#endif
272 309
273#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
288 325
289typedef ev_watcher *W; 326typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
292 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
293#if EV_USE_MONOTONIC 333#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 335/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 337#endif
323 perror (msg); 363 perror (msg);
324 abort (); 364 abort ();
325 } 365 }
326} 366}
327 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
328static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 384
330void 385void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 387{
333 alloc = cb; 388 alloc = cb;
334} 389}
335 390
336inline_speed void * 391inline_speed void *
337ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
338{ 393{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
340 395
341 if (!ptr && size) 396 if (!ptr && size)
342 { 397 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 399 abort ();
451 ts.tv_sec = (time_t)delay; 506 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 508
454 nanosleep (&ts, 0); 509 nanosleep (&ts, 0);
455#elif defined(_WIN32) 510#elif defined(_WIN32)
456 Sleep (delay * 1e3); 511 Sleep ((unsigned long)(delay * 1e3));
457#else 512#else
458 struct timeval tv; 513 struct timeval tv;
459 514
460 tv.tv_sec = (time_t)delay; 515 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 519#endif
465 } 520 }
466} 521}
467 522
468/*****************************************************************************/ 523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 526
470int inline_size 527int inline_size
471array_nextsize (int elem, int cur, int cnt) 528array_nextsize (int elem, int cur, int cnt)
472{ 529{
473 int ncur = cur + 1; 530 int ncur = cur + 1;
474 531
475 do 532 do
476 ncur <<= 1; 533 ncur <<= 1;
477 while (cnt > ncur); 534 while (cnt > ncur);
478 535
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 538 {
482 ncur *= elem; 539 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 541 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 542 ncur /= elem;
486 } 543 }
487 544
488 return ncur; 545 return ncur;
702 } 759 }
703} 760}
704 761
705/*****************************************************************************/ 762/*****************************************************************************/
706 763
764/* towards the root */
707void inline_speed 765void inline_speed
708upheap (WT *heap, int k) 766upheap (WT *heap, int k)
709{ 767{
710 WT w = heap [k]; 768 WT w = heap [k];
711 769
712 while (k) 770 for (;;)
713 { 771 {
714 int p = (k - 1) >> 1; 772 int p = k >> 1;
715 773
774 /* maybe we could use a dummy element at heap [0]? */
716 if (heap [p]->at <= w->at) 775 if (!p || heap [p]->at <= w->at)
717 break; 776 break;
718 777
719 heap [k] = heap [p]; 778 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 779 ev_active (heap [k]) = k;
721 k = p; 780 k = p;
722 } 781 }
723 782
724 heap [k] = w; 783 heap [k] = w;
725 ((W)heap [k])->active = k + 1; 784 ev_active (heap [k]) = k;
726} 785}
727 786
787/* away from the root */
728void inline_speed 788void inline_speed
729downheap (WT *heap, int N, int k) 789downheap (WT *heap, int N, int k)
730{ 790{
731 WT w = heap [k]; 791 WT w = heap [k];
732 792
733 for (;;) 793 for (;;)
734 { 794 {
735 int c = (k << 1) + 1; 795 int c = k << 1;
736 796
737 if (c >= N) 797 if (c > N)
738 break; 798 break;
739 799
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 800 c += c < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0; 801 ? 1 : 0;
742 802
743 if (w->at <= heap [c]->at) 803 if (w->at <= heap [c]->at)
744 break; 804 break;
745 805
746 heap [k] = heap [c]; 806 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1; 807 ev_active (heap [k]) = k;
748 808
749 k = c; 809 k = c;
750 } 810 }
751 811
752 heap [k] = w; 812 heap [k] = w;
753 ((W)heap [k])->active = k + 1; 813 ev_active (heap [k]) = k;
754} 814}
755 815
756void inline_size 816void inline_size
757adjustheap (WT *heap, int N, int k) 817adjustheap (WT *heap, int N, int k)
758{ 818{
802static void noinline 862static void noinline
803evpipe_init (EV_P) 863evpipe_init (EV_P)
804{ 864{
805 if (!ev_is_active (&pipeev)) 865 if (!ev_is_active (&pipeev))
806 { 866 {
867#if EV_USE_EVENTFD
868 if ((evfd = eventfd (0, 0)) >= 0)
869 {
870 evpipe [0] = -1;
871 fd_intern (evfd);
872 ev_io_set (&pipeev, evfd, EV_READ);
873 }
874 else
875#endif
876 {
807 while (pipe (evpipe)) 877 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 878 syserr ("(libev) error creating signal/async pipe");
809 879
810 fd_intern (evpipe [0]); 880 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 881 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 882 ev_io_set (&pipeev, evpipe [0], EV_READ);
883 }
884
814 ev_io_start (EV_A_ &pipeev); 885 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 886 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 887 }
817} 888}
818 889
819void inline_size 890void inline_size
820evpipe_write (EV_P_ int sig, int async) 891evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 892{
822 int sent = gotasync || gotsig; 893 if (!*flag)
823
824 if (sig) gotsig = 1;
825 if (async) gotasync = 1;
826
827 if (!sent)
828 { 894 {
829 int old_errno = errno; /* save errno becaue write might clobber it */ 895 int old_errno = errno; /* save errno because write might clobber it */
896
897 *flag = 1;
898
899#if EV_USE_EVENTFD
900 if (evfd >= 0)
901 {
902 uint64_t counter = 1;
903 write (evfd, &counter, sizeof (uint64_t));
904 }
905 else
906#endif
830 write (evpipe [1], &old_errno, 1); 907 write (evpipe [1], &old_errno, 1);
908
831 errno = old_errno; 909 errno = old_errno;
832 } 910 }
833} 911}
834 912
835static void 913static void
836pipecb (EV_P_ ev_io *iow, int revents) 914pipecb (EV_P_ ev_io *iow, int revents)
837{ 915{
916#if EV_USE_EVENTFD
917 if (evfd >= 0)
838 { 918 {
839 int dummy; 919 uint64_t counter;
920 read (evfd, &counter, sizeof (uint64_t));
921 }
922 else
923#endif
924 {
925 char dummy;
840 read (evpipe [0], &dummy, 1); 926 read (evpipe [0], &dummy, 1);
841 } 927 }
842 928
843 if (gotsig && ev_is_default_loop (EV_A)) 929 if (gotsig && ev_is_default_loop (EV_A))
844 { 930 {
845 int signum; 931 int signum;
846 gotsig = 0; 932 gotsig = 0;
867} 953}
868 954
869/*****************************************************************************/ 955/*****************************************************************************/
870 956
871static void 957static void
872sighandler (int signum) 958ev_sighandler (int signum)
873{ 959{
874#if EV_MULTIPLICITY 960#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 961 struct ev_loop *loop = &default_loop_struct;
876#endif 962#endif
877 963
878#if _WIN32 964#if _WIN32
879 signal (signum, sighandler); 965 signal (signum, ev_sighandler);
880#endif 966#endif
881 967
882 signals [signum - 1].gotsig = 1; 968 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0); 969 evpipe_write (EV_A_ &gotsig);
884} 970}
885 971
886void noinline 972void noinline
887ev_feed_signal_event (EV_P_ int signum) 973ev_feed_signal_event (EV_P_ int signum)
888{ 974{
914#ifndef WIFCONTINUED 1000#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 1001# define WIFCONTINUED(status) 0
916#endif 1002#endif
917 1003
918void inline_speed 1004void inline_speed
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1005child_reap (EV_P_ int chain, int pid, int status)
920{ 1006{
921 ev_child *w; 1007 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1008 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 1009
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1010 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 1011 {
926 if ((w->pid == pid || !w->pid) 1012 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 1013 && (!traced || (w->flags & 1)))
928 { 1014 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1015 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 1016 w->rpid = pid;
931 w->rstatus = status; 1017 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1018 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 1019 }
934 } 1020 }
948 if (!WCONTINUED 1034 if (!WCONTINUED
949 || errno != EINVAL 1035 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1036 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 1037 return;
952 1038
953 /* make sure we are called again until all childs have been reaped */ 1039 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 1040 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1041 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 1042
957 child_reap (EV_A_ sw, pid, pid, status); 1043 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 1044 if (EV_PID_HASHSIZE > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1045 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 1046}
961 1047
962#endif 1048#endif
963 1049
964/*****************************************************************************/ 1050/*****************************************************************************/
1107 if (!(flags & EVFLAG_NOENV) 1193 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure () 1194 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS")) 1195 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS")); 1196 flags = atoi (getenv ("LIBEV_FLAGS"));
1111 1197
1112 if (!(flags & 0x0000ffffUL)) 1198 if (!(flags & 0x0000ffffU))
1113 flags |= ev_recommended_backends (); 1199 flags |= ev_recommended_backends ();
1114 1200
1115#if EV_USE_PORT 1201#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1202 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 1203#endif
1141 if (ev_is_active (&pipeev)) 1227 if (ev_is_active (&pipeev))
1142 { 1228 {
1143 ev_ref (EV_A); /* signal watcher */ 1229 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev); 1230 ev_io_stop (EV_A_ &pipeev);
1145 1231
1146 close (evpipe [0]); evpipe [0] = 0; 1232#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 1233 if (evfd >= 0)
1234 close (evfd);
1235#endif
1236
1237 if (evpipe [0] >= 0)
1238 {
1239 close (evpipe [0]);
1240 close (evpipe [1]);
1241 }
1148 } 1242 }
1149 1243
1150#if EV_USE_INOTIFY 1244#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 1245 if (fs_fd >= 0)
1152 close (fs_fd); 1246 close (fs_fd);
1197#endif 1291#endif
1198 1292
1199 backend = 0; 1293 backend = 0;
1200} 1294}
1201 1295
1296#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 1297void inline_size infy_fork (EV_P);
1298#endif
1203 1299
1204void inline_size 1300void inline_size
1205loop_fork (EV_P) 1301loop_fork (EV_P)
1206{ 1302{
1207#if EV_USE_PORT 1303#if EV_USE_PORT
1226 gotasync = 1; 1322 gotasync = 1;
1227#endif 1323#endif
1228 1324
1229 ev_ref (EV_A); 1325 ev_ref (EV_A);
1230 ev_io_stop (EV_A_ &pipeev); 1326 ev_io_stop (EV_A_ &pipeev);
1327
1328#if EV_USE_EVENTFD
1329 if (evfd >= 0)
1330 close (evfd);
1331#endif
1332
1333 if (evpipe [0] >= 0)
1334 {
1231 close (evpipe [0]); 1335 close (evpipe [0]);
1232 close (evpipe [1]); 1336 close (evpipe [1]);
1337 }
1233 1338
1234 evpipe_init (EV_A); 1339 evpipe_init (EV_A);
1235 /* now iterate over everything, in case we missed something */ 1340 /* now iterate over everything, in case we missed something */
1236 pipecb (EV_A_ &pipeev, EV_READ); 1341 pipecb (EV_A_ &pipeev, EV_READ);
1237 } 1342 }
1265void 1370void
1266ev_loop_fork (EV_P) 1371ev_loop_fork (EV_P)
1267{ 1372{
1268 postfork = 1; /* must be in line with ev_default_fork */ 1373 postfork = 1; /* must be in line with ev_default_fork */
1269} 1374}
1270
1271#endif 1375#endif
1272 1376
1273#if EV_MULTIPLICITY 1377#if EV_MULTIPLICITY
1274struct ev_loop * 1378struct ev_loop *
1275ev_default_loop_init (unsigned int flags) 1379ev_default_loop_init (unsigned int flags)
1356 EV_CB_INVOKE (p->w, p->events); 1460 EV_CB_INVOKE (p->w, p->events);
1357 } 1461 }
1358 } 1462 }
1359} 1463}
1360 1464
1361void inline_size
1362timers_reify (EV_P)
1363{
1364 while (timercnt && ((WT)timers [0])->at <= mn_now)
1365 {
1366 ev_timer *w = (ev_timer *)timers [0];
1367
1368 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1369
1370 /* first reschedule or stop timer */
1371 if (w->repeat)
1372 {
1373 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1374
1375 ((WT)w)->at += w->repeat;
1376 if (((WT)w)->at < mn_now)
1377 ((WT)w)->at = mn_now;
1378
1379 downheap (timers, timercnt, 0);
1380 }
1381 else
1382 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1383
1384 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1385 }
1386}
1387
1388#if EV_PERIODIC_ENABLE
1389void inline_size
1390periodics_reify (EV_P)
1391{
1392 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1393 {
1394 ev_periodic *w = (ev_periodic *)periodics [0];
1395
1396 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1397
1398 /* first reschedule or stop timer */
1399 if (w->reschedule_cb)
1400 {
1401 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1402 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1403 downheap (periodics, periodiccnt, 0);
1404 }
1405 else if (w->interval)
1406 {
1407 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1408 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1409 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1410 downheap (periodics, periodiccnt, 0);
1411 }
1412 else
1413 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1414
1415 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1416 }
1417}
1418
1419static void noinline
1420periodics_reschedule (EV_P)
1421{
1422 int i;
1423
1424 /* adjust periodics after time jump */
1425 for (i = 0; i < periodiccnt; ++i)
1426 {
1427 ev_periodic *w = (ev_periodic *)periodics [i];
1428
1429 if (w->reschedule_cb)
1430 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1431 else if (w->interval)
1432 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1433 }
1434
1435 /* now rebuild the heap */
1436 for (i = periodiccnt >> 1; i--; )
1437 downheap (periodics, periodiccnt, i);
1438}
1439#endif
1440
1441#if EV_IDLE_ENABLE 1465#if EV_IDLE_ENABLE
1442void inline_size 1466void inline_size
1443idle_reify (EV_P) 1467idle_reify (EV_P)
1444{ 1468{
1445 if (expect_false (idleall)) 1469 if (expect_false (idleall))
1456 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1480 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1457 break; 1481 break;
1458 } 1482 }
1459 } 1483 }
1460 } 1484 }
1485}
1486#endif
1487
1488void inline_size
1489timers_reify (EV_P)
1490{
1491 while (timercnt && ev_at (timers [1]) <= mn_now)
1492 {
1493 ev_timer *w = (ev_timer *)timers [1];
1494
1495 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1496
1497 /* first reschedule or stop timer */
1498 if (w->repeat)
1499 {
1500 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1501
1502 ev_at (w) += w->repeat;
1503 if (ev_at (w) < mn_now)
1504 ev_at (w) = mn_now;
1505
1506 downheap (timers, timercnt, 1);
1507 }
1508 else
1509 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1510
1511 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1512 }
1513}
1514
1515#if EV_PERIODIC_ENABLE
1516void inline_size
1517periodics_reify (EV_P)
1518{
1519 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1520 {
1521 ev_periodic *w = (ev_periodic *)periodics [1];
1522
1523 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1524
1525 /* first reschedule or stop timer */
1526 if (w->reschedule_cb)
1527 {
1528 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1529 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1530 downheap (periodics, periodiccnt, 1);
1531 }
1532 else if (w->interval)
1533 {
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1536 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1537 downheap (periodics, periodiccnt, 1);
1538 }
1539 else
1540 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1541
1542 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1543 }
1544}
1545
1546static void noinline
1547periodics_reschedule (EV_P)
1548{
1549 int i;
1550
1551 /* adjust periodics after time jump */
1552 for (i = 1; i <= periodiccnt; ++i)
1553 {
1554 ev_periodic *w = (ev_periodic *)periodics [i];
1555
1556 if (w->reschedule_cb)
1557 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1558 else if (w->interval)
1559 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1560 }
1561
1562 /* now rebuild the heap */
1563 for (i = periodiccnt >> 1; i--; )
1564 downheap (periodics, periodiccnt, i);
1461} 1565}
1462#endif 1566#endif
1463 1567
1464void inline_speed 1568void inline_speed
1465time_update (EV_P_ ev_tstamp max_block) 1569time_update (EV_P_ ev_tstamp max_block)
1494 */ 1598 */
1495 for (i = 4; --i; ) 1599 for (i = 4; --i; )
1496 { 1600 {
1497 rtmn_diff = ev_rt_now - mn_now; 1601 rtmn_diff = ev_rt_now - mn_now;
1498 1602
1499 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1603 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1500 return; /* all is well */ 1604 return; /* all is well */
1501 1605
1502 ev_rt_now = ev_time (); 1606 ev_rt_now = ev_time ();
1503 mn_now = get_clock (); 1607 mn_now = get_clock ();
1504 now_floor = mn_now; 1608 now_floor = mn_now;
1519 { 1623 {
1520#if EV_PERIODIC_ENABLE 1624#if EV_PERIODIC_ENABLE
1521 periodics_reschedule (EV_A); 1625 periodics_reschedule (EV_A);
1522#endif 1626#endif
1523 /* adjust timers. this is easy, as the offset is the same for all of them */ 1627 /* adjust timers. this is easy, as the offset is the same for all of them */
1524 for (i = 0; i < timercnt; ++i) 1628 for (i = 1; i <= timercnt; ++i)
1525 ((WT)timers [i])->at += ev_rt_now - mn_now; 1629 ev_at (timers [i]) += ev_rt_now - mn_now;
1526 } 1630 }
1527 1631
1528 mn_now = ev_rt_now; 1632 mn_now = ev_rt_now;
1529 } 1633 }
1530} 1634}
1544static int loop_done; 1648static int loop_done;
1545 1649
1546void 1650void
1547ev_loop (EV_P_ int flags) 1651ev_loop (EV_P_ int flags)
1548{ 1652{
1549 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1653 loop_done = EVUNLOOP_CANCEL;
1550 ? EVUNLOOP_ONE
1551 : EVUNLOOP_CANCEL;
1552 1654
1553 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1655 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1554 1656
1555 do 1657 do
1556 { 1658 {
1602 1704
1603 waittime = MAX_BLOCKTIME; 1705 waittime = MAX_BLOCKTIME;
1604 1706
1605 if (timercnt) 1707 if (timercnt)
1606 { 1708 {
1607 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1709 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1608 if (waittime > to) waittime = to; 1710 if (waittime > to) waittime = to;
1609 } 1711 }
1610 1712
1611#if EV_PERIODIC_ENABLE 1713#if EV_PERIODIC_ENABLE
1612 if (periodiccnt) 1714 if (periodiccnt)
1613 { 1715 {
1614 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1716 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1615 if (waittime > to) waittime = to; 1717 if (waittime > to) waittime = to;
1616 } 1718 }
1617#endif 1719#endif
1618 1720
1619 if (expect_false (waittime < timeout_blocktime)) 1721 if (expect_false (waittime < timeout_blocktime))
1652 /* queue check watchers, to be executed first */ 1754 /* queue check watchers, to be executed first */
1653 if (expect_false (checkcnt)) 1755 if (expect_false (checkcnt))
1654 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1756 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1655 1757
1656 call_pending (EV_A); 1758 call_pending (EV_A);
1657
1658 } 1759 }
1659 while (expect_true (activecnt && !loop_done)); 1760 while (expect_true (
1761 activecnt
1762 && !loop_done
1763 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1764 ));
1660 1765
1661 if (loop_done == EVUNLOOP_ONE) 1766 if (loop_done == EVUNLOOP_ONE)
1662 loop_done = EVUNLOOP_CANCEL; 1767 loop_done = EVUNLOOP_CANCEL;
1663} 1768}
1664 1769
1782ev_timer_start (EV_P_ ev_timer *w) 1887ev_timer_start (EV_P_ ev_timer *w)
1783{ 1888{
1784 if (expect_false (ev_is_active (w))) 1889 if (expect_false (ev_is_active (w)))
1785 return; 1890 return;
1786 1891
1787 ((WT)w)->at += mn_now; 1892 ev_at (w) += mn_now;
1788 1893
1789 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1894 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1790 1895
1791 ev_start (EV_A_ (W)w, ++timercnt); 1896 ev_start (EV_A_ (W)w, ++timercnt);
1792 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 1897 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1793 timers [timercnt - 1] = (WT)w; 1898 timers [timercnt] = (WT)w;
1794 upheap (timers, timercnt - 1); 1899 upheap (timers, timercnt);
1795 1900
1796 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1901 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1797} 1902}
1798 1903
1799void noinline 1904void noinline
1800ev_timer_stop (EV_P_ ev_timer *w) 1905ev_timer_stop (EV_P_ ev_timer *w)
1801{ 1906{
1802 clear_pending (EV_A_ (W)w); 1907 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 1908 if (expect_false (!ev_is_active (w)))
1804 return; 1909 return;
1805 1910
1806 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1807
1808 { 1911 {
1809 int active = ((W)w)->active; 1912 int active = ev_active (w);
1810 1913
1914 assert (("internal timer heap corruption", timers [active] == (WT)w));
1915
1811 if (expect_true (--active < --timercnt)) 1916 if (expect_true (active < timercnt))
1812 { 1917 {
1813 timers [active] = timers [timercnt]; 1918 timers [active] = timers [timercnt];
1814 adjustheap (timers, timercnt, active); 1919 adjustheap (timers, timercnt, active);
1815 } 1920 }
1921
1922 --timercnt;
1816 } 1923 }
1817 1924
1818 ((WT)w)->at -= mn_now; 1925 ev_at (w) -= mn_now;
1819 1926
1820 ev_stop (EV_A_ (W)w); 1927 ev_stop (EV_A_ (W)w);
1821} 1928}
1822 1929
1823void noinline 1930void noinline
1825{ 1932{
1826 if (ev_is_active (w)) 1933 if (ev_is_active (w))
1827 { 1934 {
1828 if (w->repeat) 1935 if (w->repeat)
1829 { 1936 {
1830 ((WT)w)->at = mn_now + w->repeat; 1937 ev_at (w) = mn_now + w->repeat;
1831 adjustheap (timers, timercnt, ((W)w)->active - 1); 1938 adjustheap (timers, timercnt, ev_active (w));
1832 } 1939 }
1833 else 1940 else
1834 ev_timer_stop (EV_A_ w); 1941 ev_timer_stop (EV_A_ w);
1835 } 1942 }
1836 else if (w->repeat) 1943 else if (w->repeat)
1837 { 1944 {
1838 w->at = w->repeat; 1945 ev_at (w) = w->repeat;
1839 ev_timer_start (EV_A_ w); 1946 ev_timer_start (EV_A_ w);
1840 } 1947 }
1841} 1948}
1842 1949
1843#if EV_PERIODIC_ENABLE 1950#if EV_PERIODIC_ENABLE
1846{ 1953{
1847 if (expect_false (ev_is_active (w))) 1954 if (expect_false (ev_is_active (w)))
1848 return; 1955 return;
1849 1956
1850 if (w->reschedule_cb) 1957 if (w->reschedule_cb)
1851 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1958 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1852 else if (w->interval) 1959 else if (w->interval)
1853 { 1960 {
1854 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1961 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1855 /* this formula differs from the one in periodic_reify because we do not always round up */ 1962 /* this formula differs from the one in periodic_reify because we do not always round up */
1856 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1963 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1857 } 1964 }
1858 else 1965 else
1859 ((WT)w)->at = w->offset; 1966 ev_at (w) = w->offset;
1860 1967
1861 ev_start (EV_A_ (W)w, ++periodiccnt); 1968 ev_start (EV_A_ (W)w, ++periodiccnt);
1862 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 1969 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1863 periodics [periodiccnt - 1] = (WT)w; 1970 periodics [periodiccnt] = (WT)w;
1864 upheap (periodics, periodiccnt - 1); 1971 upheap (periodics, periodiccnt);
1865 1972
1866 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1973 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1867} 1974}
1868 1975
1869void noinline 1976void noinline
1870ev_periodic_stop (EV_P_ ev_periodic *w) 1977ev_periodic_stop (EV_P_ ev_periodic *w)
1871{ 1978{
1872 clear_pending (EV_A_ (W)w); 1979 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 1980 if (expect_false (!ev_is_active (w)))
1874 return; 1981 return;
1875 1982
1876 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1877
1878 { 1983 {
1879 int active = ((W)w)->active; 1984 int active = ev_active (w);
1880 1985
1986 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1987
1881 if (expect_true (--active < --periodiccnt)) 1988 if (expect_true (active < periodiccnt))
1882 { 1989 {
1883 periodics [active] = periodics [periodiccnt]; 1990 periodics [active] = periodics [periodiccnt];
1884 adjustheap (periodics, periodiccnt, active); 1991 adjustheap (periodics, periodiccnt, active);
1885 } 1992 }
1993
1994 --periodiccnt;
1886 } 1995 }
1887 1996
1888 ev_stop (EV_A_ (W)w); 1997 ev_stop (EV_A_ (W)w);
1889} 1998}
1890 1999
1932 wlist_add (&signals [w->signum - 1].head, (WL)w); 2041 wlist_add (&signals [w->signum - 1].head, (WL)w);
1933 2042
1934 if (!((WL)w)->next) 2043 if (!((WL)w)->next)
1935 { 2044 {
1936#if _WIN32 2045#if _WIN32
1937 signal (w->signum, sighandler); 2046 signal (w->signum, ev_sighandler);
1938#else 2047#else
1939 struct sigaction sa; 2048 struct sigaction sa;
1940 sa.sa_handler = sighandler; 2049 sa.sa_handler = ev_sighandler;
1941 sigfillset (&sa.sa_mask); 2050 sigfillset (&sa.sa_mask);
1942 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2051 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1943 sigaction (w->signum, &sa, 0); 2052 sigaction (w->signum, &sa, 0);
1944#endif 2053#endif
1945 } 2054 }
2006 if (w->wd < 0) 2115 if (w->wd < 0)
2007 { 2116 {
2008 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2117 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2009 2118
2010 /* monitor some parent directory for speedup hints */ 2119 /* monitor some parent directory for speedup hints */
2120 /* note that exceeding the hardcoded limit is not a correctness issue, */
2121 /* but an efficiency issue only */
2011 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2122 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2012 { 2123 {
2013 char path [4096]; 2124 char path [4096];
2014 strcpy (path, w->path); 2125 strcpy (path, w->path);
2015 2126
2260 clear_pending (EV_A_ (W)w); 2371 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w))) 2372 if (expect_false (!ev_is_active (w)))
2262 return; 2373 return;
2263 2374
2264 { 2375 {
2265 int active = ((W)w)->active; 2376 int active = ev_active (w);
2266 2377
2267 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2378 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2268 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2379 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2269 2380
2270 ev_stop (EV_A_ (W)w); 2381 ev_stop (EV_A_ (W)w);
2271 --idleall; 2382 --idleall;
2272 } 2383 }
2273} 2384}
2290 clear_pending (EV_A_ (W)w); 2401 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 2402 if (expect_false (!ev_is_active (w)))
2292 return; 2403 return;
2293 2404
2294 { 2405 {
2295 int active = ((W)w)->active; 2406 int active = ev_active (w);
2407
2296 prepares [active - 1] = prepares [--preparecnt]; 2408 prepares [active - 1] = prepares [--preparecnt];
2297 ((W)prepares [active - 1])->active = active; 2409 ev_active (prepares [active - 1]) = active;
2298 } 2410 }
2299 2411
2300 ev_stop (EV_A_ (W)w); 2412 ev_stop (EV_A_ (W)w);
2301} 2413}
2302 2414
2317 clear_pending (EV_A_ (W)w); 2429 clear_pending (EV_A_ (W)w);
2318 if (expect_false (!ev_is_active (w))) 2430 if (expect_false (!ev_is_active (w)))
2319 return; 2431 return;
2320 2432
2321 { 2433 {
2322 int active = ((W)w)->active; 2434 int active = ev_active (w);
2435
2323 checks [active - 1] = checks [--checkcnt]; 2436 checks [active - 1] = checks [--checkcnt];
2324 ((W)checks [active - 1])->active = active; 2437 ev_active (checks [active - 1]) = active;
2325 } 2438 }
2326 2439
2327 ev_stop (EV_A_ (W)w); 2440 ev_stop (EV_A_ (W)w);
2328} 2441}
2329 2442
2425 clear_pending (EV_A_ (W)w); 2538 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w))) 2539 if (expect_false (!ev_is_active (w)))
2427 return; 2540 return;
2428 2541
2429 { 2542 {
2430 int active = ((W)w)->active; 2543 int active = ev_active (w);
2544
2431 forks [active - 1] = forks [--forkcnt]; 2545 forks [active - 1] = forks [--forkcnt];
2432 ((W)forks [active - 1])->active = active; 2546 ev_active (forks [active - 1]) = active;
2433 } 2547 }
2434 2548
2435 ev_stop (EV_A_ (W)w); 2549 ev_stop (EV_A_ (W)w);
2436} 2550}
2437#endif 2551#endif
2456 clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
2458 return; 2572 return;
2459 2573
2460 { 2574 {
2461 int active = ((W)w)->active; 2575 int active = ev_active (w);
2576
2462 asyncs [active - 1] = asyncs [--asynccnt]; 2577 asyncs [active - 1] = asyncs [--asynccnt];
2463 ((W)asyncs [active - 1])->active = active; 2578 ev_active (asyncs [active - 1]) = active;
2464 } 2579 }
2465 2580
2466 ev_stop (EV_A_ (W)w); 2581 ev_stop (EV_A_ (W)w);
2467} 2582}
2468 2583
2469void 2584void
2470ev_async_send (EV_P_ ev_async *w) 2585ev_async_send (EV_P_ ev_async *w)
2471{ 2586{
2472 w->sent = 1; 2587 w->sent = 1;
2473 evpipe_write (EV_A_ 0, 1); 2588 evpipe_write (EV_A_ &gotasync);
2474} 2589}
2475#endif 2590#endif
2476 2591
2477/*****************************************************************************/ 2592/*****************************************************************************/
2478 2593

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines