ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.213 by root, Tue Feb 19 19:13:50 2008 UTC vs.
Revision 1.268 by root, Mon Oct 27 13:39:18 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
145#ifndef _WIN32 154#ifndef _WIN32
146# include <sys/time.h> 155# include <sys/time.h>
147# include <sys/wait.h> 156# include <sys/wait.h>
148# include <unistd.h> 157# include <unistd.h>
149#else 158#else
159# include <io.h>
150# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 161# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
154# endif 164# endif
155#endif 165#endif
156 166
157/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
158 168
159#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
160# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
161#endif 175#endif
162 176
163#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
165#endif 179#endif
166 180
167#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
168# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
169#endif 187#endif
170 188
171#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
173#endif 191#endif
179# define EV_USE_POLL 1 197# define EV_USE_POLL 1
180# endif 198# endif
181#endif 199#endif
182 200
183#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
184# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
185#endif 207#endif
186 208
187#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
189#endif 211#endif
191#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 214# define EV_USE_PORT 0
193#endif 215#endif
194 216
195#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
196# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
197#endif 223#endif
198 224
199#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 226# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
210# else 236# else
211# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
212# endif 238# endif
213#endif 239#endif
214 240
215/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 268
217#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
220#endif 272#endif
234# include <sys/select.h> 286# include <sys/select.h>
235# endif 287# endif
236#endif 288#endif
237 289
238#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
239# include <sys/inotify.h> 292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
240#endif 298#endif
241 299
242#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 301# include <winsock.h>
244#endif 302#endif
245 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
246/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
247 323
248/* 324/*
249 * This is used to avoid floating point rounding problems. 325 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 326 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 327 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
265#else 341#else
266# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
267# define noinline 343# define noinline
268# if __STDC_VERSION__ < 199901L 344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 345# define inline
270# endif 346# endif
271#endif 347#endif
272 348
273#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
288 364
289typedef ev_watcher *W; 365typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
292 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
293#if EV_USE_MONOTONIC 372#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 374/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 376#endif
323 perror (msg); 402 perror (msg);
324 abort (); 403 abort ();
325 } 404 }
326} 405}
327 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
328static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 423
330void 424void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 426{
333 alloc = cb; 427 alloc = cb;
334} 428}
335 429
336inline_speed void * 430inline_speed void *
337ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
338{ 432{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
340 434
341 if (!ptr && size) 435 if (!ptr && size)
342 { 436 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 438 abort ();
355typedef struct 449typedef struct
356{ 450{
357 WL head; 451 WL head;
358 unsigned char events; 452 unsigned char events;
359 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char egen; /* generation counter to counter epoll bugs */
360#if EV_SELECT_IS_WINSOCKET 456#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 457 SOCKET handle;
362#endif 458#endif
363} ANFD; 459} ANFD;
364 460
367 W w; 463 W w;
368 int events; 464 int events;
369} ANPENDING; 465} ANPENDING;
370 466
371#if EV_USE_INOTIFY 467#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */
372typedef struct 469typedef struct
373{ 470{
374 WL head; 471 WL head;
375} ANFS; 472} ANFS;
473#endif
474
475/* Heap Entry */
476#if EV_HEAP_CACHE_AT
477 typedef struct {
478 ev_tstamp at;
479 WT w;
480 } ANHE;
481
482 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else
486 typedef WT ANHE;
487
488 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he)
376#endif 491#endif
377 492
378#if EV_MULTIPLICITY 493#if EV_MULTIPLICITY
379 494
380 struct ev_loop 495 struct ev_loop
451 ts.tv_sec = (time_t)delay; 566 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 567 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 568
454 nanosleep (&ts, 0); 569 nanosleep (&ts, 0);
455#elif defined(_WIN32) 570#elif defined(_WIN32)
456 Sleep (delay * 1e3); 571 Sleep ((unsigned long)(delay * 1e3));
457#else 572#else
458 struct timeval tv; 573 struct timeval tv;
459 574
460 tv.tv_sec = (time_t)delay; 575 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */
463 select (0, 0, 0, 0, &tv); 581 select (0, 0, 0, 0, &tv);
464#endif 582#endif
465 } 583 }
466} 584}
467 585
468/*****************************************************************************/ 586/*****************************************************************************/
587
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 589
470int inline_size 590int inline_size
471array_nextsize (int elem, int cur, int cnt) 591array_nextsize (int elem, int cur, int cnt)
472{ 592{
473 int ncur = cur + 1; 593 int ncur = cur + 1;
474 594
475 do 595 do
476 ncur <<= 1; 596 ncur <<= 1;
477 while (cnt > ncur); 597 while (cnt > ncur);
478 598
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 601 {
482 ncur *= elem; 602 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 604 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 605 ncur /= elem;
486 } 606 }
487 607
488 return ncur; 608 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 612array_realloc (int elem, void *base, int *cur, int cnt)
493{ 613{
494 *cur = array_nextsize (elem, *cur, cnt); 614 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 615 return ev_realloc (base, elem * *cur);
496} 616}
617
618#define array_init_zero(base,count) \
619 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 620
498#define array_needsize(type,base,cur,cnt,init) \ 621#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 622 if (expect_false ((cnt) > (cur))) \
500 { \ 623 { \
501 int ocur_ = (cur); \ 624 int ocur_ = (cur); \
545 ev_feed_event (EV_A_ events [i], type); 668 ev_feed_event (EV_A_ events [i], type);
546} 669}
547 670
548/*****************************************************************************/ 671/*****************************************************************************/
549 672
550void inline_size
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed 673void inline_speed
564fd_event (EV_P_ int fd, int revents) 674fd_event (EV_P_ int fd, int revents)
565{ 675{
566 ANFD *anfd = anfds + fd; 676 ANFD *anfd = anfds + fd;
567 ev_io *w; 677 ev_io *w;
599 events |= (unsigned char)w->events; 709 events |= (unsigned char)w->events;
600 710
601#if EV_SELECT_IS_WINSOCKET 711#if EV_SELECT_IS_WINSOCKET
602 if (events) 712 if (events)
603 { 713 {
604 unsigned long argp; 714 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 715 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 717 #else
608 anfd->handle = _get_osfhandle (fd); 718 anfd->handle = _get_osfhandle (fd);
609 #endif 719 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 721 }
612#endif 722#endif
613 723
614 { 724 {
615 unsigned char o_events = anfd->events; 725 unsigned char o_events = anfd->events;
668{ 778{
669 int fd; 779 int fd;
670 780
671 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 782 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 783 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 784 fd_kill (EV_A_ fd);
675} 785}
676 786
677/* called on ENOMEM in select/poll to kill some fds and retry */ 787/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 788static void noinline
696 806
697 for (fd = 0; fd < anfdmax; ++fd) 807 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 808 if (anfds [fd].events)
699 { 809 {
700 anfds [fd].events = 0; 810 anfds [fd].events = 0;
811 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 812 fd_change (EV_A_ fd, EV_IOFDSET | 1);
702 } 813 }
703} 814}
704 815
705/*****************************************************************************/ 816/*****************************************************************************/
706 817
818/*
819 * the heap functions want a real array index. array index 0 uis guaranteed to not
820 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
821 * the branching factor of the d-tree.
822 */
823
824/*
825 * at the moment we allow libev the luxury of two heaps,
826 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
827 * which is more cache-efficient.
828 * the difference is about 5% with 50000+ watchers.
829 */
830#if EV_USE_4HEAP
831
832#define DHEAP 4
833#define HEAP0 (DHEAP - 1) /* index of first element in heap */
834#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
835#define UPHEAP_DONE(p,k) ((p) == (k))
836
837/* away from the root */
707void inline_speed 838void inline_speed
708upheap (WT *heap, int k) 839downheap (ANHE *heap, int N, int k)
709{ 840{
710 WT w = heap [k]; 841 ANHE he = heap [k];
842 ANHE *E = heap + N + HEAP0;
711 843
712 while (k) 844 for (;;)
713 { 845 {
714 int p = (k - 1) >> 1; 846 ev_tstamp minat;
847 ANHE *minpos;
848 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 849
716 if (heap [p]->at <= w->at) 850 /* find minimum child */
851 if (expect_true (pos + DHEAP - 1 < E))
852 {
853 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else if (pos < E)
859 {
860 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else
717 break; 866 break;
718 867
868 if (ANHE_at (he) <= minat)
869 break;
870
871 heap [k] = *minpos;
872 ev_active (ANHE_w (*minpos)) = k;
873
874 k = minpos - heap;
875 }
876
877 heap [k] = he;
878 ev_active (ANHE_w (he)) = k;
879}
880
881#else /* 4HEAP */
882
883#define HEAP0 1
884#define HPARENT(k) ((k) >> 1)
885#define UPHEAP_DONE(p,k) (!(p))
886
887/* away from the root */
888void inline_speed
889downheap (ANHE *heap, int N, int k)
890{
891 ANHE he = heap [k];
892
893 for (;;)
894 {
895 int c = k << 1;
896
897 if (c > N + HEAP0 - 1)
898 break;
899
900 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
901 ? 1 : 0;
902
903 if (ANHE_at (he) <= ANHE_at (heap [c]))
904 break;
905
906 heap [k] = heap [c];
907 ev_active (ANHE_w (heap [k])) = k;
908
909 k = c;
910 }
911
912 heap [k] = he;
913 ev_active (ANHE_w (he)) = k;
914}
915#endif
916
917/* towards the root */
918void inline_speed
919upheap (ANHE *heap, int k)
920{
921 ANHE he = heap [k];
922
923 for (;;)
924 {
925 int p = HPARENT (k);
926
927 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
928 break;
929
719 heap [k] = heap [p]; 930 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 931 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 932 k = p;
722 } 933 }
723 934
724 heap [k] = w; 935 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 936 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 937}
755 938
756void inline_size 939void inline_size
757adjustheap (WT *heap, int N, int k) 940adjustheap (ANHE *heap, int N, int k)
758{ 941{
942 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 943 upheap (heap, k);
944 else
760 downheap (heap, N, k); 945 downheap (heap, N, k);
946}
947
948/* rebuild the heap: this function is used only once and executed rarely */
949void inline_size
950reheap (ANHE *heap, int N)
951{
952 int i;
953
954 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
955 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
956 for (i = 0; i < N; ++i)
957 upheap (heap, i + HEAP0);
761} 958}
762 959
763/*****************************************************************************/ 960/*****************************************************************************/
764 961
765typedef struct 962typedef struct
771static ANSIG *signals; 968static ANSIG *signals;
772static int signalmax; 969static int signalmax;
773 970
774static EV_ATOMIC_T gotsig; 971static EV_ATOMIC_T gotsig;
775 972
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/ 973/*****************************************************************************/
789 974
790void inline_speed 975void inline_speed
791fd_intern (int fd) 976fd_intern (int fd)
792{ 977{
793#ifdef _WIN32 978#ifdef _WIN32
794 int arg = 1; 979 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 980 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 981#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 982 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 983 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 984#endif
802static void noinline 987static void noinline
803evpipe_init (EV_P) 988evpipe_init (EV_P)
804{ 989{
805 if (!ev_is_active (&pipeev)) 990 if (!ev_is_active (&pipeev))
806 { 991 {
992#if EV_USE_EVENTFD
993 if ((evfd = eventfd (0, 0)) >= 0)
994 {
995 evpipe [0] = -1;
996 fd_intern (evfd);
997 ev_io_set (&pipeev, evfd, EV_READ);
998 }
999 else
1000#endif
1001 {
807 while (pipe (evpipe)) 1002 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1003 syserr ("(libev) error creating signal/async pipe");
809 1004
810 fd_intern (evpipe [0]); 1005 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1006 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1007 ev_io_set (&pipeev, evpipe [0], EV_READ);
1008 }
1009
814 ev_io_start (EV_A_ &pipeev); 1010 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1011 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1012 }
817} 1013}
818 1014
819void inline_size 1015void inline_size
820evpipe_write (EV_P_ int sig, int async) 1016evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1017{
822 int sent = gotasync || gotsig; 1018 if (!*flag)
823
824 if (sig) gotsig = 1;
825 if (async) gotasync = 1;
826
827 if (!sent)
828 { 1019 {
829 int old_errno = errno; /* save errno becaue write might clobber it */ 1020 int old_errno = errno; /* save errno because write might clobber it */
1021
1022 *flag = 1;
1023
1024#if EV_USE_EVENTFD
1025 if (evfd >= 0)
1026 {
1027 uint64_t counter = 1;
1028 write (evfd, &counter, sizeof (uint64_t));
1029 }
1030 else
1031#endif
830 write (evpipe [1], &old_errno, 1); 1032 write (evpipe [1], &old_errno, 1);
1033
831 errno = old_errno; 1034 errno = old_errno;
832 } 1035 }
833} 1036}
834 1037
835static void 1038static void
836pipecb (EV_P_ ev_io *iow, int revents) 1039pipecb (EV_P_ ev_io *iow, int revents)
837{ 1040{
1041#if EV_USE_EVENTFD
1042 if (evfd >= 0)
838 { 1043 {
839 int dummy; 1044 uint64_t counter;
1045 read (evfd, &counter, sizeof (uint64_t));
1046 }
1047 else
1048#endif
1049 {
1050 char dummy;
840 read (evpipe [0], &dummy, 1); 1051 read (evpipe [0], &dummy, 1);
841 } 1052 }
842 1053
843 if (gotsig && ev_is_default_loop (EV_A)) 1054 if (gotsig && ev_is_default_loop (EV_A))
844 { 1055 {
845 int signum; 1056 int signum;
846 gotsig = 0; 1057 gotsig = 0;
867} 1078}
868 1079
869/*****************************************************************************/ 1080/*****************************************************************************/
870 1081
871static void 1082static void
872sighandler (int signum) 1083ev_sighandler (int signum)
873{ 1084{
874#if EV_MULTIPLICITY 1085#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 1086 struct ev_loop *loop = &default_loop_struct;
876#endif 1087#endif
877 1088
878#if _WIN32 1089#if _WIN32
879 signal (signum, sighandler); 1090 signal (signum, ev_sighandler);
880#endif 1091#endif
881 1092
882 signals [signum - 1].gotsig = 1; 1093 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0); 1094 evpipe_write (EV_A_ &gotsig);
884} 1095}
885 1096
886void noinline 1097void noinline
887ev_feed_signal_event (EV_P_ int signum) 1098ev_feed_signal_event (EV_P_ int signum)
888{ 1099{
914#ifndef WIFCONTINUED 1125#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 1126# define WIFCONTINUED(status) 0
916#endif 1127#endif
917 1128
918void inline_speed 1129void inline_speed
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1130child_reap (EV_P_ int chain, int pid, int status)
920{ 1131{
921 ev_child *w; 1132 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1133 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 1134
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1135 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 1136 {
926 if ((w->pid == pid || !w->pid) 1137 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 1138 && (!traced || (w->flags & 1)))
928 { 1139 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1140 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 1141 w->rpid = pid;
931 w->rstatus = status; 1142 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1143 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 1144 }
934 } 1145 }
948 if (!WCONTINUED 1159 if (!WCONTINUED
949 || errno != EINVAL 1160 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1161 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 1162 return;
952 1163
953 /* make sure we are called again until all childs have been reaped */ 1164 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 1165 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1166 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 1167
957 child_reap (EV_A_ sw, pid, pid, status); 1168 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 1169 if (EV_PID_HASHSIZE > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1170 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 1171}
961 1172
962#endif 1173#endif
963 1174
964/*****************************************************************************/ 1175/*****************************************************************************/
1107 if (!(flags & EVFLAG_NOENV) 1318 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure () 1319 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS")) 1320 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS")); 1321 flags = atoi (getenv ("LIBEV_FLAGS"));
1111 1322
1112 if (!(flags & 0x0000ffffUL)) 1323 if (!(flags & 0x0000ffffU))
1113 flags |= ev_recommended_backends (); 1324 flags |= ev_recommended_backends ();
1114 1325
1115#if EV_USE_PORT 1326#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 1328#endif
1141 if (ev_is_active (&pipeev)) 1352 if (ev_is_active (&pipeev))
1142 { 1353 {
1143 ev_ref (EV_A); /* signal watcher */ 1354 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev); 1355 ev_io_stop (EV_A_ &pipeev);
1145 1356
1146 close (evpipe [0]); evpipe [0] = 0; 1357#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 1358 if (evfd >= 0)
1359 close (evfd);
1360#endif
1361
1362 if (evpipe [0] >= 0)
1363 {
1364 close (evpipe [0]);
1365 close (evpipe [1]);
1366 }
1148 } 1367 }
1149 1368
1150#if EV_USE_INOTIFY 1369#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 1370 if (fs_fd >= 0)
1152 close (fs_fd); 1371 close (fs_fd);
1197#endif 1416#endif
1198 1417
1199 backend = 0; 1418 backend = 0;
1200} 1419}
1201 1420
1421#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 1422void inline_size infy_fork (EV_P);
1423#endif
1203 1424
1204void inline_size 1425void inline_size
1205loop_fork (EV_P) 1426loop_fork (EV_P)
1206{ 1427{
1207#if EV_USE_PORT 1428#if EV_USE_PORT
1226 gotasync = 1; 1447 gotasync = 1;
1227#endif 1448#endif
1228 1449
1229 ev_ref (EV_A); 1450 ev_ref (EV_A);
1230 ev_io_stop (EV_A_ &pipeev); 1451 ev_io_stop (EV_A_ &pipeev);
1452
1453#if EV_USE_EVENTFD
1454 if (evfd >= 0)
1455 close (evfd);
1456#endif
1457
1458 if (evpipe [0] >= 0)
1459 {
1231 close (evpipe [0]); 1460 close (evpipe [0]);
1232 close (evpipe [1]); 1461 close (evpipe [1]);
1462 }
1233 1463
1234 evpipe_init (EV_A); 1464 evpipe_init (EV_A);
1235 /* now iterate over everything, in case we missed something */ 1465 /* now iterate over everything, in case we missed something */
1236 pipecb (EV_A_ &pipeev, EV_READ); 1466 pipecb (EV_A_ &pipeev, EV_READ);
1237 } 1467 }
1238 1468
1239 postfork = 0; 1469 postfork = 0;
1240} 1470}
1241 1471
1242#if EV_MULTIPLICITY 1472#if EV_MULTIPLICITY
1473
1243struct ev_loop * 1474struct ev_loop *
1244ev_loop_new (unsigned int flags) 1475ev_loop_new (unsigned int flags)
1245{ 1476{
1246 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1477 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1247 1478
1266ev_loop_fork (EV_P) 1497ev_loop_fork (EV_P)
1267{ 1498{
1268 postfork = 1; /* must be in line with ev_default_fork */ 1499 postfork = 1; /* must be in line with ev_default_fork */
1269} 1500}
1270 1501
1502#if EV_VERIFY
1503static void noinline
1504verify_watcher (EV_P_ W w)
1505{
1506 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1507
1508 if (w->pending)
1509 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1510}
1511
1512static void noinline
1513verify_heap (EV_P_ ANHE *heap, int N)
1514{
1515 int i;
1516
1517 for (i = HEAP0; i < N + HEAP0; ++i)
1518 {
1519 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1520 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1521 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1522
1523 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1524 }
1525}
1526
1527static void noinline
1528array_verify (EV_P_ W *ws, int cnt)
1529{
1530 while (cnt--)
1531 {
1532 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1533 verify_watcher (EV_A_ ws [cnt]);
1534 }
1535}
1536#endif
1537
1538void
1539ev_loop_verify (EV_P)
1540{
1541#if EV_VERIFY
1542 int i;
1543 WL w;
1544
1545 assert (activecnt >= -1);
1546
1547 assert (fdchangemax >= fdchangecnt);
1548 for (i = 0; i < fdchangecnt; ++i)
1549 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1550
1551 assert (anfdmax >= 0);
1552 for (i = 0; i < anfdmax; ++i)
1553 for (w = anfds [i].head; w; w = w->next)
1554 {
1555 verify_watcher (EV_A_ (W)w);
1556 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1557 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1558 }
1559
1560 assert (timermax >= timercnt);
1561 verify_heap (EV_A_ timers, timercnt);
1562
1563#if EV_PERIODIC_ENABLE
1564 assert (periodicmax >= periodiccnt);
1565 verify_heap (EV_A_ periodics, periodiccnt);
1566#endif
1567
1568 for (i = NUMPRI; i--; )
1569 {
1570 assert (pendingmax [i] >= pendingcnt [i]);
1571#if EV_IDLE_ENABLE
1572 assert (idleall >= 0);
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1271#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1272 1602
1273#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1274struct ev_loop * 1604struct ev_loop *
1275ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1276#else 1606#else
1309{ 1639{
1310#if EV_MULTIPLICITY 1640#if EV_MULTIPLICITY
1311 struct ev_loop *loop = ev_default_loop_ptr; 1641 struct ev_loop *loop = ev_default_loop_ptr;
1312#endif 1642#endif
1313 1643
1644 ev_default_loop_ptr = 0;
1645
1314#ifndef _WIN32 1646#ifndef _WIN32
1315 ev_ref (EV_A); /* child watcher */ 1647 ev_ref (EV_A); /* child watcher */
1316 ev_signal_stop (EV_A_ &childev); 1648 ev_signal_stop (EV_A_ &childev);
1317#endif 1649#endif
1318 1650
1352 { 1684 {
1353 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1685 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1354 1686
1355 p->w->pending = 0; 1687 p->w->pending = 0;
1356 EV_CB_INVOKE (p->w, p->events); 1688 EV_CB_INVOKE (p->w, p->events);
1689 EV_FREQUENT_CHECK;
1357 } 1690 }
1358 } 1691 }
1359} 1692}
1360
1361void inline_size
1362timers_reify (EV_P)
1363{
1364 while (timercnt && ((WT)timers [0])->at <= mn_now)
1365 {
1366 ev_timer *w = (ev_timer *)timers [0];
1367
1368 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1369
1370 /* first reschedule or stop timer */
1371 if (w->repeat)
1372 {
1373 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1374
1375 ((WT)w)->at += w->repeat;
1376 if (((WT)w)->at < mn_now)
1377 ((WT)w)->at = mn_now;
1378
1379 downheap (timers, timercnt, 0);
1380 }
1381 else
1382 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1383
1384 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1385 }
1386}
1387
1388#if EV_PERIODIC_ENABLE
1389void inline_size
1390periodics_reify (EV_P)
1391{
1392 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1393 {
1394 ev_periodic *w = (ev_periodic *)periodics [0];
1395
1396 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1397
1398 /* first reschedule or stop timer */
1399 if (w->reschedule_cb)
1400 {
1401 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1402 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1403 downheap (periodics, periodiccnt, 0);
1404 }
1405 else if (w->interval)
1406 {
1407 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1408 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1409 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1410 downheap (periodics, periodiccnt, 0);
1411 }
1412 else
1413 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1414
1415 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1416 }
1417}
1418
1419static void noinline
1420periodics_reschedule (EV_P)
1421{
1422 int i;
1423
1424 /* adjust periodics after time jump */
1425 for (i = 0; i < periodiccnt; ++i)
1426 {
1427 ev_periodic *w = (ev_periodic *)periodics [i];
1428
1429 if (w->reschedule_cb)
1430 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1431 else if (w->interval)
1432 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1433 }
1434
1435 /* now rebuild the heap */
1436 for (i = periodiccnt >> 1; i--; )
1437 downheap (periodics, periodiccnt, i);
1438}
1439#endif
1440 1693
1441#if EV_IDLE_ENABLE 1694#if EV_IDLE_ENABLE
1442void inline_size 1695void inline_size
1443idle_reify (EV_P) 1696idle_reify (EV_P)
1444{ 1697{
1456 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1709 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1457 break; 1710 break;
1458 } 1711 }
1459 } 1712 }
1460 } 1713 }
1714}
1715#endif
1716
1717void inline_size
1718timers_reify (EV_P)
1719{
1720 EV_FREQUENT_CHECK;
1721
1722 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1723 {
1724 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1725
1726 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1727
1728 /* first reschedule or stop timer */
1729 if (w->repeat)
1730 {
1731 ev_at (w) += w->repeat;
1732 if (ev_at (w) < mn_now)
1733 ev_at (w) = mn_now;
1734
1735 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1736
1737 ANHE_at_cache (timers [HEAP0]);
1738 downheap (timers, timercnt, HEAP0);
1739 }
1740 else
1741 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1742
1743 EV_FREQUENT_CHECK;
1744 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1745 }
1746}
1747
1748#if EV_PERIODIC_ENABLE
1749void inline_size
1750periodics_reify (EV_P)
1751{
1752 EV_FREQUENT_CHECK;
1753
1754 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1755 {
1756 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1757
1758 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->reschedule_cb)
1762 {
1763 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1764
1765 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1766
1767 ANHE_at_cache (periodics [HEAP0]);
1768 downheap (periodics, periodiccnt, HEAP0);
1769 }
1770 else if (w->interval)
1771 {
1772 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1773 /* if next trigger time is not sufficiently in the future, put it there */
1774 /* this might happen because of floating point inexactness */
1775 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1776 {
1777 ev_at (w) += w->interval;
1778
1779 /* if interval is unreasonably low we might still have a time in the past */
1780 /* so correct this. this will make the periodic very inexact, but the user */
1781 /* has effectively asked to get triggered more often than possible */
1782 if (ev_at (w) < ev_rt_now)
1783 ev_at (w) = ev_rt_now;
1784 }
1785
1786 ANHE_at_cache (periodics [HEAP0]);
1787 downheap (periodics, periodiccnt, HEAP0);
1788 }
1789 else
1790 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1791
1792 EV_FREQUENT_CHECK;
1793 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1794 }
1795}
1796
1797static void noinline
1798periodics_reschedule (EV_P)
1799{
1800 int i;
1801
1802 /* adjust periodics after time jump */
1803 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1804 {
1805 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1806
1807 if (w->reschedule_cb)
1808 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1809 else if (w->interval)
1810 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1811
1812 ANHE_at_cache (periodics [i]);
1813 }
1814
1815 reheap (periodics, periodiccnt);
1461} 1816}
1462#endif 1817#endif
1463 1818
1464void inline_speed 1819void inline_speed
1465time_update (EV_P_ ev_tstamp max_block) 1820time_update (EV_P_ ev_tstamp max_block)
1494 */ 1849 */
1495 for (i = 4; --i; ) 1850 for (i = 4; --i; )
1496 { 1851 {
1497 rtmn_diff = ev_rt_now - mn_now; 1852 rtmn_diff = ev_rt_now - mn_now;
1498 1853
1499 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1854 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1500 return; /* all is well */ 1855 return; /* all is well */
1501 1856
1502 ev_rt_now = ev_time (); 1857 ev_rt_now = ev_time ();
1503 mn_now = get_clock (); 1858 mn_now = get_clock ();
1504 now_floor = mn_now; 1859 now_floor = mn_now;
1520#if EV_PERIODIC_ENABLE 1875#if EV_PERIODIC_ENABLE
1521 periodics_reschedule (EV_A); 1876 periodics_reschedule (EV_A);
1522#endif 1877#endif
1523 /* adjust timers. this is easy, as the offset is the same for all of them */ 1878 /* adjust timers. this is easy, as the offset is the same for all of them */
1524 for (i = 0; i < timercnt; ++i) 1879 for (i = 0; i < timercnt; ++i)
1880 {
1881 ANHE *he = timers + i + HEAP0;
1525 ((WT)timers [i])->at += ev_rt_now - mn_now; 1882 ANHE_w (*he)->at += ev_rt_now - mn_now;
1883 ANHE_at_cache (*he);
1884 }
1526 } 1885 }
1527 1886
1528 mn_now = ev_rt_now; 1887 mn_now = ev_rt_now;
1529 } 1888 }
1530} 1889}
1539ev_unref (EV_P) 1898ev_unref (EV_P)
1540{ 1899{
1541 --activecnt; 1900 --activecnt;
1542} 1901}
1543 1902
1903void
1904ev_now_update (EV_P)
1905{
1906 time_update (EV_A_ 1e100);
1907}
1908
1544static int loop_done; 1909static int loop_done;
1545 1910
1546void 1911void
1547ev_loop (EV_P_ int flags) 1912ev_loop (EV_P_ int flags)
1548{ 1913{
1549 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1914 loop_done = EVUNLOOP_CANCEL;
1550 ? EVUNLOOP_ONE
1551 : EVUNLOOP_CANCEL;
1552 1915
1553 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1916 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1554 1917
1555 do 1918 do
1556 { 1919 {
1920#if EV_VERIFY >= 2
1921 ev_loop_verify (EV_A);
1922#endif
1923
1557#ifndef _WIN32 1924#ifndef _WIN32
1558 if (expect_false (curpid)) /* penalise the forking check even more */ 1925 if (expect_false (curpid)) /* penalise the forking check even more */
1559 if (expect_false (getpid () != curpid)) 1926 if (expect_false (getpid () != curpid))
1560 { 1927 {
1561 curpid = getpid (); 1928 curpid = getpid ();
1602 1969
1603 waittime = MAX_BLOCKTIME; 1970 waittime = MAX_BLOCKTIME;
1604 1971
1605 if (timercnt) 1972 if (timercnt)
1606 { 1973 {
1607 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1608 if (waittime > to) waittime = to; 1975 if (waittime > to) waittime = to;
1609 } 1976 }
1610 1977
1611#if EV_PERIODIC_ENABLE 1978#if EV_PERIODIC_ENABLE
1612 if (periodiccnt) 1979 if (periodiccnt)
1613 { 1980 {
1614 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1981 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1615 if (waittime > to) waittime = to; 1982 if (waittime > to) waittime = to;
1616 } 1983 }
1617#endif 1984#endif
1618 1985
1619 if (expect_false (waittime < timeout_blocktime)) 1986 if (expect_false (waittime < timeout_blocktime))
1652 /* queue check watchers, to be executed first */ 2019 /* queue check watchers, to be executed first */
1653 if (expect_false (checkcnt)) 2020 if (expect_false (checkcnt))
1654 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2021 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1655 2022
1656 call_pending (EV_A); 2023 call_pending (EV_A);
1657
1658 } 2024 }
1659 while (expect_true (activecnt && !loop_done)); 2025 while (expect_true (
2026 activecnt
2027 && !loop_done
2028 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2029 ));
1660 2030
1661 if (loop_done == EVUNLOOP_ONE) 2031 if (loop_done == EVUNLOOP_ONE)
1662 loop_done = EVUNLOOP_CANCEL; 2032 loop_done = EVUNLOOP_CANCEL;
1663} 2033}
1664 2034
1752 2122
1753 if (expect_false (ev_is_active (w))) 2123 if (expect_false (ev_is_active (w)))
1754 return; 2124 return;
1755 2125
1756 assert (("ev_io_start called with negative fd", fd >= 0)); 2126 assert (("ev_io_start called with negative fd", fd >= 0));
2127 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2128
2129 EV_FREQUENT_CHECK;
1757 2130
1758 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1759 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1760 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1761 2134
1762 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1763 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1764} 2139}
1765 2140
1766void noinline 2141void noinline
1767ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1768{ 2143{
1769 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1771 return; 2146 return;
1772 2147
1773 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
1774 2151
1775 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1777 2154
1778 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1779} 2158}
1780 2159
1781void noinline 2160void noinline
1782ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1783{ 2162{
1784 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1785 return; 2164 return;
1786 2165
1787 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1788 2167
1789 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1790 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1791 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1792 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1793 timers [timercnt - 1] = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1794 upheap (timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1795 2178
2179 EV_FREQUENT_CHECK;
2180
1796 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1797} 2182}
1798 2183
1799void noinline 2184void noinline
1800ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1801{ 2186{
1802 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1804 return; 2189 return;
1805 2190
1806 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2191 EV_FREQUENT_CHECK;
1807 2192
1808 { 2193 {
1809 int active = ((W)w)->active; 2194 int active = ev_active (w);
1810 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1811 if (expect_true (--active < --timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1812 { 2201 {
1813 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1814 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1815 } 2204 }
1816 } 2205 }
1817 2206
1818 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1819 2210
1820 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1821} 2212}
1822 2213
1823void noinline 2214void noinline
1824ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1825{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1826 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1827 { 2220 {
1828 if (w->repeat) 2221 if (w->repeat)
1829 { 2222 {
1830 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1831 adjustheap (timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1832 } 2226 }
1833 else 2227 else
1834 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1835 } 2229 }
1836 else if (w->repeat) 2230 else if (w->repeat)
1837 { 2231 {
1838 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1839 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1840 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1841} 2237}
1842 2238
1843#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1844void noinline 2240void noinline
1845ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1846{ 2242{
1847 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1848 return; 2244 return;
1849 2245
1850 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1851 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1852 else if (w->interval) 2248 else if (w->interval)
1853 { 2249 {
1854 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1855 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1856 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1857 } 2253 }
1858 else 2254 else
1859 ((WT)w)->at = w->offset; 2255 ev_at (w) = w->offset;
1860 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1861 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1862 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1863 periodics [periodiccnt - 1] = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1864 upheap (periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1865 2265
2266 EV_FREQUENT_CHECK;
2267
1866 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1867} 2269}
1868 2270
1869void noinline 2271void noinline
1870ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1871{ 2273{
1872 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1874 return; 2276 return;
1875 2277
1876 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2278 EV_FREQUENT_CHECK;
1877 2279
1878 { 2280 {
1879 int active = ((W)w)->active; 2281 int active = ev_active (w);
1880 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1881 if (expect_true (--active < --periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1882 { 2288 {
1883 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1884 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1885 } 2291 }
1886 } 2292 }
1887 2293
2294 EV_FREQUENT_CHECK;
2295
1888 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1889} 2297}
1890 2298
1891void noinline 2299void noinline
1892ev_periodic_again (EV_P_ ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1911 return; 2319 return;
1912 2320
1913 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1914 2322
1915 evpipe_init (EV_A); 2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
1916 2326
1917 { 2327 {
1918#ifndef _WIN32 2328#ifndef _WIN32
1919 sigset_t full, prev; 2329 sigset_t full, prev;
1920 sigfillset (&full); 2330 sigfillset (&full);
1921 sigprocmask (SIG_SETMASK, &full, &prev); 2331 sigprocmask (SIG_SETMASK, &full, &prev);
1922#endif 2332#endif
1923 2333
1924 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2334 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1925 2335
1926#ifndef _WIN32 2336#ifndef _WIN32
1927 sigprocmask (SIG_SETMASK, &prev, 0); 2337 sigprocmask (SIG_SETMASK, &prev, 0);
1928#endif 2338#endif
1929 } 2339 }
1932 wlist_add (&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1933 2343
1934 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1935 { 2345 {
1936#if _WIN32 2346#if _WIN32
1937 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1938#else 2348#else
1939 struct sigaction sa; 2349 struct sigaction sa;
1940 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1941 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1942 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1943 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1944#endif 2354#endif
1945 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
1946} 2358}
1947 2359
1948void noinline 2360void noinline
1949ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1950{ 2362{
1951 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1952 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
1953 return; 2365 return;
1954 2366
2367 EV_FREQUENT_CHECK;
2368
1955 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1956 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1957 2371
1958 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1959 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
1960} 2376}
1961 2377
1962void 2378void
1963ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1964{ 2380{
1966 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1967#endif 2383#endif
1968 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
1969 return; 2385 return;
1970 2386
2387 EV_FREQUENT_CHECK;
2388
1971 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1972 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
1973} 2393}
1974 2394
1975void 2395void
1976ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1977{ 2397{
1978 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
1980 return; 2400 return;
1981 2401
2402 EV_FREQUENT_CHECK;
2403
1982 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1983 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1984} 2408}
1985 2409
1986#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
1987 2411
1988# ifdef _WIN32 2412# ifdef _WIN32
2006 if (w->wd < 0) 2430 if (w->wd < 0)
2007 { 2431 {
2008 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2009 2433
2010 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2011 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2012 { 2438 {
2013 char path [4096]; 2439 char path [4096];
2014 strcpy (path, w->path); 2440 strcpy (path, w->path);
2015 2441
2055 2481
2056static void noinline 2482static void noinline
2057infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2058{ 2484{
2059 if (slot < 0) 2485 if (slot < 0)
2060 /* overflow, need to check for all hahs slots */ 2486 /* overflow, need to check for all hash slots */
2061 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2062 infy_wd (EV_A_ slot, wd, ev); 2488 infy_wd (EV_A_ slot, wd, ev);
2063 else 2489 else
2064 { 2490 {
2065 WL w_; 2491 WL w_;
2099infy_init (EV_P) 2525infy_init (EV_P)
2100{ 2526{
2101 if (fs_fd != -2) 2527 if (fs_fd != -2)
2102 return; 2528 return;
2103 2529
2530 /* kernels < 2.6.25 are borked
2531 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2532 */
2533 {
2534 struct utsname buf;
2535 int major, minor, micro;
2536
2537 fs_fd = -1;
2538
2539 if (uname (&buf))
2540 return;
2541
2542 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2543 return;
2544
2545 if (major < 2
2546 || (major == 2 && minor < 6)
2547 || (major == 2 && minor == 6 && micro < 25))
2548 return;
2549 }
2550
2104 fs_fd = inotify_init (); 2551 fs_fd = inotify_init ();
2105 2552
2106 if (fs_fd >= 0) 2553 if (fs_fd >= 0)
2107 { 2554 {
2108 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2555 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2137 if (fs_fd >= 0) 2584 if (fs_fd >= 0)
2138 infy_add (EV_A_ w); /* re-add, no matter what */ 2585 infy_add (EV_A_ w); /* re-add, no matter what */
2139 else 2586 else
2140 ev_timer_start (EV_A_ &w->timer); 2587 ev_timer_start (EV_A_ &w->timer);
2141 } 2588 }
2142
2143 } 2589 }
2144} 2590}
2145 2591
2592#endif
2593
2594#ifdef _WIN32
2595# define EV_LSTAT(p,b) _stati64 (p, b)
2596#else
2597# define EV_LSTAT(p,b) lstat (p, b)
2146#endif 2598#endif
2147 2599
2148void 2600void
2149ev_stat_stat (EV_P_ ev_stat *w) 2601ev_stat_stat (EV_P_ ev_stat *w)
2150{ 2602{
2177 || w->prev.st_atime != w->attr.st_atime 2629 || w->prev.st_atime != w->attr.st_atime
2178 || w->prev.st_mtime != w->attr.st_mtime 2630 || w->prev.st_mtime != w->attr.st_mtime
2179 || w->prev.st_ctime != w->attr.st_ctime 2631 || w->prev.st_ctime != w->attr.st_ctime
2180 ) { 2632 ) {
2181 #if EV_USE_INOTIFY 2633 #if EV_USE_INOTIFY
2634 if (fs_fd >= 0)
2635 {
2182 infy_del (EV_A_ w); 2636 infy_del (EV_A_ w);
2183 infy_add (EV_A_ w); 2637 infy_add (EV_A_ w);
2184 ev_stat_stat (EV_A_ w); /* avoid race... */ 2638 ev_stat_stat (EV_A_ w); /* avoid race... */
2639 }
2185 #endif 2640 #endif
2186 2641
2187 ev_feed_event (EV_A_ w, EV_STAT); 2642 ev_feed_event (EV_A_ w, EV_STAT);
2188 } 2643 }
2189} 2644}
2214 else 2669 else
2215#endif 2670#endif
2216 ev_timer_start (EV_A_ &w->timer); 2671 ev_timer_start (EV_A_ &w->timer);
2217 2672
2218 ev_start (EV_A_ (W)w, 1); 2673 ev_start (EV_A_ (W)w, 1);
2674
2675 EV_FREQUENT_CHECK;
2219} 2676}
2220 2677
2221void 2678void
2222ev_stat_stop (EV_P_ ev_stat *w) 2679ev_stat_stop (EV_P_ ev_stat *w)
2223{ 2680{
2224 clear_pending (EV_A_ (W)w); 2681 clear_pending (EV_A_ (W)w);
2225 if (expect_false (!ev_is_active (w))) 2682 if (expect_false (!ev_is_active (w)))
2226 return; 2683 return;
2227 2684
2685 EV_FREQUENT_CHECK;
2686
2228#if EV_USE_INOTIFY 2687#if EV_USE_INOTIFY
2229 infy_del (EV_A_ w); 2688 infy_del (EV_A_ w);
2230#endif 2689#endif
2231 ev_timer_stop (EV_A_ &w->timer); 2690 ev_timer_stop (EV_A_ &w->timer);
2232 2691
2233 ev_stop (EV_A_ (W)w); 2692 ev_stop (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2234} 2695}
2235#endif 2696#endif
2236 2697
2237#if EV_IDLE_ENABLE 2698#if EV_IDLE_ENABLE
2238void 2699void
2240{ 2701{
2241 if (expect_false (ev_is_active (w))) 2702 if (expect_false (ev_is_active (w)))
2242 return; 2703 return;
2243 2704
2244 pri_adjust (EV_A_ (W)w); 2705 pri_adjust (EV_A_ (W)w);
2706
2707 EV_FREQUENT_CHECK;
2245 2708
2246 { 2709 {
2247 int active = ++idlecnt [ABSPRI (w)]; 2710 int active = ++idlecnt [ABSPRI (w)];
2248 2711
2249 ++idleall; 2712 ++idleall;
2250 ev_start (EV_A_ (W)w, active); 2713 ev_start (EV_A_ (W)w, active);
2251 2714
2252 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2715 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2253 idles [ABSPRI (w)][active - 1] = w; 2716 idles [ABSPRI (w)][active - 1] = w;
2254 } 2717 }
2718
2719 EV_FREQUENT_CHECK;
2255} 2720}
2256 2721
2257void 2722void
2258ev_idle_stop (EV_P_ ev_idle *w) 2723ev_idle_stop (EV_P_ ev_idle *w)
2259{ 2724{
2260 clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2262 return; 2727 return;
2263 2728
2729 EV_FREQUENT_CHECK;
2730
2264 { 2731 {
2265 int active = ((W)w)->active; 2732 int active = ev_active (w);
2266 2733
2267 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2734 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2268 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2735 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2269 2736
2270 ev_stop (EV_A_ (W)w); 2737 ev_stop (EV_A_ (W)w);
2271 --idleall; 2738 --idleall;
2272 } 2739 }
2740
2741 EV_FREQUENT_CHECK;
2273} 2742}
2274#endif 2743#endif
2275 2744
2276void 2745void
2277ev_prepare_start (EV_P_ ev_prepare *w) 2746ev_prepare_start (EV_P_ ev_prepare *w)
2278{ 2747{
2279 if (expect_false (ev_is_active (w))) 2748 if (expect_false (ev_is_active (w)))
2280 return; 2749 return;
2750
2751 EV_FREQUENT_CHECK;
2281 2752
2282 ev_start (EV_A_ (W)w, ++preparecnt); 2753 ev_start (EV_A_ (W)w, ++preparecnt);
2283 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2284 prepares [preparecnt - 1] = w; 2755 prepares [preparecnt - 1] = w;
2756
2757 EV_FREQUENT_CHECK;
2285} 2758}
2286 2759
2287void 2760void
2288ev_prepare_stop (EV_P_ ev_prepare *w) 2761ev_prepare_stop (EV_P_ ev_prepare *w)
2289{ 2762{
2290 clear_pending (EV_A_ (W)w); 2763 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 2764 if (expect_false (!ev_is_active (w)))
2292 return; 2765 return;
2293 2766
2767 EV_FREQUENT_CHECK;
2768
2294 { 2769 {
2295 int active = ((W)w)->active; 2770 int active = ev_active (w);
2771
2296 prepares [active - 1] = prepares [--preparecnt]; 2772 prepares [active - 1] = prepares [--preparecnt];
2297 ((W)prepares [active - 1])->active = active; 2773 ev_active (prepares [active - 1]) = active;
2298 } 2774 }
2299 2775
2300 ev_stop (EV_A_ (W)w); 2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2301} 2779}
2302 2780
2303void 2781void
2304ev_check_start (EV_P_ ev_check *w) 2782ev_check_start (EV_P_ ev_check *w)
2305{ 2783{
2306 if (expect_false (ev_is_active (w))) 2784 if (expect_false (ev_is_active (w)))
2307 return; 2785 return;
2786
2787 EV_FREQUENT_CHECK;
2308 2788
2309 ev_start (EV_A_ (W)w, ++checkcnt); 2789 ev_start (EV_A_ (W)w, ++checkcnt);
2310 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2790 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2311 checks [checkcnt - 1] = w; 2791 checks [checkcnt - 1] = w;
2792
2793 EV_FREQUENT_CHECK;
2312} 2794}
2313 2795
2314void 2796void
2315ev_check_stop (EV_P_ ev_check *w) 2797ev_check_stop (EV_P_ ev_check *w)
2316{ 2798{
2317 clear_pending (EV_A_ (W)w); 2799 clear_pending (EV_A_ (W)w);
2318 if (expect_false (!ev_is_active (w))) 2800 if (expect_false (!ev_is_active (w)))
2319 return; 2801 return;
2320 2802
2803 EV_FREQUENT_CHECK;
2804
2321 { 2805 {
2322 int active = ((W)w)->active; 2806 int active = ev_active (w);
2807
2323 checks [active - 1] = checks [--checkcnt]; 2808 checks [active - 1] = checks [--checkcnt];
2324 ((W)checks [active - 1])->active = active; 2809 ev_active (checks [active - 1]) = active;
2325 } 2810 }
2326 2811
2327 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2328} 2815}
2329 2816
2330#if EV_EMBED_ENABLE 2817#if EV_EMBED_ENABLE
2331void noinline 2818void noinline
2332ev_embed_sweep (EV_P_ ev_embed *w) 2819ev_embed_sweep (EV_P_ ev_embed *w)
2359 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2846 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2360 } 2847 }
2361 } 2848 }
2362} 2849}
2363 2850
2851static void
2852embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 ev_loop_fork (EV_A);
2860 }
2861}
2862
2364#if 0 2863#if 0
2365static void 2864static void
2366embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2865embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2367{ 2866{
2368 ev_idle_stop (EV_A_ idle); 2867 ev_idle_stop (EV_A_ idle);
2379 struct ev_loop *loop = w->other; 2878 struct ev_loop *loop = w->other;
2380 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2879 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2381 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2880 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2382 } 2881 }
2383 2882
2883 EV_FREQUENT_CHECK;
2884
2384 ev_set_priority (&w->io, ev_priority (w)); 2885 ev_set_priority (&w->io, ev_priority (w));
2385 ev_io_start (EV_A_ &w->io); 2886 ev_io_start (EV_A_ &w->io);
2386 2887
2387 ev_prepare_init (&w->prepare, embed_prepare_cb); 2888 ev_prepare_init (&w->prepare, embed_prepare_cb);
2388 ev_set_priority (&w->prepare, EV_MINPRI); 2889 ev_set_priority (&w->prepare, EV_MINPRI);
2389 ev_prepare_start (EV_A_ &w->prepare); 2890 ev_prepare_start (EV_A_ &w->prepare);
2390 2891
2892 ev_fork_init (&w->fork, embed_fork_cb);
2893 ev_fork_start (EV_A_ &w->fork);
2894
2391 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2895 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2392 2896
2393 ev_start (EV_A_ (W)w, 1); 2897 ev_start (EV_A_ (W)w, 1);
2898
2899 EV_FREQUENT_CHECK;
2394} 2900}
2395 2901
2396void 2902void
2397ev_embed_stop (EV_P_ ev_embed *w) 2903ev_embed_stop (EV_P_ ev_embed *w)
2398{ 2904{
2399 clear_pending (EV_A_ (W)w); 2905 clear_pending (EV_A_ (W)w);
2400 if (expect_false (!ev_is_active (w))) 2906 if (expect_false (!ev_is_active (w)))
2401 return; 2907 return;
2402 2908
2909 EV_FREQUENT_CHECK;
2910
2403 ev_io_stop (EV_A_ &w->io); 2911 ev_io_stop (EV_A_ &w->io);
2404 ev_prepare_stop (EV_A_ &w->prepare); 2912 ev_prepare_stop (EV_A_ &w->prepare);
2913 ev_fork_stop (EV_A_ &w->fork);
2405 2914
2406 ev_stop (EV_A_ (W)w); 2915 EV_FREQUENT_CHECK;
2407} 2916}
2408#endif 2917#endif
2409 2918
2410#if EV_FORK_ENABLE 2919#if EV_FORK_ENABLE
2411void 2920void
2412ev_fork_start (EV_P_ ev_fork *w) 2921ev_fork_start (EV_P_ ev_fork *w)
2413{ 2922{
2414 if (expect_false (ev_is_active (w))) 2923 if (expect_false (ev_is_active (w)))
2415 return; 2924 return;
2925
2926 EV_FREQUENT_CHECK;
2416 2927
2417 ev_start (EV_A_ (W)w, ++forkcnt); 2928 ev_start (EV_A_ (W)w, ++forkcnt);
2418 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2929 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2419 forks [forkcnt - 1] = w; 2930 forks [forkcnt - 1] = w;
2931
2932 EV_FREQUENT_CHECK;
2420} 2933}
2421 2934
2422void 2935void
2423ev_fork_stop (EV_P_ ev_fork *w) 2936ev_fork_stop (EV_P_ ev_fork *w)
2424{ 2937{
2425 clear_pending (EV_A_ (W)w); 2938 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w))) 2939 if (expect_false (!ev_is_active (w)))
2427 return; 2940 return;
2428 2941
2942 EV_FREQUENT_CHECK;
2943
2429 { 2944 {
2430 int active = ((W)w)->active; 2945 int active = ev_active (w);
2946
2431 forks [active - 1] = forks [--forkcnt]; 2947 forks [active - 1] = forks [--forkcnt];
2432 ((W)forks [active - 1])->active = active; 2948 ev_active (forks [active - 1]) = active;
2433 } 2949 }
2434 2950
2435 ev_stop (EV_A_ (W)w); 2951 ev_stop (EV_A_ (W)w);
2952
2953 EV_FREQUENT_CHECK;
2436} 2954}
2437#endif 2955#endif
2438 2956
2439#if EV_ASYNC_ENABLE 2957#if EV_ASYNC_ENABLE
2440void 2958void
2442{ 2960{
2443 if (expect_false (ev_is_active (w))) 2961 if (expect_false (ev_is_active (w)))
2444 return; 2962 return;
2445 2963
2446 evpipe_init (EV_A); 2964 evpipe_init (EV_A);
2965
2966 EV_FREQUENT_CHECK;
2447 2967
2448 ev_start (EV_A_ (W)w, ++asynccnt); 2968 ev_start (EV_A_ (W)w, ++asynccnt);
2449 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2969 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2450 asyncs [asynccnt - 1] = w; 2970 asyncs [asynccnt - 1] = w;
2971
2972 EV_FREQUENT_CHECK;
2451} 2973}
2452 2974
2453void 2975void
2454ev_async_stop (EV_P_ ev_async *w) 2976ev_async_stop (EV_P_ ev_async *w)
2455{ 2977{
2456 clear_pending (EV_A_ (W)w); 2978 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w))) 2979 if (expect_false (!ev_is_active (w)))
2458 return; 2980 return;
2459 2981
2982 EV_FREQUENT_CHECK;
2983
2460 { 2984 {
2461 int active = ((W)w)->active; 2985 int active = ev_active (w);
2986
2462 asyncs [active - 1] = asyncs [--asynccnt]; 2987 asyncs [active - 1] = asyncs [--asynccnt];
2463 ((W)asyncs [active - 1])->active = active; 2988 ev_active (asyncs [active - 1]) = active;
2464 } 2989 }
2465 2990
2466 ev_stop (EV_A_ (W)w); 2991 ev_stop (EV_A_ (W)w);
2992
2993 EV_FREQUENT_CHECK;
2467} 2994}
2468 2995
2469void 2996void
2470ev_async_send (EV_P_ ev_async *w) 2997ev_async_send (EV_P_ ev_async *w)
2471{ 2998{
2472 w->sent = 1; 2999 w->sent = 1;
2473 evpipe_write (EV_A_ 0, 1); 3000 evpipe_write (EV_A_ &gotasync);
2474} 3001}
2475#endif 3002#endif
2476 3003
2477/*****************************************************************************/ 3004/*****************************************************************************/
2478 3005
2488once_cb (EV_P_ struct ev_once *once, int revents) 3015once_cb (EV_P_ struct ev_once *once, int revents)
2489{ 3016{
2490 void (*cb)(int revents, void *arg) = once->cb; 3017 void (*cb)(int revents, void *arg) = once->cb;
2491 void *arg = once->arg; 3018 void *arg = once->arg;
2492 3019
2493 ev_io_stop (EV_A_ &once->io); 3020 ev_io_stop (EV_A_ &once->io);
2494 ev_timer_stop (EV_A_ &once->to); 3021 ev_timer_stop (EV_A_ &once->to);
2495 ev_free (once); 3022 ev_free (once);
2496 3023
2497 cb (revents, arg); 3024 cb (revents, arg);
2498} 3025}
2499 3026
2500static void 3027static void
2501once_cb_io (EV_P_ ev_io *w, int revents) 3028once_cb_io (EV_P_ ev_io *w, int revents)
2502{ 3029{
2503 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2504} 3033}
2505 3034
2506static void 3035static void
2507once_cb_to (EV_P_ ev_timer *w, int revents) 3036once_cb_to (EV_P_ ev_timer *w, int revents)
2508{ 3037{
2509 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3038 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3039
3040 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2510} 3041}
2511 3042
2512void 3043void
2513ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3044ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2514{ 3045{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines