ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.215 by ayin, Thu Feb 21 10:34:15 2008 UTC vs.
Revision 1.444 by root, Fri Jun 1 22:01:13 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
141#else 184#else
142# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
143#endif 197#endif
144 198
145#ifndef _WIN32 199#ifndef _WIN32
146# include <sys/time.h> 200# include <sys/time.h>
147# include <sys/wait.h> 201# include <sys/wait.h>
148# include <unistd.h> 202# include <unistd.h>
149#else 203#else
204# include <io.h>
150# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
151# include <windows.h> 207# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
154# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
155#endif 261# endif
156 262#endif
157/**/
158 263
159#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
160# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
161#endif 270#endif
162 271
163#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 274#endif
166 275
167#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
168# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
169#endif 282#endif
170 283
171#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 286#endif
174 287
175#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
176# ifdef _WIN32 289# ifdef _WIN32
177# define EV_USE_POLL 0 290# define EV_USE_POLL 0
178# else 291# else
179# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 293# endif
181#endif 294#endif
182 295
183#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
184# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
185#endif 302#endif
186 303
187#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
189#endif 306#endif
191#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 309# define EV_USE_PORT 0
193#endif 310#endif
194 311
195#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
196# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
317# endif
197#endif 318#endif
198 319
199#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 331# else
203# define EV_PID_HASHSIZE 16 332# define EV_USE_EVENTFD 0
204# endif 333# endif
205#endif 334#endif
206 335
207#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 338# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 339# else
211# define EV_INOTIFY_HASHSIZE 16 340# define EV_USE_SIGNALFD 0
212# endif 341# endif
213#endif 342#endif
214 343
215/**/ 344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
216 383
217#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
220#endif 387#endif
228# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
230#endif 397#endif
231 398
232#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
234# include <sys/select.h> 402# include <sys/select.h>
235# endif 403# endif
236#endif 404#endif
237 405
238#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
239# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
240#endif 413# endif
414#endif
241 415
242#if EV_SELECT_IS_WINSOCKET 416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
243# include <winsock.h> 418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
244#endif 452#endif
245 453
246/**/ 454/**/
247 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
248/* 462/*
249 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 465 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 468
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 519 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
265#else 536#else
266# define expect(expr,value) (expr) 537 #include <inttypes.h>
267# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
268# if __STDC_VERSION__ < 199901L 539 #define ECB_PTRSIZE 8
269# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
270# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
271#endif 557 #endif
558#endif
272 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP11 (__cplusplus >= 201103L)
565
566/*****************************************************************************/
567
568/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
569/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
570
571#if ECB_NO_THREADS
572 #define ECB_NO_SMP 1
573#endif
574
575#if ECB_NO_SMP
576 #define ECB_MEMORY_FENCE do { } while (0)
577#endif
578
579#ifndef ECB_MEMORY_FENCE
580 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
581 #if __i386 || __i386__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
583 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
584 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
585 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
587 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
588 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
589 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
590 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
591 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
592 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
593 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
594 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
595 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
596 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
597 #elif __sparc || __sparc__
598 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
599 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
601 #elif defined __s390__ || defined __s390x__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
603 #elif defined __mips__
604 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
605 #elif defined __alpha__
606 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
607 #elif defined __hppa__
608 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif defined __ia64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
612 #endif
613 #endif
614#endif
615
616#ifndef ECB_MEMORY_FENCE
617 #if ECB_GCC_VERSION(4,7)
618 /* see comment below (stdatomic.h) about the C11 memory model. */
619 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
620 #elif defined __clang && __has_feature (cxx_atomic)
621 /* see comment below (stdatomic.h) about the C11 memory model. */
622 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
623 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
624 #define ECB_MEMORY_FENCE __sync_synchronize ()
625 #elif _MSC_VER >= 1400 /* VC++ 2005 */
626 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
627 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
628 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
629 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
630 #elif defined _WIN32
631 #include <WinNT.h>
632 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
633 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #include <mbarrier.h>
635 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
636 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
637 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
638 #elif __xlC__
639 #define ECB_MEMORY_FENCE __sync ()
640 #endif
641#endif
642
643#ifndef ECB_MEMORY_FENCE
644 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
645 /* we assume that these memory fences work on all variables/all memory accesses, */
646 /* not just C11 atomics and atomic accesses */
647 #include <stdatomic.h>
648 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
649 /* any fence other than seq_cst, which isn't very efficient for us. */
650 /* Why that is, we don't know - either the C11 memory model is quite useless */
651 /* for most usages, or gcc and clang have a bug */
652 /* I *currently* lean towards the latter, and inefficiently implement */
653 /* all three of ecb's fences as a seq_cst fence */
654 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
655 #endif
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674#endif
675
676#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678#endif
679
680#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682#endif
683
684/*****************************************************************************/
685
686#if __cplusplus
687 #define ecb_inline static inline
688#elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690#elif ECB_C99
691 #define ecb_inline static inline
692#else
693 #define ecb_inline static
694#endif
695
696#if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698#elif ECB_C99
699 #define ecb_restrict restrict
700#else
701 #define ecb_restrict
702#endif
703
704typedef int ecb_bool;
705
706#define ECB_CONCAT_(a, b) a ## b
707#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708#define ECB_STRINGIFY_(a) # a
709#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711#define ecb_function_ ecb_inline
712
713#if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718#else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
721 #define ecb_expect(expr,value) (expr)
722 #define ecb_prefetch(addr,rw,locality)
723#endif
724
725/* no emulation for ecb_decltype */
726#if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728#elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730#endif
731
732#define ecb_noinline ecb_attribute ((__noinline__))
733#define ecb_unused ecb_attribute ((__unused__))
734#define ecb_const ecb_attribute ((__const__))
735#define ecb_pure ecb_attribute ((__pure__))
736
737#if ECB_C11
738 #define ecb_noreturn _Noreturn
739#else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741#endif
742
743#if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747#else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751#endif
752
753/* put around conditional expressions if you are very sure that the */
754/* expression is mostly true or mostly false. note that these return */
755/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 756#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 757#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758/* for compatibility to the rest of the world */
759#define ecb_likely(expr) ecb_expect_true (expr)
760#define ecb_unlikely(expr) ecb_expect_false (expr)
761
762/* count trailing zero bits and count # of one bits */
763#if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771#else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780#if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786#else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792#endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840#endif
841
842ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849{
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852}
853
854ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856{
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863}
864
865ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867{
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875}
876
877/* popcount64 is only available on 64 bit cpus as gcc builtin */
878/* so for this version we are lazy */
879ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880ecb_function_ int
881ecb_popcount64 (uint64_t x)
882{
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884}
885
886ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904#if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908#else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929#endif
930
931#if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933#else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937#endif
938
939/* try to tell the compiler that some condition is definitely true */
940#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943ecb_inline unsigned char
944ecb_byteorder_helper (void)
945{
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948}
949
950ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955#if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957#else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959#endif
960
961#if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972#else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975#endif
976
977#if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984#else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986#endif
987
988#endif
989
990/* ECB.H END */
991
992#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993/* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000# error "memory fences not defined for your architecture, please report"
1001#endif
1002
1003#ifndef ECB_MEMORY_FENCE
1004# define ECB_MEMORY_FENCE do { } while (0)
1005# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007#endif
1008
1009#define expect_false(cond) ecb_expect_false (cond)
1010#define expect_true(cond) ecb_expect_true (cond)
1011#define noinline ecb_noinline
1012
275#define inline_size static inline 1013#define inline_size ecb_inline
276 1014
277#if EV_MINIMAL 1015#if EV_FEATURE_CODE
1016# define inline_speed ecb_inline
1017#else
278# define inline_speed static noinline 1018# define inline_speed static noinline
1019#endif
1020
1021#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023#if EV_MINPRI == EV_MAXPRI
1024# define ABSPRI(w) (((W)w), 0)
279#else 1025#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1026# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027#endif
285 1028
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1029#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 1030#define EMPTY2(a,b) /* used to suppress some warnings */
288 1031
289typedef ev_watcher *W; 1032typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 1033typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 1034typedef ev_watcher_time *WT;
292 1035
1036#define ev_active(w) ((W)(w))->active
1037#define ev_at(w) ((WT)(w))->at
1038
1039#if EV_USE_REALTIME
1040/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1041/* giving it a reasonably high chance of working on typical architectures */
1042static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1043#endif
1044
293#if EV_USE_MONOTONIC 1045#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1046static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1047#endif
1048
1049#ifndef EV_FD_TO_WIN32_HANDLE
1050# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051#endif
1052#ifndef EV_WIN32_HANDLE_TO_FD
1053# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054#endif
1055#ifndef EV_WIN32_CLOSE_FD
1056# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1057#endif
298 1058
299#ifdef _WIN32 1059#ifdef _WIN32
300# include "ev_win32.c" 1060# include "ev_win32.c"
301#endif 1061#endif
302 1062
303/*****************************************************************************/ 1063/*****************************************************************************/
304 1064
1065/* define a suitable floor function (only used by periodics atm) */
1066
1067#if EV_USE_FLOOR
1068# include <math.h>
1069# define ev_floor(v) floor (v)
1070#else
1071
1072#include <float.h>
1073
1074/* a floor() replacement function, should be independent of ev_tstamp type */
1075static ev_tstamp noinline
1076ev_floor (ev_tstamp v)
1077{
1078 /* the choice of shift factor is not terribly important */
1079#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081#else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083#endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107}
1108
1109#endif
1110
1111/*****************************************************************************/
1112
1113#ifdef __linux
1114# include <sys/utsname.h>
1115#endif
1116
1117static unsigned int noinline ecb_cold
1118ev_linux_version (void)
1119{
1120#ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148#else
1149 return 0;
1150#endif
1151}
1152
1153/*****************************************************************************/
1154
1155#if EV_AVOID_STDIO
1156static void noinline ecb_cold
1157ev_printerr (const char *msg)
1158{
1159 write (STDERR_FILENO, msg, strlen (msg));
1160}
1161#endif
1162
305static void (*syserr_cb)(const char *msg); 1163static void (*syserr_cb)(const char *msg) EV_THROW;
306 1164
307void 1165void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1166ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
309{ 1167{
310 syserr_cb = cb; 1168 syserr_cb = cb;
311} 1169}
312 1170
313static void noinline 1171static void noinline ecb_cold
314syserr (const char *msg) 1172ev_syserr (const char *msg)
315{ 1173{
316 if (!msg) 1174 if (!msg)
317 msg = "(libev) system error"; 1175 msg = "(libev) system error";
318 1176
319 if (syserr_cb) 1177 if (syserr_cb)
320 syserr_cb (msg); 1178 syserr_cb (msg);
321 else 1179 else
322 { 1180 {
1181#if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186#else
323 perror (msg); 1187 perror (msg);
1188#endif
324 abort (); 1189 abort ();
325 } 1190 }
326} 1191}
327 1192
1193static void *
1194ev_realloc_emul (void *ptr, long size) EV_THROW
1195{
1196#if __GLIBC__
1197 return realloc (ptr, size);
1198#else
1199 /* some systems, notably openbsd and darwin, fail to properly
1200 * implement realloc (x, 0) (as required by both ansi c-89 and
1201 * the single unix specification, so work around them here.
1202 */
1203
1204 if (size)
1205 return realloc (ptr, size);
1206
1207 free (ptr);
1208 return 0;
1209#endif
1210}
1211
328static void *(*alloc)(void *ptr, long size); 1212static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
329 1213
330void 1214void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1215ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
332{ 1216{
333 alloc = cb; 1217 alloc = cb;
334} 1218}
335 1219
336inline_speed void * 1220inline_speed void *
337ev_realloc (void *ptr, long size) 1221ev_realloc (void *ptr, long size)
338{ 1222{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1223 ptr = alloc (ptr, size);
340 1224
341 if (!ptr && size) 1225 if (!ptr && size)
342 { 1226 {
1227#if EV_AVOID_STDIO
1228 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1229#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1230 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1231#endif
344 abort (); 1232 abort ();
345 } 1233 }
346 1234
347 return ptr; 1235 return ptr;
348} 1236}
350#define ev_malloc(size) ev_realloc (0, (size)) 1238#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1239#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1240
353/*****************************************************************************/ 1241/*****************************************************************************/
354 1242
1243/* set in reify when reification needed */
1244#define EV_ANFD_REIFY 1
1245
1246/* file descriptor info structure */
355typedef struct 1247typedef struct
356{ 1248{
357 WL head; 1249 WL head;
358 unsigned char events; 1250 unsigned char events; /* the events watched for */
1251 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1252 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1253 unsigned char unused;
1254#if EV_USE_EPOLL
1255 unsigned int egen; /* generation counter to counter epoll bugs */
1256#endif
360#if EV_SELECT_IS_WINSOCKET 1257#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1258 SOCKET handle;
362#endif 1259#endif
1260#if EV_USE_IOCP
1261 OVERLAPPED or, ow;
1262#endif
363} ANFD; 1263} ANFD;
364 1264
1265/* stores the pending event set for a given watcher */
365typedef struct 1266typedef struct
366{ 1267{
367 W w; 1268 W w;
368 int events; 1269 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1270} ANPENDING;
370 1271
371#if EV_USE_INOTIFY 1272#if EV_USE_INOTIFY
1273/* hash table entry per inotify-id */
372typedef struct 1274typedef struct
373{ 1275{
374 WL head; 1276 WL head;
375} ANFS; 1277} ANFS;
1278#endif
1279
1280/* Heap Entry */
1281#if EV_HEAP_CACHE_AT
1282 /* a heap element */
1283 typedef struct {
1284 ev_tstamp at;
1285 WT w;
1286 } ANHE;
1287
1288 #define ANHE_w(he) (he).w /* access watcher, read-write */
1289 #define ANHE_at(he) (he).at /* access cached at, read-only */
1290 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1291#else
1292 /* a heap element */
1293 typedef WT ANHE;
1294
1295 #define ANHE_w(he) (he)
1296 #define ANHE_at(he) (he)->at
1297 #define ANHE_at_cache(he)
376#endif 1298#endif
377 1299
378#if EV_MULTIPLICITY 1300#if EV_MULTIPLICITY
379 1301
380 struct ev_loop 1302 struct ev_loop
386 #undef VAR 1308 #undef VAR
387 }; 1309 };
388 #include "ev_wrap.h" 1310 #include "ev_wrap.h"
389 1311
390 static struct ev_loop default_loop_struct; 1312 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1313 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1314
393#else 1315#else
394 1316
395 ev_tstamp ev_rt_now; 1317 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1318 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1319 #include "ev_vars.h"
398 #undef VAR 1320 #undef VAR
399 1321
400 static int ev_default_loop_ptr; 1322 static int ev_default_loop_ptr;
401 1323
402#endif 1324#endif
403 1325
1326#if EV_FEATURE_API
1327# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1328# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1329# define EV_INVOKE_PENDING invoke_cb (EV_A)
1330#else
1331# define EV_RELEASE_CB (void)0
1332# define EV_ACQUIRE_CB (void)0
1333# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1334#endif
1335
1336#define EVBREAK_RECURSE 0x80
1337
404/*****************************************************************************/ 1338/*****************************************************************************/
405 1339
1340#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1341ev_tstamp
407ev_time (void) 1342ev_time (void) EV_THROW
408{ 1343{
409#if EV_USE_REALTIME 1344#if EV_USE_REALTIME
1345 if (expect_true (have_realtime))
1346 {
410 struct timespec ts; 1347 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1348 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1349 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1350 }
1351#endif
1352
414 struct timeval tv; 1353 struct timeval tv;
415 gettimeofday (&tv, 0); 1354 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1355 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1356}
1357#endif
419 1358
420ev_tstamp inline_size 1359inline_size ev_tstamp
421get_clock (void) 1360get_clock (void)
422{ 1361{
423#if EV_USE_MONOTONIC 1362#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1363 if (expect_true (have_monotonic))
425 { 1364 {
432 return ev_time (); 1371 return ev_time ();
433} 1372}
434 1373
435#if EV_MULTIPLICITY 1374#if EV_MULTIPLICITY
436ev_tstamp 1375ev_tstamp
437ev_now (EV_P) 1376ev_now (EV_P) EV_THROW
438{ 1377{
439 return ev_rt_now; 1378 return ev_rt_now;
440} 1379}
441#endif 1380#endif
442 1381
443void 1382void
444ev_sleep (ev_tstamp delay) 1383ev_sleep (ev_tstamp delay) EV_THROW
445{ 1384{
446 if (delay > 0.) 1385 if (delay > 0.)
447 { 1386 {
448#if EV_USE_NANOSLEEP 1387#if EV_USE_NANOSLEEP
449 struct timespec ts; 1388 struct timespec ts;
450 1389
451 ts.tv_sec = (time_t)delay; 1390 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1391 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1392#elif defined _WIN32
456 Sleep (delay * 1e3); 1393 Sleep ((unsigned long)(delay * 1e3));
457#else 1394#else
458 struct timeval tv; 1395 struct timeval tv;
459 1396
460 tv.tv_sec = (time_t)delay; 1397 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1398 /* something not guaranteed by newer posix versions, but guaranteed */
462 1399 /* by older ones */
1400 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1401 select (0, 0, 0, 0, &tv);
464#endif 1402#endif
465 } 1403 }
466} 1404}
467 1405
468/*****************************************************************************/ 1406/*****************************************************************************/
469 1407
470int inline_size 1408#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1409
1410/* find a suitable new size for the given array, */
1411/* hopefully by rounding to a nice-to-malloc size */
1412inline_size int
471array_nextsize (int elem, int cur, int cnt) 1413array_nextsize (int elem, int cur, int cnt)
472{ 1414{
473 int ncur = cur + 1; 1415 int ncur = cur + 1;
474 1416
475 do 1417 do
476 ncur <<= 1; 1418 ncur <<= 1;
477 while (cnt > ncur); 1419 while (cnt > ncur);
478 1420
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1421 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1422 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1423 {
482 ncur *= elem; 1424 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1425 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1426 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1427 ncur /= elem;
486 } 1428 }
487 1429
488 return ncur; 1430 return ncur;
489} 1431}
490 1432
491static noinline void * 1433static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1434array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1435{
494 *cur = array_nextsize (elem, *cur, cnt); 1436 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1437 return ev_realloc (base, elem * *cur);
496} 1438}
1439
1440#define array_init_zero(base,count) \
1441 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1442
498#define array_needsize(type,base,cur,cnt,init) \ 1443#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1444 if (expect_false ((cnt) > (cur))) \
500 { \ 1445 { \
501 int ocur_ = (cur); \ 1446 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1447 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1448 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1449 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1450 }
506 1451
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1458 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1459 }
515#endif 1460#endif
516 1461
517#define array_free(stem, idx) \ 1462#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1463 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1464
520/*****************************************************************************/ 1465/*****************************************************************************/
521 1466
1467/* dummy callback for pending events */
1468static void noinline
1469pendingcb (EV_P_ ev_prepare *w, int revents)
1470{
1471}
1472
522void noinline 1473void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1474ev_feed_event (EV_P_ void *w, int revents) EV_THROW
524{ 1475{
525 W w_ = (W)w; 1476 W w_ = (W)w;
526 int pri = ABSPRI (w_); 1477 int pri = ABSPRI (w_);
527 1478
528 if (expect_false (w_->pending)) 1479 if (expect_false (w_->pending))
532 w_->pending = ++pendingcnt [pri]; 1483 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1484 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_; 1485 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1486 pendings [pri][w_->pending - 1].events = revents;
536 } 1487 }
537}
538 1488
539void inline_speed 1489 pendingpri = NUMPRI - 1;
1490}
1491
1492inline_speed void
1493feed_reverse (EV_P_ W w)
1494{
1495 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1496 rfeeds [rfeedcnt++] = w;
1497}
1498
1499inline_size void
1500feed_reverse_done (EV_P_ int revents)
1501{
1502 do
1503 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1504 while (rfeedcnt);
1505}
1506
1507inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1508queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1509{
542 int i; 1510 int i;
543 1511
544 for (i = 0; i < eventcnt; ++i) 1512 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1513 ev_feed_event (EV_A_ events [i], type);
546} 1514}
547 1515
548/*****************************************************************************/ 1516/*****************************************************************************/
549 1517
550void inline_size 1518inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1519fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1520{
566 ANFD *anfd = anfds + fd; 1521 ANFD *anfd = anfds + fd;
567 ev_io *w; 1522 ev_io *w;
568 1523
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1524 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1528 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1529 ev_feed_event (EV_A_ (W)w, ev);
575 } 1530 }
576} 1531}
577 1532
1533/* do not submit kernel events for fds that have reify set */
1534/* because that means they changed while we were polling for new events */
1535inline_speed void
1536fd_event (EV_P_ int fd, int revents)
1537{
1538 ANFD *anfd = anfds + fd;
1539
1540 if (expect_true (!anfd->reify))
1541 fd_event_nocheck (EV_A_ fd, revents);
1542}
1543
578void 1544void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1545ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
580{ 1546{
581 if (fd >= 0 && fd < anfdmax) 1547 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1548 fd_event_nocheck (EV_A_ fd, revents);
583} 1549}
584 1550
585void inline_size 1551/* make sure the external fd watch events are in-sync */
1552/* with the kernel/libev internal state */
1553inline_size void
586fd_reify (EV_P) 1554fd_reify (EV_P)
587{ 1555{
588 int i; 1556 int i;
1557
1558#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1559 for (i = 0; i < fdchangecnt; ++i)
1560 {
1561 int fd = fdchanges [i];
1562 ANFD *anfd = anfds + fd;
1563
1564 if (anfd->reify & EV__IOFDSET && anfd->head)
1565 {
1566 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1567
1568 if (handle != anfd->handle)
1569 {
1570 unsigned long arg;
1571
1572 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1573
1574 /* handle changed, but fd didn't - we need to do it in two steps */
1575 backend_modify (EV_A_ fd, anfd->events, 0);
1576 anfd->events = 0;
1577 anfd->handle = handle;
1578 }
1579 }
1580 }
1581#endif
589 1582
590 for (i = 0; i < fdchangecnt; ++i) 1583 for (i = 0; i < fdchangecnt; ++i)
591 { 1584 {
592 int fd = fdchanges [i]; 1585 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1586 ANFD *anfd = anfds + fd;
594 ev_io *w; 1587 ev_io *w;
595 1588
596 unsigned char events = 0; 1589 unsigned char o_events = anfd->events;
1590 unsigned char o_reify = anfd->reify;
597 1591
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1592 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1593
601#if EV_SELECT_IS_WINSOCKET 1594 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1595 {
604 unsigned long argp; 1596 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1597
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1599 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1600
609 #endif 1601 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1602 o_reify = EV__IOFDSET; /* actually |= */
611 } 1603 }
612#endif
613 1604
614 { 1605 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1606 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1607 }
625 1608
626 fdchangecnt = 0; 1609 fdchangecnt = 0;
627} 1610}
628 1611
629void inline_size 1612/* something about the given fd changed */
1613inline_size void
630fd_change (EV_P_ int fd, int flags) 1614fd_change (EV_P_ int fd, int flags)
631{ 1615{
632 unsigned char reify = anfds [fd].reify; 1616 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1617 anfds [fd].reify |= flags;
634 1618
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1623 fdchanges [fdchangecnt - 1] = fd;
640 } 1624 }
641} 1625}
642 1626
643void inline_speed 1627/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1628inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 1629fd_kill (EV_P_ int fd)
645{ 1630{
646 ev_io *w; 1631 ev_io *w;
647 1632
648 while ((w = (ev_io *)anfds [fd].head)) 1633 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1635 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1636 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1637 }
653} 1638}
654 1639
655int inline_size 1640/* check whether the given fd is actually valid, for error recovery */
1641inline_size int ecb_cold
656fd_valid (int fd) 1642fd_valid (int fd)
657{ 1643{
658#ifdef _WIN32 1644#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1645 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1646#else
661 return fcntl (fd, F_GETFD) != -1; 1647 return fcntl (fd, F_GETFD) != -1;
662#endif 1648#endif
663} 1649}
664 1650
665/* called on EBADF to verify fds */ 1651/* called on EBADF to verify fds */
666static void noinline 1652static void noinline ecb_cold
667fd_ebadf (EV_P) 1653fd_ebadf (EV_P)
668{ 1654{
669 int fd; 1655 int fd;
670 1656
671 for (fd = 0; fd < anfdmax; ++fd) 1657 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1658 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1659 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1660 fd_kill (EV_A_ fd);
675} 1661}
676 1662
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1663/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1664static void noinline ecb_cold
679fd_enomem (EV_P) 1665fd_enomem (EV_P)
680{ 1666{
681 int fd; 1667 int fd;
682 1668
683 for (fd = anfdmax; fd--; ) 1669 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1670 if (anfds [fd].events)
685 { 1671 {
686 fd_kill (EV_A_ fd); 1672 fd_kill (EV_A_ fd);
687 return; 1673 break;
688 } 1674 }
689} 1675}
690 1676
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1677/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1678static void noinline
696 1682
697 for (fd = 0; fd < anfdmax; ++fd) 1683 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1684 if (anfds [fd].events)
699 { 1685 {
700 anfds [fd].events = 0; 1686 anfds [fd].events = 0;
1687 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1688 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1689 }
703} 1690}
704 1691
705/*****************************************************************************/ 1692/* used to prepare libev internal fd's */
706 1693/* this is not fork-safe */
707void inline_speed 1694inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 1695fd_intern (int fd)
792{ 1696{
793#ifdef _WIN32 1697#ifdef _WIN32
794 int arg = 1; 1698 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1699 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1700#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1701 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1702 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1703#endif
800} 1704}
801 1705
1706/*****************************************************************************/
1707
1708/*
1709 * the heap functions want a real array index. array index 0 is guaranteed to not
1710 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1711 * the branching factor of the d-tree.
1712 */
1713
1714/*
1715 * at the moment we allow libev the luxury of two heaps,
1716 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1717 * which is more cache-efficient.
1718 * the difference is about 5% with 50000+ watchers.
1719 */
1720#if EV_USE_4HEAP
1721
1722#define DHEAP 4
1723#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1724#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1725#define UPHEAP_DONE(p,k) ((p) == (k))
1726
1727/* away from the root */
1728inline_speed void
1729downheap (ANHE *heap, int N, int k)
1730{
1731 ANHE he = heap [k];
1732 ANHE *E = heap + N + HEAP0;
1733
1734 for (;;)
1735 {
1736 ev_tstamp minat;
1737 ANHE *minpos;
1738 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1739
1740 /* find minimum child */
1741 if (expect_true (pos + DHEAP - 1 < E))
1742 {
1743 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1744 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1745 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1746 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1747 }
1748 else if (pos < E)
1749 {
1750 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1751 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1752 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1753 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1754 }
1755 else
1756 break;
1757
1758 if (ANHE_at (he) <= minat)
1759 break;
1760
1761 heap [k] = *minpos;
1762 ev_active (ANHE_w (*minpos)) = k;
1763
1764 k = minpos - heap;
1765 }
1766
1767 heap [k] = he;
1768 ev_active (ANHE_w (he)) = k;
1769}
1770
1771#else /* 4HEAP */
1772
1773#define HEAP0 1
1774#define HPARENT(k) ((k) >> 1)
1775#define UPHEAP_DONE(p,k) (!(p))
1776
1777/* away from the root */
1778inline_speed void
1779downheap (ANHE *heap, int N, int k)
1780{
1781 ANHE he = heap [k];
1782
1783 for (;;)
1784 {
1785 int c = k << 1;
1786
1787 if (c >= N + HEAP0)
1788 break;
1789
1790 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1791 ? 1 : 0;
1792
1793 if (ANHE_at (he) <= ANHE_at (heap [c]))
1794 break;
1795
1796 heap [k] = heap [c];
1797 ev_active (ANHE_w (heap [k])) = k;
1798
1799 k = c;
1800 }
1801
1802 heap [k] = he;
1803 ev_active (ANHE_w (he)) = k;
1804}
1805#endif
1806
1807/* towards the root */
1808inline_speed void
1809upheap (ANHE *heap, int k)
1810{
1811 ANHE he = heap [k];
1812
1813 for (;;)
1814 {
1815 int p = HPARENT (k);
1816
1817 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1818 break;
1819
1820 heap [k] = heap [p];
1821 ev_active (ANHE_w (heap [k])) = k;
1822 k = p;
1823 }
1824
1825 heap [k] = he;
1826 ev_active (ANHE_w (he)) = k;
1827}
1828
1829/* move an element suitably so it is in a correct place */
1830inline_size void
1831adjustheap (ANHE *heap, int N, int k)
1832{
1833 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1834 upheap (heap, k);
1835 else
1836 downheap (heap, N, k);
1837}
1838
1839/* rebuild the heap: this function is used only once and executed rarely */
1840inline_size void
1841reheap (ANHE *heap, int N)
1842{
1843 int i;
1844
1845 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1846 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1847 for (i = 0; i < N; ++i)
1848 upheap (heap, i + HEAP0);
1849}
1850
1851/*****************************************************************************/
1852
1853/* associate signal watchers to a signal signal */
1854typedef struct
1855{
1856 EV_ATOMIC_T pending;
1857#if EV_MULTIPLICITY
1858 EV_P;
1859#endif
1860 WL head;
1861} ANSIG;
1862
1863static ANSIG signals [EV_NSIG - 1];
1864
1865/*****************************************************************************/
1866
1867#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1868
802static void noinline 1869static void noinline ecb_cold
803evpipe_init (EV_P) 1870evpipe_init (EV_P)
804{ 1871{
805 if (!ev_is_active (&pipeev)) 1872 if (!ev_is_active (&pipe_w))
806 { 1873 {
1874# if EV_USE_EVENTFD
1875 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1876 if (evfd < 0 && errno == EINVAL)
1877 evfd = eventfd (0, 0);
1878
1879 if (evfd >= 0)
1880 {
1881 evpipe [0] = -1;
1882 fd_intern (evfd); /* doing it twice doesn't hurt */
1883 ev_io_set (&pipe_w, evfd, EV_READ);
1884 }
1885 else
1886# endif
1887 {
807 while (pipe (evpipe)) 1888 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1889 ev_syserr ("(libev) error creating signal/async pipe");
809 1890
810 fd_intern (evpipe [0]); 1891 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1892 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1893 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1894 }
1895
814 ev_io_start (EV_A_ &pipeev); 1896 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1897 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1898 }
817} 1899}
818 1900
819void inline_size 1901inline_speed void
820evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1902evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1903{
822 if (!*flag) 1904 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1905
1906 if (expect_true (*flag))
1907 return;
1908
1909 *flag = 1;
1910 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1911
1912 pipe_write_skipped = 1;
1913
1914 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1915
1916 if (pipe_write_wanted)
823 { 1917 {
1918 int old_errno;
1919
1920 pipe_write_skipped = 0;
1921 ECB_MEMORY_FENCE_RELEASE;
1922
824 int old_errno = errno; /* save errno because write might clobber it */ 1923 old_errno = errno; /* save errno because write will clobber it */
825 1924
826 *flag = 1; 1925#if EV_USE_EVENTFD
827 write (evpipe [1], &old_errno, 1); 1926 if (evfd >= 0)
1927 {
1928 uint64_t counter = 1;
1929 write (evfd, &counter, sizeof (uint64_t));
1930 }
1931 else
1932#endif
1933 {
1934#ifdef _WIN32
1935 WSABUF buf;
1936 DWORD sent;
1937 buf.buf = &buf;
1938 buf.len = 1;
1939 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1940#else
1941 write (evpipe [1], &(evpipe [1]), 1);
1942#endif
1943 }
828 1944
829 errno = old_errno; 1945 errno = old_errno;
830 } 1946 }
831} 1947}
832 1948
1949/* called whenever the libev signal pipe */
1950/* got some events (signal, async) */
833static void 1951static void
834pipecb (EV_P_ ev_io *iow, int revents) 1952pipecb (EV_P_ ev_io *iow, int revents)
835{ 1953{
1954 int i;
1955
1956 if (revents & EV_READ)
836 { 1957 {
837 int dummy; 1958#if EV_USE_EVENTFD
1959 if (evfd >= 0)
1960 {
1961 uint64_t counter;
1962 read (evfd, &counter, sizeof (uint64_t));
1963 }
1964 else
1965#endif
1966 {
1967 char dummy[4];
1968#ifdef _WIN32
1969 WSABUF buf;
1970 DWORD recvd;
1971 DWORD flags = 0;
1972 buf.buf = dummy;
1973 buf.len = sizeof (dummy);
1974 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1975#else
838 read (evpipe [0], &dummy, 1); 1976 read (evpipe [0], &dummy, sizeof (dummy));
1977#endif
1978 }
839 } 1979 }
840 1980
841 if (gotsig && ev_is_default_loop (EV_A)) 1981 pipe_write_skipped = 0;
842 {
843 int signum;
844 gotsig = 0;
845 1982
846 for (signum = signalmax; signum--; ) 1983 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
847 if (signals [signum].gotsig) 1984
1985#if EV_SIGNAL_ENABLE
1986 if (sig_pending)
1987 {
1988 sig_pending = 0;
1989
1990 ECB_MEMORY_FENCE;
1991
1992 for (i = EV_NSIG - 1; i--; )
1993 if (expect_false (signals [i].pending))
848 ev_feed_signal_event (EV_A_ signum + 1); 1994 ev_feed_signal_event (EV_A_ i + 1);
849 } 1995 }
1996#endif
850 1997
851#if EV_ASYNC_ENABLE 1998#if EV_ASYNC_ENABLE
852 if (gotasync) 1999 if (async_pending)
853 { 2000 {
854 int i; 2001 async_pending = 0;
855 gotasync = 0; 2002
2003 ECB_MEMORY_FENCE;
856 2004
857 for (i = asynccnt; i--; ) 2005 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent) 2006 if (asyncs [i]->sent)
859 { 2007 {
860 asyncs [i]->sent = 0; 2008 asyncs [i]->sent = 0;
2009 ECB_MEMORY_FENCE_RELEASE;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2010 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 } 2011 }
863 } 2012 }
864#endif 2013#endif
865} 2014}
866 2015
867/*****************************************************************************/ 2016/*****************************************************************************/
868 2017
2018void
2019ev_feed_signal (int signum) EV_THROW
2020{
2021#if EV_MULTIPLICITY
2022 EV_P = signals [signum - 1].loop;
2023
2024 if (!EV_A)
2025 return;
2026#endif
2027
2028 if (!ev_active (&pipe_w))
2029 return;
2030
2031 signals [signum - 1].pending = 1;
2032 evpipe_write (EV_A_ &sig_pending);
2033}
2034
869static void 2035static void
870sighandler (int signum) 2036ev_sighandler (int signum)
871{ 2037{
2038#ifdef _WIN32
2039 signal (signum, ev_sighandler);
2040#endif
2041
2042 ev_feed_signal (signum);
2043}
2044
2045void noinline
2046ev_feed_signal_event (EV_P_ int signum) EV_THROW
2047{
2048 WL w;
2049
2050 if (expect_false (signum <= 0 || signum > EV_NSIG))
2051 return;
2052
2053 --signum;
2054
872#if EV_MULTIPLICITY 2055#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 2056 /* it is permissible to try to feed a signal to the wrong loop */
874#endif 2057 /* or, likely more useful, feeding a signal nobody is waiting for */
875 2058
876#if _WIN32 2059 if (expect_false (signals [signum].loop != EV_A))
877 signal (signum, sighandler);
878#endif
879
880 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig);
882}
883
884void noinline
885ev_feed_signal_event (EV_P_ int signum)
886{
887 WL w;
888
889#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif
892
893 --signum;
894
895 if (signum < 0 || signum >= signalmax)
896 return; 2060 return;
2061#endif
897 2062
898 signals [signum].gotsig = 0; 2063 signals [signum].pending = 0;
2064 ECB_MEMORY_FENCE_RELEASE;
899 2065
900 for (w = signals [signum].head; w; w = w->next) 2066 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2067 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902} 2068}
903 2069
2070#if EV_USE_SIGNALFD
2071static void
2072sigfdcb (EV_P_ ev_io *iow, int revents)
2073{
2074 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2075
2076 for (;;)
2077 {
2078 ssize_t res = read (sigfd, si, sizeof (si));
2079
2080 /* not ISO-C, as res might be -1, but works with SuS */
2081 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2082 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2083
2084 if (res < (ssize_t)sizeof (si))
2085 break;
2086 }
2087}
2088#endif
2089
2090#endif
2091
904/*****************************************************************************/ 2092/*****************************************************************************/
905 2093
2094#if EV_CHILD_ENABLE
906static WL childs [EV_PID_HASHSIZE]; 2095static WL childs [EV_PID_HASHSIZE];
907
908#ifndef _WIN32
909 2096
910static ev_signal childev; 2097static ev_signal childev;
911 2098
912#ifndef WIFCONTINUED 2099#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 2100# define WIFCONTINUED(status) 0
914#endif 2101#endif
915 2102
916void inline_speed 2103/* handle a single child status event */
2104inline_speed void
917child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2105child_reap (EV_P_ int chain, int pid, int status)
918{ 2106{
919 ev_child *w; 2107 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2108 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 2109
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2110 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
923 { 2111 {
924 if ((w->pid == pid || !w->pid) 2112 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1))) 2113 && (!traced || (w->flags & 1)))
926 { 2114 {
927 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2115 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
928 w->rpid = pid; 2116 w->rpid = pid;
929 w->rstatus = status; 2117 w->rstatus = status;
930 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2118 ev_feed_event (EV_A_ (W)w, EV_CHILD);
931 } 2119 }
932 } 2120 }
934 2122
935#ifndef WCONTINUED 2123#ifndef WCONTINUED
936# define WCONTINUED 0 2124# define WCONTINUED 0
937#endif 2125#endif
938 2126
2127/* called on sigchld etc., calls waitpid */
939static void 2128static void
940childcb (EV_P_ ev_signal *sw, int revents) 2129childcb (EV_P_ ev_signal *sw, int revents)
941{ 2130{
942 int pid, status; 2131 int pid, status;
943 2132
946 if (!WCONTINUED 2135 if (!WCONTINUED
947 || errno != EINVAL 2136 || errno != EINVAL
948 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2137 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
949 return; 2138 return;
950 2139
951 /* make sure we are called again until all childs have been reaped */ 2140 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */ 2141 /* we need to do it this way so that the callback gets called before we continue */
953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2142 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
954 2143
955 child_reap (EV_A_ sw, pid, pid, status); 2144 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1) 2145 if ((EV_PID_HASHSIZE) > 1)
957 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2146 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
958} 2147}
959 2148
960#endif 2149#endif
961 2150
962/*****************************************************************************/ 2151/*****************************************************************************/
963 2152
2153#if EV_USE_IOCP
2154# include "ev_iocp.c"
2155#endif
964#if EV_USE_PORT 2156#if EV_USE_PORT
965# include "ev_port.c" 2157# include "ev_port.c"
966#endif 2158#endif
967#if EV_USE_KQUEUE 2159#if EV_USE_KQUEUE
968# include "ev_kqueue.c" 2160# include "ev_kqueue.c"
975#endif 2167#endif
976#if EV_USE_SELECT 2168#if EV_USE_SELECT
977# include "ev_select.c" 2169# include "ev_select.c"
978#endif 2170#endif
979 2171
980int 2172int ecb_cold
981ev_version_major (void) 2173ev_version_major (void) EV_THROW
982{ 2174{
983 return EV_VERSION_MAJOR; 2175 return EV_VERSION_MAJOR;
984} 2176}
985 2177
986int 2178int ecb_cold
987ev_version_minor (void) 2179ev_version_minor (void) EV_THROW
988{ 2180{
989 return EV_VERSION_MINOR; 2181 return EV_VERSION_MINOR;
990} 2182}
991 2183
992/* return true if we are running with elevated privileges and should ignore env variables */ 2184/* return true if we are running with elevated privileges and should ignore env variables */
993int inline_size 2185int inline_size ecb_cold
994enable_secure (void) 2186enable_secure (void)
995{ 2187{
996#ifdef _WIN32 2188#ifdef _WIN32
997 return 0; 2189 return 0;
998#else 2190#else
999 return getuid () != geteuid () 2191 return getuid () != geteuid ()
1000 || getgid () != getegid (); 2192 || getgid () != getegid ();
1001#endif 2193#endif
1002} 2194}
1003 2195
1004unsigned int 2196unsigned int ecb_cold
1005ev_supported_backends (void) 2197ev_supported_backends (void) EV_THROW
1006{ 2198{
1007 unsigned int flags = 0; 2199 unsigned int flags = 0;
1008 2200
1009 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2201 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1010 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2202 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1013 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2205 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1014 2206
1015 return flags; 2207 return flags;
1016} 2208}
1017 2209
1018unsigned int 2210unsigned int ecb_cold
1019ev_recommended_backends (void) 2211ev_recommended_backends (void) EV_THROW
1020{ 2212{
1021 unsigned int flags = ev_supported_backends (); 2213 unsigned int flags = ev_supported_backends ();
1022 2214
1023#ifndef __NetBSD__ 2215#ifndef __NetBSD__
1024 /* kqueue is borked on everything but netbsd apparently */ 2216 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */ 2217 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE; 2218 flags &= ~EVBACKEND_KQUEUE;
1027#endif 2219#endif
1028#ifdef __APPLE__ 2220#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation 2221 /* only select works correctly on that "unix-certified" platform */
1030 flags &= ~EVBACKEND_POLL; 2222 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2223 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2224#endif
2225#ifdef __FreeBSD__
2226 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1031#endif 2227#endif
1032 2228
1033 return flags; 2229 return flags;
1034} 2230}
1035 2231
2232unsigned int ecb_cold
2233ev_embeddable_backends (void) EV_THROW
2234{
2235 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2236
2237 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2238 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2239 flags &= ~EVBACKEND_EPOLL;
2240
2241 return flags;
2242}
2243
1036unsigned int 2244unsigned int
1037ev_embeddable_backends (void) 2245ev_backend (EV_P) EV_THROW
1038{ 2246{
1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2247 return backend;
1040
1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */
1043 flags &= ~EVBACKEND_EPOLL;
1044
1045 return flags;
1046} 2248}
1047 2249
2250#if EV_FEATURE_API
1048unsigned int 2251unsigned int
1049ev_backend (EV_P) 2252ev_iteration (EV_P) EV_THROW
1050{ 2253{
1051 return backend; 2254 return loop_count;
1052} 2255}
1053 2256
1054unsigned int 2257unsigned int
1055ev_loop_count (EV_P) 2258ev_depth (EV_P) EV_THROW
1056{ 2259{
1057 return loop_count; 2260 return loop_depth;
1058} 2261}
1059 2262
1060void 2263void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1062{ 2265{
1063 io_blocktime = interval; 2266 io_blocktime = interval;
1064} 2267}
1065 2268
1066void 2269void
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1068{ 2271{
1069 timeout_blocktime = interval; 2272 timeout_blocktime = interval;
1070} 2273}
1071 2274
2275void
2276ev_set_userdata (EV_P_ void *data) EV_THROW
2277{
2278 userdata = data;
2279}
2280
2281void *
2282ev_userdata (EV_P) EV_THROW
2283{
2284 return userdata;
2285}
2286
2287void
2288ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2289{
2290 invoke_cb = invoke_pending_cb;
2291}
2292
2293void
2294ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2295{
2296 release_cb = release;
2297 acquire_cb = acquire;
2298}
2299#endif
2300
2301/* initialise a loop structure, must be zero-initialised */
1072static void noinline 2302static void noinline ecb_cold
1073loop_init (EV_P_ unsigned int flags) 2303loop_init (EV_P_ unsigned int flags) EV_THROW
1074{ 2304{
1075 if (!backend) 2305 if (!backend)
1076 { 2306 {
2307 origflags = flags;
2308
2309#if EV_USE_REALTIME
2310 if (!have_realtime)
2311 {
2312 struct timespec ts;
2313
2314 if (!clock_gettime (CLOCK_REALTIME, &ts))
2315 have_realtime = 1;
2316 }
2317#endif
2318
1077#if EV_USE_MONOTONIC 2319#if EV_USE_MONOTONIC
2320 if (!have_monotonic)
1078 { 2321 {
1079 struct timespec ts; 2322 struct timespec ts;
2323
1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2324 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1081 have_monotonic = 1; 2325 have_monotonic = 1;
1082 } 2326 }
1083#endif
1084
1085 ev_rt_now = ev_time ();
1086 mn_now = get_clock ();
1087 now_floor = mn_now;
1088 rtmn_diff = ev_rt_now - mn_now;
1089
1090 io_blocktime = 0.;
1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif 2327#endif
1098 2328
1099 /* pid check not overridable via env */ 2329 /* pid check not overridable via env */
1100#ifndef _WIN32 2330#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK) 2331 if (flags & EVFLAG_FORKCHECK)
1105 if (!(flags & EVFLAG_NOENV) 2335 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 2336 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 2337 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 2338 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 2339
1110 if (!(flags & 0x0000ffffUL)) 2340 ev_rt_now = ev_time ();
2341 mn_now = get_clock ();
2342 now_floor = mn_now;
2343 rtmn_diff = ev_rt_now - mn_now;
2344#if EV_FEATURE_API
2345 invoke_cb = ev_invoke_pending;
2346#endif
2347
2348 io_blocktime = 0.;
2349 timeout_blocktime = 0.;
2350 backend = 0;
2351 backend_fd = -1;
2352 sig_pending = 0;
2353#if EV_ASYNC_ENABLE
2354 async_pending = 0;
2355#endif
2356 pipe_write_skipped = 0;
2357 pipe_write_wanted = 0;
2358#if EV_USE_INOTIFY
2359 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2360#endif
2361#if EV_USE_SIGNALFD
2362 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2363#endif
2364
2365 if (!(flags & EVBACKEND_MASK))
1111 flags |= ev_recommended_backends (); 2366 flags |= ev_recommended_backends ();
1112 2367
2368#if EV_USE_IOCP
2369 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2370#endif
1113#if EV_USE_PORT 2371#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2372 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 2373#endif
1116#if EV_USE_KQUEUE 2374#if EV_USE_KQUEUE
1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2375 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1124#endif 2382#endif
1125#if EV_USE_SELECT 2383#if EV_USE_SELECT
1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2384 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1127#endif 2385#endif
1128 2386
2387 ev_prepare_init (&pending_w, pendingcb);
2388
2389#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1129 ev_init (&pipeev, pipecb); 2390 ev_init (&pipe_w, pipecb);
1130 ev_set_priority (&pipeev, EV_MAXPRI); 2391 ev_set_priority (&pipe_w, EV_MAXPRI);
2392#endif
1131 } 2393 }
1132} 2394}
1133 2395
1134static void noinline 2396/* free up a loop structure */
2397void ecb_cold
1135loop_destroy (EV_P) 2398ev_loop_destroy (EV_P)
1136{ 2399{
1137 int i; 2400 int i;
1138 2401
2402#if EV_MULTIPLICITY
2403 /* mimic free (0) */
2404 if (!EV_A)
2405 return;
2406#endif
2407
2408#if EV_CLEANUP_ENABLE
2409 /* queue cleanup watchers (and execute them) */
2410 if (expect_false (cleanupcnt))
2411 {
2412 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2413 EV_INVOKE_PENDING;
2414 }
2415#endif
2416
2417#if EV_CHILD_ENABLE
2418 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2419 {
2420 ev_ref (EV_A); /* child watcher */
2421 ev_signal_stop (EV_A_ &childev);
2422 }
2423#endif
2424
1139 if (ev_is_active (&pipeev)) 2425 if (ev_is_active (&pipe_w))
1140 { 2426 {
1141 ev_ref (EV_A); /* signal watcher */ 2427 /*ev_ref (EV_A);*/
1142 ev_io_stop (EV_A_ &pipeev); 2428 /*ev_io_stop (EV_A_ &pipe_w);*/
1143 2429
1144 close (evpipe [0]); evpipe [0] = 0; 2430#if EV_USE_EVENTFD
1145 close (evpipe [1]); evpipe [1] = 0; 2431 if (evfd >= 0)
2432 close (evfd);
2433#endif
2434
2435 if (evpipe [0] >= 0)
2436 {
2437 EV_WIN32_CLOSE_FD (evpipe [0]);
2438 EV_WIN32_CLOSE_FD (evpipe [1]);
2439 }
1146 } 2440 }
2441
2442#if EV_USE_SIGNALFD
2443 if (ev_is_active (&sigfd_w))
2444 close (sigfd);
2445#endif
1147 2446
1148#if EV_USE_INOTIFY 2447#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 2448 if (fs_fd >= 0)
1150 close (fs_fd); 2449 close (fs_fd);
1151#endif 2450#endif
1152 2451
1153 if (backend_fd >= 0) 2452 if (backend_fd >= 0)
1154 close (backend_fd); 2453 close (backend_fd);
1155 2454
2455#if EV_USE_IOCP
2456 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2457#endif
1156#if EV_USE_PORT 2458#if EV_USE_PORT
1157 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2459 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1158#endif 2460#endif
1159#if EV_USE_KQUEUE 2461#if EV_USE_KQUEUE
1160 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2462 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1175#if EV_IDLE_ENABLE 2477#if EV_IDLE_ENABLE
1176 array_free (idle, [i]); 2478 array_free (idle, [i]);
1177#endif 2479#endif
1178 } 2480 }
1179 2481
1180 ev_free (anfds); anfdmax = 0; 2482 ev_free (anfds); anfds = 0; anfdmax = 0;
1181 2483
1182 /* have to use the microsoft-never-gets-it-right macro */ 2484 /* have to use the microsoft-never-gets-it-right macro */
2485 array_free (rfeed, EMPTY);
1183 array_free (fdchange, EMPTY); 2486 array_free (fdchange, EMPTY);
1184 array_free (timer, EMPTY); 2487 array_free (timer, EMPTY);
1185#if EV_PERIODIC_ENABLE 2488#if EV_PERIODIC_ENABLE
1186 array_free (periodic, EMPTY); 2489 array_free (periodic, EMPTY);
1187#endif 2490#endif
1188#if EV_FORK_ENABLE 2491#if EV_FORK_ENABLE
1189 array_free (fork, EMPTY); 2492 array_free (fork, EMPTY);
1190#endif 2493#endif
2494#if EV_CLEANUP_ENABLE
2495 array_free (cleanup, EMPTY);
2496#endif
1191 array_free (prepare, EMPTY); 2497 array_free (prepare, EMPTY);
1192 array_free (check, EMPTY); 2498 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE 2499#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY); 2500 array_free (async, EMPTY);
1195#endif 2501#endif
1196 2502
1197 backend = 0; 2503 backend = 0;
1198}
1199 2504
2505#if EV_MULTIPLICITY
2506 if (ev_is_default_loop (EV_A))
2507#endif
2508 ev_default_loop_ptr = 0;
2509#if EV_MULTIPLICITY
2510 else
2511 ev_free (EV_A);
2512#endif
2513}
2514
2515#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 2516inline_size void infy_fork (EV_P);
2517#endif
1201 2518
1202void inline_size 2519inline_size void
1203loop_fork (EV_P) 2520loop_fork (EV_P)
1204{ 2521{
1205#if EV_USE_PORT 2522#if EV_USE_PORT
1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2523 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1207#endif 2524#endif
1213#endif 2530#endif
1214#if EV_USE_INOTIFY 2531#if EV_USE_INOTIFY
1215 infy_fork (EV_A); 2532 infy_fork (EV_A);
1216#endif 2533#endif
1217 2534
1218 if (ev_is_active (&pipeev)) 2535 if (ev_is_active (&pipe_w))
2536 {
2537 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2538
2539 ev_ref (EV_A);
2540 ev_io_stop (EV_A_ &pipe_w);
2541
2542#if EV_USE_EVENTFD
2543 if (evfd >= 0)
2544 close (evfd);
2545#endif
2546
2547 if (evpipe [0] >= 0)
2548 {
2549 EV_WIN32_CLOSE_FD (evpipe [0]);
2550 EV_WIN32_CLOSE_FD (evpipe [1]);
2551 }
2552
2553#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2554 evpipe_init (EV_A);
2555 /* iterate over everything, in case we missed something before */
2556 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2557#endif
1219 { 2558 }
1220 /* this "locks" the handlers against writing to the pipe */ 2559
1221 /* while we modify the fd vars */ 2560 postfork = 0;
1222 gotsig = 1; 2561}
2562
2563#if EV_MULTIPLICITY
2564
2565struct ev_loop * ecb_cold
2566ev_loop_new (unsigned int flags) EV_THROW
2567{
2568 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2569
2570 memset (EV_A, 0, sizeof (struct ev_loop));
2571 loop_init (EV_A_ flags);
2572
2573 if (ev_backend (EV_A))
2574 return EV_A;
2575
2576 ev_free (EV_A);
2577 return 0;
2578}
2579
2580#endif /* multiplicity */
2581
2582#if EV_VERIFY
2583static void noinline ecb_cold
2584verify_watcher (EV_P_ W w)
2585{
2586 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2587
2588 if (w->pending)
2589 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2590}
2591
2592static void noinline ecb_cold
2593verify_heap (EV_P_ ANHE *heap, int N)
2594{
2595 int i;
2596
2597 for (i = HEAP0; i < N + HEAP0; ++i)
2598 {
2599 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2600 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2601 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2602
2603 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2604 }
2605}
2606
2607static void noinline ecb_cold
2608array_verify (EV_P_ W *ws, int cnt)
2609{
2610 while (cnt--)
2611 {
2612 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2613 verify_watcher (EV_A_ ws [cnt]);
2614 }
2615}
2616#endif
2617
2618#if EV_FEATURE_API
2619void ecb_cold
2620ev_verify (EV_P) EV_THROW
2621{
2622#if EV_VERIFY
2623 int i;
2624 WL w, w2;
2625
2626 assert (activecnt >= -1);
2627
2628 assert (fdchangemax >= fdchangecnt);
2629 for (i = 0; i < fdchangecnt; ++i)
2630 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2631
2632 assert (anfdmax >= 0);
2633 for (i = 0; i < anfdmax; ++i)
2634 {
2635 int j = 0;
2636
2637 for (w = w2 = anfds [i].head; w; w = w->next)
2638 {
2639 verify_watcher (EV_A_ (W)w);
2640
2641 if (j++ & 1)
2642 {
2643 assert (("libev: io watcher list contains a loop", w != w2));
2644 w2 = w2->next;
2645 }
2646
2647 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2648 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2649 }
2650 }
2651
2652 assert (timermax >= timercnt);
2653 verify_heap (EV_A_ timers, timercnt);
2654
2655#if EV_PERIODIC_ENABLE
2656 assert (periodicmax >= periodiccnt);
2657 verify_heap (EV_A_ periodics, periodiccnt);
2658#endif
2659
2660 for (i = NUMPRI; i--; )
2661 {
2662 assert (pendingmax [i] >= pendingcnt [i]);
2663#if EV_IDLE_ENABLE
2664 assert (idleall >= 0);
2665 assert (idlemax [i] >= idlecnt [i]);
2666 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2667#endif
2668 }
2669
2670#if EV_FORK_ENABLE
2671 assert (forkmax >= forkcnt);
2672 array_verify (EV_A_ (W *)forks, forkcnt);
2673#endif
2674
2675#if EV_CLEANUP_ENABLE
2676 assert (cleanupmax >= cleanupcnt);
2677 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2678#endif
2679
1223#if EV_ASYNC_ENABLE 2680#if EV_ASYNC_ENABLE
1224 gotasync = 1; 2681 assert (asyncmax >= asynccnt);
2682 array_verify (EV_A_ (W *)asyncs, asynccnt);
2683#endif
2684
2685#if EV_PREPARE_ENABLE
2686 assert (preparemax >= preparecnt);
2687 array_verify (EV_A_ (W *)prepares, preparecnt);
2688#endif
2689
2690#if EV_CHECK_ENABLE
2691 assert (checkmax >= checkcnt);
2692 array_verify (EV_A_ (W *)checks, checkcnt);
2693#endif
2694
2695# if 0
2696#if EV_CHILD_ENABLE
2697 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2698 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2699#endif
1225#endif 2700# endif
1226 2701#endif
1227 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev);
1229 close (evpipe [0]);
1230 close (evpipe [1]);
1231
1232 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ);
1235 }
1236
1237 postfork = 0;
1238} 2702}
2703#endif
1239 2704
1240#if EV_MULTIPLICITY 2705#if EV_MULTIPLICITY
1241struct ev_loop * 2706struct ev_loop * ecb_cold
1242ev_loop_new (unsigned int flags)
1243{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245
1246 memset (loop, 0, sizeof (struct ev_loop));
1247
1248 loop_init (EV_A_ flags);
1249
1250 if (ev_backend (EV_A))
1251 return loop;
1252
1253 return 0;
1254}
1255
1256void
1257ev_loop_destroy (EV_P)
1258{
1259 loop_destroy (EV_A);
1260 ev_free (loop);
1261}
1262
1263void
1264ev_loop_fork (EV_P)
1265{
1266 postfork = 1; /* must be in line with ev_default_fork */
1267}
1268
1269#endif
1270
1271#if EV_MULTIPLICITY
1272struct ev_loop *
1273ev_default_loop_init (unsigned int flags)
1274#else 2707#else
1275int 2708int
2709#endif
1276ev_default_loop (unsigned int flags) 2710ev_default_loop (unsigned int flags) EV_THROW
1277#endif
1278{ 2711{
1279 if (!ev_default_loop_ptr) 2712 if (!ev_default_loop_ptr)
1280 { 2713 {
1281#if EV_MULTIPLICITY 2714#if EV_MULTIPLICITY
1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2715 EV_P = ev_default_loop_ptr = &default_loop_struct;
1283#else 2716#else
1284 ev_default_loop_ptr = 1; 2717 ev_default_loop_ptr = 1;
1285#endif 2718#endif
1286 2719
1287 loop_init (EV_A_ flags); 2720 loop_init (EV_A_ flags);
1288 2721
1289 if (ev_backend (EV_A)) 2722 if (ev_backend (EV_A))
1290 { 2723 {
1291#ifndef _WIN32 2724#if EV_CHILD_ENABLE
1292 ev_signal_init (&childev, childcb, SIGCHLD); 2725 ev_signal_init (&childev, childcb, SIGCHLD);
1293 ev_set_priority (&childev, EV_MAXPRI); 2726 ev_set_priority (&childev, EV_MAXPRI);
1294 ev_signal_start (EV_A_ &childev); 2727 ev_signal_start (EV_A_ &childev);
1295 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2728 ev_unref (EV_A); /* child watcher should not keep loop alive */
1296#endif 2729#endif
1301 2734
1302 return ev_default_loop_ptr; 2735 return ev_default_loop_ptr;
1303} 2736}
1304 2737
1305void 2738void
1306ev_default_destroy (void) 2739ev_loop_fork (EV_P) EV_THROW
1307{ 2740{
1308#if EV_MULTIPLICITY 2741 postfork = 1;
1309 struct ev_loop *loop = ev_default_loop_ptr;
1310#endif
1311
1312#ifndef _WIN32
1313 ev_ref (EV_A); /* child watcher */
1314 ev_signal_stop (EV_A_ &childev);
1315#endif
1316
1317 loop_destroy (EV_A);
1318}
1319
1320void
1321ev_default_fork (void)
1322{
1323#if EV_MULTIPLICITY
1324 struct ev_loop *loop = ev_default_loop_ptr;
1325#endif
1326
1327 if (backend)
1328 postfork = 1; /* must be in line with ev_loop_fork */
1329} 2742}
1330 2743
1331/*****************************************************************************/ 2744/*****************************************************************************/
1332 2745
1333void 2746void
1334ev_invoke (EV_P_ void *w, int revents) 2747ev_invoke (EV_P_ void *w, int revents)
1335{ 2748{
1336 EV_CB_INVOKE ((W)w, revents); 2749 EV_CB_INVOKE ((W)w, revents);
1337} 2750}
1338 2751
1339void inline_speed 2752unsigned int
1340call_pending (EV_P) 2753ev_pending_count (EV_P) EV_THROW
1341{ 2754{
1342 int pri; 2755 int pri;
2756 unsigned int count = 0;
1343 2757
1344 for (pri = NUMPRI; pri--; ) 2758 for (pri = NUMPRI; pri--; )
2759 count += pendingcnt [pri];
2760
2761 return count;
2762}
2763
2764void noinline
2765ev_invoke_pending (EV_P)
2766{
2767 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1345 while (pendingcnt [pri]) 2768 while (pendingcnt [pendingpri])
1346 { 2769 {
1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2770 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1348 2771
1349 if (expect_true (p->w))
1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352
1353 p->w->pending = 0; 2772 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events); 2773 EV_CB_INVOKE (p->w, p->events);
1355 } 2774 EV_FREQUENT_CHECK;
1356 } 2775 }
1357} 2776}
1358 2777
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
1377 downheap (timers, timercnt, 0);
1378 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 {
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438
1439#if EV_IDLE_ENABLE 2778#if EV_IDLE_ENABLE
1440void inline_size 2779/* make idle watchers pending. this handles the "call-idle */
2780/* only when higher priorities are idle" logic */
2781inline_size void
1441idle_reify (EV_P) 2782idle_reify (EV_P)
1442{ 2783{
1443 if (expect_false (idleall)) 2784 if (expect_false (idleall))
1444 { 2785 {
1445 int pri; 2786 int pri;
1457 } 2798 }
1458 } 2799 }
1459} 2800}
1460#endif 2801#endif
1461 2802
1462void inline_speed 2803/* make timers pending */
2804inline_size void
2805timers_reify (EV_P)
2806{
2807 EV_FREQUENT_CHECK;
2808
2809 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2810 {
2811 do
2812 {
2813 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2814
2815 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2816
2817 /* first reschedule or stop timer */
2818 if (w->repeat)
2819 {
2820 ev_at (w) += w->repeat;
2821 if (ev_at (w) < mn_now)
2822 ev_at (w) = mn_now;
2823
2824 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2825
2826 ANHE_at_cache (timers [HEAP0]);
2827 downheap (timers, timercnt, HEAP0);
2828 }
2829 else
2830 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2831
2832 EV_FREQUENT_CHECK;
2833 feed_reverse (EV_A_ (W)w);
2834 }
2835 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2836
2837 feed_reverse_done (EV_A_ EV_TIMER);
2838 }
2839}
2840
2841#if EV_PERIODIC_ENABLE
2842
2843static void noinline
2844periodic_recalc (EV_P_ ev_periodic *w)
2845{
2846 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2847 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2848
2849 /* the above almost always errs on the low side */
2850 while (at <= ev_rt_now)
2851 {
2852 ev_tstamp nat = at + w->interval;
2853
2854 /* when resolution fails us, we use ev_rt_now */
2855 if (expect_false (nat == at))
2856 {
2857 at = ev_rt_now;
2858 break;
2859 }
2860
2861 at = nat;
2862 }
2863
2864 ev_at (w) = at;
2865}
2866
2867/* make periodics pending */
2868inline_size void
2869periodics_reify (EV_P)
2870{
2871 EV_FREQUENT_CHECK;
2872
2873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2874 {
2875 do
2876 {
2877 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2878
2879 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2880
2881 /* first reschedule or stop timer */
2882 if (w->reschedule_cb)
2883 {
2884 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2885
2886 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2887
2888 ANHE_at_cache (periodics [HEAP0]);
2889 downheap (periodics, periodiccnt, HEAP0);
2890 }
2891 else if (w->interval)
2892 {
2893 periodic_recalc (EV_A_ w);
2894 ANHE_at_cache (periodics [HEAP0]);
2895 downheap (periodics, periodiccnt, HEAP0);
2896 }
2897 else
2898 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2899
2900 EV_FREQUENT_CHECK;
2901 feed_reverse (EV_A_ (W)w);
2902 }
2903 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2904
2905 feed_reverse_done (EV_A_ EV_PERIODIC);
2906 }
2907}
2908
2909/* simply recalculate all periodics */
2910/* TODO: maybe ensure that at least one event happens when jumping forward? */
2911static void noinline ecb_cold
2912periodics_reschedule (EV_P)
2913{
2914 int i;
2915
2916 /* adjust periodics after time jump */
2917 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2918 {
2919 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2920
2921 if (w->reschedule_cb)
2922 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2923 else if (w->interval)
2924 periodic_recalc (EV_A_ w);
2925
2926 ANHE_at_cache (periodics [i]);
2927 }
2928
2929 reheap (periodics, periodiccnt);
2930}
2931#endif
2932
2933/* adjust all timers by a given offset */
2934static void noinline ecb_cold
2935timers_reschedule (EV_P_ ev_tstamp adjust)
2936{
2937 int i;
2938
2939 for (i = 0; i < timercnt; ++i)
2940 {
2941 ANHE *he = timers + i + HEAP0;
2942 ANHE_w (*he)->at += adjust;
2943 ANHE_at_cache (*he);
2944 }
2945}
2946
2947/* fetch new monotonic and realtime times from the kernel */
2948/* also detect if there was a timejump, and act accordingly */
2949inline_speed void
1463time_update (EV_P_ ev_tstamp max_block) 2950time_update (EV_P_ ev_tstamp max_block)
1464{ 2951{
1465 int i;
1466
1467#if EV_USE_MONOTONIC 2952#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic)) 2953 if (expect_true (have_monotonic))
1469 { 2954 {
2955 int i;
1470 ev_tstamp odiff = rtmn_diff; 2956 ev_tstamp odiff = rtmn_diff;
1471 2957
1472 mn_now = get_clock (); 2958 mn_now = get_clock ();
1473 2959
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2960 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1490 * doesn't hurt either as we only do this on time-jumps or 2976 * doesn't hurt either as we only do this on time-jumps or
1491 * in the unlikely event of having been preempted here. 2977 * in the unlikely event of having been preempted here.
1492 */ 2978 */
1493 for (i = 4; --i; ) 2979 for (i = 4; --i; )
1494 { 2980 {
2981 ev_tstamp diff;
1495 rtmn_diff = ev_rt_now - mn_now; 2982 rtmn_diff = ev_rt_now - mn_now;
1496 2983
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2984 diff = odiff - rtmn_diff;
2985
2986 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 2987 return; /* all is well */
1499 2988
1500 ev_rt_now = ev_time (); 2989 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 2990 mn_now = get_clock ();
1502 now_floor = mn_now; 2991 now_floor = mn_now;
1503 } 2992 }
1504 2993
2994 /* no timer adjustment, as the monotonic clock doesn't jump */
2995 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1505# if EV_PERIODIC_ENABLE 2996# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A); 2997 periodics_reschedule (EV_A);
1507# endif 2998# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 } 2999 }
1511 else 3000 else
1512#endif 3001#endif
1513 { 3002 {
1514 ev_rt_now = ev_time (); 3003 ev_rt_now = ev_time ();
1515 3004
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3005 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1517 { 3006 {
3007 /* adjust timers. this is easy, as the offset is the same for all of them */
3008 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1518#if EV_PERIODIC_ENABLE 3009#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 3010 periodics_reschedule (EV_A);
1520#endif 3011#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1524 } 3012 }
1525 3013
1526 mn_now = ev_rt_now; 3014 mn_now = ev_rt_now;
1527 } 3015 }
1528} 3016}
1529 3017
1530void 3018int
1531ev_ref (EV_P)
1532{
1533 ++activecnt;
1534}
1535
1536void
1537ev_unref (EV_P)
1538{
1539 --activecnt;
1540}
1541
1542static int loop_done;
1543
1544void
1545ev_loop (EV_P_ int flags) 3019ev_run (EV_P_ int flags)
1546{ 3020{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3021#if EV_FEATURE_API
1548 ? EVUNLOOP_ONE 3022 ++loop_depth;
1549 : EVUNLOOP_CANCEL; 3023#endif
1550 3024
3025 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3026
3027 loop_done = EVBREAK_CANCEL;
3028
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3029 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1552 3030
1553 do 3031 do
1554 { 3032 {
3033#if EV_VERIFY >= 2
3034 ev_verify (EV_A);
3035#endif
3036
1555#ifndef _WIN32 3037#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 3038 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 3039 if (expect_false (getpid () != curpid))
1558 { 3040 {
1559 curpid = getpid (); 3041 curpid = getpid ();
1565 /* we might have forked, so queue fork handlers */ 3047 /* we might have forked, so queue fork handlers */
1566 if (expect_false (postfork)) 3048 if (expect_false (postfork))
1567 if (forkcnt) 3049 if (forkcnt)
1568 { 3050 {
1569 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3051 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1570 call_pending (EV_A); 3052 EV_INVOKE_PENDING;
1571 } 3053 }
1572#endif 3054#endif
1573 3055
3056#if EV_PREPARE_ENABLE
1574 /* queue prepare watchers (and execute them) */ 3057 /* queue prepare watchers (and execute them) */
1575 if (expect_false (preparecnt)) 3058 if (expect_false (preparecnt))
1576 { 3059 {
1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3060 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1578 call_pending (EV_A); 3061 EV_INVOKE_PENDING;
1579 } 3062 }
3063#endif
1580 3064
1581 if (expect_false (!activecnt)) 3065 if (expect_false (loop_done))
1582 break; 3066 break;
1583 3067
1584 /* we might have forked, so reify kernel state if necessary */ 3068 /* we might have forked, so reify kernel state if necessary */
1585 if (expect_false (postfork)) 3069 if (expect_false (postfork))
1586 loop_fork (EV_A); 3070 loop_fork (EV_A);
1591 /* calculate blocking time */ 3075 /* calculate blocking time */
1592 { 3076 {
1593 ev_tstamp waittime = 0.; 3077 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.; 3078 ev_tstamp sleeptime = 0.;
1595 3079
3080 /* remember old timestamp for io_blocktime calculation */
3081 ev_tstamp prev_mn_now = mn_now;
3082
3083 /* update time to cancel out callback processing overhead */
3084 time_update (EV_A_ 1e100);
3085
3086 /* from now on, we want a pipe-wake-up */
3087 pipe_write_wanted = 1;
3088
3089 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3090
1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3091 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1597 { 3092 {
1598 /* update time to cancel out callback processing overhead */
1599 time_update (EV_A_ 1e100);
1600
1601 waittime = MAX_BLOCKTIME; 3093 waittime = MAX_BLOCKTIME;
1602 3094
1603 if (timercnt) 3095 if (timercnt)
1604 { 3096 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3097 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1606 if (waittime > to) waittime = to; 3098 if (waittime > to) waittime = to;
1607 } 3099 }
1608 3100
1609#if EV_PERIODIC_ENABLE 3101#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 3102 if (periodiccnt)
1611 { 3103 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3104 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1613 if (waittime > to) waittime = to; 3105 if (waittime > to) waittime = to;
1614 } 3106 }
1615#endif 3107#endif
1616 3108
3109 /* don't let timeouts decrease the waittime below timeout_blocktime */
1617 if (expect_false (waittime < timeout_blocktime)) 3110 if (expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime; 3111 waittime = timeout_blocktime;
1619 3112
1620 sleeptime = waittime - backend_fudge; 3113 /* at this point, we NEED to wait, so we have to ensure */
3114 /* to pass a minimum nonzero value to the backend */
3115 if (expect_false (waittime < backend_mintime))
3116 waittime = backend_mintime;
1621 3117
3118 /* extra check because io_blocktime is commonly 0 */
1622 if (expect_true (sleeptime > io_blocktime)) 3119 if (expect_false (io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 { 3120 {
3121 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3122
3123 if (sleeptime > waittime - backend_mintime)
3124 sleeptime = waittime - backend_mintime;
3125
3126 if (expect_true (sleeptime > 0.))
3127 {
1627 ev_sleep (sleeptime); 3128 ev_sleep (sleeptime);
1628 waittime -= sleeptime; 3129 waittime -= sleeptime;
3130 }
1629 } 3131 }
1630 } 3132 }
1631 3133
3134#if EV_FEATURE_API
1632 ++loop_count; 3135 ++loop_count;
3136#endif
3137 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1633 backend_poll (EV_A_ waittime); 3138 backend_poll (EV_A_ waittime);
3139 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3140
3141 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3142
3143 ECB_MEMORY_FENCE_ACQUIRE;
3144 if (pipe_write_skipped)
3145 {
3146 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3147 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3148 }
3149
1634 3150
1635 /* update ev_rt_now, do magic */ 3151 /* update ev_rt_now, do magic */
1636 time_update (EV_A_ waittime + sleeptime); 3152 time_update (EV_A_ waittime + sleeptime);
1637 } 3153 }
1638 3154
1645#if EV_IDLE_ENABLE 3161#if EV_IDLE_ENABLE
1646 /* queue idle watchers unless other events are pending */ 3162 /* queue idle watchers unless other events are pending */
1647 idle_reify (EV_A); 3163 idle_reify (EV_A);
1648#endif 3164#endif
1649 3165
3166#if EV_CHECK_ENABLE
1650 /* queue check watchers, to be executed first */ 3167 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 3168 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3169 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3170#endif
1653 3171
1654 call_pending (EV_A); 3172 EV_INVOKE_PENDING;
1655
1656 } 3173 }
1657 while (expect_true (activecnt && !loop_done)); 3174 while (expect_true (
3175 activecnt
3176 && !loop_done
3177 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3178 ));
1658 3179
1659 if (loop_done == EVUNLOOP_ONE) 3180 if (loop_done == EVBREAK_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 3181 loop_done = EVBREAK_CANCEL;
3182
3183 /* pendingpri is normally -1 here, which is not a good */
3184 /* value when returning to an ev_invoke_pending */
3185 pendingpri = NUMPRI - 1;
3186
3187#if EV_FEATURE_API
3188 --loop_depth;
3189#endif
3190
3191 return activecnt;
1661} 3192}
1662 3193
1663void 3194void
1664ev_unloop (EV_P_ int how) 3195ev_break (EV_P_ int how) EV_THROW
1665{ 3196{
1666 loop_done = how; 3197 loop_done = how;
1667} 3198}
1668 3199
3200void
3201ev_ref (EV_P) EV_THROW
3202{
3203 ++activecnt;
3204}
3205
3206void
3207ev_unref (EV_P) EV_THROW
3208{
3209 --activecnt;
3210}
3211
3212void
3213ev_now_update (EV_P) EV_THROW
3214{
3215 time_update (EV_A_ 1e100);
3216}
3217
3218void
3219ev_suspend (EV_P) EV_THROW
3220{
3221 ev_now_update (EV_A);
3222}
3223
3224void
3225ev_resume (EV_P) EV_THROW
3226{
3227 ev_tstamp mn_prev = mn_now;
3228
3229 ev_now_update (EV_A);
3230 timers_reschedule (EV_A_ mn_now - mn_prev);
3231#if EV_PERIODIC_ENABLE
3232 /* TODO: really do this? */
3233 periodics_reschedule (EV_A);
3234#endif
3235}
3236
1669/*****************************************************************************/ 3237/*****************************************************************************/
3238/* singly-linked list management, used when the expected list length is short */
1670 3239
1671void inline_size 3240inline_size void
1672wlist_add (WL *head, WL elem) 3241wlist_add (WL *head, WL elem)
1673{ 3242{
1674 elem->next = *head; 3243 elem->next = *head;
1675 *head = elem; 3244 *head = elem;
1676} 3245}
1677 3246
1678void inline_size 3247inline_size void
1679wlist_del (WL *head, WL elem) 3248wlist_del (WL *head, WL elem)
1680{ 3249{
1681 while (*head) 3250 while (*head)
1682 { 3251 {
1683 if (*head == elem) 3252 if (expect_true (*head == elem))
1684 { 3253 {
1685 *head = elem->next; 3254 *head = elem->next;
1686 return; 3255 break;
1687 } 3256 }
1688 3257
1689 head = &(*head)->next; 3258 head = &(*head)->next;
1690 } 3259 }
1691} 3260}
1692 3261
1693void inline_speed 3262/* internal, faster, version of ev_clear_pending */
3263inline_speed void
1694clear_pending (EV_P_ W w) 3264clear_pending (EV_P_ W w)
1695{ 3265{
1696 if (w->pending) 3266 if (w->pending)
1697 { 3267 {
1698 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3268 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1699 w->pending = 0; 3269 w->pending = 0;
1700 } 3270 }
1701} 3271}
1702 3272
1703int 3273int
1704ev_clear_pending (EV_P_ void *w) 3274ev_clear_pending (EV_P_ void *w) EV_THROW
1705{ 3275{
1706 W w_ = (W)w; 3276 W w_ = (W)w;
1707 int pending = w_->pending; 3277 int pending = w_->pending;
1708 3278
1709 if (expect_true (pending)) 3279 if (expect_true (pending))
1710 { 3280 {
1711 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3281 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3282 p->w = (W)&pending_w;
1712 w_->pending = 0; 3283 w_->pending = 0;
1713 p->w = 0;
1714 return p->events; 3284 return p->events;
1715 } 3285 }
1716 else 3286 else
1717 return 0; 3287 return 0;
1718} 3288}
1719 3289
1720void inline_size 3290inline_size void
1721pri_adjust (EV_P_ W w) 3291pri_adjust (EV_P_ W w)
1722{ 3292{
1723 int pri = w->priority; 3293 int pri = ev_priority (w);
1724 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3294 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1725 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3295 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1726 w->priority = pri; 3296 ev_set_priority (w, pri);
1727} 3297}
1728 3298
1729void inline_speed 3299inline_speed void
1730ev_start (EV_P_ W w, int active) 3300ev_start (EV_P_ W w, int active)
1731{ 3301{
1732 pri_adjust (EV_A_ w); 3302 pri_adjust (EV_A_ w);
1733 w->active = active; 3303 w->active = active;
1734 ev_ref (EV_A); 3304 ev_ref (EV_A);
1735} 3305}
1736 3306
1737void inline_size 3307inline_size void
1738ev_stop (EV_P_ W w) 3308ev_stop (EV_P_ W w)
1739{ 3309{
1740 ev_unref (EV_A); 3310 ev_unref (EV_A);
1741 w->active = 0; 3311 w->active = 0;
1742} 3312}
1743 3313
1744/*****************************************************************************/ 3314/*****************************************************************************/
1745 3315
1746void noinline 3316void noinline
1747ev_io_start (EV_P_ ev_io *w) 3317ev_io_start (EV_P_ ev_io *w) EV_THROW
1748{ 3318{
1749 int fd = w->fd; 3319 int fd = w->fd;
1750 3320
1751 if (expect_false (ev_is_active (w))) 3321 if (expect_false (ev_is_active (w)))
1752 return; 3322 return;
1753 3323
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 3324 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3325 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3326
3327 EV_FREQUENT_CHECK;
1755 3328
1756 ev_start (EV_A_ (W)w, 1); 3329 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3330 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1758 wlist_add (&anfds[fd].head, (WL)w); 3331 wlist_add (&anfds[fd].head, (WL)w);
1759 3332
3333 /* common bug, apparently */
3334 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3335
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3336 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1761 w->events &= ~EV_IOFDSET; 3337 w->events &= ~EV__IOFDSET;
3338
3339 EV_FREQUENT_CHECK;
1762} 3340}
1763 3341
1764void noinline 3342void noinline
1765ev_io_stop (EV_P_ ev_io *w) 3343ev_io_stop (EV_P_ ev_io *w) EV_THROW
1766{ 3344{
1767 clear_pending (EV_A_ (W)w); 3345 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 3346 if (expect_false (!ev_is_active (w)))
1769 return; 3347 return;
1770 3348
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3349 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3350
3351 EV_FREQUENT_CHECK;
1772 3352
1773 wlist_del (&anfds[w->fd].head, (WL)w); 3353 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 3354 ev_stop (EV_A_ (W)w);
1775 3355
1776 fd_change (EV_A_ w->fd, 1); 3356 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3357
3358 EV_FREQUENT_CHECK;
1777} 3359}
1778 3360
1779void noinline 3361void noinline
1780ev_timer_start (EV_P_ ev_timer *w) 3362ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1781{ 3363{
1782 if (expect_false (ev_is_active (w))) 3364 if (expect_false (ev_is_active (w)))
1783 return; 3365 return;
1784 3366
1785 ((WT)w)->at += mn_now; 3367 ev_at (w) += mn_now;
1786 3368
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3369 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 3370
3371 EV_FREQUENT_CHECK;
3372
3373 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 3374 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3375 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 3376 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 3377 ANHE_at_cache (timers [ev_active (w)]);
3378 upheap (timers, ev_active (w));
1793 3379
3380 EV_FREQUENT_CHECK;
3381
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3382 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 3383}
1796 3384
1797void noinline 3385void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 3386ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1799{ 3387{
1800 clear_pending (EV_A_ (W)w); 3388 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 3389 if (expect_false (!ev_is_active (w)))
1802 return; 3390 return;
1803 3391
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3392 EV_FREQUENT_CHECK;
1805 3393
1806 { 3394 {
1807 int active = ((W)w)->active; 3395 int active = ev_active (w);
1808 3396
3397 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3398
3399 --timercnt;
3400
1809 if (expect_true (--active < --timercnt)) 3401 if (expect_true (active < timercnt + HEAP0))
1810 { 3402 {
1811 timers [active] = timers [timercnt]; 3403 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 3404 adjustheap (timers, timercnt, active);
1813 } 3405 }
1814 } 3406 }
1815 3407
1816 ((WT)w)->at -= mn_now; 3408 ev_at (w) -= mn_now;
1817 3409
1818 ev_stop (EV_A_ (W)w); 3410 ev_stop (EV_A_ (W)w);
3411
3412 EV_FREQUENT_CHECK;
1819} 3413}
1820 3414
1821void noinline 3415void noinline
1822ev_timer_again (EV_P_ ev_timer *w) 3416ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1823{ 3417{
3418 EV_FREQUENT_CHECK;
3419
3420 clear_pending (EV_A_ (W)w);
3421
1824 if (ev_is_active (w)) 3422 if (ev_is_active (w))
1825 { 3423 {
1826 if (w->repeat) 3424 if (w->repeat)
1827 { 3425 {
1828 ((WT)w)->at = mn_now + w->repeat; 3426 ev_at (w) = mn_now + w->repeat;
3427 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 3428 adjustheap (timers, timercnt, ev_active (w));
1830 } 3429 }
1831 else 3430 else
1832 ev_timer_stop (EV_A_ w); 3431 ev_timer_stop (EV_A_ w);
1833 } 3432 }
1834 else if (w->repeat) 3433 else if (w->repeat)
1835 { 3434 {
1836 w->at = w->repeat; 3435 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 3436 ev_timer_start (EV_A_ w);
1838 } 3437 }
3438
3439 EV_FREQUENT_CHECK;
3440}
3441
3442ev_tstamp
3443ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3444{
3445 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1839} 3446}
1840 3447
1841#if EV_PERIODIC_ENABLE 3448#if EV_PERIODIC_ENABLE
1842void noinline 3449void noinline
1843ev_periodic_start (EV_P_ ev_periodic *w) 3450ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1844{ 3451{
1845 if (expect_false (ev_is_active (w))) 3452 if (expect_false (ev_is_active (w)))
1846 return; 3453 return;
1847 3454
1848 if (w->reschedule_cb) 3455 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3456 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 3457 else if (w->interval)
1851 { 3458 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3459 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 3460 periodic_recalc (EV_A_ w);
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 3461 }
1856 else 3462 else
1857 ((WT)w)->at = w->offset; 3463 ev_at (w) = w->offset;
1858 3464
3465 EV_FREQUENT_CHECK;
3466
3467 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 3468 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3469 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 3470 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 3471 ANHE_at_cache (periodics [ev_active (w)]);
3472 upheap (periodics, ev_active (w));
1863 3473
3474 EV_FREQUENT_CHECK;
3475
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3476 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 3477}
1866 3478
1867void noinline 3479void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 3480ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1869{ 3481{
1870 clear_pending (EV_A_ (W)w); 3482 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 3483 if (expect_false (!ev_is_active (w)))
1872 return; 3484 return;
1873 3485
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3486 EV_FREQUENT_CHECK;
1875 3487
1876 { 3488 {
1877 int active = ((W)w)->active; 3489 int active = ev_active (w);
1878 3490
3491 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3492
3493 --periodiccnt;
3494
1879 if (expect_true (--active < --periodiccnt)) 3495 if (expect_true (active < periodiccnt + HEAP0))
1880 { 3496 {
1881 periodics [active] = periodics [periodiccnt]; 3497 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 3498 adjustheap (periodics, periodiccnt, active);
1883 } 3499 }
1884 } 3500 }
1885 3501
1886 ev_stop (EV_A_ (W)w); 3502 ev_stop (EV_A_ (W)w);
3503
3504 EV_FREQUENT_CHECK;
1887} 3505}
1888 3506
1889void noinline 3507void noinline
1890ev_periodic_again (EV_P_ ev_periodic *w) 3508ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1891{ 3509{
1892 /* TODO: use adjustheap and recalculation */ 3510 /* TODO: use adjustheap and recalculation */
1893 ev_periodic_stop (EV_A_ w); 3511 ev_periodic_stop (EV_A_ w);
1894 ev_periodic_start (EV_A_ w); 3512 ev_periodic_start (EV_A_ w);
1895} 3513}
1897 3515
1898#ifndef SA_RESTART 3516#ifndef SA_RESTART
1899# define SA_RESTART 0 3517# define SA_RESTART 0
1900#endif 3518#endif
1901 3519
3520#if EV_SIGNAL_ENABLE
3521
1902void noinline 3522void noinline
1903ev_signal_start (EV_P_ ev_signal *w) 3523ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1904{ 3524{
1905#if EV_MULTIPLICITY
1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif
1908 if (expect_false (ev_is_active (w))) 3525 if (expect_false (ev_is_active (w)))
1909 return; 3526 return;
1910 3527
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3528 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1912 3529
1913 evpipe_init (EV_A); 3530#if EV_MULTIPLICITY
3531 assert (("libev: a signal must not be attached to two different loops",
3532 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1914 3533
3534 signals [w->signum - 1].loop = EV_A;
3535#endif
3536
3537 EV_FREQUENT_CHECK;
3538
3539#if EV_USE_SIGNALFD
3540 if (sigfd == -2)
1915 { 3541 {
1916#ifndef _WIN32 3542 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1917 sigset_t full, prev; 3543 if (sigfd < 0 && errno == EINVAL)
1918 sigfillset (&full); 3544 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1919 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif
1921 3545
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3546 if (sigfd >= 0)
3547 {
3548 fd_intern (sigfd); /* doing it twice will not hurt */
1923 3549
1924#ifndef _WIN32 3550 sigemptyset (&sigfd_set);
1925 sigprocmask (SIG_SETMASK, &prev, 0); 3551
1926#endif 3552 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3553 ev_set_priority (&sigfd_w, EV_MAXPRI);
3554 ev_io_start (EV_A_ &sigfd_w);
3555 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3556 }
1927 } 3557 }
3558
3559 if (sigfd >= 0)
3560 {
3561 /* TODO: check .head */
3562 sigaddset (&sigfd_set, w->signum);
3563 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3564
3565 signalfd (sigfd, &sigfd_set, 0);
3566 }
3567#endif
1928 3568
1929 ev_start (EV_A_ (W)w, 1); 3569 ev_start (EV_A_ (W)w, 1);
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 3570 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 3571
1932 if (!((WL)w)->next) 3572 if (!((WL)w)->next)
3573# if EV_USE_SIGNALFD
3574 if (sigfd < 0) /*TODO*/
3575# endif
1933 { 3576 {
1934#if _WIN32 3577# ifdef _WIN32
3578 evpipe_init (EV_A);
3579
1935 signal (w->signum, sighandler); 3580 signal (w->signum, ev_sighandler);
1936#else 3581# else
1937 struct sigaction sa; 3582 struct sigaction sa;
3583
3584 evpipe_init (EV_A);
3585
1938 sa.sa_handler = sighandler; 3586 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 3587 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3588 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 3589 sigaction (w->signum, &sa, 0);
3590
3591 if (origflags & EVFLAG_NOSIGMASK)
3592 {
3593 sigemptyset (&sa.sa_mask);
3594 sigaddset (&sa.sa_mask, w->signum);
3595 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3596 }
1942#endif 3597#endif
1943 } 3598 }
3599
3600 EV_FREQUENT_CHECK;
1944} 3601}
1945 3602
1946void noinline 3603void noinline
1947ev_signal_stop (EV_P_ ev_signal *w) 3604ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1948{ 3605{
1949 clear_pending (EV_A_ (W)w); 3606 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 3607 if (expect_false (!ev_is_active (w)))
1951 return; 3608 return;
1952 3609
3610 EV_FREQUENT_CHECK;
3611
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 3612 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 3613 ev_stop (EV_A_ (W)w);
1955 3614
1956 if (!signals [w->signum - 1].head) 3615 if (!signals [w->signum - 1].head)
3616 {
3617#if EV_MULTIPLICITY
3618 signals [w->signum - 1].loop = 0; /* unattach from signal */
3619#endif
3620#if EV_USE_SIGNALFD
3621 if (sigfd >= 0)
3622 {
3623 sigset_t ss;
3624
3625 sigemptyset (&ss);
3626 sigaddset (&ss, w->signum);
3627 sigdelset (&sigfd_set, w->signum);
3628
3629 signalfd (sigfd, &sigfd_set, 0);
3630 sigprocmask (SIG_UNBLOCK, &ss, 0);
3631 }
3632 else
3633#endif
1957 signal (w->signum, SIG_DFL); 3634 signal (w->signum, SIG_DFL);
3635 }
3636
3637 EV_FREQUENT_CHECK;
1958} 3638}
3639
3640#endif
3641
3642#if EV_CHILD_ENABLE
1959 3643
1960void 3644void
1961ev_child_start (EV_P_ ev_child *w) 3645ev_child_start (EV_P_ ev_child *w) EV_THROW
1962{ 3646{
1963#if EV_MULTIPLICITY 3647#if EV_MULTIPLICITY
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3648 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 3649#endif
1966 if (expect_false (ev_is_active (w))) 3650 if (expect_false (ev_is_active (w)))
1967 return; 3651 return;
1968 3652
3653 EV_FREQUENT_CHECK;
3654
1969 ev_start (EV_A_ (W)w, 1); 3655 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3656 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3657
3658 EV_FREQUENT_CHECK;
1971} 3659}
1972 3660
1973void 3661void
1974ev_child_stop (EV_P_ ev_child *w) 3662ev_child_stop (EV_P_ ev_child *w) EV_THROW
1975{ 3663{
1976 clear_pending (EV_A_ (W)w); 3664 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 3665 if (expect_false (!ev_is_active (w)))
1978 return; 3666 return;
1979 3667
3668 EV_FREQUENT_CHECK;
3669
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3670 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 3671 ev_stop (EV_A_ (W)w);
3672
3673 EV_FREQUENT_CHECK;
1982} 3674}
3675
3676#endif
1983 3677
1984#if EV_STAT_ENABLE 3678#if EV_STAT_ENABLE
1985 3679
1986# ifdef _WIN32 3680# ifdef _WIN32
1987# undef lstat 3681# undef lstat
1988# define lstat(a,b) _stati64 (a,b) 3682# define lstat(a,b) _stati64 (a,b)
1989# endif 3683# endif
1990 3684
1991#define DEF_STAT_INTERVAL 5.0074891 3685#define DEF_STAT_INTERVAL 5.0074891
3686#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1992#define MIN_STAT_INTERVAL 0.1074891 3687#define MIN_STAT_INTERVAL 0.1074891
1993 3688
1994static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3689static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1995 3690
1996#if EV_USE_INOTIFY 3691#if EV_USE_INOTIFY
1997# define EV_INOTIFY_BUFSIZE 8192 3692
3693/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3694# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1998 3695
1999static void noinline 3696static void noinline
2000infy_add (EV_P_ ev_stat *w) 3697infy_add (EV_P_ ev_stat *w)
2001{ 3698{
2002 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3699 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2003 3700
2004 if (w->wd < 0) 3701 if (w->wd >= 0)
3702 {
3703 struct statfs sfs;
3704
3705 /* now local changes will be tracked by inotify, but remote changes won't */
3706 /* unless the filesystem is known to be local, we therefore still poll */
3707 /* also do poll on <2.6.25, but with normal frequency */
3708
3709 if (!fs_2625)
3710 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3711 else if (!statfs (w->path, &sfs)
3712 && (sfs.f_type == 0x1373 /* devfs */
3713 || sfs.f_type == 0xEF53 /* ext2/3 */
3714 || sfs.f_type == 0x3153464a /* jfs */
3715 || sfs.f_type == 0x52654973 /* reiser3 */
3716 || sfs.f_type == 0x01021994 /* tempfs */
3717 || sfs.f_type == 0x58465342 /* xfs */))
3718 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3719 else
3720 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2005 { 3721 }
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3722 else
3723 {
3724 /* can't use inotify, continue to stat */
3725 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2007 3726
2008 /* monitor some parent directory for speedup hints */ 3727 /* if path is not there, monitor some parent directory for speedup hints */
3728 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3729 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3730 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 3731 {
2011 char path [4096]; 3732 char path [4096];
2012 strcpy (path, w->path); 3733 strcpy (path, w->path);
2013 3734
2016 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3737 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2017 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3738 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2018 3739
2019 char *pend = strrchr (path, '/'); 3740 char *pend = strrchr (path, '/');
2020 3741
2021 if (!pend) 3742 if (!pend || pend == path)
2022 break; /* whoops, no '/', complain to your admin */ 3743 break;
2023 3744
2024 *pend = 0; 3745 *pend = 0;
2025 w->wd = inotify_add_watch (fs_fd, path, mask); 3746 w->wd = inotify_add_watch (fs_fd, path, mask);
2026 } 3747 }
2027 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3748 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2028 } 3749 }
2029 } 3750 }
2030 else
2031 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2032 3751
2033 if (w->wd >= 0) 3752 if (w->wd >= 0)
2034 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3753 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3754
3755 /* now re-arm timer, if required */
3756 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3757 ev_timer_again (EV_A_ &w->timer);
3758 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2035} 3759}
2036 3760
2037static void noinline 3761static void noinline
2038infy_del (EV_P_ ev_stat *w) 3762infy_del (EV_P_ ev_stat *w)
2039{ 3763{
2042 3766
2043 if (wd < 0) 3767 if (wd < 0)
2044 return; 3768 return;
2045 3769
2046 w->wd = -2; 3770 w->wd = -2;
2047 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3771 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2048 wlist_del (&fs_hash [slot].head, (WL)w); 3772 wlist_del (&fs_hash [slot].head, (WL)w);
2049 3773
2050 /* remove this watcher, if others are watching it, they will rearm */ 3774 /* remove this watcher, if others are watching it, they will rearm */
2051 inotify_rm_watch (fs_fd, wd); 3775 inotify_rm_watch (fs_fd, wd);
2052} 3776}
2053 3777
2054static void noinline 3778static void noinline
2055infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3779infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2056{ 3780{
2057 if (slot < 0) 3781 if (slot < 0)
2058 /* overflow, need to check for all hahs slots */ 3782 /* overflow, need to check for all hash slots */
2059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3783 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2060 infy_wd (EV_A_ slot, wd, ev); 3784 infy_wd (EV_A_ slot, wd, ev);
2061 else 3785 else
2062 { 3786 {
2063 WL w_; 3787 WL w_;
2064 3788
2065 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3789 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2066 { 3790 {
2067 ev_stat *w = (ev_stat *)w_; 3791 ev_stat *w = (ev_stat *)w_;
2068 w_ = w_->next; /* lets us remove this watcher and all before it */ 3792 w_ = w_->next; /* lets us remove this watcher and all before it */
2069 3793
2070 if (w->wd == wd || wd == -1) 3794 if (w->wd == wd || wd == -1)
2071 { 3795 {
2072 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3796 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2073 { 3797 {
3798 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2074 w->wd = -1; 3799 w->wd = -1;
2075 infy_add (EV_A_ w); /* re-add, no matter what */ 3800 infy_add (EV_A_ w); /* re-add, no matter what */
2076 } 3801 }
2077 3802
2078 stat_timer_cb (EV_A_ &w->timer, 0); 3803 stat_timer_cb (EV_A_ &w->timer, 0);
2083 3808
2084static void 3809static void
2085infy_cb (EV_P_ ev_io *w, int revents) 3810infy_cb (EV_P_ ev_io *w, int revents)
2086{ 3811{
2087 char buf [EV_INOTIFY_BUFSIZE]; 3812 char buf [EV_INOTIFY_BUFSIZE];
2088 struct inotify_event *ev = (struct inotify_event *)buf;
2089 int ofs; 3813 int ofs;
2090 int len = read (fs_fd, buf, sizeof (buf)); 3814 int len = read (fs_fd, buf, sizeof (buf));
2091 3815
2092 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3816 for (ofs = 0; ofs < len; )
3817 {
3818 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2093 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3819 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3820 ofs += sizeof (struct inotify_event) + ev->len;
3821 }
2094} 3822}
2095 3823
2096void inline_size 3824inline_size void ecb_cold
3825ev_check_2625 (EV_P)
3826{
3827 /* kernels < 2.6.25 are borked
3828 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3829 */
3830 if (ev_linux_version () < 0x020619)
3831 return;
3832
3833 fs_2625 = 1;
3834}
3835
3836inline_size int
3837infy_newfd (void)
3838{
3839#if defined IN_CLOEXEC && defined IN_NONBLOCK
3840 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3841 if (fd >= 0)
3842 return fd;
3843#endif
3844 return inotify_init ();
3845}
3846
3847inline_size void
2097infy_init (EV_P) 3848infy_init (EV_P)
2098{ 3849{
2099 if (fs_fd != -2) 3850 if (fs_fd != -2)
2100 return; 3851 return;
2101 3852
3853 fs_fd = -1;
3854
3855 ev_check_2625 (EV_A);
3856
2102 fs_fd = inotify_init (); 3857 fs_fd = infy_newfd ();
2103 3858
2104 if (fs_fd >= 0) 3859 if (fs_fd >= 0)
2105 { 3860 {
3861 fd_intern (fs_fd);
2106 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3862 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2107 ev_set_priority (&fs_w, EV_MAXPRI); 3863 ev_set_priority (&fs_w, EV_MAXPRI);
2108 ev_io_start (EV_A_ &fs_w); 3864 ev_io_start (EV_A_ &fs_w);
3865 ev_unref (EV_A);
2109 } 3866 }
2110} 3867}
2111 3868
2112void inline_size 3869inline_size void
2113infy_fork (EV_P) 3870infy_fork (EV_P)
2114{ 3871{
2115 int slot; 3872 int slot;
2116 3873
2117 if (fs_fd < 0) 3874 if (fs_fd < 0)
2118 return; 3875 return;
2119 3876
3877 ev_ref (EV_A);
3878 ev_io_stop (EV_A_ &fs_w);
2120 close (fs_fd); 3879 close (fs_fd);
2121 fs_fd = inotify_init (); 3880 fs_fd = infy_newfd ();
2122 3881
3882 if (fs_fd >= 0)
3883 {
3884 fd_intern (fs_fd);
3885 ev_io_set (&fs_w, fs_fd, EV_READ);
3886 ev_io_start (EV_A_ &fs_w);
3887 ev_unref (EV_A);
3888 }
3889
2123 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3890 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2124 { 3891 {
2125 WL w_ = fs_hash [slot].head; 3892 WL w_ = fs_hash [slot].head;
2126 fs_hash [slot].head = 0; 3893 fs_hash [slot].head = 0;
2127 3894
2128 while (w_) 3895 while (w_)
2133 w->wd = -1; 3900 w->wd = -1;
2134 3901
2135 if (fs_fd >= 0) 3902 if (fs_fd >= 0)
2136 infy_add (EV_A_ w); /* re-add, no matter what */ 3903 infy_add (EV_A_ w); /* re-add, no matter what */
2137 else 3904 else
3905 {
3906 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3907 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2138 ev_timer_start (EV_A_ &w->timer); 3908 ev_timer_again (EV_A_ &w->timer);
3909 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3910 }
2139 } 3911 }
2140
2141 } 3912 }
2142} 3913}
2143 3914
3915#endif
3916
3917#ifdef _WIN32
3918# define EV_LSTAT(p,b) _stati64 (p, b)
3919#else
3920# define EV_LSTAT(p,b) lstat (p, b)
2144#endif 3921#endif
2145 3922
2146void 3923void
2147ev_stat_stat (EV_P_ ev_stat *w) 3924ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2148{ 3925{
2149 if (lstat (w->path, &w->attr) < 0) 3926 if (lstat (w->path, &w->attr) < 0)
2150 w->attr.st_nlink = 0; 3927 w->attr.st_nlink = 0;
2151 else if (!w->attr.st_nlink) 3928 else if (!w->attr.st_nlink)
2152 w->attr.st_nlink = 1; 3929 w->attr.st_nlink = 1;
2155static void noinline 3932static void noinline
2156stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3933stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2157{ 3934{
2158 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3935 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2159 3936
2160 /* we copy this here each the time so that */ 3937 ev_statdata prev = w->attr;
2161 /* prev has the old value when the callback gets invoked */
2162 w->prev = w->attr;
2163 ev_stat_stat (EV_A_ w); 3938 ev_stat_stat (EV_A_ w);
2164 3939
2165 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3940 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2166 if ( 3941 if (
2167 w->prev.st_dev != w->attr.st_dev 3942 prev.st_dev != w->attr.st_dev
2168 || w->prev.st_ino != w->attr.st_ino 3943 || prev.st_ino != w->attr.st_ino
2169 || w->prev.st_mode != w->attr.st_mode 3944 || prev.st_mode != w->attr.st_mode
2170 || w->prev.st_nlink != w->attr.st_nlink 3945 || prev.st_nlink != w->attr.st_nlink
2171 || w->prev.st_uid != w->attr.st_uid 3946 || prev.st_uid != w->attr.st_uid
2172 || w->prev.st_gid != w->attr.st_gid 3947 || prev.st_gid != w->attr.st_gid
2173 || w->prev.st_rdev != w->attr.st_rdev 3948 || prev.st_rdev != w->attr.st_rdev
2174 || w->prev.st_size != w->attr.st_size 3949 || prev.st_size != w->attr.st_size
2175 || w->prev.st_atime != w->attr.st_atime 3950 || prev.st_atime != w->attr.st_atime
2176 || w->prev.st_mtime != w->attr.st_mtime 3951 || prev.st_mtime != w->attr.st_mtime
2177 || w->prev.st_ctime != w->attr.st_ctime 3952 || prev.st_ctime != w->attr.st_ctime
2178 ) { 3953 ) {
3954 /* we only update w->prev on actual differences */
3955 /* in case we test more often than invoke the callback, */
3956 /* to ensure that prev is always different to attr */
3957 w->prev = prev;
3958
2179 #if EV_USE_INOTIFY 3959 #if EV_USE_INOTIFY
3960 if (fs_fd >= 0)
3961 {
2180 infy_del (EV_A_ w); 3962 infy_del (EV_A_ w);
2181 infy_add (EV_A_ w); 3963 infy_add (EV_A_ w);
2182 ev_stat_stat (EV_A_ w); /* avoid race... */ 3964 ev_stat_stat (EV_A_ w); /* avoid race... */
3965 }
2183 #endif 3966 #endif
2184 3967
2185 ev_feed_event (EV_A_ w, EV_STAT); 3968 ev_feed_event (EV_A_ w, EV_STAT);
2186 } 3969 }
2187} 3970}
2188 3971
2189void 3972void
2190ev_stat_start (EV_P_ ev_stat *w) 3973ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2191{ 3974{
2192 if (expect_false (ev_is_active (w))) 3975 if (expect_false (ev_is_active (w)))
2193 return; 3976 return;
2194 3977
2195 /* since we use memcmp, we need to clear any padding data etc. */
2196 memset (&w->prev, 0, sizeof (ev_statdata));
2197 memset (&w->attr, 0, sizeof (ev_statdata));
2198
2199 ev_stat_stat (EV_A_ w); 3978 ev_stat_stat (EV_A_ w);
2200 3979
3980 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2201 if (w->interval < MIN_STAT_INTERVAL) 3981 w->interval = MIN_STAT_INTERVAL;
2202 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2203 3982
2204 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3983 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2205 ev_set_priority (&w->timer, ev_priority (w)); 3984 ev_set_priority (&w->timer, ev_priority (w));
2206 3985
2207#if EV_USE_INOTIFY 3986#if EV_USE_INOTIFY
2208 infy_init (EV_A); 3987 infy_init (EV_A);
2209 3988
2210 if (fs_fd >= 0) 3989 if (fs_fd >= 0)
2211 infy_add (EV_A_ w); 3990 infy_add (EV_A_ w);
2212 else 3991 else
2213#endif 3992#endif
3993 {
2214 ev_timer_start (EV_A_ &w->timer); 3994 ev_timer_again (EV_A_ &w->timer);
3995 ev_unref (EV_A);
3996 }
2215 3997
2216 ev_start (EV_A_ (W)w, 1); 3998 ev_start (EV_A_ (W)w, 1);
3999
4000 EV_FREQUENT_CHECK;
2217} 4001}
2218 4002
2219void 4003void
2220ev_stat_stop (EV_P_ ev_stat *w) 4004ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2221{ 4005{
2222 clear_pending (EV_A_ (W)w); 4006 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 4007 if (expect_false (!ev_is_active (w)))
2224 return; 4008 return;
2225 4009
4010 EV_FREQUENT_CHECK;
4011
2226#if EV_USE_INOTIFY 4012#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 4013 infy_del (EV_A_ w);
2228#endif 4014#endif
4015
4016 if (ev_is_active (&w->timer))
4017 {
4018 ev_ref (EV_A);
2229 ev_timer_stop (EV_A_ &w->timer); 4019 ev_timer_stop (EV_A_ &w->timer);
4020 }
2230 4021
2231 ev_stop (EV_A_ (W)w); 4022 ev_stop (EV_A_ (W)w);
4023
4024 EV_FREQUENT_CHECK;
2232} 4025}
2233#endif 4026#endif
2234 4027
2235#if EV_IDLE_ENABLE 4028#if EV_IDLE_ENABLE
2236void 4029void
2237ev_idle_start (EV_P_ ev_idle *w) 4030ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2238{ 4031{
2239 if (expect_false (ev_is_active (w))) 4032 if (expect_false (ev_is_active (w)))
2240 return; 4033 return;
2241 4034
2242 pri_adjust (EV_A_ (W)w); 4035 pri_adjust (EV_A_ (W)w);
4036
4037 EV_FREQUENT_CHECK;
2243 4038
2244 { 4039 {
2245 int active = ++idlecnt [ABSPRI (w)]; 4040 int active = ++idlecnt [ABSPRI (w)];
2246 4041
2247 ++idleall; 4042 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 4043 ev_start (EV_A_ (W)w, active);
2249 4044
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4045 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w; 4046 idles [ABSPRI (w)][active - 1] = w;
2252 } 4047 }
4048
4049 EV_FREQUENT_CHECK;
2253} 4050}
2254 4051
2255void 4052void
2256ev_idle_stop (EV_P_ ev_idle *w) 4053ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2257{ 4054{
2258 clear_pending (EV_A_ (W)w); 4055 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 4056 if (expect_false (!ev_is_active (w)))
2260 return; 4057 return;
2261 4058
4059 EV_FREQUENT_CHECK;
4060
2262 { 4061 {
2263 int active = ((W)w)->active; 4062 int active = ev_active (w);
2264 4063
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4064 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4065 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 4066
2268 ev_stop (EV_A_ (W)w); 4067 ev_stop (EV_A_ (W)w);
2269 --idleall; 4068 --idleall;
2270 } 4069 }
2271}
2272#endif
2273 4070
4071 EV_FREQUENT_CHECK;
4072}
4073#endif
4074
4075#if EV_PREPARE_ENABLE
2274void 4076void
2275ev_prepare_start (EV_P_ ev_prepare *w) 4077ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2276{ 4078{
2277 if (expect_false (ev_is_active (w))) 4079 if (expect_false (ev_is_active (w)))
2278 return; 4080 return;
4081
4082 EV_FREQUENT_CHECK;
2279 4083
2280 ev_start (EV_A_ (W)w, ++preparecnt); 4084 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4085 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w; 4086 prepares [preparecnt - 1] = w;
4087
4088 EV_FREQUENT_CHECK;
2283} 4089}
2284 4090
2285void 4091void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 4092ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2287{ 4093{
2288 clear_pending (EV_A_ (W)w); 4094 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 4095 if (expect_false (!ev_is_active (w)))
2290 return; 4096 return;
2291 4097
4098 EV_FREQUENT_CHECK;
4099
2292 { 4100 {
2293 int active = ((W)w)->active; 4101 int active = ev_active (w);
4102
2294 prepares [active - 1] = prepares [--preparecnt]; 4103 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 4104 ev_active (prepares [active - 1]) = active;
2296 } 4105 }
2297 4106
2298 ev_stop (EV_A_ (W)w); 4107 ev_stop (EV_A_ (W)w);
2299}
2300 4108
4109 EV_FREQUENT_CHECK;
4110}
4111#endif
4112
4113#if EV_CHECK_ENABLE
2301void 4114void
2302ev_check_start (EV_P_ ev_check *w) 4115ev_check_start (EV_P_ ev_check *w) EV_THROW
2303{ 4116{
2304 if (expect_false (ev_is_active (w))) 4117 if (expect_false (ev_is_active (w)))
2305 return; 4118 return;
4119
4120 EV_FREQUENT_CHECK;
2306 4121
2307 ev_start (EV_A_ (W)w, ++checkcnt); 4122 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4123 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w; 4124 checks [checkcnt - 1] = w;
4125
4126 EV_FREQUENT_CHECK;
2310} 4127}
2311 4128
2312void 4129void
2313ev_check_stop (EV_P_ ev_check *w) 4130ev_check_stop (EV_P_ ev_check *w) EV_THROW
2314{ 4131{
2315 clear_pending (EV_A_ (W)w); 4132 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 4133 if (expect_false (!ev_is_active (w)))
2317 return; 4134 return;
2318 4135
4136 EV_FREQUENT_CHECK;
4137
2319 { 4138 {
2320 int active = ((W)w)->active; 4139 int active = ev_active (w);
4140
2321 checks [active - 1] = checks [--checkcnt]; 4141 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 4142 ev_active (checks [active - 1]) = active;
2323 } 4143 }
2324 4144
2325 ev_stop (EV_A_ (W)w); 4145 ev_stop (EV_A_ (W)w);
4146
4147 EV_FREQUENT_CHECK;
2326} 4148}
4149#endif
2327 4150
2328#if EV_EMBED_ENABLE 4151#if EV_EMBED_ENABLE
2329void noinline 4152void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w) 4153ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2331{ 4154{
2332 ev_loop (w->other, EVLOOP_NONBLOCK); 4155 ev_run (w->other, EVRUN_NOWAIT);
2333} 4156}
2334 4157
2335static void 4158static void
2336embed_io_cb (EV_P_ ev_io *io, int revents) 4159embed_io_cb (EV_P_ ev_io *io, int revents)
2337{ 4160{
2338 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4161 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2339 4162
2340 if (ev_cb (w)) 4163 if (ev_cb (w))
2341 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4164 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2342 else 4165 else
2343 ev_loop (w->other, EVLOOP_NONBLOCK); 4166 ev_run (w->other, EVRUN_NOWAIT);
2344} 4167}
2345 4168
2346static void 4169static void
2347embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4170embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2348{ 4171{
2349 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4172 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2350 4173
2351 { 4174 {
2352 struct ev_loop *loop = w->other; 4175 EV_P = w->other;
2353 4176
2354 while (fdchangecnt) 4177 while (fdchangecnt)
2355 { 4178 {
2356 fd_reify (EV_A); 4179 fd_reify (EV_A);
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4180 ev_run (EV_A_ EVRUN_NOWAIT);
2358 } 4181 }
2359 } 4182 }
4183}
4184
4185static void
4186embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4187{
4188 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4189
4190 ev_embed_stop (EV_A_ w);
4191
4192 {
4193 EV_P = w->other;
4194
4195 ev_loop_fork (EV_A);
4196 ev_run (EV_A_ EVRUN_NOWAIT);
4197 }
4198
4199 ev_embed_start (EV_A_ w);
2360} 4200}
2361 4201
2362#if 0 4202#if 0
2363static void 4203static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4204embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2366 ev_idle_stop (EV_A_ idle); 4206 ev_idle_stop (EV_A_ idle);
2367} 4207}
2368#endif 4208#endif
2369 4209
2370void 4210void
2371ev_embed_start (EV_P_ ev_embed *w) 4211ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2372{ 4212{
2373 if (expect_false (ev_is_active (w))) 4213 if (expect_false (ev_is_active (w)))
2374 return; 4214 return;
2375 4215
2376 { 4216 {
2377 struct ev_loop *loop = w->other; 4217 EV_P = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4218 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4219 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 4220 }
4221
4222 EV_FREQUENT_CHECK;
2381 4223
2382 ev_set_priority (&w->io, ev_priority (w)); 4224 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 4225 ev_io_start (EV_A_ &w->io);
2384 4226
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 4227 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 4228 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 4229 ev_prepare_start (EV_A_ &w->prepare);
2388 4230
4231 ev_fork_init (&w->fork, embed_fork_cb);
4232 ev_fork_start (EV_A_ &w->fork);
4233
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4234 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 4235
2391 ev_start (EV_A_ (W)w, 1); 4236 ev_start (EV_A_ (W)w, 1);
4237
4238 EV_FREQUENT_CHECK;
2392} 4239}
2393 4240
2394void 4241void
2395ev_embed_stop (EV_P_ ev_embed *w) 4242ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2396{ 4243{
2397 clear_pending (EV_A_ (W)w); 4244 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 4245 if (expect_false (!ev_is_active (w)))
2399 return; 4246 return;
2400 4247
4248 EV_FREQUENT_CHECK;
4249
2401 ev_io_stop (EV_A_ &w->io); 4250 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 4251 ev_prepare_stop (EV_A_ &w->prepare);
4252 ev_fork_stop (EV_A_ &w->fork);
2403 4253
2404 ev_stop (EV_A_ (W)w); 4254 ev_stop (EV_A_ (W)w);
4255
4256 EV_FREQUENT_CHECK;
2405} 4257}
2406#endif 4258#endif
2407 4259
2408#if EV_FORK_ENABLE 4260#if EV_FORK_ENABLE
2409void 4261void
2410ev_fork_start (EV_P_ ev_fork *w) 4262ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2411{ 4263{
2412 if (expect_false (ev_is_active (w))) 4264 if (expect_false (ev_is_active (w)))
2413 return; 4265 return;
4266
4267 EV_FREQUENT_CHECK;
2414 4268
2415 ev_start (EV_A_ (W)w, ++forkcnt); 4269 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4270 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w; 4271 forks [forkcnt - 1] = w;
4272
4273 EV_FREQUENT_CHECK;
2418} 4274}
2419 4275
2420void 4276void
2421ev_fork_stop (EV_P_ ev_fork *w) 4277ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2422{ 4278{
2423 clear_pending (EV_A_ (W)w); 4279 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 4280 if (expect_false (!ev_is_active (w)))
2425 return; 4281 return;
2426 4282
4283 EV_FREQUENT_CHECK;
4284
2427 { 4285 {
2428 int active = ((W)w)->active; 4286 int active = ev_active (w);
4287
2429 forks [active - 1] = forks [--forkcnt]; 4288 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 4289 ev_active (forks [active - 1]) = active;
2431 } 4290 }
2432 4291
2433 ev_stop (EV_A_ (W)w); 4292 ev_stop (EV_A_ (W)w);
4293
4294 EV_FREQUENT_CHECK;
4295}
4296#endif
4297
4298#if EV_CLEANUP_ENABLE
4299void
4300ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4301{
4302 if (expect_false (ev_is_active (w)))
4303 return;
4304
4305 EV_FREQUENT_CHECK;
4306
4307 ev_start (EV_A_ (W)w, ++cleanupcnt);
4308 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4309 cleanups [cleanupcnt - 1] = w;
4310
4311 /* cleanup watchers should never keep a refcount on the loop */
4312 ev_unref (EV_A);
4313 EV_FREQUENT_CHECK;
4314}
4315
4316void
4317ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4318{
4319 clear_pending (EV_A_ (W)w);
4320 if (expect_false (!ev_is_active (w)))
4321 return;
4322
4323 EV_FREQUENT_CHECK;
4324 ev_ref (EV_A);
4325
4326 {
4327 int active = ev_active (w);
4328
4329 cleanups [active - 1] = cleanups [--cleanupcnt];
4330 ev_active (cleanups [active - 1]) = active;
4331 }
4332
4333 ev_stop (EV_A_ (W)w);
4334
4335 EV_FREQUENT_CHECK;
2434} 4336}
2435#endif 4337#endif
2436 4338
2437#if EV_ASYNC_ENABLE 4339#if EV_ASYNC_ENABLE
2438void 4340void
2439ev_async_start (EV_P_ ev_async *w) 4341ev_async_start (EV_P_ ev_async *w) EV_THROW
2440{ 4342{
2441 if (expect_false (ev_is_active (w))) 4343 if (expect_false (ev_is_active (w)))
2442 return; 4344 return;
2443 4345
4346 w->sent = 0;
4347
2444 evpipe_init (EV_A); 4348 evpipe_init (EV_A);
4349
4350 EV_FREQUENT_CHECK;
2445 4351
2446 ev_start (EV_A_ (W)w, ++asynccnt); 4352 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4353 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w; 4354 asyncs [asynccnt - 1] = w;
4355
4356 EV_FREQUENT_CHECK;
2449} 4357}
2450 4358
2451void 4359void
2452ev_async_stop (EV_P_ ev_async *w) 4360ev_async_stop (EV_P_ ev_async *w) EV_THROW
2453{ 4361{
2454 clear_pending (EV_A_ (W)w); 4362 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 4363 if (expect_false (!ev_is_active (w)))
2456 return; 4364 return;
2457 4365
4366 EV_FREQUENT_CHECK;
4367
2458 { 4368 {
2459 int active = ((W)w)->active; 4369 int active = ev_active (w);
4370
2460 asyncs [active - 1] = asyncs [--asynccnt]; 4371 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 4372 ev_active (asyncs [active - 1]) = active;
2462 } 4373 }
2463 4374
2464 ev_stop (EV_A_ (W)w); 4375 ev_stop (EV_A_ (W)w);
4376
4377 EV_FREQUENT_CHECK;
2465} 4378}
2466 4379
2467void 4380void
2468ev_async_send (EV_P_ ev_async *w) 4381ev_async_send (EV_P_ ev_async *w) EV_THROW
2469{ 4382{
2470 w->sent = 1; 4383 w->sent = 1;
2471 evpipe_write (EV_A_ &gotasync); 4384 evpipe_write (EV_A_ &async_pending);
2472} 4385}
2473#endif 4386#endif
2474 4387
2475/*****************************************************************************/ 4388/*****************************************************************************/
2476 4389
2486once_cb (EV_P_ struct ev_once *once, int revents) 4399once_cb (EV_P_ struct ev_once *once, int revents)
2487{ 4400{
2488 void (*cb)(int revents, void *arg) = once->cb; 4401 void (*cb)(int revents, void *arg) = once->cb;
2489 void *arg = once->arg; 4402 void *arg = once->arg;
2490 4403
2491 ev_io_stop (EV_A_ &once->io); 4404 ev_io_stop (EV_A_ &once->io);
2492 ev_timer_stop (EV_A_ &once->to); 4405 ev_timer_stop (EV_A_ &once->to);
2493 ev_free (once); 4406 ev_free (once);
2494 4407
2495 cb (revents, arg); 4408 cb (revents, arg);
2496} 4409}
2497 4410
2498static void 4411static void
2499once_cb_io (EV_P_ ev_io *w, int revents) 4412once_cb_io (EV_P_ ev_io *w, int revents)
2500{ 4413{
2501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4414 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4415
4416 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2502} 4417}
2503 4418
2504static void 4419static void
2505once_cb_to (EV_P_ ev_timer *w, int revents) 4420once_cb_to (EV_P_ ev_timer *w, int revents)
2506{ 4421{
2507 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4422 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4423
4424 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2508} 4425}
2509 4426
2510void 4427void
2511ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4428ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2512{ 4429{
2513 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4430 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2514 4431
2515 if (expect_false (!once)) 4432 if (expect_false (!once))
2516 { 4433 {
2517 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4434 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2518 return; 4435 return;
2519 } 4436 }
2520 4437
2521 once->cb = cb; 4438 once->cb = cb;
2522 once->arg = arg; 4439 once->arg = arg;
2534 ev_timer_set (&once->to, timeout, 0.); 4451 ev_timer_set (&once->to, timeout, 0.);
2535 ev_timer_start (EV_A_ &once->to); 4452 ev_timer_start (EV_A_ &once->to);
2536 } 4453 }
2537} 4454}
2538 4455
4456/*****************************************************************************/
4457
4458#if EV_WALK_ENABLE
4459void ecb_cold
4460ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4461{
4462 int i, j;
4463 ev_watcher_list *wl, *wn;
4464
4465 if (types & (EV_IO | EV_EMBED))
4466 for (i = 0; i < anfdmax; ++i)
4467 for (wl = anfds [i].head; wl; )
4468 {
4469 wn = wl->next;
4470
4471#if EV_EMBED_ENABLE
4472 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4473 {
4474 if (types & EV_EMBED)
4475 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4476 }
4477 else
4478#endif
4479#if EV_USE_INOTIFY
4480 if (ev_cb ((ev_io *)wl) == infy_cb)
4481 ;
4482 else
4483#endif
4484 if ((ev_io *)wl != &pipe_w)
4485 if (types & EV_IO)
4486 cb (EV_A_ EV_IO, wl);
4487
4488 wl = wn;
4489 }
4490
4491 if (types & (EV_TIMER | EV_STAT))
4492 for (i = timercnt + HEAP0; i-- > HEAP0; )
4493#if EV_STAT_ENABLE
4494 /*TODO: timer is not always active*/
4495 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4496 {
4497 if (types & EV_STAT)
4498 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4499 }
4500 else
4501#endif
4502 if (types & EV_TIMER)
4503 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4504
4505#if EV_PERIODIC_ENABLE
4506 if (types & EV_PERIODIC)
4507 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4508 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4509#endif
4510
4511#if EV_IDLE_ENABLE
4512 if (types & EV_IDLE)
4513 for (j = NUMPRI; j--; )
4514 for (i = idlecnt [j]; i--; )
4515 cb (EV_A_ EV_IDLE, idles [j][i]);
4516#endif
4517
4518#if EV_FORK_ENABLE
4519 if (types & EV_FORK)
4520 for (i = forkcnt; i--; )
4521 if (ev_cb (forks [i]) != embed_fork_cb)
4522 cb (EV_A_ EV_FORK, forks [i]);
4523#endif
4524
4525#if EV_ASYNC_ENABLE
4526 if (types & EV_ASYNC)
4527 for (i = asynccnt; i--; )
4528 cb (EV_A_ EV_ASYNC, asyncs [i]);
4529#endif
4530
4531#if EV_PREPARE_ENABLE
4532 if (types & EV_PREPARE)
4533 for (i = preparecnt; i--; )
4534# if EV_EMBED_ENABLE
4535 if (ev_cb (prepares [i]) != embed_prepare_cb)
4536# endif
4537 cb (EV_A_ EV_PREPARE, prepares [i]);
4538#endif
4539
4540#if EV_CHECK_ENABLE
4541 if (types & EV_CHECK)
4542 for (i = checkcnt; i--; )
4543 cb (EV_A_ EV_CHECK, checks [i]);
4544#endif
4545
4546#if EV_SIGNAL_ENABLE
4547 if (types & EV_SIGNAL)
4548 for (i = 0; i < EV_NSIG - 1; ++i)
4549 for (wl = signals [i].head; wl; )
4550 {
4551 wn = wl->next;
4552 cb (EV_A_ EV_SIGNAL, wl);
4553 wl = wn;
4554 }
4555#endif
4556
4557#if EV_CHILD_ENABLE
4558 if (types & EV_CHILD)
4559 for (i = (EV_PID_HASHSIZE); i--; )
4560 for (wl = childs [i]; wl; )
4561 {
4562 wn = wl->next;
4563 cb (EV_A_ EV_CHILD, wl);
4564 wl = wn;
4565 }
4566#endif
4567/* EV_STAT 0x00001000 /* stat data changed */
4568/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4569}
4570#endif
4571
2539#if EV_MULTIPLICITY 4572#if EV_MULTIPLICITY
2540 #include "ev_wrap.h" 4573 #include "ev_wrap.h"
2541#endif 4574#endif
2542 4575
2543#ifdef __cplusplus
2544}
2545#endif
2546

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines