ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.216 by root, Sat Mar 8 07:04:55 2008 UTC vs.
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
51# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
54# endif 67# endif
55# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
57# endif 70# endif
58# else 71# else
59# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
61# endif 74# endif
118# else 131# else
119# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
120# endif 133# endif
121# endif 134# endif
122 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
123#endif 144#endif
124 145
125#include <math.h> 146#include <math.h>
126#include <stdlib.h> 147#include <stdlib.h>
127#include <fcntl.h> 148#include <fcntl.h>
145#ifndef _WIN32 166#ifndef _WIN32
146# include <sys/time.h> 167# include <sys/time.h>
147# include <sys/wait.h> 168# include <sys/wait.h>
148# include <unistd.h> 169# include <unistd.h>
149#else 170#else
171# include <io.h>
150# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 173# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
154# endif 176# endif
155#endif 177#endif
156 178
157/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
158 188
159#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
160# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
161#endif 195#endif
162 196
163#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 199#endif
166 200
167#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
168# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
169#endif 207#endif
170 208
171#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
173#endif 211#endif
179# define EV_USE_POLL 1 217# define EV_USE_POLL 1
180# endif 218# endif
181#endif 219#endif
182 220
183#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
184# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
185#endif 227#endif
186 228
187#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
189#endif 231#endif
191#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 234# define EV_USE_PORT 0
193#endif 235#endif
194 236
195#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
196# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
197#endif 243#endif
198 244
199#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 246# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
210# else 256# else
211# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
212# endif 258# endif
213#endif 259#endif
214 260
215/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 288
217#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
220#endif 292#endif
234# include <sys/select.h> 306# include <sys/select.h>
235# endif 307# endif
236#endif 308#endif
237 309
238#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
239# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
240#endif 319#endif
241 320
242#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 322# include <winsock.h>
244#endif 323#endif
245 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
246/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
247 353
248/* 354/*
249 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
265#else 371#else
266# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
267# define noinline 373# define noinline
268# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 375# define inline
270# endif 376# endif
271#endif 377#endif
272 378
273#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
288 394
289typedef ev_watcher *W; 395typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
292 398
293#if EV_USE_MONOTONIC 399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 410#endif
298 411
299#ifdef _WIN32 412#ifdef _WIN32
300# include "ev_win32.c" 413# include "ev_win32.c"
309{ 422{
310 syserr_cb = cb; 423 syserr_cb = cb;
311} 424}
312 425
313static void noinline 426static void noinline
314syserr (const char *msg) 427ev_syserr (const char *msg)
315{ 428{
316 if (!msg) 429 if (!msg)
317 msg = "(libev) system error"; 430 msg = "(libev) system error";
318 431
319 if (syserr_cb) 432 if (syserr_cb)
323 perror (msg); 436 perror (msg);
324 abort (); 437 abort ();
325 } 438 }
326} 439}
327 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
328static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 457
330void 458void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 460{
333 alloc = cb; 461 alloc = cb;
334} 462}
335 463
336inline_speed void * 464inline_speed void *
337ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
338{ 466{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
340 468
341 if (!ptr && size) 469 if (!ptr && size)
342 { 470 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 472 abort ();
355typedef struct 483typedef struct
356{ 484{
357 WL head; 485 WL head;
358 unsigned char events; 486 unsigned char events;
359 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
360#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 494 SOCKET handle;
362#endif 495#endif
363} ANFD; 496} ANFD;
364 497
367 W w; 500 W w;
368 int events; 501 int events;
369} ANPENDING; 502} ANPENDING;
370 503
371#if EV_USE_INOTIFY 504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
372typedef struct 506typedef struct
373{ 507{
374 WL head; 508 WL head;
375} ANFS; 509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
376#endif 528#endif
377 529
378#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
379 531
380 struct ev_loop 532 struct ev_loop
405 557
406ev_tstamp 558ev_tstamp
407ev_time (void) 559ev_time (void)
408{ 560{
409#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
410 struct timespec ts; 564 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 567 }
568#endif
569
414 struct timeval tv; 570 struct timeval tv;
415 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 573}
419 574
420ev_tstamp inline_size 575ev_tstamp inline_size
421get_clock (void) 576get_clock (void)
422{ 577{
451 ts.tv_sec = (time_t)delay; 606 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 608
454 nanosleep (&ts, 0); 609 nanosleep (&ts, 0);
455#elif defined(_WIN32) 610#elif defined(_WIN32)
456 Sleep (delay * 1e3); 611 Sleep ((unsigned long)(delay * 1e3));
457#else 612#else
458 struct timeval tv; 613 struct timeval tv;
459 614
460 tv.tv_sec = (time_t)delay; 615 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
463 select (0, 0, 0, 0, &tv); 621 select (0, 0, 0, 0, &tv);
464#endif 622#endif
465 } 623 }
466} 624}
467 625
468/*****************************************************************************/ 626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 629
470int inline_size 630int inline_size
471array_nextsize (int elem, int cur, int cnt) 631array_nextsize (int elem, int cur, int cnt)
472{ 632{
473 int ncur = cur + 1; 633 int ncur = cur + 1;
474 634
475 do 635 do
476 ncur <<= 1; 636 ncur <<= 1;
477 while (cnt > ncur); 637 while (cnt > ncur);
478 638
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 641 {
482 ncur *= elem; 642 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 644 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 645 ncur /= elem;
486 } 646 }
487 647
488 return ncur; 648 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 652array_realloc (int elem, void *base, int *cur, int cnt)
493{ 653{
494 *cur = array_nextsize (elem, *cur, cnt); 654 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 655 return ev_realloc (base, elem * *cur);
496} 656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 660
498#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 662 if (expect_false ((cnt) > (cur))) \
500 { \ 663 { \
501 int ocur_ = (cur); \ 664 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 677 }
515#endif 678#endif
516 679
517#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 682
520/*****************************************************************************/ 683/*****************************************************************************/
521 684
522void noinline 685void noinline
523ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
545 ev_feed_event (EV_A_ events [i], type); 708 ev_feed_event (EV_A_ events [i], type);
546} 709}
547 710
548/*****************************************************************************/ 711/*****************************************************************************/
549 712
550void inline_size
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed 713void inline_speed
564fd_event (EV_P_ int fd, int revents) 714fd_event (EV_P_ int fd, int revents)
565{ 715{
566 ANFD *anfd = anfds + fd; 716 ANFD *anfd = anfds + fd;
567 ev_io *w; 717 ev_io *w;
599 events |= (unsigned char)w->events; 749 events |= (unsigned char)w->events;
600 750
601#if EV_SELECT_IS_WINSOCKET 751#if EV_SELECT_IS_WINSOCKET
602 if (events) 752 if (events)
603 { 753 {
604 unsigned long argp; 754 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 755 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 757 #else
608 anfd->handle = _get_osfhandle (fd); 758 anfd->handle = _get_osfhandle (fd);
609 #endif 759 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 761 }
612#endif 762#endif
613 763
614 { 764 {
615 unsigned char o_events = anfd->events; 765 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 766 unsigned char o_reify = anfd->reify;
617 767
618 anfd->reify = 0; 768 anfd->reify = 0;
619 anfd->events = events; 769 anfd->events = events;
620 770
621 if (o_events != events || o_reify & EV_IOFDSET) 771 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 772 backend_modify (EV_A_ fd, o_events, events);
623 } 773 }
624 } 774 }
625 775
626 fdchangecnt = 0; 776 fdchangecnt = 0;
668{ 818{
669 int fd; 819 int fd;
670 820
671 for (fd = 0; fd < anfdmax; ++fd) 821 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 822 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 823 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 824 fd_kill (EV_A_ fd);
675} 825}
676 826
677/* called on ENOMEM in select/poll to kill some fds and retry */ 827/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 828static void noinline
696 846
697 for (fd = 0; fd < anfdmax; ++fd) 847 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 848 if (anfds [fd].events)
699 { 849 {
700 anfds [fd].events = 0; 850 anfds [fd].events = 0;
851 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 852 fd_change (EV_A_ fd, EV__IOFDSET | 1);
702 } 853 }
703} 854}
704 855
705/*****************************************************************************/ 856/*****************************************************************************/
706 857
858/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree.
862 */
863
864/*
865 * at the moment we allow libev the luxury of two heaps,
866 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
867 * which is more cache-efficient.
868 * the difference is about 5% with 50000+ watchers.
869 */
870#if EV_USE_4HEAP
871
872#define DHEAP 4
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k))
876
877/* away from the root */
707void inline_speed 878void inline_speed
708upheap (WT *heap, int k) 879downheap (ANHE *heap, int N, int k)
709{ 880{
710 WT w = heap [k]; 881 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0;
711 883
712 while (k) 884 for (;;)
713 { 885 {
714 int p = (k - 1) >> 1; 886 ev_tstamp minat;
887 ANHE *minpos;
888 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 889
716 if (heap [p]->at <= w->at) 890 /* find minimum child */
891 if (expect_true (pos + DHEAP - 1 < E))
892 {
893 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else if (pos < E)
899 {
900 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
901 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
902 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
903 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
904 }
905 else
717 break; 906 break;
718 907
908 if (ANHE_at (he) <= minat)
909 break;
910
911 heap [k] = *minpos;
912 ev_active (ANHE_w (*minpos)) = k;
913
914 k = minpos - heap;
915 }
916
917 heap [k] = he;
918 ev_active (ANHE_w (he)) = k;
919}
920
921#else /* 4HEAP */
922
923#define HEAP0 1
924#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p))
926
927/* away from the root */
928void inline_speed
929downheap (ANHE *heap, int N, int k)
930{
931 ANHE he = heap [k];
932
933 for (;;)
934 {
935 int c = k << 1;
936
937 if (c > N + HEAP0 - 1)
938 break;
939
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0;
942
943 if (ANHE_at (he) <= ANHE_at (heap [c]))
944 break;
945
946 heap [k] = heap [c];
947 ev_active (ANHE_w (heap [k])) = k;
948
949 k = c;
950 }
951
952 heap [k] = he;
953 ev_active (ANHE_w (he)) = k;
954}
955#endif
956
957/* towards the root */
958void inline_speed
959upheap (ANHE *heap, int k)
960{
961 ANHE he = heap [k];
962
963 for (;;)
964 {
965 int p = HPARENT (k);
966
967 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
968 break;
969
719 heap [k] = heap [p]; 970 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 971 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 972 k = p;
722 } 973 }
723 974
724 heap [k] = w; 975 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 976 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 977}
755 978
756void inline_size 979void inline_size
757adjustheap (WT *heap, int N, int k) 980adjustheap (ANHE *heap, int N, int k)
758{ 981{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 983 upheap (heap, k);
984 else
760 downheap (heap, N, k); 985 downheap (heap, N, k);
986}
987
988/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size
990reheap (ANHE *heap, int N)
991{
992 int i;
993
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
995 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
996 for (i = 0; i < N; ++i)
997 upheap (heap, i + HEAP0);
761} 998}
762 999
763/*****************************************************************************/ 1000/*****************************************************************************/
764 1001
765typedef struct 1002typedef struct
771static ANSIG *signals; 1008static ANSIG *signals;
772static int signalmax; 1009static int signalmax;
773 1010
774static EV_ATOMIC_T gotsig; 1011static EV_ATOMIC_T gotsig;
775 1012
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/ 1013/*****************************************************************************/
789 1014
790void inline_speed 1015void inline_speed
791fd_intern (int fd) 1016fd_intern (int fd)
792{ 1017{
793#ifdef _WIN32 1018#ifdef _WIN32
794 int arg = 1; 1019 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 1021#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1023 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1024#endif
802static void noinline 1027static void noinline
803evpipe_init (EV_P) 1028evpipe_init (EV_P)
804{ 1029{
805 if (!ev_is_active (&pipeev)) 1030 if (!ev_is_active (&pipeev))
806 { 1031 {
1032#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0)
1034 {
1035 evpipe [0] = -1;
1036 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 }
1039 else
1040#endif
1041 {
807 while (pipe (evpipe)) 1042 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1043 ev_syserr ("(libev) error creating signal/async pipe");
809 1044
810 fd_intern (evpipe [0]); 1045 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1046 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1047 ev_io_set (&pipeev, evpipe [0], EV_READ);
1048 }
1049
814 ev_io_start (EV_A_ &pipeev); 1050 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1051 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1052 }
817} 1053}
818 1054
822 if (!*flag) 1058 if (!*flag)
823 { 1059 {
824 int old_errno = errno; /* save errno because write might clobber it */ 1060 int old_errno = errno; /* save errno because write might clobber it */
825 1061
826 *flag = 1; 1062 *flag = 1;
1063
1064#if EV_USE_EVENTFD
1065 if (evfd >= 0)
1066 {
1067 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t));
1069 }
1070 else
1071#endif
827 write (evpipe [1], &old_errno, 1); 1072 write (evpipe [1], &old_errno, 1);
828 1073
829 errno = old_errno; 1074 errno = old_errno;
830 } 1075 }
831} 1076}
832 1077
833static void 1078static void
834pipecb (EV_P_ ev_io *iow, int revents) 1079pipecb (EV_P_ ev_io *iow, int revents)
835{ 1080{
1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
836 { 1083 {
837 int dummy; 1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088#endif
1089 {
1090 char dummy;
838 read (evpipe [0], &dummy, 1); 1091 read (evpipe [0], &dummy, 1);
839 } 1092 }
840 1093
841 if (gotsig && ev_is_default_loop (EV_A)) 1094 if (gotsig && ev_is_default_loop (EV_A))
842 { 1095 {
843 int signum; 1096 int signum;
844 gotsig = 0; 1097 gotsig = 0;
865} 1118}
866 1119
867/*****************************************************************************/ 1120/*****************************************************************************/
868 1121
869static void 1122static void
870sighandler (int signum) 1123ev_sighandler (int signum)
871{ 1124{
872#if EV_MULTIPLICITY 1125#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 1126 struct ev_loop *loop = &default_loop_struct;
874#endif 1127#endif
875 1128
876#if _WIN32 1129#if _WIN32
877 signal (signum, sighandler); 1130 signal (signum, ev_sighandler);
878#endif 1131#endif
879 1132
880 signals [signum - 1].gotsig = 1; 1133 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig); 1134 evpipe_write (EV_A_ &gotsig);
882} 1135}
885ev_feed_signal_event (EV_P_ int signum) 1138ev_feed_signal_event (EV_P_ int signum)
886{ 1139{
887 WL w; 1140 WL w;
888 1141
889#if EV_MULTIPLICITY 1142#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif 1144#endif
892 1145
893 --signum; 1146 --signum;
894 1147
895 if (signum < 0 || signum >= signalmax) 1148 if (signum < 0 || signum >= signalmax)
1024 /* kqueue is borked on everything but netbsd apparently */ 1277 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */ 1278 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE; 1279 flags &= ~EVBACKEND_KQUEUE;
1027#endif 1280#endif
1028#ifdef __APPLE__ 1281#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation 1282 /* only select works correctly on that "unix-certified" platform */
1030 flags &= ~EVBACKEND_POLL; 1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1031#endif 1285#endif
1032 1286
1033 return flags; 1287 return flags;
1034} 1288}
1035 1289
1072static void noinline 1326static void noinline
1073loop_init (EV_P_ unsigned int flags) 1327loop_init (EV_P_ unsigned int flags)
1074{ 1328{
1075 if (!backend) 1329 if (!backend)
1076 { 1330 {
1331#if EV_USE_REALTIME
1332 if (!have_realtime)
1333 {
1334 struct timespec ts;
1335
1336 if (!clock_gettime (CLOCK_REALTIME, &ts))
1337 have_realtime = 1;
1338 }
1339#endif
1340
1077#if EV_USE_MONOTONIC 1341#if EV_USE_MONOTONIC
1342 if (!have_monotonic)
1078 { 1343 {
1079 struct timespec ts; 1344 struct timespec ts;
1345
1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1081 have_monotonic = 1; 1347 have_monotonic = 1;
1082 } 1348 }
1083#endif 1349#endif
1084 1350
1085 ev_rt_now = ev_time (); 1351 ev_rt_now = ev_time ();
1086 mn_now = get_clock (); 1352 mn_now = get_clock ();
1087 now_floor = mn_now; 1353 now_floor = mn_now;
1105 if (!(flags & EVFLAG_NOENV) 1371 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 1372 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 1373 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 1374 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 1375
1110 if (!(flags & 0x0000ffffUL)) 1376 if (!(flags & 0x0000ffffU))
1111 flags |= ev_recommended_backends (); 1377 flags |= ev_recommended_backends ();
1112 1378
1113#if EV_USE_PORT 1379#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 1381#endif
1139 if (ev_is_active (&pipeev)) 1405 if (ev_is_active (&pipeev))
1140 { 1406 {
1141 ev_ref (EV_A); /* signal watcher */ 1407 ev_ref (EV_A); /* signal watcher */
1142 ev_io_stop (EV_A_ &pipeev); 1408 ev_io_stop (EV_A_ &pipeev);
1143 1409
1144 close (evpipe [0]); evpipe [0] = 0; 1410#if EV_USE_EVENTFD
1145 close (evpipe [1]); evpipe [1] = 0; 1411 if (evfd >= 0)
1412 close (evfd);
1413#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1146 } 1420 }
1147 1421
1148#if EV_USE_INOTIFY 1422#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 1423 if (fs_fd >= 0)
1150 close (fs_fd); 1424 close (fs_fd);
1195#endif 1469#endif
1196 1470
1197 backend = 0; 1471 backend = 0;
1198} 1472}
1199 1473
1474#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 1475void inline_size infy_fork (EV_P);
1476#endif
1201 1477
1202void inline_size 1478void inline_size
1203loop_fork (EV_P) 1479loop_fork (EV_P)
1204{ 1480{
1205#if EV_USE_PORT 1481#if EV_USE_PORT
1224 gotasync = 1; 1500 gotasync = 1;
1225#endif 1501#endif
1226 1502
1227 ev_ref (EV_A); 1503 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev); 1504 ev_io_stop (EV_A_ &pipeev);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510
1511 if (evpipe [0] >= 0)
1512 {
1229 close (evpipe [0]); 1513 close (evpipe [0]);
1230 close (evpipe [1]); 1514 close (evpipe [1]);
1515 }
1231 1516
1232 evpipe_init (EV_A); 1517 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */ 1518 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ); 1519 pipecb (EV_A_ &pipeev, EV_READ);
1235 } 1520 }
1236 1521
1237 postfork = 0; 1522 postfork = 0;
1238} 1523}
1239 1524
1240#if EV_MULTIPLICITY 1525#if EV_MULTIPLICITY
1526
1241struct ev_loop * 1527struct ev_loop *
1242ev_loop_new (unsigned int flags) 1528ev_loop_new (unsigned int flags)
1243{ 1529{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245 1531
1264ev_loop_fork (EV_P) 1550ev_loop_fork (EV_P)
1265{ 1551{
1266 postfork = 1; /* must be in line with ev_default_fork */ 1552 postfork = 1; /* must be in line with ev_default_fork */
1267} 1553}
1268 1554
1555#if EV_VERIFY
1556static void noinline
1557verify_watcher (EV_P_ W w)
1558{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560
1561 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563}
1564
1565static void noinline
1566verify_heap (EV_P_ ANHE *heap, int N)
1567{
1568 int i;
1569
1570 for (i = HEAP0; i < N + HEAP0; ++i)
1571 {
1572 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1573 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1574 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1575
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 }
1578}
1579
1580static void noinline
1581array_verify (EV_P_ W *ws, int cnt)
1582{
1583 while (cnt--)
1584 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]);
1587 }
1588}
1589#endif
1590
1591void
1592ev_loop_verify (EV_P)
1593{
1594#if EV_VERIFY
1595 int i;
1596 WL w;
1597
1598 assert (activecnt >= -1);
1599
1600 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603
1604 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i)
1606 for (w = anfds [i].head; w; w = w->next)
1607 {
1608 verify_watcher (EV_A_ (W)w);
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 }
1612
1613 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt);
1615
1616#if EV_PERIODIC_ENABLE
1617 assert (periodicmax >= periodiccnt);
1618 verify_heap (EV_A_ periodics, periodiccnt);
1619#endif
1620
1621 for (i = NUMPRI; i--; )
1622 {
1623 assert (pendingmax [i] >= pendingcnt [i]);
1624#if EV_IDLE_ENABLE
1625 assert (idleall >= 0);
1626 assert (idlemax [i] >= idlecnt [i]);
1627 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1628#endif
1629 }
1630
1631#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif
1635
1636#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif
1640
1641 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt);
1643
1644 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt);
1646
1647# if 0
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1269#endif 1650# endif
1651#endif
1652}
1653
1654#endif /* multiplicity */
1270 1655
1271#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
1272struct ev_loop * 1657struct ev_loop *
1273ev_default_loop_init (unsigned int flags) 1658ev_default_loop_init (unsigned int flags)
1274#else 1659#else
1307{ 1692{
1308#if EV_MULTIPLICITY 1693#if EV_MULTIPLICITY
1309 struct ev_loop *loop = ev_default_loop_ptr; 1694 struct ev_loop *loop = ev_default_loop_ptr;
1310#endif 1695#endif
1311 1696
1697 ev_default_loop_ptr = 0;
1698
1312#ifndef _WIN32 1699#ifndef _WIN32
1313 ev_ref (EV_A); /* child watcher */ 1700 ev_ref (EV_A); /* child watcher */
1314 ev_signal_stop (EV_A_ &childev); 1701 ev_signal_stop (EV_A_ &childev);
1315#endif 1702#endif
1316 1703
1322{ 1709{
1323#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
1324 struct ev_loop *loop = ev_default_loop_ptr; 1711 struct ev_loop *loop = ev_default_loop_ptr;
1325#endif 1712#endif
1326 1713
1327 if (backend)
1328 postfork = 1; /* must be in line with ev_loop_fork */ 1714 postfork = 1; /* must be in line with ev_loop_fork */
1329} 1715}
1330 1716
1331/*****************************************************************************/ 1717/*****************************************************************************/
1332 1718
1333void 1719void
1346 { 1732 {
1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1348 1734
1349 if (expect_true (p->w)) 1735 if (expect_true (p->w))
1350 { 1736 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1352 1738
1353 p->w->pending = 0; 1739 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events); 1740 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK;
1355 } 1742 }
1356 } 1743 }
1357} 1744}
1358
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
1377 downheap (timers, timercnt, 0);
1378 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 {
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438 1745
1439#if EV_IDLE_ENABLE 1746#if EV_IDLE_ENABLE
1440void inline_size 1747void inline_size
1441idle_reify (EV_P) 1748idle_reify (EV_P)
1442{ 1749{
1454 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1761 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1455 break; 1762 break;
1456 } 1763 }
1457 } 1764 }
1458 } 1765 }
1766}
1767#endif
1768
1769void inline_size
1770timers_reify (EV_P)
1771{
1772 EV_FREQUENT_CHECK;
1773
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 {
1783 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now;
1786
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788
1789 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0);
1791 }
1792 else
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 }
1798}
1799
1800#if EV_PERIODIC_ENABLE
1801void inline_size
1802periodics_reify (EV_P)
1803{
1804 EV_FREQUENT_CHECK;
1805
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1809
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else if (w->interval)
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1846 }
1847}
1848
1849static void noinline
1850periodics_reschedule (EV_P)
1851{
1852 int i;
1853
1854 /* adjust periodics after time jump */
1855 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1856 {
1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1858
1859 if (w->reschedule_cb)
1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1861 else if (w->interval)
1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1863
1864 ANHE_at_cache (periodics [i]);
1865 }
1866
1867 reheap (periodics, periodiccnt);
1459} 1868}
1460#endif 1869#endif
1461 1870
1462void inline_speed 1871void inline_speed
1463time_update (EV_P_ ev_tstamp max_block) 1872time_update (EV_P_ ev_tstamp max_block)
1492 */ 1901 */
1493 for (i = 4; --i; ) 1902 for (i = 4; --i; )
1494 { 1903 {
1495 rtmn_diff = ev_rt_now - mn_now; 1904 rtmn_diff = ev_rt_now - mn_now;
1496 1905
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 1907 return; /* all is well */
1499 1908
1500 ev_rt_now = ev_time (); 1909 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 1910 mn_now = get_clock ();
1502 now_floor = mn_now; 1911 now_floor = mn_now;
1518#if EV_PERIODIC_ENABLE 1927#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 1928 periodics_reschedule (EV_A);
1520#endif 1929#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */ 1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i) 1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1523 ((WT)timers [i])->at += ev_rt_now - mn_now; 1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1524 } 1937 }
1525 1938
1526 mn_now = ev_rt_now; 1939 mn_now = ev_rt_now;
1527 } 1940 }
1528} 1941}
1537ev_unref (EV_P) 1950ev_unref (EV_P)
1538{ 1951{
1539 --activecnt; 1952 --activecnt;
1540} 1953}
1541 1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1542static int loop_done; 1961static int loop_done;
1543 1962
1544void 1963void
1545ev_loop (EV_P_ int flags) 1964ev_loop (EV_P_ int flags)
1546{ 1965{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1966 loop_done = EVUNLOOP_CANCEL;
1548 ? EVUNLOOP_ONE
1549 : EVUNLOOP_CANCEL;
1550 1967
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1552 1969
1553 do 1970 do
1554 { 1971 {
1972#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A);
1974#endif
1975
1555#ifndef _WIN32 1976#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 1977 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 1978 if (expect_false (getpid () != curpid))
1558 { 1979 {
1559 curpid = getpid (); 1980 curpid = getpid ();
1576 { 1997 {
1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1578 call_pending (EV_A); 1999 call_pending (EV_A);
1579 } 2000 }
1580 2001
1581 if (expect_false (!activecnt))
1582 break;
1583
1584 /* we might have forked, so reify kernel state if necessary */ 2002 /* we might have forked, so reify kernel state if necessary */
1585 if (expect_false (postfork)) 2003 if (expect_false (postfork))
1586 loop_fork (EV_A); 2004 loop_fork (EV_A);
1587 2005
1588 /* update fd-related kernel structures */ 2006 /* update fd-related kernel structures */
1600 2018
1601 waittime = MAX_BLOCKTIME; 2019 waittime = MAX_BLOCKTIME;
1602 2020
1603 if (timercnt) 2021 if (timercnt)
1604 { 2022 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2023 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1606 if (waittime > to) waittime = to; 2024 if (waittime > to) waittime = to;
1607 } 2025 }
1608 2026
1609#if EV_PERIODIC_ENABLE 2027#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 2028 if (periodiccnt)
1611 { 2029 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1613 if (waittime > to) waittime = to; 2031 if (waittime > to) waittime = to;
1614 } 2032 }
1615#endif 2033#endif
1616 2034
1617 if (expect_false (waittime < timeout_blocktime)) 2035 if (expect_false (waittime < timeout_blocktime))
1650 /* queue check watchers, to be executed first */ 2068 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 2069 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1653 2071
1654 call_pending (EV_A); 2072 call_pending (EV_A);
1655
1656 } 2073 }
1657 while (expect_true (activecnt && !loop_done)); 2074 while (expect_true (
2075 activecnt
2076 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2078 ));
1658 2079
1659 if (loop_done == EVUNLOOP_ONE) 2080 if (loop_done == EVUNLOOP_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 2081 loop_done = EVUNLOOP_CANCEL;
1661} 2082}
1662 2083
1749 int fd = w->fd; 2170 int fd = w->fd;
1750 2171
1751 if (expect_false (ev_is_active (w))) 2172 if (expect_false (ev_is_active (w)))
1752 return; 2173 return;
1753 2174
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 2175 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2176 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2177
2178 EV_FREQUENT_CHECK;
1755 2179
1756 ev_start (EV_A_ (W)w, 1); 2180 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1758 wlist_add (&anfds[fd].head, (WL)w); 2182 wlist_add (&anfds[fd].head, (WL)w);
1759 2183
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1761 w->events &= ~EV_IOFDSET; 2185 w->events &= ~EV__IOFDSET;
2186
2187 EV_FREQUENT_CHECK;
1762} 2188}
1763 2189
1764void noinline 2190void noinline
1765ev_io_stop (EV_P_ ev_io *w) 2191ev_io_stop (EV_P_ ev_io *w)
1766{ 2192{
1767 clear_pending (EV_A_ (W)w); 2193 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 2194 if (expect_false (!ev_is_active (w)))
1769 return; 2195 return;
1770 2196
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2197 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2198
2199 EV_FREQUENT_CHECK;
1772 2200
1773 wlist_del (&anfds[w->fd].head, (WL)w); 2201 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1775 2203
1776 fd_change (EV_A_ w->fd, 1); 2204 fd_change (EV_A_ w->fd, 1);
2205
2206 EV_FREQUENT_CHECK;
1777} 2207}
1778 2208
1779void noinline 2209void noinline
1780ev_timer_start (EV_P_ ev_timer *w) 2210ev_timer_start (EV_P_ ev_timer *w)
1781{ 2211{
1782 if (expect_false (ev_is_active (w))) 2212 if (expect_false (ev_is_active (w)))
1783 return; 2213 return;
1784 2214
1785 ((WT)w)->at += mn_now; 2215 ev_at (w) += mn_now;
1786 2216
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2217 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 2218
2219 EV_FREQUENT_CHECK;
2220
2221 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 2222 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2223 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 2224 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 2225 ANHE_at_cache (timers [ev_active (w)]);
2226 upheap (timers, ev_active (w));
1793 2227
2228 EV_FREQUENT_CHECK;
2229
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2230 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 2231}
1796 2232
1797void noinline 2233void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 2234ev_timer_stop (EV_P_ ev_timer *w)
1799{ 2235{
1800 clear_pending (EV_A_ (W)w); 2236 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2237 if (expect_false (!ev_is_active (w)))
1802 return; 2238 return;
1803 2239
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2240 EV_FREQUENT_CHECK;
1805 2241
1806 { 2242 {
1807 int active = ((W)w)->active; 2243 int active = ev_active (w);
1808 2244
2245 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2246
2247 --timercnt;
2248
1809 if (expect_true (--active < --timercnt)) 2249 if (expect_true (active < timercnt + HEAP0))
1810 { 2250 {
1811 timers [active] = timers [timercnt]; 2251 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 2252 adjustheap (timers, timercnt, active);
1813 } 2253 }
1814 } 2254 }
1815 2255
1816 ((WT)w)->at -= mn_now; 2256 EV_FREQUENT_CHECK;
2257
2258 ev_at (w) -= mn_now;
1817 2259
1818 ev_stop (EV_A_ (W)w); 2260 ev_stop (EV_A_ (W)w);
1819} 2261}
1820 2262
1821void noinline 2263void noinline
1822ev_timer_again (EV_P_ ev_timer *w) 2264ev_timer_again (EV_P_ ev_timer *w)
1823{ 2265{
2266 EV_FREQUENT_CHECK;
2267
1824 if (ev_is_active (w)) 2268 if (ev_is_active (w))
1825 { 2269 {
1826 if (w->repeat) 2270 if (w->repeat)
1827 { 2271 {
1828 ((WT)w)->at = mn_now + w->repeat; 2272 ev_at (w) = mn_now + w->repeat;
2273 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 2274 adjustheap (timers, timercnt, ev_active (w));
1830 } 2275 }
1831 else 2276 else
1832 ev_timer_stop (EV_A_ w); 2277 ev_timer_stop (EV_A_ w);
1833 } 2278 }
1834 else if (w->repeat) 2279 else if (w->repeat)
1835 { 2280 {
1836 w->at = w->repeat; 2281 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 2282 ev_timer_start (EV_A_ w);
1838 } 2283 }
2284
2285 EV_FREQUENT_CHECK;
1839} 2286}
1840 2287
1841#if EV_PERIODIC_ENABLE 2288#if EV_PERIODIC_ENABLE
1842void noinline 2289void noinline
1843ev_periodic_start (EV_P_ ev_periodic *w) 2290ev_periodic_start (EV_P_ ev_periodic *w)
1844{ 2291{
1845 if (expect_false (ev_is_active (w))) 2292 if (expect_false (ev_is_active (w)))
1846 return; 2293 return;
1847 2294
1848 if (w->reschedule_cb) 2295 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2296 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 2297 else if (w->interval)
1851 { 2298 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2299 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 2300 /* this formula differs from the one in periodic_reify because we do not always round up */
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2301 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 2302 }
1856 else 2303 else
1857 ((WT)w)->at = w->offset; 2304 ev_at (w) = w->offset;
1858 2305
2306 EV_FREQUENT_CHECK;
2307
2308 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 2309 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2310 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 2311 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 2312 ANHE_at_cache (periodics [ev_active (w)]);
2313 upheap (periodics, ev_active (w));
1863 2314
2315 EV_FREQUENT_CHECK;
2316
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2317 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 2318}
1866 2319
1867void noinline 2320void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 2321ev_periodic_stop (EV_P_ ev_periodic *w)
1869{ 2322{
1870 clear_pending (EV_A_ (W)w); 2323 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 2324 if (expect_false (!ev_is_active (w)))
1872 return; 2325 return;
1873 2326
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2327 EV_FREQUENT_CHECK;
1875 2328
1876 { 2329 {
1877 int active = ((W)w)->active; 2330 int active = ev_active (w);
1878 2331
2332 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2333
2334 --periodiccnt;
2335
1879 if (expect_true (--active < --periodiccnt)) 2336 if (expect_true (active < periodiccnt + HEAP0))
1880 { 2337 {
1881 periodics [active] = periodics [periodiccnt]; 2338 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 2339 adjustheap (periodics, periodiccnt, active);
1883 } 2340 }
1884 } 2341 }
1885 2342
2343 EV_FREQUENT_CHECK;
2344
1886 ev_stop (EV_A_ (W)w); 2345 ev_stop (EV_A_ (W)w);
1887} 2346}
1888 2347
1889void noinline 2348void noinline
1890ev_periodic_again (EV_P_ ev_periodic *w) 2349ev_periodic_again (EV_P_ ev_periodic *w)
1901 2360
1902void noinline 2361void noinline
1903ev_signal_start (EV_P_ ev_signal *w) 2362ev_signal_start (EV_P_ ev_signal *w)
1904{ 2363{
1905#if EV_MULTIPLICITY 2364#if EV_MULTIPLICITY
1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2365 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif 2366#endif
1908 if (expect_false (ev_is_active (w))) 2367 if (expect_false (ev_is_active (w)))
1909 return; 2368 return;
1910 2369
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
1912 2371
1913 evpipe_init (EV_A); 2372 evpipe_init (EV_A);
2373
2374 EV_FREQUENT_CHECK;
1914 2375
1915 { 2376 {
1916#ifndef _WIN32 2377#ifndef _WIN32
1917 sigset_t full, prev; 2378 sigset_t full, prev;
1918 sigfillset (&full); 2379 sigfillset (&full);
1919 sigprocmask (SIG_SETMASK, &full, &prev); 2380 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif 2381#endif
1921 2382
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1923 2384
1924#ifndef _WIN32 2385#ifndef _WIN32
1925 sigprocmask (SIG_SETMASK, &prev, 0); 2386 sigprocmask (SIG_SETMASK, &prev, 0);
1926#endif 2387#endif
1927 } 2388 }
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 2391 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 2392
1932 if (!((WL)w)->next) 2393 if (!((WL)w)->next)
1933 { 2394 {
1934#if _WIN32 2395#if _WIN32
1935 signal (w->signum, sighandler); 2396 signal (w->signum, ev_sighandler);
1936#else 2397#else
1937 struct sigaction sa; 2398 struct sigaction sa;
1938 sa.sa_handler = sighandler; 2399 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 2400 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 2402 sigaction (w->signum, &sa, 0);
1942#endif 2403#endif
1943 } 2404 }
2405
2406 EV_FREQUENT_CHECK;
1944} 2407}
1945 2408
1946void noinline 2409void noinline
1947ev_signal_stop (EV_P_ ev_signal *w) 2410ev_signal_stop (EV_P_ ev_signal *w)
1948{ 2411{
1949 clear_pending (EV_A_ (W)w); 2412 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 2413 if (expect_false (!ev_is_active (w)))
1951 return; 2414 return;
1952 2415
2416 EV_FREQUENT_CHECK;
2417
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 2418 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 2419 ev_stop (EV_A_ (W)w);
1955 2420
1956 if (!signals [w->signum - 1].head) 2421 if (!signals [w->signum - 1].head)
1957 signal (w->signum, SIG_DFL); 2422 signal (w->signum, SIG_DFL);
2423
2424 EV_FREQUENT_CHECK;
1958} 2425}
1959 2426
1960void 2427void
1961ev_child_start (EV_P_ ev_child *w) 2428ev_child_start (EV_P_ ev_child *w)
1962{ 2429{
1963#if EV_MULTIPLICITY 2430#if EV_MULTIPLICITY
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2431 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 2432#endif
1966 if (expect_false (ev_is_active (w))) 2433 if (expect_false (ev_is_active (w)))
1967 return; 2434 return;
1968 2435
2436 EV_FREQUENT_CHECK;
2437
1969 ev_start (EV_A_ (W)w, 1); 2438 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2439 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2440
2441 EV_FREQUENT_CHECK;
1971} 2442}
1972 2443
1973void 2444void
1974ev_child_stop (EV_P_ ev_child *w) 2445ev_child_stop (EV_P_ ev_child *w)
1975{ 2446{
1976 clear_pending (EV_A_ (W)w); 2447 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 2448 if (expect_false (!ev_is_active (w)))
1978 return; 2449 return;
1979 2450
2451 EV_FREQUENT_CHECK;
2452
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2453 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 2454 ev_stop (EV_A_ (W)w);
2455
2456 EV_FREQUENT_CHECK;
1982} 2457}
1983 2458
1984#if EV_STAT_ENABLE 2459#if EV_STAT_ENABLE
1985 2460
1986# ifdef _WIN32 2461# ifdef _WIN32
1987# undef lstat 2462# undef lstat
1988# define lstat(a,b) _stati64 (a,b) 2463# define lstat(a,b) _stati64 (a,b)
1989# endif 2464# endif
1990 2465
1991#define DEF_STAT_INTERVAL 5.0074891 2466#define DEF_STAT_INTERVAL 5.0074891
2467#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1992#define MIN_STAT_INTERVAL 0.1074891 2468#define MIN_STAT_INTERVAL 0.1074891
1993 2469
1994static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2470static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1995 2471
1996#if EV_USE_INOTIFY 2472#if EV_USE_INOTIFY
1997# define EV_INOTIFY_BUFSIZE 8192 2473# define EV_INOTIFY_BUFSIZE 8192
2001{ 2477{
2002 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2478 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2003 2479
2004 if (w->wd < 0) 2480 if (w->wd < 0)
2005 { 2481 {
2482 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2483 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2007 2484
2008 /* monitor some parent directory for speedup hints */ 2485 /* monitor some parent directory for speedup hints */
2486 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2487 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2488 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 2489 {
2011 char path [4096]; 2490 char path [4096];
2012 strcpy (path, w->path); 2491 strcpy (path, w->path);
2013 2492
2016 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2495 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2017 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2496 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2018 2497
2019 char *pend = strrchr (path, '/'); 2498 char *pend = strrchr (path, '/');
2020 2499
2021 if (!pend) 2500 if (!pend || pend == path)
2022 break; /* whoops, no '/', complain to your admin */ 2501 break;
2023 2502
2024 *pend = 0; 2503 *pend = 0;
2025 w->wd = inotify_add_watch (fs_fd, path, mask); 2504 w->wd = inotify_add_watch (fs_fd, path, mask);
2026 } 2505 }
2027 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2506 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2028 } 2507 }
2029 } 2508 }
2030 else
2031 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2032 2509
2033 if (w->wd >= 0) 2510 if (w->wd >= 0)
2511 {
2034 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2512 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2513
2514 /* now local changes will be tracked by inotify, but remote changes won't */
2515 /* unless the filesystem it known to be local, we therefore still poll */
2516 /* also do poll on <2.6.25, but with normal frequency */
2517 struct statfs sfs;
2518
2519 if (fs_2625 && !statfs (w->path, &sfs))
2520 if (sfs.f_type == 0x1373 /* devfs */
2521 || sfs.f_type == 0xEF53 /* ext2/3 */
2522 || sfs.f_type == 0x3153464a /* jfs */
2523 || sfs.f_type == 0x52654973 /* reiser3 */
2524 || sfs.f_type == 0x01021994 /* tempfs */
2525 || sfs.f_type == 0x58465342 /* xfs */)
2526 return;
2527
2528 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2529 ev_timer_again (EV_A_ &w->timer);
2530 }
2035} 2531}
2036 2532
2037static void noinline 2533static void noinline
2038infy_del (EV_P_ ev_stat *w) 2534infy_del (EV_P_ ev_stat *w)
2039{ 2535{
2053 2549
2054static void noinline 2550static void noinline
2055infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2551infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2056{ 2552{
2057 if (slot < 0) 2553 if (slot < 0)
2058 /* overflow, need to check for all hahs slots */ 2554 /* overflow, need to check for all hash slots */
2059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2060 infy_wd (EV_A_ slot, wd, ev); 2556 infy_wd (EV_A_ slot, wd, ev);
2061 else 2557 else
2062 { 2558 {
2063 WL w_; 2559 WL w_;
2069 2565
2070 if (w->wd == wd || wd == -1) 2566 if (w->wd == wd || wd == -1)
2071 { 2567 {
2072 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2568 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2073 { 2569 {
2570 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2074 w->wd = -1; 2571 w->wd = -1;
2075 infy_add (EV_A_ w); /* re-add, no matter what */ 2572 infy_add (EV_A_ w); /* re-add, no matter what */
2076 } 2573 }
2077 2574
2078 stat_timer_cb (EV_A_ &w->timer, 0); 2575 stat_timer_cb (EV_A_ &w->timer, 0);
2092 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2093 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2590 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2094} 2591}
2095 2592
2096void inline_size 2593void inline_size
2594check_2625 (EV_P)
2595{
2596 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */
2599 struct utsname buf;
2600 int major, minor, micro;
2601
2602 if (uname (&buf))
2603 return;
2604
2605 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2606 return;
2607
2608 if (major < 2
2609 || (major == 2 && minor < 6)
2610 || (major == 2 && minor == 6 && micro < 25))
2611 return;
2612
2613 fs_2625 = 1;
2614}
2615
2616void inline_size
2097infy_init (EV_P) 2617infy_init (EV_P)
2098{ 2618{
2099 if (fs_fd != -2) 2619 if (fs_fd != -2)
2100 return; 2620 return;
2621
2622 fs_fd = -1;
2623
2624 check_2625 (EV_A);
2101 2625
2102 fs_fd = inotify_init (); 2626 fs_fd = inotify_init ();
2103 2627
2104 if (fs_fd >= 0) 2628 if (fs_fd >= 0)
2105 { 2629 {
2133 w->wd = -1; 2657 w->wd = -1;
2134 2658
2135 if (fs_fd >= 0) 2659 if (fs_fd >= 0)
2136 infy_add (EV_A_ w); /* re-add, no matter what */ 2660 infy_add (EV_A_ w); /* re-add, no matter what */
2137 else 2661 else
2138 ev_timer_start (EV_A_ &w->timer); 2662 ev_timer_again (EV_A_ &w->timer);
2139 } 2663 }
2140
2141 } 2664 }
2142} 2665}
2143 2666
2667#endif
2668
2669#ifdef _WIN32
2670# define EV_LSTAT(p,b) _stati64 (p, b)
2671#else
2672# define EV_LSTAT(p,b) lstat (p, b)
2144#endif 2673#endif
2145 2674
2146void 2675void
2147ev_stat_stat (EV_P_ ev_stat *w) 2676ev_stat_stat (EV_P_ ev_stat *w)
2148{ 2677{
2175 || w->prev.st_atime != w->attr.st_atime 2704 || w->prev.st_atime != w->attr.st_atime
2176 || w->prev.st_mtime != w->attr.st_mtime 2705 || w->prev.st_mtime != w->attr.st_mtime
2177 || w->prev.st_ctime != w->attr.st_ctime 2706 || w->prev.st_ctime != w->attr.st_ctime
2178 ) { 2707 ) {
2179 #if EV_USE_INOTIFY 2708 #if EV_USE_INOTIFY
2709 if (fs_fd >= 0)
2710 {
2180 infy_del (EV_A_ w); 2711 infy_del (EV_A_ w);
2181 infy_add (EV_A_ w); 2712 infy_add (EV_A_ w);
2182 ev_stat_stat (EV_A_ w); /* avoid race... */ 2713 ev_stat_stat (EV_A_ w); /* avoid race... */
2714 }
2183 #endif 2715 #endif
2184 2716
2185 ev_feed_event (EV_A_ w, EV_STAT); 2717 ev_feed_event (EV_A_ w, EV_STAT);
2186 } 2718 }
2187} 2719}
2190ev_stat_start (EV_P_ ev_stat *w) 2722ev_stat_start (EV_P_ ev_stat *w)
2191{ 2723{
2192 if (expect_false (ev_is_active (w))) 2724 if (expect_false (ev_is_active (w)))
2193 return; 2725 return;
2194 2726
2195 /* since we use memcmp, we need to clear any padding data etc. */
2196 memset (&w->prev, 0, sizeof (ev_statdata));
2197 memset (&w->attr, 0, sizeof (ev_statdata));
2198
2199 ev_stat_stat (EV_A_ w); 2727 ev_stat_stat (EV_A_ w);
2200 2728
2729 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2201 if (w->interval < MIN_STAT_INTERVAL) 2730 w->interval = MIN_STAT_INTERVAL;
2202 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2203 2731
2204 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2732 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2205 ev_set_priority (&w->timer, ev_priority (w)); 2733 ev_set_priority (&w->timer, ev_priority (w));
2206 2734
2207#if EV_USE_INOTIFY 2735#if EV_USE_INOTIFY
2208 infy_init (EV_A); 2736 infy_init (EV_A);
2209 2737
2210 if (fs_fd >= 0) 2738 if (fs_fd >= 0)
2211 infy_add (EV_A_ w); 2739 infy_add (EV_A_ w);
2212 else 2740 else
2213#endif 2741#endif
2214 ev_timer_start (EV_A_ &w->timer); 2742 ev_timer_again (EV_A_ &w->timer);
2215 2743
2216 ev_start (EV_A_ (W)w, 1); 2744 ev_start (EV_A_ (W)w, 1);
2745
2746 EV_FREQUENT_CHECK;
2217} 2747}
2218 2748
2219void 2749void
2220ev_stat_stop (EV_P_ ev_stat *w) 2750ev_stat_stop (EV_P_ ev_stat *w)
2221{ 2751{
2222 clear_pending (EV_A_ (W)w); 2752 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 2753 if (expect_false (!ev_is_active (w)))
2224 return; 2754 return;
2225 2755
2756 EV_FREQUENT_CHECK;
2757
2226#if EV_USE_INOTIFY 2758#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 2759 infy_del (EV_A_ w);
2228#endif 2760#endif
2229 ev_timer_stop (EV_A_ &w->timer); 2761 ev_timer_stop (EV_A_ &w->timer);
2230 2762
2231 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2232} 2766}
2233#endif 2767#endif
2234 2768
2235#if EV_IDLE_ENABLE 2769#if EV_IDLE_ENABLE
2236void 2770void
2238{ 2772{
2239 if (expect_false (ev_is_active (w))) 2773 if (expect_false (ev_is_active (w)))
2240 return; 2774 return;
2241 2775
2242 pri_adjust (EV_A_ (W)w); 2776 pri_adjust (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2243 2779
2244 { 2780 {
2245 int active = ++idlecnt [ABSPRI (w)]; 2781 int active = ++idlecnt [ABSPRI (w)];
2246 2782
2247 ++idleall; 2783 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 2784 ev_start (EV_A_ (W)w, active);
2249 2785
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2786 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w; 2787 idles [ABSPRI (w)][active - 1] = w;
2252 } 2788 }
2789
2790 EV_FREQUENT_CHECK;
2253} 2791}
2254 2792
2255void 2793void
2256ev_idle_stop (EV_P_ ev_idle *w) 2794ev_idle_stop (EV_P_ ev_idle *w)
2257{ 2795{
2258 clear_pending (EV_A_ (W)w); 2796 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 2797 if (expect_false (!ev_is_active (w)))
2260 return; 2798 return;
2261 2799
2800 EV_FREQUENT_CHECK;
2801
2262 { 2802 {
2263 int active = ((W)w)->active; 2803 int active = ev_active (w);
2264 2804
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2805 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2806 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 2807
2268 ev_stop (EV_A_ (W)w); 2808 ev_stop (EV_A_ (W)w);
2269 --idleall; 2809 --idleall;
2270 } 2810 }
2811
2812 EV_FREQUENT_CHECK;
2271} 2813}
2272#endif 2814#endif
2273 2815
2274void 2816void
2275ev_prepare_start (EV_P_ ev_prepare *w) 2817ev_prepare_start (EV_P_ ev_prepare *w)
2276{ 2818{
2277 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2278 return; 2820 return;
2821
2822 EV_FREQUENT_CHECK;
2279 2823
2280 ev_start (EV_A_ (W)w, ++preparecnt); 2824 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2825 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w; 2826 prepares [preparecnt - 1] = w;
2827
2828 EV_FREQUENT_CHECK;
2283} 2829}
2284 2830
2285void 2831void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 2832ev_prepare_stop (EV_P_ ev_prepare *w)
2287{ 2833{
2288 clear_pending (EV_A_ (W)w); 2834 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 2835 if (expect_false (!ev_is_active (w)))
2290 return; 2836 return;
2291 2837
2838 EV_FREQUENT_CHECK;
2839
2292 { 2840 {
2293 int active = ((W)w)->active; 2841 int active = ev_active (w);
2842
2294 prepares [active - 1] = prepares [--preparecnt]; 2843 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 2844 ev_active (prepares [active - 1]) = active;
2296 } 2845 }
2297 2846
2298 ev_stop (EV_A_ (W)w); 2847 ev_stop (EV_A_ (W)w);
2848
2849 EV_FREQUENT_CHECK;
2299} 2850}
2300 2851
2301void 2852void
2302ev_check_start (EV_P_ ev_check *w) 2853ev_check_start (EV_P_ ev_check *w)
2303{ 2854{
2304 if (expect_false (ev_is_active (w))) 2855 if (expect_false (ev_is_active (w)))
2305 return; 2856 return;
2857
2858 EV_FREQUENT_CHECK;
2306 2859
2307 ev_start (EV_A_ (W)w, ++checkcnt); 2860 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2861 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w; 2862 checks [checkcnt - 1] = w;
2863
2864 EV_FREQUENT_CHECK;
2310} 2865}
2311 2866
2312void 2867void
2313ev_check_stop (EV_P_ ev_check *w) 2868ev_check_stop (EV_P_ ev_check *w)
2314{ 2869{
2315 clear_pending (EV_A_ (W)w); 2870 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 2871 if (expect_false (!ev_is_active (w)))
2317 return; 2872 return;
2318 2873
2874 EV_FREQUENT_CHECK;
2875
2319 { 2876 {
2320 int active = ((W)w)->active; 2877 int active = ev_active (w);
2878
2321 checks [active - 1] = checks [--checkcnt]; 2879 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 2880 ev_active (checks [active - 1]) = active;
2323 } 2881 }
2324 2882
2325 ev_stop (EV_A_ (W)w); 2883 ev_stop (EV_A_ (W)w);
2884
2885 EV_FREQUENT_CHECK;
2326} 2886}
2327 2887
2328#if EV_EMBED_ENABLE 2888#if EV_EMBED_ENABLE
2329void noinline 2889void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w) 2890ev_embed_sweep (EV_P_ ev_embed *w)
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2917 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2358 } 2918 }
2359 } 2919 }
2360} 2920}
2361 2921
2922static void
2923embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2924{
2925 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2926
2927 ev_embed_stop (EV_A_ w);
2928
2929 {
2930 struct ev_loop *loop = w->other;
2931
2932 ev_loop_fork (EV_A);
2933 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2934 }
2935
2936 ev_embed_start (EV_A_ w);
2937}
2938
2362#if 0 2939#if 0
2363static void 2940static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2941embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2365{ 2942{
2366 ev_idle_stop (EV_A_ idle); 2943 ev_idle_stop (EV_A_ idle);
2373 if (expect_false (ev_is_active (w))) 2950 if (expect_false (ev_is_active (w)))
2374 return; 2951 return;
2375 2952
2376 { 2953 {
2377 struct ev_loop *loop = w->other; 2954 struct ev_loop *loop = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2955 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2956 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 2957 }
2958
2959 EV_FREQUENT_CHECK;
2381 2960
2382 ev_set_priority (&w->io, ev_priority (w)); 2961 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 2962 ev_io_start (EV_A_ &w->io);
2384 2963
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 2964 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 2965 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 2966 ev_prepare_start (EV_A_ &w->prepare);
2388 2967
2968 ev_fork_init (&w->fork, embed_fork_cb);
2969 ev_fork_start (EV_A_ &w->fork);
2970
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2971 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 2972
2391 ev_start (EV_A_ (W)w, 1); 2973 ev_start (EV_A_ (W)w, 1);
2974
2975 EV_FREQUENT_CHECK;
2392} 2976}
2393 2977
2394void 2978void
2395ev_embed_stop (EV_P_ ev_embed *w) 2979ev_embed_stop (EV_P_ ev_embed *w)
2396{ 2980{
2397 clear_pending (EV_A_ (W)w); 2981 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 2982 if (expect_false (!ev_is_active (w)))
2399 return; 2983 return;
2400 2984
2985 EV_FREQUENT_CHECK;
2986
2401 ev_io_stop (EV_A_ &w->io); 2987 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 2988 ev_prepare_stop (EV_A_ &w->prepare);
2989 ev_fork_stop (EV_A_ &w->fork);
2403 2990
2404 ev_stop (EV_A_ (W)w); 2991 EV_FREQUENT_CHECK;
2405} 2992}
2406#endif 2993#endif
2407 2994
2408#if EV_FORK_ENABLE 2995#if EV_FORK_ENABLE
2409void 2996void
2410ev_fork_start (EV_P_ ev_fork *w) 2997ev_fork_start (EV_P_ ev_fork *w)
2411{ 2998{
2412 if (expect_false (ev_is_active (w))) 2999 if (expect_false (ev_is_active (w)))
2413 return; 3000 return;
3001
3002 EV_FREQUENT_CHECK;
2414 3003
2415 ev_start (EV_A_ (W)w, ++forkcnt); 3004 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3005 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w; 3006 forks [forkcnt - 1] = w;
3007
3008 EV_FREQUENT_CHECK;
2418} 3009}
2419 3010
2420void 3011void
2421ev_fork_stop (EV_P_ ev_fork *w) 3012ev_fork_stop (EV_P_ ev_fork *w)
2422{ 3013{
2423 clear_pending (EV_A_ (W)w); 3014 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 3015 if (expect_false (!ev_is_active (w)))
2425 return; 3016 return;
2426 3017
3018 EV_FREQUENT_CHECK;
3019
2427 { 3020 {
2428 int active = ((W)w)->active; 3021 int active = ev_active (w);
3022
2429 forks [active - 1] = forks [--forkcnt]; 3023 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 3024 ev_active (forks [active - 1]) = active;
2431 } 3025 }
2432 3026
2433 ev_stop (EV_A_ (W)w); 3027 ev_stop (EV_A_ (W)w);
3028
3029 EV_FREQUENT_CHECK;
2434} 3030}
2435#endif 3031#endif
2436 3032
2437#if EV_ASYNC_ENABLE 3033#if EV_ASYNC_ENABLE
2438void 3034void
2440{ 3036{
2441 if (expect_false (ev_is_active (w))) 3037 if (expect_false (ev_is_active (w)))
2442 return; 3038 return;
2443 3039
2444 evpipe_init (EV_A); 3040 evpipe_init (EV_A);
3041
3042 EV_FREQUENT_CHECK;
2445 3043
2446 ev_start (EV_A_ (W)w, ++asynccnt); 3044 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3045 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w; 3046 asyncs [asynccnt - 1] = w;
3047
3048 EV_FREQUENT_CHECK;
2449} 3049}
2450 3050
2451void 3051void
2452ev_async_stop (EV_P_ ev_async *w) 3052ev_async_stop (EV_P_ ev_async *w)
2453{ 3053{
2454 clear_pending (EV_A_ (W)w); 3054 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 3055 if (expect_false (!ev_is_active (w)))
2456 return; 3056 return;
2457 3057
3058 EV_FREQUENT_CHECK;
3059
2458 { 3060 {
2459 int active = ((W)w)->active; 3061 int active = ev_active (w);
3062
2460 asyncs [active - 1] = asyncs [--asynccnt]; 3063 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 3064 ev_active (asyncs [active - 1]) = active;
2462 } 3065 }
2463 3066
2464 ev_stop (EV_A_ (W)w); 3067 ev_stop (EV_A_ (W)w);
3068
3069 EV_FREQUENT_CHECK;
2465} 3070}
2466 3071
2467void 3072void
2468ev_async_send (EV_P_ ev_async *w) 3073ev_async_send (EV_P_ ev_async *w)
2469{ 3074{
2486once_cb (EV_P_ struct ev_once *once, int revents) 3091once_cb (EV_P_ struct ev_once *once, int revents)
2487{ 3092{
2488 void (*cb)(int revents, void *arg) = once->cb; 3093 void (*cb)(int revents, void *arg) = once->cb;
2489 void *arg = once->arg; 3094 void *arg = once->arg;
2490 3095
2491 ev_io_stop (EV_A_ &once->io); 3096 ev_io_stop (EV_A_ &once->io);
2492 ev_timer_stop (EV_A_ &once->to); 3097 ev_timer_stop (EV_A_ &once->to);
2493 ev_free (once); 3098 ev_free (once);
2494 3099
2495 cb (revents, arg); 3100 cb (revents, arg);
2496} 3101}
2497 3102
2498static void 3103static void
2499once_cb_io (EV_P_ ev_io *w, int revents) 3104once_cb_io (EV_P_ ev_io *w, int revents)
2500{ 3105{
2501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3106 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3107
3108 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2502} 3109}
2503 3110
2504static void 3111static void
2505once_cb_to (EV_P_ ev_timer *w, int revents) 3112once_cb_to (EV_P_ ev_timer *w, int revents)
2506{ 3113{
2507 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3114 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3115
3116 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2508} 3117}
2509 3118
2510void 3119void
2511ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3120ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2512{ 3121{
2534 ev_timer_set (&once->to, timeout, 0.); 3143 ev_timer_set (&once->to, timeout, 0.);
2535 ev_timer_start (EV_A_ &once->to); 3144 ev_timer_start (EV_A_ &once->to);
2536 } 3145 }
2537} 3146}
2538 3147
3148/*****************************************************************************/
3149
3150#if 0
3151void
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3153{
3154 int i, j;
3155 ev_watcher_list *wl, *wn;
3156
3157 if (types & (EV_IO | EV_EMBED))
3158 for (i = 0; i < anfdmax; ++i)
3159 for (wl = anfds [i].head; wl; )
3160 {
3161 wn = wl->next;
3162
3163#if EV_EMBED_ENABLE
3164 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3165 {
3166 if (types & EV_EMBED)
3167 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3168 }
3169 else
3170#endif
3171#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ;
3174 else
3175#endif
3176 if ((ev_io *)wl != &pipeev)
3177 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl);
3179
3180 wl = wn;
3181 }
3182
3183 if (types & (EV_TIMER | EV_STAT))
3184 for (i = timercnt + HEAP0; i-- > HEAP0; )
3185#if EV_STAT_ENABLE
3186 /*TODO: timer is not always active*/
3187 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3188 {
3189 if (types & EV_STAT)
3190 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3191 }
3192 else
3193#endif
3194 if (types & EV_TIMER)
3195 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3196
3197#if EV_PERIODIC_ENABLE
3198 if (types & EV_PERIODIC)
3199 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3200 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3201#endif
3202
3203#if EV_IDLE_ENABLE
3204 if (types & EV_IDLE)
3205 for (j = NUMPRI; i--; )
3206 for (i = idlecnt [j]; i--; )
3207 cb (EV_A_ EV_IDLE, idles [j][i]);
3208#endif
3209
3210#if EV_FORK_ENABLE
3211 if (types & EV_FORK)
3212 for (i = forkcnt; i--; )
3213 if (ev_cb (forks [i]) != embed_fork_cb)
3214 cb (EV_A_ EV_FORK, forks [i]);
3215#endif
3216
3217#if EV_ASYNC_ENABLE
3218 if (types & EV_ASYNC)
3219 for (i = asynccnt; i--; )
3220 cb (EV_A_ EV_ASYNC, asyncs [i]);
3221#endif
3222
3223 if (types & EV_PREPARE)
3224 for (i = preparecnt; i--; )
3225#if EV_EMBED_ENABLE
3226 if (ev_cb (prepares [i]) != embed_prepare_cb)
3227#endif
3228 cb (EV_A_ EV_PREPARE, prepares [i]);
3229
3230 if (types & EV_CHECK)
3231 for (i = checkcnt; i--; )
3232 cb (EV_A_ EV_CHECK, checks [i]);
3233
3234 if (types & EV_SIGNAL)
3235 for (i = 0; i < signalmax; ++i)
3236 for (wl = signals [i].head; wl; )
3237 {
3238 wn = wl->next;
3239 cb (EV_A_ EV_SIGNAL, wl);
3240 wl = wn;
3241 }
3242
3243 if (types & EV_CHILD)
3244 for (i = EV_PID_HASHSIZE; i--; )
3245 for (wl = childs [i]; wl; )
3246 {
3247 wn = wl->next;
3248 cb (EV_A_ EV_CHILD, wl);
3249 wl = wn;
3250 }
3251/* EV_STAT 0x00001000 /* stat data changed */
3252/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3253}
3254#endif
3255
2539#if EV_MULTIPLICITY 3256#if EV_MULTIPLICITY
2540 #include "ev_wrap.h" 3257 #include "ev_wrap.h"
2541#endif 3258#endif
2542 3259
2543#ifdef __cplusplus 3260#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines