ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.216 by root, Sat Mar 8 07:04:55 2008 UTC vs.
Revision 1.325 by root, Sun Jan 24 12:31:55 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
95# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
96# endif 111# endif
97# endif 112# endif
98 113
99# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
101# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
102# else 117# else
103# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
104# endif 119# endif
105# endif 120# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
123#endif 154#endif
124 155
125#include <math.h> 156#include <math.h>
126#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
127#include <fcntl.h> 159#include <fcntl.h>
128#include <stddef.h> 160#include <stddef.h>
129 161
130#include <stdio.h> 162#include <stdio.h>
131 163
145#ifndef _WIN32 177#ifndef _WIN32
146# include <sys/time.h> 178# include <sys/time.h>
147# include <sys/wait.h> 179# include <sys/wait.h>
148# include <unistd.h> 180# include <unistd.h>
149#else 181#else
182# include <io.h>
150# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 184# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
154# endif 187# endif
155#endif 188#endif
156 189
157/**/ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
158 226
159#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
160# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
161#endif 233#endif
162 234
163#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 237#endif
166 238
167#ifndef EV_USE_NANOSLEEP 239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
168# define EV_USE_NANOSLEEP 0 243# define EV_USE_NANOSLEEP 0
244# endif
169#endif 245#endif
170 246
171#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
173#endif 249#endif
179# define EV_USE_POLL 1 255# define EV_USE_POLL 1
180# endif 256# endif
181#endif 257#endif
182 258
183#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
184# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
185#endif 265#endif
186 266
187#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
189#endif 269#endif
191#ifndef EV_USE_PORT 271#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 272# define EV_USE_PORT 0
193#endif 273#endif
194 274
195#ifndef EV_USE_INOTIFY 275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
196# define EV_USE_INOTIFY 0 279# define EV_USE_INOTIFY 0
280# endif
197#endif 281#endif
198 282
199#ifndef EV_PID_HASHSIZE 283#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 284# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 285# define EV_PID_HASHSIZE 1
210# else 294# else
211# define EV_INOTIFY_HASHSIZE 16 295# define EV_INOTIFY_HASHSIZE 16
212# endif 296# endif
213#endif 297#endif
214 298
215/**/ 299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
348
349#ifdef _AIX
350/* AIX has a completely broken poll.h header */
351# undef EV_USE_POLL
352# define EV_USE_POLL 0
353#endif
216 354
217#ifndef CLOCK_MONOTONIC 355#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 356# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 357# define EV_USE_MONOTONIC 0
220#endif 358#endif
234# include <sys/select.h> 372# include <sys/select.h>
235# endif 373# endif
236#endif 374#endif
237 375
238#if EV_USE_INOTIFY 376#if EV_USE_INOTIFY
377# include <sys/utsname.h>
378# include <sys/statfs.h>
239# include <sys/inotify.h> 379# include <sys/inotify.h>
380/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
381# ifndef IN_DONT_FOLLOW
382# undef EV_USE_INOTIFY
383# define EV_USE_INOTIFY 0
384# endif
240#endif 385#endif
241 386
242#if EV_SELECT_IS_WINSOCKET 387#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 388# include <winsock.h>
244#endif 389#endif
245 390
391#if EV_USE_EVENTFD
392/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
393# include <stdint.h>
394# ifndef EFD_NONBLOCK
395# define EFD_NONBLOCK O_NONBLOCK
396# endif
397# ifndef EFD_CLOEXEC
398# ifdef O_CLOEXEC
399# define EFD_CLOEXEC O_CLOEXEC
400# else
401# define EFD_CLOEXEC 02000000
402# endif
403# endif
404# ifdef __cplusplus
405extern "C" {
406# endif
407int eventfd (unsigned int initval, int flags);
408# ifdef __cplusplus
409}
410# endif
411#endif
412
413#if EV_USE_SIGNALFD
414/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
415# include <stdint.h>
416# ifndef SFD_NONBLOCK
417# define SFD_NONBLOCK O_NONBLOCK
418# endif
419# ifndef SFD_CLOEXEC
420# ifdef O_CLOEXEC
421# define SFD_CLOEXEC O_CLOEXEC
422# else
423# define SFD_CLOEXEC 02000000
424# endif
425# endif
426# ifdef __cplusplus
427extern "C" {
428# endif
429int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436# ifdef __cplusplus
437}
438# endif
439#endif
440
441
246/**/ 442/**/
443
444#if EV_VERIFY >= 3
445# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
446#else
447# define EV_FREQUENT_CHECK do { } while (0)
448#endif
247 449
248/* 450/*
249 * This is used to avoid floating point rounding problems. 451 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 452 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 453 * to ensure progress, time-wise, even when rounding
255 */ 457 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 458#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257 459
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 460#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 461#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 462
262#if __GNUC__ >= 4 463#if __GNUC__ >= 4
263# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
265#else 466#else
266# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
267# define noinline 468# define noinline
268# if __STDC_VERSION__ < 199901L 469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 470# define inline
270# endif 471# endif
271#endif 472#endif
272 473
273#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 479# define inline_speed static noinline
279#else 480#else
280# define inline_speed static inline 481# define inline_speed static inline
281#endif 482#endif
282 483
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
488#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
285 491
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
288 494
289typedef ev_watcher *W; 495typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
292 498
293#if EV_USE_MONOTONIC 499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 504/* giving it a reasonably high chance of working on typical architetcures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 520#endif
298 521
299#ifdef _WIN32 522#ifdef _WIN32
300# include "ev_win32.c" 523# include "ev_win32.c"
301#endif 524#endif
309{ 532{
310 syserr_cb = cb; 533 syserr_cb = cb;
311} 534}
312 535
313static void noinline 536static void noinline
314syserr (const char *msg) 537ev_syserr (const char *msg)
315{ 538{
316 if (!msg) 539 if (!msg)
317 msg = "(libev) system error"; 540 msg = "(libev) system error";
318 541
319 if (syserr_cb) 542 if (syserr_cb)
323 perror (msg); 546 perror (msg);
324 abort (); 547 abort ();
325 } 548 }
326} 549}
327 550
551static void *
552ev_realloc_emul (void *ptr, long size)
553{
554 /* some systems, notably openbsd and darwin, fail to properly
555 * implement realloc (x, 0) (as required by both ansi c-98 and
556 * the single unix specification, so work around them here.
557 */
558
559 if (size)
560 return realloc (ptr, size);
561
562 free (ptr);
563 return 0;
564}
565
328static void *(*alloc)(void *ptr, long size); 566static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 567
330void 568void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 569ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 570{
333 alloc = cb; 571 alloc = cb;
334} 572}
335 573
336inline_speed void * 574inline_speed void *
337ev_realloc (void *ptr, long size) 575ev_realloc (void *ptr, long size)
338{ 576{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 577 ptr = alloc (ptr, size);
340 578
341 if (!ptr && size) 579 if (!ptr && size)
342 { 580 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 581 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 582 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 588#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 589#define ev_free(ptr) ev_realloc ((ptr), 0)
352 590
353/*****************************************************************************/ 591/*****************************************************************************/
354 592
593/* set in reify when reification needed */
594#define EV_ANFD_REIFY 1
595
596/* file descriptor info structure */
355typedef struct 597typedef struct
356{ 598{
357 WL head; 599 WL head;
358 unsigned char events; 600 unsigned char events; /* the events watched for */
601 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
602 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 603 unsigned char unused;
604#if EV_USE_EPOLL
605 unsigned int egen; /* generation counter to counter epoll bugs */
606#endif
360#if EV_SELECT_IS_WINSOCKET 607#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 608 SOCKET handle;
362#endif 609#endif
363} ANFD; 610} ANFD;
364 611
612/* stores the pending event set for a given watcher */
365typedef struct 613typedef struct
366{ 614{
367 W w; 615 W w;
368 int events; 616 int events; /* the pending event set for the given watcher */
369} ANPENDING; 617} ANPENDING;
370 618
371#if EV_USE_INOTIFY 619#if EV_USE_INOTIFY
620/* hash table entry per inotify-id */
372typedef struct 621typedef struct
373{ 622{
374 WL head; 623 WL head;
375} ANFS; 624} ANFS;
625#endif
626
627/* Heap Entry */
628#if EV_HEAP_CACHE_AT
629 /* a heap element */
630 typedef struct {
631 ev_tstamp at;
632 WT w;
633 } ANHE;
634
635 #define ANHE_w(he) (he).w /* access watcher, read-write */
636 #define ANHE_at(he) (he).at /* access cached at, read-only */
637 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
638#else
639 /* a heap element */
640 typedef WT ANHE;
641
642 #define ANHE_w(he) (he)
643 #define ANHE_at(he) (he)->at
644 #define ANHE_at_cache(he)
376#endif 645#endif
377 646
378#if EV_MULTIPLICITY 647#if EV_MULTIPLICITY
379 648
380 struct ev_loop 649 struct ev_loop
399 668
400 static int ev_default_loop_ptr; 669 static int ev_default_loop_ptr;
401 670
402#endif 671#endif
403 672
673#if EV_MINIMAL < 2
674# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
675# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
676# define EV_INVOKE_PENDING invoke_cb (EV_A)
677#else
678# define EV_RELEASE_CB (void)0
679# define EV_ACQUIRE_CB (void)0
680# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
681#endif
682
683#define EVUNLOOP_RECURSE 0x80
684
404/*****************************************************************************/ 685/*****************************************************************************/
405 686
687#ifndef EV_HAVE_EV_TIME
406ev_tstamp 688ev_tstamp
407ev_time (void) 689ev_time (void)
408{ 690{
409#if EV_USE_REALTIME 691#if EV_USE_REALTIME
692 if (expect_true (have_realtime))
693 {
410 struct timespec ts; 694 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 695 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 696 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 697 }
698#endif
699
414 struct timeval tv; 700 struct timeval tv;
415 gettimeofday (&tv, 0); 701 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 702 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 703}
704#endif
419 705
420ev_tstamp inline_size 706inline_size ev_tstamp
421get_clock (void) 707get_clock (void)
422{ 708{
423#if EV_USE_MONOTONIC 709#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 710 if (expect_true (have_monotonic))
425 { 711 {
451 ts.tv_sec = (time_t)delay; 737 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 738 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 739
454 nanosleep (&ts, 0); 740 nanosleep (&ts, 0);
455#elif defined(_WIN32) 741#elif defined(_WIN32)
456 Sleep (delay * 1e3); 742 Sleep ((unsigned long)(delay * 1e3));
457#else 743#else
458 struct timeval tv; 744 struct timeval tv;
459 745
460 tv.tv_sec = (time_t)delay; 746 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 747 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 748
749 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
750 /* something not guaranteed by newer posix versions, but guaranteed */
751 /* by older ones */
463 select (0, 0, 0, 0, &tv); 752 select (0, 0, 0, 0, &tv);
464#endif 753#endif
465 } 754 }
466} 755}
467 756
468/*****************************************************************************/ 757/*****************************************************************************/
469 758
470int inline_size 759#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
760
761/* find a suitable new size for the given array, */
762/* hopefully by rounding to a ncie-to-malloc size */
763inline_size int
471array_nextsize (int elem, int cur, int cnt) 764array_nextsize (int elem, int cur, int cnt)
472{ 765{
473 int ncur = cur + 1; 766 int ncur = cur + 1;
474 767
475 do 768 do
476 ncur <<= 1; 769 ncur <<= 1;
477 while (cnt > ncur); 770 while (cnt > ncur);
478 771
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 772 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 773 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 774 {
482 ncur *= elem; 775 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 776 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 777 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 778 ncur /= elem;
486 } 779 }
487 780
488 return ncur; 781 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 785array_realloc (int elem, void *base, int *cur, int cnt)
493{ 786{
494 *cur = array_nextsize (elem, *cur, cnt); 787 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 788 return ev_realloc (base, elem * *cur);
496} 789}
790
791#define array_init_zero(base,count) \
792 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 793
498#define array_needsize(type,base,cur,cnt,init) \ 794#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 795 if (expect_false ((cnt) > (cur))) \
500 { \ 796 { \
501 int ocur_ = (cur); \ 797 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 809 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 810 }
515#endif 811#endif
516 812
517#define array_free(stem, idx) \ 813#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 814 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 815
520/*****************************************************************************/ 816/*****************************************************************************/
817
818/* dummy callback for pending events */
819static void noinline
820pendingcb (EV_P_ ev_prepare *w, int revents)
821{
822}
521 823
522void noinline 824void noinline
523ev_feed_event (EV_P_ void *w, int revents) 825ev_feed_event (EV_P_ void *w, int revents)
524{ 826{
525 W w_ = (W)w; 827 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 836 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 837 pendings [pri][w_->pending - 1].events = revents;
536 } 838 }
537} 839}
538 840
539void inline_speed 841inline_speed void
842feed_reverse (EV_P_ W w)
843{
844 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
845 rfeeds [rfeedcnt++] = w;
846}
847
848inline_size void
849feed_reverse_done (EV_P_ int revents)
850{
851 do
852 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
853 while (rfeedcnt);
854}
855
856inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 857queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 858{
542 int i; 859 int i;
543 860
544 for (i = 0; i < eventcnt; ++i) 861 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 862 ev_feed_event (EV_A_ events [i], type);
546} 863}
547 864
548/*****************************************************************************/ 865/*****************************************************************************/
549 866
550void inline_size 867inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 868fd_event_nc (EV_P_ int fd, int revents)
565{ 869{
566 ANFD *anfd = anfds + fd; 870 ANFD *anfd = anfds + fd;
567 ev_io *w; 871 ev_io *w;
568 872
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 873 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 877 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 878 ev_feed_event (EV_A_ (W)w, ev);
575 } 879 }
576} 880}
577 881
882/* do not submit kernel events for fds that have reify set */
883/* because that means they changed while we were polling for new events */
884inline_speed void
885fd_event (EV_P_ int fd, int revents)
886{
887 ANFD *anfd = anfds + fd;
888
889 if (expect_true (!anfd->reify))
890 fd_event_nc (EV_A_ fd, revents);
891}
892
578void 893void
579ev_feed_fd_event (EV_P_ int fd, int revents) 894ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 895{
581 if (fd >= 0 && fd < anfdmax) 896 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 897 fd_event_nc (EV_A_ fd, revents);
583} 898}
584 899
585void inline_size 900/* make sure the external fd watch events are in-sync */
901/* with the kernel/libev internal state */
902inline_size void
586fd_reify (EV_P) 903fd_reify (EV_P)
587{ 904{
588 int i; 905 int i;
589 906
590 for (i = 0; i < fdchangecnt; ++i) 907 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 916 events |= (unsigned char)w->events;
600 917
601#if EV_SELECT_IS_WINSOCKET 918#if EV_SELECT_IS_WINSOCKET
602 if (events) 919 if (events)
603 { 920 {
604 unsigned long argp; 921 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 922 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 923 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 924 }
612#endif 925#endif
613 926
614 { 927 {
615 unsigned char o_events = anfd->events; 928 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 929 unsigned char o_reify = anfd->reify;
617 930
618 anfd->reify = 0; 931 anfd->reify = 0;
619 anfd->events = events; 932 anfd->events = events;
620 933
621 if (o_events != events || o_reify & EV_IOFDSET) 934 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 935 backend_modify (EV_A_ fd, o_events, events);
623 } 936 }
624 } 937 }
625 938
626 fdchangecnt = 0; 939 fdchangecnt = 0;
627} 940}
628 941
629void inline_size 942/* something about the given fd changed */
943inline_size void
630fd_change (EV_P_ int fd, int flags) 944fd_change (EV_P_ int fd, int flags)
631{ 945{
632 unsigned char reify = anfds [fd].reify; 946 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 947 anfds [fd].reify |= flags;
634 948
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 952 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 953 fdchanges [fdchangecnt - 1] = fd;
640 } 954 }
641} 955}
642 956
643void inline_speed 957/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
958inline_speed void
644fd_kill (EV_P_ int fd) 959fd_kill (EV_P_ int fd)
645{ 960{
646 ev_io *w; 961 ev_io *w;
647 962
648 while ((w = (ev_io *)anfds [fd].head)) 963 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 965 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 966 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 967 }
653} 968}
654 969
655int inline_size 970/* check whether the given fd is atcually valid, for error recovery */
971inline_size int
656fd_valid (int fd) 972fd_valid (int fd)
657{ 973{
658#ifdef _WIN32 974#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 975 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 976#else
661 return fcntl (fd, F_GETFD) != -1; 977 return fcntl (fd, F_GETFD) != -1;
662#endif 978#endif
663} 979}
664 980
668{ 984{
669 int fd; 985 int fd;
670 986
671 for (fd = 0; fd < anfdmax; ++fd) 987 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 988 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 989 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 990 fd_kill (EV_A_ fd);
675} 991}
676 992
677/* called on ENOMEM in select/poll to kill some fds and retry */ 993/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 994static void noinline
682 998
683 for (fd = anfdmax; fd--; ) 999 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1000 if (anfds [fd].events)
685 { 1001 {
686 fd_kill (EV_A_ fd); 1002 fd_kill (EV_A_ fd);
687 return; 1003 break;
688 } 1004 }
689} 1005}
690 1006
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1007/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1008static void noinline
696 1012
697 for (fd = 0; fd < anfdmax; ++fd) 1013 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1014 if (anfds [fd].events)
699 { 1015 {
700 anfds [fd].events = 0; 1016 anfds [fd].events = 0;
1017 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1018 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1019 }
703} 1020}
704 1021
705/*****************************************************************************/ 1022/*****************************************************************************/
706 1023
707void inline_speed 1024/*
708upheap (WT *heap, int k) 1025 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 1026 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 1027 * the branching factor of the d-tree.
1028 */
711 1029
712 while (k) 1030/*
713 { 1031 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 1032 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1033 * which is more cache-efficient.
1034 * the difference is about 5% with 50000+ watchers.
1035 */
1036#if EV_USE_4HEAP
715 1037
716 if (heap [p]->at <= w->at) 1038#define DHEAP 4
1039#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1040#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1041#define UPHEAP_DONE(p,k) ((p) == (k))
1042
1043/* away from the root */
1044inline_speed void
1045downheap (ANHE *heap, int N, int k)
1046{
1047 ANHE he = heap [k];
1048 ANHE *E = heap + N + HEAP0;
1049
1050 for (;;)
1051 {
1052 ev_tstamp minat;
1053 ANHE *minpos;
1054 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1055
1056 /* find minimum child */
1057 if (expect_true (pos + DHEAP - 1 < E))
1058 {
1059 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else if (pos < E)
1065 {
1066 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1067 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1068 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1069 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1070 }
1071 else
717 break; 1072 break;
718 1073
1074 if (ANHE_at (he) <= minat)
1075 break;
1076
1077 heap [k] = *minpos;
1078 ev_active (ANHE_w (*minpos)) = k;
1079
1080 k = minpos - heap;
1081 }
1082
1083 heap [k] = he;
1084 ev_active (ANHE_w (he)) = k;
1085}
1086
1087#else /* 4HEAP */
1088
1089#define HEAP0 1
1090#define HPARENT(k) ((k) >> 1)
1091#define UPHEAP_DONE(p,k) (!(p))
1092
1093/* away from the root */
1094inline_speed void
1095downheap (ANHE *heap, int N, int k)
1096{
1097 ANHE he = heap [k];
1098
1099 for (;;)
1100 {
1101 int c = k << 1;
1102
1103 if (c >= N + HEAP0)
1104 break;
1105
1106 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1107 ? 1 : 0;
1108
1109 if (ANHE_at (he) <= ANHE_at (heap [c]))
1110 break;
1111
1112 heap [k] = heap [c];
1113 ev_active (ANHE_w (heap [k])) = k;
1114
1115 k = c;
1116 }
1117
1118 heap [k] = he;
1119 ev_active (ANHE_w (he)) = k;
1120}
1121#endif
1122
1123/* towards the root */
1124inline_speed void
1125upheap (ANHE *heap, int k)
1126{
1127 ANHE he = heap [k];
1128
1129 for (;;)
1130 {
1131 int p = HPARENT (k);
1132
1133 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1134 break;
1135
719 heap [k] = heap [p]; 1136 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1137 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1138 k = p;
722 } 1139 }
723 1140
724 heap [k] = w; 1141 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1142 ev_active (ANHE_w (he)) = k;
726} 1143}
727 1144
728void inline_speed 1145/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1146inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1147adjustheap (ANHE *heap, int N, int k)
758{ 1148{
1149 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
759 upheap (heap, k); 1150 upheap (heap, k);
1151 else
760 downheap (heap, N, k); 1152 downheap (heap, N, k);
1153}
1154
1155/* rebuild the heap: this function is used only once and executed rarely */
1156inline_size void
1157reheap (ANHE *heap, int N)
1158{
1159 int i;
1160
1161 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1162 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1163 for (i = 0; i < N; ++i)
1164 upheap (heap, i + HEAP0);
761} 1165}
762 1166
763/*****************************************************************************/ 1167/*****************************************************************************/
764 1168
1169/* associate signal watchers to a signal signal */
765typedef struct 1170typedef struct
766{ 1171{
1172 EV_ATOMIC_T pending;
1173#if EV_MULTIPLICITY
1174 EV_P;
1175#endif
767 WL head; 1176 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG; 1177} ANSIG;
770 1178
771static ANSIG *signals; 1179static ANSIG signals [EV_NSIG - 1];
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787 1180
788/*****************************************************************************/ 1181/*****************************************************************************/
789 1182
790void inline_speed 1183/* used to prepare libev internal fd's */
1184/* this is not fork-safe */
1185inline_speed void
791fd_intern (int fd) 1186fd_intern (int fd)
792{ 1187{
793#ifdef _WIN32 1188#ifdef _WIN32
794 int arg = 1; 1189 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1190 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1191#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1192 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1193 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1194#endif
800} 1195}
801 1196
802static void noinline 1197static void noinline
803evpipe_init (EV_P) 1198evpipe_init (EV_P)
804{ 1199{
805 if (!ev_is_active (&pipeev)) 1200 if (!ev_is_active (&pipe_w))
806 { 1201 {
1202#if EV_USE_EVENTFD
1203 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1204 if (evfd < 0 && errno == EINVAL)
1205 evfd = eventfd (0, 0);
1206
1207 if (evfd >= 0)
1208 {
1209 evpipe [0] = -1;
1210 fd_intern (evfd); /* doing it twice doesn't hurt */
1211 ev_io_set (&pipe_w, evfd, EV_READ);
1212 }
1213 else
1214#endif
1215 {
807 while (pipe (evpipe)) 1216 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1217 ev_syserr ("(libev) error creating signal/async pipe");
809 1218
810 fd_intern (evpipe [0]); 1219 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1220 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1221 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1222 }
1223
814 ev_io_start (EV_A_ &pipeev); 1224 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1225 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1226 }
817} 1227}
818 1228
819void inline_size 1229inline_size void
820evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1230evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1231{
822 if (!*flag) 1232 if (!*flag)
823 { 1233 {
824 int old_errno = errno; /* save errno because write might clobber it */ 1234 int old_errno = errno; /* save errno because write might clobber it */
825 1235
826 *flag = 1; 1236 *flag = 1;
1237
1238#if EV_USE_EVENTFD
1239 if (evfd >= 0)
1240 {
1241 uint64_t counter = 1;
1242 write (evfd, &counter, sizeof (uint64_t));
1243 }
1244 else
1245#endif
827 write (evpipe [1], &old_errno, 1); 1246 write (evpipe [1], &old_errno, 1);
828 1247
829 errno = old_errno; 1248 errno = old_errno;
830 } 1249 }
831} 1250}
832 1251
1252/* called whenever the libev signal pipe */
1253/* got some events (signal, async) */
833static void 1254static void
834pipecb (EV_P_ ev_io *iow, int revents) 1255pipecb (EV_P_ ev_io *iow, int revents)
835{ 1256{
1257 int i;
1258
1259#if EV_USE_EVENTFD
1260 if (evfd >= 0)
836 { 1261 {
837 int dummy; 1262 uint64_t counter;
1263 read (evfd, &counter, sizeof (uint64_t));
1264 }
1265 else
1266#endif
1267 {
1268 char dummy;
838 read (evpipe [0], &dummy, 1); 1269 read (evpipe [0], &dummy, 1);
839 } 1270 }
840 1271
841 if (gotsig && ev_is_default_loop (EV_A)) 1272 if (sig_pending)
842 { 1273 {
843 int signum; 1274 sig_pending = 0;
844 gotsig = 0;
845 1275
846 for (signum = signalmax; signum--; ) 1276 for (i = EV_NSIG - 1; i--; )
847 if (signals [signum].gotsig) 1277 if (expect_false (signals [i].pending))
848 ev_feed_signal_event (EV_A_ signum + 1); 1278 ev_feed_signal_event (EV_A_ i + 1);
849 } 1279 }
850 1280
851#if EV_ASYNC_ENABLE 1281#if EV_ASYNC_ENABLE
852 if (gotasync) 1282 if (async_pending)
853 { 1283 {
854 int i; 1284 async_pending = 0;
855 gotasync = 0;
856 1285
857 for (i = asynccnt; i--; ) 1286 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent) 1287 if (asyncs [i]->sent)
859 { 1288 {
860 asyncs [i]->sent = 0; 1289 asyncs [i]->sent = 0;
865} 1294}
866 1295
867/*****************************************************************************/ 1296/*****************************************************************************/
868 1297
869static void 1298static void
870sighandler (int signum) 1299ev_sighandler (int signum)
871{ 1300{
872#if EV_MULTIPLICITY 1301#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 1302 EV_P = signals [signum - 1].loop;
874#endif 1303#endif
875 1304
876#if _WIN32 1305#ifdef _WIN32
877 signal (signum, sighandler); 1306 signal (signum, ev_sighandler);
878#endif 1307#endif
879 1308
880 signals [signum - 1].gotsig = 1; 1309 signals [signum - 1].pending = 1;
881 evpipe_write (EV_A_ &gotsig); 1310 evpipe_write (EV_A_ &sig_pending);
882} 1311}
883 1312
884void noinline 1313void noinline
885ev_feed_signal_event (EV_P_ int signum) 1314ev_feed_signal_event (EV_P_ int signum)
886{ 1315{
887 WL w; 1316 WL w;
888 1317
1318 if (expect_false (signum <= 0 || signum > EV_NSIG))
1319 return;
1320
1321 --signum;
1322
889#if EV_MULTIPLICITY 1323#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1324 /* it is permissible to try to feed a signal to the wrong loop */
891#endif 1325 /* or, likely more useful, feeding a signal nobody is waiting for */
892 1326
893 --signum; 1327 if (expect_false (signals [signum].loop != EV_A))
894
895 if (signum < 0 || signum >= signalmax)
896 return; 1328 return;
1329#endif
897 1330
898 signals [signum].gotsig = 0; 1331 signals [signum].pending = 0;
899 1332
900 for (w = signals [signum].head; w; w = w->next) 1333 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1334 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902} 1335}
903 1336
1337#if EV_USE_SIGNALFD
1338static void
1339sigfdcb (EV_P_ ev_io *iow, int revents)
1340{
1341 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1342
1343 for (;;)
1344 {
1345 ssize_t res = read (sigfd, si, sizeof (si));
1346
1347 /* not ISO-C, as res might be -1, but works with SuS */
1348 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1349 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1350
1351 if (res < (ssize_t)sizeof (si))
1352 break;
1353 }
1354}
1355#endif
1356
904/*****************************************************************************/ 1357/*****************************************************************************/
905 1358
906static WL childs [EV_PID_HASHSIZE]; 1359static WL childs [EV_PID_HASHSIZE];
907 1360
908#ifndef _WIN32 1361#ifndef _WIN32
911 1364
912#ifndef WIFCONTINUED 1365#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 1366# define WIFCONTINUED(status) 0
914#endif 1367#endif
915 1368
916void inline_speed 1369/* handle a single child status event */
1370inline_speed void
917child_reap (EV_P_ int chain, int pid, int status) 1371child_reap (EV_P_ int chain, int pid, int status)
918{ 1372{
919 ev_child *w; 1373 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1374 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 1375
934 1388
935#ifndef WCONTINUED 1389#ifndef WCONTINUED
936# define WCONTINUED 0 1390# define WCONTINUED 0
937#endif 1391#endif
938 1392
1393/* called on sigchld etc., calls waitpid */
939static void 1394static void
940childcb (EV_P_ ev_signal *sw, int revents) 1395childcb (EV_P_ ev_signal *sw, int revents)
941{ 1396{
942 int pid, status; 1397 int pid, status;
943 1398
1024 /* kqueue is borked on everything but netbsd apparently */ 1479 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */ 1480 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE; 1481 flags &= ~EVBACKEND_KQUEUE;
1027#endif 1482#endif
1028#ifdef __APPLE__ 1483#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation 1484 /* only select works correctly on that "unix-certified" platform */
1030 flags &= ~EVBACKEND_POLL; 1485 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1486 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1031#endif 1487#endif
1032 1488
1033 return flags; 1489 return flags;
1034} 1490}
1035 1491
1049ev_backend (EV_P) 1505ev_backend (EV_P)
1050{ 1506{
1051 return backend; 1507 return backend;
1052} 1508}
1053 1509
1510#if EV_MINIMAL < 2
1054unsigned int 1511unsigned int
1055ev_loop_count (EV_P) 1512ev_loop_count (EV_P)
1056{ 1513{
1057 return loop_count; 1514 return loop_count;
1058} 1515}
1059 1516
1517unsigned int
1518ev_loop_depth (EV_P)
1519{
1520 return loop_depth;
1521}
1522
1060void 1523void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1524ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1062{ 1525{
1063 io_blocktime = interval; 1526 io_blocktime = interval;
1064} 1527}
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1530ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1068{ 1531{
1069 timeout_blocktime = interval; 1532 timeout_blocktime = interval;
1070} 1533}
1071 1534
1535void
1536ev_set_userdata (EV_P_ void *data)
1537{
1538 userdata = data;
1539}
1540
1541void *
1542ev_userdata (EV_P)
1543{
1544 return userdata;
1545}
1546
1547void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1548{
1549 invoke_cb = invoke_pending_cb;
1550}
1551
1552void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1553{
1554 release_cb = release;
1555 acquire_cb = acquire;
1556}
1557#endif
1558
1559/* initialise a loop structure, must be zero-initialised */
1072static void noinline 1560static void noinline
1073loop_init (EV_P_ unsigned int flags) 1561loop_init (EV_P_ unsigned int flags)
1074{ 1562{
1075 if (!backend) 1563 if (!backend)
1076 { 1564 {
1565#if EV_USE_REALTIME
1566 if (!have_realtime)
1567 {
1568 struct timespec ts;
1569
1570 if (!clock_gettime (CLOCK_REALTIME, &ts))
1571 have_realtime = 1;
1572 }
1573#endif
1574
1077#if EV_USE_MONOTONIC 1575#if EV_USE_MONOTONIC
1576 if (!have_monotonic)
1078 { 1577 {
1079 struct timespec ts; 1578 struct timespec ts;
1579
1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1580 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1081 have_monotonic = 1; 1581 have_monotonic = 1;
1082 } 1582 }
1083#endif 1583#endif
1584
1585 /* pid check not overridable via env */
1586#ifndef _WIN32
1587 if (flags & EVFLAG_FORKCHECK)
1588 curpid = getpid ();
1589#endif
1590
1591 if (!(flags & EVFLAG_NOENV)
1592 && !enable_secure ()
1593 && getenv ("LIBEV_FLAGS"))
1594 flags = atoi (getenv ("LIBEV_FLAGS"));
1084 1595
1085 ev_rt_now = ev_time (); 1596 ev_rt_now = ev_time ();
1086 mn_now = get_clock (); 1597 mn_now = get_clock ();
1087 now_floor = mn_now; 1598 now_floor = mn_now;
1088 rtmn_diff = ev_rt_now - mn_now; 1599 rtmn_diff = ev_rt_now - mn_now;
1600#if EV_MINIMAL < 2
1601 invoke_cb = ev_invoke_pending;
1602#endif
1089 1603
1090 io_blocktime = 0.; 1604 io_blocktime = 0.;
1091 timeout_blocktime = 0.; 1605 timeout_blocktime = 0.;
1092 backend = 0; 1606 backend = 0;
1093 backend_fd = -1; 1607 backend_fd = -1;
1094 gotasync = 0; 1608 sig_pending = 0;
1609#if EV_ASYNC_ENABLE
1610 async_pending = 0;
1611#endif
1095#if EV_USE_INOTIFY 1612#if EV_USE_INOTIFY
1096 fs_fd = -2; 1613 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1097#endif 1614#endif
1098 1615#if EV_USE_SIGNALFD
1099 /* pid check not overridable via env */ 1616 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1100#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK)
1102 curpid = getpid ();
1103#endif 1617#endif
1104 1618
1105 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS"));
1109
1110 if (!(flags & 0x0000ffffUL)) 1619 if (!(flags & 0x0000ffffU))
1111 flags |= ev_recommended_backends (); 1620 flags |= ev_recommended_backends ();
1112 1621
1113#if EV_USE_PORT 1622#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1623 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 1624#endif
1124#endif 1633#endif
1125#if EV_USE_SELECT 1634#if EV_USE_SELECT
1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1635 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1127#endif 1636#endif
1128 1637
1638 ev_prepare_init (&pending_w, pendingcb);
1639
1129 ev_init (&pipeev, pipecb); 1640 ev_init (&pipe_w, pipecb);
1130 ev_set_priority (&pipeev, EV_MAXPRI); 1641 ev_set_priority (&pipe_w, EV_MAXPRI);
1131 } 1642 }
1132} 1643}
1133 1644
1645/* free up a loop structure */
1134static void noinline 1646static void noinline
1135loop_destroy (EV_P) 1647loop_destroy (EV_P)
1136{ 1648{
1137 int i; 1649 int i;
1138 1650
1139 if (ev_is_active (&pipeev)) 1651 if (ev_is_active (&pipe_w))
1140 { 1652 {
1141 ev_ref (EV_A); /* signal watcher */ 1653 /*ev_ref (EV_A);*/
1142 ev_io_stop (EV_A_ &pipeev); 1654 /*ev_io_stop (EV_A_ &pipe_w);*/
1143 1655
1144 close (evpipe [0]); evpipe [0] = 0; 1656#if EV_USE_EVENTFD
1145 close (evpipe [1]); evpipe [1] = 0; 1657 if (evfd >= 0)
1658 close (evfd);
1659#endif
1660
1661 if (evpipe [0] >= 0)
1662 {
1663 EV_WIN32_CLOSE_FD (evpipe [0]);
1664 EV_WIN32_CLOSE_FD (evpipe [1]);
1665 }
1146 } 1666 }
1667
1668#if EV_USE_SIGNALFD
1669 if (ev_is_active (&sigfd_w))
1670 close (sigfd);
1671#endif
1147 1672
1148#if EV_USE_INOTIFY 1673#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 1674 if (fs_fd >= 0)
1150 close (fs_fd); 1675 close (fs_fd);
1151#endif 1676#endif
1175#if EV_IDLE_ENABLE 1700#if EV_IDLE_ENABLE
1176 array_free (idle, [i]); 1701 array_free (idle, [i]);
1177#endif 1702#endif
1178 } 1703 }
1179 1704
1180 ev_free (anfds); anfdmax = 0; 1705 ev_free (anfds); anfds = 0; anfdmax = 0;
1181 1706
1182 /* have to use the microsoft-never-gets-it-right macro */ 1707 /* have to use the microsoft-never-gets-it-right macro */
1708 array_free (rfeed, EMPTY);
1183 array_free (fdchange, EMPTY); 1709 array_free (fdchange, EMPTY);
1184 array_free (timer, EMPTY); 1710 array_free (timer, EMPTY);
1185#if EV_PERIODIC_ENABLE 1711#if EV_PERIODIC_ENABLE
1186 array_free (periodic, EMPTY); 1712 array_free (periodic, EMPTY);
1187#endif 1713#endif
1195#endif 1721#endif
1196 1722
1197 backend = 0; 1723 backend = 0;
1198} 1724}
1199 1725
1726#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 1727inline_size void infy_fork (EV_P);
1728#endif
1201 1729
1202void inline_size 1730inline_size void
1203loop_fork (EV_P) 1731loop_fork (EV_P)
1204{ 1732{
1205#if EV_USE_PORT 1733#if EV_USE_PORT
1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1734 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1207#endif 1735#endif
1213#endif 1741#endif
1214#if EV_USE_INOTIFY 1742#if EV_USE_INOTIFY
1215 infy_fork (EV_A); 1743 infy_fork (EV_A);
1216#endif 1744#endif
1217 1745
1218 if (ev_is_active (&pipeev)) 1746 if (ev_is_active (&pipe_w))
1219 { 1747 {
1220 /* this "locks" the handlers against writing to the pipe */ 1748 /* this "locks" the handlers against writing to the pipe */
1221 /* while we modify the fd vars */ 1749 /* while we modify the fd vars */
1222 gotsig = 1; 1750 sig_pending = 1;
1223#if EV_ASYNC_ENABLE 1751#if EV_ASYNC_ENABLE
1224 gotasync = 1; 1752 async_pending = 1;
1225#endif 1753#endif
1226 1754
1227 ev_ref (EV_A); 1755 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev); 1756 ev_io_stop (EV_A_ &pipe_w);
1229 close (evpipe [0]); 1757
1230 close (evpipe [1]); 1758#if EV_USE_EVENTFD
1759 if (evfd >= 0)
1760 close (evfd);
1761#endif
1762
1763 if (evpipe [0] >= 0)
1764 {
1765 EV_WIN32_CLOSE_FD (evpipe [0]);
1766 EV_WIN32_CLOSE_FD (evpipe [1]);
1767 }
1231 1768
1232 evpipe_init (EV_A); 1769 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */ 1770 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ); 1771 pipecb (EV_A_ &pipe_w, EV_READ);
1235 } 1772 }
1236 1773
1237 postfork = 0; 1774 postfork = 0;
1238} 1775}
1239 1776
1240#if EV_MULTIPLICITY 1777#if EV_MULTIPLICITY
1778
1241struct ev_loop * 1779struct ev_loop *
1242ev_loop_new (unsigned int flags) 1780ev_loop_new (unsigned int flags)
1243{ 1781{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1782 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245 1783
1246 memset (loop, 0, sizeof (struct ev_loop)); 1784 memset (EV_A, 0, sizeof (struct ev_loop));
1247
1248 loop_init (EV_A_ flags); 1785 loop_init (EV_A_ flags);
1249 1786
1250 if (ev_backend (EV_A)) 1787 if (ev_backend (EV_A))
1251 return loop; 1788 return EV_A;
1252 1789
1253 return 0; 1790 return 0;
1254} 1791}
1255 1792
1256void 1793void
1263void 1800void
1264ev_loop_fork (EV_P) 1801ev_loop_fork (EV_P)
1265{ 1802{
1266 postfork = 1; /* must be in line with ev_default_fork */ 1803 postfork = 1; /* must be in line with ev_default_fork */
1267} 1804}
1805#endif /* multiplicity */
1268 1806
1807#if EV_VERIFY
1808static void noinline
1809verify_watcher (EV_P_ W w)
1810{
1811 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1812
1813 if (w->pending)
1814 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1815}
1816
1817static void noinline
1818verify_heap (EV_P_ ANHE *heap, int N)
1819{
1820 int i;
1821
1822 for (i = HEAP0; i < N + HEAP0; ++i)
1823 {
1824 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1825 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1826 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1827
1828 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1829 }
1830}
1831
1832static void noinline
1833array_verify (EV_P_ W *ws, int cnt)
1834{
1835 while (cnt--)
1836 {
1837 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1838 verify_watcher (EV_A_ ws [cnt]);
1839 }
1840}
1841#endif
1842
1843#if EV_MINIMAL < 2
1844void
1845ev_loop_verify (EV_P)
1846{
1847#if EV_VERIFY
1848 int i;
1849 WL w;
1850
1851 assert (activecnt >= -1);
1852
1853 assert (fdchangemax >= fdchangecnt);
1854 for (i = 0; i < fdchangecnt; ++i)
1855 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1856
1857 assert (anfdmax >= 0);
1858 for (i = 0; i < anfdmax; ++i)
1859 for (w = anfds [i].head; w; w = w->next)
1860 {
1861 verify_watcher (EV_A_ (W)w);
1862 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1863 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1864 }
1865
1866 assert (timermax >= timercnt);
1867 verify_heap (EV_A_ timers, timercnt);
1868
1869#if EV_PERIODIC_ENABLE
1870 assert (periodicmax >= periodiccnt);
1871 verify_heap (EV_A_ periodics, periodiccnt);
1872#endif
1873
1874 for (i = NUMPRI; i--; )
1875 {
1876 assert (pendingmax [i] >= pendingcnt [i]);
1877#if EV_IDLE_ENABLE
1878 assert (idleall >= 0);
1879 assert (idlemax [i] >= idlecnt [i]);
1880 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1881#endif
1882 }
1883
1884#if EV_FORK_ENABLE
1885 assert (forkmax >= forkcnt);
1886 array_verify (EV_A_ (W *)forks, forkcnt);
1887#endif
1888
1889#if EV_ASYNC_ENABLE
1890 assert (asyncmax >= asynccnt);
1891 array_verify (EV_A_ (W *)asyncs, asynccnt);
1892#endif
1893
1894 assert (preparemax >= preparecnt);
1895 array_verify (EV_A_ (W *)prepares, preparecnt);
1896
1897 assert (checkmax >= checkcnt);
1898 array_verify (EV_A_ (W *)checks, checkcnt);
1899
1900# if 0
1901 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1902 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1903# endif
1904#endif
1905}
1269#endif 1906#endif
1270 1907
1271#if EV_MULTIPLICITY 1908#if EV_MULTIPLICITY
1272struct ev_loop * 1909struct ev_loop *
1273ev_default_loop_init (unsigned int flags) 1910ev_default_loop_init (unsigned int flags)
1277#endif 1914#endif
1278{ 1915{
1279 if (!ev_default_loop_ptr) 1916 if (!ev_default_loop_ptr)
1280 { 1917 {
1281#if EV_MULTIPLICITY 1918#if EV_MULTIPLICITY
1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1919 EV_P = ev_default_loop_ptr = &default_loop_struct;
1283#else 1920#else
1284 ev_default_loop_ptr = 1; 1921 ev_default_loop_ptr = 1;
1285#endif 1922#endif
1286 1923
1287 loop_init (EV_A_ flags); 1924 loop_init (EV_A_ flags);
1304 1941
1305void 1942void
1306ev_default_destroy (void) 1943ev_default_destroy (void)
1307{ 1944{
1308#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
1309 struct ev_loop *loop = ev_default_loop_ptr; 1946 EV_P = ev_default_loop_ptr;
1310#endif 1947#endif
1948
1949 ev_default_loop_ptr = 0;
1311 1950
1312#ifndef _WIN32 1951#ifndef _WIN32
1313 ev_ref (EV_A); /* child watcher */ 1952 ev_ref (EV_A); /* child watcher */
1314 ev_signal_stop (EV_A_ &childev); 1953 ev_signal_stop (EV_A_ &childev);
1315#endif 1954#endif
1319 1958
1320void 1959void
1321ev_default_fork (void) 1960ev_default_fork (void)
1322{ 1961{
1323#if EV_MULTIPLICITY 1962#if EV_MULTIPLICITY
1324 struct ev_loop *loop = ev_default_loop_ptr; 1963 EV_P = ev_default_loop_ptr;
1325#endif 1964#endif
1326 1965
1327 if (backend)
1328 postfork = 1; /* must be in line with ev_loop_fork */ 1966 postfork = 1; /* must be in line with ev_loop_fork */
1329} 1967}
1330 1968
1331/*****************************************************************************/ 1969/*****************************************************************************/
1332 1970
1333void 1971void
1334ev_invoke (EV_P_ void *w, int revents) 1972ev_invoke (EV_P_ void *w, int revents)
1335{ 1973{
1336 EV_CB_INVOKE ((W)w, revents); 1974 EV_CB_INVOKE ((W)w, revents);
1337} 1975}
1338 1976
1339void inline_speed 1977unsigned int
1340call_pending (EV_P) 1978ev_pending_count (EV_P)
1979{
1980 int pri;
1981 unsigned int count = 0;
1982
1983 for (pri = NUMPRI; pri--; )
1984 count += pendingcnt [pri];
1985
1986 return count;
1987}
1988
1989void noinline
1990ev_invoke_pending (EV_P)
1341{ 1991{
1342 int pri; 1992 int pri;
1343 1993
1344 for (pri = NUMPRI; pri--; ) 1994 for (pri = NUMPRI; pri--; )
1345 while (pendingcnt [pri]) 1995 while (pendingcnt [pri])
1346 { 1996 {
1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1997 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1348 1998
1349 if (expect_true (p->w))
1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1999 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2000 /* ^ this is no longer true, as pending_w could be here */
1352 2001
1353 p->w->pending = 0; 2002 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events); 2003 EV_CB_INVOKE (p->w, p->events);
1355 } 2004 EV_FREQUENT_CHECK;
1356 } 2005 }
1357} 2006}
1358 2007
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
1377 downheap (timers, timercnt, 0);
1378 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 {
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438
1439#if EV_IDLE_ENABLE 2008#if EV_IDLE_ENABLE
1440void inline_size 2009/* make idle watchers pending. this handles the "call-idle */
2010/* only when higher priorities are idle" logic */
2011inline_size void
1441idle_reify (EV_P) 2012idle_reify (EV_P)
1442{ 2013{
1443 if (expect_false (idleall)) 2014 if (expect_false (idleall))
1444 { 2015 {
1445 int pri; 2016 int pri;
1457 } 2028 }
1458 } 2029 }
1459} 2030}
1460#endif 2031#endif
1461 2032
1462void inline_speed 2033/* make timers pending */
2034inline_size void
2035timers_reify (EV_P)
2036{
2037 EV_FREQUENT_CHECK;
2038
2039 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2040 {
2041 do
2042 {
2043 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2044
2045 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2046
2047 /* first reschedule or stop timer */
2048 if (w->repeat)
2049 {
2050 ev_at (w) += w->repeat;
2051 if (ev_at (w) < mn_now)
2052 ev_at (w) = mn_now;
2053
2054 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2055
2056 ANHE_at_cache (timers [HEAP0]);
2057 downheap (timers, timercnt, HEAP0);
2058 }
2059 else
2060 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2061
2062 EV_FREQUENT_CHECK;
2063 feed_reverse (EV_A_ (W)w);
2064 }
2065 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2066
2067 feed_reverse_done (EV_A_ EV_TIMEOUT);
2068 }
2069}
2070
2071#if EV_PERIODIC_ENABLE
2072/* make periodics pending */
2073inline_size void
2074periodics_reify (EV_P)
2075{
2076 EV_FREQUENT_CHECK;
2077
2078 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2079 {
2080 int feed_count = 0;
2081
2082 do
2083 {
2084 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2085
2086 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2087
2088 /* first reschedule or stop timer */
2089 if (w->reschedule_cb)
2090 {
2091 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2092
2093 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2094
2095 ANHE_at_cache (periodics [HEAP0]);
2096 downheap (periodics, periodiccnt, HEAP0);
2097 }
2098 else if (w->interval)
2099 {
2100 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2101 /* if next trigger time is not sufficiently in the future, put it there */
2102 /* this might happen because of floating point inexactness */
2103 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2104 {
2105 ev_at (w) += w->interval;
2106
2107 /* if interval is unreasonably low we might still have a time in the past */
2108 /* so correct this. this will make the periodic very inexact, but the user */
2109 /* has effectively asked to get triggered more often than possible */
2110 if (ev_at (w) < ev_rt_now)
2111 ev_at (w) = ev_rt_now;
2112 }
2113
2114 ANHE_at_cache (periodics [HEAP0]);
2115 downheap (periodics, periodiccnt, HEAP0);
2116 }
2117 else
2118 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2119
2120 EV_FREQUENT_CHECK;
2121 feed_reverse (EV_A_ (W)w);
2122 }
2123 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2124
2125 feed_reverse_done (EV_A_ EV_PERIODIC);
2126 }
2127}
2128
2129/* simply recalculate all periodics */
2130/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2131static void noinline
2132periodics_reschedule (EV_P)
2133{
2134 int i;
2135
2136 /* adjust periodics after time jump */
2137 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2138 {
2139 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2140
2141 if (w->reschedule_cb)
2142 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2143 else if (w->interval)
2144 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2145
2146 ANHE_at_cache (periodics [i]);
2147 }
2148
2149 reheap (periodics, periodiccnt);
2150}
2151#endif
2152
2153/* adjust all timers by a given offset */
2154static void noinline
2155timers_reschedule (EV_P_ ev_tstamp adjust)
2156{
2157 int i;
2158
2159 for (i = 0; i < timercnt; ++i)
2160 {
2161 ANHE *he = timers + i + HEAP0;
2162 ANHE_w (*he)->at += adjust;
2163 ANHE_at_cache (*he);
2164 }
2165}
2166
2167/* fetch new monotonic and realtime times from the kernel */
2168/* also detect if there was a timejump, and act accordingly */
2169inline_speed void
1463time_update (EV_P_ ev_tstamp max_block) 2170time_update (EV_P_ ev_tstamp max_block)
1464{ 2171{
1465 int i;
1466
1467#if EV_USE_MONOTONIC 2172#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic)) 2173 if (expect_true (have_monotonic))
1469 { 2174 {
2175 int i;
1470 ev_tstamp odiff = rtmn_diff; 2176 ev_tstamp odiff = rtmn_diff;
1471 2177
1472 mn_now = get_clock (); 2178 mn_now = get_clock ();
1473 2179
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2180 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1492 */ 2198 */
1493 for (i = 4; --i; ) 2199 for (i = 4; --i; )
1494 { 2200 {
1495 rtmn_diff = ev_rt_now - mn_now; 2201 rtmn_diff = ev_rt_now - mn_now;
1496 2202
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2203 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 2204 return; /* all is well */
1499 2205
1500 ev_rt_now = ev_time (); 2206 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 2207 mn_now = get_clock ();
1502 now_floor = mn_now; 2208 now_floor = mn_now;
1503 } 2209 }
1504 2210
2211 /* no timer adjustment, as the monotonic clock doesn't jump */
2212 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1505# if EV_PERIODIC_ENABLE 2213# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A); 2214 periodics_reschedule (EV_A);
1507# endif 2215# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 } 2216 }
1511 else 2217 else
1512#endif 2218#endif
1513 { 2219 {
1514 ev_rt_now = ev_time (); 2220 ev_rt_now = ev_time ();
1515 2221
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2222 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1517 { 2223 {
2224 /* adjust timers. this is easy, as the offset is the same for all of them */
2225 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1518#if EV_PERIODIC_ENABLE 2226#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 2227 periodics_reschedule (EV_A);
1520#endif 2228#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1524 } 2229 }
1525 2230
1526 mn_now = ev_rt_now; 2231 mn_now = ev_rt_now;
1527 } 2232 }
1528} 2233}
1529 2234
1530void 2235void
1531ev_ref (EV_P)
1532{
1533 ++activecnt;
1534}
1535
1536void
1537ev_unref (EV_P)
1538{
1539 --activecnt;
1540}
1541
1542static int loop_done;
1543
1544void
1545ev_loop (EV_P_ int flags) 2236ev_loop (EV_P_ int flags)
1546{ 2237{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2238#if EV_MINIMAL < 2
1548 ? EVUNLOOP_ONE 2239 ++loop_depth;
1549 : EVUNLOOP_CANCEL; 2240#endif
1550 2241
2242 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2243
2244 loop_done = EVUNLOOP_CANCEL;
2245
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2246 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1552 2247
1553 do 2248 do
1554 { 2249 {
2250#if EV_VERIFY >= 2
2251 ev_loop_verify (EV_A);
2252#endif
2253
1555#ifndef _WIN32 2254#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 2255 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 2256 if (expect_false (getpid () != curpid))
1558 { 2257 {
1559 curpid = getpid (); 2258 curpid = getpid ();
1565 /* we might have forked, so queue fork handlers */ 2264 /* we might have forked, so queue fork handlers */
1566 if (expect_false (postfork)) 2265 if (expect_false (postfork))
1567 if (forkcnt) 2266 if (forkcnt)
1568 { 2267 {
1569 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2268 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1570 call_pending (EV_A); 2269 EV_INVOKE_PENDING;
1571 } 2270 }
1572#endif 2271#endif
1573 2272
1574 /* queue prepare watchers (and execute them) */ 2273 /* queue prepare watchers (and execute them) */
1575 if (expect_false (preparecnt)) 2274 if (expect_false (preparecnt))
1576 { 2275 {
1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2276 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1578 call_pending (EV_A); 2277 EV_INVOKE_PENDING;
1579 } 2278 }
1580 2279
1581 if (expect_false (!activecnt)) 2280 if (expect_false (loop_done))
1582 break; 2281 break;
1583 2282
1584 /* we might have forked, so reify kernel state if necessary */ 2283 /* we might have forked, so reify kernel state if necessary */
1585 if (expect_false (postfork)) 2284 if (expect_false (postfork))
1586 loop_fork (EV_A); 2285 loop_fork (EV_A);
1593 ev_tstamp waittime = 0.; 2292 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.; 2293 ev_tstamp sleeptime = 0.;
1595 2294
1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2295 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1597 { 2296 {
2297 /* remember old timestamp for io_blocktime calculation */
2298 ev_tstamp prev_mn_now = mn_now;
2299
1598 /* update time to cancel out callback processing overhead */ 2300 /* update time to cancel out callback processing overhead */
1599 time_update (EV_A_ 1e100); 2301 time_update (EV_A_ 1e100);
1600 2302
1601 waittime = MAX_BLOCKTIME; 2303 waittime = MAX_BLOCKTIME;
1602 2304
1603 if (timercnt) 2305 if (timercnt)
1604 { 2306 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2307 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1606 if (waittime > to) waittime = to; 2308 if (waittime > to) waittime = to;
1607 } 2309 }
1608 2310
1609#if EV_PERIODIC_ENABLE 2311#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 2312 if (periodiccnt)
1611 { 2313 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2314 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1613 if (waittime > to) waittime = to; 2315 if (waittime > to) waittime = to;
1614 } 2316 }
1615#endif 2317#endif
1616 2318
2319 /* don't let timeouts decrease the waittime below timeout_blocktime */
1617 if (expect_false (waittime < timeout_blocktime)) 2320 if (expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime; 2321 waittime = timeout_blocktime;
1619 2322
1620 sleeptime = waittime - backend_fudge; 2323 /* extra check because io_blocktime is commonly 0 */
1621
1622 if (expect_true (sleeptime > io_blocktime)) 2324 if (expect_false (io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 { 2325 {
2326 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2327
2328 if (sleeptime > waittime - backend_fudge)
2329 sleeptime = waittime - backend_fudge;
2330
2331 if (expect_true (sleeptime > 0.))
2332 {
1627 ev_sleep (sleeptime); 2333 ev_sleep (sleeptime);
1628 waittime -= sleeptime; 2334 waittime -= sleeptime;
2335 }
1629 } 2336 }
1630 } 2337 }
1631 2338
2339#if EV_MINIMAL < 2
1632 ++loop_count; 2340 ++loop_count;
2341#endif
2342 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1633 backend_poll (EV_A_ waittime); 2343 backend_poll (EV_A_ waittime);
2344 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1634 2345
1635 /* update ev_rt_now, do magic */ 2346 /* update ev_rt_now, do magic */
1636 time_update (EV_A_ waittime + sleeptime); 2347 time_update (EV_A_ waittime + sleeptime);
1637 } 2348 }
1638 2349
1649 2360
1650 /* queue check watchers, to be executed first */ 2361 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 2362 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2363 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1653 2364
1654 call_pending (EV_A); 2365 EV_INVOKE_PENDING;
1655
1656 } 2366 }
1657 while (expect_true (activecnt && !loop_done)); 2367 while (expect_true (
2368 activecnt
2369 && !loop_done
2370 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2371 ));
1658 2372
1659 if (loop_done == EVUNLOOP_ONE) 2373 if (loop_done == EVUNLOOP_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 2374 loop_done = EVUNLOOP_CANCEL;
2375
2376#if EV_MINIMAL < 2
2377 --loop_depth;
2378#endif
1661} 2379}
1662 2380
1663void 2381void
1664ev_unloop (EV_P_ int how) 2382ev_unloop (EV_P_ int how)
1665{ 2383{
1666 loop_done = how; 2384 loop_done = how;
1667} 2385}
1668 2386
2387void
2388ev_ref (EV_P)
2389{
2390 ++activecnt;
2391}
2392
2393void
2394ev_unref (EV_P)
2395{
2396 --activecnt;
2397}
2398
2399void
2400ev_now_update (EV_P)
2401{
2402 time_update (EV_A_ 1e100);
2403}
2404
2405void
2406ev_suspend (EV_P)
2407{
2408 ev_now_update (EV_A);
2409}
2410
2411void
2412ev_resume (EV_P)
2413{
2414 ev_tstamp mn_prev = mn_now;
2415
2416 ev_now_update (EV_A);
2417 timers_reschedule (EV_A_ mn_now - mn_prev);
2418#if EV_PERIODIC_ENABLE
2419 /* TODO: really do this? */
2420 periodics_reschedule (EV_A);
2421#endif
2422}
2423
1669/*****************************************************************************/ 2424/*****************************************************************************/
2425/* singly-linked list management, used when the expected list length is short */
1670 2426
1671void inline_size 2427inline_size void
1672wlist_add (WL *head, WL elem) 2428wlist_add (WL *head, WL elem)
1673{ 2429{
1674 elem->next = *head; 2430 elem->next = *head;
1675 *head = elem; 2431 *head = elem;
1676} 2432}
1677 2433
1678void inline_size 2434inline_size void
1679wlist_del (WL *head, WL elem) 2435wlist_del (WL *head, WL elem)
1680{ 2436{
1681 while (*head) 2437 while (*head)
1682 { 2438 {
1683 if (*head == elem) 2439 if (expect_true (*head == elem))
1684 { 2440 {
1685 *head = elem->next; 2441 *head = elem->next;
1686 return; 2442 break;
1687 } 2443 }
1688 2444
1689 head = &(*head)->next; 2445 head = &(*head)->next;
1690 } 2446 }
1691} 2447}
1692 2448
1693void inline_speed 2449/* internal, faster, version of ev_clear_pending */
2450inline_speed void
1694clear_pending (EV_P_ W w) 2451clear_pending (EV_P_ W w)
1695{ 2452{
1696 if (w->pending) 2453 if (w->pending)
1697 { 2454 {
1698 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2455 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1699 w->pending = 0; 2456 w->pending = 0;
1700 } 2457 }
1701} 2458}
1702 2459
1703int 2460int
1707 int pending = w_->pending; 2464 int pending = w_->pending;
1708 2465
1709 if (expect_true (pending)) 2466 if (expect_true (pending))
1710 { 2467 {
1711 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2468 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2469 p->w = (W)&pending_w;
1712 w_->pending = 0; 2470 w_->pending = 0;
1713 p->w = 0;
1714 return p->events; 2471 return p->events;
1715 } 2472 }
1716 else 2473 else
1717 return 0; 2474 return 0;
1718} 2475}
1719 2476
1720void inline_size 2477inline_size void
1721pri_adjust (EV_P_ W w) 2478pri_adjust (EV_P_ W w)
1722{ 2479{
1723 int pri = w->priority; 2480 int pri = ev_priority (w);
1724 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2481 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1725 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2482 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1726 w->priority = pri; 2483 ev_set_priority (w, pri);
1727} 2484}
1728 2485
1729void inline_speed 2486inline_speed void
1730ev_start (EV_P_ W w, int active) 2487ev_start (EV_P_ W w, int active)
1731{ 2488{
1732 pri_adjust (EV_A_ w); 2489 pri_adjust (EV_A_ w);
1733 w->active = active; 2490 w->active = active;
1734 ev_ref (EV_A); 2491 ev_ref (EV_A);
1735} 2492}
1736 2493
1737void inline_size 2494inline_size void
1738ev_stop (EV_P_ W w) 2495ev_stop (EV_P_ W w)
1739{ 2496{
1740 ev_unref (EV_A); 2497 ev_unref (EV_A);
1741 w->active = 0; 2498 w->active = 0;
1742} 2499}
1749 int fd = w->fd; 2506 int fd = w->fd;
1750 2507
1751 if (expect_false (ev_is_active (w))) 2508 if (expect_false (ev_is_active (w)))
1752 return; 2509 return;
1753 2510
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 2511 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2512 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2513
2514 EV_FREQUENT_CHECK;
1755 2515
1756 ev_start (EV_A_ (W)w, 1); 2516 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2517 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1758 wlist_add (&anfds[fd].head, (WL)w); 2518 wlist_add (&anfds[fd].head, (WL)w);
1759 2519
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2520 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1761 w->events &= ~EV_IOFDSET; 2521 w->events &= ~EV__IOFDSET;
2522
2523 EV_FREQUENT_CHECK;
1762} 2524}
1763 2525
1764void noinline 2526void noinline
1765ev_io_stop (EV_P_ ev_io *w) 2527ev_io_stop (EV_P_ ev_io *w)
1766{ 2528{
1767 clear_pending (EV_A_ (W)w); 2529 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 2530 if (expect_false (!ev_is_active (w)))
1769 return; 2531 return;
1770 2532
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2533 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2534
2535 EV_FREQUENT_CHECK;
1772 2536
1773 wlist_del (&anfds[w->fd].head, (WL)w); 2537 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 2538 ev_stop (EV_A_ (W)w);
1775 2539
1776 fd_change (EV_A_ w->fd, 1); 2540 fd_change (EV_A_ w->fd, 1);
2541
2542 EV_FREQUENT_CHECK;
1777} 2543}
1778 2544
1779void noinline 2545void noinline
1780ev_timer_start (EV_P_ ev_timer *w) 2546ev_timer_start (EV_P_ ev_timer *w)
1781{ 2547{
1782 if (expect_false (ev_is_active (w))) 2548 if (expect_false (ev_is_active (w)))
1783 return; 2549 return;
1784 2550
1785 ((WT)w)->at += mn_now; 2551 ev_at (w) += mn_now;
1786 2552
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2553 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 2554
2555 EV_FREQUENT_CHECK;
2556
2557 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 2558 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2559 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 2560 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 2561 ANHE_at_cache (timers [ev_active (w)]);
2562 upheap (timers, ev_active (w));
1793 2563
2564 EV_FREQUENT_CHECK;
2565
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2566 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 2567}
1796 2568
1797void noinline 2569void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 2570ev_timer_stop (EV_P_ ev_timer *w)
1799{ 2571{
1800 clear_pending (EV_A_ (W)w); 2572 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2573 if (expect_false (!ev_is_active (w)))
1802 return; 2574 return;
1803 2575
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2576 EV_FREQUENT_CHECK;
1805 2577
1806 { 2578 {
1807 int active = ((W)w)->active; 2579 int active = ev_active (w);
1808 2580
2581 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2582
2583 --timercnt;
2584
1809 if (expect_true (--active < --timercnt)) 2585 if (expect_true (active < timercnt + HEAP0))
1810 { 2586 {
1811 timers [active] = timers [timercnt]; 2587 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 2588 adjustheap (timers, timercnt, active);
1813 } 2589 }
1814 } 2590 }
1815 2591
1816 ((WT)w)->at -= mn_now; 2592 EV_FREQUENT_CHECK;
2593
2594 ev_at (w) -= mn_now;
1817 2595
1818 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
1819} 2597}
1820 2598
1821void noinline 2599void noinline
1822ev_timer_again (EV_P_ ev_timer *w) 2600ev_timer_again (EV_P_ ev_timer *w)
1823{ 2601{
2602 EV_FREQUENT_CHECK;
2603
1824 if (ev_is_active (w)) 2604 if (ev_is_active (w))
1825 { 2605 {
1826 if (w->repeat) 2606 if (w->repeat)
1827 { 2607 {
1828 ((WT)w)->at = mn_now + w->repeat; 2608 ev_at (w) = mn_now + w->repeat;
2609 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 2610 adjustheap (timers, timercnt, ev_active (w));
1830 } 2611 }
1831 else 2612 else
1832 ev_timer_stop (EV_A_ w); 2613 ev_timer_stop (EV_A_ w);
1833 } 2614 }
1834 else if (w->repeat) 2615 else if (w->repeat)
1835 { 2616 {
1836 w->at = w->repeat; 2617 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 2618 ev_timer_start (EV_A_ w);
1838 } 2619 }
2620
2621 EV_FREQUENT_CHECK;
2622}
2623
2624ev_tstamp
2625ev_timer_remaining (EV_P_ ev_timer *w)
2626{
2627 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1839} 2628}
1840 2629
1841#if EV_PERIODIC_ENABLE 2630#if EV_PERIODIC_ENABLE
1842void noinline 2631void noinline
1843ev_periodic_start (EV_P_ ev_periodic *w) 2632ev_periodic_start (EV_P_ ev_periodic *w)
1844{ 2633{
1845 if (expect_false (ev_is_active (w))) 2634 if (expect_false (ev_is_active (w)))
1846 return; 2635 return;
1847 2636
1848 if (w->reschedule_cb) 2637 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2638 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 2639 else if (w->interval)
1851 { 2640 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2641 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 2642 /* this formula differs from the one in periodic_reify because we do not always round up */
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 2644 }
1856 else 2645 else
1857 ((WT)w)->at = w->offset; 2646 ev_at (w) = w->offset;
1858 2647
2648 EV_FREQUENT_CHECK;
2649
2650 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 2651 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2652 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 2653 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 2654 ANHE_at_cache (periodics [ev_active (w)]);
2655 upheap (periodics, ev_active (w));
1863 2656
2657 EV_FREQUENT_CHECK;
2658
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2659 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 2660}
1866 2661
1867void noinline 2662void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 2663ev_periodic_stop (EV_P_ ev_periodic *w)
1869{ 2664{
1870 clear_pending (EV_A_ (W)w); 2665 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 2666 if (expect_false (!ev_is_active (w)))
1872 return; 2667 return;
1873 2668
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2669 EV_FREQUENT_CHECK;
1875 2670
1876 { 2671 {
1877 int active = ((W)w)->active; 2672 int active = ev_active (w);
1878 2673
2674 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2675
2676 --periodiccnt;
2677
1879 if (expect_true (--active < --periodiccnt)) 2678 if (expect_true (active < periodiccnt + HEAP0))
1880 { 2679 {
1881 periodics [active] = periodics [periodiccnt]; 2680 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 2681 adjustheap (periodics, periodiccnt, active);
1883 } 2682 }
1884 } 2683 }
1885 2684
2685 EV_FREQUENT_CHECK;
2686
1886 ev_stop (EV_A_ (W)w); 2687 ev_stop (EV_A_ (W)w);
1887} 2688}
1888 2689
1889void noinline 2690void noinline
1890ev_periodic_again (EV_P_ ev_periodic *w) 2691ev_periodic_again (EV_P_ ev_periodic *w)
1900#endif 2701#endif
1901 2702
1902void noinline 2703void noinline
1903ev_signal_start (EV_P_ ev_signal *w) 2704ev_signal_start (EV_P_ ev_signal *w)
1904{ 2705{
1905#if EV_MULTIPLICITY
1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif
1908 if (expect_false (ev_is_active (w))) 2706 if (expect_false (ev_is_active (w)))
1909 return; 2707 return;
1910 2708
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2709 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1912 2710
1913 evpipe_init (EV_A); 2711#if EV_MULTIPLICITY
2712 assert (("libev: a signal must not be attached to two different loops",
2713 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1914 2714
2715 signals [w->signum - 1].loop = EV_A;
2716#endif
2717
2718 EV_FREQUENT_CHECK;
2719
2720#if EV_USE_SIGNALFD
2721 if (sigfd == -2)
1915 { 2722 {
1916#ifndef _WIN32 2723 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1917 sigset_t full, prev; 2724 if (sigfd < 0 && errno == EINVAL)
1918 sigfillset (&full); 2725 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1919 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif
1921 2726
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2727 if (sigfd >= 0)
2728 {
2729 fd_intern (sigfd); /* doing it twice will not hurt */
1923 2730
1924#ifndef _WIN32 2731 sigemptyset (&sigfd_set);
1925 sigprocmask (SIG_SETMASK, &prev, 0); 2732
1926#endif 2733 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2734 ev_set_priority (&sigfd_w, EV_MAXPRI);
2735 ev_io_start (EV_A_ &sigfd_w);
2736 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2737 }
1927 } 2738 }
2739
2740 if (sigfd >= 0)
2741 {
2742 /* TODO: check .head */
2743 sigaddset (&sigfd_set, w->signum);
2744 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2745
2746 signalfd (sigfd, &sigfd_set, 0);
2747 }
2748#endif
1928 2749
1929 ev_start (EV_A_ (W)w, 1); 2750 ev_start (EV_A_ (W)w, 1);
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 2751 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 2752
1932 if (!((WL)w)->next) 2753 if (!((WL)w)->next)
2754# if EV_USE_SIGNALFD
2755 if (sigfd < 0) /*TODO*/
2756# endif
1933 { 2757 {
1934#if _WIN32 2758# ifdef _WIN32
2759 evpipe_init (EV_A);
2760
1935 signal (w->signum, sighandler); 2761 signal (w->signum, ev_sighandler);
1936#else 2762# else
1937 struct sigaction sa; 2763 struct sigaction sa;
2764
2765 evpipe_init (EV_A);
2766
1938 sa.sa_handler = sighandler; 2767 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 2768 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2769 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 2770 sigaction (w->signum, &sa, 0);
2771
2772 sigemptyset (&sa.sa_mask);
2773 sigaddset (&sa.sa_mask, w->signum);
2774 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1942#endif 2775#endif
1943 } 2776 }
2777
2778 EV_FREQUENT_CHECK;
1944} 2779}
1945 2780
1946void noinline 2781void noinline
1947ev_signal_stop (EV_P_ ev_signal *w) 2782ev_signal_stop (EV_P_ ev_signal *w)
1948{ 2783{
1949 clear_pending (EV_A_ (W)w); 2784 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 2785 if (expect_false (!ev_is_active (w)))
1951 return; 2786 return;
1952 2787
2788 EV_FREQUENT_CHECK;
2789
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 2790 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 2791 ev_stop (EV_A_ (W)w);
1955 2792
1956 if (!signals [w->signum - 1].head) 2793 if (!signals [w->signum - 1].head)
2794 {
2795#if EV_MULTIPLICITY
2796 signals [w->signum - 1].loop = 0; /* unattach from signal */
2797#endif
2798#if EV_USE_SIGNALFD
2799 if (sigfd >= 0)
2800 {
2801 sigset_t ss;
2802
2803 sigemptyset (&ss);
2804 sigaddset (&ss, w->signum);
2805 sigdelset (&sigfd_set, w->signum);
2806
2807 signalfd (sigfd, &sigfd_set, 0);
2808 sigprocmask (SIG_UNBLOCK, &ss, 0);
2809 }
2810 else
2811#endif
1957 signal (w->signum, SIG_DFL); 2812 signal (w->signum, SIG_DFL);
2813 }
2814
2815 EV_FREQUENT_CHECK;
1958} 2816}
1959 2817
1960void 2818void
1961ev_child_start (EV_P_ ev_child *w) 2819ev_child_start (EV_P_ ev_child *w)
1962{ 2820{
1963#if EV_MULTIPLICITY 2821#if EV_MULTIPLICITY
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2822 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 2823#endif
1966 if (expect_false (ev_is_active (w))) 2824 if (expect_false (ev_is_active (w)))
1967 return; 2825 return;
1968 2826
2827 EV_FREQUENT_CHECK;
2828
1969 ev_start (EV_A_ (W)w, 1); 2829 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2830 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2831
2832 EV_FREQUENT_CHECK;
1971} 2833}
1972 2834
1973void 2835void
1974ev_child_stop (EV_P_ ev_child *w) 2836ev_child_stop (EV_P_ ev_child *w)
1975{ 2837{
1976 clear_pending (EV_A_ (W)w); 2838 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 2839 if (expect_false (!ev_is_active (w)))
1978 return; 2840 return;
1979 2841
2842 EV_FREQUENT_CHECK;
2843
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2844 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 2845 ev_stop (EV_A_ (W)w);
2846
2847 EV_FREQUENT_CHECK;
1982} 2848}
1983 2849
1984#if EV_STAT_ENABLE 2850#if EV_STAT_ENABLE
1985 2851
1986# ifdef _WIN32 2852# ifdef _WIN32
1987# undef lstat 2853# undef lstat
1988# define lstat(a,b) _stati64 (a,b) 2854# define lstat(a,b) _stati64 (a,b)
1989# endif 2855# endif
1990 2856
1991#define DEF_STAT_INTERVAL 5.0074891 2857#define DEF_STAT_INTERVAL 5.0074891
2858#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1992#define MIN_STAT_INTERVAL 0.1074891 2859#define MIN_STAT_INTERVAL 0.1074891
1993 2860
1994static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2861static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1995 2862
1996#if EV_USE_INOTIFY 2863#if EV_USE_INOTIFY
1997# define EV_INOTIFY_BUFSIZE 8192 2864# define EV_INOTIFY_BUFSIZE 8192
1999static void noinline 2866static void noinline
2000infy_add (EV_P_ ev_stat *w) 2867infy_add (EV_P_ ev_stat *w)
2001{ 2868{
2002 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2869 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2003 2870
2004 if (w->wd < 0) 2871 if (w->wd >= 0)
2872 {
2873 struct statfs sfs;
2874
2875 /* now local changes will be tracked by inotify, but remote changes won't */
2876 /* unless the filesystem is known to be local, we therefore still poll */
2877 /* also do poll on <2.6.25, but with normal frequency */
2878
2879 if (!fs_2625)
2880 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2881 else if (!statfs (w->path, &sfs)
2882 && (sfs.f_type == 0x1373 /* devfs */
2883 || sfs.f_type == 0xEF53 /* ext2/3 */
2884 || sfs.f_type == 0x3153464a /* jfs */
2885 || sfs.f_type == 0x52654973 /* reiser3 */
2886 || sfs.f_type == 0x01021994 /* tempfs */
2887 || sfs.f_type == 0x58465342 /* xfs */))
2888 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2889 else
2890 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2005 { 2891 }
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2892 else
2893 {
2894 /* can't use inotify, continue to stat */
2895 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2007 2896
2008 /* monitor some parent directory for speedup hints */ 2897 /* if path is not there, monitor some parent directory for speedup hints */
2898 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2899 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2900 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 2901 {
2011 char path [4096]; 2902 char path [4096];
2012 strcpy (path, w->path); 2903 strcpy (path, w->path);
2013 2904
2016 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2907 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2017 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2908 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2018 2909
2019 char *pend = strrchr (path, '/'); 2910 char *pend = strrchr (path, '/');
2020 2911
2021 if (!pend) 2912 if (!pend || pend == path)
2022 break; /* whoops, no '/', complain to your admin */ 2913 break;
2023 2914
2024 *pend = 0; 2915 *pend = 0;
2025 w->wd = inotify_add_watch (fs_fd, path, mask); 2916 w->wd = inotify_add_watch (fs_fd, path, mask);
2026 } 2917 }
2027 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2918 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2028 } 2919 }
2029 } 2920 }
2030 else
2031 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2032 2921
2033 if (w->wd >= 0) 2922 if (w->wd >= 0)
2034 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2923 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2924
2925 /* now re-arm timer, if required */
2926 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2927 ev_timer_again (EV_A_ &w->timer);
2928 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2035} 2929}
2036 2930
2037static void noinline 2931static void noinline
2038infy_del (EV_P_ ev_stat *w) 2932infy_del (EV_P_ ev_stat *w)
2039{ 2933{
2053 2947
2054static void noinline 2948static void noinline
2055infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2949infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2056{ 2950{
2057 if (slot < 0) 2951 if (slot < 0)
2058 /* overflow, need to check for all hahs slots */ 2952 /* overflow, need to check for all hash slots */
2059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2953 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2060 infy_wd (EV_A_ slot, wd, ev); 2954 infy_wd (EV_A_ slot, wd, ev);
2061 else 2955 else
2062 { 2956 {
2063 WL w_; 2957 WL w_;
2069 2963
2070 if (w->wd == wd || wd == -1) 2964 if (w->wd == wd || wd == -1)
2071 { 2965 {
2072 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2966 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2073 { 2967 {
2968 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2074 w->wd = -1; 2969 w->wd = -1;
2075 infy_add (EV_A_ w); /* re-add, no matter what */ 2970 infy_add (EV_A_ w); /* re-add, no matter what */
2076 } 2971 }
2077 2972
2078 stat_timer_cb (EV_A_ &w->timer, 0); 2973 stat_timer_cb (EV_A_ &w->timer, 0);
2091 2986
2092 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2987 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2093 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2988 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2094} 2989}
2095 2990
2096void inline_size 2991inline_size void
2992check_2625 (EV_P)
2993{
2994 /* kernels < 2.6.25 are borked
2995 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2996 */
2997 struct utsname buf;
2998 int major, minor, micro;
2999
3000 if (uname (&buf))
3001 return;
3002
3003 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
3004 return;
3005
3006 if (major < 2
3007 || (major == 2 && minor < 6)
3008 || (major == 2 && minor == 6 && micro < 25))
3009 return;
3010
3011 fs_2625 = 1;
3012}
3013
3014inline_size int
3015infy_newfd (void)
3016{
3017#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3018 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3019 if (fd >= 0)
3020 return fd;
3021#endif
3022 return inotify_init ();
3023}
3024
3025inline_size void
2097infy_init (EV_P) 3026infy_init (EV_P)
2098{ 3027{
2099 if (fs_fd != -2) 3028 if (fs_fd != -2)
2100 return; 3029 return;
2101 3030
3031 fs_fd = -1;
3032
3033 check_2625 (EV_A);
3034
2102 fs_fd = inotify_init (); 3035 fs_fd = infy_newfd ();
2103 3036
2104 if (fs_fd >= 0) 3037 if (fs_fd >= 0)
2105 { 3038 {
3039 fd_intern (fs_fd);
2106 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3040 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2107 ev_set_priority (&fs_w, EV_MAXPRI); 3041 ev_set_priority (&fs_w, EV_MAXPRI);
2108 ev_io_start (EV_A_ &fs_w); 3042 ev_io_start (EV_A_ &fs_w);
3043 ev_unref (EV_A);
2109 } 3044 }
2110} 3045}
2111 3046
2112void inline_size 3047inline_size void
2113infy_fork (EV_P) 3048infy_fork (EV_P)
2114{ 3049{
2115 int slot; 3050 int slot;
2116 3051
2117 if (fs_fd < 0) 3052 if (fs_fd < 0)
2118 return; 3053 return;
2119 3054
3055 ev_ref (EV_A);
3056 ev_io_stop (EV_A_ &fs_w);
2120 close (fs_fd); 3057 close (fs_fd);
2121 fs_fd = inotify_init (); 3058 fs_fd = infy_newfd ();
3059
3060 if (fs_fd >= 0)
3061 {
3062 fd_intern (fs_fd);
3063 ev_io_set (&fs_w, fs_fd, EV_READ);
3064 ev_io_start (EV_A_ &fs_w);
3065 ev_unref (EV_A);
3066 }
2122 3067
2123 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3068 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2124 { 3069 {
2125 WL w_ = fs_hash [slot].head; 3070 WL w_ = fs_hash [slot].head;
2126 fs_hash [slot].head = 0; 3071 fs_hash [slot].head = 0;
2133 w->wd = -1; 3078 w->wd = -1;
2134 3079
2135 if (fs_fd >= 0) 3080 if (fs_fd >= 0)
2136 infy_add (EV_A_ w); /* re-add, no matter what */ 3081 infy_add (EV_A_ w); /* re-add, no matter what */
2137 else 3082 else
3083 {
3084 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3085 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2138 ev_timer_start (EV_A_ &w->timer); 3086 ev_timer_again (EV_A_ &w->timer);
3087 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3088 }
2139 } 3089 }
2140
2141 } 3090 }
2142} 3091}
2143 3092
3093#endif
3094
3095#ifdef _WIN32
3096# define EV_LSTAT(p,b) _stati64 (p, b)
3097#else
3098# define EV_LSTAT(p,b) lstat (p, b)
2144#endif 3099#endif
2145 3100
2146void 3101void
2147ev_stat_stat (EV_P_ ev_stat *w) 3102ev_stat_stat (EV_P_ ev_stat *w)
2148{ 3103{
2155static void noinline 3110static void noinline
2156stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3111stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2157{ 3112{
2158 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3113 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2159 3114
2160 /* we copy this here each the time so that */ 3115 ev_statdata prev = w->attr;
2161 /* prev has the old value when the callback gets invoked */
2162 w->prev = w->attr;
2163 ev_stat_stat (EV_A_ w); 3116 ev_stat_stat (EV_A_ w);
2164 3117
2165 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3118 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2166 if ( 3119 if (
2167 w->prev.st_dev != w->attr.st_dev 3120 prev.st_dev != w->attr.st_dev
2168 || w->prev.st_ino != w->attr.st_ino 3121 || prev.st_ino != w->attr.st_ino
2169 || w->prev.st_mode != w->attr.st_mode 3122 || prev.st_mode != w->attr.st_mode
2170 || w->prev.st_nlink != w->attr.st_nlink 3123 || prev.st_nlink != w->attr.st_nlink
2171 || w->prev.st_uid != w->attr.st_uid 3124 || prev.st_uid != w->attr.st_uid
2172 || w->prev.st_gid != w->attr.st_gid 3125 || prev.st_gid != w->attr.st_gid
2173 || w->prev.st_rdev != w->attr.st_rdev 3126 || prev.st_rdev != w->attr.st_rdev
2174 || w->prev.st_size != w->attr.st_size 3127 || prev.st_size != w->attr.st_size
2175 || w->prev.st_atime != w->attr.st_atime 3128 || prev.st_atime != w->attr.st_atime
2176 || w->prev.st_mtime != w->attr.st_mtime 3129 || prev.st_mtime != w->attr.st_mtime
2177 || w->prev.st_ctime != w->attr.st_ctime 3130 || prev.st_ctime != w->attr.st_ctime
2178 ) { 3131 ) {
3132 /* we only update w->prev on actual differences */
3133 /* in case we test more often than invoke the callback, */
3134 /* to ensure that prev is always different to attr */
3135 w->prev = prev;
3136
2179 #if EV_USE_INOTIFY 3137 #if EV_USE_INOTIFY
3138 if (fs_fd >= 0)
3139 {
2180 infy_del (EV_A_ w); 3140 infy_del (EV_A_ w);
2181 infy_add (EV_A_ w); 3141 infy_add (EV_A_ w);
2182 ev_stat_stat (EV_A_ w); /* avoid race... */ 3142 ev_stat_stat (EV_A_ w); /* avoid race... */
3143 }
2183 #endif 3144 #endif
2184 3145
2185 ev_feed_event (EV_A_ w, EV_STAT); 3146 ev_feed_event (EV_A_ w, EV_STAT);
2186 } 3147 }
2187} 3148}
2190ev_stat_start (EV_P_ ev_stat *w) 3151ev_stat_start (EV_P_ ev_stat *w)
2191{ 3152{
2192 if (expect_false (ev_is_active (w))) 3153 if (expect_false (ev_is_active (w)))
2193 return; 3154 return;
2194 3155
2195 /* since we use memcmp, we need to clear any padding data etc. */
2196 memset (&w->prev, 0, sizeof (ev_statdata));
2197 memset (&w->attr, 0, sizeof (ev_statdata));
2198
2199 ev_stat_stat (EV_A_ w); 3156 ev_stat_stat (EV_A_ w);
2200 3157
3158 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2201 if (w->interval < MIN_STAT_INTERVAL) 3159 w->interval = MIN_STAT_INTERVAL;
2202 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2203 3160
2204 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3161 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2205 ev_set_priority (&w->timer, ev_priority (w)); 3162 ev_set_priority (&w->timer, ev_priority (w));
2206 3163
2207#if EV_USE_INOTIFY 3164#if EV_USE_INOTIFY
2208 infy_init (EV_A); 3165 infy_init (EV_A);
2209 3166
2210 if (fs_fd >= 0) 3167 if (fs_fd >= 0)
2211 infy_add (EV_A_ w); 3168 infy_add (EV_A_ w);
2212 else 3169 else
2213#endif 3170#endif
3171 {
2214 ev_timer_start (EV_A_ &w->timer); 3172 ev_timer_again (EV_A_ &w->timer);
3173 ev_unref (EV_A);
3174 }
2215 3175
2216 ev_start (EV_A_ (W)w, 1); 3176 ev_start (EV_A_ (W)w, 1);
3177
3178 EV_FREQUENT_CHECK;
2217} 3179}
2218 3180
2219void 3181void
2220ev_stat_stop (EV_P_ ev_stat *w) 3182ev_stat_stop (EV_P_ ev_stat *w)
2221{ 3183{
2222 clear_pending (EV_A_ (W)w); 3184 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 3185 if (expect_false (!ev_is_active (w)))
2224 return; 3186 return;
2225 3187
3188 EV_FREQUENT_CHECK;
3189
2226#if EV_USE_INOTIFY 3190#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 3191 infy_del (EV_A_ w);
2228#endif 3192#endif
3193
3194 if (ev_is_active (&w->timer))
3195 {
3196 ev_ref (EV_A);
2229 ev_timer_stop (EV_A_ &w->timer); 3197 ev_timer_stop (EV_A_ &w->timer);
3198 }
2230 3199
2231 ev_stop (EV_A_ (W)w); 3200 ev_stop (EV_A_ (W)w);
3201
3202 EV_FREQUENT_CHECK;
2232} 3203}
2233#endif 3204#endif
2234 3205
2235#if EV_IDLE_ENABLE 3206#if EV_IDLE_ENABLE
2236void 3207void
2238{ 3209{
2239 if (expect_false (ev_is_active (w))) 3210 if (expect_false (ev_is_active (w)))
2240 return; 3211 return;
2241 3212
2242 pri_adjust (EV_A_ (W)w); 3213 pri_adjust (EV_A_ (W)w);
3214
3215 EV_FREQUENT_CHECK;
2243 3216
2244 { 3217 {
2245 int active = ++idlecnt [ABSPRI (w)]; 3218 int active = ++idlecnt [ABSPRI (w)];
2246 3219
2247 ++idleall; 3220 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 3221 ev_start (EV_A_ (W)w, active);
2249 3222
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3223 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w; 3224 idles [ABSPRI (w)][active - 1] = w;
2252 } 3225 }
3226
3227 EV_FREQUENT_CHECK;
2253} 3228}
2254 3229
2255void 3230void
2256ev_idle_stop (EV_P_ ev_idle *w) 3231ev_idle_stop (EV_P_ ev_idle *w)
2257{ 3232{
2258 clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
2260 return; 3235 return;
2261 3236
3237 EV_FREQUENT_CHECK;
3238
2262 { 3239 {
2263 int active = ((W)w)->active; 3240 int active = ev_active (w);
2264 3241
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3242 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3243 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 3244
2268 ev_stop (EV_A_ (W)w); 3245 ev_stop (EV_A_ (W)w);
2269 --idleall; 3246 --idleall;
2270 } 3247 }
3248
3249 EV_FREQUENT_CHECK;
2271} 3250}
2272#endif 3251#endif
2273 3252
2274void 3253void
2275ev_prepare_start (EV_P_ ev_prepare *w) 3254ev_prepare_start (EV_P_ ev_prepare *w)
2276{ 3255{
2277 if (expect_false (ev_is_active (w))) 3256 if (expect_false (ev_is_active (w)))
2278 return; 3257 return;
3258
3259 EV_FREQUENT_CHECK;
2279 3260
2280 ev_start (EV_A_ (W)w, ++preparecnt); 3261 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3262 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w; 3263 prepares [preparecnt - 1] = w;
3264
3265 EV_FREQUENT_CHECK;
2283} 3266}
2284 3267
2285void 3268void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 3269ev_prepare_stop (EV_P_ ev_prepare *w)
2287{ 3270{
2288 clear_pending (EV_A_ (W)w); 3271 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 3272 if (expect_false (!ev_is_active (w)))
2290 return; 3273 return;
2291 3274
3275 EV_FREQUENT_CHECK;
3276
2292 { 3277 {
2293 int active = ((W)w)->active; 3278 int active = ev_active (w);
3279
2294 prepares [active - 1] = prepares [--preparecnt]; 3280 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 3281 ev_active (prepares [active - 1]) = active;
2296 } 3282 }
2297 3283
2298 ev_stop (EV_A_ (W)w); 3284 ev_stop (EV_A_ (W)w);
3285
3286 EV_FREQUENT_CHECK;
2299} 3287}
2300 3288
2301void 3289void
2302ev_check_start (EV_P_ ev_check *w) 3290ev_check_start (EV_P_ ev_check *w)
2303{ 3291{
2304 if (expect_false (ev_is_active (w))) 3292 if (expect_false (ev_is_active (w)))
2305 return; 3293 return;
3294
3295 EV_FREQUENT_CHECK;
2306 3296
2307 ev_start (EV_A_ (W)w, ++checkcnt); 3297 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3298 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w; 3299 checks [checkcnt - 1] = w;
3300
3301 EV_FREQUENT_CHECK;
2310} 3302}
2311 3303
2312void 3304void
2313ev_check_stop (EV_P_ ev_check *w) 3305ev_check_stop (EV_P_ ev_check *w)
2314{ 3306{
2315 clear_pending (EV_A_ (W)w); 3307 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 3308 if (expect_false (!ev_is_active (w)))
2317 return; 3309 return;
2318 3310
3311 EV_FREQUENT_CHECK;
3312
2319 { 3313 {
2320 int active = ((W)w)->active; 3314 int active = ev_active (w);
3315
2321 checks [active - 1] = checks [--checkcnt]; 3316 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 3317 ev_active (checks [active - 1]) = active;
2323 } 3318 }
2324 3319
2325 ev_stop (EV_A_ (W)w); 3320 ev_stop (EV_A_ (W)w);
3321
3322 EV_FREQUENT_CHECK;
2326} 3323}
2327 3324
2328#if EV_EMBED_ENABLE 3325#if EV_EMBED_ENABLE
2329void noinline 3326void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w) 3327ev_embed_sweep (EV_P_ ev_embed *w)
2347embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3344embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2348{ 3345{
2349 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3346 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2350 3347
2351 { 3348 {
2352 struct ev_loop *loop = w->other; 3349 EV_P = w->other;
2353 3350
2354 while (fdchangecnt) 3351 while (fdchangecnt)
2355 { 3352 {
2356 fd_reify (EV_A); 3353 fd_reify (EV_A);
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3354 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2358 } 3355 }
2359 } 3356 }
2360} 3357}
2361 3358
3359static void
3360embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3361{
3362 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3363
3364 ev_embed_stop (EV_A_ w);
3365
3366 {
3367 EV_P = w->other;
3368
3369 ev_loop_fork (EV_A);
3370 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3371 }
3372
3373 ev_embed_start (EV_A_ w);
3374}
3375
2362#if 0 3376#if 0
2363static void 3377static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3378embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2365{ 3379{
2366 ev_idle_stop (EV_A_ idle); 3380 ev_idle_stop (EV_A_ idle);
2372{ 3386{
2373 if (expect_false (ev_is_active (w))) 3387 if (expect_false (ev_is_active (w)))
2374 return; 3388 return;
2375 3389
2376 { 3390 {
2377 struct ev_loop *loop = w->other; 3391 EV_P = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3392 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3393 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 3394 }
3395
3396 EV_FREQUENT_CHECK;
2381 3397
2382 ev_set_priority (&w->io, ev_priority (w)); 3398 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 3399 ev_io_start (EV_A_ &w->io);
2384 3400
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 3401 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 3402 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 3403 ev_prepare_start (EV_A_ &w->prepare);
2388 3404
3405 ev_fork_init (&w->fork, embed_fork_cb);
3406 ev_fork_start (EV_A_ &w->fork);
3407
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3408 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 3409
2391 ev_start (EV_A_ (W)w, 1); 3410 ev_start (EV_A_ (W)w, 1);
3411
3412 EV_FREQUENT_CHECK;
2392} 3413}
2393 3414
2394void 3415void
2395ev_embed_stop (EV_P_ ev_embed *w) 3416ev_embed_stop (EV_P_ ev_embed *w)
2396{ 3417{
2397 clear_pending (EV_A_ (W)w); 3418 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 3419 if (expect_false (!ev_is_active (w)))
2399 return; 3420 return;
2400 3421
3422 EV_FREQUENT_CHECK;
3423
2401 ev_io_stop (EV_A_ &w->io); 3424 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 3425 ev_prepare_stop (EV_A_ &w->prepare);
3426 ev_fork_stop (EV_A_ &w->fork);
2403 3427
2404 ev_stop (EV_A_ (W)w); 3428 EV_FREQUENT_CHECK;
2405} 3429}
2406#endif 3430#endif
2407 3431
2408#if EV_FORK_ENABLE 3432#if EV_FORK_ENABLE
2409void 3433void
2410ev_fork_start (EV_P_ ev_fork *w) 3434ev_fork_start (EV_P_ ev_fork *w)
2411{ 3435{
2412 if (expect_false (ev_is_active (w))) 3436 if (expect_false (ev_is_active (w)))
2413 return; 3437 return;
3438
3439 EV_FREQUENT_CHECK;
2414 3440
2415 ev_start (EV_A_ (W)w, ++forkcnt); 3441 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3442 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w; 3443 forks [forkcnt - 1] = w;
3444
3445 EV_FREQUENT_CHECK;
2418} 3446}
2419 3447
2420void 3448void
2421ev_fork_stop (EV_P_ ev_fork *w) 3449ev_fork_stop (EV_P_ ev_fork *w)
2422{ 3450{
2423 clear_pending (EV_A_ (W)w); 3451 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 3452 if (expect_false (!ev_is_active (w)))
2425 return; 3453 return;
2426 3454
3455 EV_FREQUENT_CHECK;
3456
2427 { 3457 {
2428 int active = ((W)w)->active; 3458 int active = ev_active (w);
3459
2429 forks [active - 1] = forks [--forkcnt]; 3460 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 3461 ev_active (forks [active - 1]) = active;
2431 } 3462 }
2432 3463
2433 ev_stop (EV_A_ (W)w); 3464 ev_stop (EV_A_ (W)w);
3465
3466 EV_FREQUENT_CHECK;
2434} 3467}
2435#endif 3468#endif
2436 3469
2437#if EV_ASYNC_ENABLE 3470#if EV_ASYNC_ENABLE
2438void 3471void
2440{ 3473{
2441 if (expect_false (ev_is_active (w))) 3474 if (expect_false (ev_is_active (w)))
2442 return; 3475 return;
2443 3476
2444 evpipe_init (EV_A); 3477 evpipe_init (EV_A);
3478
3479 EV_FREQUENT_CHECK;
2445 3480
2446 ev_start (EV_A_ (W)w, ++asynccnt); 3481 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3482 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w; 3483 asyncs [asynccnt - 1] = w;
3484
3485 EV_FREQUENT_CHECK;
2449} 3486}
2450 3487
2451void 3488void
2452ev_async_stop (EV_P_ ev_async *w) 3489ev_async_stop (EV_P_ ev_async *w)
2453{ 3490{
2454 clear_pending (EV_A_ (W)w); 3491 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 3492 if (expect_false (!ev_is_active (w)))
2456 return; 3493 return;
2457 3494
3495 EV_FREQUENT_CHECK;
3496
2458 { 3497 {
2459 int active = ((W)w)->active; 3498 int active = ev_active (w);
3499
2460 asyncs [active - 1] = asyncs [--asynccnt]; 3500 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 3501 ev_active (asyncs [active - 1]) = active;
2462 } 3502 }
2463 3503
2464 ev_stop (EV_A_ (W)w); 3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
2465} 3507}
2466 3508
2467void 3509void
2468ev_async_send (EV_P_ ev_async *w) 3510ev_async_send (EV_P_ ev_async *w)
2469{ 3511{
2470 w->sent = 1; 3512 w->sent = 1;
2471 evpipe_write (EV_A_ &gotasync); 3513 evpipe_write (EV_A_ &async_pending);
2472} 3514}
2473#endif 3515#endif
2474 3516
2475/*****************************************************************************/ 3517/*****************************************************************************/
2476 3518
2486once_cb (EV_P_ struct ev_once *once, int revents) 3528once_cb (EV_P_ struct ev_once *once, int revents)
2487{ 3529{
2488 void (*cb)(int revents, void *arg) = once->cb; 3530 void (*cb)(int revents, void *arg) = once->cb;
2489 void *arg = once->arg; 3531 void *arg = once->arg;
2490 3532
2491 ev_io_stop (EV_A_ &once->io); 3533 ev_io_stop (EV_A_ &once->io);
2492 ev_timer_stop (EV_A_ &once->to); 3534 ev_timer_stop (EV_A_ &once->to);
2493 ev_free (once); 3535 ev_free (once);
2494 3536
2495 cb (revents, arg); 3537 cb (revents, arg);
2496} 3538}
2497 3539
2498static void 3540static void
2499once_cb_io (EV_P_ ev_io *w, int revents) 3541once_cb_io (EV_P_ ev_io *w, int revents)
2500{ 3542{
2501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3543 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3544
3545 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2502} 3546}
2503 3547
2504static void 3548static void
2505once_cb_to (EV_P_ ev_timer *w, int revents) 3549once_cb_to (EV_P_ ev_timer *w, int revents)
2506{ 3550{
2507 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3551 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3552
3553 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2508} 3554}
2509 3555
2510void 3556void
2511ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3557ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2512{ 3558{
2534 ev_timer_set (&once->to, timeout, 0.); 3580 ev_timer_set (&once->to, timeout, 0.);
2535 ev_timer_start (EV_A_ &once->to); 3581 ev_timer_start (EV_A_ &once->to);
2536 } 3582 }
2537} 3583}
2538 3584
3585/*****************************************************************************/
3586
3587#if EV_WALK_ENABLE
3588void
3589ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3590{
3591 int i, j;
3592 ev_watcher_list *wl, *wn;
3593
3594 if (types & (EV_IO | EV_EMBED))
3595 for (i = 0; i < anfdmax; ++i)
3596 for (wl = anfds [i].head; wl; )
3597 {
3598 wn = wl->next;
3599
3600#if EV_EMBED_ENABLE
3601 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3602 {
3603 if (types & EV_EMBED)
3604 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3605 }
3606 else
3607#endif
3608#if EV_USE_INOTIFY
3609 if (ev_cb ((ev_io *)wl) == infy_cb)
3610 ;
3611 else
3612#endif
3613 if ((ev_io *)wl != &pipe_w)
3614 if (types & EV_IO)
3615 cb (EV_A_ EV_IO, wl);
3616
3617 wl = wn;
3618 }
3619
3620 if (types & (EV_TIMER | EV_STAT))
3621 for (i = timercnt + HEAP0; i-- > HEAP0; )
3622#if EV_STAT_ENABLE
3623 /*TODO: timer is not always active*/
3624 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3625 {
3626 if (types & EV_STAT)
3627 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3628 }
3629 else
3630#endif
3631 if (types & EV_TIMER)
3632 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3633
3634#if EV_PERIODIC_ENABLE
3635 if (types & EV_PERIODIC)
3636 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3637 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3638#endif
3639
3640#if EV_IDLE_ENABLE
3641 if (types & EV_IDLE)
3642 for (j = NUMPRI; i--; )
3643 for (i = idlecnt [j]; i--; )
3644 cb (EV_A_ EV_IDLE, idles [j][i]);
3645#endif
3646
3647#if EV_FORK_ENABLE
3648 if (types & EV_FORK)
3649 for (i = forkcnt; i--; )
3650 if (ev_cb (forks [i]) != embed_fork_cb)
3651 cb (EV_A_ EV_FORK, forks [i]);
3652#endif
3653
3654#if EV_ASYNC_ENABLE
3655 if (types & EV_ASYNC)
3656 for (i = asynccnt; i--; )
3657 cb (EV_A_ EV_ASYNC, asyncs [i]);
3658#endif
3659
3660 if (types & EV_PREPARE)
3661 for (i = preparecnt; i--; )
3662#if EV_EMBED_ENABLE
3663 if (ev_cb (prepares [i]) != embed_prepare_cb)
3664#endif
3665 cb (EV_A_ EV_PREPARE, prepares [i]);
3666
3667 if (types & EV_CHECK)
3668 for (i = checkcnt; i--; )
3669 cb (EV_A_ EV_CHECK, checks [i]);
3670
3671 if (types & EV_SIGNAL)
3672 for (i = 0; i < EV_NSIG - 1; ++i)
3673 for (wl = signals [i].head; wl; )
3674 {
3675 wn = wl->next;
3676 cb (EV_A_ EV_SIGNAL, wl);
3677 wl = wn;
3678 }
3679
3680 if (types & EV_CHILD)
3681 for (i = EV_PID_HASHSIZE; i--; )
3682 for (wl = childs [i]; wl; )
3683 {
3684 wn = wl->next;
3685 cb (EV_A_ EV_CHILD, wl);
3686 wl = wn;
3687 }
3688/* EV_STAT 0x00001000 /* stat data changed */
3689/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3690}
3691#endif
3692
2539#if EV_MULTIPLICITY 3693#if EV_MULTIPLICITY
2540 #include "ev_wrap.h" 3694 #include "ev_wrap.h"
2541#endif 3695#endif
2542 3696
2543#ifdef __cplusplus 3697#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines