ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.214 by root, Tue Feb 19 19:21:20 2008 UTC vs.
Revision 1.237 by root, Wed May 7 15:16:56 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 241
217#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
220#endif 245#endif
239# include <sys/inotify.h> 264# include <sys/inotify.h>
240#endif 265#endif
241 266
242#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
244#endif 281#endif
245 282
246/**/ 283/**/
247 284
248/* 285/*
263# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
265#else 302#else
266# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
267# define noinline 304# define noinline
268# if __STDC_VERSION__ < 199901L 305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 306# define inline
270# endif 307# endif
271#endif 308#endif
272 309
273#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
288 325
289typedef ev_watcher *W; 326typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
292 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
293#if EV_USE_MONOTONIC 333#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 335/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 337#endif
323 perror (msg); 363 perror (msg);
324 abort (); 364 abort ();
325 } 365 }
326} 366}
327 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
328static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 384
330void 385void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 387{
333 alloc = cb; 388 alloc = cb;
334} 389}
335 390
336inline_speed void * 391inline_speed void *
337ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
338{ 393{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
340 395
341 if (!ptr && size) 396 if (!ptr && size)
342 { 397 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 399 abort ();
451 ts.tv_sec = (time_t)delay; 506 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 508
454 nanosleep (&ts, 0); 509 nanosleep (&ts, 0);
455#elif defined(_WIN32) 510#elif defined(_WIN32)
456 Sleep (delay * 1e3); 511 Sleep ((unsigned long)(delay * 1e3));
457#else 512#else
458 struct timeval tv; 513 struct timeval tv;
459 514
460 tv.tv_sec = (time_t)delay; 515 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 519#endif
465 } 520 }
466} 521}
467 522
468/*****************************************************************************/ 523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 526
470int inline_size 527int inline_size
471array_nextsize (int elem, int cur, int cnt) 528array_nextsize (int elem, int cur, int cnt)
472{ 529{
473 int ncur = cur + 1; 530 int ncur = cur + 1;
474 531
475 do 532 do
476 ncur <<= 1; 533 ncur <<= 1;
477 while (cnt > ncur); 534 while (cnt > ncur);
478 535
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 538 {
482 ncur *= elem; 539 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 541 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 542 ncur /= elem;
486 } 543 }
487 544
488 return ncur; 545 return ncur;
702 } 759 }
703} 760}
704 761
705/*****************************************************************************/ 762/*****************************************************************************/
706 763
764/*
765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP
772
773#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */
775
776/* towards the root */
707void inline_speed 777void inline_speed
708upheap (WT *heap, int k) 778upheap (WT *heap, int k)
709{ 779{
710 WT w = heap [k]; 780 WT w = heap [k];
711 781
712 while (k) 782 for (;;)
713 { 783 {
714 int p = (k - 1) >> 1; 784 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
715 785
716 if (heap [p]->at <= w->at) 786 if (p >= HEAP0 || heap [p]->at <= w->at)
717 break; 787 break;
718 788
719 heap [k] = heap [p]; 789 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 790 ev_active (heap [k]) = k;
721 k = p; 791 k = p;
722 } 792 }
723 793
724 heap [k] = w; 794 heap [k] = w;
725 ((W)heap [k])->active = k + 1; 795 ev_active (heap [k]) = k;
726} 796}
727 797
798/* away from the root */
728void inline_speed 799void inline_speed
729downheap (WT *heap, int N, int k) 800downheap (WT *heap, int N, int k)
730{ 801{
731 WT w = heap [k]; 802 WT w = heap [k];
803 WT *E = heap + N + HEAP0;
732 804
733 for (;;) 805 for (;;)
734 { 806 {
807 ev_tstamp minat;
808 WT *minpos;
809 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
810
811 // find minimum child
812 if (expect_true (pos + DHEAP - 1 < E))
813 {
814 /* fast path */
815 (minpos = pos + 0), (minat = (*minpos)->at);
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
819 }
820 else
821 {
822 /* slow path */
823 if (pos >= E)
824 break;
825 (minpos = pos + 0), (minat = (*minpos)->at);
826 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
827 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
828 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
829 }
830
831 if (w->at <= minat)
832 break;
833
834 ev_active (*minpos) = k;
835 heap [k] = *minpos;
836
837 k = minpos - heap;
838 }
839
840 heap [k] = w;
841 ev_active (heap [k]) = k;
842}
843
844#else // 4HEAP
845
846#define HEAP0 1
847
848/* towards the root */
849void inline_speed
850upheap (WT *heap, int k)
851{
852 WT w = heap [k];
853
854 for (;;)
855 {
856 int p = k >> 1;
857
858 /* maybe we could use a dummy element at heap [0]? */
859 if (!p || heap [p]->at <= w->at)
860 break;
861
862 heap [k] = heap [p];
863 ev_active (heap [k]) = k;
864 k = p;
865 }
866
867 heap [k] = w;
868 ev_active (heap [k]) = k;
869}
870
871/* away from the root */
872void inline_speed
873downheap (WT *heap, int N, int k)
874{
875 WT w = heap [k];
876
877 for (;;)
878 {
735 int c = (k << 1) + 1; 879 int c = k << 1;
736 880
737 if (c >= N) 881 if (c > N)
738 break; 882 break;
739 883
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 884 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0; 885 ? 1 : 0;
742 886
743 if (w->at <= heap [c]->at) 887 if (w->at <= heap [c]->at)
744 break; 888 break;
745 889
746 heap [k] = heap [c]; 890 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1; 891 ((W)heap [k])->active = k;
748 892
749 k = c; 893 k = c;
750 } 894 }
751 895
752 heap [k] = w; 896 heap [k] = w;
753 ((W)heap [k])->active = k + 1; 897 ev_active (heap [k]) = k;
754} 898}
899#endif
755 900
756void inline_size 901void inline_size
757adjustheap (WT *heap, int N, int k) 902adjustheap (WT *heap, int N, int k)
758{ 903{
759 upheap (heap, k); 904 upheap (heap, k);
802static void noinline 947static void noinline
803evpipe_init (EV_P) 948evpipe_init (EV_P)
804{ 949{
805 if (!ev_is_active (&pipeev)) 950 if (!ev_is_active (&pipeev))
806 { 951 {
952#if EV_USE_EVENTFD
953 if ((evfd = eventfd (0, 0)) >= 0)
954 {
955 evpipe [0] = -1;
956 fd_intern (evfd);
957 ev_io_set (&pipeev, evfd, EV_READ);
958 }
959 else
960#endif
961 {
807 while (pipe (evpipe)) 962 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 963 syserr ("(libev) error creating signal/async pipe");
809 964
810 fd_intern (evpipe [0]); 965 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 966 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 967 ev_io_set (&pipeev, evpipe [0], EV_READ);
968 }
969
814 ev_io_start (EV_A_ &pipeev); 970 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 971 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 972 }
817} 973}
818 974
819void inline_size 975void inline_size
820evpipe_write (EV_P_ EV_ATOMIC_T *flag) 976evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 977{
822 if (!*flag) 978 if (!*flag)
823 { 979 {
824 int old_errno = errno; /* save errno becaue write might clobber it */ 980 int old_errno = errno; /* save errno because write might clobber it */
825 981
826 *flag = 1; 982 *flag = 1;
983
984#if EV_USE_EVENTFD
985 if (evfd >= 0)
986 {
987 uint64_t counter = 1;
988 write (evfd, &counter, sizeof (uint64_t));
989 }
990 else
991#endif
827 write (evpipe [1], &old_errno, 1); 992 write (evpipe [1], &old_errno, 1);
828 993
829 errno = old_errno; 994 errno = old_errno;
830 } 995 }
831} 996}
832 997
833static void 998static void
834pipecb (EV_P_ ev_io *iow, int revents) 999pipecb (EV_P_ ev_io *iow, int revents)
835{ 1000{
1001#if EV_USE_EVENTFD
1002 if (evfd >= 0)
836 { 1003 {
837 int dummy; 1004 uint64_t counter;
1005 read (evfd, &counter, sizeof (uint64_t));
1006 }
1007 else
1008#endif
1009 {
1010 char dummy;
838 read (evpipe [0], &dummy, 1); 1011 read (evpipe [0], &dummy, 1);
839 } 1012 }
840 1013
841 if (gotsig && ev_is_default_loop (EV_A)) 1014 if (gotsig && ev_is_default_loop (EV_A))
842 { 1015 {
843 int signum; 1016 int signum;
844 gotsig = 0; 1017 gotsig = 0;
865} 1038}
866 1039
867/*****************************************************************************/ 1040/*****************************************************************************/
868 1041
869static void 1042static void
870sighandler (int signum) 1043ev_sighandler (int signum)
871{ 1044{
872#if EV_MULTIPLICITY 1045#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 1046 struct ev_loop *loop = &default_loop_struct;
874#endif 1047#endif
875 1048
876#if _WIN32 1049#if _WIN32
877 signal (signum, sighandler); 1050 signal (signum, ev_sighandler);
878#endif 1051#endif
879 1052
880 signals [signum - 1].gotsig = 1; 1053 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig); 1054 evpipe_write (EV_A_ &gotsig);
882} 1055}
912#ifndef WIFCONTINUED 1085#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 1086# define WIFCONTINUED(status) 0
914#endif 1087#endif
915 1088
916void inline_speed 1089void inline_speed
917child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1090child_reap (EV_P_ int chain, int pid, int status)
918{ 1091{
919 ev_child *w; 1092 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1093 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 1094
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1095 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
923 { 1096 {
924 if ((w->pid == pid || !w->pid) 1097 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1))) 1098 && (!traced || (w->flags & 1)))
926 { 1099 {
927 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1100 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
928 w->rpid = pid; 1101 w->rpid = pid;
929 w->rstatus = status; 1102 w->rstatus = status;
930 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1103 ev_feed_event (EV_A_ (W)w, EV_CHILD);
931 } 1104 }
932 } 1105 }
946 if (!WCONTINUED 1119 if (!WCONTINUED
947 || errno != EINVAL 1120 || errno != EINVAL
948 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1121 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
949 return; 1122 return;
950 1123
951 /* make sure we are called again until all childs have been reaped */ 1124 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */ 1125 /* we need to do it this way so that the callback gets called before we continue */
953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1126 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
954 1127
955 child_reap (EV_A_ sw, pid, pid, status); 1128 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1) 1129 if (EV_PID_HASHSIZE > 1)
957 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1130 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
958} 1131}
959 1132
960#endif 1133#endif
961 1134
962/*****************************************************************************/ 1135/*****************************************************************************/
1105 if (!(flags & EVFLAG_NOENV) 1278 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 1279 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 1280 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 1281 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 1282
1110 if (!(flags & 0x0000ffffUL)) 1283 if (!(flags & 0x0000ffffU))
1111 flags |= ev_recommended_backends (); 1284 flags |= ev_recommended_backends ();
1112 1285
1113#if EV_USE_PORT 1286#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1287 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 1288#endif
1139 if (ev_is_active (&pipeev)) 1312 if (ev_is_active (&pipeev))
1140 { 1313 {
1141 ev_ref (EV_A); /* signal watcher */ 1314 ev_ref (EV_A); /* signal watcher */
1142 ev_io_stop (EV_A_ &pipeev); 1315 ev_io_stop (EV_A_ &pipeev);
1143 1316
1144 close (evpipe [0]); evpipe [0] = 0; 1317#if EV_USE_EVENTFD
1145 close (evpipe [1]); evpipe [1] = 0; 1318 if (evfd >= 0)
1319 close (evfd);
1320#endif
1321
1322 if (evpipe [0] >= 0)
1323 {
1324 close (evpipe [0]);
1325 close (evpipe [1]);
1326 }
1146 } 1327 }
1147 1328
1148#if EV_USE_INOTIFY 1329#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 1330 if (fs_fd >= 0)
1150 close (fs_fd); 1331 close (fs_fd);
1195#endif 1376#endif
1196 1377
1197 backend = 0; 1378 backend = 0;
1198} 1379}
1199 1380
1381#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 1382void inline_size infy_fork (EV_P);
1383#endif
1201 1384
1202void inline_size 1385void inline_size
1203loop_fork (EV_P) 1386loop_fork (EV_P)
1204{ 1387{
1205#if EV_USE_PORT 1388#if EV_USE_PORT
1224 gotasync = 1; 1407 gotasync = 1;
1225#endif 1408#endif
1226 1409
1227 ev_ref (EV_A); 1410 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev); 1411 ev_io_stop (EV_A_ &pipeev);
1412
1413#if EV_USE_EVENTFD
1414 if (evfd >= 0)
1415 close (evfd);
1416#endif
1417
1418 if (evpipe [0] >= 0)
1419 {
1229 close (evpipe [0]); 1420 close (evpipe [0]);
1230 close (evpipe [1]); 1421 close (evpipe [1]);
1422 }
1231 1423
1232 evpipe_init (EV_A); 1424 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */ 1425 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ); 1426 pipecb (EV_A_ &pipeev, EV_READ);
1235 } 1427 }
1263void 1455void
1264ev_loop_fork (EV_P) 1456ev_loop_fork (EV_P)
1265{ 1457{
1266 postfork = 1; /* must be in line with ev_default_fork */ 1458 postfork = 1; /* must be in line with ev_default_fork */
1267} 1459}
1268
1269#endif 1460#endif
1270 1461
1271#if EV_MULTIPLICITY 1462#if EV_MULTIPLICITY
1272struct ev_loop * 1463struct ev_loop *
1273ev_default_loop_init (unsigned int flags) 1464ev_default_loop_init (unsigned int flags)
1354 EV_CB_INVOKE (p->w, p->events); 1545 EV_CB_INVOKE (p->w, p->events);
1355 } 1546 }
1356 } 1547 }
1357} 1548}
1358 1549
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
1377 downheap (timers, timercnt, 0);
1378 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 {
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438
1439#if EV_IDLE_ENABLE 1550#if EV_IDLE_ENABLE
1440void inline_size 1551void inline_size
1441idle_reify (EV_P) 1552idle_reify (EV_P)
1442{ 1553{
1443 if (expect_false (idleall)) 1554 if (expect_false (idleall))
1454 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1565 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1455 break; 1566 break;
1456 } 1567 }
1457 } 1568 }
1458 } 1569 }
1570}
1571#endif
1572
1573void inline_size
1574timers_reify (EV_P)
1575{
1576 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
1577 {
1578 ev_timer *w = (ev_timer *)timers [HEAP0];
1579
1580 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1581
1582 /* first reschedule or stop timer */
1583 if (w->repeat)
1584 {
1585 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1586
1587 ev_at (w) += w->repeat;
1588 if (ev_at (w) < mn_now)
1589 ev_at (w) = mn_now;
1590
1591 downheap (timers, timercnt, HEAP0);
1592 }
1593 else
1594 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1595
1596 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1597 }
1598}
1599
1600#if EV_PERIODIC_ENABLE
1601void inline_size
1602periodics_reify (EV_P)
1603{
1604 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
1605 {
1606 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1607
1608 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1609
1610 /* first reschedule or stop timer */
1611 if (w->reschedule_cb)
1612 {
1613 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1614 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1615 downheap (periodics, periodiccnt, 1);
1616 }
1617 else if (w->interval)
1618 {
1619 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1621 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1622 downheap (periodics, periodiccnt, HEAP0);
1623 }
1624 else
1625 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1626
1627 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1628 }
1629}
1630
1631static void noinline
1632periodics_reschedule (EV_P)
1633{
1634 int i;
1635
1636 /* adjust periodics after time jump */
1637 for (i = 1; i <= periodiccnt; ++i)
1638 {
1639 ev_periodic *w = (ev_periodic *)periodics [i];
1640
1641 if (w->reschedule_cb)
1642 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval)
1644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1645 }
1646
1647 /* now rebuild the heap */
1648 for (i = periodiccnt >> 1; --i; )
1649 downheap (periodics, periodiccnt, i + HEAP0);
1459} 1650}
1460#endif 1651#endif
1461 1652
1462void inline_speed 1653void inline_speed
1463time_update (EV_P_ ev_tstamp max_block) 1654time_update (EV_P_ ev_tstamp max_block)
1492 */ 1683 */
1493 for (i = 4; --i; ) 1684 for (i = 4; --i; )
1494 { 1685 {
1495 rtmn_diff = ev_rt_now - mn_now; 1686 rtmn_diff = ev_rt_now - mn_now;
1496 1687
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1688 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 1689 return; /* all is well */
1499 1690
1500 ev_rt_now = ev_time (); 1691 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 1692 mn_now = get_clock ();
1502 now_floor = mn_now; 1693 now_floor = mn_now;
1517 { 1708 {
1518#if EV_PERIODIC_ENABLE 1709#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 1710 periodics_reschedule (EV_A);
1520#endif 1711#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */ 1712 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i) 1713 for (i = 1; i <= timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now; 1714 ev_at (timers [i]) += ev_rt_now - mn_now;
1524 } 1715 }
1525 1716
1526 mn_now = ev_rt_now; 1717 mn_now = ev_rt_now;
1527 } 1718 }
1528} 1719}
1542static int loop_done; 1733static int loop_done;
1543 1734
1544void 1735void
1545ev_loop (EV_P_ int flags) 1736ev_loop (EV_P_ int flags)
1546{ 1737{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1738 loop_done = EVUNLOOP_CANCEL;
1548 ? EVUNLOOP_ONE
1549 : EVUNLOOP_CANCEL;
1550 1739
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1740 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1552 1741
1553 do 1742 do
1554 { 1743 {
1600 1789
1601 waittime = MAX_BLOCKTIME; 1790 waittime = MAX_BLOCKTIME;
1602 1791
1603 if (timercnt) 1792 if (timercnt)
1604 { 1793 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1794 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
1606 if (waittime > to) waittime = to; 1795 if (waittime > to) waittime = to;
1607 } 1796 }
1608 1797
1609#if EV_PERIODIC_ENABLE 1798#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 1799 if (periodiccnt)
1611 { 1800 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1801 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1613 if (waittime > to) waittime = to; 1802 if (waittime > to) waittime = to;
1614 } 1803 }
1615#endif 1804#endif
1616 1805
1617 if (expect_false (waittime < timeout_blocktime)) 1806 if (expect_false (waittime < timeout_blocktime))
1650 /* queue check watchers, to be executed first */ 1839 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 1840 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1841 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1653 1842
1654 call_pending (EV_A); 1843 call_pending (EV_A);
1655
1656 } 1844 }
1657 while (expect_true (activecnt && !loop_done)); 1845 while (expect_true (
1846 activecnt
1847 && !loop_done
1848 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1849 ));
1658 1850
1659 if (loop_done == EVUNLOOP_ONE) 1851 if (loop_done == EVUNLOOP_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 1852 loop_done = EVUNLOOP_CANCEL;
1661} 1853}
1662 1854
1780ev_timer_start (EV_P_ ev_timer *w) 1972ev_timer_start (EV_P_ ev_timer *w)
1781{ 1973{
1782 if (expect_false (ev_is_active (w))) 1974 if (expect_false (ev_is_active (w)))
1783 return; 1975 return;
1784 1976
1785 ((WT)w)->at += mn_now; 1977 ev_at (w) += mn_now;
1786 1978
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1979 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 1980
1789 ev_start (EV_A_ (W)w, ++timercnt); 1981 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 1982 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 1983 timers [ev_active (w)] = (WT)w;
1792 upheap (timers, timercnt - 1); 1984 upheap (timers, ev_active (w));
1793 1985
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1986 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1795} 1987}
1796 1988
1797void noinline 1989void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 1990ev_timer_stop (EV_P_ ev_timer *w)
1799{ 1991{
1800 clear_pending (EV_A_ (W)w); 1992 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 1993 if (expect_false (!ev_is_active (w)))
1802 return; 1994 return;
1803 1995
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1805
1806 { 1996 {
1807 int active = ((W)w)->active; 1997 int active = ev_active (w);
1808 1998
1999 assert (("internal timer heap corruption", timers [active] == (WT)w));
2000
1809 if (expect_true (--active < --timercnt)) 2001 if (expect_true (active < timercnt + HEAP0 - 1))
1810 { 2002 {
1811 timers [active] = timers [timercnt]; 2003 timers [active] = timers [timercnt + HEAP0 - 1];
1812 adjustheap (timers, timercnt, active); 2004 adjustheap (timers, timercnt, active);
1813 } 2005 }
2006
2007 --timercnt;
1814 } 2008 }
1815 2009
1816 ((WT)w)->at -= mn_now; 2010 ev_at (w) -= mn_now;
1817 2011
1818 ev_stop (EV_A_ (W)w); 2012 ev_stop (EV_A_ (W)w);
1819} 2013}
1820 2014
1821void noinline 2015void noinline
1823{ 2017{
1824 if (ev_is_active (w)) 2018 if (ev_is_active (w))
1825 { 2019 {
1826 if (w->repeat) 2020 if (w->repeat)
1827 { 2021 {
1828 ((WT)w)->at = mn_now + w->repeat; 2022 ev_at (w) = mn_now + w->repeat;
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 2023 adjustheap (timers, timercnt, ev_active (w));
1830 } 2024 }
1831 else 2025 else
1832 ev_timer_stop (EV_A_ w); 2026 ev_timer_stop (EV_A_ w);
1833 } 2027 }
1834 else if (w->repeat) 2028 else if (w->repeat)
1835 { 2029 {
1836 w->at = w->repeat; 2030 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 2031 ev_timer_start (EV_A_ w);
1838 } 2032 }
1839} 2033}
1840 2034
1841#if EV_PERIODIC_ENABLE 2035#if EV_PERIODIC_ENABLE
1844{ 2038{
1845 if (expect_false (ev_is_active (w))) 2039 if (expect_false (ev_is_active (w)))
1846 return; 2040 return;
1847 2041
1848 if (w->reschedule_cb) 2042 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2043 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 2044 else if (w->interval)
1851 { 2045 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2046 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 2047 /* this formula differs from the one in periodic_reify because we do not always round up */
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2048 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 2049 }
1856 else 2050 else
1857 ((WT)w)->at = w->offset; 2051 ev_at (w) = w->offset;
1858 2052
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 2053 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2054 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 2055 periodics [ev_active (w)] = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 2056 upheap (periodics, ev_active (w));
1863 2057
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2058 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1865} 2059}
1866 2060
1867void noinline 2061void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 2062ev_periodic_stop (EV_P_ ev_periodic *w)
1869{ 2063{
1870 clear_pending (EV_A_ (W)w); 2064 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 2065 if (expect_false (!ev_is_active (w)))
1872 return; 2066 return;
1873 2067
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1875
1876 { 2068 {
1877 int active = ((W)w)->active; 2069 int active = ev_active (w);
1878 2070
2071 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
2072
1879 if (expect_true (--active < --periodiccnt)) 2073 if (expect_true (active < periodiccnt + HEAP0 - 1))
1880 { 2074 {
1881 periodics [active] = periodics [periodiccnt]; 2075 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1882 adjustheap (periodics, periodiccnt, active); 2076 adjustheap (periodics, periodiccnt, active);
1883 } 2077 }
2078
2079 --periodiccnt;
1884 } 2080 }
1885 2081
1886 ev_stop (EV_A_ (W)w); 2082 ev_stop (EV_A_ (W)w);
1887} 2083}
1888 2084
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 2126 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 2127
1932 if (!((WL)w)->next) 2128 if (!((WL)w)->next)
1933 { 2129 {
1934#if _WIN32 2130#if _WIN32
1935 signal (w->signum, sighandler); 2131 signal (w->signum, ev_sighandler);
1936#else 2132#else
1937 struct sigaction sa; 2133 struct sigaction sa;
1938 sa.sa_handler = sighandler; 2134 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 2135 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2136 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 2137 sigaction (w->signum, &sa, 0);
1942#endif 2138#endif
1943 } 2139 }
2004 if (w->wd < 0) 2200 if (w->wd < 0)
2005 { 2201 {
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2202 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2007 2203
2008 /* monitor some parent directory for speedup hints */ 2204 /* monitor some parent directory for speedup hints */
2205 /* note that exceeding the hardcoded limit is not a correctness issue, */
2206 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2207 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 2208 {
2011 char path [4096]; 2209 char path [4096];
2012 strcpy (path, w->path); 2210 strcpy (path, w->path);
2013 2211
2258 clear_pending (EV_A_ (W)w); 2456 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 2457 if (expect_false (!ev_is_active (w)))
2260 return; 2458 return;
2261 2459
2262 { 2460 {
2263 int active = ((W)w)->active; 2461 int active = ev_active (w);
2264 2462
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2463 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2464 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 2465
2268 ev_stop (EV_A_ (W)w); 2466 ev_stop (EV_A_ (W)w);
2269 --idleall; 2467 --idleall;
2270 } 2468 }
2271} 2469}
2288 clear_pending (EV_A_ (W)w); 2486 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 2487 if (expect_false (!ev_is_active (w)))
2290 return; 2488 return;
2291 2489
2292 { 2490 {
2293 int active = ((W)w)->active; 2491 int active = ev_active (w);
2492
2294 prepares [active - 1] = prepares [--preparecnt]; 2493 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 2494 ev_active (prepares [active - 1]) = active;
2296 } 2495 }
2297 2496
2298 ev_stop (EV_A_ (W)w); 2497 ev_stop (EV_A_ (W)w);
2299} 2498}
2300 2499
2315 clear_pending (EV_A_ (W)w); 2514 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 2515 if (expect_false (!ev_is_active (w)))
2317 return; 2516 return;
2318 2517
2319 { 2518 {
2320 int active = ((W)w)->active; 2519 int active = ev_active (w);
2520
2321 checks [active - 1] = checks [--checkcnt]; 2521 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 2522 ev_active (checks [active - 1]) = active;
2323 } 2523 }
2324 2524
2325 ev_stop (EV_A_ (W)w); 2525 ev_stop (EV_A_ (W)w);
2326} 2526}
2327 2527
2423 clear_pending (EV_A_ (W)w); 2623 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 2624 if (expect_false (!ev_is_active (w)))
2425 return; 2625 return;
2426 2626
2427 { 2627 {
2428 int active = ((W)w)->active; 2628 int active = ev_active (w);
2629
2429 forks [active - 1] = forks [--forkcnt]; 2630 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 2631 ev_active (forks [active - 1]) = active;
2431 } 2632 }
2432 2633
2433 ev_stop (EV_A_ (W)w); 2634 ev_stop (EV_A_ (W)w);
2434} 2635}
2435#endif 2636#endif
2454 clear_pending (EV_A_ (W)w); 2655 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 2656 if (expect_false (!ev_is_active (w)))
2456 return; 2657 return;
2457 2658
2458 { 2659 {
2459 int active = ((W)w)->active; 2660 int active = ev_active (w);
2661
2460 asyncs [active - 1] = asyncs [--asynccnt]; 2662 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 2663 ev_active (asyncs [active - 1]) = active;
2462 } 2664 }
2463 2665
2464 ev_stop (EV_A_ (W)w); 2666 ev_stop (EV_A_ (W)w);
2465} 2667}
2466 2668

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines