ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.216 by root, Sat Mar 8 07:04:55 2008 UTC vs.
Revision 1.253 by root, Sat May 31 03:13:27 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
160# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
161#endif 174#endif
162 175
163#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
165#endif 178#endif
166 179
167#ifndef EV_USE_NANOSLEEP 180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
168# define EV_USE_NANOSLEEP 0 184# define EV_USE_NANOSLEEP 0
185# endif
169#endif 186#endif
170 187
171#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
173#endif 190#endif
179# define EV_USE_POLL 1 196# define EV_USE_POLL 1
180# endif 197# endif
181#endif 198#endif
182 199
183#ifndef EV_USE_EPOLL 200#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1
203# else
184# define EV_USE_EPOLL 0 204# define EV_USE_EPOLL 0
205# endif
185#endif 206#endif
186 207
187#ifndef EV_USE_KQUEUE 208#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 209# define EV_USE_KQUEUE 0
189#endif 210#endif
191#ifndef EV_USE_PORT 212#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 213# define EV_USE_PORT 0
193#endif 214#endif
194 215
195#ifndef EV_USE_INOTIFY 216#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
218# define EV_USE_INOTIFY 1
219# else
196# define EV_USE_INOTIFY 0 220# define EV_USE_INOTIFY 0
221# endif
197#endif 222#endif
198 223
199#ifndef EV_PID_HASHSIZE 224#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 225# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 226# define EV_PID_HASHSIZE 1
210# else 235# else
211# define EV_INOTIFY_HASHSIZE 16 236# define EV_INOTIFY_HASHSIZE 16
212# endif 237# endif
213#endif 238#endif
214 239
215/**/ 240#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1
243# else
244# define EV_USE_EVENTFD 0
245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
264#endif
265
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 267
217#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 269# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 270# define EV_USE_MONOTONIC 0
220#endif 271#endif
241 292
242#if EV_SELECT_IS_WINSOCKET 293#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 294# include <winsock.h>
244#endif 295#endif
245 296
297#if EV_USE_EVENTFD
298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h>
300# ifdef __cplusplus
301extern "C" {
302# endif
303int eventfd (unsigned int initval, int flags);
304# ifdef __cplusplus
305}
306# endif
307#endif
308
246/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
247 316
248/* 317/*
249 * This is used to avoid floating point rounding problems. 318 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 319 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 320 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 332# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 333# define noinline __attribute__ ((noinline))
265#else 334#else
266# define expect(expr,value) (expr) 335# define expect(expr,value) (expr)
267# define noinline 336# define noinline
268# if __STDC_VERSION__ < 199901L 337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 338# define inline
270# endif 339# endif
271#endif 340#endif
272 341
273#define expect_false(expr) expect ((expr) != 0, 0) 342#define expect_false(expr) expect ((expr) != 0, 0)
288 357
289typedef ev_watcher *W; 358typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 359typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 360typedef ev_watcher_time *WT;
292 361
362#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at
364
293#if EV_USE_MONOTONIC 365#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 367/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 369#endif
323 perror (msg); 395 perror (msg);
324 abort (); 396 abort ();
325 } 397 }
326} 398}
327 399
400static void *
401ev_realloc_emul (void *ptr, long size)
402{
403 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and
405 * the single unix specification, so work around them here.
406 */
407
408 if (size)
409 return realloc (ptr, size);
410
411 free (ptr);
412 return 0;
413}
414
328static void *(*alloc)(void *ptr, long size); 415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 416
330void 417void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 418ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 419{
333 alloc = cb; 420 alloc = cb;
334} 421}
335 422
336inline_speed void * 423inline_speed void *
337ev_realloc (void *ptr, long size) 424ev_realloc (void *ptr, long size)
338{ 425{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 426 ptr = alloc (ptr, size);
340 427
341 if (!ptr && size) 428 if (!ptr && size)
342 { 429 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 431 abort ();
367 W w; 454 W w;
368 int events; 455 int events;
369} ANPENDING; 456} ANPENDING;
370 457
371#if EV_USE_INOTIFY 458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
372typedef struct 460typedef struct
373{ 461{
374 WL head; 462 WL head;
375} ANFS; 463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
376#endif 482#endif
377 483
378#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
379 485
380 struct ev_loop 486 struct ev_loop
451 ts.tv_sec = (time_t)delay; 557 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 559
454 nanosleep (&ts, 0); 560 nanosleep (&ts, 0);
455#elif defined(_WIN32) 561#elif defined(_WIN32)
456 Sleep (delay * 1e3); 562 Sleep ((unsigned long)(delay * 1e3));
457#else 563#else
458 struct timeval tv; 564 struct timeval tv;
459 565
460 tv.tv_sec = (time_t)delay; 566 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 570#endif
465 } 571 }
466} 572}
467 573
468/*****************************************************************************/ 574/*****************************************************************************/
575
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 577
470int inline_size 578int inline_size
471array_nextsize (int elem, int cur, int cnt) 579array_nextsize (int elem, int cur, int cnt)
472{ 580{
473 int ncur = cur + 1; 581 int ncur = cur + 1;
474 582
475 do 583 do
476 ncur <<= 1; 584 ncur <<= 1;
477 while (cnt > ncur); 585 while (cnt > ncur);
478 586
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 589 {
482 ncur *= elem; 590 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 592 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 593 ncur /= elem;
486 } 594 }
487 595
488 return ncur; 596 return ncur;
702 } 810 }
703} 811}
704 812
705/*****************************************************************************/ 813/*****************************************************************************/
706 814
815/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree.
819 */
820
821/*
822 * at the moment we allow libev the luxury of two heaps,
823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
824 * which is more cache-efficient.
825 * the difference is about 5% with 50000+ watchers.
826 */
827#if EV_USE_4HEAP
828
829#define DHEAP 4
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
833
834/* away from the root */
707void inline_speed 835void inline_speed
708upheap (WT *heap, int k) 836downheap (ANHE *heap, int N, int k)
709{ 837{
710 WT w = heap [k]; 838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
711 840
712 while (k) 841 for (;;)
713 { 842 {
714 int p = (k - 1) >> 1; 843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 846
716 if (heap [p]->at <= w->at) 847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
849 {
850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
717 break; 863 break;
718 864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
903 heap [k] = heap [c];
904 ev_active (ANHE_w (heap [k])) = k;
905
906 k = c;
907 }
908
909 heap [k] = he;
910 ev_active (ANHE_w (he)) = k;
911}
912#endif
913
914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
719 heap [k] = heap [p]; 927 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 928 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 929 k = p;
722 } 930 }
723 931
724 heap [k] = w; 932 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 933 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 934}
755 935
756void inline_size 936void inline_size
757adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
758{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 940 upheap (heap, k);
941 else
760 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
761} 955}
762 956
763/*****************************************************************************/ 957/*****************************************************************************/
764 958
765typedef struct 959typedef struct
802static void noinline 996static void noinline
803evpipe_init (EV_P) 997evpipe_init (EV_P)
804{ 998{
805 if (!ev_is_active (&pipeev)) 999 if (!ev_is_active (&pipeev))
806 { 1000 {
1001#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0)
1003 {
1004 evpipe [0] = -1;
1005 fd_intern (evfd);
1006 ev_io_set (&pipeev, evfd, EV_READ);
1007 }
1008 else
1009#endif
1010 {
807 while (pipe (evpipe)) 1011 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1012 syserr ("(libev) error creating signal/async pipe");
809 1013
810 fd_intern (evpipe [0]); 1014 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1015 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1016 ev_io_set (&pipeev, evpipe [0], EV_READ);
1017 }
1018
814 ev_io_start (EV_A_ &pipeev); 1019 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1020 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1021 }
817} 1022}
818 1023
822 if (!*flag) 1027 if (!*flag)
823 { 1028 {
824 int old_errno = errno; /* save errno because write might clobber it */ 1029 int old_errno = errno; /* save errno because write might clobber it */
825 1030
826 *flag = 1; 1031 *flag = 1;
1032
1033#if EV_USE_EVENTFD
1034 if (evfd >= 0)
1035 {
1036 uint64_t counter = 1;
1037 write (evfd, &counter, sizeof (uint64_t));
1038 }
1039 else
1040#endif
827 write (evpipe [1], &old_errno, 1); 1041 write (evpipe [1], &old_errno, 1);
828 1042
829 errno = old_errno; 1043 errno = old_errno;
830 } 1044 }
831} 1045}
832 1046
833static void 1047static void
834pipecb (EV_P_ ev_io *iow, int revents) 1048pipecb (EV_P_ ev_io *iow, int revents)
835{ 1049{
1050#if EV_USE_EVENTFD
1051 if (evfd >= 0)
836 { 1052 {
837 int dummy; 1053 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t));
1055 }
1056 else
1057#endif
1058 {
1059 char dummy;
838 read (evpipe [0], &dummy, 1); 1060 read (evpipe [0], &dummy, 1);
839 } 1061 }
840 1062
841 if (gotsig && ev_is_default_loop (EV_A)) 1063 if (gotsig && ev_is_default_loop (EV_A))
842 { 1064 {
843 int signum; 1065 int signum;
844 gotsig = 0; 1066 gotsig = 0;
865} 1087}
866 1088
867/*****************************************************************************/ 1089/*****************************************************************************/
868 1090
869static void 1091static void
870sighandler (int signum) 1092ev_sighandler (int signum)
871{ 1093{
872#if EV_MULTIPLICITY 1094#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 1095 struct ev_loop *loop = &default_loop_struct;
874#endif 1096#endif
875 1097
876#if _WIN32 1098#if _WIN32
877 signal (signum, sighandler); 1099 signal (signum, ev_sighandler);
878#endif 1100#endif
879 1101
880 signals [signum - 1].gotsig = 1; 1102 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig); 1103 evpipe_write (EV_A_ &gotsig);
882} 1104}
1105 if (!(flags & EVFLAG_NOENV) 1327 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 1328 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 1329 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 1330 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 1331
1110 if (!(flags & 0x0000ffffUL)) 1332 if (!(flags & 0x0000ffffU))
1111 flags |= ev_recommended_backends (); 1333 flags |= ev_recommended_backends ();
1112 1334
1113#if EV_USE_PORT 1335#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 1337#endif
1139 if (ev_is_active (&pipeev)) 1361 if (ev_is_active (&pipeev))
1140 { 1362 {
1141 ev_ref (EV_A); /* signal watcher */ 1363 ev_ref (EV_A); /* signal watcher */
1142 ev_io_stop (EV_A_ &pipeev); 1364 ev_io_stop (EV_A_ &pipeev);
1143 1365
1144 close (evpipe [0]); evpipe [0] = 0; 1366#if EV_USE_EVENTFD
1145 close (evpipe [1]); evpipe [1] = 0; 1367 if (evfd >= 0)
1368 close (evfd);
1369#endif
1370
1371 if (evpipe [0] >= 0)
1372 {
1373 close (evpipe [0]);
1374 close (evpipe [1]);
1375 }
1146 } 1376 }
1147 1377
1148#if EV_USE_INOTIFY 1378#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 1379 if (fs_fd >= 0)
1150 close (fs_fd); 1380 close (fs_fd);
1195#endif 1425#endif
1196 1426
1197 backend = 0; 1427 backend = 0;
1198} 1428}
1199 1429
1430#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 1431void inline_size infy_fork (EV_P);
1432#endif
1201 1433
1202void inline_size 1434void inline_size
1203loop_fork (EV_P) 1435loop_fork (EV_P)
1204{ 1436{
1205#if EV_USE_PORT 1437#if EV_USE_PORT
1224 gotasync = 1; 1456 gotasync = 1;
1225#endif 1457#endif
1226 1458
1227 ev_ref (EV_A); 1459 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev); 1460 ev_io_stop (EV_A_ &pipeev);
1461
1462#if EV_USE_EVENTFD
1463 if (evfd >= 0)
1464 close (evfd);
1465#endif
1466
1467 if (evpipe [0] >= 0)
1468 {
1229 close (evpipe [0]); 1469 close (evpipe [0]);
1230 close (evpipe [1]); 1470 close (evpipe [1]);
1471 }
1231 1472
1232 evpipe_init (EV_A); 1473 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */ 1474 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ); 1475 pipecb (EV_A_ &pipeev, EV_READ);
1235 } 1476 }
1236 1477
1237 postfork = 0; 1478 postfork = 0;
1238} 1479}
1239 1480
1240#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1241struct ev_loop * 1483struct ev_loop *
1242ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1243{ 1485{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245 1487
1264ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1265{ 1507{
1266 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1267} 1509}
1268 1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1269#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1270 1611
1271#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1272struct ev_loop * 1613struct ev_loop *
1273ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1274#else 1615#else
1350 { 1691 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352 1693
1353 p->w->pending = 0; 1694 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1355 } 1697 }
1356 } 1698 }
1357} 1699}
1358
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
1377 downheap (timers, timercnt, 0);
1378 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 {
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438 1700
1439#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1440void inline_size 1702void inline_size
1441idle_reify (EV_P) 1703idle_reify (EV_P)
1442{ 1704{
1454 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1716 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1455 break; 1717 break;
1456 } 1718 }
1457 } 1719 }
1458 } 1720 }
1721}
1722#endif
1723
1724void inline_size
1725timers_reify (EV_P)
1726{
1727 EV_FREQUENT_CHECK;
1728
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743
1744 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0);
1746 }
1747 else
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749
1750 EV_FREQUENT_CHECK;
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 }
1753}
1754
1755#if EV_PERIODIC_ENABLE
1756void inline_size
1757periodics_reify (EV_P)
1758{
1759 EV_FREQUENT_CHECK;
1760
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0);
1776 }
1777 else if (w->interval)
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1801 }
1802}
1803
1804static void noinline
1805periodics_reschedule (EV_P)
1806{
1807 int i;
1808
1809 /* adjust periodics after time jump */
1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1811 {
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813
1814 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1818
1819 ANHE_at_cache (periodics [i]);
1820 }
1821
1822 reheap (periodics, periodiccnt);
1459} 1823}
1460#endif 1824#endif
1461 1825
1462void inline_speed 1826void inline_speed
1463time_update (EV_P_ ev_tstamp max_block) 1827time_update (EV_P_ ev_tstamp max_block)
1492 */ 1856 */
1493 for (i = 4; --i; ) 1857 for (i = 4; --i; )
1494 { 1858 {
1495 rtmn_diff = ev_rt_now - mn_now; 1859 rtmn_diff = ev_rt_now - mn_now;
1496 1860
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 1862 return; /* all is well */
1499 1863
1500 ev_rt_now = ev_time (); 1864 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 1865 mn_now = get_clock ();
1502 now_floor = mn_now; 1866 now_floor = mn_now;
1518#if EV_PERIODIC_ENABLE 1882#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 1883 periodics_reschedule (EV_A);
1520#endif 1884#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1523 ((WT)timers [i])->at += ev_rt_now - mn_now; 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1524 } 1892 }
1525 1893
1526 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1527 } 1895 }
1528} 1896}
1542static int loop_done; 1910static int loop_done;
1543 1911
1544void 1912void
1545ev_loop (EV_P_ int flags) 1913ev_loop (EV_P_ int flags)
1546{ 1914{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1915 loop_done = EVUNLOOP_CANCEL;
1548 ? EVUNLOOP_ONE
1549 : EVUNLOOP_CANCEL;
1550 1916
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1552 1918
1553 do 1919 do
1554 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1555#ifndef _WIN32 1925#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 1926 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 1927 if (expect_false (getpid () != curpid))
1558 { 1928 {
1559 curpid = getpid (); 1929 curpid = getpid ();
1600 1970
1601 waittime = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1602 1972
1603 if (timercnt) 1973 if (timercnt)
1604 { 1974 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1606 if (waittime > to) waittime = to; 1976 if (waittime > to) waittime = to;
1607 } 1977 }
1608 1978
1609#if EV_PERIODIC_ENABLE 1979#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 1980 if (periodiccnt)
1611 { 1981 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1613 if (waittime > to) waittime = to; 1983 if (waittime > to) waittime = to;
1614 } 1984 }
1615#endif 1985#endif
1616 1986
1617 if (expect_false (waittime < timeout_blocktime)) 1987 if (expect_false (waittime < timeout_blocktime))
1650 /* queue check watchers, to be executed first */ 2020 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 2021 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1653 2023
1654 call_pending (EV_A); 2024 call_pending (EV_A);
1655
1656 } 2025 }
1657 while (expect_true (activecnt && !loop_done)); 2026 while (expect_true (
2027 activecnt
2028 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2030 ));
1658 2031
1659 if (loop_done == EVUNLOOP_ONE) 2032 if (loop_done == EVUNLOOP_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 2033 loop_done = EVUNLOOP_CANCEL;
1661} 2034}
1662 2035
1751 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1752 return; 2125 return;
1753 2126
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1755 2128
2129 EV_FREQUENT_CHECK;
2130
1756 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1758 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1759 2134
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1761 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1762} 2139}
1763 2140
1764void noinline 2141void noinline
1765ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1766{ 2143{
1767 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1769 return; 2146 return;
1770 2147
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
1772 2151
1773 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1775 2154
1776 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1777} 2158}
1778 2159
1779void noinline 2160void noinline
1780ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1781{ 2162{
1782 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1783 return; 2164 return;
1784 2165
1785 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1786 2167
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1793 2178
2179 EV_FREQUENT_CHECK;
2180
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 2182}
1796 2183
1797void noinline 2184void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1799{ 2186{
1800 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1802 return; 2189 return;
1803 2190
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2191 EV_FREQUENT_CHECK;
1805 2192
1806 { 2193 {
1807 int active = ((W)w)->active; 2194 int active = ev_active (w);
1808 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1809 if (expect_true (--active < --timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1810 { 2201 {
1811 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1813 } 2204 }
1814 } 2205 }
1815 2206
1816 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1817 2210
1818 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1819} 2212}
1820 2213
1821void noinline 2214void noinline
1822ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1823{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1824 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1825 { 2220 {
1826 if (w->repeat) 2221 if (w->repeat)
1827 { 2222 {
1828 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1830 } 2226 }
1831 else 2227 else
1832 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1833 } 2229 }
1834 else if (w->repeat) 2230 else if (w->repeat)
1835 { 2231 {
1836 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1838 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1839} 2237}
1840 2238
1841#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1842void noinline 2240void noinline
1843ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1844{ 2242{
1845 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1846 return; 2244 return;
1847 2245
1848 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 2248 else if (w->interval)
1851 { 2249 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 2253 }
1856 else 2254 else
1857 ((WT)w)->at = w->offset; 2255 ev_at (w) = w->offset;
1858 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1863 2265
2266 EV_FREQUENT_CHECK;
2267
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 2269}
1866 2270
1867void noinline 2271void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1869{ 2273{
1870 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1872 return; 2276 return;
1873 2277
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2278 EV_FREQUENT_CHECK;
1875 2279
1876 { 2280 {
1877 int active = ((W)w)->active; 2281 int active = ev_active (w);
1878 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1879 if (expect_true (--active < --periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1880 { 2288 {
1881 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1883 } 2291 }
1884 } 2292 }
1885 2293
2294 EV_FREQUENT_CHECK;
2295
1886 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1887} 2297}
1888 2298
1889void noinline 2299void noinline
1890ev_periodic_again (EV_P_ ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1909 return; 2319 return;
1910 2320
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1912 2322
1913 evpipe_init (EV_A); 2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
1914 2326
1915 { 2327 {
1916#ifndef _WIN32 2328#ifndef _WIN32
1917 sigset_t full, prev; 2329 sigset_t full, prev;
1918 sigfillset (&full); 2330 sigfillset (&full);
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 2343
1932 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1933 { 2345 {
1934#if _WIN32 2346#if _WIN32
1935 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1936#else 2348#else
1937 struct sigaction sa; 2349 struct sigaction sa;
1938 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1942#endif 2354#endif
1943 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
1944} 2358}
1945 2359
1946void noinline 2360void noinline
1947ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1948{ 2362{
1949 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
1951 return; 2365 return;
1952 2366
2367 EV_FREQUENT_CHECK;
2368
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1955 2371
1956 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1957 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
1958} 2376}
1959 2377
1960void 2378void
1961ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1962{ 2380{
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 2383#endif
1966 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
1967 return; 2385 return;
1968 2386
2387 EV_FREQUENT_CHECK;
2388
1969 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
1971} 2393}
1972 2394
1973void 2395void
1974ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1975{ 2397{
1976 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
1978 return; 2400 return;
1979 2401
2402 EV_FREQUENT_CHECK;
2403
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1982} 2408}
1983 2409
1984#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
1985 2411
1986# ifdef _WIN32 2412# ifdef _WIN32
2004 if (w->wd < 0) 2430 if (w->wd < 0)
2005 { 2431 {
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2007 2433
2008 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 2438 {
2011 char path [4096]; 2439 char path [4096];
2012 strcpy (path, w->path); 2440 strcpy (path, w->path);
2013 2441
2212 else 2640 else
2213#endif 2641#endif
2214 ev_timer_start (EV_A_ &w->timer); 2642 ev_timer_start (EV_A_ &w->timer);
2215 2643
2216 ev_start (EV_A_ (W)w, 1); 2644 ev_start (EV_A_ (W)w, 1);
2645
2646 EV_FREQUENT_CHECK;
2217} 2647}
2218 2648
2219void 2649void
2220ev_stat_stop (EV_P_ ev_stat *w) 2650ev_stat_stop (EV_P_ ev_stat *w)
2221{ 2651{
2222 clear_pending (EV_A_ (W)w); 2652 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 2653 if (expect_false (!ev_is_active (w)))
2224 return; 2654 return;
2225 2655
2656 EV_FREQUENT_CHECK;
2657
2226#if EV_USE_INOTIFY 2658#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 2659 infy_del (EV_A_ w);
2228#endif 2660#endif
2229 ev_timer_stop (EV_A_ &w->timer); 2661 ev_timer_stop (EV_A_ &w->timer);
2230 2662
2231 ev_stop (EV_A_ (W)w); 2663 ev_stop (EV_A_ (W)w);
2664
2665 EV_FREQUENT_CHECK;
2232} 2666}
2233#endif 2667#endif
2234 2668
2235#if EV_IDLE_ENABLE 2669#if EV_IDLE_ENABLE
2236void 2670void
2238{ 2672{
2239 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
2240 return; 2674 return;
2241 2675
2242 pri_adjust (EV_A_ (W)w); 2676 pri_adjust (EV_A_ (W)w);
2677
2678 EV_FREQUENT_CHECK;
2243 2679
2244 { 2680 {
2245 int active = ++idlecnt [ABSPRI (w)]; 2681 int active = ++idlecnt [ABSPRI (w)];
2246 2682
2247 ++idleall; 2683 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 2684 ev_start (EV_A_ (W)w, active);
2249 2685
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2686 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w; 2687 idles [ABSPRI (w)][active - 1] = w;
2252 } 2688 }
2689
2690 EV_FREQUENT_CHECK;
2253} 2691}
2254 2692
2255void 2693void
2256ev_idle_stop (EV_P_ ev_idle *w) 2694ev_idle_stop (EV_P_ ev_idle *w)
2257{ 2695{
2258 clear_pending (EV_A_ (W)w); 2696 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 2697 if (expect_false (!ev_is_active (w)))
2260 return; 2698 return;
2261 2699
2700 EV_FREQUENT_CHECK;
2701
2262 { 2702 {
2263 int active = ((W)w)->active; 2703 int active = ev_active (w);
2264 2704
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2705 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2706 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 2707
2268 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2269 --idleall; 2709 --idleall;
2270 } 2710 }
2711
2712 EV_FREQUENT_CHECK;
2271} 2713}
2272#endif 2714#endif
2273 2715
2274void 2716void
2275ev_prepare_start (EV_P_ ev_prepare *w) 2717ev_prepare_start (EV_P_ ev_prepare *w)
2276{ 2718{
2277 if (expect_false (ev_is_active (w))) 2719 if (expect_false (ev_is_active (w)))
2278 return; 2720 return;
2721
2722 EV_FREQUENT_CHECK;
2279 2723
2280 ev_start (EV_A_ (W)w, ++preparecnt); 2724 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2725 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w; 2726 prepares [preparecnt - 1] = w;
2727
2728 EV_FREQUENT_CHECK;
2283} 2729}
2284 2730
2285void 2731void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 2732ev_prepare_stop (EV_P_ ev_prepare *w)
2287{ 2733{
2288 clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 2735 if (expect_false (!ev_is_active (w)))
2290 return; 2736 return;
2291 2737
2738 EV_FREQUENT_CHECK;
2739
2292 { 2740 {
2293 int active = ((W)w)->active; 2741 int active = ev_active (w);
2742
2294 prepares [active - 1] = prepares [--preparecnt]; 2743 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 2744 ev_active (prepares [active - 1]) = active;
2296 } 2745 }
2297 2746
2298 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2299} 2750}
2300 2751
2301void 2752void
2302ev_check_start (EV_P_ ev_check *w) 2753ev_check_start (EV_P_ ev_check *w)
2303{ 2754{
2304 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
2305 return; 2756 return;
2757
2758 EV_FREQUENT_CHECK;
2306 2759
2307 ev_start (EV_A_ (W)w, ++checkcnt); 2760 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2761 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w; 2762 checks [checkcnt - 1] = w;
2763
2764 EV_FREQUENT_CHECK;
2310} 2765}
2311 2766
2312void 2767void
2313ev_check_stop (EV_P_ ev_check *w) 2768ev_check_stop (EV_P_ ev_check *w)
2314{ 2769{
2315 clear_pending (EV_A_ (W)w); 2770 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 2771 if (expect_false (!ev_is_active (w)))
2317 return; 2772 return;
2318 2773
2774 EV_FREQUENT_CHECK;
2775
2319 { 2776 {
2320 int active = ((W)w)->active; 2777 int active = ev_active (w);
2778
2321 checks [active - 1] = checks [--checkcnt]; 2779 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 2780 ev_active (checks [active - 1]) = active;
2323 } 2781 }
2324 2782
2325 ev_stop (EV_A_ (W)w); 2783 ev_stop (EV_A_ (W)w);
2784
2785 EV_FREQUENT_CHECK;
2326} 2786}
2327 2787
2328#if EV_EMBED_ENABLE 2788#if EV_EMBED_ENABLE
2329void noinline 2789void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w) 2790ev_embed_sweep (EV_P_ ev_embed *w)
2377 struct ev_loop *loop = w->other; 2837 struct ev_loop *loop = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 2840 }
2381 2841
2842 EV_FREQUENT_CHECK;
2843
2382 ev_set_priority (&w->io, ev_priority (w)); 2844 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 2845 ev_io_start (EV_A_ &w->io);
2384 2846
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 2847 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 2848 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 2849 ev_prepare_start (EV_A_ &w->prepare);
2388 2850
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 2852
2391 ev_start (EV_A_ (W)w, 1); 2853 ev_start (EV_A_ (W)w, 1);
2854
2855 EV_FREQUENT_CHECK;
2392} 2856}
2393 2857
2394void 2858void
2395ev_embed_stop (EV_P_ ev_embed *w) 2859ev_embed_stop (EV_P_ ev_embed *w)
2396{ 2860{
2397 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
2399 return; 2863 return;
2400 2864
2865 EV_FREQUENT_CHECK;
2866
2401 ev_io_stop (EV_A_ &w->io); 2867 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 2868 ev_prepare_stop (EV_A_ &w->prepare);
2403 2869
2404 ev_stop (EV_A_ (W)w); 2870 ev_stop (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2405} 2873}
2406#endif 2874#endif
2407 2875
2408#if EV_FORK_ENABLE 2876#if EV_FORK_ENABLE
2409void 2877void
2410ev_fork_start (EV_P_ ev_fork *w) 2878ev_fork_start (EV_P_ ev_fork *w)
2411{ 2879{
2412 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
2413 return; 2881 return;
2882
2883 EV_FREQUENT_CHECK;
2414 2884
2415 ev_start (EV_A_ (W)w, ++forkcnt); 2885 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2886 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w; 2887 forks [forkcnt - 1] = w;
2888
2889 EV_FREQUENT_CHECK;
2418} 2890}
2419 2891
2420void 2892void
2421ev_fork_stop (EV_P_ ev_fork *w) 2893ev_fork_stop (EV_P_ ev_fork *w)
2422{ 2894{
2423 clear_pending (EV_A_ (W)w); 2895 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 2896 if (expect_false (!ev_is_active (w)))
2425 return; 2897 return;
2426 2898
2899 EV_FREQUENT_CHECK;
2900
2427 { 2901 {
2428 int active = ((W)w)->active; 2902 int active = ev_active (w);
2903
2429 forks [active - 1] = forks [--forkcnt]; 2904 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 2905 ev_active (forks [active - 1]) = active;
2431 } 2906 }
2432 2907
2433 ev_stop (EV_A_ (W)w); 2908 ev_stop (EV_A_ (W)w);
2909
2910 EV_FREQUENT_CHECK;
2434} 2911}
2435#endif 2912#endif
2436 2913
2437#if EV_ASYNC_ENABLE 2914#if EV_ASYNC_ENABLE
2438void 2915void
2440{ 2917{
2441 if (expect_false (ev_is_active (w))) 2918 if (expect_false (ev_is_active (w)))
2442 return; 2919 return;
2443 2920
2444 evpipe_init (EV_A); 2921 evpipe_init (EV_A);
2922
2923 EV_FREQUENT_CHECK;
2445 2924
2446 ev_start (EV_A_ (W)w, ++asynccnt); 2925 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2926 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w; 2927 asyncs [asynccnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2449} 2930}
2450 2931
2451void 2932void
2452ev_async_stop (EV_P_ ev_async *w) 2933ev_async_stop (EV_P_ ev_async *w)
2453{ 2934{
2454 clear_pending (EV_A_ (W)w); 2935 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 2936 if (expect_false (!ev_is_active (w)))
2456 return; 2937 return;
2457 2938
2939 EV_FREQUENT_CHECK;
2940
2458 { 2941 {
2459 int active = ((W)w)->active; 2942 int active = ev_active (w);
2943
2460 asyncs [active - 1] = asyncs [--asynccnt]; 2944 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 2945 ev_active (asyncs [active - 1]) = active;
2462 } 2946 }
2463 2947
2464 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2465} 2951}
2466 2952
2467void 2953void
2468ev_async_send (EV_P_ ev_async *w) 2954ev_async_send (EV_P_ ev_async *w)
2469{ 2955{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines