ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.213 by root, Tue Feb 19 19:13:50 2008 UTC vs.
Revision 1.428 by root, Tue May 8 15:44:09 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
141#else 184#else
142# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
143#endif 197#endif
144 198
145#ifndef _WIN32 199#ifndef _WIN32
146# include <sys/time.h> 200# include <sys/time.h>
147# include <sys/wait.h> 201# include <sys/wait.h>
148# include <unistd.h> 202# include <unistd.h>
149#else 203#else
204# include <io.h>
150# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 206# include <windows.h>
207# include <winsock2.h>
152# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
154# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
155#endif 261# endif
156 262#endif
157/**/
158 263
159#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
160# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
161#endif 270#endif
162 271
163#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 274#endif
166 275
167#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
168# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
169#endif 282#endif
170 283
171#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 286#endif
174 287
175#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
176# ifdef _WIN32 289# ifdef _WIN32
177# define EV_USE_POLL 0 290# define EV_USE_POLL 0
178# else 291# else
179# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 293# endif
181#endif 294#endif
182 295
183#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
184# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
185#endif 302#endif
186 303
187#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
189#endif 306#endif
191#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 309# define EV_USE_PORT 0
193#endif 310#endif
194 311
195#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
196# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
317# endif
197#endif 318#endif
198 319
199#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 331# else
203# define EV_PID_HASHSIZE 16 332# define EV_USE_EVENTFD 0
204# endif 333# endif
205#endif 334#endif
206 335
207#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 338# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 339# else
211# define EV_INOTIFY_HASHSIZE 16 340# define EV_USE_SIGNALFD 0
212# endif 341# endif
213#endif 342#endif
214 343
215/**/ 344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
216 383
217#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
220#endif 387#endif
228# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
230#endif 397#endif
231 398
232#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
234# include <sys/select.h> 402# include <sys/select.h>
235# endif 403# endif
236#endif 404#endif
237 405
238#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
239# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
240#endif 414#endif
241 415
242#if EV_SELECT_IS_WINSOCKET 416#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 417# include <winsock.h>
244#endif 418#endif
245 419
420#if EV_USE_EVENTFD
421/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
422# include <stdint.h>
423# ifndef EFD_NONBLOCK
424# define EFD_NONBLOCK O_NONBLOCK
425# endif
426# ifndef EFD_CLOEXEC
427# ifdef O_CLOEXEC
428# define EFD_CLOEXEC O_CLOEXEC
429# else
430# define EFD_CLOEXEC 02000000
431# endif
432# endif
433EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
434#endif
435
436#if EV_USE_SIGNALFD
437/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
438# include <stdint.h>
439# ifndef SFD_NONBLOCK
440# define SFD_NONBLOCK O_NONBLOCK
441# endif
442# ifndef SFD_CLOEXEC
443# ifdef O_CLOEXEC
444# define SFD_CLOEXEC O_CLOEXEC
445# else
446# define SFD_CLOEXEC 02000000
447# endif
448# endif
449EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
450
451struct signalfd_siginfo
452{
453 uint32_t ssi_signo;
454 char pad[128 - sizeof (uint32_t)];
455};
456#endif
457
246/**/ 458/**/
247 459
460#if EV_VERIFY >= 3
461# define EV_FREQUENT_CHECK ev_verify (EV_A)
462#else
463# define EV_FREQUENT_CHECK do { } while (0)
464#endif
465
248/* 466/*
249 * This is used to avoid floating point rounding problems. 467 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 468 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 469 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 470#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
471/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 472
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 473#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 474#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 475
476#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
477#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
478
479/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
480/* ECB.H BEGIN */
481/*
482 * libecb - http://software.schmorp.de/pkg/libecb
483 *
484 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
485 * Copyright (©) 2011 Emanuele Giaquinta
486 * All rights reserved.
487 *
488 * Redistribution and use in source and binary forms, with or without modifica-
489 * tion, are permitted provided that the following conditions are met:
490 *
491 * 1. Redistributions of source code must retain the above copyright notice,
492 * this list of conditions and the following disclaimer.
493 *
494 * 2. Redistributions in binary form must reproduce the above copyright
495 * notice, this list of conditions and the following disclaimer in the
496 * documentation and/or other materials provided with the distribution.
497 *
498 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
499 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
500 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
501 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
502 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
503 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
504 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
505 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
506 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
507 * OF THE POSSIBILITY OF SUCH DAMAGE.
508 */
509
510#ifndef ECB_H
511#define ECB_H
512
513#ifdef _WIN32
514 typedef signed char int8_t;
515 typedef unsigned char uint8_t;
516 typedef signed short int16_t;
517 typedef unsigned short uint16_t;
518 typedef signed int int32_t;
519 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 520 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 521 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 522 typedef unsigned long long uint64_t;
523 #else /* _MSC_VER || __BORLANDC__ */
524 typedef signed __int64 int64_t;
525 typedef unsigned __int64 uint64_t;
526 #endif
265#else 527#else
266# define expect(expr,value) (expr) 528 #include <inttypes.h>
267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif 529#endif
530
531/* many compilers define _GNUC_ to some versions but then only implement
532 * what their idiot authors think are the "more important" extensions,
533 * causing enormous grief in return for some better fake benchmark numbers.
534 * or so.
535 * we try to detect these and simply assume they are not gcc - if they have
536 * an issue with that they should have done it right in the first place.
537 */
538#ifndef ECB_GCC_VERSION
539 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
540 #define ECB_GCC_VERSION(major,minor) 0
541 #else
542 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
271#endif 543 #endif
544#endif
272 545
546/*****************************************************************************/
547
548/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
549/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
550
551#if ECB_NO_THREADS
552# define ECB_NO_SMP 1
553#endif
554
555#if ECB_NO_THREADS || ECB_NO_SMP
556 #define ECB_MEMORY_FENCE do { } while (0)
557#endif
558
559#ifndef ECB_MEMORY_FENCE
560 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
561 #if __i386 || __i386__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
564 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
565 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
568 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
569 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
570 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
571 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
572 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
573 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
574 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
575 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
576 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
577 #elif __sparc || __sparc__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
579 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
580 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
581 #elif defined __s390__ || defined __s390x__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
583 #elif defined __mips__
584 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
585 #elif defined __alpha__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
587 #endif
588 #endif
589#endif
590
591#ifndef ECB_MEMORY_FENCE
592 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
593 #define ECB_MEMORY_FENCE __sync_synchronize ()
594 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
595 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
596 #elif _MSC_VER >= 1400 /* VC++ 2005 */
597 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
598 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
599 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
600 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
601 #elif defined _WIN32
602 #include <WinNT.h>
603 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
604 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
605 #include <mbarrier.h>
606 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
607 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
608 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
609 #elif __xlC__
610 #define ECB_MEMORY_FENCE __sync ()
611 #endif
612#endif
613
614#ifndef ECB_MEMORY_FENCE
615 #if !ECB_AVOID_PTHREADS
616 /*
617 * if you get undefined symbol references to pthread_mutex_lock,
618 * or failure to find pthread.h, then you should implement
619 * the ECB_MEMORY_FENCE operations for your cpu/compiler
620 * OR provide pthread.h and link against the posix thread library
621 * of your system.
622 */
623 #include <pthread.h>
624 #define ECB_NEEDS_PTHREADS 1
625 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
626
627 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
628 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
629 #endif
630#endif
631
632#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
634#endif
635
636#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
637 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
638#endif
639
640/*****************************************************************************/
641
642#define ECB_C99 (__STDC_VERSION__ >= 199901L)
643
644#if __cplusplus
645 #define ecb_inline static inline
646#elif ECB_GCC_VERSION(2,5)
647 #define ecb_inline static __inline__
648#elif ECB_C99
649 #define ecb_inline static inline
650#else
651 #define ecb_inline static
652#endif
653
654#if ECB_GCC_VERSION(3,3)
655 #define ecb_restrict __restrict__
656#elif ECB_C99
657 #define ecb_restrict restrict
658#else
659 #define ecb_restrict
660#endif
661
662typedef int ecb_bool;
663
664#define ECB_CONCAT_(a, b) a ## b
665#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
666#define ECB_STRINGIFY_(a) # a
667#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
668
669#define ecb_function_ ecb_inline
670
671#if ECB_GCC_VERSION(3,1)
672 #define ecb_attribute(attrlist) __attribute__(attrlist)
673 #define ecb_is_constant(expr) __builtin_constant_p (expr)
674 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
675 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
676#else
677 #define ecb_attribute(attrlist)
678 #define ecb_is_constant(expr) 0
679 #define ecb_expect(expr,value) (expr)
680 #define ecb_prefetch(addr,rw,locality)
681#endif
682
683/* no emulation for ecb_decltype */
684#if ECB_GCC_VERSION(4,5)
685 #define ecb_decltype(x) __decltype(x)
686#elif ECB_GCC_VERSION(3,0)
687 #define ecb_decltype(x) __typeof(x)
688#endif
689
690#define ecb_noinline ecb_attribute ((__noinline__))
691#define ecb_noreturn ecb_attribute ((__noreturn__))
692#define ecb_unused ecb_attribute ((__unused__))
693#define ecb_const ecb_attribute ((__const__))
694#define ecb_pure ecb_attribute ((__pure__))
695
696#if ECB_GCC_VERSION(4,3)
697 #define ecb_artificial ecb_attribute ((__artificial__))
698 #define ecb_hot ecb_attribute ((__hot__))
699 #define ecb_cold ecb_attribute ((__cold__))
700#else
701 #define ecb_artificial
702 #define ecb_hot
703 #define ecb_cold
704#endif
705
706/* put around conditional expressions if you are very sure that the */
707/* expression is mostly true or mostly false. note that these return */
708/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 709#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 710#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
711/* for compatibility to the rest of the world */
712#define ecb_likely(expr) ecb_expect_true (expr)
713#define ecb_unlikely(expr) ecb_expect_false (expr)
714
715/* count trailing zero bits and count # of one bits */
716#if ECB_GCC_VERSION(3,4)
717 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
718 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
719 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
720 #define ecb_ctz32(x) __builtin_ctz (x)
721 #define ecb_ctz64(x) __builtin_ctzll (x)
722 #define ecb_popcount32(x) __builtin_popcount (x)
723 /* no popcountll */
724#else
725 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
726 ecb_function_ int
727 ecb_ctz32 (uint32_t x)
728 {
729 int r = 0;
730
731 x &= ~x + 1; /* this isolates the lowest bit */
732
733#if ECB_branchless_on_i386
734 r += !!(x & 0xaaaaaaaa) << 0;
735 r += !!(x & 0xcccccccc) << 1;
736 r += !!(x & 0xf0f0f0f0) << 2;
737 r += !!(x & 0xff00ff00) << 3;
738 r += !!(x & 0xffff0000) << 4;
739#else
740 if (x & 0xaaaaaaaa) r += 1;
741 if (x & 0xcccccccc) r += 2;
742 if (x & 0xf0f0f0f0) r += 4;
743 if (x & 0xff00ff00) r += 8;
744 if (x & 0xffff0000) r += 16;
745#endif
746
747 return r;
748 }
749
750 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
751 ecb_function_ int
752 ecb_ctz64 (uint64_t x)
753 {
754 int shift = x & 0xffffffffU ? 0 : 32;
755 return ecb_ctz32 (x >> shift) + shift;
756 }
757
758 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
759 ecb_function_ int
760 ecb_popcount32 (uint32_t x)
761 {
762 x -= (x >> 1) & 0x55555555;
763 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
764 x = ((x >> 4) + x) & 0x0f0f0f0f;
765 x *= 0x01010101;
766
767 return x >> 24;
768 }
769
770 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
771 ecb_function_ int ecb_ld32 (uint32_t x)
772 {
773 int r = 0;
774
775 if (x >> 16) { x >>= 16; r += 16; }
776 if (x >> 8) { x >>= 8; r += 8; }
777 if (x >> 4) { x >>= 4; r += 4; }
778 if (x >> 2) { x >>= 2; r += 2; }
779 if (x >> 1) { r += 1; }
780
781 return r;
782 }
783
784 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
785 ecb_function_ int ecb_ld64 (uint64_t x)
786 {
787 int r = 0;
788
789 if (x >> 32) { x >>= 32; r += 32; }
790
791 return r + ecb_ld32 (x);
792 }
793#endif
794
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
796ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
797{
798 return ( (x * 0x0802U & 0x22110U)
799 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
800}
801
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
803ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
804{
805 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
806 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
807 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
808 x = ( x >> 8 ) | ( x << 8);
809
810 return x;
811}
812
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
814ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
815{
816 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
817 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
818 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
819 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
820 x = ( x >> 16 ) | ( x << 16);
821
822 return x;
823}
824
825/* popcount64 is only available on 64 bit cpus as gcc builtin */
826/* so for this version we are lazy */
827ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
828ecb_function_ int
829ecb_popcount64 (uint64_t x)
830{
831 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
832}
833
834ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
841ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
842
843ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
844ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
845ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
846ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
847ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
848ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
849ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
850ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
851
852#if ECB_GCC_VERSION(4,3)
853 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
854 #define ecb_bswap32(x) __builtin_bswap32 (x)
855 #define ecb_bswap64(x) __builtin_bswap64 (x)
856#else
857 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
858 ecb_function_ uint16_t
859 ecb_bswap16 (uint16_t x)
860 {
861 return ecb_rotl16 (x, 8);
862 }
863
864 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
865 ecb_function_ uint32_t
866 ecb_bswap32 (uint32_t x)
867 {
868 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
869 }
870
871 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
872 ecb_function_ uint64_t
873 ecb_bswap64 (uint64_t x)
874 {
875 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
876 }
877#endif
878
879#if ECB_GCC_VERSION(4,5)
880 #define ecb_unreachable() __builtin_unreachable ()
881#else
882 /* this seems to work fine, but gcc always emits a warning for it :/ */
883 ecb_inline void ecb_unreachable (void) ecb_noreturn;
884 ecb_inline void ecb_unreachable (void) { }
885#endif
886
887/* try to tell the compiler that some condition is definitely true */
888#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
889
890ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
891ecb_inline unsigned char
892ecb_byteorder_helper (void)
893{
894 const uint32_t u = 0x11223344;
895 return *(unsigned char *)&u;
896}
897
898ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
899ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
900ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
901ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
902
903#if ECB_GCC_VERSION(3,0) || ECB_C99
904 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
905#else
906 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
907#endif
908
909#if __cplusplus
910 template<typename T>
911 static inline T ecb_div_rd (T val, T div)
912 {
913 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
914 }
915 template<typename T>
916 static inline T ecb_div_ru (T val, T div)
917 {
918 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
919 }
920#else
921 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
922 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
923#endif
924
925#if ecb_cplusplus_does_not_suck
926 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
927 template<typename T, int N>
928 static inline int ecb_array_length (const T (&arr)[N])
929 {
930 return N;
931 }
932#else
933 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
934#endif
935
936#endif
937
938/* ECB.H END */
939
940#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
941/* if your architecture doesn't need memory fences, e.g. because it is
942 * single-cpu/core, or if you use libev in a project that doesn't use libev
943 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
944 * libev, in which cases the memory fences become nops.
945 * alternatively, you can remove this #error and link against libpthread,
946 * which will then provide the memory fences.
947 */
948# error "memory fences not defined for your architecture, please report"
949#endif
950
951#ifndef ECB_MEMORY_FENCE
952# define ECB_MEMORY_FENCE do { } while (0)
953# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
954# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
955#endif
956
957#define expect_false(cond) ecb_expect_false (cond)
958#define expect_true(cond) ecb_expect_true (cond)
959#define noinline ecb_noinline
960
275#define inline_size static inline 961#define inline_size ecb_inline
276 962
277#if EV_MINIMAL 963#if EV_FEATURE_CODE
964# define inline_speed ecb_inline
965#else
278# define inline_speed static noinline 966# define inline_speed static noinline
967#endif
968
969#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
970
971#if EV_MINPRI == EV_MAXPRI
972# define ABSPRI(w) (((W)w), 0)
279#else 973#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 974# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
975#endif
285 976
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 977#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 978#define EMPTY2(a,b) /* used to suppress some warnings */
288 979
289typedef ev_watcher *W; 980typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 981typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 982typedef ev_watcher_time *WT;
292 983
984#define ev_active(w) ((W)(w))->active
985#define ev_at(w) ((WT)(w))->at
986
987#if EV_USE_REALTIME
988/* sig_atomic_t is used to avoid per-thread variables or locking but still */
989/* giving it a reasonably high chance of working on typical architectures */
990static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
991#endif
992
293#if EV_USE_MONOTONIC 993#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 994static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
995#endif
996
997#ifndef EV_FD_TO_WIN32_HANDLE
998# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
999#endif
1000#ifndef EV_WIN32_HANDLE_TO_FD
1001# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1002#endif
1003#ifndef EV_WIN32_CLOSE_FD
1004# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1005#endif
298 1006
299#ifdef _WIN32 1007#ifdef _WIN32
300# include "ev_win32.c" 1008# include "ev_win32.c"
301#endif 1009#endif
302 1010
303/*****************************************************************************/ 1011/*****************************************************************************/
304 1012
1013/* define a suitable floor function (only used by periodics atm) */
1014
1015#if EV_USE_FLOOR
1016# include <math.h>
1017# define ev_floor(v) floor (v)
1018#else
1019
1020#include <float.h>
1021
1022/* a floor() replacement function, should be independent of ev_tstamp type */
1023static ev_tstamp noinline
1024ev_floor (ev_tstamp v)
1025{
1026 /* the choice of shift factor is not terribly important */
1027#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1028 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1029#else
1030 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1031#endif
1032
1033 /* argument too large for an unsigned long? */
1034 if (expect_false (v >= shift))
1035 {
1036 ev_tstamp f;
1037
1038 if (v == v - 1.)
1039 return v; /* very large number */
1040
1041 f = shift * ev_floor (v * (1. / shift));
1042 return f + ev_floor (v - f);
1043 }
1044
1045 /* special treatment for negative args? */
1046 if (expect_false (v < 0.))
1047 {
1048 ev_tstamp f = -ev_floor (-v);
1049
1050 return f - (f == v ? 0 : 1);
1051 }
1052
1053 /* fits into an unsigned long */
1054 return (unsigned long)v;
1055}
1056
1057#endif
1058
1059/*****************************************************************************/
1060
1061#ifdef __linux
1062# include <sys/utsname.h>
1063#endif
1064
1065static unsigned int noinline ecb_cold
1066ev_linux_version (void)
1067{
1068#ifdef __linux
1069 unsigned int v = 0;
1070 struct utsname buf;
1071 int i;
1072 char *p = buf.release;
1073
1074 if (uname (&buf))
1075 return 0;
1076
1077 for (i = 3+1; --i; )
1078 {
1079 unsigned int c = 0;
1080
1081 for (;;)
1082 {
1083 if (*p >= '0' && *p <= '9')
1084 c = c * 10 + *p++ - '0';
1085 else
1086 {
1087 p += *p == '.';
1088 break;
1089 }
1090 }
1091
1092 v = (v << 8) | c;
1093 }
1094
1095 return v;
1096#else
1097 return 0;
1098#endif
1099}
1100
1101/*****************************************************************************/
1102
1103#if EV_AVOID_STDIO
1104static void noinline ecb_cold
1105ev_printerr (const char *msg)
1106{
1107 write (STDERR_FILENO, msg, strlen (msg));
1108}
1109#endif
1110
305static void (*syserr_cb)(const char *msg); 1111static void (*syserr_cb)(const char *msg) EV_THROW;
306 1112
307void 1113void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1114ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
309{ 1115{
310 syserr_cb = cb; 1116 syserr_cb = cb;
311} 1117}
312 1118
313static void noinline 1119static void noinline ecb_cold
314syserr (const char *msg) 1120ev_syserr (const char *msg)
315{ 1121{
316 if (!msg) 1122 if (!msg)
317 msg = "(libev) system error"; 1123 msg = "(libev) system error";
318 1124
319 if (syserr_cb) 1125 if (syserr_cb)
320 syserr_cb (msg); 1126 syserr_cb (msg);
321 else 1127 else
322 { 1128 {
1129#if EV_AVOID_STDIO
1130 ev_printerr (msg);
1131 ev_printerr (": ");
1132 ev_printerr (strerror (errno));
1133 ev_printerr ("\n");
1134#else
323 perror (msg); 1135 perror (msg);
1136#endif
324 abort (); 1137 abort ();
325 } 1138 }
326} 1139}
327 1140
1141static void *
1142ev_realloc_emul (void *ptr, long size)
1143{
1144#if __GLIBC__
1145 return realloc (ptr, size);
1146#else
1147 /* some systems, notably openbsd and darwin, fail to properly
1148 * implement realloc (x, 0) (as required by both ansi c-89 and
1149 * the single unix specification, so work around them here.
1150 */
1151
1152 if (size)
1153 return realloc (ptr, size);
1154
1155 free (ptr);
1156 return 0;
1157#endif
1158}
1159
328static void *(*alloc)(void *ptr, long size); 1160static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
329 1161
330void 1162void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1163ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
332{ 1164{
333 alloc = cb; 1165 alloc = cb;
334} 1166}
335 1167
336inline_speed void * 1168inline_speed void *
337ev_realloc (void *ptr, long size) 1169ev_realloc (void *ptr, long size)
338{ 1170{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1171 ptr = alloc (ptr, size);
340 1172
341 if (!ptr && size) 1173 if (!ptr && size)
342 { 1174 {
1175#if EV_AVOID_STDIO
1176 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1177#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1178 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1179#endif
344 abort (); 1180 abort ();
345 } 1181 }
346 1182
347 return ptr; 1183 return ptr;
348} 1184}
350#define ev_malloc(size) ev_realloc (0, (size)) 1186#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1187#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1188
353/*****************************************************************************/ 1189/*****************************************************************************/
354 1190
1191/* set in reify when reification needed */
1192#define EV_ANFD_REIFY 1
1193
1194/* file descriptor info structure */
355typedef struct 1195typedef struct
356{ 1196{
357 WL head; 1197 WL head;
358 unsigned char events; 1198 unsigned char events; /* the events watched for */
1199 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1200 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1201 unsigned char unused;
1202#if EV_USE_EPOLL
1203 unsigned int egen; /* generation counter to counter epoll bugs */
1204#endif
360#if EV_SELECT_IS_WINSOCKET 1205#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1206 SOCKET handle;
362#endif 1207#endif
1208#if EV_USE_IOCP
1209 OVERLAPPED or, ow;
1210#endif
363} ANFD; 1211} ANFD;
364 1212
1213/* stores the pending event set for a given watcher */
365typedef struct 1214typedef struct
366{ 1215{
367 W w; 1216 W w;
368 int events; 1217 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1218} ANPENDING;
370 1219
371#if EV_USE_INOTIFY 1220#if EV_USE_INOTIFY
1221/* hash table entry per inotify-id */
372typedef struct 1222typedef struct
373{ 1223{
374 WL head; 1224 WL head;
375} ANFS; 1225} ANFS;
1226#endif
1227
1228/* Heap Entry */
1229#if EV_HEAP_CACHE_AT
1230 /* a heap element */
1231 typedef struct {
1232 ev_tstamp at;
1233 WT w;
1234 } ANHE;
1235
1236 #define ANHE_w(he) (he).w /* access watcher, read-write */
1237 #define ANHE_at(he) (he).at /* access cached at, read-only */
1238 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1239#else
1240 /* a heap element */
1241 typedef WT ANHE;
1242
1243 #define ANHE_w(he) (he)
1244 #define ANHE_at(he) (he)->at
1245 #define ANHE_at_cache(he)
376#endif 1246#endif
377 1247
378#if EV_MULTIPLICITY 1248#if EV_MULTIPLICITY
379 1249
380 struct ev_loop 1250 struct ev_loop
386 #undef VAR 1256 #undef VAR
387 }; 1257 };
388 #include "ev_wrap.h" 1258 #include "ev_wrap.h"
389 1259
390 static struct ev_loop default_loop_struct; 1260 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1261 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1262
393#else 1263#else
394 1264
395 ev_tstamp ev_rt_now; 1265 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1266 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1267 #include "ev_vars.h"
398 #undef VAR 1268 #undef VAR
399 1269
400 static int ev_default_loop_ptr; 1270 static int ev_default_loop_ptr;
401 1271
402#endif 1272#endif
403 1273
1274#if EV_FEATURE_API
1275# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1276# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1277# define EV_INVOKE_PENDING invoke_cb (EV_A)
1278#else
1279# define EV_RELEASE_CB (void)0
1280# define EV_ACQUIRE_CB (void)0
1281# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1282#endif
1283
1284#define EVBREAK_RECURSE 0x80
1285
404/*****************************************************************************/ 1286/*****************************************************************************/
405 1287
1288#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1289ev_tstamp
407ev_time (void) 1290ev_time (void) EV_THROW
408{ 1291{
409#if EV_USE_REALTIME 1292#if EV_USE_REALTIME
1293 if (expect_true (have_realtime))
1294 {
410 struct timespec ts; 1295 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1296 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1297 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1298 }
1299#endif
1300
414 struct timeval tv; 1301 struct timeval tv;
415 gettimeofday (&tv, 0); 1302 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1303 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1304}
1305#endif
419 1306
420ev_tstamp inline_size 1307inline_size ev_tstamp
421get_clock (void) 1308get_clock (void)
422{ 1309{
423#if EV_USE_MONOTONIC 1310#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1311 if (expect_true (have_monotonic))
425 { 1312 {
432 return ev_time (); 1319 return ev_time ();
433} 1320}
434 1321
435#if EV_MULTIPLICITY 1322#if EV_MULTIPLICITY
436ev_tstamp 1323ev_tstamp
437ev_now (EV_P) 1324ev_now (EV_P) EV_THROW
438{ 1325{
439 return ev_rt_now; 1326 return ev_rt_now;
440} 1327}
441#endif 1328#endif
442 1329
443void 1330void
444ev_sleep (ev_tstamp delay) 1331ev_sleep (ev_tstamp delay) EV_THROW
445{ 1332{
446 if (delay > 0.) 1333 if (delay > 0.)
447 { 1334 {
448#if EV_USE_NANOSLEEP 1335#if EV_USE_NANOSLEEP
449 struct timespec ts; 1336 struct timespec ts;
450 1337
451 ts.tv_sec = (time_t)delay; 1338 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1339 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1340#elif defined _WIN32
456 Sleep (delay * 1e3); 1341 Sleep ((unsigned long)(delay * 1e3));
457#else 1342#else
458 struct timeval tv; 1343 struct timeval tv;
459 1344
460 tv.tv_sec = (time_t)delay; 1345 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1346 /* something not guaranteed by newer posix versions, but guaranteed */
462 1347 /* by older ones */
1348 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1349 select (0, 0, 0, 0, &tv);
464#endif 1350#endif
465 } 1351 }
466} 1352}
467 1353
468/*****************************************************************************/ 1354/*****************************************************************************/
469 1355
470int inline_size 1356#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1357
1358/* find a suitable new size for the given array, */
1359/* hopefully by rounding to a nice-to-malloc size */
1360inline_size int
471array_nextsize (int elem, int cur, int cnt) 1361array_nextsize (int elem, int cur, int cnt)
472{ 1362{
473 int ncur = cur + 1; 1363 int ncur = cur + 1;
474 1364
475 do 1365 do
476 ncur <<= 1; 1366 ncur <<= 1;
477 while (cnt > ncur); 1367 while (cnt > ncur);
478 1368
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1369 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1370 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1371 {
482 ncur *= elem; 1372 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1373 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1374 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1375 ncur /= elem;
486 } 1376 }
487 1377
488 return ncur; 1378 return ncur;
489} 1379}
490 1380
491static noinline void * 1381static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1382array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1383{
494 *cur = array_nextsize (elem, *cur, cnt); 1384 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1385 return ev_realloc (base, elem * *cur);
496} 1386}
1387
1388#define array_init_zero(base,count) \
1389 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1390
498#define array_needsize(type,base,cur,cnt,init) \ 1391#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1392 if (expect_false ((cnt) > (cur))) \
500 { \ 1393 { \
501 int ocur_ = (cur); \ 1394 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1395 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1396 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1397 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1398 }
506 1399
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1406 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1407 }
515#endif 1408#endif
516 1409
517#define array_free(stem, idx) \ 1410#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1411 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1412
520/*****************************************************************************/ 1413/*****************************************************************************/
521 1414
1415/* dummy callback for pending events */
1416static void noinline
1417pendingcb (EV_P_ ev_prepare *w, int revents)
1418{
1419}
1420
522void noinline 1421void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1422ev_feed_event (EV_P_ void *w, int revents) EV_THROW
524{ 1423{
525 W w_ = (W)w; 1424 W w_ = (W)w;
526 int pri = ABSPRI (w_); 1425 int pri = ABSPRI (w_);
527 1426
528 if (expect_false (w_->pending)) 1427 if (expect_false (w_->pending))
532 w_->pending = ++pendingcnt [pri]; 1431 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1432 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_; 1433 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1434 pendings [pri][w_->pending - 1].events = revents;
536 } 1435 }
537}
538 1436
539void inline_speed 1437 pendingpri = NUMPRI - 1;
1438}
1439
1440inline_speed void
1441feed_reverse (EV_P_ W w)
1442{
1443 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1444 rfeeds [rfeedcnt++] = w;
1445}
1446
1447inline_size void
1448feed_reverse_done (EV_P_ int revents)
1449{
1450 do
1451 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1452 while (rfeedcnt);
1453}
1454
1455inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1456queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1457{
542 int i; 1458 int i;
543 1459
544 for (i = 0; i < eventcnt; ++i) 1460 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1461 ev_feed_event (EV_A_ events [i], type);
546} 1462}
547 1463
548/*****************************************************************************/ 1464/*****************************************************************************/
549 1465
550void inline_size 1466inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1467fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1468{
566 ANFD *anfd = anfds + fd; 1469 ANFD *anfd = anfds + fd;
567 ev_io *w; 1470 ev_io *w;
568 1471
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1472 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1476 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1477 ev_feed_event (EV_A_ (W)w, ev);
575 } 1478 }
576} 1479}
577 1480
1481/* do not submit kernel events for fds that have reify set */
1482/* because that means they changed while we were polling for new events */
1483inline_speed void
1484fd_event (EV_P_ int fd, int revents)
1485{
1486 ANFD *anfd = anfds + fd;
1487
1488 if (expect_true (!anfd->reify))
1489 fd_event_nocheck (EV_A_ fd, revents);
1490}
1491
578void 1492void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1493ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
580{ 1494{
581 if (fd >= 0 && fd < anfdmax) 1495 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1496 fd_event_nocheck (EV_A_ fd, revents);
583} 1497}
584 1498
585void inline_size 1499/* make sure the external fd watch events are in-sync */
1500/* with the kernel/libev internal state */
1501inline_size void
586fd_reify (EV_P) 1502fd_reify (EV_P)
587{ 1503{
588 int i; 1504 int i;
1505
1506#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1507 for (i = 0; i < fdchangecnt; ++i)
1508 {
1509 int fd = fdchanges [i];
1510 ANFD *anfd = anfds + fd;
1511
1512 if (anfd->reify & EV__IOFDSET && anfd->head)
1513 {
1514 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1515
1516 if (handle != anfd->handle)
1517 {
1518 unsigned long arg;
1519
1520 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1521
1522 /* handle changed, but fd didn't - we need to do it in two steps */
1523 backend_modify (EV_A_ fd, anfd->events, 0);
1524 anfd->events = 0;
1525 anfd->handle = handle;
1526 }
1527 }
1528 }
1529#endif
589 1530
590 for (i = 0; i < fdchangecnt; ++i) 1531 for (i = 0; i < fdchangecnt; ++i)
591 { 1532 {
592 int fd = fdchanges [i]; 1533 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1534 ANFD *anfd = anfds + fd;
594 ev_io *w; 1535 ev_io *w;
595 1536
596 unsigned char events = 0; 1537 unsigned char o_events = anfd->events;
1538 unsigned char o_reify = anfd->reify;
597 1539
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1540 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1541
601#if EV_SELECT_IS_WINSOCKET 1542 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1543 {
604 unsigned long argp; 1544 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1545
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1546 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1547 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1548
609 #endif 1549 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1550 o_reify = EV__IOFDSET; /* actually |= */
611 } 1551 }
612#endif
613 1552
614 { 1553 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1554 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1555 }
625 1556
626 fdchangecnt = 0; 1557 fdchangecnt = 0;
627} 1558}
628 1559
629void inline_size 1560/* something about the given fd changed */
1561inline_size void
630fd_change (EV_P_ int fd, int flags) 1562fd_change (EV_P_ int fd, int flags)
631{ 1563{
632 unsigned char reify = anfds [fd].reify; 1564 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1565 anfds [fd].reify |= flags;
634 1566
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1571 fdchanges [fdchangecnt - 1] = fd;
640 } 1572 }
641} 1573}
642 1574
643void inline_speed 1575/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1576inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 1577fd_kill (EV_P_ int fd)
645{ 1578{
646 ev_io *w; 1579 ev_io *w;
647 1580
648 while ((w = (ev_io *)anfds [fd].head)) 1581 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1583 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1584 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1585 }
653} 1586}
654 1587
655int inline_size 1588/* check whether the given fd is actually valid, for error recovery */
1589inline_size int ecb_cold
656fd_valid (int fd) 1590fd_valid (int fd)
657{ 1591{
658#ifdef _WIN32 1592#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1593 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1594#else
661 return fcntl (fd, F_GETFD) != -1; 1595 return fcntl (fd, F_GETFD) != -1;
662#endif 1596#endif
663} 1597}
664 1598
665/* called on EBADF to verify fds */ 1599/* called on EBADF to verify fds */
666static void noinline 1600static void noinline ecb_cold
667fd_ebadf (EV_P) 1601fd_ebadf (EV_P)
668{ 1602{
669 int fd; 1603 int fd;
670 1604
671 for (fd = 0; fd < anfdmax; ++fd) 1605 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1606 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1607 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1608 fd_kill (EV_A_ fd);
675} 1609}
676 1610
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1611/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1612static void noinline ecb_cold
679fd_enomem (EV_P) 1613fd_enomem (EV_P)
680{ 1614{
681 int fd; 1615 int fd;
682 1616
683 for (fd = anfdmax; fd--; ) 1617 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1618 if (anfds [fd].events)
685 { 1619 {
686 fd_kill (EV_A_ fd); 1620 fd_kill (EV_A_ fd);
687 return; 1621 break;
688 } 1622 }
689} 1623}
690 1624
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1625/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1626static void noinline
696 1630
697 for (fd = 0; fd < anfdmax; ++fd) 1631 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1632 if (anfds [fd].events)
699 { 1633 {
700 anfds [fd].events = 0; 1634 anfds [fd].events = 0;
1635 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1636 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1637 }
703} 1638}
704 1639
705/*****************************************************************************/ 1640/* used to prepare libev internal fd's */
706 1641/* this is not fork-safe */
707void inline_speed 1642inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 1643fd_intern (int fd)
792{ 1644{
793#ifdef _WIN32 1645#ifdef _WIN32
794 int arg = 1; 1646 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1647 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1648#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1649 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1650 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1651#endif
800} 1652}
801 1653
1654/*****************************************************************************/
1655
1656/*
1657 * the heap functions want a real array index. array index 0 is guaranteed to not
1658 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1659 * the branching factor of the d-tree.
1660 */
1661
1662/*
1663 * at the moment we allow libev the luxury of two heaps,
1664 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1665 * which is more cache-efficient.
1666 * the difference is about 5% with 50000+ watchers.
1667 */
1668#if EV_USE_4HEAP
1669
1670#define DHEAP 4
1671#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1672#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1673#define UPHEAP_DONE(p,k) ((p) == (k))
1674
1675/* away from the root */
1676inline_speed void
1677downheap (ANHE *heap, int N, int k)
1678{
1679 ANHE he = heap [k];
1680 ANHE *E = heap + N + HEAP0;
1681
1682 for (;;)
1683 {
1684 ev_tstamp minat;
1685 ANHE *minpos;
1686 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1687
1688 /* find minimum child */
1689 if (expect_true (pos + DHEAP - 1 < E))
1690 {
1691 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1692 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1693 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1694 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1695 }
1696 else if (pos < E)
1697 {
1698 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1699 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1700 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1701 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1702 }
1703 else
1704 break;
1705
1706 if (ANHE_at (he) <= minat)
1707 break;
1708
1709 heap [k] = *minpos;
1710 ev_active (ANHE_w (*minpos)) = k;
1711
1712 k = minpos - heap;
1713 }
1714
1715 heap [k] = he;
1716 ev_active (ANHE_w (he)) = k;
1717}
1718
1719#else /* 4HEAP */
1720
1721#define HEAP0 1
1722#define HPARENT(k) ((k) >> 1)
1723#define UPHEAP_DONE(p,k) (!(p))
1724
1725/* away from the root */
1726inline_speed void
1727downheap (ANHE *heap, int N, int k)
1728{
1729 ANHE he = heap [k];
1730
1731 for (;;)
1732 {
1733 int c = k << 1;
1734
1735 if (c >= N + HEAP0)
1736 break;
1737
1738 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1739 ? 1 : 0;
1740
1741 if (ANHE_at (he) <= ANHE_at (heap [c]))
1742 break;
1743
1744 heap [k] = heap [c];
1745 ev_active (ANHE_w (heap [k])) = k;
1746
1747 k = c;
1748 }
1749
1750 heap [k] = he;
1751 ev_active (ANHE_w (he)) = k;
1752}
1753#endif
1754
1755/* towards the root */
1756inline_speed void
1757upheap (ANHE *heap, int k)
1758{
1759 ANHE he = heap [k];
1760
1761 for (;;)
1762 {
1763 int p = HPARENT (k);
1764
1765 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1766 break;
1767
1768 heap [k] = heap [p];
1769 ev_active (ANHE_w (heap [k])) = k;
1770 k = p;
1771 }
1772
1773 heap [k] = he;
1774 ev_active (ANHE_w (he)) = k;
1775}
1776
1777/* move an element suitably so it is in a correct place */
1778inline_size void
1779adjustheap (ANHE *heap, int N, int k)
1780{
1781 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1782 upheap (heap, k);
1783 else
1784 downheap (heap, N, k);
1785}
1786
1787/* rebuild the heap: this function is used only once and executed rarely */
1788inline_size void
1789reheap (ANHE *heap, int N)
1790{
1791 int i;
1792
1793 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1794 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1795 for (i = 0; i < N; ++i)
1796 upheap (heap, i + HEAP0);
1797}
1798
1799/*****************************************************************************/
1800
1801/* associate signal watchers to a signal signal */
1802typedef struct
1803{
1804 EV_ATOMIC_T pending;
1805#if EV_MULTIPLICITY
1806 EV_P;
1807#endif
1808 WL head;
1809} ANSIG;
1810
1811static ANSIG signals [EV_NSIG - 1];
1812
1813/*****************************************************************************/
1814
1815#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1816
802static void noinline 1817static void noinline ecb_cold
803evpipe_init (EV_P) 1818evpipe_init (EV_P)
804{ 1819{
805 if (!ev_is_active (&pipeev)) 1820 if (!ev_is_active (&pipe_w))
806 { 1821 {
1822# if EV_USE_EVENTFD
1823 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1824 if (evfd < 0 && errno == EINVAL)
1825 evfd = eventfd (0, 0);
1826
1827 if (evfd >= 0)
1828 {
1829 evpipe [0] = -1;
1830 fd_intern (evfd); /* doing it twice doesn't hurt */
1831 ev_io_set (&pipe_w, evfd, EV_READ);
1832 }
1833 else
1834# endif
1835 {
807 while (pipe (evpipe)) 1836 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1837 ev_syserr ("(libev) error creating signal/async pipe");
809 1838
810 fd_intern (evpipe [0]); 1839 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1840 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1841 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1842 }
1843
814 ev_io_start (EV_A_ &pipeev); 1844 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1845 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1846 }
817} 1847}
818 1848
819void inline_size 1849inline_speed void
820evpipe_write (EV_P_ int sig, int async) 1850evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1851{
822 int sent = gotasync || gotsig; 1852 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
823 1853
824 if (sig) gotsig = 1; 1854 if (expect_true (*flag))
825 if (async) gotasync = 1; 1855 return;
826 1856
827 if (!sent) 1857 *flag = 1;
1858
1859 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1860
1861 pipe_write_skipped = 1;
1862
1863 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1864
1865 if (pipe_write_wanted)
828 { 1866 {
1867 int old_errno;
1868
1869 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1870
829 int old_errno = errno; /* save errno becaue write might clobber it */ 1871 old_errno = errno; /* save errno because write will clobber it */
830 write (evpipe [1], &old_errno, 1); 1872
1873#if EV_USE_EVENTFD
1874 if (evfd >= 0)
1875 {
1876 uint64_t counter = 1;
1877 write (evfd, &counter, sizeof (uint64_t));
1878 }
1879 else
1880#endif
1881 {
1882#ifdef _WIN32
1883 WSABUF buf;
1884 DWORD sent;
1885 buf.buf = &buf;
1886 buf.len = 1;
1887 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1888#else
1889 write (evpipe [1], &(evpipe [1]), 1);
1890#endif
1891 }
1892
831 errno = old_errno; 1893 errno = old_errno;
832 } 1894 }
833} 1895}
834 1896
1897/* called whenever the libev signal pipe */
1898/* got some events (signal, async) */
835static void 1899static void
836pipecb (EV_P_ ev_io *iow, int revents) 1900pipecb (EV_P_ ev_io *iow, int revents)
837{ 1901{
1902 int i;
1903
1904 if (revents & EV_READ)
838 { 1905 {
839 int dummy; 1906#if EV_USE_EVENTFD
1907 if (evfd >= 0)
1908 {
1909 uint64_t counter;
1910 read (evfd, &counter, sizeof (uint64_t));
1911 }
1912 else
1913#endif
1914 {
1915 char dummy[4];
1916#ifdef _WIN32
1917 WSABUF buf;
1918 DWORD recvd;
1919 buf.buf = dummy;
1920 buf.len = sizeof (dummy);
1921 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1922#else
840 read (evpipe [0], &dummy, 1); 1923 read (evpipe [0], &dummy, sizeof (dummy));
1924#endif
1925 }
841 } 1926 }
842 1927
843 if (gotsig && ev_is_default_loop (EV_A)) 1928 pipe_write_skipped = 0;
844 {
845 int signum;
846 gotsig = 0;
847 1929
848 for (signum = signalmax; signum--; ) 1930 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
849 if (signals [signum].gotsig) 1931
1932#if EV_SIGNAL_ENABLE
1933 if (sig_pending)
1934 {
1935 sig_pending = 0;
1936
1937 ECB_MEMORY_FENCE_RELEASE;
1938
1939 for (i = EV_NSIG - 1; i--; )
1940 if (expect_false (signals [i].pending))
850 ev_feed_signal_event (EV_A_ signum + 1); 1941 ev_feed_signal_event (EV_A_ i + 1);
851 } 1942 }
1943#endif
852 1944
853#if EV_ASYNC_ENABLE 1945#if EV_ASYNC_ENABLE
854 if (gotasync) 1946 if (async_pending)
855 { 1947 {
856 int i; 1948 async_pending = 0;
857 gotasync = 0; 1949
1950 ECB_MEMORY_FENCE_RELEASE;
858 1951
859 for (i = asynccnt; i--; ) 1952 for (i = asynccnt; i--; )
860 if (asyncs [i]->sent) 1953 if (asyncs [i]->sent)
861 { 1954 {
862 asyncs [i]->sent = 0; 1955 asyncs [i]->sent = 0;
866#endif 1959#endif
867} 1960}
868 1961
869/*****************************************************************************/ 1962/*****************************************************************************/
870 1963
1964void
1965ev_feed_signal (int signum) EV_THROW
1966{
1967#if EV_MULTIPLICITY
1968 EV_P = signals [signum - 1].loop;
1969
1970 if (!EV_A)
1971 return;
1972#endif
1973
1974 if (!ev_active (&pipe_w))
1975 return;
1976
1977 signals [signum - 1].pending = 1;
1978 evpipe_write (EV_A_ &sig_pending);
1979}
1980
871static void 1981static void
872sighandler (int signum) 1982ev_sighandler (int signum)
873{ 1983{
1984#ifdef _WIN32
1985 signal (signum, ev_sighandler);
1986#endif
1987
1988 ev_feed_signal (signum);
1989}
1990
1991void noinline
1992ev_feed_signal_event (EV_P_ int signum) EV_THROW
1993{
1994 WL w;
1995
1996 if (expect_false (signum <= 0 || signum > EV_NSIG))
1997 return;
1998
1999 --signum;
2000
874#if EV_MULTIPLICITY 2001#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 2002 /* it is permissible to try to feed a signal to the wrong loop */
876#endif 2003 /* or, likely more useful, feeding a signal nobody is waiting for */
877 2004
878#if _WIN32 2005 if (expect_false (signals [signum].loop != EV_A))
879 signal (signum, sighandler);
880#endif
881
882 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0);
884}
885
886void noinline
887ev_feed_signal_event (EV_P_ int signum)
888{
889 WL w;
890
891#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
893#endif
894
895 --signum;
896
897 if (signum < 0 || signum >= signalmax)
898 return; 2006 return;
2007#endif
899 2008
900 signals [signum].gotsig = 0; 2009 signals [signum].pending = 0;
901 2010
902 for (w = signals [signum].head; w; w = w->next) 2011 for (w = signals [signum].head; w; w = w->next)
903 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2012 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
904} 2013}
905 2014
2015#if EV_USE_SIGNALFD
2016static void
2017sigfdcb (EV_P_ ev_io *iow, int revents)
2018{
2019 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2020
2021 for (;;)
2022 {
2023 ssize_t res = read (sigfd, si, sizeof (si));
2024
2025 /* not ISO-C, as res might be -1, but works with SuS */
2026 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2027 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2028
2029 if (res < (ssize_t)sizeof (si))
2030 break;
2031 }
2032}
2033#endif
2034
2035#endif
2036
906/*****************************************************************************/ 2037/*****************************************************************************/
907 2038
2039#if EV_CHILD_ENABLE
908static WL childs [EV_PID_HASHSIZE]; 2040static WL childs [EV_PID_HASHSIZE];
909
910#ifndef _WIN32
911 2041
912static ev_signal childev; 2042static ev_signal childev;
913 2043
914#ifndef WIFCONTINUED 2044#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 2045# define WIFCONTINUED(status) 0
916#endif 2046#endif
917 2047
918void inline_speed 2048/* handle a single child status event */
2049inline_speed void
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2050child_reap (EV_P_ int chain, int pid, int status)
920{ 2051{
921 ev_child *w; 2052 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2053 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 2054
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2055 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 2056 {
926 if ((w->pid == pid || !w->pid) 2057 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 2058 && (!traced || (w->flags & 1)))
928 { 2059 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2060 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 2061 w->rpid = pid;
931 w->rstatus = status; 2062 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2063 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 2064 }
934 } 2065 }
936 2067
937#ifndef WCONTINUED 2068#ifndef WCONTINUED
938# define WCONTINUED 0 2069# define WCONTINUED 0
939#endif 2070#endif
940 2071
2072/* called on sigchld etc., calls waitpid */
941static void 2073static void
942childcb (EV_P_ ev_signal *sw, int revents) 2074childcb (EV_P_ ev_signal *sw, int revents)
943{ 2075{
944 int pid, status; 2076 int pid, status;
945 2077
948 if (!WCONTINUED 2080 if (!WCONTINUED
949 || errno != EINVAL 2081 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2082 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 2083 return;
952 2084
953 /* make sure we are called again until all childs have been reaped */ 2085 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 2086 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2087 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 2088
957 child_reap (EV_A_ sw, pid, pid, status); 2089 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 2090 if ((EV_PID_HASHSIZE) > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2091 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 2092}
961 2093
962#endif 2094#endif
963 2095
964/*****************************************************************************/ 2096/*****************************************************************************/
965 2097
2098#if EV_USE_IOCP
2099# include "ev_iocp.c"
2100#endif
966#if EV_USE_PORT 2101#if EV_USE_PORT
967# include "ev_port.c" 2102# include "ev_port.c"
968#endif 2103#endif
969#if EV_USE_KQUEUE 2104#if EV_USE_KQUEUE
970# include "ev_kqueue.c" 2105# include "ev_kqueue.c"
977#endif 2112#endif
978#if EV_USE_SELECT 2113#if EV_USE_SELECT
979# include "ev_select.c" 2114# include "ev_select.c"
980#endif 2115#endif
981 2116
982int 2117int ecb_cold
983ev_version_major (void) 2118ev_version_major (void) EV_THROW
984{ 2119{
985 return EV_VERSION_MAJOR; 2120 return EV_VERSION_MAJOR;
986} 2121}
987 2122
988int 2123int ecb_cold
989ev_version_minor (void) 2124ev_version_minor (void) EV_THROW
990{ 2125{
991 return EV_VERSION_MINOR; 2126 return EV_VERSION_MINOR;
992} 2127}
993 2128
994/* return true if we are running with elevated privileges and should ignore env variables */ 2129/* return true if we are running with elevated privileges and should ignore env variables */
995int inline_size 2130int inline_size ecb_cold
996enable_secure (void) 2131enable_secure (void)
997{ 2132{
998#ifdef _WIN32 2133#ifdef _WIN32
999 return 0; 2134 return 0;
1000#else 2135#else
1001 return getuid () != geteuid () 2136 return getuid () != geteuid ()
1002 || getgid () != getegid (); 2137 || getgid () != getegid ();
1003#endif 2138#endif
1004} 2139}
1005 2140
1006unsigned int 2141unsigned int ecb_cold
1007ev_supported_backends (void) 2142ev_supported_backends (void) EV_THROW
1008{ 2143{
1009 unsigned int flags = 0; 2144 unsigned int flags = 0;
1010 2145
1011 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2146 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1012 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2147 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1015 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2150 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1016 2151
1017 return flags; 2152 return flags;
1018} 2153}
1019 2154
1020unsigned int 2155unsigned int ecb_cold
1021ev_recommended_backends (void) 2156ev_recommended_backends (void) EV_THROW
1022{ 2157{
1023 unsigned int flags = ev_supported_backends (); 2158 unsigned int flags = ev_supported_backends ();
1024 2159
1025#ifndef __NetBSD__ 2160#ifndef __NetBSD__
1026 /* kqueue is borked on everything but netbsd apparently */ 2161 /* kqueue is borked on everything but netbsd apparently */
1027 /* it usually doesn't work correctly on anything but sockets and pipes */ 2162 /* it usually doesn't work correctly on anything but sockets and pipes */
1028 flags &= ~EVBACKEND_KQUEUE; 2163 flags &= ~EVBACKEND_KQUEUE;
1029#endif 2164#endif
1030#ifdef __APPLE__ 2165#ifdef __APPLE__
1031 // flags &= ~EVBACKEND_KQUEUE; for documentation 2166 /* only select works correctly on that "unix-certified" platform */
1032 flags &= ~EVBACKEND_POLL; 2167 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2168 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2169#endif
2170#ifdef __FreeBSD__
2171 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1033#endif 2172#endif
1034 2173
1035 return flags; 2174 return flags;
1036} 2175}
1037 2176
2177unsigned int ecb_cold
2178ev_embeddable_backends (void) EV_THROW
2179{
2180 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2181
2182 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2183 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2184 flags &= ~EVBACKEND_EPOLL;
2185
2186 return flags;
2187}
2188
1038unsigned int 2189unsigned int
1039ev_embeddable_backends (void) 2190ev_backend (EV_P) EV_THROW
1040{ 2191{
1041 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2192 return backend;
1042
1043 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1044 /* please fix it and tell me how to detect the fix */
1045 flags &= ~EVBACKEND_EPOLL;
1046
1047 return flags;
1048} 2193}
1049 2194
2195#if EV_FEATURE_API
1050unsigned int 2196unsigned int
1051ev_backend (EV_P) 2197ev_iteration (EV_P) EV_THROW
1052{ 2198{
1053 return backend; 2199 return loop_count;
1054} 2200}
1055 2201
1056unsigned int 2202unsigned int
1057ev_loop_count (EV_P) 2203ev_depth (EV_P) EV_THROW
1058{ 2204{
1059 return loop_count; 2205 return loop_depth;
1060} 2206}
1061 2207
1062void 2208void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2209ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1064{ 2210{
1065 io_blocktime = interval; 2211 io_blocktime = interval;
1066} 2212}
1067 2213
1068void 2214void
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2215ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1070{ 2216{
1071 timeout_blocktime = interval; 2217 timeout_blocktime = interval;
1072} 2218}
1073 2219
2220void
2221ev_set_userdata (EV_P_ void *data) EV_THROW
2222{
2223 userdata = data;
2224}
2225
2226void *
2227ev_userdata (EV_P) EV_THROW
2228{
2229 return userdata;
2230}
2231
2232void
2233ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2234{
2235 invoke_cb = invoke_pending_cb;
2236}
2237
2238void
2239ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2240{
2241 release_cb = release;
2242 acquire_cb = acquire;
2243}
2244#endif
2245
2246/* initialise a loop structure, must be zero-initialised */
1074static void noinline 2247static void noinline ecb_cold
1075loop_init (EV_P_ unsigned int flags) 2248loop_init (EV_P_ unsigned int flags) EV_THROW
1076{ 2249{
1077 if (!backend) 2250 if (!backend)
1078 { 2251 {
2252 origflags = flags;
2253
2254#if EV_USE_REALTIME
2255 if (!have_realtime)
2256 {
2257 struct timespec ts;
2258
2259 if (!clock_gettime (CLOCK_REALTIME, &ts))
2260 have_realtime = 1;
2261 }
2262#endif
2263
1079#if EV_USE_MONOTONIC 2264#if EV_USE_MONOTONIC
2265 if (!have_monotonic)
1080 { 2266 {
1081 struct timespec ts; 2267 struct timespec ts;
2268
1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2269 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1083 have_monotonic = 1; 2270 have_monotonic = 1;
1084 } 2271 }
1085#endif
1086
1087 ev_rt_now = ev_time ();
1088 mn_now = get_clock ();
1089 now_floor = mn_now;
1090 rtmn_diff = ev_rt_now - mn_now;
1091
1092 io_blocktime = 0.;
1093 timeout_blocktime = 0.;
1094 backend = 0;
1095 backend_fd = -1;
1096 gotasync = 0;
1097#if EV_USE_INOTIFY
1098 fs_fd = -2;
1099#endif 2272#endif
1100 2273
1101 /* pid check not overridable via env */ 2274 /* pid check not overridable via env */
1102#ifndef _WIN32 2275#ifndef _WIN32
1103 if (flags & EVFLAG_FORKCHECK) 2276 if (flags & EVFLAG_FORKCHECK)
1107 if (!(flags & EVFLAG_NOENV) 2280 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure () 2281 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS")) 2282 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS")); 2283 flags = atoi (getenv ("LIBEV_FLAGS"));
1111 2284
1112 if (!(flags & 0x0000ffffUL)) 2285 ev_rt_now = ev_time ();
2286 mn_now = get_clock ();
2287 now_floor = mn_now;
2288 rtmn_diff = ev_rt_now - mn_now;
2289#if EV_FEATURE_API
2290 invoke_cb = ev_invoke_pending;
2291#endif
2292
2293 io_blocktime = 0.;
2294 timeout_blocktime = 0.;
2295 backend = 0;
2296 backend_fd = -1;
2297 sig_pending = 0;
2298#if EV_ASYNC_ENABLE
2299 async_pending = 0;
2300#endif
2301 pipe_write_skipped = 0;
2302 pipe_write_wanted = 0;
2303#if EV_USE_INOTIFY
2304 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2305#endif
2306#if EV_USE_SIGNALFD
2307 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2308#endif
2309
2310 if (!(flags & EVBACKEND_MASK))
1113 flags |= ev_recommended_backends (); 2311 flags |= ev_recommended_backends ();
1114 2312
2313#if EV_USE_IOCP
2314 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2315#endif
1115#if EV_USE_PORT 2316#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 2318#endif
1118#if EV_USE_KQUEUE 2319#if EV_USE_KQUEUE
1119 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1126#endif 2327#endif
1127#if EV_USE_SELECT 2328#if EV_USE_SELECT
1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1129#endif 2330#endif
1130 2331
2332 ev_prepare_init (&pending_w, pendingcb);
2333
2334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1131 ev_init (&pipeev, pipecb); 2335 ev_init (&pipe_w, pipecb);
1132 ev_set_priority (&pipeev, EV_MAXPRI); 2336 ev_set_priority (&pipe_w, EV_MAXPRI);
2337#endif
1133 } 2338 }
1134} 2339}
1135 2340
1136static void noinline 2341/* free up a loop structure */
2342void ecb_cold
1137loop_destroy (EV_P) 2343ev_loop_destroy (EV_P)
1138{ 2344{
1139 int i; 2345 int i;
1140 2346
2347#if EV_MULTIPLICITY
2348 /* mimic free (0) */
2349 if (!EV_A)
2350 return;
2351#endif
2352
2353#if EV_CLEANUP_ENABLE
2354 /* queue cleanup watchers (and execute them) */
2355 if (expect_false (cleanupcnt))
2356 {
2357 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2358 EV_INVOKE_PENDING;
2359 }
2360#endif
2361
2362#if EV_CHILD_ENABLE
2363 if (ev_is_active (&childev))
2364 {
2365 ev_ref (EV_A); /* child watcher */
2366 ev_signal_stop (EV_A_ &childev);
2367 }
2368#endif
2369
1141 if (ev_is_active (&pipeev)) 2370 if (ev_is_active (&pipe_w))
1142 { 2371 {
1143 ev_ref (EV_A); /* signal watcher */ 2372 /*ev_ref (EV_A);*/
1144 ev_io_stop (EV_A_ &pipeev); 2373 /*ev_io_stop (EV_A_ &pipe_w);*/
1145 2374
1146 close (evpipe [0]); evpipe [0] = 0; 2375#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 2376 if (evfd >= 0)
2377 close (evfd);
2378#endif
2379
2380 if (evpipe [0] >= 0)
2381 {
2382 EV_WIN32_CLOSE_FD (evpipe [0]);
2383 EV_WIN32_CLOSE_FD (evpipe [1]);
2384 }
1148 } 2385 }
2386
2387#if EV_USE_SIGNALFD
2388 if (ev_is_active (&sigfd_w))
2389 close (sigfd);
2390#endif
1149 2391
1150#if EV_USE_INOTIFY 2392#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 2393 if (fs_fd >= 0)
1152 close (fs_fd); 2394 close (fs_fd);
1153#endif 2395#endif
1154 2396
1155 if (backend_fd >= 0) 2397 if (backend_fd >= 0)
1156 close (backend_fd); 2398 close (backend_fd);
1157 2399
2400#if EV_USE_IOCP
2401 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2402#endif
1158#if EV_USE_PORT 2403#if EV_USE_PORT
1159 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2404 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1160#endif 2405#endif
1161#if EV_USE_KQUEUE 2406#if EV_USE_KQUEUE
1162 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2407 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1177#if EV_IDLE_ENABLE 2422#if EV_IDLE_ENABLE
1178 array_free (idle, [i]); 2423 array_free (idle, [i]);
1179#endif 2424#endif
1180 } 2425 }
1181 2426
1182 ev_free (anfds); anfdmax = 0; 2427 ev_free (anfds); anfds = 0; anfdmax = 0;
1183 2428
1184 /* have to use the microsoft-never-gets-it-right macro */ 2429 /* have to use the microsoft-never-gets-it-right macro */
2430 array_free (rfeed, EMPTY);
1185 array_free (fdchange, EMPTY); 2431 array_free (fdchange, EMPTY);
1186 array_free (timer, EMPTY); 2432 array_free (timer, EMPTY);
1187#if EV_PERIODIC_ENABLE 2433#if EV_PERIODIC_ENABLE
1188 array_free (periodic, EMPTY); 2434 array_free (periodic, EMPTY);
1189#endif 2435#endif
1190#if EV_FORK_ENABLE 2436#if EV_FORK_ENABLE
1191 array_free (fork, EMPTY); 2437 array_free (fork, EMPTY);
1192#endif 2438#endif
2439#if EV_CLEANUP_ENABLE
2440 array_free (cleanup, EMPTY);
2441#endif
1193 array_free (prepare, EMPTY); 2442 array_free (prepare, EMPTY);
1194 array_free (check, EMPTY); 2443 array_free (check, EMPTY);
1195#if EV_ASYNC_ENABLE 2444#if EV_ASYNC_ENABLE
1196 array_free (async, EMPTY); 2445 array_free (async, EMPTY);
1197#endif 2446#endif
1198 2447
1199 backend = 0; 2448 backend = 0;
1200}
1201 2449
2450#if EV_MULTIPLICITY
2451 if (ev_is_default_loop (EV_A))
2452#endif
2453 ev_default_loop_ptr = 0;
2454#if EV_MULTIPLICITY
2455 else
2456 ev_free (EV_A);
2457#endif
2458}
2459
2460#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 2461inline_size void infy_fork (EV_P);
2462#endif
1203 2463
1204void inline_size 2464inline_size void
1205loop_fork (EV_P) 2465loop_fork (EV_P)
1206{ 2466{
1207#if EV_USE_PORT 2467#if EV_USE_PORT
1208 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2468 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1209#endif 2469#endif
1215#endif 2475#endif
1216#if EV_USE_INOTIFY 2476#if EV_USE_INOTIFY
1217 infy_fork (EV_A); 2477 infy_fork (EV_A);
1218#endif 2478#endif
1219 2479
1220 if (ev_is_active (&pipeev)) 2480 if (ev_is_active (&pipe_w))
1221 { 2481 {
1222 /* this "locks" the handlers against writing to the pipe */ 2482 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1223 /* while we modify the fd vars */
1224 gotsig = 1;
1225#if EV_ASYNC_ENABLE
1226 gotasync = 1;
1227#endif
1228 2483
1229 ev_ref (EV_A); 2484 ev_ref (EV_A);
1230 ev_io_stop (EV_A_ &pipeev); 2485 ev_io_stop (EV_A_ &pipe_w);
1231 close (evpipe [0]);
1232 close (evpipe [1]);
1233 2486
2487#if EV_USE_EVENTFD
2488 if (evfd >= 0)
2489 close (evfd);
2490#endif
2491
2492 if (evpipe [0] >= 0)
2493 {
2494 EV_WIN32_CLOSE_FD (evpipe [0]);
2495 EV_WIN32_CLOSE_FD (evpipe [1]);
2496 }
2497
2498#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1234 evpipe_init (EV_A); 2499 evpipe_init (EV_A);
1235 /* now iterate over everything, in case we missed something */ 2500 /* now iterate over everything, in case we missed something */
1236 pipecb (EV_A_ &pipeev, EV_READ); 2501 pipecb (EV_A_ &pipe_w, EV_READ);
2502#endif
1237 } 2503 }
1238 2504
1239 postfork = 0; 2505 postfork = 0;
1240} 2506}
1241 2507
1242#if EV_MULTIPLICITY 2508#if EV_MULTIPLICITY
2509
1243struct ev_loop * 2510struct ev_loop * ecb_cold
1244ev_loop_new (unsigned int flags) 2511ev_loop_new (unsigned int flags) EV_THROW
1245{ 2512{
1246 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2513 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1247 2514
1248 memset (loop, 0, sizeof (struct ev_loop)); 2515 memset (EV_A, 0, sizeof (struct ev_loop));
1249
1250 loop_init (EV_A_ flags); 2516 loop_init (EV_A_ flags);
1251 2517
1252 if (ev_backend (EV_A)) 2518 if (ev_backend (EV_A))
1253 return loop; 2519 return EV_A;
1254 2520
2521 ev_free (EV_A);
1255 return 0; 2522 return 0;
1256} 2523}
1257 2524
1258void 2525#endif /* multiplicity */
1259ev_loop_destroy (EV_P)
1260{
1261 loop_destroy (EV_A);
1262 ev_free (loop);
1263}
1264 2526
1265void 2527#if EV_VERIFY
1266ev_loop_fork (EV_P) 2528static void noinline ecb_cold
2529verify_watcher (EV_P_ W w)
1267{ 2530{
1268 postfork = 1; /* must be in line with ev_default_fork */ 2531 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1269}
1270 2532
2533 if (w->pending)
2534 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2535}
2536
2537static void noinline ecb_cold
2538verify_heap (EV_P_ ANHE *heap, int N)
2539{
2540 int i;
2541
2542 for (i = HEAP0; i < N + HEAP0; ++i)
2543 {
2544 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2545 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2546 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2547
2548 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2549 }
2550}
2551
2552static void noinline ecb_cold
2553array_verify (EV_P_ W *ws, int cnt)
2554{
2555 while (cnt--)
2556 {
2557 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2558 verify_watcher (EV_A_ ws [cnt]);
2559 }
2560}
2561#endif
2562
2563#if EV_FEATURE_API
2564void ecb_cold
2565ev_verify (EV_P) EV_THROW
2566{
2567#if EV_VERIFY
2568 int i, j;
2569 WL w, w2;
2570
2571 assert (activecnt >= -1);
2572
2573 assert (fdchangemax >= fdchangecnt);
2574 for (i = 0; i < fdchangecnt; ++i)
2575 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2576
2577 assert (anfdmax >= 0);
2578 for (i = j = 0; i < anfdmax; ++i)
2579 for (w = w2 = anfds [i].head; w; w = w->next)
2580 {
2581 verify_watcher (EV_A_ (W)w);
2582
2583 if (j++ & 1)
2584 {
2585 assert (("libev: io watcher list contains a loop", w != w2));
2586 w2 = w2->next;
2587 }
2588
2589 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2590 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2591 }
2592
2593 assert (timermax >= timercnt);
2594 verify_heap (EV_A_ timers, timercnt);
2595
2596#if EV_PERIODIC_ENABLE
2597 assert (periodicmax >= periodiccnt);
2598 verify_heap (EV_A_ periodics, periodiccnt);
2599#endif
2600
2601 for (i = NUMPRI; i--; )
2602 {
2603 assert (pendingmax [i] >= pendingcnt [i]);
2604#if EV_IDLE_ENABLE
2605 assert (idleall >= 0);
2606 assert (idlemax [i] >= idlecnt [i]);
2607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2608#endif
2609 }
2610
2611#if EV_FORK_ENABLE
2612 assert (forkmax >= forkcnt);
2613 array_verify (EV_A_ (W *)forks, forkcnt);
2614#endif
2615
2616#if EV_CLEANUP_ENABLE
2617 assert (cleanupmax >= cleanupcnt);
2618 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2619#endif
2620
2621#if EV_ASYNC_ENABLE
2622 assert (asyncmax >= asynccnt);
2623 array_verify (EV_A_ (W *)asyncs, asynccnt);
2624#endif
2625
2626#if EV_PREPARE_ENABLE
2627 assert (preparemax >= preparecnt);
2628 array_verify (EV_A_ (W *)prepares, preparecnt);
2629#endif
2630
2631#if EV_CHECK_ENABLE
2632 assert (checkmax >= checkcnt);
2633 array_verify (EV_A_ (W *)checks, checkcnt);
2634#endif
2635
2636# if 0
2637#if EV_CHILD_ENABLE
2638 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2639 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2640#endif
2641# endif
2642#endif
2643}
1271#endif 2644#endif
1272 2645
1273#if EV_MULTIPLICITY 2646#if EV_MULTIPLICITY
1274struct ev_loop * 2647struct ev_loop * ecb_cold
1275ev_default_loop_init (unsigned int flags)
1276#else 2648#else
1277int 2649int
2650#endif
1278ev_default_loop (unsigned int flags) 2651ev_default_loop (unsigned int flags) EV_THROW
1279#endif
1280{ 2652{
1281 if (!ev_default_loop_ptr) 2653 if (!ev_default_loop_ptr)
1282 { 2654 {
1283#if EV_MULTIPLICITY 2655#if EV_MULTIPLICITY
1284 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2656 EV_P = ev_default_loop_ptr = &default_loop_struct;
1285#else 2657#else
1286 ev_default_loop_ptr = 1; 2658 ev_default_loop_ptr = 1;
1287#endif 2659#endif
1288 2660
1289 loop_init (EV_A_ flags); 2661 loop_init (EV_A_ flags);
1290 2662
1291 if (ev_backend (EV_A)) 2663 if (ev_backend (EV_A))
1292 { 2664 {
1293#ifndef _WIN32 2665#if EV_CHILD_ENABLE
1294 ev_signal_init (&childev, childcb, SIGCHLD); 2666 ev_signal_init (&childev, childcb, SIGCHLD);
1295 ev_set_priority (&childev, EV_MAXPRI); 2667 ev_set_priority (&childev, EV_MAXPRI);
1296 ev_signal_start (EV_A_ &childev); 2668 ev_signal_start (EV_A_ &childev);
1297 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2669 ev_unref (EV_A); /* child watcher should not keep loop alive */
1298#endif 2670#endif
1303 2675
1304 return ev_default_loop_ptr; 2676 return ev_default_loop_ptr;
1305} 2677}
1306 2678
1307void 2679void
1308ev_default_destroy (void) 2680ev_loop_fork (EV_P) EV_THROW
1309{ 2681{
1310#if EV_MULTIPLICITY
1311 struct ev_loop *loop = ev_default_loop_ptr;
1312#endif
1313
1314#ifndef _WIN32
1315 ev_ref (EV_A); /* child watcher */
1316 ev_signal_stop (EV_A_ &childev);
1317#endif
1318
1319 loop_destroy (EV_A);
1320}
1321
1322void
1323ev_default_fork (void)
1324{
1325#if EV_MULTIPLICITY
1326 struct ev_loop *loop = ev_default_loop_ptr;
1327#endif
1328
1329 if (backend)
1330 postfork = 1; /* must be in line with ev_loop_fork */ 2682 postfork = 1; /* must be in line with ev_default_fork */
1331} 2683}
1332 2684
1333/*****************************************************************************/ 2685/*****************************************************************************/
1334 2686
1335void 2687void
1336ev_invoke (EV_P_ void *w, int revents) 2688ev_invoke (EV_P_ void *w, int revents)
1337{ 2689{
1338 EV_CB_INVOKE ((W)w, revents); 2690 EV_CB_INVOKE ((W)w, revents);
1339} 2691}
1340 2692
1341void inline_speed 2693unsigned int
1342call_pending (EV_P) 2694ev_pending_count (EV_P) EV_THROW
1343{ 2695{
1344 int pri; 2696 int pri;
2697 unsigned int count = 0;
1345 2698
1346 for (pri = NUMPRI; pri--; ) 2699 for (pri = NUMPRI; pri--; )
2700 count += pendingcnt [pri];
2701
2702 return count;
2703}
2704
2705void noinline
2706ev_invoke_pending (EV_P)
2707{
2708 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1347 while (pendingcnt [pri]) 2709 while (pendingcnt [pendingpri])
1348 { 2710 {
1349 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2711 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1350 2712
1351 if (expect_true (p->w))
1352 {
1353 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1354
1355 p->w->pending = 0; 2713 p->w->pending = 0;
1356 EV_CB_INVOKE (p->w, p->events); 2714 EV_CB_INVOKE (p->w, p->events);
1357 } 2715 EV_FREQUENT_CHECK;
1358 } 2716 }
1359} 2717}
1360 2718
1361void inline_size
1362timers_reify (EV_P)
1363{
1364 while (timercnt && ((WT)timers [0])->at <= mn_now)
1365 {
1366 ev_timer *w = (ev_timer *)timers [0];
1367
1368 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1369
1370 /* first reschedule or stop timer */
1371 if (w->repeat)
1372 {
1373 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1374
1375 ((WT)w)->at += w->repeat;
1376 if (((WT)w)->at < mn_now)
1377 ((WT)w)->at = mn_now;
1378
1379 downheap (timers, timercnt, 0);
1380 }
1381 else
1382 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1383
1384 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1385 }
1386}
1387
1388#if EV_PERIODIC_ENABLE
1389void inline_size
1390periodics_reify (EV_P)
1391{
1392 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1393 {
1394 ev_periodic *w = (ev_periodic *)periodics [0];
1395
1396 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1397
1398 /* first reschedule or stop timer */
1399 if (w->reschedule_cb)
1400 {
1401 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1402 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1403 downheap (periodics, periodiccnt, 0);
1404 }
1405 else if (w->interval)
1406 {
1407 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1408 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1409 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1410 downheap (periodics, periodiccnt, 0);
1411 }
1412 else
1413 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1414
1415 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1416 }
1417}
1418
1419static void noinline
1420periodics_reschedule (EV_P)
1421{
1422 int i;
1423
1424 /* adjust periodics after time jump */
1425 for (i = 0; i < periodiccnt; ++i)
1426 {
1427 ev_periodic *w = (ev_periodic *)periodics [i];
1428
1429 if (w->reschedule_cb)
1430 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1431 else if (w->interval)
1432 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1433 }
1434
1435 /* now rebuild the heap */
1436 for (i = periodiccnt >> 1; i--; )
1437 downheap (periodics, periodiccnt, i);
1438}
1439#endif
1440
1441#if EV_IDLE_ENABLE 2719#if EV_IDLE_ENABLE
1442void inline_size 2720/* make idle watchers pending. this handles the "call-idle */
2721/* only when higher priorities are idle" logic */
2722inline_size void
1443idle_reify (EV_P) 2723idle_reify (EV_P)
1444{ 2724{
1445 if (expect_false (idleall)) 2725 if (expect_false (idleall))
1446 { 2726 {
1447 int pri; 2727 int pri;
1459 } 2739 }
1460 } 2740 }
1461} 2741}
1462#endif 2742#endif
1463 2743
1464void inline_speed 2744/* make timers pending */
2745inline_size void
2746timers_reify (EV_P)
2747{
2748 EV_FREQUENT_CHECK;
2749
2750 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2751 {
2752 do
2753 {
2754 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2755
2756 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2757
2758 /* first reschedule or stop timer */
2759 if (w->repeat)
2760 {
2761 ev_at (w) += w->repeat;
2762 if (ev_at (w) < mn_now)
2763 ev_at (w) = mn_now;
2764
2765 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2766
2767 ANHE_at_cache (timers [HEAP0]);
2768 downheap (timers, timercnt, HEAP0);
2769 }
2770 else
2771 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2772
2773 EV_FREQUENT_CHECK;
2774 feed_reverse (EV_A_ (W)w);
2775 }
2776 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2777
2778 feed_reverse_done (EV_A_ EV_TIMER);
2779 }
2780}
2781
2782#if EV_PERIODIC_ENABLE
2783
2784static void noinline
2785periodic_recalc (EV_P_ ev_periodic *w)
2786{
2787 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2788 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2789
2790 /* the above almost always errs on the low side */
2791 while (at <= ev_rt_now)
2792 {
2793 ev_tstamp nat = at + w->interval;
2794
2795 /* when resolution fails us, we use ev_rt_now */
2796 if (expect_false (nat == at))
2797 {
2798 at = ev_rt_now;
2799 break;
2800 }
2801
2802 at = nat;
2803 }
2804
2805 ev_at (w) = at;
2806}
2807
2808/* make periodics pending */
2809inline_size void
2810periodics_reify (EV_P)
2811{
2812 EV_FREQUENT_CHECK;
2813
2814 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2815 {
2816 int feed_count = 0;
2817
2818 do
2819 {
2820 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2821
2822 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2823
2824 /* first reschedule or stop timer */
2825 if (w->reschedule_cb)
2826 {
2827 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2828
2829 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2830
2831 ANHE_at_cache (periodics [HEAP0]);
2832 downheap (periodics, periodiccnt, HEAP0);
2833 }
2834 else if (w->interval)
2835 {
2836 periodic_recalc (EV_A_ w);
2837 ANHE_at_cache (periodics [HEAP0]);
2838 downheap (periodics, periodiccnt, HEAP0);
2839 }
2840 else
2841 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2842
2843 EV_FREQUENT_CHECK;
2844 feed_reverse (EV_A_ (W)w);
2845 }
2846 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2847
2848 feed_reverse_done (EV_A_ EV_PERIODIC);
2849 }
2850}
2851
2852/* simply recalculate all periodics */
2853/* TODO: maybe ensure that at least one event happens when jumping forward? */
2854static void noinline ecb_cold
2855periodics_reschedule (EV_P)
2856{
2857 int i;
2858
2859 /* adjust periodics after time jump */
2860 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2861 {
2862 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2863
2864 if (w->reschedule_cb)
2865 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2866 else if (w->interval)
2867 periodic_recalc (EV_A_ w);
2868
2869 ANHE_at_cache (periodics [i]);
2870 }
2871
2872 reheap (periodics, periodiccnt);
2873}
2874#endif
2875
2876/* adjust all timers by a given offset */
2877static void noinline ecb_cold
2878timers_reschedule (EV_P_ ev_tstamp adjust)
2879{
2880 int i;
2881
2882 for (i = 0; i < timercnt; ++i)
2883 {
2884 ANHE *he = timers + i + HEAP0;
2885 ANHE_w (*he)->at += adjust;
2886 ANHE_at_cache (*he);
2887 }
2888}
2889
2890/* fetch new monotonic and realtime times from the kernel */
2891/* also detect if there was a timejump, and act accordingly */
2892inline_speed void
1465time_update (EV_P_ ev_tstamp max_block) 2893time_update (EV_P_ ev_tstamp max_block)
1466{ 2894{
1467 int i;
1468
1469#if EV_USE_MONOTONIC 2895#if EV_USE_MONOTONIC
1470 if (expect_true (have_monotonic)) 2896 if (expect_true (have_monotonic))
1471 { 2897 {
2898 int i;
1472 ev_tstamp odiff = rtmn_diff; 2899 ev_tstamp odiff = rtmn_diff;
1473 2900
1474 mn_now = get_clock (); 2901 mn_now = get_clock ();
1475 2902
1476 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2903 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1492 * doesn't hurt either as we only do this on time-jumps or 2919 * doesn't hurt either as we only do this on time-jumps or
1493 * in the unlikely event of having been preempted here. 2920 * in the unlikely event of having been preempted here.
1494 */ 2921 */
1495 for (i = 4; --i; ) 2922 for (i = 4; --i; )
1496 { 2923 {
2924 ev_tstamp diff;
1497 rtmn_diff = ev_rt_now - mn_now; 2925 rtmn_diff = ev_rt_now - mn_now;
1498 2926
1499 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2927 diff = odiff - rtmn_diff;
2928
2929 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1500 return; /* all is well */ 2930 return; /* all is well */
1501 2931
1502 ev_rt_now = ev_time (); 2932 ev_rt_now = ev_time ();
1503 mn_now = get_clock (); 2933 mn_now = get_clock ();
1504 now_floor = mn_now; 2934 now_floor = mn_now;
1505 } 2935 }
1506 2936
2937 /* no timer adjustment, as the monotonic clock doesn't jump */
2938 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1507# if EV_PERIODIC_ENABLE 2939# if EV_PERIODIC_ENABLE
1508 periodics_reschedule (EV_A); 2940 periodics_reschedule (EV_A);
1509# endif 2941# endif
1510 /* no timer adjustment, as the monotonic clock doesn't jump */
1511 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1512 } 2942 }
1513 else 2943 else
1514#endif 2944#endif
1515 { 2945 {
1516 ev_rt_now = ev_time (); 2946 ev_rt_now = ev_time ();
1517 2947
1518 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2948 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1519 { 2949 {
2950 /* adjust timers. this is easy, as the offset is the same for all of them */
2951 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1520#if EV_PERIODIC_ENABLE 2952#if EV_PERIODIC_ENABLE
1521 periodics_reschedule (EV_A); 2953 periodics_reschedule (EV_A);
1522#endif 2954#endif
1523 /* adjust timers. this is easy, as the offset is the same for all of them */
1524 for (i = 0; i < timercnt; ++i)
1525 ((WT)timers [i])->at += ev_rt_now - mn_now;
1526 } 2955 }
1527 2956
1528 mn_now = ev_rt_now; 2957 mn_now = ev_rt_now;
1529 } 2958 }
1530} 2959}
1531 2960
1532void 2961int
1533ev_ref (EV_P)
1534{
1535 ++activecnt;
1536}
1537
1538void
1539ev_unref (EV_P)
1540{
1541 --activecnt;
1542}
1543
1544static int loop_done;
1545
1546void
1547ev_loop (EV_P_ int flags) 2962ev_run (EV_P_ int flags)
1548{ 2963{
1549 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2964#if EV_FEATURE_API
1550 ? EVUNLOOP_ONE 2965 ++loop_depth;
1551 : EVUNLOOP_CANCEL; 2966#endif
1552 2967
2968 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2969
2970 loop_done = EVBREAK_CANCEL;
2971
1553 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2972 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1554 2973
1555 do 2974 do
1556 { 2975 {
2976#if EV_VERIFY >= 2
2977 ev_verify (EV_A);
2978#endif
2979
1557#ifndef _WIN32 2980#ifndef _WIN32
1558 if (expect_false (curpid)) /* penalise the forking check even more */ 2981 if (expect_false (curpid)) /* penalise the forking check even more */
1559 if (expect_false (getpid () != curpid)) 2982 if (expect_false (getpid () != curpid))
1560 { 2983 {
1561 curpid = getpid (); 2984 curpid = getpid ();
1567 /* we might have forked, so queue fork handlers */ 2990 /* we might have forked, so queue fork handlers */
1568 if (expect_false (postfork)) 2991 if (expect_false (postfork))
1569 if (forkcnt) 2992 if (forkcnt)
1570 { 2993 {
1571 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2994 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1572 call_pending (EV_A); 2995 EV_INVOKE_PENDING;
1573 } 2996 }
1574#endif 2997#endif
1575 2998
2999#if EV_PREPARE_ENABLE
1576 /* queue prepare watchers (and execute them) */ 3000 /* queue prepare watchers (and execute them) */
1577 if (expect_false (preparecnt)) 3001 if (expect_false (preparecnt))
1578 { 3002 {
1579 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3003 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1580 call_pending (EV_A); 3004 EV_INVOKE_PENDING;
1581 } 3005 }
3006#endif
1582 3007
1583 if (expect_false (!activecnt)) 3008 if (expect_false (loop_done))
1584 break; 3009 break;
1585 3010
1586 /* we might have forked, so reify kernel state if necessary */ 3011 /* we might have forked, so reify kernel state if necessary */
1587 if (expect_false (postfork)) 3012 if (expect_false (postfork))
1588 loop_fork (EV_A); 3013 loop_fork (EV_A);
1593 /* calculate blocking time */ 3018 /* calculate blocking time */
1594 { 3019 {
1595 ev_tstamp waittime = 0.; 3020 ev_tstamp waittime = 0.;
1596 ev_tstamp sleeptime = 0.; 3021 ev_tstamp sleeptime = 0.;
1597 3022
3023 /* remember old timestamp for io_blocktime calculation */
3024 ev_tstamp prev_mn_now = mn_now;
3025
3026 /* update time to cancel out callback processing overhead */
3027 time_update (EV_A_ 1e100);
3028
3029 /* from now on, we want a pipe-wake-up */
3030 pipe_write_wanted = 1;
3031
3032 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3033
1598 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3034 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1599 { 3035 {
1600 /* update time to cancel out callback processing overhead */
1601 time_update (EV_A_ 1e100);
1602
1603 waittime = MAX_BLOCKTIME; 3036 waittime = MAX_BLOCKTIME;
1604 3037
1605 if (timercnt) 3038 if (timercnt)
1606 { 3039 {
1607 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3040 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1608 if (waittime > to) waittime = to; 3041 if (waittime > to) waittime = to;
1609 } 3042 }
1610 3043
1611#if EV_PERIODIC_ENABLE 3044#if EV_PERIODIC_ENABLE
1612 if (periodiccnt) 3045 if (periodiccnt)
1613 { 3046 {
1614 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3047 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1615 if (waittime > to) waittime = to; 3048 if (waittime > to) waittime = to;
1616 } 3049 }
1617#endif 3050#endif
1618 3051
3052 /* don't let timeouts decrease the waittime below timeout_blocktime */
1619 if (expect_false (waittime < timeout_blocktime)) 3053 if (expect_false (waittime < timeout_blocktime))
1620 waittime = timeout_blocktime; 3054 waittime = timeout_blocktime;
1621 3055
1622 sleeptime = waittime - backend_fudge; 3056 /* at this point, we NEED to wait, so we have to ensure */
3057 /* to pass a minimum nonzero value to the backend */
3058 if (expect_false (waittime < backend_mintime))
3059 waittime = backend_mintime;
1623 3060
3061 /* extra check because io_blocktime is commonly 0 */
1624 if (expect_true (sleeptime > io_blocktime)) 3062 if (expect_false (io_blocktime))
1625 sleeptime = io_blocktime;
1626
1627 if (sleeptime)
1628 { 3063 {
3064 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3065
3066 if (sleeptime > waittime - backend_mintime)
3067 sleeptime = waittime - backend_mintime;
3068
3069 if (expect_true (sleeptime > 0.))
3070 {
1629 ev_sleep (sleeptime); 3071 ev_sleep (sleeptime);
1630 waittime -= sleeptime; 3072 waittime -= sleeptime;
3073 }
1631 } 3074 }
1632 } 3075 }
1633 3076
3077#if EV_FEATURE_API
1634 ++loop_count; 3078 ++loop_count;
3079#endif
3080 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1635 backend_poll (EV_A_ waittime); 3081 backend_poll (EV_A_ waittime);
3082 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3083
3084 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3085
3086 if (pipe_write_skipped)
3087 {
3088 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3089 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3090 }
3091
1636 3092
1637 /* update ev_rt_now, do magic */ 3093 /* update ev_rt_now, do magic */
1638 time_update (EV_A_ waittime + sleeptime); 3094 time_update (EV_A_ waittime + sleeptime);
1639 } 3095 }
1640 3096
1647#if EV_IDLE_ENABLE 3103#if EV_IDLE_ENABLE
1648 /* queue idle watchers unless other events are pending */ 3104 /* queue idle watchers unless other events are pending */
1649 idle_reify (EV_A); 3105 idle_reify (EV_A);
1650#endif 3106#endif
1651 3107
3108#if EV_CHECK_ENABLE
1652 /* queue check watchers, to be executed first */ 3109 /* queue check watchers, to be executed first */
1653 if (expect_false (checkcnt)) 3110 if (expect_false (checkcnt))
1654 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3111 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3112#endif
1655 3113
1656 call_pending (EV_A); 3114 EV_INVOKE_PENDING;
1657
1658 } 3115 }
1659 while (expect_true (activecnt && !loop_done)); 3116 while (expect_true (
3117 activecnt
3118 && !loop_done
3119 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3120 ));
1660 3121
1661 if (loop_done == EVUNLOOP_ONE) 3122 if (loop_done == EVBREAK_ONE)
1662 loop_done = EVUNLOOP_CANCEL; 3123 loop_done = EVBREAK_CANCEL;
3124
3125#if EV_FEATURE_API
3126 --loop_depth;
3127#endif
3128
3129 return activecnt;
1663} 3130}
1664 3131
1665void 3132void
1666ev_unloop (EV_P_ int how) 3133ev_break (EV_P_ int how) EV_THROW
1667{ 3134{
1668 loop_done = how; 3135 loop_done = how;
1669} 3136}
1670 3137
3138void
3139ev_ref (EV_P) EV_THROW
3140{
3141 ++activecnt;
3142}
3143
3144void
3145ev_unref (EV_P) EV_THROW
3146{
3147 --activecnt;
3148}
3149
3150void
3151ev_now_update (EV_P) EV_THROW
3152{
3153 time_update (EV_A_ 1e100);
3154}
3155
3156void
3157ev_suspend (EV_P) EV_THROW
3158{
3159 ev_now_update (EV_A);
3160}
3161
3162void
3163ev_resume (EV_P) EV_THROW
3164{
3165 ev_tstamp mn_prev = mn_now;
3166
3167 ev_now_update (EV_A);
3168 timers_reschedule (EV_A_ mn_now - mn_prev);
3169#if EV_PERIODIC_ENABLE
3170 /* TODO: really do this? */
3171 periodics_reschedule (EV_A);
3172#endif
3173}
3174
1671/*****************************************************************************/ 3175/*****************************************************************************/
3176/* singly-linked list management, used when the expected list length is short */
1672 3177
1673void inline_size 3178inline_size void
1674wlist_add (WL *head, WL elem) 3179wlist_add (WL *head, WL elem)
1675{ 3180{
1676 elem->next = *head; 3181 elem->next = *head;
1677 *head = elem; 3182 *head = elem;
1678} 3183}
1679 3184
1680void inline_size 3185inline_size void
1681wlist_del (WL *head, WL elem) 3186wlist_del (WL *head, WL elem)
1682{ 3187{
1683 while (*head) 3188 while (*head)
1684 { 3189 {
1685 if (*head == elem) 3190 if (expect_true (*head == elem))
1686 { 3191 {
1687 *head = elem->next; 3192 *head = elem->next;
1688 return; 3193 break;
1689 } 3194 }
1690 3195
1691 head = &(*head)->next; 3196 head = &(*head)->next;
1692 } 3197 }
1693} 3198}
1694 3199
1695void inline_speed 3200/* internal, faster, version of ev_clear_pending */
3201inline_speed void
1696clear_pending (EV_P_ W w) 3202clear_pending (EV_P_ W w)
1697{ 3203{
1698 if (w->pending) 3204 if (w->pending)
1699 { 3205 {
1700 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3206 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1701 w->pending = 0; 3207 w->pending = 0;
1702 } 3208 }
1703} 3209}
1704 3210
1705int 3211int
1706ev_clear_pending (EV_P_ void *w) 3212ev_clear_pending (EV_P_ void *w) EV_THROW
1707{ 3213{
1708 W w_ = (W)w; 3214 W w_ = (W)w;
1709 int pending = w_->pending; 3215 int pending = w_->pending;
1710 3216
1711 if (expect_true (pending)) 3217 if (expect_true (pending))
1712 { 3218 {
1713 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3219 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3220 p->w = (W)&pending_w;
1714 w_->pending = 0; 3221 w_->pending = 0;
1715 p->w = 0;
1716 return p->events; 3222 return p->events;
1717 } 3223 }
1718 else 3224 else
1719 return 0; 3225 return 0;
1720} 3226}
1721 3227
1722void inline_size 3228inline_size void
1723pri_adjust (EV_P_ W w) 3229pri_adjust (EV_P_ W w)
1724{ 3230{
1725 int pri = w->priority; 3231 int pri = ev_priority (w);
1726 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3232 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1727 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3233 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1728 w->priority = pri; 3234 ev_set_priority (w, pri);
1729} 3235}
1730 3236
1731void inline_speed 3237inline_speed void
1732ev_start (EV_P_ W w, int active) 3238ev_start (EV_P_ W w, int active)
1733{ 3239{
1734 pri_adjust (EV_A_ w); 3240 pri_adjust (EV_A_ w);
1735 w->active = active; 3241 w->active = active;
1736 ev_ref (EV_A); 3242 ev_ref (EV_A);
1737} 3243}
1738 3244
1739void inline_size 3245inline_size void
1740ev_stop (EV_P_ W w) 3246ev_stop (EV_P_ W w)
1741{ 3247{
1742 ev_unref (EV_A); 3248 ev_unref (EV_A);
1743 w->active = 0; 3249 w->active = 0;
1744} 3250}
1745 3251
1746/*****************************************************************************/ 3252/*****************************************************************************/
1747 3253
1748void noinline 3254void noinline
1749ev_io_start (EV_P_ ev_io *w) 3255ev_io_start (EV_P_ ev_io *w) EV_THROW
1750{ 3256{
1751 int fd = w->fd; 3257 int fd = w->fd;
1752 3258
1753 if (expect_false (ev_is_active (w))) 3259 if (expect_false (ev_is_active (w)))
1754 return; 3260 return;
1755 3261
1756 assert (("ev_io_start called with negative fd", fd >= 0)); 3262 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3263 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3264
3265 EV_FREQUENT_CHECK;
1757 3266
1758 ev_start (EV_A_ (W)w, 1); 3267 ev_start (EV_A_ (W)w, 1);
1759 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3268 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1760 wlist_add (&anfds[fd].head, (WL)w); 3269 wlist_add (&anfds[fd].head, (WL)w);
1761 3270
3271 /* common bug, apparently */
3272 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3273
1762 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3274 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1763 w->events &= ~EV_IOFDSET; 3275 w->events &= ~EV__IOFDSET;
3276
3277 EV_FREQUENT_CHECK;
1764} 3278}
1765 3279
1766void noinline 3280void noinline
1767ev_io_stop (EV_P_ ev_io *w) 3281ev_io_stop (EV_P_ ev_io *w) EV_THROW
1768{ 3282{
1769 clear_pending (EV_A_ (W)w); 3283 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 3284 if (expect_false (!ev_is_active (w)))
1771 return; 3285 return;
1772 3286
1773 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3287 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3288
3289 EV_FREQUENT_CHECK;
1774 3290
1775 wlist_del (&anfds[w->fd].head, (WL)w); 3291 wlist_del (&anfds[w->fd].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 3292 ev_stop (EV_A_ (W)w);
1777 3293
1778 fd_change (EV_A_ w->fd, 1); 3294 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3295
3296 EV_FREQUENT_CHECK;
1779} 3297}
1780 3298
1781void noinline 3299void noinline
1782ev_timer_start (EV_P_ ev_timer *w) 3300ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1783{ 3301{
1784 if (expect_false (ev_is_active (w))) 3302 if (expect_false (ev_is_active (w)))
1785 return; 3303 return;
1786 3304
1787 ((WT)w)->at += mn_now; 3305 ev_at (w) += mn_now;
1788 3306
1789 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3307 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1790 3308
3309 EV_FREQUENT_CHECK;
3310
3311 ++timercnt;
1791 ev_start (EV_A_ (W)w, ++timercnt); 3312 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1792 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3313 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1793 timers [timercnt - 1] = (WT)w; 3314 ANHE_w (timers [ev_active (w)]) = (WT)w;
1794 upheap (timers, timercnt - 1); 3315 ANHE_at_cache (timers [ev_active (w)]);
3316 upheap (timers, ev_active (w));
1795 3317
3318 EV_FREQUENT_CHECK;
3319
1796 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3320 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1797} 3321}
1798 3322
1799void noinline 3323void noinline
1800ev_timer_stop (EV_P_ ev_timer *w) 3324ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1801{ 3325{
1802 clear_pending (EV_A_ (W)w); 3326 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 3327 if (expect_false (!ev_is_active (w)))
1804 return; 3328 return;
1805 3329
1806 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3330 EV_FREQUENT_CHECK;
1807 3331
1808 { 3332 {
1809 int active = ((W)w)->active; 3333 int active = ev_active (w);
1810 3334
3335 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3336
3337 --timercnt;
3338
1811 if (expect_true (--active < --timercnt)) 3339 if (expect_true (active < timercnt + HEAP0))
1812 { 3340 {
1813 timers [active] = timers [timercnt]; 3341 timers [active] = timers [timercnt + HEAP0];
1814 adjustheap (timers, timercnt, active); 3342 adjustheap (timers, timercnt, active);
1815 } 3343 }
1816 } 3344 }
1817 3345
1818 ((WT)w)->at -= mn_now; 3346 ev_at (w) -= mn_now;
1819 3347
1820 ev_stop (EV_A_ (W)w); 3348 ev_stop (EV_A_ (W)w);
3349
3350 EV_FREQUENT_CHECK;
1821} 3351}
1822 3352
1823void noinline 3353void noinline
1824ev_timer_again (EV_P_ ev_timer *w) 3354ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1825{ 3355{
3356 EV_FREQUENT_CHECK;
3357
3358 clear_pending (EV_A_ (W)w);
3359
1826 if (ev_is_active (w)) 3360 if (ev_is_active (w))
1827 { 3361 {
1828 if (w->repeat) 3362 if (w->repeat)
1829 { 3363 {
1830 ((WT)w)->at = mn_now + w->repeat; 3364 ev_at (w) = mn_now + w->repeat;
3365 ANHE_at_cache (timers [ev_active (w)]);
1831 adjustheap (timers, timercnt, ((W)w)->active - 1); 3366 adjustheap (timers, timercnt, ev_active (w));
1832 } 3367 }
1833 else 3368 else
1834 ev_timer_stop (EV_A_ w); 3369 ev_timer_stop (EV_A_ w);
1835 } 3370 }
1836 else if (w->repeat) 3371 else if (w->repeat)
1837 { 3372 {
1838 w->at = w->repeat; 3373 ev_at (w) = w->repeat;
1839 ev_timer_start (EV_A_ w); 3374 ev_timer_start (EV_A_ w);
1840 } 3375 }
3376
3377 EV_FREQUENT_CHECK;
3378}
3379
3380ev_tstamp
3381ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3382{
3383 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1841} 3384}
1842 3385
1843#if EV_PERIODIC_ENABLE 3386#if EV_PERIODIC_ENABLE
1844void noinline 3387void noinline
1845ev_periodic_start (EV_P_ ev_periodic *w) 3388ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1846{ 3389{
1847 if (expect_false (ev_is_active (w))) 3390 if (expect_false (ev_is_active (w)))
1848 return; 3391 return;
1849 3392
1850 if (w->reschedule_cb) 3393 if (w->reschedule_cb)
1851 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3394 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1852 else if (w->interval) 3395 else if (w->interval)
1853 { 3396 {
1854 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3397 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1855 /* this formula differs from the one in periodic_reify because we do not always round up */ 3398 periodic_recalc (EV_A_ w);
1856 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1857 } 3399 }
1858 else 3400 else
1859 ((WT)w)->at = w->offset; 3401 ev_at (w) = w->offset;
1860 3402
3403 EV_FREQUENT_CHECK;
3404
3405 ++periodiccnt;
1861 ev_start (EV_A_ (W)w, ++periodiccnt); 3406 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1862 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3407 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1863 periodics [periodiccnt - 1] = (WT)w; 3408 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1864 upheap (periodics, periodiccnt - 1); 3409 ANHE_at_cache (periodics [ev_active (w)]);
3410 upheap (periodics, ev_active (w));
1865 3411
3412 EV_FREQUENT_CHECK;
3413
1866 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3414 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1867} 3415}
1868 3416
1869void noinline 3417void noinline
1870ev_periodic_stop (EV_P_ ev_periodic *w) 3418ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1871{ 3419{
1872 clear_pending (EV_A_ (W)w); 3420 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 3421 if (expect_false (!ev_is_active (w)))
1874 return; 3422 return;
1875 3423
1876 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3424 EV_FREQUENT_CHECK;
1877 3425
1878 { 3426 {
1879 int active = ((W)w)->active; 3427 int active = ev_active (w);
1880 3428
3429 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3430
3431 --periodiccnt;
3432
1881 if (expect_true (--active < --periodiccnt)) 3433 if (expect_true (active < periodiccnt + HEAP0))
1882 { 3434 {
1883 periodics [active] = periodics [periodiccnt]; 3435 periodics [active] = periodics [periodiccnt + HEAP0];
1884 adjustheap (periodics, periodiccnt, active); 3436 adjustheap (periodics, periodiccnt, active);
1885 } 3437 }
1886 } 3438 }
1887 3439
1888 ev_stop (EV_A_ (W)w); 3440 ev_stop (EV_A_ (W)w);
3441
3442 EV_FREQUENT_CHECK;
1889} 3443}
1890 3444
1891void noinline 3445void noinline
1892ev_periodic_again (EV_P_ ev_periodic *w) 3446ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1893{ 3447{
1894 /* TODO: use adjustheap and recalculation */ 3448 /* TODO: use adjustheap and recalculation */
1895 ev_periodic_stop (EV_A_ w); 3449 ev_periodic_stop (EV_A_ w);
1896 ev_periodic_start (EV_A_ w); 3450 ev_periodic_start (EV_A_ w);
1897} 3451}
1899 3453
1900#ifndef SA_RESTART 3454#ifndef SA_RESTART
1901# define SA_RESTART 0 3455# define SA_RESTART 0
1902#endif 3456#endif
1903 3457
3458#if EV_SIGNAL_ENABLE
3459
1904void noinline 3460void noinline
1905ev_signal_start (EV_P_ ev_signal *w) 3461ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1906{ 3462{
1907#if EV_MULTIPLICITY
1908 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1909#endif
1910 if (expect_false (ev_is_active (w))) 3463 if (expect_false (ev_is_active (w)))
1911 return; 3464 return;
1912 3465
1913 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3466 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1914 3467
1915 evpipe_init (EV_A); 3468#if EV_MULTIPLICITY
3469 assert (("libev: a signal must not be attached to two different loops",
3470 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1916 3471
3472 signals [w->signum - 1].loop = EV_A;
3473#endif
3474
3475 EV_FREQUENT_CHECK;
3476
3477#if EV_USE_SIGNALFD
3478 if (sigfd == -2)
1917 { 3479 {
1918#ifndef _WIN32 3480 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1919 sigset_t full, prev; 3481 if (sigfd < 0 && errno == EINVAL)
1920 sigfillset (&full); 3482 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1921 sigprocmask (SIG_SETMASK, &full, &prev);
1922#endif
1923 3483
1924 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3484 if (sigfd >= 0)
3485 {
3486 fd_intern (sigfd); /* doing it twice will not hurt */
1925 3487
1926#ifndef _WIN32 3488 sigemptyset (&sigfd_set);
1927 sigprocmask (SIG_SETMASK, &prev, 0); 3489
1928#endif 3490 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3491 ev_set_priority (&sigfd_w, EV_MAXPRI);
3492 ev_io_start (EV_A_ &sigfd_w);
3493 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3494 }
1929 } 3495 }
3496
3497 if (sigfd >= 0)
3498 {
3499 /* TODO: check .head */
3500 sigaddset (&sigfd_set, w->signum);
3501 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3502
3503 signalfd (sigfd, &sigfd_set, 0);
3504 }
3505#endif
1930 3506
1931 ev_start (EV_A_ (W)w, 1); 3507 ev_start (EV_A_ (W)w, 1);
1932 wlist_add (&signals [w->signum - 1].head, (WL)w); 3508 wlist_add (&signals [w->signum - 1].head, (WL)w);
1933 3509
1934 if (!((WL)w)->next) 3510 if (!((WL)w)->next)
3511# if EV_USE_SIGNALFD
3512 if (sigfd < 0) /*TODO*/
3513# endif
1935 { 3514 {
1936#if _WIN32 3515# ifdef _WIN32
3516 evpipe_init (EV_A);
3517
1937 signal (w->signum, sighandler); 3518 signal (w->signum, ev_sighandler);
1938#else 3519# else
1939 struct sigaction sa; 3520 struct sigaction sa;
3521
3522 evpipe_init (EV_A);
3523
1940 sa.sa_handler = sighandler; 3524 sa.sa_handler = ev_sighandler;
1941 sigfillset (&sa.sa_mask); 3525 sigfillset (&sa.sa_mask);
1942 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3526 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1943 sigaction (w->signum, &sa, 0); 3527 sigaction (w->signum, &sa, 0);
3528
3529 if (origflags & EVFLAG_NOSIGMASK)
3530 {
3531 sigemptyset (&sa.sa_mask);
3532 sigaddset (&sa.sa_mask, w->signum);
3533 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3534 }
1944#endif 3535#endif
1945 } 3536 }
3537
3538 EV_FREQUENT_CHECK;
1946} 3539}
1947 3540
1948void noinline 3541void noinline
1949ev_signal_stop (EV_P_ ev_signal *w) 3542ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1950{ 3543{
1951 clear_pending (EV_A_ (W)w); 3544 clear_pending (EV_A_ (W)w);
1952 if (expect_false (!ev_is_active (w))) 3545 if (expect_false (!ev_is_active (w)))
1953 return; 3546 return;
1954 3547
3548 EV_FREQUENT_CHECK;
3549
1955 wlist_del (&signals [w->signum - 1].head, (WL)w); 3550 wlist_del (&signals [w->signum - 1].head, (WL)w);
1956 ev_stop (EV_A_ (W)w); 3551 ev_stop (EV_A_ (W)w);
1957 3552
1958 if (!signals [w->signum - 1].head) 3553 if (!signals [w->signum - 1].head)
3554 {
3555#if EV_MULTIPLICITY
3556 signals [w->signum - 1].loop = 0; /* unattach from signal */
3557#endif
3558#if EV_USE_SIGNALFD
3559 if (sigfd >= 0)
3560 {
3561 sigset_t ss;
3562
3563 sigemptyset (&ss);
3564 sigaddset (&ss, w->signum);
3565 sigdelset (&sigfd_set, w->signum);
3566
3567 signalfd (sigfd, &sigfd_set, 0);
3568 sigprocmask (SIG_UNBLOCK, &ss, 0);
3569 }
3570 else
3571#endif
1959 signal (w->signum, SIG_DFL); 3572 signal (w->signum, SIG_DFL);
3573 }
3574
3575 EV_FREQUENT_CHECK;
1960} 3576}
3577
3578#endif
3579
3580#if EV_CHILD_ENABLE
1961 3581
1962void 3582void
1963ev_child_start (EV_P_ ev_child *w) 3583ev_child_start (EV_P_ ev_child *w) EV_THROW
1964{ 3584{
1965#if EV_MULTIPLICITY 3585#if EV_MULTIPLICITY
1966 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3586 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1967#endif 3587#endif
1968 if (expect_false (ev_is_active (w))) 3588 if (expect_false (ev_is_active (w)))
1969 return; 3589 return;
1970 3590
3591 EV_FREQUENT_CHECK;
3592
1971 ev_start (EV_A_ (W)w, 1); 3593 ev_start (EV_A_ (W)w, 1);
1972 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3594 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3595
3596 EV_FREQUENT_CHECK;
1973} 3597}
1974 3598
1975void 3599void
1976ev_child_stop (EV_P_ ev_child *w) 3600ev_child_stop (EV_P_ ev_child *w) EV_THROW
1977{ 3601{
1978 clear_pending (EV_A_ (W)w); 3602 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 3603 if (expect_false (!ev_is_active (w)))
1980 return; 3604 return;
1981 3605
3606 EV_FREQUENT_CHECK;
3607
1982 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3608 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1983 ev_stop (EV_A_ (W)w); 3609 ev_stop (EV_A_ (W)w);
3610
3611 EV_FREQUENT_CHECK;
1984} 3612}
3613
3614#endif
1985 3615
1986#if EV_STAT_ENABLE 3616#if EV_STAT_ENABLE
1987 3617
1988# ifdef _WIN32 3618# ifdef _WIN32
1989# undef lstat 3619# undef lstat
1990# define lstat(a,b) _stati64 (a,b) 3620# define lstat(a,b) _stati64 (a,b)
1991# endif 3621# endif
1992 3622
1993#define DEF_STAT_INTERVAL 5.0074891 3623#define DEF_STAT_INTERVAL 5.0074891
3624#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1994#define MIN_STAT_INTERVAL 0.1074891 3625#define MIN_STAT_INTERVAL 0.1074891
1995 3626
1996static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3627static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1997 3628
1998#if EV_USE_INOTIFY 3629#if EV_USE_INOTIFY
1999# define EV_INOTIFY_BUFSIZE 8192 3630
3631/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3632# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2000 3633
2001static void noinline 3634static void noinline
2002infy_add (EV_P_ ev_stat *w) 3635infy_add (EV_P_ ev_stat *w)
2003{ 3636{
2004 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3637 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2005 3638
2006 if (w->wd < 0) 3639 if (w->wd >= 0)
3640 {
3641 struct statfs sfs;
3642
3643 /* now local changes will be tracked by inotify, but remote changes won't */
3644 /* unless the filesystem is known to be local, we therefore still poll */
3645 /* also do poll on <2.6.25, but with normal frequency */
3646
3647 if (!fs_2625)
3648 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3649 else if (!statfs (w->path, &sfs)
3650 && (sfs.f_type == 0x1373 /* devfs */
3651 || sfs.f_type == 0xEF53 /* ext2/3 */
3652 || sfs.f_type == 0x3153464a /* jfs */
3653 || sfs.f_type == 0x52654973 /* reiser3 */
3654 || sfs.f_type == 0x01021994 /* tempfs */
3655 || sfs.f_type == 0x58465342 /* xfs */))
3656 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3657 else
3658 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2007 { 3659 }
2008 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3660 else
3661 {
3662 /* can't use inotify, continue to stat */
3663 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2009 3664
2010 /* monitor some parent directory for speedup hints */ 3665 /* if path is not there, monitor some parent directory for speedup hints */
3666 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3667 /* but an efficiency issue only */
2011 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3668 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2012 { 3669 {
2013 char path [4096]; 3670 char path [4096];
2014 strcpy (path, w->path); 3671 strcpy (path, w->path);
2015 3672
2018 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3675 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2019 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3676 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2020 3677
2021 char *pend = strrchr (path, '/'); 3678 char *pend = strrchr (path, '/');
2022 3679
2023 if (!pend) 3680 if (!pend || pend == path)
2024 break; /* whoops, no '/', complain to your admin */ 3681 break;
2025 3682
2026 *pend = 0; 3683 *pend = 0;
2027 w->wd = inotify_add_watch (fs_fd, path, mask); 3684 w->wd = inotify_add_watch (fs_fd, path, mask);
2028 } 3685 }
2029 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3686 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2030 } 3687 }
2031 } 3688 }
2032 else
2033 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2034 3689
2035 if (w->wd >= 0) 3690 if (w->wd >= 0)
2036 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3691 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3692
3693 /* now re-arm timer, if required */
3694 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3695 ev_timer_again (EV_A_ &w->timer);
3696 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2037} 3697}
2038 3698
2039static void noinline 3699static void noinline
2040infy_del (EV_P_ ev_stat *w) 3700infy_del (EV_P_ ev_stat *w)
2041{ 3701{
2044 3704
2045 if (wd < 0) 3705 if (wd < 0)
2046 return; 3706 return;
2047 3707
2048 w->wd = -2; 3708 w->wd = -2;
2049 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3709 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2050 wlist_del (&fs_hash [slot].head, (WL)w); 3710 wlist_del (&fs_hash [slot].head, (WL)w);
2051 3711
2052 /* remove this watcher, if others are watching it, they will rearm */ 3712 /* remove this watcher, if others are watching it, they will rearm */
2053 inotify_rm_watch (fs_fd, wd); 3713 inotify_rm_watch (fs_fd, wd);
2054} 3714}
2055 3715
2056static void noinline 3716static void noinline
2057infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3717infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2058{ 3718{
2059 if (slot < 0) 3719 if (slot < 0)
2060 /* overflow, need to check for all hahs slots */ 3720 /* overflow, need to check for all hash slots */
2061 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3721 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2062 infy_wd (EV_A_ slot, wd, ev); 3722 infy_wd (EV_A_ slot, wd, ev);
2063 else 3723 else
2064 { 3724 {
2065 WL w_; 3725 WL w_;
2066 3726
2067 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3727 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2068 { 3728 {
2069 ev_stat *w = (ev_stat *)w_; 3729 ev_stat *w = (ev_stat *)w_;
2070 w_ = w_->next; /* lets us remove this watcher and all before it */ 3730 w_ = w_->next; /* lets us remove this watcher and all before it */
2071 3731
2072 if (w->wd == wd || wd == -1) 3732 if (w->wd == wd || wd == -1)
2073 { 3733 {
2074 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3734 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2075 { 3735 {
3736 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2076 w->wd = -1; 3737 w->wd = -1;
2077 infy_add (EV_A_ w); /* re-add, no matter what */ 3738 infy_add (EV_A_ w); /* re-add, no matter what */
2078 } 3739 }
2079 3740
2080 stat_timer_cb (EV_A_ &w->timer, 0); 3741 stat_timer_cb (EV_A_ &w->timer, 0);
2085 3746
2086static void 3747static void
2087infy_cb (EV_P_ ev_io *w, int revents) 3748infy_cb (EV_P_ ev_io *w, int revents)
2088{ 3749{
2089 char buf [EV_INOTIFY_BUFSIZE]; 3750 char buf [EV_INOTIFY_BUFSIZE];
2090 struct inotify_event *ev = (struct inotify_event *)buf;
2091 int ofs; 3751 int ofs;
2092 int len = read (fs_fd, buf, sizeof (buf)); 3752 int len = read (fs_fd, buf, sizeof (buf));
2093 3753
2094 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3754 for (ofs = 0; ofs < len; )
3755 {
3756 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2095 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3757 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3758 ofs += sizeof (struct inotify_event) + ev->len;
3759 }
2096} 3760}
2097 3761
2098void inline_size 3762inline_size void ecb_cold
3763ev_check_2625 (EV_P)
3764{
3765 /* kernels < 2.6.25 are borked
3766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3767 */
3768 if (ev_linux_version () < 0x020619)
3769 return;
3770
3771 fs_2625 = 1;
3772}
3773
3774inline_size int
3775infy_newfd (void)
3776{
3777#if defined IN_CLOEXEC && defined IN_NONBLOCK
3778 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3779 if (fd >= 0)
3780 return fd;
3781#endif
3782 return inotify_init ();
3783}
3784
3785inline_size void
2099infy_init (EV_P) 3786infy_init (EV_P)
2100{ 3787{
2101 if (fs_fd != -2) 3788 if (fs_fd != -2)
2102 return; 3789 return;
2103 3790
3791 fs_fd = -1;
3792
3793 ev_check_2625 (EV_A);
3794
2104 fs_fd = inotify_init (); 3795 fs_fd = infy_newfd ();
2105 3796
2106 if (fs_fd >= 0) 3797 if (fs_fd >= 0)
2107 { 3798 {
3799 fd_intern (fs_fd);
2108 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3800 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2109 ev_set_priority (&fs_w, EV_MAXPRI); 3801 ev_set_priority (&fs_w, EV_MAXPRI);
2110 ev_io_start (EV_A_ &fs_w); 3802 ev_io_start (EV_A_ &fs_w);
3803 ev_unref (EV_A);
2111 } 3804 }
2112} 3805}
2113 3806
2114void inline_size 3807inline_size void
2115infy_fork (EV_P) 3808infy_fork (EV_P)
2116{ 3809{
2117 int slot; 3810 int slot;
2118 3811
2119 if (fs_fd < 0) 3812 if (fs_fd < 0)
2120 return; 3813 return;
2121 3814
3815 ev_ref (EV_A);
3816 ev_io_stop (EV_A_ &fs_w);
2122 close (fs_fd); 3817 close (fs_fd);
2123 fs_fd = inotify_init (); 3818 fs_fd = infy_newfd ();
2124 3819
3820 if (fs_fd >= 0)
3821 {
3822 fd_intern (fs_fd);
3823 ev_io_set (&fs_w, fs_fd, EV_READ);
3824 ev_io_start (EV_A_ &fs_w);
3825 ev_unref (EV_A);
3826 }
3827
2125 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3828 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2126 { 3829 {
2127 WL w_ = fs_hash [slot].head; 3830 WL w_ = fs_hash [slot].head;
2128 fs_hash [slot].head = 0; 3831 fs_hash [slot].head = 0;
2129 3832
2130 while (w_) 3833 while (w_)
2135 w->wd = -1; 3838 w->wd = -1;
2136 3839
2137 if (fs_fd >= 0) 3840 if (fs_fd >= 0)
2138 infy_add (EV_A_ w); /* re-add, no matter what */ 3841 infy_add (EV_A_ w); /* re-add, no matter what */
2139 else 3842 else
3843 {
3844 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3845 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2140 ev_timer_start (EV_A_ &w->timer); 3846 ev_timer_again (EV_A_ &w->timer);
3847 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3848 }
2141 } 3849 }
2142
2143 } 3850 }
2144} 3851}
2145 3852
3853#endif
3854
3855#ifdef _WIN32
3856# define EV_LSTAT(p,b) _stati64 (p, b)
3857#else
3858# define EV_LSTAT(p,b) lstat (p, b)
2146#endif 3859#endif
2147 3860
2148void 3861void
2149ev_stat_stat (EV_P_ ev_stat *w) 3862ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2150{ 3863{
2151 if (lstat (w->path, &w->attr) < 0) 3864 if (lstat (w->path, &w->attr) < 0)
2152 w->attr.st_nlink = 0; 3865 w->attr.st_nlink = 0;
2153 else if (!w->attr.st_nlink) 3866 else if (!w->attr.st_nlink)
2154 w->attr.st_nlink = 1; 3867 w->attr.st_nlink = 1;
2157static void noinline 3870static void noinline
2158stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3871stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2159{ 3872{
2160 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3873 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2161 3874
2162 /* we copy this here each the time so that */ 3875 ev_statdata prev = w->attr;
2163 /* prev has the old value when the callback gets invoked */
2164 w->prev = w->attr;
2165 ev_stat_stat (EV_A_ w); 3876 ev_stat_stat (EV_A_ w);
2166 3877
2167 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3878 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2168 if ( 3879 if (
2169 w->prev.st_dev != w->attr.st_dev 3880 prev.st_dev != w->attr.st_dev
2170 || w->prev.st_ino != w->attr.st_ino 3881 || prev.st_ino != w->attr.st_ino
2171 || w->prev.st_mode != w->attr.st_mode 3882 || prev.st_mode != w->attr.st_mode
2172 || w->prev.st_nlink != w->attr.st_nlink 3883 || prev.st_nlink != w->attr.st_nlink
2173 || w->prev.st_uid != w->attr.st_uid 3884 || prev.st_uid != w->attr.st_uid
2174 || w->prev.st_gid != w->attr.st_gid 3885 || prev.st_gid != w->attr.st_gid
2175 || w->prev.st_rdev != w->attr.st_rdev 3886 || prev.st_rdev != w->attr.st_rdev
2176 || w->prev.st_size != w->attr.st_size 3887 || prev.st_size != w->attr.st_size
2177 || w->prev.st_atime != w->attr.st_atime 3888 || prev.st_atime != w->attr.st_atime
2178 || w->prev.st_mtime != w->attr.st_mtime 3889 || prev.st_mtime != w->attr.st_mtime
2179 || w->prev.st_ctime != w->attr.st_ctime 3890 || prev.st_ctime != w->attr.st_ctime
2180 ) { 3891 ) {
3892 /* we only update w->prev on actual differences */
3893 /* in case we test more often than invoke the callback, */
3894 /* to ensure that prev is always different to attr */
3895 w->prev = prev;
3896
2181 #if EV_USE_INOTIFY 3897 #if EV_USE_INOTIFY
3898 if (fs_fd >= 0)
3899 {
2182 infy_del (EV_A_ w); 3900 infy_del (EV_A_ w);
2183 infy_add (EV_A_ w); 3901 infy_add (EV_A_ w);
2184 ev_stat_stat (EV_A_ w); /* avoid race... */ 3902 ev_stat_stat (EV_A_ w); /* avoid race... */
3903 }
2185 #endif 3904 #endif
2186 3905
2187 ev_feed_event (EV_A_ w, EV_STAT); 3906 ev_feed_event (EV_A_ w, EV_STAT);
2188 } 3907 }
2189} 3908}
2190 3909
2191void 3910void
2192ev_stat_start (EV_P_ ev_stat *w) 3911ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2193{ 3912{
2194 if (expect_false (ev_is_active (w))) 3913 if (expect_false (ev_is_active (w)))
2195 return; 3914 return;
2196 3915
2197 /* since we use memcmp, we need to clear any padding data etc. */
2198 memset (&w->prev, 0, sizeof (ev_statdata));
2199 memset (&w->attr, 0, sizeof (ev_statdata));
2200
2201 ev_stat_stat (EV_A_ w); 3916 ev_stat_stat (EV_A_ w);
2202 3917
3918 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2203 if (w->interval < MIN_STAT_INTERVAL) 3919 w->interval = MIN_STAT_INTERVAL;
2204 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2205 3920
2206 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3921 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2207 ev_set_priority (&w->timer, ev_priority (w)); 3922 ev_set_priority (&w->timer, ev_priority (w));
2208 3923
2209#if EV_USE_INOTIFY 3924#if EV_USE_INOTIFY
2210 infy_init (EV_A); 3925 infy_init (EV_A);
2211 3926
2212 if (fs_fd >= 0) 3927 if (fs_fd >= 0)
2213 infy_add (EV_A_ w); 3928 infy_add (EV_A_ w);
2214 else 3929 else
2215#endif 3930#endif
3931 {
2216 ev_timer_start (EV_A_ &w->timer); 3932 ev_timer_again (EV_A_ &w->timer);
3933 ev_unref (EV_A);
3934 }
2217 3935
2218 ev_start (EV_A_ (W)w, 1); 3936 ev_start (EV_A_ (W)w, 1);
3937
3938 EV_FREQUENT_CHECK;
2219} 3939}
2220 3940
2221void 3941void
2222ev_stat_stop (EV_P_ ev_stat *w) 3942ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2223{ 3943{
2224 clear_pending (EV_A_ (W)w); 3944 clear_pending (EV_A_ (W)w);
2225 if (expect_false (!ev_is_active (w))) 3945 if (expect_false (!ev_is_active (w)))
2226 return; 3946 return;
2227 3947
3948 EV_FREQUENT_CHECK;
3949
2228#if EV_USE_INOTIFY 3950#if EV_USE_INOTIFY
2229 infy_del (EV_A_ w); 3951 infy_del (EV_A_ w);
2230#endif 3952#endif
3953
3954 if (ev_is_active (&w->timer))
3955 {
3956 ev_ref (EV_A);
2231 ev_timer_stop (EV_A_ &w->timer); 3957 ev_timer_stop (EV_A_ &w->timer);
3958 }
2232 3959
2233 ev_stop (EV_A_ (W)w); 3960 ev_stop (EV_A_ (W)w);
3961
3962 EV_FREQUENT_CHECK;
2234} 3963}
2235#endif 3964#endif
2236 3965
2237#if EV_IDLE_ENABLE 3966#if EV_IDLE_ENABLE
2238void 3967void
2239ev_idle_start (EV_P_ ev_idle *w) 3968ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2240{ 3969{
2241 if (expect_false (ev_is_active (w))) 3970 if (expect_false (ev_is_active (w)))
2242 return; 3971 return;
2243 3972
2244 pri_adjust (EV_A_ (W)w); 3973 pri_adjust (EV_A_ (W)w);
3974
3975 EV_FREQUENT_CHECK;
2245 3976
2246 { 3977 {
2247 int active = ++idlecnt [ABSPRI (w)]; 3978 int active = ++idlecnt [ABSPRI (w)];
2248 3979
2249 ++idleall; 3980 ++idleall;
2250 ev_start (EV_A_ (W)w, active); 3981 ev_start (EV_A_ (W)w, active);
2251 3982
2252 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3983 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2253 idles [ABSPRI (w)][active - 1] = w; 3984 idles [ABSPRI (w)][active - 1] = w;
2254 } 3985 }
3986
3987 EV_FREQUENT_CHECK;
2255} 3988}
2256 3989
2257void 3990void
2258ev_idle_stop (EV_P_ ev_idle *w) 3991ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2259{ 3992{
2260 clear_pending (EV_A_ (W)w); 3993 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w))) 3994 if (expect_false (!ev_is_active (w)))
2262 return; 3995 return;
2263 3996
3997 EV_FREQUENT_CHECK;
3998
2264 { 3999 {
2265 int active = ((W)w)->active; 4000 int active = ev_active (w);
2266 4001
2267 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4002 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2268 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4003 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2269 4004
2270 ev_stop (EV_A_ (W)w); 4005 ev_stop (EV_A_ (W)w);
2271 --idleall; 4006 --idleall;
2272 } 4007 }
2273}
2274#endif
2275 4008
4009 EV_FREQUENT_CHECK;
4010}
4011#endif
4012
4013#if EV_PREPARE_ENABLE
2276void 4014void
2277ev_prepare_start (EV_P_ ev_prepare *w) 4015ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2278{ 4016{
2279 if (expect_false (ev_is_active (w))) 4017 if (expect_false (ev_is_active (w)))
2280 return; 4018 return;
4019
4020 EV_FREQUENT_CHECK;
2281 4021
2282 ev_start (EV_A_ (W)w, ++preparecnt); 4022 ev_start (EV_A_ (W)w, ++preparecnt);
2283 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4023 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2284 prepares [preparecnt - 1] = w; 4024 prepares [preparecnt - 1] = w;
4025
4026 EV_FREQUENT_CHECK;
2285} 4027}
2286 4028
2287void 4029void
2288ev_prepare_stop (EV_P_ ev_prepare *w) 4030ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2289{ 4031{
2290 clear_pending (EV_A_ (W)w); 4032 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 4033 if (expect_false (!ev_is_active (w)))
2292 return; 4034 return;
2293 4035
4036 EV_FREQUENT_CHECK;
4037
2294 { 4038 {
2295 int active = ((W)w)->active; 4039 int active = ev_active (w);
4040
2296 prepares [active - 1] = prepares [--preparecnt]; 4041 prepares [active - 1] = prepares [--preparecnt];
2297 ((W)prepares [active - 1])->active = active; 4042 ev_active (prepares [active - 1]) = active;
2298 } 4043 }
2299 4044
2300 ev_stop (EV_A_ (W)w); 4045 ev_stop (EV_A_ (W)w);
2301}
2302 4046
4047 EV_FREQUENT_CHECK;
4048}
4049#endif
4050
4051#if EV_CHECK_ENABLE
2303void 4052void
2304ev_check_start (EV_P_ ev_check *w) 4053ev_check_start (EV_P_ ev_check *w) EV_THROW
2305{ 4054{
2306 if (expect_false (ev_is_active (w))) 4055 if (expect_false (ev_is_active (w)))
2307 return; 4056 return;
4057
4058 EV_FREQUENT_CHECK;
2308 4059
2309 ev_start (EV_A_ (W)w, ++checkcnt); 4060 ev_start (EV_A_ (W)w, ++checkcnt);
2310 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4061 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2311 checks [checkcnt - 1] = w; 4062 checks [checkcnt - 1] = w;
4063
4064 EV_FREQUENT_CHECK;
2312} 4065}
2313 4066
2314void 4067void
2315ev_check_stop (EV_P_ ev_check *w) 4068ev_check_stop (EV_P_ ev_check *w) EV_THROW
2316{ 4069{
2317 clear_pending (EV_A_ (W)w); 4070 clear_pending (EV_A_ (W)w);
2318 if (expect_false (!ev_is_active (w))) 4071 if (expect_false (!ev_is_active (w)))
2319 return; 4072 return;
2320 4073
4074 EV_FREQUENT_CHECK;
4075
2321 { 4076 {
2322 int active = ((W)w)->active; 4077 int active = ev_active (w);
4078
2323 checks [active - 1] = checks [--checkcnt]; 4079 checks [active - 1] = checks [--checkcnt];
2324 ((W)checks [active - 1])->active = active; 4080 ev_active (checks [active - 1]) = active;
2325 } 4081 }
2326 4082
2327 ev_stop (EV_A_ (W)w); 4083 ev_stop (EV_A_ (W)w);
4084
4085 EV_FREQUENT_CHECK;
2328} 4086}
4087#endif
2329 4088
2330#if EV_EMBED_ENABLE 4089#if EV_EMBED_ENABLE
2331void noinline 4090void noinline
2332ev_embed_sweep (EV_P_ ev_embed *w) 4091ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2333{ 4092{
2334 ev_loop (w->other, EVLOOP_NONBLOCK); 4093 ev_run (w->other, EVRUN_NOWAIT);
2335} 4094}
2336 4095
2337static void 4096static void
2338embed_io_cb (EV_P_ ev_io *io, int revents) 4097embed_io_cb (EV_P_ ev_io *io, int revents)
2339{ 4098{
2340 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4099 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2341 4100
2342 if (ev_cb (w)) 4101 if (ev_cb (w))
2343 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4102 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2344 else 4103 else
2345 ev_loop (w->other, EVLOOP_NONBLOCK); 4104 ev_run (w->other, EVRUN_NOWAIT);
2346} 4105}
2347 4106
2348static void 4107static void
2349embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4108embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2350{ 4109{
2351 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4110 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2352 4111
2353 { 4112 {
2354 struct ev_loop *loop = w->other; 4113 EV_P = w->other;
2355 4114
2356 while (fdchangecnt) 4115 while (fdchangecnt)
2357 { 4116 {
2358 fd_reify (EV_A); 4117 fd_reify (EV_A);
2359 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4118 ev_run (EV_A_ EVRUN_NOWAIT);
2360 } 4119 }
2361 } 4120 }
4121}
4122
4123static void
4124embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4125{
4126 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4127
4128 ev_embed_stop (EV_A_ w);
4129
4130 {
4131 EV_P = w->other;
4132
4133 ev_loop_fork (EV_A);
4134 ev_run (EV_A_ EVRUN_NOWAIT);
4135 }
4136
4137 ev_embed_start (EV_A_ w);
2362} 4138}
2363 4139
2364#if 0 4140#if 0
2365static void 4141static void
2366embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4142embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2368 ev_idle_stop (EV_A_ idle); 4144 ev_idle_stop (EV_A_ idle);
2369} 4145}
2370#endif 4146#endif
2371 4147
2372void 4148void
2373ev_embed_start (EV_P_ ev_embed *w) 4149ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2374{ 4150{
2375 if (expect_false (ev_is_active (w))) 4151 if (expect_false (ev_is_active (w)))
2376 return; 4152 return;
2377 4153
2378 { 4154 {
2379 struct ev_loop *loop = w->other; 4155 EV_P = w->other;
2380 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4156 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2381 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4157 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2382 } 4158 }
4159
4160 EV_FREQUENT_CHECK;
2383 4161
2384 ev_set_priority (&w->io, ev_priority (w)); 4162 ev_set_priority (&w->io, ev_priority (w));
2385 ev_io_start (EV_A_ &w->io); 4163 ev_io_start (EV_A_ &w->io);
2386 4164
2387 ev_prepare_init (&w->prepare, embed_prepare_cb); 4165 ev_prepare_init (&w->prepare, embed_prepare_cb);
2388 ev_set_priority (&w->prepare, EV_MINPRI); 4166 ev_set_priority (&w->prepare, EV_MINPRI);
2389 ev_prepare_start (EV_A_ &w->prepare); 4167 ev_prepare_start (EV_A_ &w->prepare);
2390 4168
4169 ev_fork_init (&w->fork, embed_fork_cb);
4170 ev_fork_start (EV_A_ &w->fork);
4171
2391 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4172 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2392 4173
2393 ev_start (EV_A_ (W)w, 1); 4174 ev_start (EV_A_ (W)w, 1);
4175
4176 EV_FREQUENT_CHECK;
2394} 4177}
2395 4178
2396void 4179void
2397ev_embed_stop (EV_P_ ev_embed *w) 4180ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2398{ 4181{
2399 clear_pending (EV_A_ (W)w); 4182 clear_pending (EV_A_ (W)w);
2400 if (expect_false (!ev_is_active (w))) 4183 if (expect_false (!ev_is_active (w)))
2401 return; 4184 return;
2402 4185
4186 EV_FREQUENT_CHECK;
4187
2403 ev_io_stop (EV_A_ &w->io); 4188 ev_io_stop (EV_A_ &w->io);
2404 ev_prepare_stop (EV_A_ &w->prepare); 4189 ev_prepare_stop (EV_A_ &w->prepare);
4190 ev_fork_stop (EV_A_ &w->fork);
2405 4191
2406 ev_stop (EV_A_ (W)w); 4192 ev_stop (EV_A_ (W)w);
4193
4194 EV_FREQUENT_CHECK;
2407} 4195}
2408#endif 4196#endif
2409 4197
2410#if EV_FORK_ENABLE 4198#if EV_FORK_ENABLE
2411void 4199void
2412ev_fork_start (EV_P_ ev_fork *w) 4200ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2413{ 4201{
2414 if (expect_false (ev_is_active (w))) 4202 if (expect_false (ev_is_active (w)))
2415 return; 4203 return;
4204
4205 EV_FREQUENT_CHECK;
2416 4206
2417 ev_start (EV_A_ (W)w, ++forkcnt); 4207 ev_start (EV_A_ (W)w, ++forkcnt);
2418 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2419 forks [forkcnt - 1] = w; 4209 forks [forkcnt - 1] = w;
4210
4211 EV_FREQUENT_CHECK;
2420} 4212}
2421 4213
2422void 4214void
2423ev_fork_stop (EV_P_ ev_fork *w) 4215ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2424{ 4216{
2425 clear_pending (EV_A_ (W)w); 4217 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w))) 4218 if (expect_false (!ev_is_active (w)))
2427 return; 4219 return;
2428 4220
4221 EV_FREQUENT_CHECK;
4222
2429 { 4223 {
2430 int active = ((W)w)->active; 4224 int active = ev_active (w);
4225
2431 forks [active - 1] = forks [--forkcnt]; 4226 forks [active - 1] = forks [--forkcnt];
2432 ((W)forks [active - 1])->active = active; 4227 ev_active (forks [active - 1]) = active;
2433 } 4228 }
2434 4229
2435 ev_stop (EV_A_ (W)w); 4230 ev_stop (EV_A_ (W)w);
4231
4232 EV_FREQUENT_CHECK;
4233}
4234#endif
4235
4236#if EV_CLEANUP_ENABLE
4237void
4238ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4239{
4240 if (expect_false (ev_is_active (w)))
4241 return;
4242
4243 EV_FREQUENT_CHECK;
4244
4245 ev_start (EV_A_ (W)w, ++cleanupcnt);
4246 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4247 cleanups [cleanupcnt - 1] = w;
4248
4249 /* cleanup watchers should never keep a refcount on the loop */
4250 ev_unref (EV_A);
4251 EV_FREQUENT_CHECK;
4252}
4253
4254void
4255ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4256{
4257 clear_pending (EV_A_ (W)w);
4258 if (expect_false (!ev_is_active (w)))
4259 return;
4260
4261 EV_FREQUENT_CHECK;
4262 ev_ref (EV_A);
4263
4264 {
4265 int active = ev_active (w);
4266
4267 cleanups [active - 1] = cleanups [--cleanupcnt];
4268 ev_active (cleanups [active - 1]) = active;
4269 }
4270
4271 ev_stop (EV_A_ (W)w);
4272
4273 EV_FREQUENT_CHECK;
2436} 4274}
2437#endif 4275#endif
2438 4276
2439#if EV_ASYNC_ENABLE 4277#if EV_ASYNC_ENABLE
2440void 4278void
2441ev_async_start (EV_P_ ev_async *w) 4279ev_async_start (EV_P_ ev_async *w) EV_THROW
2442{ 4280{
2443 if (expect_false (ev_is_active (w))) 4281 if (expect_false (ev_is_active (w)))
2444 return; 4282 return;
2445 4283
4284 w->sent = 0;
4285
2446 evpipe_init (EV_A); 4286 evpipe_init (EV_A);
4287
4288 EV_FREQUENT_CHECK;
2447 4289
2448 ev_start (EV_A_ (W)w, ++asynccnt); 4290 ev_start (EV_A_ (W)w, ++asynccnt);
2449 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4291 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2450 asyncs [asynccnt - 1] = w; 4292 asyncs [asynccnt - 1] = w;
4293
4294 EV_FREQUENT_CHECK;
2451} 4295}
2452 4296
2453void 4297void
2454ev_async_stop (EV_P_ ev_async *w) 4298ev_async_stop (EV_P_ ev_async *w) EV_THROW
2455{ 4299{
2456 clear_pending (EV_A_ (W)w); 4300 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w))) 4301 if (expect_false (!ev_is_active (w)))
2458 return; 4302 return;
2459 4303
4304 EV_FREQUENT_CHECK;
4305
2460 { 4306 {
2461 int active = ((W)w)->active; 4307 int active = ev_active (w);
4308
2462 asyncs [active - 1] = asyncs [--asynccnt]; 4309 asyncs [active - 1] = asyncs [--asynccnt];
2463 ((W)asyncs [active - 1])->active = active; 4310 ev_active (asyncs [active - 1]) = active;
2464 } 4311 }
2465 4312
2466 ev_stop (EV_A_ (W)w); 4313 ev_stop (EV_A_ (W)w);
4314
4315 EV_FREQUENT_CHECK;
2467} 4316}
2468 4317
2469void 4318void
2470ev_async_send (EV_P_ ev_async *w) 4319ev_async_send (EV_P_ ev_async *w) EV_THROW
2471{ 4320{
2472 w->sent = 1; 4321 w->sent = 1;
2473 evpipe_write (EV_A_ 0, 1); 4322 evpipe_write (EV_A_ &async_pending);
2474} 4323}
2475#endif 4324#endif
2476 4325
2477/*****************************************************************************/ 4326/*****************************************************************************/
2478 4327
2488once_cb (EV_P_ struct ev_once *once, int revents) 4337once_cb (EV_P_ struct ev_once *once, int revents)
2489{ 4338{
2490 void (*cb)(int revents, void *arg) = once->cb; 4339 void (*cb)(int revents, void *arg) = once->cb;
2491 void *arg = once->arg; 4340 void *arg = once->arg;
2492 4341
2493 ev_io_stop (EV_A_ &once->io); 4342 ev_io_stop (EV_A_ &once->io);
2494 ev_timer_stop (EV_A_ &once->to); 4343 ev_timer_stop (EV_A_ &once->to);
2495 ev_free (once); 4344 ev_free (once);
2496 4345
2497 cb (revents, arg); 4346 cb (revents, arg);
2498} 4347}
2499 4348
2500static void 4349static void
2501once_cb_io (EV_P_ ev_io *w, int revents) 4350once_cb_io (EV_P_ ev_io *w, int revents)
2502{ 4351{
2503 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4352 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4353
4354 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2504} 4355}
2505 4356
2506static void 4357static void
2507once_cb_to (EV_P_ ev_timer *w, int revents) 4358once_cb_to (EV_P_ ev_timer *w, int revents)
2508{ 4359{
2509 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4360 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4361
4362 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2510} 4363}
2511 4364
2512void 4365void
2513ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4366ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2514{ 4367{
2515 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4368 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2516 4369
2517 if (expect_false (!once)) 4370 if (expect_false (!once))
2518 { 4371 {
2519 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4372 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2520 return; 4373 return;
2521 } 4374 }
2522 4375
2523 once->cb = cb; 4376 once->cb = cb;
2524 once->arg = arg; 4377 once->arg = arg;
2536 ev_timer_set (&once->to, timeout, 0.); 4389 ev_timer_set (&once->to, timeout, 0.);
2537 ev_timer_start (EV_A_ &once->to); 4390 ev_timer_start (EV_A_ &once->to);
2538 } 4391 }
2539} 4392}
2540 4393
4394/*****************************************************************************/
4395
4396#if EV_WALK_ENABLE
4397void ecb_cold
4398ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4399{
4400 int i, j;
4401 ev_watcher_list *wl, *wn;
4402
4403 if (types & (EV_IO | EV_EMBED))
4404 for (i = 0; i < anfdmax; ++i)
4405 for (wl = anfds [i].head; wl; )
4406 {
4407 wn = wl->next;
4408
4409#if EV_EMBED_ENABLE
4410 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4411 {
4412 if (types & EV_EMBED)
4413 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4414 }
4415 else
4416#endif
4417#if EV_USE_INOTIFY
4418 if (ev_cb ((ev_io *)wl) == infy_cb)
4419 ;
4420 else
4421#endif
4422 if ((ev_io *)wl != &pipe_w)
4423 if (types & EV_IO)
4424 cb (EV_A_ EV_IO, wl);
4425
4426 wl = wn;
4427 }
4428
4429 if (types & (EV_TIMER | EV_STAT))
4430 for (i = timercnt + HEAP0; i-- > HEAP0; )
4431#if EV_STAT_ENABLE
4432 /*TODO: timer is not always active*/
4433 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4434 {
4435 if (types & EV_STAT)
4436 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4437 }
4438 else
4439#endif
4440 if (types & EV_TIMER)
4441 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4442
4443#if EV_PERIODIC_ENABLE
4444 if (types & EV_PERIODIC)
4445 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4446 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4447#endif
4448
4449#if EV_IDLE_ENABLE
4450 if (types & EV_IDLE)
4451 for (j = NUMPRI; j--; )
4452 for (i = idlecnt [j]; i--; )
4453 cb (EV_A_ EV_IDLE, idles [j][i]);
4454#endif
4455
4456#if EV_FORK_ENABLE
4457 if (types & EV_FORK)
4458 for (i = forkcnt; i--; )
4459 if (ev_cb (forks [i]) != embed_fork_cb)
4460 cb (EV_A_ EV_FORK, forks [i]);
4461#endif
4462
4463#if EV_ASYNC_ENABLE
4464 if (types & EV_ASYNC)
4465 for (i = asynccnt; i--; )
4466 cb (EV_A_ EV_ASYNC, asyncs [i]);
4467#endif
4468
4469#if EV_PREPARE_ENABLE
4470 if (types & EV_PREPARE)
4471 for (i = preparecnt; i--; )
4472# if EV_EMBED_ENABLE
4473 if (ev_cb (prepares [i]) != embed_prepare_cb)
4474# endif
4475 cb (EV_A_ EV_PREPARE, prepares [i]);
4476#endif
4477
4478#if EV_CHECK_ENABLE
4479 if (types & EV_CHECK)
4480 for (i = checkcnt; i--; )
4481 cb (EV_A_ EV_CHECK, checks [i]);
4482#endif
4483
4484#if EV_SIGNAL_ENABLE
4485 if (types & EV_SIGNAL)
4486 for (i = 0; i < EV_NSIG - 1; ++i)
4487 for (wl = signals [i].head; wl; )
4488 {
4489 wn = wl->next;
4490 cb (EV_A_ EV_SIGNAL, wl);
4491 wl = wn;
4492 }
4493#endif
4494
4495#if EV_CHILD_ENABLE
4496 if (types & EV_CHILD)
4497 for (i = (EV_PID_HASHSIZE); i--; )
4498 for (wl = childs [i]; wl; )
4499 {
4500 wn = wl->next;
4501 cb (EV_A_ EV_CHILD, wl);
4502 wl = wn;
4503 }
4504#endif
4505/* EV_STAT 0x00001000 /* stat data changed */
4506/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4507}
4508#endif
4509
2541#if EV_MULTIPLICITY 4510#if EV_MULTIPLICITY
2542 #include "ev_wrap.h" 4511 #include "ev_wrap.h"
2543#endif 4512#endif
2544 4513
2545#ifdef __cplusplus
2546}
2547#endif
2548

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines