ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.214 by root, Tue Feb 19 19:21:20 2008 UTC vs.
Revision 1.430 by root, Wed May 9 16:50:23 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
141#else 184#else
142# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
143#endif 197#endif
144 198
145#ifndef _WIN32 199#ifndef _WIN32
146# include <sys/time.h> 200# include <sys/time.h>
147# include <sys/wait.h> 201# include <sys/wait.h>
148# include <unistd.h> 202# include <unistd.h>
149#else 203#else
204# include <io.h>
150# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 206# include <windows.h>
207# include <winsock2.h>
152# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
154# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
155#endif 261# endif
156 262#endif
157/**/
158 263
159#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
160# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
161#endif 270#endif
162 271
163#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 274#endif
166 275
167#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
168# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
169#endif 282#endif
170 283
171#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 286#endif
174 287
175#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
176# ifdef _WIN32 289# ifdef _WIN32
177# define EV_USE_POLL 0 290# define EV_USE_POLL 0
178# else 291# else
179# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 293# endif
181#endif 294#endif
182 295
183#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
184# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
185#endif 302#endif
186 303
187#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
189#endif 306#endif
191#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 309# define EV_USE_PORT 0
193#endif 310#endif
194 311
195#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
196# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
317# endif
197#endif 318#endif
198 319
199#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 331# else
203# define EV_PID_HASHSIZE 16 332# define EV_USE_EVENTFD 0
204# endif 333# endif
205#endif 334#endif
206 335
207#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 338# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 339# else
211# define EV_INOTIFY_HASHSIZE 16 340# define EV_USE_SIGNALFD 0
212# endif 341# endif
213#endif 342#endif
214 343
215/**/ 344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
216 383
217#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
220#endif 387#endif
228# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
230#endif 397#endif
231 398
232#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
234# include <sys/select.h> 402# include <sys/select.h>
235# endif 403# endif
236#endif 404#endif
237 405
238#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
239# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
240#endif 413# endif
414#endif
241 415
242#if EV_SELECT_IS_WINSOCKET 416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
243# include <winsock.h> 418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
244#endif 452#endif
245 453
246/**/ 454/**/
247 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
248/* 462/*
249 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 465 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 468
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509#ifdef _WIN32
510 typedef signed char int8_t;
511 typedef unsigned char uint8_t;
512 typedef signed short int16_t;
513 typedef unsigned short uint16_t;
514 typedef signed int int32_t;
515 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 516 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 517 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 518 typedef unsigned long long uint64_t;
519 #else /* _MSC_VER || __BORLANDC__ */
520 typedef signed __int64 int64_t;
521 typedef unsigned __int64 uint64_t;
522 #endif
265#else 523#else
266# define expect(expr,value) (expr) 524 #include <inttypes.h>
267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif 525#endif
526
527/* many compilers define _GNUC_ to some versions but then only implement
528 * what their idiot authors think are the "more important" extensions,
529 * causing enormous grief in return for some better fake benchmark numbers.
530 * or so.
531 * we try to detect these and simply assume they are not gcc - if they have
532 * an issue with that they should have done it right in the first place.
533 */
534#ifndef ECB_GCC_VERSION
535 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
536 #define ECB_GCC_VERSION(major,minor) 0
537 #else
538 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
271#endif 539 #endif
540#endif
272 541
542/*****************************************************************************/
543
544/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
545/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
546
547#if ECB_NO_THREADS
548# define ECB_NO_SMP 1
549#endif
550
551#if ECB_NO_THREADS || ECB_NO_SMP
552 #define ECB_MEMORY_FENCE do { } while (0)
553#endif
554
555#ifndef ECB_MEMORY_FENCE
556 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
557 #if __i386 || __i386__
558 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
559 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
560 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
561 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
565 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
567 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
568 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
570 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
571 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
573 #elif __sparc || __sparc__
574 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
575 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
576 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
577 #elif defined __s390__ || defined __s390x__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
579 #elif defined __mips__
580 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
581 #elif defined __alpha__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
583 #endif
584 #endif
585#endif
586
587#ifndef ECB_MEMORY_FENCE
588 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
589 #define ECB_MEMORY_FENCE __sync_synchronize ()
590 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
591 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
592 #elif _MSC_VER >= 1400 /* VC++ 2005 */
593 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
594 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
595 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
596 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
597 #elif defined _WIN32
598 #include <WinNT.h>
599 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
600 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
601 #include <mbarrier.h>
602 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
603 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
604 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
605 #elif __xlC__
606 #define ECB_MEMORY_FENCE __sync ()
607 #endif
608#endif
609
610#ifndef ECB_MEMORY_FENCE
611 #if !ECB_AVOID_PTHREADS
612 /*
613 * if you get undefined symbol references to pthread_mutex_lock,
614 * or failure to find pthread.h, then you should implement
615 * the ECB_MEMORY_FENCE operations for your cpu/compiler
616 * OR provide pthread.h and link against the posix thread library
617 * of your system.
618 */
619 #include <pthread.h>
620 #define ECB_NEEDS_PTHREADS 1
621 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
622
623 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
624 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
625 #endif
626#endif
627
628#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
629 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
630#endif
631
632#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
634#endif
635
636/*****************************************************************************/
637
638#define ECB_C99 (__STDC_VERSION__ >= 199901L)
639
640#if __cplusplus
641 #define ecb_inline static inline
642#elif ECB_GCC_VERSION(2,5)
643 #define ecb_inline static __inline__
644#elif ECB_C99
645 #define ecb_inline static inline
646#else
647 #define ecb_inline static
648#endif
649
650#if ECB_GCC_VERSION(3,3)
651 #define ecb_restrict __restrict__
652#elif ECB_C99
653 #define ecb_restrict restrict
654#else
655 #define ecb_restrict
656#endif
657
658typedef int ecb_bool;
659
660#define ECB_CONCAT_(a, b) a ## b
661#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
662#define ECB_STRINGIFY_(a) # a
663#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
664
665#define ecb_function_ ecb_inline
666
667#if ECB_GCC_VERSION(3,1)
668 #define ecb_attribute(attrlist) __attribute__(attrlist)
669 #define ecb_is_constant(expr) __builtin_constant_p (expr)
670 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
671 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
672#else
673 #define ecb_attribute(attrlist)
674 #define ecb_is_constant(expr) 0
675 #define ecb_expect(expr,value) (expr)
676 #define ecb_prefetch(addr,rw,locality)
677#endif
678
679/* no emulation for ecb_decltype */
680#if ECB_GCC_VERSION(4,5)
681 #define ecb_decltype(x) __decltype(x)
682#elif ECB_GCC_VERSION(3,0)
683 #define ecb_decltype(x) __typeof(x)
684#endif
685
686#define ecb_noinline ecb_attribute ((__noinline__))
687#define ecb_noreturn ecb_attribute ((__noreturn__))
688#define ecb_unused ecb_attribute ((__unused__))
689#define ecb_const ecb_attribute ((__const__))
690#define ecb_pure ecb_attribute ((__pure__))
691
692#if ECB_GCC_VERSION(4,3)
693 #define ecb_artificial ecb_attribute ((__artificial__))
694 #define ecb_hot ecb_attribute ((__hot__))
695 #define ecb_cold ecb_attribute ((__cold__))
696#else
697 #define ecb_artificial
698 #define ecb_hot
699 #define ecb_cold
700#endif
701
702/* put around conditional expressions if you are very sure that the */
703/* expression is mostly true or mostly false. note that these return */
704/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 705#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 706#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
707/* for compatibility to the rest of the world */
708#define ecb_likely(expr) ecb_expect_true (expr)
709#define ecb_unlikely(expr) ecb_expect_false (expr)
710
711/* count trailing zero bits and count # of one bits */
712#if ECB_GCC_VERSION(3,4)
713 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
714 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
715 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
716 #define ecb_ctz32(x) __builtin_ctz (x)
717 #define ecb_ctz64(x) __builtin_ctzll (x)
718 #define ecb_popcount32(x) __builtin_popcount (x)
719 /* no popcountll */
720#else
721 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
722 ecb_function_ int
723 ecb_ctz32 (uint32_t x)
724 {
725 int r = 0;
726
727 x &= ~x + 1; /* this isolates the lowest bit */
728
729#if ECB_branchless_on_i386
730 r += !!(x & 0xaaaaaaaa) << 0;
731 r += !!(x & 0xcccccccc) << 1;
732 r += !!(x & 0xf0f0f0f0) << 2;
733 r += !!(x & 0xff00ff00) << 3;
734 r += !!(x & 0xffff0000) << 4;
735#else
736 if (x & 0xaaaaaaaa) r += 1;
737 if (x & 0xcccccccc) r += 2;
738 if (x & 0xf0f0f0f0) r += 4;
739 if (x & 0xff00ff00) r += 8;
740 if (x & 0xffff0000) r += 16;
741#endif
742
743 return r;
744 }
745
746 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
747 ecb_function_ int
748 ecb_ctz64 (uint64_t x)
749 {
750 int shift = x & 0xffffffffU ? 0 : 32;
751 return ecb_ctz32 (x >> shift) + shift;
752 }
753
754 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
755 ecb_function_ int
756 ecb_popcount32 (uint32_t x)
757 {
758 x -= (x >> 1) & 0x55555555;
759 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
760 x = ((x >> 4) + x) & 0x0f0f0f0f;
761 x *= 0x01010101;
762
763 return x >> 24;
764 }
765
766 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
767 ecb_function_ int ecb_ld32 (uint32_t x)
768 {
769 int r = 0;
770
771 if (x >> 16) { x >>= 16; r += 16; }
772 if (x >> 8) { x >>= 8; r += 8; }
773 if (x >> 4) { x >>= 4; r += 4; }
774 if (x >> 2) { x >>= 2; r += 2; }
775 if (x >> 1) { r += 1; }
776
777 return r;
778 }
779
780 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
781 ecb_function_ int ecb_ld64 (uint64_t x)
782 {
783 int r = 0;
784
785 if (x >> 32) { x >>= 32; r += 32; }
786
787 return r + ecb_ld32 (x);
788 }
789#endif
790
791ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
792ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
793{
794 return ( (x * 0x0802U & 0x22110U)
795 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
796}
797
798ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
799ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
800{
801 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
802 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
803 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
804 x = ( x >> 8 ) | ( x << 8);
805
806 return x;
807}
808
809ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
810ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
811{
812 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
813 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
814 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
815 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
816 x = ( x >> 16 ) | ( x << 16);
817
818 return x;
819}
820
821/* popcount64 is only available on 64 bit cpus as gcc builtin */
822/* so for this version we are lazy */
823ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
824ecb_function_ int
825ecb_popcount64 (uint64_t x)
826{
827 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
828}
829
830ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
831ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
832ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
833ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
834ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
835ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
836ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
837ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
838
839ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
840ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
841ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
842ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
843ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
844ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
845ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
846ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
847
848#if ECB_GCC_VERSION(4,3)
849 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
850 #define ecb_bswap32(x) __builtin_bswap32 (x)
851 #define ecb_bswap64(x) __builtin_bswap64 (x)
852#else
853 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
854 ecb_function_ uint16_t
855 ecb_bswap16 (uint16_t x)
856 {
857 return ecb_rotl16 (x, 8);
858 }
859
860 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
861 ecb_function_ uint32_t
862 ecb_bswap32 (uint32_t x)
863 {
864 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
865 }
866
867 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
868 ecb_function_ uint64_t
869 ecb_bswap64 (uint64_t x)
870 {
871 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
872 }
873#endif
874
875#if ECB_GCC_VERSION(4,5)
876 #define ecb_unreachable() __builtin_unreachable ()
877#else
878 /* this seems to work fine, but gcc always emits a warning for it :/ */
879 ecb_inline void ecb_unreachable (void) ecb_noreturn;
880 ecb_inline void ecb_unreachable (void) { }
881#endif
882
883/* try to tell the compiler that some condition is definitely true */
884#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
885
886ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
887ecb_inline unsigned char
888ecb_byteorder_helper (void)
889{
890 const uint32_t u = 0x11223344;
891 return *(unsigned char *)&u;
892}
893
894ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
895ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
896ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
897ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
898
899#if ECB_GCC_VERSION(3,0) || ECB_C99
900 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
901#else
902 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
903#endif
904
905#if __cplusplus
906 template<typename T>
907 static inline T ecb_div_rd (T val, T div)
908 {
909 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
910 }
911 template<typename T>
912 static inline T ecb_div_ru (T val, T div)
913 {
914 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
915 }
916#else
917 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
918 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
919#endif
920
921#if ecb_cplusplus_does_not_suck
922 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
923 template<typename T, int N>
924 static inline int ecb_array_length (const T (&arr)[N])
925 {
926 return N;
927 }
928#else
929 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
930#endif
931
932#endif
933
934/* ECB.H END */
935
936#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
937/* if your architecture doesn't need memory fences, e.g. because it is
938 * single-cpu/core, or if you use libev in a project that doesn't use libev
939 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
940 * libev, in which cases the memory fences become nops.
941 * alternatively, you can remove this #error and link against libpthread,
942 * which will then provide the memory fences.
943 */
944# error "memory fences not defined for your architecture, please report"
945#endif
946
947#ifndef ECB_MEMORY_FENCE
948# define ECB_MEMORY_FENCE do { } while (0)
949# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
950# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
951#endif
952
953#define expect_false(cond) ecb_expect_false (cond)
954#define expect_true(cond) ecb_expect_true (cond)
955#define noinline ecb_noinline
956
275#define inline_size static inline 957#define inline_size ecb_inline
276 958
277#if EV_MINIMAL 959#if EV_FEATURE_CODE
960# define inline_speed ecb_inline
961#else
278# define inline_speed static noinline 962# define inline_speed static noinline
963#endif
964
965#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
966
967#if EV_MINPRI == EV_MAXPRI
968# define ABSPRI(w) (((W)w), 0)
279#else 969#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 970# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
971#endif
285 972
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 973#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 974#define EMPTY2(a,b) /* used to suppress some warnings */
288 975
289typedef ev_watcher *W; 976typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 977typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 978typedef ev_watcher_time *WT;
292 979
980#define ev_active(w) ((W)(w))->active
981#define ev_at(w) ((WT)(w))->at
982
983#if EV_USE_REALTIME
984/* sig_atomic_t is used to avoid per-thread variables or locking but still */
985/* giving it a reasonably high chance of working on typical architectures */
986static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
987#endif
988
293#if EV_USE_MONOTONIC 989#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 990static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
991#endif
992
993#ifndef EV_FD_TO_WIN32_HANDLE
994# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
995#endif
996#ifndef EV_WIN32_HANDLE_TO_FD
997# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
998#endif
999#ifndef EV_WIN32_CLOSE_FD
1000# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1001#endif
298 1002
299#ifdef _WIN32 1003#ifdef _WIN32
300# include "ev_win32.c" 1004# include "ev_win32.c"
301#endif 1005#endif
302 1006
303/*****************************************************************************/ 1007/*****************************************************************************/
304 1008
1009/* define a suitable floor function (only used by periodics atm) */
1010
1011#if EV_USE_FLOOR
1012# include <math.h>
1013# define ev_floor(v) floor (v)
1014#else
1015
1016#include <float.h>
1017
1018/* a floor() replacement function, should be independent of ev_tstamp type */
1019static ev_tstamp noinline
1020ev_floor (ev_tstamp v)
1021{
1022 /* the choice of shift factor is not terribly important */
1023#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1024 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1025#else
1026 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1027#endif
1028
1029 /* argument too large for an unsigned long? */
1030 if (expect_false (v >= shift))
1031 {
1032 ev_tstamp f;
1033
1034 if (v == v - 1.)
1035 return v; /* very large number */
1036
1037 f = shift * ev_floor (v * (1. / shift));
1038 return f + ev_floor (v - f);
1039 }
1040
1041 /* special treatment for negative args? */
1042 if (expect_false (v < 0.))
1043 {
1044 ev_tstamp f = -ev_floor (-v);
1045
1046 return f - (f == v ? 0 : 1);
1047 }
1048
1049 /* fits into an unsigned long */
1050 return (unsigned long)v;
1051}
1052
1053#endif
1054
1055/*****************************************************************************/
1056
1057#ifdef __linux
1058# include <sys/utsname.h>
1059#endif
1060
1061static unsigned int noinline ecb_cold
1062ev_linux_version (void)
1063{
1064#ifdef __linux
1065 unsigned int v = 0;
1066 struct utsname buf;
1067 int i;
1068 char *p = buf.release;
1069
1070 if (uname (&buf))
1071 return 0;
1072
1073 for (i = 3+1; --i; )
1074 {
1075 unsigned int c = 0;
1076
1077 for (;;)
1078 {
1079 if (*p >= '0' && *p <= '9')
1080 c = c * 10 + *p++ - '0';
1081 else
1082 {
1083 p += *p == '.';
1084 break;
1085 }
1086 }
1087
1088 v = (v << 8) | c;
1089 }
1090
1091 return v;
1092#else
1093 return 0;
1094#endif
1095}
1096
1097/*****************************************************************************/
1098
1099#if EV_AVOID_STDIO
1100static void noinline ecb_cold
1101ev_printerr (const char *msg)
1102{
1103 write (STDERR_FILENO, msg, strlen (msg));
1104}
1105#endif
1106
305static void (*syserr_cb)(const char *msg); 1107static void (*syserr_cb)(const char *msg) EV_THROW;
306 1108
307void 1109void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1110ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
309{ 1111{
310 syserr_cb = cb; 1112 syserr_cb = cb;
311} 1113}
312 1114
313static void noinline 1115static void noinline ecb_cold
314syserr (const char *msg) 1116ev_syserr (const char *msg)
315{ 1117{
316 if (!msg) 1118 if (!msg)
317 msg = "(libev) system error"; 1119 msg = "(libev) system error";
318 1120
319 if (syserr_cb) 1121 if (syserr_cb)
320 syserr_cb (msg); 1122 syserr_cb (msg);
321 else 1123 else
322 { 1124 {
1125#if EV_AVOID_STDIO
1126 ev_printerr (msg);
1127 ev_printerr (": ");
1128 ev_printerr (strerror (errno));
1129 ev_printerr ("\n");
1130#else
323 perror (msg); 1131 perror (msg);
1132#endif
324 abort (); 1133 abort ();
325 } 1134 }
326} 1135}
327 1136
1137static void *
1138ev_realloc_emul (void *ptr, long size)
1139{
1140#if __GLIBC__
1141 return realloc (ptr, size);
1142#else
1143 /* some systems, notably openbsd and darwin, fail to properly
1144 * implement realloc (x, 0) (as required by both ansi c-89 and
1145 * the single unix specification, so work around them here.
1146 */
1147
1148 if (size)
1149 return realloc (ptr, size);
1150
1151 free (ptr);
1152 return 0;
1153#endif
1154}
1155
328static void *(*alloc)(void *ptr, long size); 1156static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
329 1157
330void 1158void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1159ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
332{ 1160{
333 alloc = cb; 1161 alloc = cb;
334} 1162}
335 1163
336inline_speed void * 1164inline_speed void *
337ev_realloc (void *ptr, long size) 1165ev_realloc (void *ptr, long size)
338{ 1166{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1167 ptr = alloc (ptr, size);
340 1168
341 if (!ptr && size) 1169 if (!ptr && size)
342 { 1170 {
1171#if EV_AVOID_STDIO
1172 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1173#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1174 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1175#endif
344 abort (); 1176 abort ();
345 } 1177 }
346 1178
347 return ptr; 1179 return ptr;
348} 1180}
350#define ev_malloc(size) ev_realloc (0, (size)) 1182#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1183#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1184
353/*****************************************************************************/ 1185/*****************************************************************************/
354 1186
1187/* set in reify when reification needed */
1188#define EV_ANFD_REIFY 1
1189
1190/* file descriptor info structure */
355typedef struct 1191typedef struct
356{ 1192{
357 WL head; 1193 WL head;
358 unsigned char events; 1194 unsigned char events; /* the events watched for */
1195 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1196 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1197 unsigned char unused;
1198#if EV_USE_EPOLL
1199 unsigned int egen; /* generation counter to counter epoll bugs */
1200#endif
360#if EV_SELECT_IS_WINSOCKET 1201#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1202 SOCKET handle;
362#endif 1203#endif
1204#if EV_USE_IOCP
1205 OVERLAPPED or, ow;
1206#endif
363} ANFD; 1207} ANFD;
364 1208
1209/* stores the pending event set for a given watcher */
365typedef struct 1210typedef struct
366{ 1211{
367 W w; 1212 W w;
368 int events; 1213 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1214} ANPENDING;
370 1215
371#if EV_USE_INOTIFY 1216#if EV_USE_INOTIFY
1217/* hash table entry per inotify-id */
372typedef struct 1218typedef struct
373{ 1219{
374 WL head; 1220 WL head;
375} ANFS; 1221} ANFS;
1222#endif
1223
1224/* Heap Entry */
1225#if EV_HEAP_CACHE_AT
1226 /* a heap element */
1227 typedef struct {
1228 ev_tstamp at;
1229 WT w;
1230 } ANHE;
1231
1232 #define ANHE_w(he) (he).w /* access watcher, read-write */
1233 #define ANHE_at(he) (he).at /* access cached at, read-only */
1234 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1235#else
1236 /* a heap element */
1237 typedef WT ANHE;
1238
1239 #define ANHE_w(he) (he)
1240 #define ANHE_at(he) (he)->at
1241 #define ANHE_at_cache(he)
376#endif 1242#endif
377 1243
378#if EV_MULTIPLICITY 1244#if EV_MULTIPLICITY
379 1245
380 struct ev_loop 1246 struct ev_loop
386 #undef VAR 1252 #undef VAR
387 }; 1253 };
388 #include "ev_wrap.h" 1254 #include "ev_wrap.h"
389 1255
390 static struct ev_loop default_loop_struct; 1256 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1257 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1258
393#else 1259#else
394 1260
395 ev_tstamp ev_rt_now; 1261 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1262 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1263 #include "ev_vars.h"
398 #undef VAR 1264 #undef VAR
399 1265
400 static int ev_default_loop_ptr; 1266 static int ev_default_loop_ptr;
401 1267
402#endif 1268#endif
403 1269
1270#if EV_FEATURE_API
1271# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1272# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1273# define EV_INVOKE_PENDING invoke_cb (EV_A)
1274#else
1275# define EV_RELEASE_CB (void)0
1276# define EV_ACQUIRE_CB (void)0
1277# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1278#endif
1279
1280#define EVBREAK_RECURSE 0x80
1281
404/*****************************************************************************/ 1282/*****************************************************************************/
405 1283
1284#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1285ev_tstamp
407ev_time (void) 1286ev_time (void) EV_THROW
408{ 1287{
409#if EV_USE_REALTIME 1288#if EV_USE_REALTIME
1289 if (expect_true (have_realtime))
1290 {
410 struct timespec ts; 1291 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1292 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1293 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1294 }
1295#endif
1296
414 struct timeval tv; 1297 struct timeval tv;
415 gettimeofday (&tv, 0); 1298 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1299 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1300}
1301#endif
419 1302
420ev_tstamp inline_size 1303inline_size ev_tstamp
421get_clock (void) 1304get_clock (void)
422{ 1305{
423#if EV_USE_MONOTONIC 1306#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1307 if (expect_true (have_monotonic))
425 { 1308 {
432 return ev_time (); 1315 return ev_time ();
433} 1316}
434 1317
435#if EV_MULTIPLICITY 1318#if EV_MULTIPLICITY
436ev_tstamp 1319ev_tstamp
437ev_now (EV_P) 1320ev_now (EV_P) EV_THROW
438{ 1321{
439 return ev_rt_now; 1322 return ev_rt_now;
440} 1323}
441#endif 1324#endif
442 1325
443void 1326void
444ev_sleep (ev_tstamp delay) 1327ev_sleep (ev_tstamp delay) EV_THROW
445{ 1328{
446 if (delay > 0.) 1329 if (delay > 0.)
447 { 1330 {
448#if EV_USE_NANOSLEEP 1331#if EV_USE_NANOSLEEP
449 struct timespec ts; 1332 struct timespec ts;
450 1333
451 ts.tv_sec = (time_t)delay; 1334 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1335 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1336#elif defined _WIN32
456 Sleep (delay * 1e3); 1337 Sleep ((unsigned long)(delay * 1e3));
457#else 1338#else
458 struct timeval tv; 1339 struct timeval tv;
459 1340
460 tv.tv_sec = (time_t)delay; 1341 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1342 /* something not guaranteed by newer posix versions, but guaranteed */
462 1343 /* by older ones */
1344 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1345 select (0, 0, 0, 0, &tv);
464#endif 1346#endif
465 } 1347 }
466} 1348}
467 1349
468/*****************************************************************************/ 1350/*****************************************************************************/
469 1351
470int inline_size 1352#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1353
1354/* find a suitable new size for the given array, */
1355/* hopefully by rounding to a nice-to-malloc size */
1356inline_size int
471array_nextsize (int elem, int cur, int cnt) 1357array_nextsize (int elem, int cur, int cnt)
472{ 1358{
473 int ncur = cur + 1; 1359 int ncur = cur + 1;
474 1360
475 do 1361 do
476 ncur <<= 1; 1362 ncur <<= 1;
477 while (cnt > ncur); 1363 while (cnt > ncur);
478 1364
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1365 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1366 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1367 {
482 ncur *= elem; 1368 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1369 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1370 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1371 ncur /= elem;
486 } 1372 }
487 1373
488 return ncur; 1374 return ncur;
489} 1375}
490 1376
491static noinline void * 1377static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1378array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1379{
494 *cur = array_nextsize (elem, *cur, cnt); 1380 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1381 return ev_realloc (base, elem * *cur);
496} 1382}
1383
1384#define array_init_zero(base,count) \
1385 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1386
498#define array_needsize(type,base,cur,cnt,init) \ 1387#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1388 if (expect_false ((cnt) > (cur))) \
500 { \ 1389 { \
501 int ocur_ = (cur); \ 1390 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1391 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1392 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1393 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1394 }
506 1395
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1402 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1403 }
515#endif 1404#endif
516 1405
517#define array_free(stem, idx) \ 1406#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1407 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1408
520/*****************************************************************************/ 1409/*****************************************************************************/
521 1410
1411/* dummy callback for pending events */
1412static void noinline
1413pendingcb (EV_P_ ev_prepare *w, int revents)
1414{
1415}
1416
522void noinline 1417void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1418ev_feed_event (EV_P_ void *w, int revents) EV_THROW
524{ 1419{
525 W w_ = (W)w; 1420 W w_ = (W)w;
526 int pri = ABSPRI (w_); 1421 int pri = ABSPRI (w_);
527 1422
528 if (expect_false (w_->pending)) 1423 if (expect_false (w_->pending))
532 w_->pending = ++pendingcnt [pri]; 1427 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1428 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_; 1429 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1430 pendings [pri][w_->pending - 1].events = revents;
536 } 1431 }
537}
538 1432
539void inline_speed 1433 pendingpri = NUMPRI - 1;
1434}
1435
1436inline_speed void
1437feed_reverse (EV_P_ W w)
1438{
1439 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1440 rfeeds [rfeedcnt++] = w;
1441}
1442
1443inline_size void
1444feed_reverse_done (EV_P_ int revents)
1445{
1446 do
1447 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1448 while (rfeedcnt);
1449}
1450
1451inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1452queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1453{
542 int i; 1454 int i;
543 1455
544 for (i = 0; i < eventcnt; ++i) 1456 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1457 ev_feed_event (EV_A_ events [i], type);
546} 1458}
547 1459
548/*****************************************************************************/ 1460/*****************************************************************************/
549 1461
550void inline_size 1462inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1463fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1464{
566 ANFD *anfd = anfds + fd; 1465 ANFD *anfd = anfds + fd;
567 ev_io *w; 1466 ev_io *w;
568 1467
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1468 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1472 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1473 ev_feed_event (EV_A_ (W)w, ev);
575 } 1474 }
576} 1475}
577 1476
1477/* do not submit kernel events for fds that have reify set */
1478/* because that means they changed while we were polling for new events */
1479inline_speed void
1480fd_event (EV_P_ int fd, int revents)
1481{
1482 ANFD *anfd = anfds + fd;
1483
1484 if (expect_true (!anfd->reify))
1485 fd_event_nocheck (EV_A_ fd, revents);
1486}
1487
578void 1488void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1489ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
580{ 1490{
581 if (fd >= 0 && fd < anfdmax) 1491 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1492 fd_event_nocheck (EV_A_ fd, revents);
583} 1493}
584 1494
585void inline_size 1495/* make sure the external fd watch events are in-sync */
1496/* with the kernel/libev internal state */
1497inline_size void
586fd_reify (EV_P) 1498fd_reify (EV_P)
587{ 1499{
588 int i; 1500 int i;
1501
1502#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1503 for (i = 0; i < fdchangecnt; ++i)
1504 {
1505 int fd = fdchanges [i];
1506 ANFD *anfd = anfds + fd;
1507
1508 if (anfd->reify & EV__IOFDSET && anfd->head)
1509 {
1510 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1511
1512 if (handle != anfd->handle)
1513 {
1514 unsigned long arg;
1515
1516 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1517
1518 /* handle changed, but fd didn't - we need to do it in two steps */
1519 backend_modify (EV_A_ fd, anfd->events, 0);
1520 anfd->events = 0;
1521 anfd->handle = handle;
1522 }
1523 }
1524 }
1525#endif
589 1526
590 for (i = 0; i < fdchangecnt; ++i) 1527 for (i = 0; i < fdchangecnt; ++i)
591 { 1528 {
592 int fd = fdchanges [i]; 1529 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1530 ANFD *anfd = anfds + fd;
594 ev_io *w; 1531 ev_io *w;
595 1532
596 unsigned char events = 0; 1533 unsigned char o_events = anfd->events;
1534 unsigned char o_reify = anfd->reify;
597 1535
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1536 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1537
601#if EV_SELECT_IS_WINSOCKET 1538 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1539 {
604 unsigned long argp; 1540 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1541
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1542 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1543 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1544
609 #endif 1545 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1546 o_reify = EV__IOFDSET; /* actually |= */
611 } 1547 }
612#endif
613 1548
614 { 1549 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1550 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1551 }
625 1552
626 fdchangecnt = 0; 1553 fdchangecnt = 0;
627} 1554}
628 1555
629void inline_size 1556/* something about the given fd changed */
1557inline_size void
630fd_change (EV_P_ int fd, int flags) 1558fd_change (EV_P_ int fd, int flags)
631{ 1559{
632 unsigned char reify = anfds [fd].reify; 1560 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1561 anfds [fd].reify |= flags;
634 1562
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1566 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1567 fdchanges [fdchangecnt - 1] = fd;
640 } 1568 }
641} 1569}
642 1570
643void inline_speed 1571/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1572inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 1573fd_kill (EV_P_ int fd)
645{ 1574{
646 ev_io *w; 1575 ev_io *w;
647 1576
648 while ((w = (ev_io *)anfds [fd].head)) 1577 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1579 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1580 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1581 }
653} 1582}
654 1583
655int inline_size 1584/* check whether the given fd is actually valid, for error recovery */
1585inline_size int ecb_cold
656fd_valid (int fd) 1586fd_valid (int fd)
657{ 1587{
658#ifdef _WIN32 1588#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1589 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1590#else
661 return fcntl (fd, F_GETFD) != -1; 1591 return fcntl (fd, F_GETFD) != -1;
662#endif 1592#endif
663} 1593}
664 1594
665/* called on EBADF to verify fds */ 1595/* called on EBADF to verify fds */
666static void noinline 1596static void noinline ecb_cold
667fd_ebadf (EV_P) 1597fd_ebadf (EV_P)
668{ 1598{
669 int fd; 1599 int fd;
670 1600
671 for (fd = 0; fd < anfdmax; ++fd) 1601 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1602 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1603 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1604 fd_kill (EV_A_ fd);
675} 1605}
676 1606
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1607/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1608static void noinline ecb_cold
679fd_enomem (EV_P) 1609fd_enomem (EV_P)
680{ 1610{
681 int fd; 1611 int fd;
682 1612
683 for (fd = anfdmax; fd--; ) 1613 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1614 if (anfds [fd].events)
685 { 1615 {
686 fd_kill (EV_A_ fd); 1616 fd_kill (EV_A_ fd);
687 return; 1617 break;
688 } 1618 }
689} 1619}
690 1620
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1621/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1622static void noinline
696 1626
697 for (fd = 0; fd < anfdmax; ++fd) 1627 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1628 if (anfds [fd].events)
699 { 1629 {
700 anfds [fd].events = 0; 1630 anfds [fd].events = 0;
1631 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1632 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1633 }
703} 1634}
704 1635
705/*****************************************************************************/ 1636/* used to prepare libev internal fd's */
706 1637/* this is not fork-safe */
707void inline_speed 1638inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 1639fd_intern (int fd)
792{ 1640{
793#ifdef _WIN32 1641#ifdef _WIN32
794 int arg = 1; 1642 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1643 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1644#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1645 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1646 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1647#endif
800} 1648}
801 1649
1650/*****************************************************************************/
1651
1652/*
1653 * the heap functions want a real array index. array index 0 is guaranteed to not
1654 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1655 * the branching factor of the d-tree.
1656 */
1657
1658/*
1659 * at the moment we allow libev the luxury of two heaps,
1660 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1661 * which is more cache-efficient.
1662 * the difference is about 5% with 50000+ watchers.
1663 */
1664#if EV_USE_4HEAP
1665
1666#define DHEAP 4
1667#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1668#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1669#define UPHEAP_DONE(p,k) ((p) == (k))
1670
1671/* away from the root */
1672inline_speed void
1673downheap (ANHE *heap, int N, int k)
1674{
1675 ANHE he = heap [k];
1676 ANHE *E = heap + N + HEAP0;
1677
1678 for (;;)
1679 {
1680 ev_tstamp minat;
1681 ANHE *minpos;
1682 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1683
1684 /* find minimum child */
1685 if (expect_true (pos + DHEAP - 1 < E))
1686 {
1687 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1690 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1691 }
1692 else if (pos < E)
1693 {
1694 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1695 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1696 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1697 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1698 }
1699 else
1700 break;
1701
1702 if (ANHE_at (he) <= minat)
1703 break;
1704
1705 heap [k] = *minpos;
1706 ev_active (ANHE_w (*minpos)) = k;
1707
1708 k = minpos - heap;
1709 }
1710
1711 heap [k] = he;
1712 ev_active (ANHE_w (he)) = k;
1713}
1714
1715#else /* 4HEAP */
1716
1717#define HEAP0 1
1718#define HPARENT(k) ((k) >> 1)
1719#define UPHEAP_DONE(p,k) (!(p))
1720
1721/* away from the root */
1722inline_speed void
1723downheap (ANHE *heap, int N, int k)
1724{
1725 ANHE he = heap [k];
1726
1727 for (;;)
1728 {
1729 int c = k << 1;
1730
1731 if (c >= N + HEAP0)
1732 break;
1733
1734 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1735 ? 1 : 0;
1736
1737 if (ANHE_at (he) <= ANHE_at (heap [c]))
1738 break;
1739
1740 heap [k] = heap [c];
1741 ev_active (ANHE_w (heap [k])) = k;
1742
1743 k = c;
1744 }
1745
1746 heap [k] = he;
1747 ev_active (ANHE_w (he)) = k;
1748}
1749#endif
1750
1751/* towards the root */
1752inline_speed void
1753upheap (ANHE *heap, int k)
1754{
1755 ANHE he = heap [k];
1756
1757 for (;;)
1758 {
1759 int p = HPARENT (k);
1760
1761 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1762 break;
1763
1764 heap [k] = heap [p];
1765 ev_active (ANHE_w (heap [k])) = k;
1766 k = p;
1767 }
1768
1769 heap [k] = he;
1770 ev_active (ANHE_w (he)) = k;
1771}
1772
1773/* move an element suitably so it is in a correct place */
1774inline_size void
1775adjustheap (ANHE *heap, int N, int k)
1776{
1777 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1778 upheap (heap, k);
1779 else
1780 downheap (heap, N, k);
1781}
1782
1783/* rebuild the heap: this function is used only once and executed rarely */
1784inline_size void
1785reheap (ANHE *heap, int N)
1786{
1787 int i;
1788
1789 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1790 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1791 for (i = 0; i < N; ++i)
1792 upheap (heap, i + HEAP0);
1793}
1794
1795/*****************************************************************************/
1796
1797/* associate signal watchers to a signal signal */
1798typedef struct
1799{
1800 EV_ATOMIC_T pending;
1801#if EV_MULTIPLICITY
1802 EV_P;
1803#endif
1804 WL head;
1805} ANSIG;
1806
1807static ANSIG signals [EV_NSIG - 1];
1808
1809/*****************************************************************************/
1810
1811#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1812
802static void noinline 1813static void noinline ecb_cold
803evpipe_init (EV_P) 1814evpipe_init (EV_P)
804{ 1815{
805 if (!ev_is_active (&pipeev)) 1816 if (!ev_is_active (&pipe_w))
806 { 1817 {
1818# if EV_USE_EVENTFD
1819 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1820 if (evfd < 0 && errno == EINVAL)
1821 evfd = eventfd (0, 0);
1822
1823 if (evfd >= 0)
1824 {
1825 evpipe [0] = -1;
1826 fd_intern (evfd); /* doing it twice doesn't hurt */
1827 ev_io_set (&pipe_w, evfd, EV_READ);
1828 }
1829 else
1830# endif
1831 {
807 while (pipe (evpipe)) 1832 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1833 ev_syserr ("(libev) error creating signal/async pipe");
809 1834
810 fd_intern (evpipe [0]); 1835 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1836 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1837 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1838 }
1839
814 ev_io_start (EV_A_ &pipeev); 1840 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1841 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1842 }
817} 1843}
818 1844
819void inline_size 1845inline_speed void
820evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1846evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1847{
822 if (!*flag) 1848 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1849
1850 if (expect_true (*flag))
1851 return;
1852
1853 *flag = 1;
1854
1855 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1856
1857 pipe_write_skipped = 1;
1858
1859 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1860
1861 if (pipe_write_wanted)
823 { 1862 {
1863 int old_errno;
1864
1865 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1866
824 int old_errno = errno; /* save errno becaue write might clobber it */ 1867 old_errno = errno; /* save errno because write will clobber it */
825 1868
826 *flag = 1; 1869#if EV_USE_EVENTFD
827 write (evpipe [1], &old_errno, 1); 1870 if (evfd >= 0)
1871 {
1872 uint64_t counter = 1;
1873 write (evfd, &counter, sizeof (uint64_t));
1874 }
1875 else
1876#endif
1877 {
1878#ifdef _WIN32
1879 WSABUF buf;
1880 DWORD sent;
1881 buf.buf = &buf;
1882 buf.len = 1;
1883 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1884#else
1885 write (evpipe [1], &(evpipe [1]), 1);
1886#endif
1887 }
828 1888
829 errno = old_errno; 1889 errno = old_errno;
830 } 1890 }
831} 1891}
832 1892
1893/* called whenever the libev signal pipe */
1894/* got some events (signal, async) */
833static void 1895static void
834pipecb (EV_P_ ev_io *iow, int revents) 1896pipecb (EV_P_ ev_io *iow, int revents)
835{ 1897{
1898 int i;
1899
1900 if (revents & EV_READ)
836 { 1901 {
837 int dummy; 1902#if EV_USE_EVENTFD
1903 if (evfd >= 0)
1904 {
1905 uint64_t counter;
1906 read (evfd, &counter, sizeof (uint64_t));
1907 }
1908 else
1909#endif
1910 {
1911 char dummy[4];
1912#ifdef _WIN32
1913 WSABUF buf;
1914 DWORD recvd;
1915 buf.buf = dummy;
1916 buf.len = sizeof (dummy);
1917 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1918#else
838 read (evpipe [0], &dummy, 1); 1919 read (evpipe [0], &dummy, sizeof (dummy));
1920#endif
1921 }
839 } 1922 }
840 1923
841 if (gotsig && ev_is_default_loop (EV_A)) 1924 pipe_write_skipped = 0;
842 {
843 int signum;
844 gotsig = 0;
845 1925
846 for (signum = signalmax; signum--; ) 1926 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
847 if (signals [signum].gotsig) 1927
1928#if EV_SIGNAL_ENABLE
1929 if (sig_pending)
1930 {
1931 sig_pending = 0;
1932
1933 ECB_MEMORY_FENCE_RELEASE;
1934
1935 for (i = EV_NSIG - 1; i--; )
1936 if (expect_false (signals [i].pending))
848 ev_feed_signal_event (EV_A_ signum + 1); 1937 ev_feed_signal_event (EV_A_ i + 1);
849 } 1938 }
1939#endif
850 1940
851#if EV_ASYNC_ENABLE 1941#if EV_ASYNC_ENABLE
852 if (gotasync) 1942 if (async_pending)
853 { 1943 {
854 int i; 1944 async_pending = 0;
855 gotasync = 0; 1945
1946 ECB_MEMORY_FENCE_RELEASE;
856 1947
857 for (i = asynccnt; i--; ) 1948 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent) 1949 if (asyncs [i]->sent)
859 { 1950 {
860 asyncs [i]->sent = 0; 1951 asyncs [i]->sent = 0;
864#endif 1955#endif
865} 1956}
866 1957
867/*****************************************************************************/ 1958/*****************************************************************************/
868 1959
1960void
1961ev_feed_signal (int signum) EV_THROW
1962{
1963#if EV_MULTIPLICITY
1964 EV_P = signals [signum - 1].loop;
1965
1966 if (!EV_A)
1967 return;
1968#endif
1969
1970 if (!ev_active (&pipe_w))
1971 return;
1972
1973 signals [signum - 1].pending = 1;
1974 evpipe_write (EV_A_ &sig_pending);
1975}
1976
869static void 1977static void
870sighandler (int signum) 1978ev_sighandler (int signum)
871{ 1979{
1980#ifdef _WIN32
1981 signal (signum, ev_sighandler);
1982#endif
1983
1984 ev_feed_signal (signum);
1985}
1986
1987void noinline
1988ev_feed_signal_event (EV_P_ int signum) EV_THROW
1989{
1990 WL w;
1991
1992 if (expect_false (signum <= 0 || signum > EV_NSIG))
1993 return;
1994
1995 --signum;
1996
872#if EV_MULTIPLICITY 1997#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 1998 /* it is permissible to try to feed a signal to the wrong loop */
874#endif 1999 /* or, likely more useful, feeding a signal nobody is waiting for */
875 2000
876#if _WIN32 2001 if (expect_false (signals [signum].loop != EV_A))
877 signal (signum, sighandler);
878#endif
879
880 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig);
882}
883
884void noinline
885ev_feed_signal_event (EV_P_ int signum)
886{
887 WL w;
888
889#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif
892
893 --signum;
894
895 if (signum < 0 || signum >= signalmax)
896 return; 2002 return;
2003#endif
897 2004
898 signals [signum].gotsig = 0; 2005 signals [signum].pending = 0;
899 2006
900 for (w = signals [signum].head; w; w = w->next) 2007 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2008 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902} 2009}
903 2010
2011#if EV_USE_SIGNALFD
2012static void
2013sigfdcb (EV_P_ ev_io *iow, int revents)
2014{
2015 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2016
2017 for (;;)
2018 {
2019 ssize_t res = read (sigfd, si, sizeof (si));
2020
2021 /* not ISO-C, as res might be -1, but works with SuS */
2022 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2023 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2024
2025 if (res < (ssize_t)sizeof (si))
2026 break;
2027 }
2028}
2029#endif
2030
2031#endif
2032
904/*****************************************************************************/ 2033/*****************************************************************************/
905 2034
2035#if EV_CHILD_ENABLE
906static WL childs [EV_PID_HASHSIZE]; 2036static WL childs [EV_PID_HASHSIZE];
907
908#ifndef _WIN32
909 2037
910static ev_signal childev; 2038static ev_signal childev;
911 2039
912#ifndef WIFCONTINUED 2040#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 2041# define WIFCONTINUED(status) 0
914#endif 2042#endif
915 2043
916void inline_speed 2044/* handle a single child status event */
2045inline_speed void
917child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2046child_reap (EV_P_ int chain, int pid, int status)
918{ 2047{
919 ev_child *w; 2048 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2049 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 2050
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2051 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
923 { 2052 {
924 if ((w->pid == pid || !w->pid) 2053 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1))) 2054 && (!traced || (w->flags & 1)))
926 { 2055 {
927 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2056 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
928 w->rpid = pid; 2057 w->rpid = pid;
929 w->rstatus = status; 2058 w->rstatus = status;
930 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2059 ev_feed_event (EV_A_ (W)w, EV_CHILD);
931 } 2060 }
932 } 2061 }
934 2063
935#ifndef WCONTINUED 2064#ifndef WCONTINUED
936# define WCONTINUED 0 2065# define WCONTINUED 0
937#endif 2066#endif
938 2067
2068/* called on sigchld etc., calls waitpid */
939static void 2069static void
940childcb (EV_P_ ev_signal *sw, int revents) 2070childcb (EV_P_ ev_signal *sw, int revents)
941{ 2071{
942 int pid, status; 2072 int pid, status;
943 2073
946 if (!WCONTINUED 2076 if (!WCONTINUED
947 || errno != EINVAL 2077 || errno != EINVAL
948 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2078 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
949 return; 2079 return;
950 2080
951 /* make sure we are called again until all childs have been reaped */ 2081 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */ 2082 /* we need to do it this way so that the callback gets called before we continue */
953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2083 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
954 2084
955 child_reap (EV_A_ sw, pid, pid, status); 2085 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1) 2086 if ((EV_PID_HASHSIZE) > 1)
957 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2087 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
958} 2088}
959 2089
960#endif 2090#endif
961 2091
962/*****************************************************************************/ 2092/*****************************************************************************/
963 2093
2094#if EV_USE_IOCP
2095# include "ev_iocp.c"
2096#endif
964#if EV_USE_PORT 2097#if EV_USE_PORT
965# include "ev_port.c" 2098# include "ev_port.c"
966#endif 2099#endif
967#if EV_USE_KQUEUE 2100#if EV_USE_KQUEUE
968# include "ev_kqueue.c" 2101# include "ev_kqueue.c"
975#endif 2108#endif
976#if EV_USE_SELECT 2109#if EV_USE_SELECT
977# include "ev_select.c" 2110# include "ev_select.c"
978#endif 2111#endif
979 2112
980int 2113int ecb_cold
981ev_version_major (void) 2114ev_version_major (void) EV_THROW
982{ 2115{
983 return EV_VERSION_MAJOR; 2116 return EV_VERSION_MAJOR;
984} 2117}
985 2118
986int 2119int ecb_cold
987ev_version_minor (void) 2120ev_version_minor (void) EV_THROW
988{ 2121{
989 return EV_VERSION_MINOR; 2122 return EV_VERSION_MINOR;
990} 2123}
991 2124
992/* return true if we are running with elevated privileges and should ignore env variables */ 2125/* return true if we are running with elevated privileges and should ignore env variables */
993int inline_size 2126int inline_size ecb_cold
994enable_secure (void) 2127enable_secure (void)
995{ 2128{
996#ifdef _WIN32 2129#ifdef _WIN32
997 return 0; 2130 return 0;
998#else 2131#else
999 return getuid () != geteuid () 2132 return getuid () != geteuid ()
1000 || getgid () != getegid (); 2133 || getgid () != getegid ();
1001#endif 2134#endif
1002} 2135}
1003 2136
1004unsigned int 2137unsigned int ecb_cold
1005ev_supported_backends (void) 2138ev_supported_backends (void) EV_THROW
1006{ 2139{
1007 unsigned int flags = 0; 2140 unsigned int flags = 0;
1008 2141
1009 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2142 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1010 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2143 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1013 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2146 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1014 2147
1015 return flags; 2148 return flags;
1016} 2149}
1017 2150
1018unsigned int 2151unsigned int ecb_cold
1019ev_recommended_backends (void) 2152ev_recommended_backends (void) EV_THROW
1020{ 2153{
1021 unsigned int flags = ev_supported_backends (); 2154 unsigned int flags = ev_supported_backends ();
1022 2155
1023#ifndef __NetBSD__ 2156#ifndef __NetBSD__
1024 /* kqueue is borked on everything but netbsd apparently */ 2157 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */ 2158 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE; 2159 flags &= ~EVBACKEND_KQUEUE;
1027#endif 2160#endif
1028#ifdef __APPLE__ 2161#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation 2162 /* only select works correctly on that "unix-certified" platform */
1030 flags &= ~EVBACKEND_POLL; 2163 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2164 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2165#endif
2166#ifdef __FreeBSD__
2167 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1031#endif 2168#endif
1032 2169
1033 return flags; 2170 return flags;
1034} 2171}
1035 2172
2173unsigned int ecb_cold
2174ev_embeddable_backends (void) EV_THROW
2175{
2176 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2177
2178 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2179 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2180 flags &= ~EVBACKEND_EPOLL;
2181
2182 return flags;
2183}
2184
1036unsigned int 2185unsigned int
1037ev_embeddable_backends (void) 2186ev_backend (EV_P) EV_THROW
1038{ 2187{
1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2188 return backend;
1040
1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */
1043 flags &= ~EVBACKEND_EPOLL;
1044
1045 return flags;
1046} 2189}
1047 2190
2191#if EV_FEATURE_API
1048unsigned int 2192unsigned int
1049ev_backend (EV_P) 2193ev_iteration (EV_P) EV_THROW
1050{ 2194{
1051 return backend; 2195 return loop_count;
1052} 2196}
1053 2197
1054unsigned int 2198unsigned int
1055ev_loop_count (EV_P) 2199ev_depth (EV_P) EV_THROW
1056{ 2200{
1057 return loop_count; 2201 return loop_depth;
1058} 2202}
1059 2203
1060void 2204void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2205ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1062{ 2206{
1063 io_blocktime = interval; 2207 io_blocktime = interval;
1064} 2208}
1065 2209
1066void 2210void
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2211ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1068{ 2212{
1069 timeout_blocktime = interval; 2213 timeout_blocktime = interval;
1070} 2214}
1071 2215
2216void
2217ev_set_userdata (EV_P_ void *data) EV_THROW
2218{
2219 userdata = data;
2220}
2221
2222void *
2223ev_userdata (EV_P) EV_THROW
2224{
2225 return userdata;
2226}
2227
2228void
2229ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2230{
2231 invoke_cb = invoke_pending_cb;
2232}
2233
2234void
2235ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2236{
2237 release_cb = release;
2238 acquire_cb = acquire;
2239}
2240#endif
2241
2242/* initialise a loop structure, must be zero-initialised */
1072static void noinline 2243static void noinline ecb_cold
1073loop_init (EV_P_ unsigned int flags) 2244loop_init (EV_P_ unsigned int flags) EV_THROW
1074{ 2245{
1075 if (!backend) 2246 if (!backend)
1076 { 2247 {
2248 origflags = flags;
2249
2250#if EV_USE_REALTIME
2251 if (!have_realtime)
2252 {
2253 struct timespec ts;
2254
2255 if (!clock_gettime (CLOCK_REALTIME, &ts))
2256 have_realtime = 1;
2257 }
2258#endif
2259
1077#if EV_USE_MONOTONIC 2260#if EV_USE_MONOTONIC
2261 if (!have_monotonic)
1078 { 2262 {
1079 struct timespec ts; 2263 struct timespec ts;
2264
1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2265 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1081 have_monotonic = 1; 2266 have_monotonic = 1;
1082 } 2267 }
1083#endif
1084
1085 ev_rt_now = ev_time ();
1086 mn_now = get_clock ();
1087 now_floor = mn_now;
1088 rtmn_diff = ev_rt_now - mn_now;
1089
1090 io_blocktime = 0.;
1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif 2268#endif
1098 2269
1099 /* pid check not overridable via env */ 2270 /* pid check not overridable via env */
1100#ifndef _WIN32 2271#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK) 2272 if (flags & EVFLAG_FORKCHECK)
1105 if (!(flags & EVFLAG_NOENV) 2276 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 2277 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 2278 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 2279 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 2280
1110 if (!(flags & 0x0000ffffUL)) 2281 ev_rt_now = ev_time ();
2282 mn_now = get_clock ();
2283 now_floor = mn_now;
2284 rtmn_diff = ev_rt_now - mn_now;
2285#if EV_FEATURE_API
2286 invoke_cb = ev_invoke_pending;
2287#endif
2288
2289 io_blocktime = 0.;
2290 timeout_blocktime = 0.;
2291 backend = 0;
2292 backend_fd = -1;
2293 sig_pending = 0;
2294#if EV_ASYNC_ENABLE
2295 async_pending = 0;
2296#endif
2297 pipe_write_skipped = 0;
2298 pipe_write_wanted = 0;
2299#if EV_USE_INOTIFY
2300 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2301#endif
2302#if EV_USE_SIGNALFD
2303 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2304#endif
2305
2306 if (!(flags & EVBACKEND_MASK))
1111 flags |= ev_recommended_backends (); 2307 flags |= ev_recommended_backends ();
1112 2308
2309#if EV_USE_IOCP
2310 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2311#endif
1113#if EV_USE_PORT 2312#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2313 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 2314#endif
1116#if EV_USE_KQUEUE 2315#if EV_USE_KQUEUE
1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2316 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1124#endif 2323#endif
1125#if EV_USE_SELECT 2324#if EV_USE_SELECT
1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2325 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1127#endif 2326#endif
1128 2327
2328 ev_prepare_init (&pending_w, pendingcb);
2329
2330#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1129 ev_init (&pipeev, pipecb); 2331 ev_init (&pipe_w, pipecb);
1130 ev_set_priority (&pipeev, EV_MAXPRI); 2332 ev_set_priority (&pipe_w, EV_MAXPRI);
2333#endif
1131 } 2334 }
1132} 2335}
1133 2336
1134static void noinline 2337/* free up a loop structure */
2338void ecb_cold
1135loop_destroy (EV_P) 2339ev_loop_destroy (EV_P)
1136{ 2340{
1137 int i; 2341 int i;
1138 2342
2343#if EV_MULTIPLICITY
2344 /* mimic free (0) */
2345 if (!EV_A)
2346 return;
2347#endif
2348
2349#if EV_CLEANUP_ENABLE
2350 /* queue cleanup watchers (and execute them) */
2351 if (expect_false (cleanupcnt))
2352 {
2353 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2354 EV_INVOKE_PENDING;
2355 }
2356#endif
2357
2358#if EV_CHILD_ENABLE
2359 if (ev_is_active (&childev))
2360 {
2361 ev_ref (EV_A); /* child watcher */
2362 ev_signal_stop (EV_A_ &childev);
2363 }
2364#endif
2365
1139 if (ev_is_active (&pipeev)) 2366 if (ev_is_active (&pipe_w))
1140 { 2367 {
1141 ev_ref (EV_A); /* signal watcher */ 2368 /*ev_ref (EV_A);*/
1142 ev_io_stop (EV_A_ &pipeev); 2369 /*ev_io_stop (EV_A_ &pipe_w);*/
1143 2370
1144 close (evpipe [0]); evpipe [0] = 0; 2371#if EV_USE_EVENTFD
1145 close (evpipe [1]); evpipe [1] = 0; 2372 if (evfd >= 0)
2373 close (evfd);
2374#endif
2375
2376 if (evpipe [0] >= 0)
2377 {
2378 EV_WIN32_CLOSE_FD (evpipe [0]);
2379 EV_WIN32_CLOSE_FD (evpipe [1]);
2380 }
1146 } 2381 }
2382
2383#if EV_USE_SIGNALFD
2384 if (ev_is_active (&sigfd_w))
2385 close (sigfd);
2386#endif
1147 2387
1148#if EV_USE_INOTIFY 2388#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 2389 if (fs_fd >= 0)
1150 close (fs_fd); 2390 close (fs_fd);
1151#endif 2391#endif
1152 2392
1153 if (backend_fd >= 0) 2393 if (backend_fd >= 0)
1154 close (backend_fd); 2394 close (backend_fd);
1155 2395
2396#if EV_USE_IOCP
2397 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2398#endif
1156#if EV_USE_PORT 2399#if EV_USE_PORT
1157 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2400 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1158#endif 2401#endif
1159#if EV_USE_KQUEUE 2402#if EV_USE_KQUEUE
1160 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2403 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1175#if EV_IDLE_ENABLE 2418#if EV_IDLE_ENABLE
1176 array_free (idle, [i]); 2419 array_free (idle, [i]);
1177#endif 2420#endif
1178 } 2421 }
1179 2422
1180 ev_free (anfds); anfdmax = 0; 2423 ev_free (anfds); anfds = 0; anfdmax = 0;
1181 2424
1182 /* have to use the microsoft-never-gets-it-right macro */ 2425 /* have to use the microsoft-never-gets-it-right macro */
2426 array_free (rfeed, EMPTY);
1183 array_free (fdchange, EMPTY); 2427 array_free (fdchange, EMPTY);
1184 array_free (timer, EMPTY); 2428 array_free (timer, EMPTY);
1185#if EV_PERIODIC_ENABLE 2429#if EV_PERIODIC_ENABLE
1186 array_free (periodic, EMPTY); 2430 array_free (periodic, EMPTY);
1187#endif 2431#endif
1188#if EV_FORK_ENABLE 2432#if EV_FORK_ENABLE
1189 array_free (fork, EMPTY); 2433 array_free (fork, EMPTY);
1190#endif 2434#endif
2435#if EV_CLEANUP_ENABLE
2436 array_free (cleanup, EMPTY);
2437#endif
1191 array_free (prepare, EMPTY); 2438 array_free (prepare, EMPTY);
1192 array_free (check, EMPTY); 2439 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE 2440#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY); 2441 array_free (async, EMPTY);
1195#endif 2442#endif
1196 2443
1197 backend = 0; 2444 backend = 0;
1198}
1199 2445
2446#if EV_MULTIPLICITY
2447 if (ev_is_default_loop (EV_A))
2448#endif
2449 ev_default_loop_ptr = 0;
2450#if EV_MULTIPLICITY
2451 else
2452 ev_free (EV_A);
2453#endif
2454}
2455
2456#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 2457inline_size void infy_fork (EV_P);
2458#endif
1201 2459
1202void inline_size 2460inline_size void
1203loop_fork (EV_P) 2461loop_fork (EV_P)
1204{ 2462{
1205#if EV_USE_PORT 2463#if EV_USE_PORT
1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2464 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1207#endif 2465#endif
1213#endif 2471#endif
1214#if EV_USE_INOTIFY 2472#if EV_USE_INOTIFY
1215 infy_fork (EV_A); 2473 infy_fork (EV_A);
1216#endif 2474#endif
1217 2475
1218 if (ev_is_active (&pipeev)) 2476 if (ev_is_active (&pipe_w))
1219 { 2477 {
1220 /* this "locks" the handlers against writing to the pipe */ 2478 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1221 /* while we modify the fd vars */
1222 gotsig = 1;
1223#if EV_ASYNC_ENABLE
1224 gotasync = 1;
1225#endif
1226 2479
1227 ev_ref (EV_A); 2480 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev); 2481 ev_io_stop (EV_A_ &pipe_w);
1229 close (evpipe [0]);
1230 close (evpipe [1]);
1231 2482
2483#if EV_USE_EVENTFD
2484 if (evfd >= 0)
2485 close (evfd);
2486#endif
2487
2488 if (evpipe [0] >= 0)
2489 {
2490 EV_WIN32_CLOSE_FD (evpipe [0]);
2491 EV_WIN32_CLOSE_FD (evpipe [1]);
2492 }
2493
2494#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1232 evpipe_init (EV_A); 2495 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */ 2496 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ); 2497 pipecb (EV_A_ &pipe_w, EV_READ);
2498#endif
1235 } 2499 }
1236 2500
1237 postfork = 0; 2501 postfork = 0;
1238} 2502}
1239 2503
1240#if EV_MULTIPLICITY 2504#if EV_MULTIPLICITY
2505
1241struct ev_loop * 2506struct ev_loop * ecb_cold
1242ev_loop_new (unsigned int flags) 2507ev_loop_new (unsigned int flags) EV_THROW
1243{ 2508{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2509 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245 2510
1246 memset (loop, 0, sizeof (struct ev_loop)); 2511 memset (EV_A, 0, sizeof (struct ev_loop));
1247
1248 loop_init (EV_A_ flags); 2512 loop_init (EV_A_ flags);
1249 2513
1250 if (ev_backend (EV_A)) 2514 if (ev_backend (EV_A))
1251 return loop; 2515 return EV_A;
1252 2516
2517 ev_free (EV_A);
1253 return 0; 2518 return 0;
1254} 2519}
1255 2520
1256void 2521#endif /* multiplicity */
1257ev_loop_destroy (EV_P)
1258{
1259 loop_destroy (EV_A);
1260 ev_free (loop);
1261}
1262 2522
1263void 2523#if EV_VERIFY
1264ev_loop_fork (EV_P) 2524static void noinline ecb_cold
2525verify_watcher (EV_P_ W w)
1265{ 2526{
1266 postfork = 1; /* must be in line with ev_default_fork */ 2527 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1267}
1268 2528
2529 if (w->pending)
2530 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2531}
2532
2533static void noinline ecb_cold
2534verify_heap (EV_P_ ANHE *heap, int N)
2535{
2536 int i;
2537
2538 for (i = HEAP0; i < N + HEAP0; ++i)
2539 {
2540 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2541 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2542 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2543
2544 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2545 }
2546}
2547
2548static void noinline ecb_cold
2549array_verify (EV_P_ W *ws, int cnt)
2550{
2551 while (cnt--)
2552 {
2553 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2554 verify_watcher (EV_A_ ws [cnt]);
2555 }
2556}
2557#endif
2558
2559#if EV_FEATURE_API
2560void ecb_cold
2561ev_verify (EV_P) EV_THROW
2562{
2563#if EV_VERIFY
2564 int i;
2565 WL w, w2;
2566
2567 assert (activecnt >= -1);
2568
2569 assert (fdchangemax >= fdchangecnt);
2570 for (i = 0; i < fdchangecnt; ++i)
2571 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2572
2573 assert (anfdmax >= 0);
2574 for (i = 0; i < anfdmax; ++i)
2575 {
2576 int j = 0;
2577
2578 for (w = w2 = anfds [i].head; w; w = w->next)
2579 {
2580 verify_watcher (EV_A_ (W)w);
2581
2582 if (j++ & 1)
2583 {
2584 assert (("libev: io watcher list contains a loop", w != w2));
2585 w2 = w2->next;
2586 }
2587
2588 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2589 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2590 }
2591 }
2592
2593 assert (timermax >= timercnt);
2594 verify_heap (EV_A_ timers, timercnt);
2595
2596#if EV_PERIODIC_ENABLE
2597 assert (periodicmax >= periodiccnt);
2598 verify_heap (EV_A_ periodics, periodiccnt);
2599#endif
2600
2601 for (i = NUMPRI; i--; )
2602 {
2603 assert (pendingmax [i] >= pendingcnt [i]);
2604#if EV_IDLE_ENABLE
2605 assert (idleall >= 0);
2606 assert (idlemax [i] >= idlecnt [i]);
2607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2608#endif
2609 }
2610
2611#if EV_FORK_ENABLE
2612 assert (forkmax >= forkcnt);
2613 array_verify (EV_A_ (W *)forks, forkcnt);
2614#endif
2615
2616#if EV_CLEANUP_ENABLE
2617 assert (cleanupmax >= cleanupcnt);
2618 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2619#endif
2620
2621#if EV_ASYNC_ENABLE
2622 assert (asyncmax >= asynccnt);
2623 array_verify (EV_A_ (W *)asyncs, asynccnt);
2624#endif
2625
2626#if EV_PREPARE_ENABLE
2627 assert (preparemax >= preparecnt);
2628 array_verify (EV_A_ (W *)prepares, preparecnt);
2629#endif
2630
2631#if EV_CHECK_ENABLE
2632 assert (checkmax >= checkcnt);
2633 array_verify (EV_A_ (W *)checks, checkcnt);
2634#endif
2635
2636# if 0
2637#if EV_CHILD_ENABLE
2638 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2639 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2640#endif
2641# endif
2642#endif
2643}
1269#endif 2644#endif
1270 2645
1271#if EV_MULTIPLICITY 2646#if EV_MULTIPLICITY
1272struct ev_loop * 2647struct ev_loop * ecb_cold
1273ev_default_loop_init (unsigned int flags)
1274#else 2648#else
1275int 2649int
2650#endif
1276ev_default_loop (unsigned int flags) 2651ev_default_loop (unsigned int flags) EV_THROW
1277#endif
1278{ 2652{
1279 if (!ev_default_loop_ptr) 2653 if (!ev_default_loop_ptr)
1280 { 2654 {
1281#if EV_MULTIPLICITY 2655#if EV_MULTIPLICITY
1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2656 EV_P = ev_default_loop_ptr = &default_loop_struct;
1283#else 2657#else
1284 ev_default_loop_ptr = 1; 2658 ev_default_loop_ptr = 1;
1285#endif 2659#endif
1286 2660
1287 loop_init (EV_A_ flags); 2661 loop_init (EV_A_ flags);
1288 2662
1289 if (ev_backend (EV_A)) 2663 if (ev_backend (EV_A))
1290 { 2664 {
1291#ifndef _WIN32 2665#if EV_CHILD_ENABLE
1292 ev_signal_init (&childev, childcb, SIGCHLD); 2666 ev_signal_init (&childev, childcb, SIGCHLD);
1293 ev_set_priority (&childev, EV_MAXPRI); 2667 ev_set_priority (&childev, EV_MAXPRI);
1294 ev_signal_start (EV_A_ &childev); 2668 ev_signal_start (EV_A_ &childev);
1295 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2669 ev_unref (EV_A); /* child watcher should not keep loop alive */
1296#endif 2670#endif
1301 2675
1302 return ev_default_loop_ptr; 2676 return ev_default_loop_ptr;
1303} 2677}
1304 2678
1305void 2679void
1306ev_default_destroy (void) 2680ev_loop_fork (EV_P) EV_THROW
1307{ 2681{
1308#if EV_MULTIPLICITY
1309 struct ev_loop *loop = ev_default_loop_ptr;
1310#endif
1311
1312#ifndef _WIN32
1313 ev_ref (EV_A); /* child watcher */
1314 ev_signal_stop (EV_A_ &childev);
1315#endif
1316
1317 loop_destroy (EV_A);
1318}
1319
1320void
1321ev_default_fork (void)
1322{
1323#if EV_MULTIPLICITY
1324 struct ev_loop *loop = ev_default_loop_ptr;
1325#endif
1326
1327 if (backend)
1328 postfork = 1; /* must be in line with ev_loop_fork */ 2682 postfork = 1; /* must be in line with ev_default_fork */
1329} 2683}
1330 2684
1331/*****************************************************************************/ 2685/*****************************************************************************/
1332 2686
1333void 2687void
1334ev_invoke (EV_P_ void *w, int revents) 2688ev_invoke (EV_P_ void *w, int revents)
1335{ 2689{
1336 EV_CB_INVOKE ((W)w, revents); 2690 EV_CB_INVOKE ((W)w, revents);
1337} 2691}
1338 2692
1339void inline_speed 2693unsigned int
1340call_pending (EV_P) 2694ev_pending_count (EV_P) EV_THROW
1341{ 2695{
1342 int pri; 2696 int pri;
2697 unsigned int count = 0;
1343 2698
1344 for (pri = NUMPRI; pri--; ) 2699 for (pri = NUMPRI; pri--; )
2700 count += pendingcnt [pri];
2701
2702 return count;
2703}
2704
2705void noinline
2706ev_invoke_pending (EV_P)
2707{
2708 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1345 while (pendingcnt [pri]) 2709 while (pendingcnt [pendingpri])
1346 { 2710 {
1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2711 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1348 2712
1349 if (expect_true (p->w))
1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352
1353 p->w->pending = 0; 2713 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events); 2714 EV_CB_INVOKE (p->w, p->events);
1355 } 2715 EV_FREQUENT_CHECK;
1356 } 2716 }
1357} 2717}
1358 2718
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
1377 downheap (timers, timercnt, 0);
1378 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 {
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438
1439#if EV_IDLE_ENABLE 2719#if EV_IDLE_ENABLE
1440void inline_size 2720/* make idle watchers pending. this handles the "call-idle */
2721/* only when higher priorities are idle" logic */
2722inline_size void
1441idle_reify (EV_P) 2723idle_reify (EV_P)
1442{ 2724{
1443 if (expect_false (idleall)) 2725 if (expect_false (idleall))
1444 { 2726 {
1445 int pri; 2727 int pri;
1457 } 2739 }
1458 } 2740 }
1459} 2741}
1460#endif 2742#endif
1461 2743
1462void inline_speed 2744/* make timers pending */
2745inline_size void
2746timers_reify (EV_P)
2747{
2748 EV_FREQUENT_CHECK;
2749
2750 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2751 {
2752 do
2753 {
2754 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2755
2756 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2757
2758 /* first reschedule or stop timer */
2759 if (w->repeat)
2760 {
2761 ev_at (w) += w->repeat;
2762 if (ev_at (w) < mn_now)
2763 ev_at (w) = mn_now;
2764
2765 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2766
2767 ANHE_at_cache (timers [HEAP0]);
2768 downheap (timers, timercnt, HEAP0);
2769 }
2770 else
2771 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2772
2773 EV_FREQUENT_CHECK;
2774 feed_reverse (EV_A_ (W)w);
2775 }
2776 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2777
2778 feed_reverse_done (EV_A_ EV_TIMER);
2779 }
2780}
2781
2782#if EV_PERIODIC_ENABLE
2783
2784static void noinline
2785periodic_recalc (EV_P_ ev_periodic *w)
2786{
2787 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2788 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2789
2790 /* the above almost always errs on the low side */
2791 while (at <= ev_rt_now)
2792 {
2793 ev_tstamp nat = at + w->interval;
2794
2795 /* when resolution fails us, we use ev_rt_now */
2796 if (expect_false (nat == at))
2797 {
2798 at = ev_rt_now;
2799 break;
2800 }
2801
2802 at = nat;
2803 }
2804
2805 ev_at (w) = at;
2806}
2807
2808/* make periodics pending */
2809inline_size void
2810periodics_reify (EV_P)
2811{
2812 EV_FREQUENT_CHECK;
2813
2814 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2815 {
2816 int feed_count = 0;
2817
2818 do
2819 {
2820 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2821
2822 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2823
2824 /* first reschedule or stop timer */
2825 if (w->reschedule_cb)
2826 {
2827 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2828
2829 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2830
2831 ANHE_at_cache (periodics [HEAP0]);
2832 downheap (periodics, periodiccnt, HEAP0);
2833 }
2834 else if (w->interval)
2835 {
2836 periodic_recalc (EV_A_ w);
2837 ANHE_at_cache (periodics [HEAP0]);
2838 downheap (periodics, periodiccnt, HEAP0);
2839 }
2840 else
2841 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2842
2843 EV_FREQUENT_CHECK;
2844 feed_reverse (EV_A_ (W)w);
2845 }
2846 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2847
2848 feed_reverse_done (EV_A_ EV_PERIODIC);
2849 }
2850}
2851
2852/* simply recalculate all periodics */
2853/* TODO: maybe ensure that at least one event happens when jumping forward? */
2854static void noinline ecb_cold
2855periodics_reschedule (EV_P)
2856{
2857 int i;
2858
2859 /* adjust periodics after time jump */
2860 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2861 {
2862 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2863
2864 if (w->reschedule_cb)
2865 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2866 else if (w->interval)
2867 periodic_recalc (EV_A_ w);
2868
2869 ANHE_at_cache (periodics [i]);
2870 }
2871
2872 reheap (periodics, periodiccnt);
2873}
2874#endif
2875
2876/* adjust all timers by a given offset */
2877static void noinline ecb_cold
2878timers_reschedule (EV_P_ ev_tstamp adjust)
2879{
2880 int i;
2881
2882 for (i = 0; i < timercnt; ++i)
2883 {
2884 ANHE *he = timers + i + HEAP0;
2885 ANHE_w (*he)->at += adjust;
2886 ANHE_at_cache (*he);
2887 }
2888}
2889
2890/* fetch new monotonic and realtime times from the kernel */
2891/* also detect if there was a timejump, and act accordingly */
2892inline_speed void
1463time_update (EV_P_ ev_tstamp max_block) 2893time_update (EV_P_ ev_tstamp max_block)
1464{ 2894{
1465 int i;
1466
1467#if EV_USE_MONOTONIC 2895#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic)) 2896 if (expect_true (have_monotonic))
1469 { 2897 {
2898 int i;
1470 ev_tstamp odiff = rtmn_diff; 2899 ev_tstamp odiff = rtmn_diff;
1471 2900
1472 mn_now = get_clock (); 2901 mn_now = get_clock ();
1473 2902
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2903 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1490 * doesn't hurt either as we only do this on time-jumps or 2919 * doesn't hurt either as we only do this on time-jumps or
1491 * in the unlikely event of having been preempted here. 2920 * in the unlikely event of having been preempted here.
1492 */ 2921 */
1493 for (i = 4; --i; ) 2922 for (i = 4; --i; )
1494 { 2923 {
2924 ev_tstamp diff;
1495 rtmn_diff = ev_rt_now - mn_now; 2925 rtmn_diff = ev_rt_now - mn_now;
1496 2926
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2927 diff = odiff - rtmn_diff;
2928
2929 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 2930 return; /* all is well */
1499 2931
1500 ev_rt_now = ev_time (); 2932 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 2933 mn_now = get_clock ();
1502 now_floor = mn_now; 2934 now_floor = mn_now;
1503 } 2935 }
1504 2936
2937 /* no timer adjustment, as the monotonic clock doesn't jump */
2938 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1505# if EV_PERIODIC_ENABLE 2939# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A); 2940 periodics_reschedule (EV_A);
1507# endif 2941# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 } 2942 }
1511 else 2943 else
1512#endif 2944#endif
1513 { 2945 {
1514 ev_rt_now = ev_time (); 2946 ev_rt_now = ev_time ();
1515 2947
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2948 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1517 { 2949 {
2950 /* adjust timers. this is easy, as the offset is the same for all of them */
2951 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1518#if EV_PERIODIC_ENABLE 2952#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 2953 periodics_reschedule (EV_A);
1520#endif 2954#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1524 } 2955 }
1525 2956
1526 mn_now = ev_rt_now; 2957 mn_now = ev_rt_now;
1527 } 2958 }
1528} 2959}
1529 2960
1530void 2961int
1531ev_ref (EV_P)
1532{
1533 ++activecnt;
1534}
1535
1536void
1537ev_unref (EV_P)
1538{
1539 --activecnt;
1540}
1541
1542static int loop_done;
1543
1544void
1545ev_loop (EV_P_ int flags) 2962ev_run (EV_P_ int flags)
1546{ 2963{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2964#if EV_FEATURE_API
1548 ? EVUNLOOP_ONE 2965 ++loop_depth;
1549 : EVUNLOOP_CANCEL; 2966#endif
1550 2967
2968 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2969
2970 loop_done = EVBREAK_CANCEL;
2971
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2972 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1552 2973
1553 do 2974 do
1554 { 2975 {
2976#if EV_VERIFY >= 2
2977 ev_verify (EV_A);
2978#endif
2979
1555#ifndef _WIN32 2980#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 2981 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 2982 if (expect_false (getpid () != curpid))
1558 { 2983 {
1559 curpid = getpid (); 2984 curpid = getpid ();
1565 /* we might have forked, so queue fork handlers */ 2990 /* we might have forked, so queue fork handlers */
1566 if (expect_false (postfork)) 2991 if (expect_false (postfork))
1567 if (forkcnt) 2992 if (forkcnt)
1568 { 2993 {
1569 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2994 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1570 call_pending (EV_A); 2995 EV_INVOKE_PENDING;
1571 } 2996 }
1572#endif 2997#endif
1573 2998
2999#if EV_PREPARE_ENABLE
1574 /* queue prepare watchers (and execute them) */ 3000 /* queue prepare watchers (and execute them) */
1575 if (expect_false (preparecnt)) 3001 if (expect_false (preparecnt))
1576 { 3002 {
1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3003 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1578 call_pending (EV_A); 3004 EV_INVOKE_PENDING;
1579 } 3005 }
3006#endif
1580 3007
1581 if (expect_false (!activecnt)) 3008 if (expect_false (loop_done))
1582 break; 3009 break;
1583 3010
1584 /* we might have forked, so reify kernel state if necessary */ 3011 /* we might have forked, so reify kernel state if necessary */
1585 if (expect_false (postfork)) 3012 if (expect_false (postfork))
1586 loop_fork (EV_A); 3013 loop_fork (EV_A);
1591 /* calculate blocking time */ 3018 /* calculate blocking time */
1592 { 3019 {
1593 ev_tstamp waittime = 0.; 3020 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.; 3021 ev_tstamp sleeptime = 0.;
1595 3022
3023 /* remember old timestamp for io_blocktime calculation */
3024 ev_tstamp prev_mn_now = mn_now;
3025
3026 /* update time to cancel out callback processing overhead */
3027 time_update (EV_A_ 1e100);
3028
3029 /* from now on, we want a pipe-wake-up */
3030 pipe_write_wanted = 1;
3031
3032 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3033
1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3034 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1597 { 3035 {
1598 /* update time to cancel out callback processing overhead */
1599 time_update (EV_A_ 1e100);
1600
1601 waittime = MAX_BLOCKTIME; 3036 waittime = MAX_BLOCKTIME;
1602 3037
1603 if (timercnt) 3038 if (timercnt)
1604 { 3039 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3040 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1606 if (waittime > to) waittime = to; 3041 if (waittime > to) waittime = to;
1607 } 3042 }
1608 3043
1609#if EV_PERIODIC_ENABLE 3044#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 3045 if (periodiccnt)
1611 { 3046 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3047 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1613 if (waittime > to) waittime = to; 3048 if (waittime > to) waittime = to;
1614 } 3049 }
1615#endif 3050#endif
1616 3051
3052 /* don't let timeouts decrease the waittime below timeout_blocktime */
1617 if (expect_false (waittime < timeout_blocktime)) 3053 if (expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime; 3054 waittime = timeout_blocktime;
1619 3055
1620 sleeptime = waittime - backend_fudge; 3056 /* at this point, we NEED to wait, so we have to ensure */
3057 /* to pass a minimum nonzero value to the backend */
3058 if (expect_false (waittime < backend_mintime))
3059 waittime = backend_mintime;
1621 3060
3061 /* extra check because io_blocktime is commonly 0 */
1622 if (expect_true (sleeptime > io_blocktime)) 3062 if (expect_false (io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 { 3063 {
3064 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3065
3066 if (sleeptime > waittime - backend_mintime)
3067 sleeptime = waittime - backend_mintime;
3068
3069 if (expect_true (sleeptime > 0.))
3070 {
1627 ev_sleep (sleeptime); 3071 ev_sleep (sleeptime);
1628 waittime -= sleeptime; 3072 waittime -= sleeptime;
3073 }
1629 } 3074 }
1630 } 3075 }
1631 3076
3077#if EV_FEATURE_API
1632 ++loop_count; 3078 ++loop_count;
3079#endif
3080 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1633 backend_poll (EV_A_ waittime); 3081 backend_poll (EV_A_ waittime);
3082 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3083
3084 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3085
3086 if (pipe_write_skipped)
3087 {
3088 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3089 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3090 }
3091
1634 3092
1635 /* update ev_rt_now, do magic */ 3093 /* update ev_rt_now, do magic */
1636 time_update (EV_A_ waittime + sleeptime); 3094 time_update (EV_A_ waittime + sleeptime);
1637 } 3095 }
1638 3096
1645#if EV_IDLE_ENABLE 3103#if EV_IDLE_ENABLE
1646 /* queue idle watchers unless other events are pending */ 3104 /* queue idle watchers unless other events are pending */
1647 idle_reify (EV_A); 3105 idle_reify (EV_A);
1648#endif 3106#endif
1649 3107
3108#if EV_CHECK_ENABLE
1650 /* queue check watchers, to be executed first */ 3109 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 3110 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3111 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3112#endif
1653 3113
1654 call_pending (EV_A); 3114 EV_INVOKE_PENDING;
1655
1656 } 3115 }
1657 while (expect_true (activecnt && !loop_done)); 3116 while (expect_true (
3117 activecnt
3118 && !loop_done
3119 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3120 ));
1658 3121
1659 if (loop_done == EVUNLOOP_ONE) 3122 if (loop_done == EVBREAK_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 3123 loop_done = EVBREAK_CANCEL;
3124
3125#if EV_FEATURE_API
3126 --loop_depth;
3127#endif
3128
3129 return activecnt;
1661} 3130}
1662 3131
1663void 3132void
1664ev_unloop (EV_P_ int how) 3133ev_break (EV_P_ int how) EV_THROW
1665{ 3134{
1666 loop_done = how; 3135 loop_done = how;
1667} 3136}
1668 3137
3138void
3139ev_ref (EV_P) EV_THROW
3140{
3141 ++activecnt;
3142}
3143
3144void
3145ev_unref (EV_P) EV_THROW
3146{
3147 --activecnt;
3148}
3149
3150void
3151ev_now_update (EV_P) EV_THROW
3152{
3153 time_update (EV_A_ 1e100);
3154}
3155
3156void
3157ev_suspend (EV_P) EV_THROW
3158{
3159 ev_now_update (EV_A);
3160}
3161
3162void
3163ev_resume (EV_P) EV_THROW
3164{
3165 ev_tstamp mn_prev = mn_now;
3166
3167 ev_now_update (EV_A);
3168 timers_reschedule (EV_A_ mn_now - mn_prev);
3169#if EV_PERIODIC_ENABLE
3170 /* TODO: really do this? */
3171 periodics_reschedule (EV_A);
3172#endif
3173}
3174
1669/*****************************************************************************/ 3175/*****************************************************************************/
3176/* singly-linked list management, used when the expected list length is short */
1670 3177
1671void inline_size 3178inline_size void
1672wlist_add (WL *head, WL elem) 3179wlist_add (WL *head, WL elem)
1673{ 3180{
1674 elem->next = *head; 3181 elem->next = *head;
1675 *head = elem; 3182 *head = elem;
1676} 3183}
1677 3184
1678void inline_size 3185inline_size void
1679wlist_del (WL *head, WL elem) 3186wlist_del (WL *head, WL elem)
1680{ 3187{
1681 while (*head) 3188 while (*head)
1682 { 3189 {
1683 if (*head == elem) 3190 if (expect_true (*head == elem))
1684 { 3191 {
1685 *head = elem->next; 3192 *head = elem->next;
1686 return; 3193 break;
1687 } 3194 }
1688 3195
1689 head = &(*head)->next; 3196 head = &(*head)->next;
1690 } 3197 }
1691} 3198}
1692 3199
1693void inline_speed 3200/* internal, faster, version of ev_clear_pending */
3201inline_speed void
1694clear_pending (EV_P_ W w) 3202clear_pending (EV_P_ W w)
1695{ 3203{
1696 if (w->pending) 3204 if (w->pending)
1697 { 3205 {
1698 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3206 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1699 w->pending = 0; 3207 w->pending = 0;
1700 } 3208 }
1701} 3209}
1702 3210
1703int 3211int
1704ev_clear_pending (EV_P_ void *w) 3212ev_clear_pending (EV_P_ void *w) EV_THROW
1705{ 3213{
1706 W w_ = (W)w; 3214 W w_ = (W)w;
1707 int pending = w_->pending; 3215 int pending = w_->pending;
1708 3216
1709 if (expect_true (pending)) 3217 if (expect_true (pending))
1710 { 3218 {
1711 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3219 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3220 p->w = (W)&pending_w;
1712 w_->pending = 0; 3221 w_->pending = 0;
1713 p->w = 0;
1714 return p->events; 3222 return p->events;
1715 } 3223 }
1716 else 3224 else
1717 return 0; 3225 return 0;
1718} 3226}
1719 3227
1720void inline_size 3228inline_size void
1721pri_adjust (EV_P_ W w) 3229pri_adjust (EV_P_ W w)
1722{ 3230{
1723 int pri = w->priority; 3231 int pri = ev_priority (w);
1724 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3232 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1725 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3233 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1726 w->priority = pri; 3234 ev_set_priority (w, pri);
1727} 3235}
1728 3236
1729void inline_speed 3237inline_speed void
1730ev_start (EV_P_ W w, int active) 3238ev_start (EV_P_ W w, int active)
1731{ 3239{
1732 pri_adjust (EV_A_ w); 3240 pri_adjust (EV_A_ w);
1733 w->active = active; 3241 w->active = active;
1734 ev_ref (EV_A); 3242 ev_ref (EV_A);
1735} 3243}
1736 3244
1737void inline_size 3245inline_size void
1738ev_stop (EV_P_ W w) 3246ev_stop (EV_P_ W w)
1739{ 3247{
1740 ev_unref (EV_A); 3248 ev_unref (EV_A);
1741 w->active = 0; 3249 w->active = 0;
1742} 3250}
1743 3251
1744/*****************************************************************************/ 3252/*****************************************************************************/
1745 3253
1746void noinline 3254void noinline
1747ev_io_start (EV_P_ ev_io *w) 3255ev_io_start (EV_P_ ev_io *w) EV_THROW
1748{ 3256{
1749 int fd = w->fd; 3257 int fd = w->fd;
1750 3258
1751 if (expect_false (ev_is_active (w))) 3259 if (expect_false (ev_is_active (w)))
1752 return; 3260 return;
1753 3261
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 3262 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3263 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3264
3265 EV_FREQUENT_CHECK;
1755 3266
1756 ev_start (EV_A_ (W)w, 1); 3267 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3268 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1758 wlist_add (&anfds[fd].head, (WL)w); 3269 wlist_add (&anfds[fd].head, (WL)w);
1759 3270
3271 /* common bug, apparently */
3272 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3273
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3274 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1761 w->events &= ~EV_IOFDSET; 3275 w->events &= ~EV__IOFDSET;
3276
3277 EV_FREQUENT_CHECK;
1762} 3278}
1763 3279
1764void noinline 3280void noinline
1765ev_io_stop (EV_P_ ev_io *w) 3281ev_io_stop (EV_P_ ev_io *w) EV_THROW
1766{ 3282{
1767 clear_pending (EV_A_ (W)w); 3283 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 3284 if (expect_false (!ev_is_active (w)))
1769 return; 3285 return;
1770 3286
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3287 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3288
3289 EV_FREQUENT_CHECK;
1772 3290
1773 wlist_del (&anfds[w->fd].head, (WL)w); 3291 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 3292 ev_stop (EV_A_ (W)w);
1775 3293
1776 fd_change (EV_A_ w->fd, 1); 3294 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3295
3296 EV_FREQUENT_CHECK;
1777} 3297}
1778 3298
1779void noinline 3299void noinline
1780ev_timer_start (EV_P_ ev_timer *w) 3300ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1781{ 3301{
1782 if (expect_false (ev_is_active (w))) 3302 if (expect_false (ev_is_active (w)))
1783 return; 3303 return;
1784 3304
1785 ((WT)w)->at += mn_now; 3305 ev_at (w) += mn_now;
1786 3306
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3307 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 3308
3309 EV_FREQUENT_CHECK;
3310
3311 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 3312 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3313 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 3314 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 3315 ANHE_at_cache (timers [ev_active (w)]);
3316 upheap (timers, ev_active (w));
1793 3317
3318 EV_FREQUENT_CHECK;
3319
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3320 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 3321}
1796 3322
1797void noinline 3323void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 3324ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1799{ 3325{
1800 clear_pending (EV_A_ (W)w); 3326 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 3327 if (expect_false (!ev_is_active (w)))
1802 return; 3328 return;
1803 3329
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3330 EV_FREQUENT_CHECK;
1805 3331
1806 { 3332 {
1807 int active = ((W)w)->active; 3333 int active = ev_active (w);
1808 3334
3335 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3336
3337 --timercnt;
3338
1809 if (expect_true (--active < --timercnt)) 3339 if (expect_true (active < timercnt + HEAP0))
1810 { 3340 {
1811 timers [active] = timers [timercnt]; 3341 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 3342 adjustheap (timers, timercnt, active);
1813 } 3343 }
1814 } 3344 }
1815 3345
1816 ((WT)w)->at -= mn_now; 3346 ev_at (w) -= mn_now;
1817 3347
1818 ev_stop (EV_A_ (W)w); 3348 ev_stop (EV_A_ (W)w);
3349
3350 EV_FREQUENT_CHECK;
1819} 3351}
1820 3352
1821void noinline 3353void noinline
1822ev_timer_again (EV_P_ ev_timer *w) 3354ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1823{ 3355{
3356 EV_FREQUENT_CHECK;
3357
3358 clear_pending (EV_A_ (W)w);
3359
1824 if (ev_is_active (w)) 3360 if (ev_is_active (w))
1825 { 3361 {
1826 if (w->repeat) 3362 if (w->repeat)
1827 { 3363 {
1828 ((WT)w)->at = mn_now + w->repeat; 3364 ev_at (w) = mn_now + w->repeat;
3365 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 3366 adjustheap (timers, timercnt, ev_active (w));
1830 } 3367 }
1831 else 3368 else
1832 ev_timer_stop (EV_A_ w); 3369 ev_timer_stop (EV_A_ w);
1833 } 3370 }
1834 else if (w->repeat) 3371 else if (w->repeat)
1835 { 3372 {
1836 w->at = w->repeat; 3373 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 3374 ev_timer_start (EV_A_ w);
1838 } 3375 }
3376
3377 EV_FREQUENT_CHECK;
3378}
3379
3380ev_tstamp
3381ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3382{
3383 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1839} 3384}
1840 3385
1841#if EV_PERIODIC_ENABLE 3386#if EV_PERIODIC_ENABLE
1842void noinline 3387void noinline
1843ev_periodic_start (EV_P_ ev_periodic *w) 3388ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1844{ 3389{
1845 if (expect_false (ev_is_active (w))) 3390 if (expect_false (ev_is_active (w)))
1846 return; 3391 return;
1847 3392
1848 if (w->reschedule_cb) 3393 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3394 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 3395 else if (w->interval)
1851 { 3396 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3397 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 3398 periodic_recalc (EV_A_ w);
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 3399 }
1856 else 3400 else
1857 ((WT)w)->at = w->offset; 3401 ev_at (w) = w->offset;
1858 3402
3403 EV_FREQUENT_CHECK;
3404
3405 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 3406 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3407 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 3408 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 3409 ANHE_at_cache (periodics [ev_active (w)]);
3410 upheap (periodics, ev_active (w));
1863 3411
3412 EV_FREQUENT_CHECK;
3413
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3414 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 3415}
1866 3416
1867void noinline 3417void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 3418ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1869{ 3419{
1870 clear_pending (EV_A_ (W)w); 3420 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 3421 if (expect_false (!ev_is_active (w)))
1872 return; 3422 return;
1873 3423
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3424 EV_FREQUENT_CHECK;
1875 3425
1876 { 3426 {
1877 int active = ((W)w)->active; 3427 int active = ev_active (w);
1878 3428
3429 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3430
3431 --periodiccnt;
3432
1879 if (expect_true (--active < --periodiccnt)) 3433 if (expect_true (active < periodiccnt + HEAP0))
1880 { 3434 {
1881 periodics [active] = periodics [periodiccnt]; 3435 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 3436 adjustheap (periodics, periodiccnt, active);
1883 } 3437 }
1884 } 3438 }
1885 3439
1886 ev_stop (EV_A_ (W)w); 3440 ev_stop (EV_A_ (W)w);
3441
3442 EV_FREQUENT_CHECK;
1887} 3443}
1888 3444
1889void noinline 3445void noinline
1890ev_periodic_again (EV_P_ ev_periodic *w) 3446ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1891{ 3447{
1892 /* TODO: use adjustheap and recalculation */ 3448 /* TODO: use adjustheap and recalculation */
1893 ev_periodic_stop (EV_A_ w); 3449 ev_periodic_stop (EV_A_ w);
1894 ev_periodic_start (EV_A_ w); 3450 ev_periodic_start (EV_A_ w);
1895} 3451}
1897 3453
1898#ifndef SA_RESTART 3454#ifndef SA_RESTART
1899# define SA_RESTART 0 3455# define SA_RESTART 0
1900#endif 3456#endif
1901 3457
3458#if EV_SIGNAL_ENABLE
3459
1902void noinline 3460void noinline
1903ev_signal_start (EV_P_ ev_signal *w) 3461ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1904{ 3462{
1905#if EV_MULTIPLICITY
1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif
1908 if (expect_false (ev_is_active (w))) 3463 if (expect_false (ev_is_active (w)))
1909 return; 3464 return;
1910 3465
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3466 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1912 3467
1913 evpipe_init (EV_A); 3468#if EV_MULTIPLICITY
3469 assert (("libev: a signal must not be attached to two different loops",
3470 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1914 3471
3472 signals [w->signum - 1].loop = EV_A;
3473#endif
3474
3475 EV_FREQUENT_CHECK;
3476
3477#if EV_USE_SIGNALFD
3478 if (sigfd == -2)
1915 { 3479 {
1916#ifndef _WIN32 3480 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1917 sigset_t full, prev; 3481 if (sigfd < 0 && errno == EINVAL)
1918 sigfillset (&full); 3482 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1919 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif
1921 3483
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3484 if (sigfd >= 0)
3485 {
3486 fd_intern (sigfd); /* doing it twice will not hurt */
1923 3487
1924#ifndef _WIN32 3488 sigemptyset (&sigfd_set);
1925 sigprocmask (SIG_SETMASK, &prev, 0); 3489
1926#endif 3490 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3491 ev_set_priority (&sigfd_w, EV_MAXPRI);
3492 ev_io_start (EV_A_ &sigfd_w);
3493 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3494 }
1927 } 3495 }
3496
3497 if (sigfd >= 0)
3498 {
3499 /* TODO: check .head */
3500 sigaddset (&sigfd_set, w->signum);
3501 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3502
3503 signalfd (sigfd, &sigfd_set, 0);
3504 }
3505#endif
1928 3506
1929 ev_start (EV_A_ (W)w, 1); 3507 ev_start (EV_A_ (W)w, 1);
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 3508 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 3509
1932 if (!((WL)w)->next) 3510 if (!((WL)w)->next)
3511# if EV_USE_SIGNALFD
3512 if (sigfd < 0) /*TODO*/
3513# endif
1933 { 3514 {
1934#if _WIN32 3515# ifdef _WIN32
3516 evpipe_init (EV_A);
3517
1935 signal (w->signum, sighandler); 3518 signal (w->signum, ev_sighandler);
1936#else 3519# else
1937 struct sigaction sa; 3520 struct sigaction sa;
3521
3522 evpipe_init (EV_A);
3523
1938 sa.sa_handler = sighandler; 3524 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 3525 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3526 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 3527 sigaction (w->signum, &sa, 0);
3528
3529 if (origflags & EVFLAG_NOSIGMASK)
3530 {
3531 sigemptyset (&sa.sa_mask);
3532 sigaddset (&sa.sa_mask, w->signum);
3533 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3534 }
1942#endif 3535#endif
1943 } 3536 }
3537
3538 EV_FREQUENT_CHECK;
1944} 3539}
1945 3540
1946void noinline 3541void noinline
1947ev_signal_stop (EV_P_ ev_signal *w) 3542ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1948{ 3543{
1949 clear_pending (EV_A_ (W)w); 3544 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 3545 if (expect_false (!ev_is_active (w)))
1951 return; 3546 return;
1952 3547
3548 EV_FREQUENT_CHECK;
3549
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 3550 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 3551 ev_stop (EV_A_ (W)w);
1955 3552
1956 if (!signals [w->signum - 1].head) 3553 if (!signals [w->signum - 1].head)
3554 {
3555#if EV_MULTIPLICITY
3556 signals [w->signum - 1].loop = 0; /* unattach from signal */
3557#endif
3558#if EV_USE_SIGNALFD
3559 if (sigfd >= 0)
3560 {
3561 sigset_t ss;
3562
3563 sigemptyset (&ss);
3564 sigaddset (&ss, w->signum);
3565 sigdelset (&sigfd_set, w->signum);
3566
3567 signalfd (sigfd, &sigfd_set, 0);
3568 sigprocmask (SIG_UNBLOCK, &ss, 0);
3569 }
3570 else
3571#endif
1957 signal (w->signum, SIG_DFL); 3572 signal (w->signum, SIG_DFL);
3573 }
3574
3575 EV_FREQUENT_CHECK;
1958} 3576}
3577
3578#endif
3579
3580#if EV_CHILD_ENABLE
1959 3581
1960void 3582void
1961ev_child_start (EV_P_ ev_child *w) 3583ev_child_start (EV_P_ ev_child *w) EV_THROW
1962{ 3584{
1963#if EV_MULTIPLICITY 3585#if EV_MULTIPLICITY
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3586 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 3587#endif
1966 if (expect_false (ev_is_active (w))) 3588 if (expect_false (ev_is_active (w)))
1967 return; 3589 return;
1968 3590
3591 EV_FREQUENT_CHECK;
3592
1969 ev_start (EV_A_ (W)w, 1); 3593 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3594 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3595
3596 EV_FREQUENT_CHECK;
1971} 3597}
1972 3598
1973void 3599void
1974ev_child_stop (EV_P_ ev_child *w) 3600ev_child_stop (EV_P_ ev_child *w) EV_THROW
1975{ 3601{
1976 clear_pending (EV_A_ (W)w); 3602 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 3603 if (expect_false (!ev_is_active (w)))
1978 return; 3604 return;
1979 3605
3606 EV_FREQUENT_CHECK;
3607
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3608 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 3609 ev_stop (EV_A_ (W)w);
3610
3611 EV_FREQUENT_CHECK;
1982} 3612}
3613
3614#endif
1983 3615
1984#if EV_STAT_ENABLE 3616#if EV_STAT_ENABLE
1985 3617
1986# ifdef _WIN32 3618# ifdef _WIN32
1987# undef lstat 3619# undef lstat
1988# define lstat(a,b) _stati64 (a,b) 3620# define lstat(a,b) _stati64 (a,b)
1989# endif 3621# endif
1990 3622
1991#define DEF_STAT_INTERVAL 5.0074891 3623#define DEF_STAT_INTERVAL 5.0074891
3624#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1992#define MIN_STAT_INTERVAL 0.1074891 3625#define MIN_STAT_INTERVAL 0.1074891
1993 3626
1994static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3627static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1995 3628
1996#if EV_USE_INOTIFY 3629#if EV_USE_INOTIFY
1997# define EV_INOTIFY_BUFSIZE 8192 3630
3631/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3632# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1998 3633
1999static void noinline 3634static void noinline
2000infy_add (EV_P_ ev_stat *w) 3635infy_add (EV_P_ ev_stat *w)
2001{ 3636{
2002 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3637 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2003 3638
2004 if (w->wd < 0) 3639 if (w->wd >= 0)
3640 {
3641 struct statfs sfs;
3642
3643 /* now local changes will be tracked by inotify, but remote changes won't */
3644 /* unless the filesystem is known to be local, we therefore still poll */
3645 /* also do poll on <2.6.25, but with normal frequency */
3646
3647 if (!fs_2625)
3648 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3649 else if (!statfs (w->path, &sfs)
3650 && (sfs.f_type == 0x1373 /* devfs */
3651 || sfs.f_type == 0xEF53 /* ext2/3 */
3652 || sfs.f_type == 0x3153464a /* jfs */
3653 || sfs.f_type == 0x52654973 /* reiser3 */
3654 || sfs.f_type == 0x01021994 /* tempfs */
3655 || sfs.f_type == 0x58465342 /* xfs */))
3656 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3657 else
3658 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2005 { 3659 }
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3660 else
3661 {
3662 /* can't use inotify, continue to stat */
3663 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2007 3664
2008 /* monitor some parent directory for speedup hints */ 3665 /* if path is not there, monitor some parent directory for speedup hints */
3666 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3667 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3668 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 3669 {
2011 char path [4096]; 3670 char path [4096];
2012 strcpy (path, w->path); 3671 strcpy (path, w->path);
2013 3672
2016 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3675 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2017 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3676 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2018 3677
2019 char *pend = strrchr (path, '/'); 3678 char *pend = strrchr (path, '/');
2020 3679
2021 if (!pend) 3680 if (!pend || pend == path)
2022 break; /* whoops, no '/', complain to your admin */ 3681 break;
2023 3682
2024 *pend = 0; 3683 *pend = 0;
2025 w->wd = inotify_add_watch (fs_fd, path, mask); 3684 w->wd = inotify_add_watch (fs_fd, path, mask);
2026 } 3685 }
2027 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3686 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2028 } 3687 }
2029 } 3688 }
2030 else
2031 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2032 3689
2033 if (w->wd >= 0) 3690 if (w->wd >= 0)
2034 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3691 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3692
3693 /* now re-arm timer, if required */
3694 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3695 ev_timer_again (EV_A_ &w->timer);
3696 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2035} 3697}
2036 3698
2037static void noinline 3699static void noinline
2038infy_del (EV_P_ ev_stat *w) 3700infy_del (EV_P_ ev_stat *w)
2039{ 3701{
2042 3704
2043 if (wd < 0) 3705 if (wd < 0)
2044 return; 3706 return;
2045 3707
2046 w->wd = -2; 3708 w->wd = -2;
2047 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3709 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2048 wlist_del (&fs_hash [slot].head, (WL)w); 3710 wlist_del (&fs_hash [slot].head, (WL)w);
2049 3711
2050 /* remove this watcher, if others are watching it, they will rearm */ 3712 /* remove this watcher, if others are watching it, they will rearm */
2051 inotify_rm_watch (fs_fd, wd); 3713 inotify_rm_watch (fs_fd, wd);
2052} 3714}
2053 3715
2054static void noinline 3716static void noinline
2055infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3717infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2056{ 3718{
2057 if (slot < 0) 3719 if (slot < 0)
2058 /* overflow, need to check for all hahs slots */ 3720 /* overflow, need to check for all hash slots */
2059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3721 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2060 infy_wd (EV_A_ slot, wd, ev); 3722 infy_wd (EV_A_ slot, wd, ev);
2061 else 3723 else
2062 { 3724 {
2063 WL w_; 3725 WL w_;
2064 3726
2065 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3727 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2066 { 3728 {
2067 ev_stat *w = (ev_stat *)w_; 3729 ev_stat *w = (ev_stat *)w_;
2068 w_ = w_->next; /* lets us remove this watcher and all before it */ 3730 w_ = w_->next; /* lets us remove this watcher and all before it */
2069 3731
2070 if (w->wd == wd || wd == -1) 3732 if (w->wd == wd || wd == -1)
2071 { 3733 {
2072 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3734 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2073 { 3735 {
3736 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2074 w->wd = -1; 3737 w->wd = -1;
2075 infy_add (EV_A_ w); /* re-add, no matter what */ 3738 infy_add (EV_A_ w); /* re-add, no matter what */
2076 } 3739 }
2077 3740
2078 stat_timer_cb (EV_A_ &w->timer, 0); 3741 stat_timer_cb (EV_A_ &w->timer, 0);
2083 3746
2084static void 3747static void
2085infy_cb (EV_P_ ev_io *w, int revents) 3748infy_cb (EV_P_ ev_io *w, int revents)
2086{ 3749{
2087 char buf [EV_INOTIFY_BUFSIZE]; 3750 char buf [EV_INOTIFY_BUFSIZE];
2088 struct inotify_event *ev = (struct inotify_event *)buf;
2089 int ofs; 3751 int ofs;
2090 int len = read (fs_fd, buf, sizeof (buf)); 3752 int len = read (fs_fd, buf, sizeof (buf));
2091 3753
2092 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3754 for (ofs = 0; ofs < len; )
3755 {
3756 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2093 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3757 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3758 ofs += sizeof (struct inotify_event) + ev->len;
3759 }
2094} 3760}
2095 3761
2096void inline_size 3762inline_size void ecb_cold
3763ev_check_2625 (EV_P)
3764{
3765 /* kernels < 2.6.25 are borked
3766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3767 */
3768 if (ev_linux_version () < 0x020619)
3769 return;
3770
3771 fs_2625 = 1;
3772}
3773
3774inline_size int
3775infy_newfd (void)
3776{
3777#if defined IN_CLOEXEC && defined IN_NONBLOCK
3778 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3779 if (fd >= 0)
3780 return fd;
3781#endif
3782 return inotify_init ();
3783}
3784
3785inline_size void
2097infy_init (EV_P) 3786infy_init (EV_P)
2098{ 3787{
2099 if (fs_fd != -2) 3788 if (fs_fd != -2)
2100 return; 3789 return;
2101 3790
3791 fs_fd = -1;
3792
3793 ev_check_2625 (EV_A);
3794
2102 fs_fd = inotify_init (); 3795 fs_fd = infy_newfd ();
2103 3796
2104 if (fs_fd >= 0) 3797 if (fs_fd >= 0)
2105 { 3798 {
3799 fd_intern (fs_fd);
2106 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3800 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2107 ev_set_priority (&fs_w, EV_MAXPRI); 3801 ev_set_priority (&fs_w, EV_MAXPRI);
2108 ev_io_start (EV_A_ &fs_w); 3802 ev_io_start (EV_A_ &fs_w);
3803 ev_unref (EV_A);
2109 } 3804 }
2110} 3805}
2111 3806
2112void inline_size 3807inline_size void
2113infy_fork (EV_P) 3808infy_fork (EV_P)
2114{ 3809{
2115 int slot; 3810 int slot;
2116 3811
2117 if (fs_fd < 0) 3812 if (fs_fd < 0)
2118 return; 3813 return;
2119 3814
3815 ev_ref (EV_A);
3816 ev_io_stop (EV_A_ &fs_w);
2120 close (fs_fd); 3817 close (fs_fd);
2121 fs_fd = inotify_init (); 3818 fs_fd = infy_newfd ();
2122 3819
3820 if (fs_fd >= 0)
3821 {
3822 fd_intern (fs_fd);
3823 ev_io_set (&fs_w, fs_fd, EV_READ);
3824 ev_io_start (EV_A_ &fs_w);
3825 ev_unref (EV_A);
3826 }
3827
2123 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3828 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2124 { 3829 {
2125 WL w_ = fs_hash [slot].head; 3830 WL w_ = fs_hash [slot].head;
2126 fs_hash [slot].head = 0; 3831 fs_hash [slot].head = 0;
2127 3832
2128 while (w_) 3833 while (w_)
2133 w->wd = -1; 3838 w->wd = -1;
2134 3839
2135 if (fs_fd >= 0) 3840 if (fs_fd >= 0)
2136 infy_add (EV_A_ w); /* re-add, no matter what */ 3841 infy_add (EV_A_ w); /* re-add, no matter what */
2137 else 3842 else
3843 {
3844 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3845 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2138 ev_timer_start (EV_A_ &w->timer); 3846 ev_timer_again (EV_A_ &w->timer);
3847 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3848 }
2139 } 3849 }
2140
2141 } 3850 }
2142} 3851}
2143 3852
3853#endif
3854
3855#ifdef _WIN32
3856# define EV_LSTAT(p,b) _stati64 (p, b)
3857#else
3858# define EV_LSTAT(p,b) lstat (p, b)
2144#endif 3859#endif
2145 3860
2146void 3861void
2147ev_stat_stat (EV_P_ ev_stat *w) 3862ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2148{ 3863{
2149 if (lstat (w->path, &w->attr) < 0) 3864 if (lstat (w->path, &w->attr) < 0)
2150 w->attr.st_nlink = 0; 3865 w->attr.st_nlink = 0;
2151 else if (!w->attr.st_nlink) 3866 else if (!w->attr.st_nlink)
2152 w->attr.st_nlink = 1; 3867 w->attr.st_nlink = 1;
2155static void noinline 3870static void noinline
2156stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3871stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2157{ 3872{
2158 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3873 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2159 3874
2160 /* we copy this here each the time so that */ 3875 ev_statdata prev = w->attr;
2161 /* prev has the old value when the callback gets invoked */
2162 w->prev = w->attr;
2163 ev_stat_stat (EV_A_ w); 3876 ev_stat_stat (EV_A_ w);
2164 3877
2165 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3878 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2166 if ( 3879 if (
2167 w->prev.st_dev != w->attr.st_dev 3880 prev.st_dev != w->attr.st_dev
2168 || w->prev.st_ino != w->attr.st_ino 3881 || prev.st_ino != w->attr.st_ino
2169 || w->prev.st_mode != w->attr.st_mode 3882 || prev.st_mode != w->attr.st_mode
2170 || w->prev.st_nlink != w->attr.st_nlink 3883 || prev.st_nlink != w->attr.st_nlink
2171 || w->prev.st_uid != w->attr.st_uid 3884 || prev.st_uid != w->attr.st_uid
2172 || w->prev.st_gid != w->attr.st_gid 3885 || prev.st_gid != w->attr.st_gid
2173 || w->prev.st_rdev != w->attr.st_rdev 3886 || prev.st_rdev != w->attr.st_rdev
2174 || w->prev.st_size != w->attr.st_size 3887 || prev.st_size != w->attr.st_size
2175 || w->prev.st_atime != w->attr.st_atime 3888 || prev.st_atime != w->attr.st_atime
2176 || w->prev.st_mtime != w->attr.st_mtime 3889 || prev.st_mtime != w->attr.st_mtime
2177 || w->prev.st_ctime != w->attr.st_ctime 3890 || prev.st_ctime != w->attr.st_ctime
2178 ) { 3891 ) {
3892 /* we only update w->prev on actual differences */
3893 /* in case we test more often than invoke the callback, */
3894 /* to ensure that prev is always different to attr */
3895 w->prev = prev;
3896
2179 #if EV_USE_INOTIFY 3897 #if EV_USE_INOTIFY
3898 if (fs_fd >= 0)
3899 {
2180 infy_del (EV_A_ w); 3900 infy_del (EV_A_ w);
2181 infy_add (EV_A_ w); 3901 infy_add (EV_A_ w);
2182 ev_stat_stat (EV_A_ w); /* avoid race... */ 3902 ev_stat_stat (EV_A_ w); /* avoid race... */
3903 }
2183 #endif 3904 #endif
2184 3905
2185 ev_feed_event (EV_A_ w, EV_STAT); 3906 ev_feed_event (EV_A_ w, EV_STAT);
2186 } 3907 }
2187} 3908}
2188 3909
2189void 3910void
2190ev_stat_start (EV_P_ ev_stat *w) 3911ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2191{ 3912{
2192 if (expect_false (ev_is_active (w))) 3913 if (expect_false (ev_is_active (w)))
2193 return; 3914 return;
2194 3915
2195 /* since we use memcmp, we need to clear any padding data etc. */
2196 memset (&w->prev, 0, sizeof (ev_statdata));
2197 memset (&w->attr, 0, sizeof (ev_statdata));
2198
2199 ev_stat_stat (EV_A_ w); 3916 ev_stat_stat (EV_A_ w);
2200 3917
3918 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2201 if (w->interval < MIN_STAT_INTERVAL) 3919 w->interval = MIN_STAT_INTERVAL;
2202 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2203 3920
2204 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3921 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2205 ev_set_priority (&w->timer, ev_priority (w)); 3922 ev_set_priority (&w->timer, ev_priority (w));
2206 3923
2207#if EV_USE_INOTIFY 3924#if EV_USE_INOTIFY
2208 infy_init (EV_A); 3925 infy_init (EV_A);
2209 3926
2210 if (fs_fd >= 0) 3927 if (fs_fd >= 0)
2211 infy_add (EV_A_ w); 3928 infy_add (EV_A_ w);
2212 else 3929 else
2213#endif 3930#endif
3931 {
2214 ev_timer_start (EV_A_ &w->timer); 3932 ev_timer_again (EV_A_ &w->timer);
3933 ev_unref (EV_A);
3934 }
2215 3935
2216 ev_start (EV_A_ (W)w, 1); 3936 ev_start (EV_A_ (W)w, 1);
3937
3938 EV_FREQUENT_CHECK;
2217} 3939}
2218 3940
2219void 3941void
2220ev_stat_stop (EV_P_ ev_stat *w) 3942ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2221{ 3943{
2222 clear_pending (EV_A_ (W)w); 3944 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 3945 if (expect_false (!ev_is_active (w)))
2224 return; 3946 return;
2225 3947
3948 EV_FREQUENT_CHECK;
3949
2226#if EV_USE_INOTIFY 3950#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 3951 infy_del (EV_A_ w);
2228#endif 3952#endif
3953
3954 if (ev_is_active (&w->timer))
3955 {
3956 ev_ref (EV_A);
2229 ev_timer_stop (EV_A_ &w->timer); 3957 ev_timer_stop (EV_A_ &w->timer);
3958 }
2230 3959
2231 ev_stop (EV_A_ (W)w); 3960 ev_stop (EV_A_ (W)w);
3961
3962 EV_FREQUENT_CHECK;
2232} 3963}
2233#endif 3964#endif
2234 3965
2235#if EV_IDLE_ENABLE 3966#if EV_IDLE_ENABLE
2236void 3967void
2237ev_idle_start (EV_P_ ev_idle *w) 3968ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2238{ 3969{
2239 if (expect_false (ev_is_active (w))) 3970 if (expect_false (ev_is_active (w)))
2240 return; 3971 return;
2241 3972
2242 pri_adjust (EV_A_ (W)w); 3973 pri_adjust (EV_A_ (W)w);
3974
3975 EV_FREQUENT_CHECK;
2243 3976
2244 { 3977 {
2245 int active = ++idlecnt [ABSPRI (w)]; 3978 int active = ++idlecnt [ABSPRI (w)];
2246 3979
2247 ++idleall; 3980 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 3981 ev_start (EV_A_ (W)w, active);
2249 3982
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3983 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w; 3984 idles [ABSPRI (w)][active - 1] = w;
2252 } 3985 }
3986
3987 EV_FREQUENT_CHECK;
2253} 3988}
2254 3989
2255void 3990void
2256ev_idle_stop (EV_P_ ev_idle *w) 3991ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2257{ 3992{
2258 clear_pending (EV_A_ (W)w); 3993 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 3994 if (expect_false (!ev_is_active (w)))
2260 return; 3995 return;
2261 3996
3997 EV_FREQUENT_CHECK;
3998
2262 { 3999 {
2263 int active = ((W)w)->active; 4000 int active = ev_active (w);
2264 4001
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4002 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4003 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 4004
2268 ev_stop (EV_A_ (W)w); 4005 ev_stop (EV_A_ (W)w);
2269 --idleall; 4006 --idleall;
2270 } 4007 }
2271}
2272#endif
2273 4008
4009 EV_FREQUENT_CHECK;
4010}
4011#endif
4012
4013#if EV_PREPARE_ENABLE
2274void 4014void
2275ev_prepare_start (EV_P_ ev_prepare *w) 4015ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2276{ 4016{
2277 if (expect_false (ev_is_active (w))) 4017 if (expect_false (ev_is_active (w)))
2278 return; 4018 return;
4019
4020 EV_FREQUENT_CHECK;
2279 4021
2280 ev_start (EV_A_ (W)w, ++preparecnt); 4022 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4023 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w; 4024 prepares [preparecnt - 1] = w;
4025
4026 EV_FREQUENT_CHECK;
2283} 4027}
2284 4028
2285void 4029void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 4030ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2287{ 4031{
2288 clear_pending (EV_A_ (W)w); 4032 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 4033 if (expect_false (!ev_is_active (w)))
2290 return; 4034 return;
2291 4035
4036 EV_FREQUENT_CHECK;
4037
2292 { 4038 {
2293 int active = ((W)w)->active; 4039 int active = ev_active (w);
4040
2294 prepares [active - 1] = prepares [--preparecnt]; 4041 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 4042 ev_active (prepares [active - 1]) = active;
2296 } 4043 }
2297 4044
2298 ev_stop (EV_A_ (W)w); 4045 ev_stop (EV_A_ (W)w);
2299}
2300 4046
4047 EV_FREQUENT_CHECK;
4048}
4049#endif
4050
4051#if EV_CHECK_ENABLE
2301void 4052void
2302ev_check_start (EV_P_ ev_check *w) 4053ev_check_start (EV_P_ ev_check *w) EV_THROW
2303{ 4054{
2304 if (expect_false (ev_is_active (w))) 4055 if (expect_false (ev_is_active (w)))
2305 return; 4056 return;
4057
4058 EV_FREQUENT_CHECK;
2306 4059
2307 ev_start (EV_A_ (W)w, ++checkcnt); 4060 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4061 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w; 4062 checks [checkcnt - 1] = w;
4063
4064 EV_FREQUENT_CHECK;
2310} 4065}
2311 4066
2312void 4067void
2313ev_check_stop (EV_P_ ev_check *w) 4068ev_check_stop (EV_P_ ev_check *w) EV_THROW
2314{ 4069{
2315 clear_pending (EV_A_ (W)w); 4070 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 4071 if (expect_false (!ev_is_active (w)))
2317 return; 4072 return;
2318 4073
4074 EV_FREQUENT_CHECK;
4075
2319 { 4076 {
2320 int active = ((W)w)->active; 4077 int active = ev_active (w);
4078
2321 checks [active - 1] = checks [--checkcnt]; 4079 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 4080 ev_active (checks [active - 1]) = active;
2323 } 4081 }
2324 4082
2325 ev_stop (EV_A_ (W)w); 4083 ev_stop (EV_A_ (W)w);
4084
4085 EV_FREQUENT_CHECK;
2326} 4086}
4087#endif
2327 4088
2328#if EV_EMBED_ENABLE 4089#if EV_EMBED_ENABLE
2329void noinline 4090void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w) 4091ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2331{ 4092{
2332 ev_loop (w->other, EVLOOP_NONBLOCK); 4093 ev_run (w->other, EVRUN_NOWAIT);
2333} 4094}
2334 4095
2335static void 4096static void
2336embed_io_cb (EV_P_ ev_io *io, int revents) 4097embed_io_cb (EV_P_ ev_io *io, int revents)
2337{ 4098{
2338 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4099 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2339 4100
2340 if (ev_cb (w)) 4101 if (ev_cb (w))
2341 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4102 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2342 else 4103 else
2343 ev_loop (w->other, EVLOOP_NONBLOCK); 4104 ev_run (w->other, EVRUN_NOWAIT);
2344} 4105}
2345 4106
2346static void 4107static void
2347embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4108embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2348{ 4109{
2349 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4110 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2350 4111
2351 { 4112 {
2352 struct ev_loop *loop = w->other; 4113 EV_P = w->other;
2353 4114
2354 while (fdchangecnt) 4115 while (fdchangecnt)
2355 { 4116 {
2356 fd_reify (EV_A); 4117 fd_reify (EV_A);
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4118 ev_run (EV_A_ EVRUN_NOWAIT);
2358 } 4119 }
2359 } 4120 }
4121}
4122
4123static void
4124embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4125{
4126 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4127
4128 ev_embed_stop (EV_A_ w);
4129
4130 {
4131 EV_P = w->other;
4132
4133 ev_loop_fork (EV_A);
4134 ev_run (EV_A_ EVRUN_NOWAIT);
4135 }
4136
4137 ev_embed_start (EV_A_ w);
2360} 4138}
2361 4139
2362#if 0 4140#if 0
2363static void 4141static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4142embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2366 ev_idle_stop (EV_A_ idle); 4144 ev_idle_stop (EV_A_ idle);
2367} 4145}
2368#endif 4146#endif
2369 4147
2370void 4148void
2371ev_embed_start (EV_P_ ev_embed *w) 4149ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2372{ 4150{
2373 if (expect_false (ev_is_active (w))) 4151 if (expect_false (ev_is_active (w)))
2374 return; 4152 return;
2375 4153
2376 { 4154 {
2377 struct ev_loop *loop = w->other; 4155 EV_P = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4156 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4157 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 4158 }
4159
4160 EV_FREQUENT_CHECK;
2381 4161
2382 ev_set_priority (&w->io, ev_priority (w)); 4162 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 4163 ev_io_start (EV_A_ &w->io);
2384 4164
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 4165 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 4166 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 4167 ev_prepare_start (EV_A_ &w->prepare);
2388 4168
4169 ev_fork_init (&w->fork, embed_fork_cb);
4170 ev_fork_start (EV_A_ &w->fork);
4171
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4172 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 4173
2391 ev_start (EV_A_ (W)w, 1); 4174 ev_start (EV_A_ (W)w, 1);
4175
4176 EV_FREQUENT_CHECK;
2392} 4177}
2393 4178
2394void 4179void
2395ev_embed_stop (EV_P_ ev_embed *w) 4180ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2396{ 4181{
2397 clear_pending (EV_A_ (W)w); 4182 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 4183 if (expect_false (!ev_is_active (w)))
2399 return; 4184 return;
2400 4185
4186 EV_FREQUENT_CHECK;
4187
2401 ev_io_stop (EV_A_ &w->io); 4188 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 4189 ev_prepare_stop (EV_A_ &w->prepare);
4190 ev_fork_stop (EV_A_ &w->fork);
2403 4191
2404 ev_stop (EV_A_ (W)w); 4192 ev_stop (EV_A_ (W)w);
4193
4194 EV_FREQUENT_CHECK;
2405} 4195}
2406#endif 4196#endif
2407 4197
2408#if EV_FORK_ENABLE 4198#if EV_FORK_ENABLE
2409void 4199void
2410ev_fork_start (EV_P_ ev_fork *w) 4200ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2411{ 4201{
2412 if (expect_false (ev_is_active (w))) 4202 if (expect_false (ev_is_active (w)))
2413 return; 4203 return;
4204
4205 EV_FREQUENT_CHECK;
2414 4206
2415 ev_start (EV_A_ (W)w, ++forkcnt); 4207 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w; 4209 forks [forkcnt - 1] = w;
4210
4211 EV_FREQUENT_CHECK;
2418} 4212}
2419 4213
2420void 4214void
2421ev_fork_stop (EV_P_ ev_fork *w) 4215ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2422{ 4216{
2423 clear_pending (EV_A_ (W)w); 4217 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 4218 if (expect_false (!ev_is_active (w)))
2425 return; 4219 return;
2426 4220
4221 EV_FREQUENT_CHECK;
4222
2427 { 4223 {
2428 int active = ((W)w)->active; 4224 int active = ev_active (w);
4225
2429 forks [active - 1] = forks [--forkcnt]; 4226 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 4227 ev_active (forks [active - 1]) = active;
2431 } 4228 }
2432 4229
2433 ev_stop (EV_A_ (W)w); 4230 ev_stop (EV_A_ (W)w);
4231
4232 EV_FREQUENT_CHECK;
4233}
4234#endif
4235
4236#if EV_CLEANUP_ENABLE
4237void
4238ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4239{
4240 if (expect_false (ev_is_active (w)))
4241 return;
4242
4243 EV_FREQUENT_CHECK;
4244
4245 ev_start (EV_A_ (W)w, ++cleanupcnt);
4246 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4247 cleanups [cleanupcnt - 1] = w;
4248
4249 /* cleanup watchers should never keep a refcount on the loop */
4250 ev_unref (EV_A);
4251 EV_FREQUENT_CHECK;
4252}
4253
4254void
4255ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4256{
4257 clear_pending (EV_A_ (W)w);
4258 if (expect_false (!ev_is_active (w)))
4259 return;
4260
4261 EV_FREQUENT_CHECK;
4262 ev_ref (EV_A);
4263
4264 {
4265 int active = ev_active (w);
4266
4267 cleanups [active - 1] = cleanups [--cleanupcnt];
4268 ev_active (cleanups [active - 1]) = active;
4269 }
4270
4271 ev_stop (EV_A_ (W)w);
4272
4273 EV_FREQUENT_CHECK;
2434} 4274}
2435#endif 4275#endif
2436 4276
2437#if EV_ASYNC_ENABLE 4277#if EV_ASYNC_ENABLE
2438void 4278void
2439ev_async_start (EV_P_ ev_async *w) 4279ev_async_start (EV_P_ ev_async *w) EV_THROW
2440{ 4280{
2441 if (expect_false (ev_is_active (w))) 4281 if (expect_false (ev_is_active (w)))
2442 return; 4282 return;
2443 4283
4284 w->sent = 0;
4285
2444 evpipe_init (EV_A); 4286 evpipe_init (EV_A);
4287
4288 EV_FREQUENT_CHECK;
2445 4289
2446 ev_start (EV_A_ (W)w, ++asynccnt); 4290 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4291 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w; 4292 asyncs [asynccnt - 1] = w;
4293
4294 EV_FREQUENT_CHECK;
2449} 4295}
2450 4296
2451void 4297void
2452ev_async_stop (EV_P_ ev_async *w) 4298ev_async_stop (EV_P_ ev_async *w) EV_THROW
2453{ 4299{
2454 clear_pending (EV_A_ (W)w); 4300 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 4301 if (expect_false (!ev_is_active (w)))
2456 return; 4302 return;
2457 4303
4304 EV_FREQUENT_CHECK;
4305
2458 { 4306 {
2459 int active = ((W)w)->active; 4307 int active = ev_active (w);
4308
2460 asyncs [active - 1] = asyncs [--asynccnt]; 4309 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 4310 ev_active (asyncs [active - 1]) = active;
2462 } 4311 }
2463 4312
2464 ev_stop (EV_A_ (W)w); 4313 ev_stop (EV_A_ (W)w);
4314
4315 EV_FREQUENT_CHECK;
2465} 4316}
2466 4317
2467void 4318void
2468ev_async_send (EV_P_ ev_async *w) 4319ev_async_send (EV_P_ ev_async *w) EV_THROW
2469{ 4320{
2470 w->sent = 1; 4321 w->sent = 1;
2471 evpipe_write (EV_A_ &gotasync); 4322 evpipe_write (EV_A_ &async_pending);
2472} 4323}
2473#endif 4324#endif
2474 4325
2475/*****************************************************************************/ 4326/*****************************************************************************/
2476 4327
2486once_cb (EV_P_ struct ev_once *once, int revents) 4337once_cb (EV_P_ struct ev_once *once, int revents)
2487{ 4338{
2488 void (*cb)(int revents, void *arg) = once->cb; 4339 void (*cb)(int revents, void *arg) = once->cb;
2489 void *arg = once->arg; 4340 void *arg = once->arg;
2490 4341
2491 ev_io_stop (EV_A_ &once->io); 4342 ev_io_stop (EV_A_ &once->io);
2492 ev_timer_stop (EV_A_ &once->to); 4343 ev_timer_stop (EV_A_ &once->to);
2493 ev_free (once); 4344 ev_free (once);
2494 4345
2495 cb (revents, arg); 4346 cb (revents, arg);
2496} 4347}
2497 4348
2498static void 4349static void
2499once_cb_io (EV_P_ ev_io *w, int revents) 4350once_cb_io (EV_P_ ev_io *w, int revents)
2500{ 4351{
2501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4352 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4353
4354 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2502} 4355}
2503 4356
2504static void 4357static void
2505once_cb_to (EV_P_ ev_timer *w, int revents) 4358once_cb_to (EV_P_ ev_timer *w, int revents)
2506{ 4359{
2507 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4360 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4361
4362 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2508} 4363}
2509 4364
2510void 4365void
2511ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4366ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2512{ 4367{
2513 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4368 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2514 4369
2515 if (expect_false (!once)) 4370 if (expect_false (!once))
2516 { 4371 {
2517 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4372 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2518 return; 4373 return;
2519 } 4374 }
2520 4375
2521 once->cb = cb; 4376 once->cb = cb;
2522 once->arg = arg; 4377 once->arg = arg;
2534 ev_timer_set (&once->to, timeout, 0.); 4389 ev_timer_set (&once->to, timeout, 0.);
2535 ev_timer_start (EV_A_ &once->to); 4390 ev_timer_start (EV_A_ &once->to);
2536 } 4391 }
2537} 4392}
2538 4393
4394/*****************************************************************************/
4395
4396#if EV_WALK_ENABLE
4397void ecb_cold
4398ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4399{
4400 int i, j;
4401 ev_watcher_list *wl, *wn;
4402
4403 if (types & (EV_IO | EV_EMBED))
4404 for (i = 0; i < anfdmax; ++i)
4405 for (wl = anfds [i].head; wl; )
4406 {
4407 wn = wl->next;
4408
4409#if EV_EMBED_ENABLE
4410 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4411 {
4412 if (types & EV_EMBED)
4413 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4414 }
4415 else
4416#endif
4417#if EV_USE_INOTIFY
4418 if (ev_cb ((ev_io *)wl) == infy_cb)
4419 ;
4420 else
4421#endif
4422 if ((ev_io *)wl != &pipe_w)
4423 if (types & EV_IO)
4424 cb (EV_A_ EV_IO, wl);
4425
4426 wl = wn;
4427 }
4428
4429 if (types & (EV_TIMER | EV_STAT))
4430 for (i = timercnt + HEAP0; i-- > HEAP0; )
4431#if EV_STAT_ENABLE
4432 /*TODO: timer is not always active*/
4433 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4434 {
4435 if (types & EV_STAT)
4436 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4437 }
4438 else
4439#endif
4440 if (types & EV_TIMER)
4441 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4442
4443#if EV_PERIODIC_ENABLE
4444 if (types & EV_PERIODIC)
4445 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4446 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4447#endif
4448
4449#if EV_IDLE_ENABLE
4450 if (types & EV_IDLE)
4451 for (j = NUMPRI; j--; )
4452 for (i = idlecnt [j]; i--; )
4453 cb (EV_A_ EV_IDLE, idles [j][i]);
4454#endif
4455
4456#if EV_FORK_ENABLE
4457 if (types & EV_FORK)
4458 for (i = forkcnt; i--; )
4459 if (ev_cb (forks [i]) != embed_fork_cb)
4460 cb (EV_A_ EV_FORK, forks [i]);
4461#endif
4462
4463#if EV_ASYNC_ENABLE
4464 if (types & EV_ASYNC)
4465 for (i = asynccnt; i--; )
4466 cb (EV_A_ EV_ASYNC, asyncs [i]);
4467#endif
4468
4469#if EV_PREPARE_ENABLE
4470 if (types & EV_PREPARE)
4471 for (i = preparecnt; i--; )
4472# if EV_EMBED_ENABLE
4473 if (ev_cb (prepares [i]) != embed_prepare_cb)
4474# endif
4475 cb (EV_A_ EV_PREPARE, prepares [i]);
4476#endif
4477
4478#if EV_CHECK_ENABLE
4479 if (types & EV_CHECK)
4480 for (i = checkcnt; i--; )
4481 cb (EV_A_ EV_CHECK, checks [i]);
4482#endif
4483
4484#if EV_SIGNAL_ENABLE
4485 if (types & EV_SIGNAL)
4486 for (i = 0; i < EV_NSIG - 1; ++i)
4487 for (wl = signals [i].head; wl; )
4488 {
4489 wn = wl->next;
4490 cb (EV_A_ EV_SIGNAL, wl);
4491 wl = wn;
4492 }
4493#endif
4494
4495#if EV_CHILD_ENABLE
4496 if (types & EV_CHILD)
4497 for (i = (EV_PID_HASHSIZE); i--; )
4498 for (wl = childs [i]; wl; )
4499 {
4500 wn = wl->next;
4501 cb (EV_A_ EV_CHILD, wl);
4502 wl = wn;
4503 }
4504#endif
4505/* EV_STAT 0x00001000 /* stat data changed */
4506/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4507}
4508#endif
4509
2539#if EV_MULTIPLICITY 4510#if EV_MULTIPLICITY
2540 #include "ev_wrap.h" 4511 #include "ev_wrap.h"
2541#endif 4512#endif
2542 4513
2543#ifdef __cplusplus
2544}
2545#endif
2546

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines