ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.214 by root, Tue Feb 19 19:21:20 2008 UTC vs.
Revision 1.258 by root, Sun Sep 7 18:15:12 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
145#ifndef _WIN32 154#ifndef _WIN32
146# include <sys/time.h> 155# include <sys/time.h>
147# include <sys/wait.h> 156# include <sys/wait.h>
148# include <unistd.h> 157# include <unistd.h>
149#else 158#else
159# include <io.h>
150# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 161# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
154# endif 164# endif
155#endif 165#endif
156 166
157/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
158 168
159#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
160# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
161#endif 175#endif
162 176
163#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
165#endif 179#endif
166 180
167#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
168# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
169#endif 187#endif
170 188
171#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
173#endif 191#endif
179# define EV_USE_POLL 1 197# define EV_USE_POLL 1
180# endif 198# endif
181#endif 199#endif
182 200
183#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
184# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
185#endif 207#endif
186 208
187#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
189#endif 211#endif
191#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 214# define EV_USE_PORT 0
193#endif 215#endif
194 216
195#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
196# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
197#endif 223#endif
198 224
199#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 226# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
210# else 236# else
211# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
212# endif 238# endif
213#endif 239#endif
214 240
215/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 268
217#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
220#endif 272#endif
241 293
242#if EV_SELECT_IS_WINSOCKET 294#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 295# include <winsock.h>
244#endif 296#endif
245 297
298#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
303# endif
304int eventfd (unsigned int initval, int flags);
305# ifdef __cplusplus
306}
307# endif
308#endif
309
246/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
247 317
248/* 318/*
249 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 334# define noinline __attribute__ ((noinline))
265#else 335#else
266# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
267# define noinline 337# define noinline
268# if __STDC_VERSION__ < 199901L 338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 339# define inline
270# endif 340# endif
271#endif 341#endif
272 342
273#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
288 358
289typedef ev_watcher *W; 359typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
292 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
293#if EV_USE_MONOTONIC 366#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 368/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 370#endif
323 perror (msg); 396 perror (msg);
324 abort (); 397 abort ();
325 } 398 }
326} 399}
327 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
328static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 417
330void 418void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 420{
333 alloc = cb; 421 alloc = cb;
334} 422}
335 423
336inline_speed void * 424inline_speed void *
337ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
338{ 426{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
340 428
341 if (!ptr && size) 429 if (!ptr && size)
342 { 430 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 432 abort ();
367 W w; 455 W w;
368 int events; 456 int events;
369} ANPENDING; 457} ANPENDING;
370 458
371#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
372typedef struct 461typedef struct
373{ 462{
374 WL head; 463 WL head;
375} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
376#endif 483#endif
377 484
378#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
379 486
380 struct ev_loop 487 struct ev_loop
451 ts.tv_sec = (time_t)delay; 558 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 560
454 nanosleep (&ts, 0); 561 nanosleep (&ts, 0);
455#elif defined(_WIN32) 562#elif defined(_WIN32)
456 Sleep (delay * 1e3); 563 Sleep ((unsigned long)(delay * 1e3));
457#else 564#else
458 struct timeval tv; 565 struct timeval tv;
459 566
460 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
463 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
464#endif 574#endif
465 } 575 }
466} 576}
467 577
468/*****************************************************************************/ 578/*****************************************************************************/
579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 581
470int inline_size 582int inline_size
471array_nextsize (int elem, int cur, int cnt) 583array_nextsize (int elem, int cur, int cnt)
472{ 584{
473 int ncur = cur + 1; 585 int ncur = cur + 1;
474 586
475 do 587 do
476 ncur <<= 1; 588 ncur <<= 1;
477 while (cnt > ncur); 589 while (cnt > ncur);
478 590
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 593 {
482 ncur *= elem; 594 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 596 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 597 ncur /= elem;
486 } 598 }
487 599
488 return ncur; 600 return ncur;
599 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
600 712
601#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
602 if (events) 714 if (events)
603 { 715 {
604 unsigned long argp; 716 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 717 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 719 #else
608 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
609 #endif 721 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 723 }
612#endif 724#endif
613 725
614 { 726 {
615 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
668{ 780{
669 int fd; 781 int fd;
670 782
671 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 784 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
675} 787}
676 788
677/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 790static void noinline
702 } 814 }
703} 815}
704 816
705/*****************************************************************************/ 817/*****************************************************************************/
706 818
819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
826 * at the moment we allow libev the luxury of two heaps,
827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828 * which is more cache-efficient.
829 * the difference is about 5% with 50000+ watchers.
830 */
831#if EV_USE_4HEAP
832
833#define DHEAP 4
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
707void inline_speed 839void inline_speed
708upheap (WT *heap, int k) 840downheap (ANHE *heap, int N, int k)
709{ 841{
710 WT w = heap [k]; 842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
711 844
712 while (k) 845 for (;;)
713 { 846 {
714 int p = (k - 1) >> 1; 847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 850
716 if (heap [p]->at <= w->at) 851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
717 break; 867 break;
718 868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
878 heap [k] = he;
879 ev_active (ANHE_w (he)) = k;
880}
881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
907 heap [k] = heap [c];
908 ev_active (ANHE_w (heap [k])) = k;
909
910 k = c;
911 }
912
913 heap [k] = he;
914 ev_active (ANHE_w (he)) = k;
915}
916#endif
917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
719 heap [k] = heap [p]; 931 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 932 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 933 k = p;
722 } 934 }
723 935
724 heap [k] = w; 936 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 937 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 938}
755 939
756void inline_size 940void inline_size
757adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
758{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 944 upheap (heap, k);
945 else
760 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
761} 959}
762 960
763/*****************************************************************************/ 961/*****************************************************************************/
764 962
765typedef struct 963typedef struct
789 987
790void inline_speed 988void inline_speed
791fd_intern (int fd) 989fd_intern (int fd)
792{ 990{
793#ifdef _WIN32 991#ifdef _WIN32
794 int arg = 1; 992 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 994#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 997#endif
802static void noinline 1000static void noinline
803evpipe_init (EV_P) 1001evpipe_init (EV_P)
804{ 1002{
805 if (!ev_is_active (&pipeev)) 1003 if (!ev_is_active (&pipeev))
806 { 1004 {
1005#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0)
1007 {
1008 evpipe [0] = -1;
1009 fd_intern (evfd);
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 }
1012 else
1013#endif
1014 {
807 while (pipe (evpipe)) 1015 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1016 syserr ("(libev) error creating signal/async pipe");
809 1017
810 fd_intern (evpipe [0]); 1018 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1019 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1020 ev_io_set (&pipeev, evpipe [0], EV_READ);
1021 }
1022
814 ev_io_start (EV_A_ &pipeev); 1023 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1024 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1025 }
817} 1026}
818 1027
819void inline_size 1028void inline_size
820evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1030{
822 if (!*flag) 1031 if (!*flag)
823 { 1032 {
824 int old_errno = errno; /* save errno becaue write might clobber it */ 1033 int old_errno = errno; /* save errno because write might clobber it */
825 1034
826 *flag = 1; 1035 *flag = 1;
1036
1037#if EV_USE_EVENTFD
1038 if (evfd >= 0)
1039 {
1040 uint64_t counter = 1;
1041 write (evfd, &counter, sizeof (uint64_t));
1042 }
1043 else
1044#endif
827 write (evpipe [1], &old_errno, 1); 1045 write (evpipe [1], &old_errno, 1);
828 1046
829 errno = old_errno; 1047 errno = old_errno;
830 } 1048 }
831} 1049}
832 1050
833static void 1051static void
834pipecb (EV_P_ ev_io *iow, int revents) 1052pipecb (EV_P_ ev_io *iow, int revents)
835{ 1053{
1054#if EV_USE_EVENTFD
1055 if (evfd >= 0)
836 { 1056 {
837 int dummy; 1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy;
838 read (evpipe [0], &dummy, 1); 1064 read (evpipe [0], &dummy, 1);
839 } 1065 }
840 1066
841 if (gotsig && ev_is_default_loop (EV_A)) 1067 if (gotsig && ev_is_default_loop (EV_A))
842 { 1068 {
843 int signum; 1069 int signum;
844 gotsig = 0; 1070 gotsig = 0;
865} 1091}
866 1092
867/*****************************************************************************/ 1093/*****************************************************************************/
868 1094
869static void 1095static void
870sighandler (int signum) 1096ev_sighandler (int signum)
871{ 1097{
872#if EV_MULTIPLICITY 1098#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 1099 struct ev_loop *loop = &default_loop_struct;
874#endif 1100#endif
875 1101
876#if _WIN32 1102#if _WIN32
877 signal (signum, sighandler); 1103 signal (signum, ev_sighandler);
878#endif 1104#endif
879 1105
880 signals [signum - 1].gotsig = 1; 1106 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig); 1107 evpipe_write (EV_A_ &gotsig);
882} 1108}
912#ifndef WIFCONTINUED 1138#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 1139# define WIFCONTINUED(status) 0
914#endif 1140#endif
915 1141
916void inline_speed 1142void inline_speed
917child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1143child_reap (EV_P_ int chain, int pid, int status)
918{ 1144{
919 ev_child *w; 1145 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 1147
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
923 { 1149 {
924 if ((w->pid == pid || !w->pid) 1150 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1))) 1151 && (!traced || (w->flags & 1)))
926 { 1152 {
927 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
928 w->rpid = pid; 1154 w->rpid = pid;
929 w->rstatus = status; 1155 w->rstatus = status;
930 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1156 ev_feed_event (EV_A_ (W)w, EV_CHILD);
931 } 1157 }
932 } 1158 }
946 if (!WCONTINUED 1172 if (!WCONTINUED
947 || errno != EINVAL 1173 || errno != EINVAL
948 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1174 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
949 return; 1175 return;
950 1176
951 /* make sure we are called again until all childs have been reaped */ 1177 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */ 1178 /* we need to do it this way so that the callback gets called before we continue */
953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
954 1180
955 child_reap (EV_A_ sw, pid, pid, status); 1181 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1) 1182 if (EV_PID_HASHSIZE > 1)
957 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
958} 1184}
959 1185
960#endif 1186#endif
961 1187
962/*****************************************************************************/ 1188/*****************************************************************************/
1105 if (!(flags & EVFLAG_NOENV) 1331 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 1332 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 1333 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 1334 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 1335
1110 if (!(flags & 0x0000ffffUL)) 1336 if (!(flags & 0x0000ffffU))
1111 flags |= ev_recommended_backends (); 1337 flags |= ev_recommended_backends ();
1112 1338
1113#if EV_USE_PORT 1339#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 1341#endif
1139 if (ev_is_active (&pipeev)) 1365 if (ev_is_active (&pipeev))
1140 { 1366 {
1141 ev_ref (EV_A); /* signal watcher */ 1367 ev_ref (EV_A); /* signal watcher */
1142 ev_io_stop (EV_A_ &pipeev); 1368 ev_io_stop (EV_A_ &pipeev);
1143 1369
1144 close (evpipe [0]); evpipe [0] = 0; 1370#if EV_USE_EVENTFD
1145 close (evpipe [1]); evpipe [1] = 0; 1371 if (evfd >= 0)
1372 close (evfd);
1373#endif
1374
1375 if (evpipe [0] >= 0)
1376 {
1377 close (evpipe [0]);
1378 close (evpipe [1]);
1379 }
1146 } 1380 }
1147 1381
1148#if EV_USE_INOTIFY 1382#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 1383 if (fs_fd >= 0)
1150 close (fs_fd); 1384 close (fs_fd);
1195#endif 1429#endif
1196 1430
1197 backend = 0; 1431 backend = 0;
1198} 1432}
1199 1433
1434#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 1435void inline_size infy_fork (EV_P);
1436#endif
1201 1437
1202void inline_size 1438void inline_size
1203loop_fork (EV_P) 1439loop_fork (EV_P)
1204{ 1440{
1205#if EV_USE_PORT 1441#if EV_USE_PORT
1224 gotasync = 1; 1460 gotasync = 1;
1225#endif 1461#endif
1226 1462
1227 ev_ref (EV_A); 1463 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev); 1464 ev_io_stop (EV_A_ &pipeev);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470
1471 if (evpipe [0] >= 0)
1472 {
1229 close (evpipe [0]); 1473 close (evpipe [0]);
1230 close (evpipe [1]); 1474 close (evpipe [1]);
1475 }
1231 1476
1232 evpipe_init (EV_A); 1477 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */ 1478 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ); 1479 pipecb (EV_A_ &pipeev, EV_READ);
1235 } 1480 }
1236 1481
1237 postfork = 0; 1482 postfork = 0;
1238} 1483}
1239 1484
1240#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1241struct ev_loop * 1487struct ev_loop *
1242ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1243{ 1489{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245 1491
1264ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1265{ 1511{
1266 postfork = 1; /* must be in line with ev_default_fork */ 1512 postfork = 1; /* must be in line with ev_default_fork */
1267} 1513}
1268 1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1269#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1270 1615
1271#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1272struct ev_loop * 1617struct ev_loop *
1273ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1274#else 1619#else
1350 { 1695 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352 1697
1353 p->w->pending = 0; 1698 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1355 } 1701 }
1356 } 1702 }
1357} 1703}
1358
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
1377 downheap (timers, timercnt, 0);
1378 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 {
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438 1704
1439#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1440void inline_size 1706void inline_size
1441idle_reify (EV_P) 1707idle_reify (EV_P)
1442{ 1708{
1454 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1455 break; 1721 break;
1456 } 1722 }
1457 } 1723 }
1458 } 1724 }
1725}
1726#endif
1727
1728void inline_size
1729timers_reify (EV_P)
1730{
1731 EV_FREQUENT_CHECK;
1732
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0);
1750 }
1751 else
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753
1754 EV_FREQUENT_CHECK;
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 }
1757}
1758
1759#if EV_PERIODIC_ENABLE
1760void inline_size
1761periodics_reify (EV_P)
1762{
1763 EV_FREQUENT_CHECK;
1764
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0);
1780 }
1781 else if (w->interval)
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1805 }
1806}
1807
1808static void noinline
1809periodics_reschedule (EV_P)
1810{
1811 int i;
1812
1813 /* adjust periodics after time jump */
1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1815 {
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817
1818 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1459} 1827}
1460#endif 1828#endif
1461 1829
1462void inline_speed 1830void inline_speed
1463time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1492 */ 1860 */
1493 for (i = 4; --i; ) 1861 for (i = 4; --i; )
1494 { 1862 {
1495 rtmn_diff = ev_rt_now - mn_now; 1863 rtmn_diff = ev_rt_now - mn_now;
1496 1864
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 1866 return; /* all is well */
1499 1867
1500 ev_rt_now = ev_time (); 1868 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 1869 mn_now = get_clock ();
1502 now_floor = mn_now; 1870 now_floor = mn_now;
1518#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1520#endif 1888#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1523 ((WT)timers [i])->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1524 } 1896 }
1525 1897
1526 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1527 } 1899 }
1528} 1900}
1542static int loop_done; 1914static int loop_done;
1543 1915
1544void 1916void
1545ev_loop (EV_P_ int flags) 1917ev_loop (EV_P_ int flags)
1546{ 1918{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1919 loop_done = EVUNLOOP_CANCEL;
1548 ? EVUNLOOP_ONE
1549 : EVUNLOOP_CANCEL;
1550 1920
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1921 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1552 1922
1553 do 1923 do
1554 { 1924 {
1925#if EV_VERIFY >= 2
1926 ev_loop_verify (EV_A);
1927#endif
1928
1555#ifndef _WIN32 1929#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 1930 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 1931 if (expect_false (getpid () != curpid))
1558 { 1932 {
1559 curpid = getpid (); 1933 curpid = getpid ();
1600 1974
1601 waittime = MAX_BLOCKTIME; 1975 waittime = MAX_BLOCKTIME;
1602 1976
1603 if (timercnt) 1977 if (timercnt)
1604 { 1978 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1979 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1606 if (waittime > to) waittime = to; 1980 if (waittime > to) waittime = to;
1607 } 1981 }
1608 1982
1609#if EV_PERIODIC_ENABLE 1983#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 1984 if (periodiccnt)
1611 { 1985 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1986 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1613 if (waittime > to) waittime = to; 1987 if (waittime > to) waittime = to;
1614 } 1988 }
1615#endif 1989#endif
1616 1990
1617 if (expect_false (waittime < timeout_blocktime)) 1991 if (expect_false (waittime < timeout_blocktime))
1650 /* queue check watchers, to be executed first */ 2024 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 2025 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2026 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1653 2027
1654 call_pending (EV_A); 2028 call_pending (EV_A);
1655
1656 } 2029 }
1657 while (expect_true (activecnt && !loop_done)); 2030 while (expect_true (
2031 activecnt
2032 && !loop_done
2033 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2034 ));
1658 2035
1659 if (loop_done == EVUNLOOP_ONE) 2036 if (loop_done == EVUNLOOP_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 2037 loop_done = EVUNLOOP_CANCEL;
1661} 2038}
1662 2039
1751 if (expect_false (ev_is_active (w))) 2128 if (expect_false (ev_is_active (w)))
1752 return; 2129 return;
1753 2130
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 2131 assert (("ev_io_start called with negative fd", fd >= 0));
1755 2132
2133 EV_FREQUENT_CHECK;
2134
1756 ev_start (EV_A_ (W)w, 1); 2135 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2136 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1758 wlist_add (&anfds[fd].head, (WL)w); 2137 wlist_add (&anfds[fd].head, (WL)w);
1759 2138
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2139 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1761 w->events &= ~EV_IOFDSET; 2140 w->events &= ~EV_IOFDSET;
2141
2142 EV_FREQUENT_CHECK;
1762} 2143}
1763 2144
1764void noinline 2145void noinline
1765ev_io_stop (EV_P_ ev_io *w) 2146ev_io_stop (EV_P_ ev_io *w)
1766{ 2147{
1767 clear_pending (EV_A_ (W)w); 2148 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 2149 if (expect_false (!ev_is_active (w)))
1769 return; 2150 return;
1770 2151
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2152 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2153
2154 EV_FREQUENT_CHECK;
1772 2155
1773 wlist_del (&anfds[w->fd].head, (WL)w); 2156 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 2157 ev_stop (EV_A_ (W)w);
1775 2158
1776 fd_change (EV_A_ w->fd, 1); 2159 fd_change (EV_A_ w->fd, 1);
2160
2161 EV_FREQUENT_CHECK;
1777} 2162}
1778 2163
1779void noinline 2164void noinline
1780ev_timer_start (EV_P_ ev_timer *w) 2165ev_timer_start (EV_P_ ev_timer *w)
1781{ 2166{
1782 if (expect_false (ev_is_active (w))) 2167 if (expect_false (ev_is_active (w)))
1783 return; 2168 return;
1784 2169
1785 ((WT)w)->at += mn_now; 2170 ev_at (w) += mn_now;
1786 2171
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2172 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 2173
2174 EV_FREQUENT_CHECK;
2175
2176 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 2177 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2178 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 2179 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 2180 ANHE_at_cache (timers [ev_active (w)]);
2181 upheap (timers, ev_active (w));
1793 2182
2183 EV_FREQUENT_CHECK;
2184
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2185 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 2186}
1796 2187
1797void noinline 2188void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 2189ev_timer_stop (EV_P_ ev_timer *w)
1799{ 2190{
1800 clear_pending (EV_A_ (W)w); 2191 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2192 if (expect_false (!ev_is_active (w)))
1802 return; 2193 return;
1803 2194
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2195 EV_FREQUENT_CHECK;
1805 2196
1806 { 2197 {
1807 int active = ((W)w)->active; 2198 int active = ev_active (w);
1808 2199
2200 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2201
2202 --timercnt;
2203
1809 if (expect_true (--active < --timercnt)) 2204 if (expect_true (active < timercnt + HEAP0))
1810 { 2205 {
1811 timers [active] = timers [timercnt]; 2206 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 2207 adjustheap (timers, timercnt, active);
1813 } 2208 }
1814 } 2209 }
1815 2210
1816 ((WT)w)->at -= mn_now; 2211 EV_FREQUENT_CHECK;
2212
2213 ev_at (w) -= mn_now;
1817 2214
1818 ev_stop (EV_A_ (W)w); 2215 ev_stop (EV_A_ (W)w);
1819} 2216}
1820 2217
1821void noinline 2218void noinline
1822ev_timer_again (EV_P_ ev_timer *w) 2219ev_timer_again (EV_P_ ev_timer *w)
1823{ 2220{
2221 EV_FREQUENT_CHECK;
2222
1824 if (ev_is_active (w)) 2223 if (ev_is_active (w))
1825 { 2224 {
1826 if (w->repeat) 2225 if (w->repeat)
1827 { 2226 {
1828 ((WT)w)->at = mn_now + w->repeat; 2227 ev_at (w) = mn_now + w->repeat;
2228 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 2229 adjustheap (timers, timercnt, ev_active (w));
1830 } 2230 }
1831 else 2231 else
1832 ev_timer_stop (EV_A_ w); 2232 ev_timer_stop (EV_A_ w);
1833 } 2233 }
1834 else if (w->repeat) 2234 else if (w->repeat)
1835 { 2235 {
1836 w->at = w->repeat; 2236 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 2237 ev_timer_start (EV_A_ w);
1838 } 2238 }
2239
2240 EV_FREQUENT_CHECK;
1839} 2241}
1840 2242
1841#if EV_PERIODIC_ENABLE 2243#if EV_PERIODIC_ENABLE
1842void noinline 2244void noinline
1843ev_periodic_start (EV_P_ ev_periodic *w) 2245ev_periodic_start (EV_P_ ev_periodic *w)
1844{ 2246{
1845 if (expect_false (ev_is_active (w))) 2247 if (expect_false (ev_is_active (w)))
1846 return; 2248 return;
1847 2249
1848 if (w->reschedule_cb) 2250 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2251 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 2252 else if (w->interval)
1851 { 2253 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2254 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 2255 /* this formula differs from the one in periodic_reify because we do not always round up */
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2256 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 2257 }
1856 else 2258 else
1857 ((WT)w)->at = w->offset; 2259 ev_at (w) = w->offset;
1858 2260
2261 EV_FREQUENT_CHECK;
2262
2263 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 2264 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2265 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 2266 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 2267 ANHE_at_cache (periodics [ev_active (w)]);
2268 upheap (periodics, ev_active (w));
1863 2269
2270 EV_FREQUENT_CHECK;
2271
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2272 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 2273}
1866 2274
1867void noinline 2275void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 2276ev_periodic_stop (EV_P_ ev_periodic *w)
1869{ 2277{
1870 clear_pending (EV_A_ (W)w); 2278 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 2279 if (expect_false (!ev_is_active (w)))
1872 return; 2280 return;
1873 2281
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2282 EV_FREQUENT_CHECK;
1875 2283
1876 { 2284 {
1877 int active = ((W)w)->active; 2285 int active = ev_active (w);
1878 2286
2287 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2288
2289 --periodiccnt;
2290
1879 if (expect_true (--active < --periodiccnt)) 2291 if (expect_true (active < periodiccnt + HEAP0))
1880 { 2292 {
1881 periodics [active] = periodics [periodiccnt]; 2293 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 2294 adjustheap (periodics, periodiccnt, active);
1883 } 2295 }
1884 } 2296 }
1885 2297
2298 EV_FREQUENT_CHECK;
2299
1886 ev_stop (EV_A_ (W)w); 2300 ev_stop (EV_A_ (W)w);
1887} 2301}
1888 2302
1889void noinline 2303void noinline
1890ev_periodic_again (EV_P_ ev_periodic *w) 2304ev_periodic_again (EV_P_ ev_periodic *w)
1909 return; 2323 return;
1910 2324
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1912 2326
1913 evpipe_init (EV_A); 2327 evpipe_init (EV_A);
2328
2329 EV_FREQUENT_CHECK;
1914 2330
1915 { 2331 {
1916#ifndef _WIN32 2332#ifndef _WIN32
1917 sigset_t full, prev; 2333 sigset_t full, prev;
1918 sigfillset (&full); 2334 sigfillset (&full);
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 2346 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 2347
1932 if (!((WL)w)->next) 2348 if (!((WL)w)->next)
1933 { 2349 {
1934#if _WIN32 2350#if _WIN32
1935 signal (w->signum, sighandler); 2351 signal (w->signum, ev_sighandler);
1936#else 2352#else
1937 struct sigaction sa; 2353 struct sigaction sa;
1938 sa.sa_handler = sighandler; 2354 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 2355 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2356 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 2357 sigaction (w->signum, &sa, 0);
1942#endif 2358#endif
1943 } 2359 }
2360
2361 EV_FREQUENT_CHECK;
1944} 2362}
1945 2363
1946void noinline 2364void noinline
1947ev_signal_stop (EV_P_ ev_signal *w) 2365ev_signal_stop (EV_P_ ev_signal *w)
1948{ 2366{
1949 clear_pending (EV_A_ (W)w); 2367 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 2368 if (expect_false (!ev_is_active (w)))
1951 return; 2369 return;
1952 2370
2371 EV_FREQUENT_CHECK;
2372
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 2373 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 2374 ev_stop (EV_A_ (W)w);
1955 2375
1956 if (!signals [w->signum - 1].head) 2376 if (!signals [w->signum - 1].head)
1957 signal (w->signum, SIG_DFL); 2377 signal (w->signum, SIG_DFL);
2378
2379 EV_FREQUENT_CHECK;
1958} 2380}
1959 2381
1960void 2382void
1961ev_child_start (EV_P_ ev_child *w) 2383ev_child_start (EV_P_ ev_child *w)
1962{ 2384{
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2386 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 2387#endif
1966 if (expect_false (ev_is_active (w))) 2388 if (expect_false (ev_is_active (w)))
1967 return; 2389 return;
1968 2390
2391 EV_FREQUENT_CHECK;
2392
1969 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2394 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2395
2396 EV_FREQUENT_CHECK;
1971} 2397}
1972 2398
1973void 2399void
1974ev_child_stop (EV_P_ ev_child *w) 2400ev_child_stop (EV_P_ ev_child *w)
1975{ 2401{
1976 clear_pending (EV_A_ (W)w); 2402 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 2403 if (expect_false (!ev_is_active (w)))
1978 return; 2404 return;
1979 2405
2406 EV_FREQUENT_CHECK;
2407
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2408 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 2409 ev_stop (EV_A_ (W)w);
2410
2411 EV_FREQUENT_CHECK;
1982} 2412}
1983 2413
1984#if EV_STAT_ENABLE 2414#if EV_STAT_ENABLE
1985 2415
1986# ifdef _WIN32 2416# ifdef _WIN32
2004 if (w->wd < 0) 2434 if (w->wd < 0)
2005 { 2435 {
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2436 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2007 2437
2008 /* monitor some parent directory for speedup hints */ 2438 /* monitor some parent directory for speedup hints */
2439 /* note that exceeding the hardcoded limit is not a correctness issue, */
2440 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2441 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 2442 {
2011 char path [4096]; 2443 char path [4096];
2012 strcpy (path, w->path); 2444 strcpy (path, w->path);
2013 2445
2139 } 2571 }
2140 2572
2141 } 2573 }
2142} 2574}
2143 2575
2576#endif
2577
2578#ifdef _WIN32
2579# define EV_LSTAT(p,b) _stati64 (p, b)
2580#else
2581# define EV_LSTAT(p,b) lstat (p, b)
2144#endif 2582#endif
2145 2583
2146void 2584void
2147ev_stat_stat (EV_P_ ev_stat *w) 2585ev_stat_stat (EV_P_ ev_stat *w)
2148{ 2586{
2212 else 2650 else
2213#endif 2651#endif
2214 ev_timer_start (EV_A_ &w->timer); 2652 ev_timer_start (EV_A_ &w->timer);
2215 2653
2216 ev_start (EV_A_ (W)w, 1); 2654 ev_start (EV_A_ (W)w, 1);
2655
2656 EV_FREQUENT_CHECK;
2217} 2657}
2218 2658
2219void 2659void
2220ev_stat_stop (EV_P_ ev_stat *w) 2660ev_stat_stop (EV_P_ ev_stat *w)
2221{ 2661{
2222 clear_pending (EV_A_ (W)w); 2662 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 2663 if (expect_false (!ev_is_active (w)))
2224 return; 2664 return;
2225 2665
2666 EV_FREQUENT_CHECK;
2667
2226#if EV_USE_INOTIFY 2668#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 2669 infy_del (EV_A_ w);
2228#endif 2670#endif
2229 ev_timer_stop (EV_A_ &w->timer); 2671 ev_timer_stop (EV_A_ &w->timer);
2230 2672
2231 ev_stop (EV_A_ (W)w); 2673 ev_stop (EV_A_ (W)w);
2674
2675 EV_FREQUENT_CHECK;
2232} 2676}
2233#endif 2677#endif
2234 2678
2235#if EV_IDLE_ENABLE 2679#if EV_IDLE_ENABLE
2236void 2680void
2238{ 2682{
2239 if (expect_false (ev_is_active (w))) 2683 if (expect_false (ev_is_active (w)))
2240 return; 2684 return;
2241 2685
2242 pri_adjust (EV_A_ (W)w); 2686 pri_adjust (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2243 2689
2244 { 2690 {
2245 int active = ++idlecnt [ABSPRI (w)]; 2691 int active = ++idlecnt [ABSPRI (w)];
2246 2692
2247 ++idleall; 2693 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 2694 ev_start (EV_A_ (W)w, active);
2249 2695
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2696 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w; 2697 idles [ABSPRI (w)][active - 1] = w;
2252 } 2698 }
2699
2700 EV_FREQUENT_CHECK;
2253} 2701}
2254 2702
2255void 2703void
2256ev_idle_stop (EV_P_ ev_idle *w) 2704ev_idle_stop (EV_P_ ev_idle *w)
2257{ 2705{
2258 clear_pending (EV_A_ (W)w); 2706 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 2707 if (expect_false (!ev_is_active (w)))
2260 return; 2708 return;
2261 2709
2710 EV_FREQUENT_CHECK;
2711
2262 { 2712 {
2263 int active = ((W)w)->active; 2713 int active = ev_active (w);
2264 2714
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2715 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2716 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 2717
2268 ev_stop (EV_A_ (W)w); 2718 ev_stop (EV_A_ (W)w);
2269 --idleall; 2719 --idleall;
2270 } 2720 }
2721
2722 EV_FREQUENT_CHECK;
2271} 2723}
2272#endif 2724#endif
2273 2725
2274void 2726void
2275ev_prepare_start (EV_P_ ev_prepare *w) 2727ev_prepare_start (EV_P_ ev_prepare *w)
2276{ 2728{
2277 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
2278 return; 2730 return;
2731
2732 EV_FREQUENT_CHECK;
2279 2733
2280 ev_start (EV_A_ (W)w, ++preparecnt); 2734 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w; 2736 prepares [preparecnt - 1] = w;
2737
2738 EV_FREQUENT_CHECK;
2283} 2739}
2284 2740
2285void 2741void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 2742ev_prepare_stop (EV_P_ ev_prepare *w)
2287{ 2743{
2288 clear_pending (EV_A_ (W)w); 2744 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 2745 if (expect_false (!ev_is_active (w)))
2290 return; 2746 return;
2291 2747
2748 EV_FREQUENT_CHECK;
2749
2292 { 2750 {
2293 int active = ((W)w)->active; 2751 int active = ev_active (w);
2752
2294 prepares [active - 1] = prepares [--preparecnt]; 2753 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 2754 ev_active (prepares [active - 1]) = active;
2296 } 2755 }
2297 2756
2298 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
2758
2759 EV_FREQUENT_CHECK;
2299} 2760}
2300 2761
2301void 2762void
2302ev_check_start (EV_P_ ev_check *w) 2763ev_check_start (EV_P_ ev_check *w)
2303{ 2764{
2304 if (expect_false (ev_is_active (w))) 2765 if (expect_false (ev_is_active (w)))
2305 return; 2766 return;
2767
2768 EV_FREQUENT_CHECK;
2306 2769
2307 ev_start (EV_A_ (W)w, ++checkcnt); 2770 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2771 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w; 2772 checks [checkcnt - 1] = w;
2773
2774 EV_FREQUENT_CHECK;
2310} 2775}
2311 2776
2312void 2777void
2313ev_check_stop (EV_P_ ev_check *w) 2778ev_check_stop (EV_P_ ev_check *w)
2314{ 2779{
2315 clear_pending (EV_A_ (W)w); 2780 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 2781 if (expect_false (!ev_is_active (w)))
2317 return; 2782 return;
2318 2783
2784 EV_FREQUENT_CHECK;
2785
2319 { 2786 {
2320 int active = ((W)w)->active; 2787 int active = ev_active (w);
2788
2321 checks [active - 1] = checks [--checkcnt]; 2789 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 2790 ev_active (checks [active - 1]) = active;
2323 } 2791 }
2324 2792
2325 ev_stop (EV_A_ (W)w); 2793 ev_stop (EV_A_ (W)w);
2794
2795 EV_FREQUENT_CHECK;
2326} 2796}
2327 2797
2328#if EV_EMBED_ENABLE 2798#if EV_EMBED_ENABLE
2329void noinline 2799void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w) 2800ev_embed_sweep (EV_P_ ev_embed *w)
2377 struct ev_loop *loop = w->other; 2847 struct ev_loop *loop = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2848 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2849 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 2850 }
2381 2851
2852 EV_FREQUENT_CHECK;
2853
2382 ev_set_priority (&w->io, ev_priority (w)); 2854 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 2855 ev_io_start (EV_A_ &w->io);
2384 2856
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 2857 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 2858 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 2859 ev_prepare_start (EV_A_ &w->prepare);
2388 2860
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 2862
2391 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2392} 2866}
2393 2867
2394void 2868void
2395ev_embed_stop (EV_P_ ev_embed *w) 2869ev_embed_stop (EV_P_ ev_embed *w)
2396{ 2870{
2397 clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
2399 return; 2873 return;
2400 2874
2875 EV_FREQUENT_CHECK;
2876
2401 ev_io_stop (EV_A_ &w->io); 2877 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 2878 ev_prepare_stop (EV_A_ &w->prepare);
2403 2879
2404 ev_stop (EV_A_ (W)w); 2880 ev_stop (EV_A_ (W)w);
2881
2882 EV_FREQUENT_CHECK;
2405} 2883}
2406#endif 2884#endif
2407 2885
2408#if EV_FORK_ENABLE 2886#if EV_FORK_ENABLE
2409void 2887void
2410ev_fork_start (EV_P_ ev_fork *w) 2888ev_fork_start (EV_P_ ev_fork *w)
2411{ 2889{
2412 if (expect_false (ev_is_active (w))) 2890 if (expect_false (ev_is_active (w)))
2413 return; 2891 return;
2892
2893 EV_FREQUENT_CHECK;
2414 2894
2415 ev_start (EV_A_ (W)w, ++forkcnt); 2895 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2896 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w; 2897 forks [forkcnt - 1] = w;
2898
2899 EV_FREQUENT_CHECK;
2418} 2900}
2419 2901
2420void 2902void
2421ev_fork_stop (EV_P_ ev_fork *w) 2903ev_fork_stop (EV_P_ ev_fork *w)
2422{ 2904{
2423 clear_pending (EV_A_ (W)w); 2905 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 2906 if (expect_false (!ev_is_active (w)))
2425 return; 2907 return;
2426 2908
2909 EV_FREQUENT_CHECK;
2910
2427 { 2911 {
2428 int active = ((W)w)->active; 2912 int active = ev_active (w);
2913
2429 forks [active - 1] = forks [--forkcnt]; 2914 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 2915 ev_active (forks [active - 1]) = active;
2431 } 2916 }
2432 2917
2433 ev_stop (EV_A_ (W)w); 2918 ev_stop (EV_A_ (W)w);
2919
2920 EV_FREQUENT_CHECK;
2434} 2921}
2435#endif 2922#endif
2436 2923
2437#if EV_ASYNC_ENABLE 2924#if EV_ASYNC_ENABLE
2438void 2925void
2440{ 2927{
2441 if (expect_false (ev_is_active (w))) 2928 if (expect_false (ev_is_active (w)))
2442 return; 2929 return;
2443 2930
2444 evpipe_init (EV_A); 2931 evpipe_init (EV_A);
2932
2933 EV_FREQUENT_CHECK;
2445 2934
2446 ev_start (EV_A_ (W)w, ++asynccnt); 2935 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2936 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w; 2937 asyncs [asynccnt - 1] = w;
2938
2939 EV_FREQUENT_CHECK;
2449} 2940}
2450 2941
2451void 2942void
2452ev_async_stop (EV_P_ ev_async *w) 2943ev_async_stop (EV_P_ ev_async *w)
2453{ 2944{
2454 clear_pending (EV_A_ (W)w); 2945 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 2946 if (expect_false (!ev_is_active (w)))
2456 return; 2947 return;
2457 2948
2949 EV_FREQUENT_CHECK;
2950
2458 { 2951 {
2459 int active = ((W)w)->active; 2952 int active = ev_active (w);
2953
2460 asyncs [active - 1] = asyncs [--asynccnt]; 2954 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 2955 ev_active (asyncs [active - 1]) = active;
2462 } 2956 }
2463 2957
2464 ev_stop (EV_A_ (W)w); 2958 ev_stop (EV_A_ (W)w);
2959
2960 EV_FREQUENT_CHECK;
2465} 2961}
2466 2962
2467void 2963void
2468ev_async_send (EV_P_ ev_async *w) 2964ev_async_send (EV_P_ ev_async *w)
2469{ 2965{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines