ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.215 by ayin, Thu Feb 21 10:34:15 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif 244#endif
218 245
219/**/ 246/**/
220 247
221/* 248/*
222 * This is used to avoid floating point rounding problems. 249 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 250 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 251 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 252 * errors are against us.
226 * This value is good at least till the year 4000 253 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 254 * Better solutions welcome.
229 */ 255 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 257
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 261
236#if __GNUC__ >= 3 262#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
239#else 265#else
240# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
241# define noinline 267# define noinline
262 288
263typedef ev_watcher *W; 289typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
266 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
268 298
269#ifdef _WIN32 299#ifdef _WIN32
270# include "ev_win32.c" 300# include "ev_win32.c"
271#endif 301#endif
272 302
408{ 438{
409 return ev_rt_now; 439 return ev_rt_now;
410} 440}
411#endif 441#endif
412 442
443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
413int inline_size 470int inline_size
414array_nextsize (int elem, int cur, int cnt) 471array_nextsize (int elem, int cur, int cnt)
415{ 472{
416 int ncur = cur + 1; 473 int ncur = cur + 1;
417 474
477 pendings [pri][w_->pending - 1].w = w_; 534 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 535 pendings [pri][w_->pending - 1].events = revents;
479 } 536 }
480} 537}
481 538
482void inline_size 539void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 541{
485 int i; 542 int i;
486 543
487 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
534 { 591 {
535 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
537 ev_io *w; 594 ev_io *w;
538 595
539 int events = 0; 596 unsigned char events = 0;
540 597
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 599 events |= (unsigned char)w->events;
543 600
544#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
545 if (events) 602 if (events)
546 { 603 {
547 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
548 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
550 } 611 }
551#endif 612#endif
552 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
553 anfd->reify = 0; 618 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
557 } 624 }
558 625
559 fdchangecnt = 0; 626 fdchangecnt = 0;
560} 627}
561 628
562void inline_size 629void inline_size
563fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
564{ 631{
565 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
569 634
635 if (expect_true (!reify))
636 {
570 ++fdchangecnt; 637 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
573} 641}
574 642
575void inline_speed 643void inline_speed
576fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
577{ 645{
628 696
629 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 698 if (anfds [fd].events)
631 { 699 {
632 anfds [fd].events = 0; 700 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 702 }
635} 703}
636 704
637/*****************************************************************************/ 705/*****************************************************************************/
638 706
639void inline_speed 707void inline_speed
640upheap (WT *heap, int k) 708upheap (WT *heap, int k)
641{ 709{
642 WT w = heap [k]; 710 WT w = heap [k];
643 711
644 while (k && heap [k >> 1]->at > w->at) 712 while (k)
645 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
646 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
647 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
648 k >>= 1; 721 k = p;
649 } 722 }
650 723
651 heap [k] = w; 724 heap [k] = w;
652 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
653
654} 726}
655 727
656void inline_speed 728void inline_speed
657downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
658{ 730{
659 WT w = heap [k]; 731 WT w = heap [k];
660 732
661 while (k < (N >> 1)) 733 for (;;)
662 { 734 {
663 int j = k << 1; 735 int c = (k << 1) + 1;
664 736
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break; 738 break;
670 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
671 heap [k] = heap [j]; 746 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
673 k = j; 749 k = c;
674 } 750 }
675 751
676 heap [k] = w; 752 heap [k] = w;
677 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
678} 754}
687/*****************************************************************************/ 763/*****************************************************************************/
688 764
689typedef struct 765typedef struct
690{ 766{
691 WL head; 767 WL head;
692 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
693} ANSIG; 769} ANSIG;
694 770
695static ANSIG *signals; 771static ANSIG *signals;
696static int signalmax; 772static int signalmax;
697 773
698static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701 775
702void inline_size 776void inline_size
703signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
704{ 778{
705 while (count--) 779 while (count--)
709 783
710 ++base; 784 ++base;
711 } 785 }
712} 786}
713 787
714static void 788/*****************************************************************************/
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764 789
765void inline_speed 790void inline_speed
766fd_intern (int fd) 791fd_intern (int fd)
767{ 792{
768#ifdef _WIN32 793#ifdef _WIN32
773 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 799#endif
775} 800}
776 801
777static void noinline 802static void noinline
778siginit (EV_P) 803evpipe_init (EV_P)
779{ 804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
780 fd_intern (sigpipe [0]); 810 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 811 fd_intern (evpipe [1]);
782 812
783 ev_io_set (&sigev, sigpipe [0], EV_READ); 813 ev_io_set (&pipeev, evpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 814 ev_io_start (EV_A_ &pipeev);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 815 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{
822 if (!*flag)
823 {
824 int old_errno = errno; /* save errno because write might clobber it */
825
826 *flag = 1;
827 write (evpipe [1], &old_errno, 1);
828
829 errno = old_errno;
830 }
831}
832
833static void
834pipecb (EV_P_ ev_io *iow, int revents)
835{
836 {
837 int dummy;
838 read (evpipe [0], &dummy, 1);
839 }
840
841 if (gotsig && ev_is_default_loop (EV_A))
842 {
843 int signum;
844 gotsig = 0;
845
846 for (signum = signalmax; signum--; )
847 if (signals [signum].gotsig)
848 ev_feed_signal_event (EV_A_ signum + 1);
849 }
850
851#if EV_ASYNC_ENABLE
852 if (gotasync)
853 {
854 int i;
855 gotasync = 0;
856
857 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent)
859 {
860 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 }
863 }
864#endif
786} 865}
787 866
788/*****************************************************************************/ 867/*****************************************************************************/
789 868
869static void
870sighandler (int signum)
871{
872#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct;
874#endif
875
876#if _WIN32
877 signal (signum, sighandler);
878#endif
879
880 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig);
882}
883
884void noinline
885ev_feed_signal_event (EV_P_ int signum)
886{
887 WL w;
888
889#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif
892
893 --signum;
894
895 if (signum < 0 || signum >= signalmax)
896 return;
897
898 signals [signum].gotsig = 0;
899
900 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902}
903
904/*****************************************************************************/
905
790static ev_child *childs [EV_PID_HASHSIZE]; 906static WL childs [EV_PID_HASHSIZE];
791 907
792#ifndef _WIN32 908#ifndef _WIN32
793 909
794static ev_signal childev; 910static ev_signal childev;
911
912#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0
914#endif
795 915
796void inline_speed 916void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 917child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
798{ 918{
799 ev_child *w; 919 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 921
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
923 {
802 if (w->pid == pid || !w->pid) 924 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1)))
803 { 926 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 927 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
805 w->rpid = pid; 928 w->rpid = pid;
806 w->rstatus = status; 929 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 930 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 931 }
932 }
809} 933}
810 934
811#ifndef WCONTINUED 935#ifndef WCONTINUED
812# define WCONTINUED 0 936# define WCONTINUED 0
813#endif 937#endif
910} 1034}
911 1035
912unsigned int 1036unsigned int
913ev_embeddable_backends (void) 1037ev_embeddable_backends (void)
914{ 1038{
915 return EVBACKEND_EPOLL 1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1040
917 | EVBACKEND_PORT; 1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */
1043 flags &= ~EVBACKEND_EPOLL;
1044
1045 return flags;
918} 1046}
919 1047
920unsigned int 1048unsigned int
921ev_backend (EV_P) 1049ev_backend (EV_P)
922{ 1050{
925 1053
926unsigned int 1054unsigned int
927ev_loop_count (EV_P) 1055ev_loop_count (EV_P)
928{ 1056{
929 return loop_count; 1057 return loop_count;
1058}
1059
1060void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1062{
1063 io_blocktime = interval;
1064}
1065
1066void
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1068{
1069 timeout_blocktime = interval;
930} 1070}
931 1071
932static void noinline 1072static void noinline
933loop_init (EV_P_ unsigned int flags) 1073loop_init (EV_P_ unsigned int flags)
934{ 1074{
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1081 have_monotonic = 1;
942 } 1082 }
943#endif 1083#endif
944 1084
945 ev_rt_now = ev_time (); 1085 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1086 mn_now = get_clock ();
947 now_floor = mn_now; 1087 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1088 rtmn_diff = ev_rt_now - mn_now;
1089
1090 io_blocktime = 0.;
1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif
949 1098
950 /* pid check not overridable via env */ 1099 /* pid check not overridable via env */
951#ifndef _WIN32 1100#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1101 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1102 curpid = getpid ();
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1108 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1109
961 if (!(flags & 0x0000ffffUL)) 1110 if (!(flags & 0x0000ffffUL))
962 flags |= ev_recommended_backends (); 1111 flags |= ev_recommended_backends ();
963 1112
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969
970#if EV_USE_PORT 1113#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1115#endif
973#if EV_USE_KQUEUE 1116#if EV_USE_KQUEUE
974 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
981#endif 1124#endif
982#if EV_USE_SELECT 1125#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1127#endif
985 1128
986 ev_init (&sigev, sigcb); 1129 ev_init (&pipeev, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1130 ev_set_priority (&pipeev, EV_MAXPRI);
988 } 1131 }
989} 1132}
990 1133
991static void noinline 1134static void noinline
992loop_destroy (EV_P) 1135loop_destroy (EV_P)
993{ 1136{
994 int i; 1137 int i;
1138
1139 if (ev_is_active (&pipeev))
1140 {
1141 ev_ref (EV_A); /* signal watcher */
1142 ev_io_stop (EV_A_ &pipeev);
1143
1144 close (evpipe [0]); evpipe [0] = 0;
1145 close (evpipe [1]); evpipe [1] = 0;
1146 }
995 1147
996#if EV_USE_INOTIFY 1148#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1149 if (fs_fd >= 0)
998 close (fs_fd); 1150 close (fs_fd);
999#endif 1151#endif
1022 array_free (pending, [i]); 1174 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE 1175#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1176 array_free (idle, [i]);
1025#endif 1177#endif
1026 } 1178 }
1179
1180 ev_free (anfds); anfdmax = 0;
1027 1181
1028 /* have to use the microsoft-never-gets-it-right macro */ 1182 /* have to use the microsoft-never-gets-it-right macro */
1029 array_free (fdchange, EMPTY); 1183 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1184 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1185#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1186 array_free (periodic, EMPTY);
1033#endif 1187#endif
1188#if EV_FORK_ENABLE
1189 array_free (fork, EMPTY);
1190#endif
1034 array_free (prepare, EMPTY); 1191 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1192 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY);
1195#endif
1036 1196
1037 backend = 0; 1197 backend = 0;
1038} 1198}
1039 1199
1040void inline_size infy_fork (EV_P); 1200void inline_size infy_fork (EV_P);
1053#endif 1213#endif
1054#if EV_USE_INOTIFY 1214#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1215 infy_fork (EV_A);
1056#endif 1216#endif
1057 1217
1058 if (ev_is_active (&sigev)) 1218 if (ev_is_active (&pipeev))
1059 { 1219 {
1060 /* default loop */ 1220 /* this "locks" the handlers against writing to the pipe */
1221 /* while we modify the fd vars */
1222 gotsig = 1;
1223#if EV_ASYNC_ENABLE
1224 gotasync = 1;
1225#endif
1061 1226
1062 ev_ref (EV_A); 1227 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1228 ev_io_stop (EV_A_ &pipeev);
1064 close (sigpipe [0]); 1229 close (evpipe [0]);
1065 close (sigpipe [1]); 1230 close (evpipe [1]);
1066 1231
1067 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe");
1069
1070 siginit (EV_A); 1232 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ);
1071 } 1235 }
1072 1236
1073 postfork = 0; 1237 postfork = 0;
1074} 1238}
1075 1239
1097} 1261}
1098 1262
1099void 1263void
1100ev_loop_fork (EV_P) 1264ev_loop_fork (EV_P)
1101{ 1265{
1102 postfork = 1; 1266 postfork = 1; /* must be in line with ev_default_fork */
1103} 1267}
1104 1268
1105#endif 1269#endif
1106 1270
1107#if EV_MULTIPLICITY 1271#if EV_MULTIPLICITY
1110#else 1274#else
1111int 1275int
1112ev_default_loop (unsigned int flags) 1276ev_default_loop (unsigned int flags)
1113#endif 1277#endif
1114{ 1278{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1279 if (!ev_default_loop_ptr)
1120 { 1280 {
1121#if EV_MULTIPLICITY 1281#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1123#else 1283#else
1126 1286
1127 loop_init (EV_A_ flags); 1287 loop_init (EV_A_ flags);
1128 1288
1129 if (ev_backend (EV_A)) 1289 if (ev_backend (EV_A))
1130 { 1290 {
1131 siginit (EV_A);
1132
1133#ifndef _WIN32 1291#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1292 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1293 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1294 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1295 ev_unref (EV_A); /* child watcher should not keep loop alive */
1154#ifndef _WIN32 1312#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */ 1313 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1314 ev_signal_stop (EV_A_ &childev);
1157#endif 1315#endif
1158 1316
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1317 loop_destroy (EV_A);
1166} 1318}
1167 1319
1168void 1320void
1169ev_default_fork (void) 1321ev_default_fork (void)
1171#if EV_MULTIPLICITY 1323#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1324 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif 1325#endif
1174 1326
1175 if (backend) 1327 if (backend)
1176 postfork = 1; 1328 postfork = 1; /* must be in line with ev_loop_fork */
1177} 1329}
1178 1330
1179/*****************************************************************************/ 1331/*****************************************************************************/
1180 1332
1181void 1333void
1207void inline_size 1359void inline_size
1208timers_reify (EV_P) 1360timers_reify (EV_P)
1209{ 1361{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now) 1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 { 1363 {
1212 ev_timer *w = timers [0]; 1364 ev_timer *w = (ev_timer *)timers [0];
1213 1365
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215 1367
1216 /* first reschedule or stop timer */ 1368 /* first reschedule or stop timer */
1217 if (w->repeat) 1369 if (w->repeat)
1220 1372
1221 ((WT)w)->at += w->repeat; 1373 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now) 1374 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now; 1375 ((WT)w)->at = mn_now;
1224 1376
1225 downheap ((WT *)timers, timercnt, 0); 1377 downheap (timers, timercnt, 0);
1226 } 1378 }
1227 else 1379 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229 1381
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1235void inline_size 1387void inline_size
1236periodics_reify (EV_P) 1388periodics_reify (EV_P)
1237{ 1389{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 { 1391 {
1240 ev_periodic *w = periodics [0]; 1392 ev_periodic *w = (ev_periodic *)periodics [0];
1241 1393
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243 1395
1244 /* first reschedule or stop timer */ 1396 /* first reschedule or stop timer */
1245 if (w->reschedule_cb) 1397 if (w->reschedule_cb)
1246 { 1398 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0); 1401 downheap (periodics, periodiccnt, 0);
1250 } 1402 }
1251 else if (w->interval) 1403 else if (w->interval)
1252 { 1404 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval; 1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0); 1408 downheap (periodics, periodiccnt, 0);
1256 } 1409 }
1257 else 1410 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259 1412
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1267 int i; 1420 int i;
1268 1421
1269 /* adjust periodics after time jump */ 1422 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i) 1423 for (i = 0; i < periodiccnt; ++i)
1271 { 1424 {
1272 ev_periodic *w = periodics [i]; 1425 ev_periodic *w = (ev_periodic *)periodics [i];
1273 1426
1274 if (w->reschedule_cb) 1427 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval) 1429 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 } 1431 }
1279 1432
1280 /* now rebuild the heap */ 1433 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; ) 1434 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i); 1435 downheap (periodics, periodiccnt, i);
1283} 1436}
1284#endif 1437#endif
1285 1438
1286#if EV_IDLE_ENABLE 1439#if EV_IDLE_ENABLE
1287void inline_size 1440void inline_size
1304 } 1457 }
1305 } 1458 }
1306} 1459}
1307#endif 1460#endif
1308 1461
1309int inline_size 1462void inline_speed
1310time_update_monotonic (EV_P) 1463time_update (EV_P_ ev_tstamp max_block)
1311{ 1464{
1465 int i;
1466
1467#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic))
1469 {
1470 ev_tstamp odiff = rtmn_diff;
1471
1312 mn_now = get_clock (); 1472 mn_now = get_clock ();
1313 1473
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1475 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1476 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1477 {
1316 ev_rt_now = rtmn_diff + mn_now; 1478 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1479 return;
1318 } 1480 }
1319 else 1481
1320 {
1321 now_floor = mn_now; 1482 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1483 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1484
1327void inline_size 1485 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1486 * on the choice of "4": one iteration isn't enough,
1329{ 1487 * in case we get preempted during the calls to
1330 int i; 1488 * ev_time and get_clock. a second call is almost guaranteed
1331 1489 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1490 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1491 * in the unlikely event of having been preempted here.
1334 { 1492 */
1335 if (time_update_monotonic (EV_A)) 1493 for (i = 4; --i; )
1336 { 1494 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1495 rtmn_diff = ev_rt_now - mn_now;
1350 1496
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1352 return; /* all is well */ 1498 return; /* all is well */
1353 1499
1354 ev_rt_now = ev_time (); 1500 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1501 mn_now = get_clock ();
1356 now_floor = mn_now; 1502 now_floor = mn_now;
1357 } 1503 }
1358 1504
1359# if EV_PERIODIC_ENABLE 1505# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1506 periodics_reschedule (EV_A);
1361# endif 1507# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1510 }
1366 else 1511 else
1367#endif 1512#endif
1368 { 1513 {
1369 ev_rt_now = ev_time (); 1514 ev_rt_now = ev_time ();
1370 1515
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1517 {
1373#if EV_PERIODIC_ENABLE 1518#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1519 periodics_reschedule (EV_A);
1375#endif 1520#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1522 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 1524 }
1381 1525
1444 /* update fd-related kernel structures */ 1588 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1589 fd_reify (EV_A);
1446 1590
1447 /* calculate blocking time */ 1591 /* calculate blocking time */
1448 { 1592 {
1449 ev_tstamp block; 1593 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.;
1450 1595
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1597 {
1455 /* update time to cancel out callback processing overhead */ 1598 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 1599 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 1600
1466 block = MAX_BLOCKTIME; 1601 waittime = MAX_BLOCKTIME;
1467 1602
1468 if (timercnt) 1603 if (timercnt)
1469 { 1604 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1471 if (block > to) block = to; 1606 if (waittime > to) waittime = to;
1472 } 1607 }
1473 1608
1474#if EV_PERIODIC_ENABLE 1609#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 1610 if (periodiccnt)
1476 { 1611 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 1613 if (waittime > to) waittime = to;
1479 } 1614 }
1480#endif 1615#endif
1481 1616
1482 if (expect_false (block < 0.)) block = 0.; 1617 if (expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime;
1619
1620 sleeptime = waittime - backend_fudge;
1621
1622 if (expect_true (sleeptime > io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 {
1627 ev_sleep (sleeptime);
1628 waittime -= sleeptime;
1629 }
1483 } 1630 }
1484 1631
1485 ++loop_count; 1632 ++loop_count;
1486 backend_poll (EV_A_ block); 1633 backend_poll (EV_A_ waittime);
1634
1635 /* update ev_rt_now, do magic */
1636 time_update (EV_A_ waittime + sleeptime);
1487 } 1637 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 1638
1492 /* queue pending timers and reschedule them */ 1639 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 1640 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 1641#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 1642 periodics_reify (EV_A); /* absolute timers called first */
1606 1753
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 1754 assert (("ev_io_start called with negative fd", fd >= 0));
1608 1755
1609 ev_start (EV_A_ (W)w, 1); 1756 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1758 wlist_add (&anfds[fd].head, (WL)w);
1612 1759
1613 fd_change (EV_A_ fd); 1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1761 w->events &= ~EV_IOFDSET;
1614} 1762}
1615 1763
1616void noinline 1764void noinline
1617ev_io_stop (EV_P_ ev_io *w) 1765ev_io_stop (EV_P_ ev_io *w)
1618{ 1766{
1620 if (expect_false (!ev_is_active (w))) 1768 if (expect_false (!ev_is_active (w)))
1621 return; 1769 return;
1622 1770
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 1772
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1773 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 1774 ev_stop (EV_A_ (W)w);
1627 1775
1628 fd_change (EV_A_ w->fd); 1776 fd_change (EV_A_ w->fd, 1);
1629} 1777}
1630 1778
1631void noinline 1779void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 1780ev_timer_start (EV_P_ ev_timer *w)
1633{ 1781{
1637 ((WT)w)->at += mn_now; 1785 ((WT)w)->at += mn_now;
1638 1786
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 1788
1641 ev_start (EV_A_ (W)w, ++timercnt); 1789 ev_start (EV_A_ (W)w, ++timercnt);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1643 timers [timercnt - 1] = w; 1791 timers [timercnt - 1] = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 1792 upheap (timers, timercnt - 1);
1645 1793
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1647} 1795}
1648 1796
1649void noinline 1797void noinline
1651{ 1799{
1652 clear_pending (EV_A_ (W)w); 1800 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 1801 if (expect_false (!ev_is_active (w)))
1654 return; 1802 return;
1655 1803
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1657 1805
1658 { 1806 {
1659 int active = ((W)w)->active; 1807 int active = ((W)w)->active;
1660 1808
1661 if (expect_true (--active < --timercnt)) 1809 if (expect_true (--active < --timercnt))
1662 { 1810 {
1663 timers [active] = timers [timercnt]; 1811 timers [active] = timers [timercnt];
1664 adjustheap ((WT *)timers, timercnt, active); 1812 adjustheap (timers, timercnt, active);
1665 } 1813 }
1666 } 1814 }
1667 1815
1668 ((WT)w)->at -= mn_now; 1816 ((WT)w)->at -= mn_now;
1669 1817
1676 if (ev_is_active (w)) 1824 if (ev_is_active (w))
1677 { 1825 {
1678 if (w->repeat) 1826 if (w->repeat)
1679 { 1827 {
1680 ((WT)w)->at = mn_now + w->repeat; 1828 ((WT)w)->at = mn_now + w->repeat;
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1829 adjustheap (timers, timercnt, ((W)w)->active - 1);
1682 } 1830 }
1683 else 1831 else
1684 ev_timer_stop (EV_A_ w); 1832 ev_timer_stop (EV_A_ w);
1685 } 1833 }
1686 else if (w->repeat) 1834 else if (w->repeat)
1707 } 1855 }
1708 else 1856 else
1709 ((WT)w)->at = w->offset; 1857 ((WT)w)->at = w->offset;
1710 1858
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 1859 ev_start (EV_A_ (W)w, ++periodiccnt);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 1861 periodics [periodiccnt - 1] = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 1862 upheap (periodics, periodiccnt - 1);
1715 1863
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1717} 1865}
1718 1866
1719void noinline 1867void noinline
1721{ 1869{
1722 clear_pending (EV_A_ (W)w); 1870 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 1871 if (expect_false (!ev_is_active (w)))
1724 return; 1872 return;
1725 1873
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1727 1875
1728 { 1876 {
1729 int active = ((W)w)->active; 1877 int active = ((W)w)->active;
1730 1878
1731 if (expect_true (--active < --periodiccnt)) 1879 if (expect_true (--active < --periodiccnt))
1732 { 1880 {
1733 periodics [active] = periodics [periodiccnt]; 1881 periodics [active] = periodics [periodiccnt];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 1882 adjustheap (periodics, periodiccnt, active);
1735 } 1883 }
1736 } 1884 }
1737 1885
1738 ev_stop (EV_A_ (W)w); 1886 ev_stop (EV_A_ (W)w);
1739} 1887}
1760 if (expect_false (ev_is_active (w))) 1908 if (expect_false (ev_is_active (w)))
1761 return; 1909 return;
1762 1910
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1764 1912
1913 evpipe_init (EV_A);
1914
1915 {
1916#ifndef _WIN32
1917 sigset_t full, prev;
1918 sigfillset (&full);
1919 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif
1921
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1923
1924#ifndef _WIN32
1925 sigprocmask (SIG_SETMASK, &prev, 0);
1926#endif
1927 }
1928
1765 ev_start (EV_A_ (W)w, 1); 1929 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1930 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 1931
1769 if (!((WL)w)->next) 1932 if (!((WL)w)->next)
1770 { 1933 {
1771#if _WIN32 1934#if _WIN32
1772 signal (w->signum, sighandler); 1935 signal (w->signum, sighandler);
1785{ 1948{
1786 clear_pending (EV_A_ (W)w); 1949 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 1950 if (expect_false (!ev_is_active (w)))
1788 return; 1951 return;
1789 1952
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1953 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 1954 ev_stop (EV_A_ (W)w);
1792 1955
1793 if (!signals [w->signum - 1].head) 1956 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 1957 signal (w->signum, SIG_DFL);
1795} 1958}
1802#endif 1965#endif
1803 if (expect_false (ev_is_active (w))) 1966 if (expect_false (ev_is_active (w)))
1804 return; 1967 return;
1805 1968
1806 ev_start (EV_A_ (W)w, 1); 1969 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1808} 1971}
1809 1972
1810void 1973void
1811ev_child_stop (EV_P_ ev_child *w) 1974ev_child_stop (EV_P_ ev_child *w)
1812{ 1975{
1813 clear_pending (EV_A_ (W)w); 1976 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 1977 if (expect_false (!ev_is_active (w)))
1815 return; 1978 return;
1816 1979
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 1981 ev_stop (EV_A_ (W)w);
1819} 1982}
1820 1983
1821#if EV_STAT_ENABLE 1984#if EV_STAT_ENABLE
1822 1985
2164 2327
2165#if EV_EMBED_ENABLE 2328#if EV_EMBED_ENABLE
2166void noinline 2329void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2330ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2331{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2332 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2333}
2171 2334
2172static void 2335static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2336embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2337{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2338 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2339
2177 if (ev_cb (w)) 2340 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2341 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2342 else
2180 ev_embed_sweep (loop, w); 2343 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 2344}
2345
2346static void
2347embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2348{
2349 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2350
2351 {
2352 struct ev_loop *loop = w->other;
2353
2354 while (fdchangecnt)
2355 {
2356 fd_reify (EV_A);
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2358 }
2359 }
2360}
2361
2362#if 0
2363static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2365{
2366 ev_idle_stop (EV_A_ idle);
2367}
2368#endif
2182 2369
2183void 2370void
2184ev_embed_start (EV_P_ ev_embed *w) 2371ev_embed_start (EV_P_ ev_embed *w)
2185{ 2372{
2186 if (expect_false (ev_is_active (w))) 2373 if (expect_false (ev_is_active (w)))
2187 return; 2374 return;
2188 2375
2189 { 2376 {
2190 struct ev_loop *loop = w->loop; 2377 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 2380 }
2194 2381
2195 ev_set_priority (&w->io, ev_priority (w)); 2382 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 2383 ev_io_start (EV_A_ &w->io);
2197 2384
2385 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare);
2388
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390
2198 ev_start (EV_A_ (W)w, 1); 2391 ev_start (EV_A_ (W)w, 1);
2199} 2392}
2200 2393
2201void 2394void
2202ev_embed_stop (EV_P_ ev_embed *w) 2395ev_embed_stop (EV_P_ ev_embed *w)
2204 clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2398 if (expect_false (!ev_is_active (w)))
2206 return; 2399 return;
2207 2400
2208 ev_io_stop (EV_A_ &w->io); 2401 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare);
2209 2403
2210 ev_stop (EV_A_ (W)w); 2404 ev_stop (EV_A_ (W)w);
2211} 2405}
2212#endif 2406#endif
2213 2407
2238 2432
2239 ev_stop (EV_A_ (W)w); 2433 ev_stop (EV_A_ (W)w);
2240} 2434}
2241#endif 2435#endif
2242 2436
2437#if EV_ASYNC_ENABLE
2438void
2439ev_async_start (EV_P_ ev_async *w)
2440{
2441 if (expect_false (ev_is_active (w)))
2442 return;
2443
2444 evpipe_init (EV_A);
2445
2446 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w;
2449}
2450
2451void
2452ev_async_stop (EV_P_ ev_async *w)
2453{
2454 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w)))
2456 return;
2457
2458 {
2459 int active = ((W)w)->active;
2460 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active;
2462 }
2463
2464 ev_stop (EV_A_ (W)w);
2465}
2466
2467void
2468ev_async_send (EV_P_ ev_async *w)
2469{
2470 w->sent = 1;
2471 evpipe_write (EV_A_ &gotasync);
2472}
2473#endif
2474
2243/*****************************************************************************/ 2475/*****************************************************************************/
2244 2476
2245struct ev_once 2477struct ev_once
2246{ 2478{
2247 ev_io io; 2479 ev_io io;
2302 ev_timer_set (&once->to, timeout, 0.); 2534 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 2535 ev_timer_start (EV_A_ &once->to);
2304 } 2536 }
2305} 2537}
2306 2538
2539#if EV_MULTIPLICITY
2540 #include "ev_wrap.h"
2541#endif
2542
2307#ifdef __cplusplus 2543#ifdef __cplusplus
2308} 2544}
2309#endif 2545#endif
2310 2546

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines