ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.216 by root, Sat Mar 8 07:04:55 2008 UTC vs.
Revision 1.453 by root, Thu Feb 28 00:33:25 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
141#else 184#else
142# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
143#endif 197#endif
144 198
145#ifndef _WIN32 199#ifndef _WIN32
146# include <sys/time.h> 200# include <sys/time.h>
147# include <sys/wait.h> 201# include <sys/wait.h>
148# include <unistd.h> 202# include <unistd.h>
149#else 203#else
204# include <io.h>
150# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
151# include <windows.h> 207# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
154# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
155#endif 261# endif
156 262#endif
157/**/
158 263
159#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
160# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
161#endif 270#endif
162 271
163#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 274#endif
166 275
167#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
168# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
169#endif 282#endif
170 283
171#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 286#endif
174 287
175#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
176# ifdef _WIN32 289# ifdef _WIN32
177# define EV_USE_POLL 0 290# define EV_USE_POLL 0
178# else 291# else
179# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 293# endif
181#endif 294#endif
182 295
183#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
184# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
185#endif 302#endif
186 303
187#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
189#endif 306#endif
191#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 309# define EV_USE_PORT 0
193#endif 310#endif
194 311
195#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
196# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
317# endif
197#endif 318#endif
198 319
199#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 331# else
203# define EV_PID_HASHSIZE 16 332# define EV_USE_EVENTFD 0
204# endif 333# endif
205#endif 334#endif
206 335
207#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 338# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 339# else
211# define EV_INOTIFY_HASHSIZE 16 340# define EV_USE_SIGNALFD 0
212# endif 341# endif
213#endif 342#endif
214 343
215/**/ 344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
374# undef EV_USE_POLL
375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
389# endif
390#endif
391
392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 393
217#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 395# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 396# define EV_USE_MONOTONIC 0
220#endif 397#endif
228# undef EV_USE_INOTIFY 405# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 406# define EV_USE_INOTIFY 0
230#endif 407#endif
231 408
232#if !EV_USE_NANOSLEEP 409#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
234# include <sys/select.h> 412# include <sys/select.h>
235# endif 413# endif
236#endif 414#endif
237 415
238#if EV_USE_INOTIFY 416#if EV_USE_INOTIFY
417# include <sys/statfs.h>
239# include <sys/inotify.h> 418# include <sys/inotify.h>
419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420# ifndef IN_DONT_FOLLOW
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
240#endif 423# endif
424#endif
241 425
242#if EV_SELECT_IS_WINSOCKET 426#if EV_USE_EVENTFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
243# include <winsock.h> 428# include <stdint.h>
429# ifndef EFD_NONBLOCK
430# define EFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef EFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
244#endif 462#endif
245 463
246/**/ 464/**/
247 465
466#if EV_VERIFY >= 3
467# define EV_FREQUENT_CHECK ev_verify (EV_A)
468#else
469# define EV_FREQUENT_CHECK do { } while (0)
470#endif
471
248/* 472/*
249 * This is used to avoid floating point rounding problems. 473 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 474 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 475 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 478
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 481
482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516#ifndef ECB_H
517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010002
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 529 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 530 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
265#else 545#else
266# define expect(expr,value) (expr) 546 #include <inttypes.h>
267# define noinline 547 #if UINTMAX_MAX > 0xffffffffU
268# if __STDC_VERSION__ < 199901L 548 #define ECB_PTRSIZE 8
269# define inline 549 #else
550 #define ECB_PTRSIZE 4
551 #endif
270# endif 552#endif
553
554/* many compilers define _GNUC_ to some versions but then only implement
555 * what their idiot authors think are the "more important" extensions,
556 * causing enormous grief in return for some better fake benchmark numbers.
557 * or so.
558 * we try to detect these and simply assume they are not gcc - if they have
559 * an issue with that they should have done it right in the first place.
560 */
561#ifndef ECB_GCC_VERSION
562 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
563 #define ECB_GCC_VERSION(major,minor) 0
564 #else
565 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
271#endif 566 #endif
567#endif
272 568
569#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
570#define ECB_C99 (__STDC_VERSION__ >= 199901L)
571#define ECB_C11 (__STDC_VERSION__ >= 201112L)
572#define ECB_CPP (__cplusplus+0)
573#define ECB_CPP11 (__cplusplus >= 201103L)
574
575#if ECB_CPP
576 #define ECB_EXTERN_C extern "C"
577 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
578 #define ECB_EXTERN_C_END }
579#else
580 #define ECB_EXTERN_C extern
581 #define ECB_EXTERN_C_BEG
582 #define ECB_EXTERN_C_END
583#endif
584
585/*****************************************************************************/
586
587/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
588/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
589
590#if ECB_NO_THREADS
591 #define ECB_NO_SMP 1
592#endif
593
594#if ECB_NO_SMP
595 #define ECB_MEMORY_FENCE do { } while (0)
596#endif
597
598#ifndef ECB_MEMORY_FENCE
599 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600 #if __i386 || __i386__
601 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
602 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
603 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
604 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
606 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
607 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
608 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
610 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
611 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
613 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
614 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
616 #elif __sparc || __sparc__
617 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
618 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
619 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
620 #elif defined __s390__ || defined __s390x__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
622 #elif defined __mips__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
624 #elif defined __alpha__
625 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
626 #elif defined __hppa__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif defined __ia64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
631 #endif
632 #endif
633#endif
634
635#ifndef ECB_MEMORY_FENCE
636 #if ECB_GCC_VERSION(4,7)
637 /* see comment below (stdatomic.h) about the C11 memory model. */
638 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
639
640 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
641 * without risking compile time errors with other compilers. We *could*
642 * define our own ecb_clang_has_feature, but I just can't be bothered to work
643 * around this shit time and again.
644 * #elif defined __clang && __has_feature (cxx_atomic)
645 * // see comment below (stdatomic.h) about the C11 memory model.
646 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
647 */
648
649 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
650 #define ECB_MEMORY_FENCE __sync_synchronize ()
651 #elif _MSC_VER >= 1400 /* VC++ 2005 */
652 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
653 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
654 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
655 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
656 #elif defined _WIN32
657 #include <WinNT.h>
658 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
659 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 #include <mbarrier.h>
661 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
662 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
663 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
664 #elif __xlC__
665 #define ECB_MEMORY_FENCE __sync ()
666 #endif
667#endif
668
669#ifndef ECB_MEMORY_FENCE
670 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
671 /* we assume that these memory fences work on all variables/all memory accesses, */
672 /* not just C11 atomics and atomic accesses */
673 #include <stdatomic.h>
674 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
675 /* any fence other than seq_cst, which isn't very efficient for us. */
676 /* Why that is, we don't know - either the C11 memory model is quite useless */
677 /* for most usages, or gcc and clang have a bug */
678 /* I *currently* lean towards the latter, and inefficiently implement */
679 /* all three of ecb's fences as a seq_cst fence */
680 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
681 #endif
682#endif
683
684#ifndef ECB_MEMORY_FENCE
685 #if !ECB_AVOID_PTHREADS
686 /*
687 * if you get undefined symbol references to pthread_mutex_lock,
688 * or failure to find pthread.h, then you should implement
689 * the ECB_MEMORY_FENCE operations for your cpu/compiler
690 * OR provide pthread.h and link against the posix thread library
691 * of your system.
692 */
693 #include <pthread.h>
694 #define ECB_NEEDS_PTHREADS 1
695 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
696
697 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
698 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
699 #endif
700#endif
701
702#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
703 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
704#endif
705
706#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
707 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
708#endif
709
710/*****************************************************************************/
711
712#if __cplusplus
713 #define ecb_inline static inline
714#elif ECB_GCC_VERSION(2,5)
715 #define ecb_inline static __inline__
716#elif ECB_C99
717 #define ecb_inline static inline
718#else
719 #define ecb_inline static
720#endif
721
722#if ECB_GCC_VERSION(3,3)
723 #define ecb_restrict __restrict__
724#elif ECB_C99
725 #define ecb_restrict restrict
726#else
727 #define ecb_restrict
728#endif
729
730typedef int ecb_bool;
731
732#define ECB_CONCAT_(a, b) a ## b
733#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
734#define ECB_STRINGIFY_(a) # a
735#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
736
737#define ecb_function_ ecb_inline
738
739#if ECB_GCC_VERSION(3,1)
740 #define ecb_attribute(attrlist) __attribute__(attrlist)
741 #define ecb_is_constant(expr) __builtin_constant_p (expr)
742 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
743 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
744#else
745 #define ecb_attribute(attrlist)
746 #define ecb_is_constant(expr) 0
747 #define ecb_expect(expr,value) (expr)
748 #define ecb_prefetch(addr,rw,locality)
749#endif
750
751/* no emulation for ecb_decltype */
752#if ECB_GCC_VERSION(4,5)
753 #define ecb_decltype(x) __decltype(x)
754#elif ECB_GCC_VERSION(3,0)
755 #define ecb_decltype(x) __typeof(x)
756#endif
757
758#define ecb_noinline ecb_attribute ((__noinline__))
759#define ecb_unused ecb_attribute ((__unused__))
760#define ecb_const ecb_attribute ((__const__))
761#define ecb_pure ecb_attribute ((__pure__))
762
763#if ECB_C11
764 #define ecb_noreturn _Noreturn
765#else
766 #define ecb_noreturn ecb_attribute ((__noreturn__))
767#endif
768
769#if ECB_GCC_VERSION(4,3)
770 #define ecb_artificial ecb_attribute ((__artificial__))
771 #define ecb_hot ecb_attribute ((__hot__))
772 #define ecb_cold ecb_attribute ((__cold__))
773#else
774 #define ecb_artificial
775 #define ecb_hot
776 #define ecb_cold
777#endif
778
779/* put around conditional expressions if you are very sure that the */
780/* expression is mostly true or mostly false. note that these return */
781/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 782#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 783#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
784/* for compatibility to the rest of the world */
785#define ecb_likely(expr) ecb_expect_true (expr)
786#define ecb_unlikely(expr) ecb_expect_false (expr)
787
788/* count trailing zero bits and count # of one bits */
789#if ECB_GCC_VERSION(3,4)
790 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
791 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
792 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
793 #define ecb_ctz32(x) __builtin_ctz (x)
794 #define ecb_ctz64(x) __builtin_ctzll (x)
795 #define ecb_popcount32(x) __builtin_popcount (x)
796 /* no popcountll */
797#else
798 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
799 ecb_function_ int
800 ecb_ctz32 (uint32_t x)
801 {
802 int r = 0;
803
804 x &= ~x + 1; /* this isolates the lowest bit */
805
806#if ECB_branchless_on_i386
807 r += !!(x & 0xaaaaaaaa) << 0;
808 r += !!(x & 0xcccccccc) << 1;
809 r += !!(x & 0xf0f0f0f0) << 2;
810 r += !!(x & 0xff00ff00) << 3;
811 r += !!(x & 0xffff0000) << 4;
812#else
813 if (x & 0xaaaaaaaa) r += 1;
814 if (x & 0xcccccccc) r += 2;
815 if (x & 0xf0f0f0f0) r += 4;
816 if (x & 0xff00ff00) r += 8;
817 if (x & 0xffff0000) r += 16;
818#endif
819
820 return r;
821 }
822
823 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
824 ecb_function_ int
825 ecb_ctz64 (uint64_t x)
826 {
827 int shift = x & 0xffffffffU ? 0 : 32;
828 return ecb_ctz32 (x >> shift) + shift;
829 }
830
831 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
832 ecb_function_ int
833 ecb_popcount32 (uint32_t x)
834 {
835 x -= (x >> 1) & 0x55555555;
836 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
837 x = ((x >> 4) + x) & 0x0f0f0f0f;
838 x *= 0x01010101;
839
840 return x >> 24;
841 }
842
843 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
844 ecb_function_ int ecb_ld32 (uint32_t x)
845 {
846 int r = 0;
847
848 if (x >> 16) { x >>= 16; r += 16; }
849 if (x >> 8) { x >>= 8; r += 8; }
850 if (x >> 4) { x >>= 4; r += 4; }
851 if (x >> 2) { x >>= 2; r += 2; }
852 if (x >> 1) { r += 1; }
853
854 return r;
855 }
856
857 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
858 ecb_function_ int ecb_ld64 (uint64_t x)
859 {
860 int r = 0;
861
862 if (x >> 32) { x >>= 32; r += 32; }
863
864 return r + ecb_ld32 (x);
865 }
866#endif
867
868ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
869ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
870ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
871ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
872
873ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
874ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
875{
876 return ( (x * 0x0802U & 0x22110U)
877 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
878}
879
880ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
881ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
882{
883 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
884 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
885 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
886 x = ( x >> 8 ) | ( x << 8);
887
888 return x;
889}
890
891ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
892ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
893{
894 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
895 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
896 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
897 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
898 x = ( x >> 16 ) | ( x << 16);
899
900 return x;
901}
902
903/* popcount64 is only available on 64 bit cpus as gcc builtin */
904/* so for this version we are lazy */
905ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
906ecb_function_ int
907ecb_popcount64 (uint64_t x)
908{
909 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
910}
911
912ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
913ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
914ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
915ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
916ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
917ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
918ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
919ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
920
921ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
922ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
923ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
924ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
925ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
926ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
927ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
928ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
929
930#if ECB_GCC_VERSION(4,3)
931 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
932 #define ecb_bswap32(x) __builtin_bswap32 (x)
933 #define ecb_bswap64(x) __builtin_bswap64 (x)
934#else
935 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
936 ecb_function_ uint16_t
937 ecb_bswap16 (uint16_t x)
938 {
939 return ecb_rotl16 (x, 8);
940 }
941
942 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
943 ecb_function_ uint32_t
944 ecb_bswap32 (uint32_t x)
945 {
946 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
947 }
948
949 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
950 ecb_function_ uint64_t
951 ecb_bswap64 (uint64_t x)
952 {
953 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
954 }
955#endif
956
957#if ECB_GCC_VERSION(4,5)
958 #define ecb_unreachable() __builtin_unreachable ()
959#else
960 /* this seems to work fine, but gcc always emits a warning for it :/ */
961 ecb_inline void ecb_unreachable (void) ecb_noreturn;
962 ecb_inline void ecb_unreachable (void) { }
963#endif
964
965/* try to tell the compiler that some condition is definitely true */
966#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
967
968ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
969ecb_inline unsigned char
970ecb_byteorder_helper (void)
971{
972 /* the union code still generates code under pressure in gcc, */
973 /* but less than using pointers, and always seems to */
974 /* successfully return a constant. */
975 /* the reason why we have this horrible preprocessor mess */
976 /* is to avoid it in all cases, at least on common architectures */
977 /* or when using a recent enough gcc version (>= 4.6) */
978#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
979 return 0x44;
980#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
981 return 0x44;
982#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
983 return 0x11;
984#else
985 union
986 {
987 uint32_t i;
988 uint8_t c;
989 } u = { 0x11223344 };
990 return u.c;
991#endif
992}
993
994ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
995ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
996ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
997ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
998
999#if ECB_GCC_VERSION(3,0) || ECB_C99
1000 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1001#else
1002 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1003#endif
1004
1005#if __cplusplus
1006 template<typename T>
1007 static inline T ecb_div_rd (T val, T div)
1008 {
1009 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1010 }
1011 template<typename T>
1012 static inline T ecb_div_ru (T val, T div)
1013 {
1014 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1015 }
1016#else
1017 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1018 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1019#endif
1020
1021#if ecb_cplusplus_does_not_suck
1022 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1023 template<typename T, int N>
1024 static inline int ecb_array_length (const T (&arr)[N])
1025 {
1026 return N;
1027 }
1028#else
1029 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1030#endif
1031
1032/*******************************************************************************/
1033/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1034
1035/* basically, everything uses "ieee pure-endian" floating point numbers */
1036/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1037#if 0 \
1038 || __i386 || __i386__ \
1039 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1040 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1041 || defined __arm__ && defined __ARM_EABI__ \
1042 || defined __s390__ || defined __s390x__ \
1043 || defined __mips__ \
1044 || defined __alpha__ \
1045 || defined __hppa__ \
1046 || defined __ia64__ \
1047 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1048 #define ECB_STDFP 1
1049 #include <string.h> /* for memcpy */
1050#else
1051 #define ECB_STDFP 0
1052 #include <math.h> /* for frexp*, ldexp* */
1053#endif
1054
1055#ifndef ECB_NO_LIBM
1056
1057 /* convert a float to ieee single/binary32 */
1058 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1059 ecb_function_ uint32_t
1060 ecb_float_to_binary32 (float x)
1061 {
1062 uint32_t r;
1063
1064 #if ECB_STDFP
1065 memcpy (&r, &x, 4);
1066 #else
1067 /* slow emulation, works for anything but -0 */
1068 uint32_t m;
1069 int e;
1070
1071 if (x == 0e0f ) return 0x00000000U;
1072 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1073 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1074 if (x != x ) return 0x7fbfffffU;
1075
1076 m = frexpf (x, &e) * 0x1000000U;
1077
1078 r = m & 0x80000000U;
1079
1080 if (r)
1081 m = -m;
1082
1083 if (e <= -126)
1084 {
1085 m &= 0xffffffU;
1086 m >>= (-125 - e);
1087 e = -126;
1088 }
1089
1090 r |= (e + 126) << 23;
1091 r |= m & 0x7fffffU;
1092 #endif
1093
1094 return r;
1095 }
1096
1097 /* converts an ieee single/binary32 to a float */
1098 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1099 ecb_function_ float
1100 ecb_binary32_to_float (uint32_t x)
1101 {
1102 float r;
1103
1104 #if ECB_STDFP
1105 memcpy (&r, &x, 4);
1106 #else
1107 /* emulation, only works for normals and subnormals and +0 */
1108 int neg = x >> 31;
1109 int e = (x >> 23) & 0xffU;
1110
1111 x &= 0x7fffffU;
1112
1113 if (e)
1114 x |= 0x800000U;
1115 else
1116 e = 1;
1117
1118 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1119 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1120
1121 r = neg ? -r : r;
1122 #endif
1123
1124 return r;
1125 }
1126
1127 /* convert a double to ieee double/binary64 */
1128 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1129 ecb_function_ uint64_t
1130 ecb_double_to_binary64 (double x)
1131 {
1132 uint64_t r;
1133
1134 #if ECB_STDFP
1135 memcpy (&r, &x, 8);
1136 #else
1137 /* slow emulation, works for anything but -0 */
1138 uint64_t m;
1139 int e;
1140
1141 if (x == 0e0 ) return 0x0000000000000000U;
1142 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1143 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1144 if (x != x ) return 0X7ff7ffffffffffffU;
1145
1146 m = frexp (x, &e) * 0x20000000000000U;
1147
1148 r = m & 0x8000000000000000;;
1149
1150 if (r)
1151 m = -m;
1152
1153 if (e <= -1022)
1154 {
1155 m &= 0x1fffffffffffffU;
1156 m >>= (-1021 - e);
1157 e = -1022;
1158 }
1159
1160 r |= ((uint64_t)(e + 1022)) << 52;
1161 r |= m & 0xfffffffffffffU;
1162 #endif
1163
1164 return r;
1165 }
1166
1167 /* converts an ieee double/binary64 to a double */
1168 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1169 ecb_function_ double
1170 ecb_binary64_to_double (uint64_t x)
1171 {
1172 double r;
1173
1174 #if ECB_STDFP
1175 memcpy (&r, &x, 8);
1176 #else
1177 /* emulation, only works for normals and subnormals and +0 */
1178 int neg = x >> 63;
1179 int e = (x >> 52) & 0x7ffU;
1180
1181 x &= 0xfffffffffffffU;
1182
1183 if (e)
1184 x |= 0x10000000000000U;
1185 else
1186 e = 1;
1187
1188 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1189 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1190
1191 r = neg ? -r : r;
1192 #endif
1193
1194 return r;
1195 }
1196
1197#endif
1198
1199#endif
1200
1201/* ECB.H END */
1202
1203#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1204/* if your architecture doesn't need memory fences, e.g. because it is
1205 * single-cpu/core, or if you use libev in a project that doesn't use libev
1206 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1207 * libev, in which cases the memory fences become nops.
1208 * alternatively, you can remove this #error and link against libpthread,
1209 * which will then provide the memory fences.
1210 */
1211# error "memory fences not defined for your architecture, please report"
1212#endif
1213
1214#ifndef ECB_MEMORY_FENCE
1215# define ECB_MEMORY_FENCE do { } while (0)
1216# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1217# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1218#endif
1219
1220#define expect_false(cond) ecb_expect_false (cond)
1221#define expect_true(cond) ecb_expect_true (cond)
1222#define noinline ecb_noinline
1223
275#define inline_size static inline 1224#define inline_size ecb_inline
276 1225
277#if EV_MINIMAL 1226#if EV_FEATURE_CODE
1227# define inline_speed ecb_inline
1228#else
278# define inline_speed static noinline 1229# define inline_speed static noinline
1230#endif
1231
1232#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1233
1234#if EV_MINPRI == EV_MAXPRI
1235# define ABSPRI(w) (((W)w), 0)
279#else 1236#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1237# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1238#endif
285 1239
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1240#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 1241#define EMPTY2(a,b) /* used to suppress some warnings */
288 1242
289typedef ev_watcher *W; 1243typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 1244typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 1245typedef ev_watcher_time *WT;
292 1246
1247#define ev_active(w) ((W)(w))->active
1248#define ev_at(w) ((WT)(w))->at
1249
1250#if EV_USE_REALTIME
1251/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1252/* giving it a reasonably high chance of working on typical architectures */
1253static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1254#endif
1255
293#if EV_USE_MONOTONIC 1256#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1257static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1258#endif
1259
1260#ifndef EV_FD_TO_WIN32_HANDLE
1261# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1262#endif
1263#ifndef EV_WIN32_HANDLE_TO_FD
1264# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1265#endif
1266#ifndef EV_WIN32_CLOSE_FD
1267# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1268#endif
298 1269
299#ifdef _WIN32 1270#ifdef _WIN32
300# include "ev_win32.c" 1271# include "ev_win32.c"
301#endif 1272#endif
302 1273
303/*****************************************************************************/ 1274/*****************************************************************************/
304 1275
1276/* define a suitable floor function (only used by periodics atm) */
1277
1278#if EV_USE_FLOOR
1279# include <math.h>
1280# define ev_floor(v) floor (v)
1281#else
1282
1283#include <float.h>
1284
1285/* a floor() replacement function, should be independent of ev_tstamp type */
1286static ev_tstamp noinline
1287ev_floor (ev_tstamp v)
1288{
1289 /* the choice of shift factor is not terribly important */
1290#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1291 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1292#else
1293 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1294#endif
1295
1296 /* argument too large for an unsigned long? */
1297 if (expect_false (v >= shift))
1298 {
1299 ev_tstamp f;
1300
1301 if (v == v - 1.)
1302 return v; /* very large number */
1303
1304 f = shift * ev_floor (v * (1. / shift));
1305 return f + ev_floor (v - f);
1306 }
1307
1308 /* special treatment for negative args? */
1309 if (expect_false (v < 0.))
1310 {
1311 ev_tstamp f = -ev_floor (-v);
1312
1313 return f - (f == v ? 0 : 1);
1314 }
1315
1316 /* fits into an unsigned long */
1317 return (unsigned long)v;
1318}
1319
1320#endif
1321
1322/*****************************************************************************/
1323
1324#ifdef __linux
1325# include <sys/utsname.h>
1326#endif
1327
1328static unsigned int noinline ecb_cold
1329ev_linux_version (void)
1330{
1331#ifdef __linux
1332 unsigned int v = 0;
1333 struct utsname buf;
1334 int i;
1335 char *p = buf.release;
1336
1337 if (uname (&buf))
1338 return 0;
1339
1340 for (i = 3+1; --i; )
1341 {
1342 unsigned int c = 0;
1343
1344 for (;;)
1345 {
1346 if (*p >= '0' && *p <= '9')
1347 c = c * 10 + *p++ - '0';
1348 else
1349 {
1350 p += *p == '.';
1351 break;
1352 }
1353 }
1354
1355 v = (v << 8) | c;
1356 }
1357
1358 return v;
1359#else
1360 return 0;
1361#endif
1362}
1363
1364/*****************************************************************************/
1365
1366#if EV_AVOID_STDIO
1367static void noinline ecb_cold
1368ev_printerr (const char *msg)
1369{
1370 write (STDERR_FILENO, msg, strlen (msg));
1371}
1372#endif
1373
305static void (*syserr_cb)(const char *msg); 1374static void (*syserr_cb)(const char *msg) EV_THROW;
306 1375
307void 1376void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1377ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
309{ 1378{
310 syserr_cb = cb; 1379 syserr_cb = cb;
311} 1380}
312 1381
313static void noinline 1382static void noinline ecb_cold
314syserr (const char *msg) 1383ev_syserr (const char *msg)
315{ 1384{
316 if (!msg) 1385 if (!msg)
317 msg = "(libev) system error"; 1386 msg = "(libev) system error";
318 1387
319 if (syserr_cb) 1388 if (syserr_cb)
320 syserr_cb (msg); 1389 syserr_cb (msg);
321 else 1390 else
322 { 1391 {
1392#if EV_AVOID_STDIO
1393 ev_printerr (msg);
1394 ev_printerr (": ");
1395 ev_printerr (strerror (errno));
1396 ev_printerr ("\n");
1397#else
323 perror (msg); 1398 perror (msg);
1399#endif
324 abort (); 1400 abort ();
325 } 1401 }
326} 1402}
327 1403
1404static void *
1405ev_realloc_emul (void *ptr, long size) EV_THROW
1406{
1407 /* some systems, notably openbsd and darwin, fail to properly
1408 * implement realloc (x, 0) (as required by both ansi c-89 and
1409 * the single unix specification, so work around them here.
1410 * recently, also (at least) fedora and debian started breaking it,
1411 * despite documenting it otherwise.
1412 */
1413
1414 if (size)
1415 return realloc (ptr, size);
1416
1417 free (ptr);
1418 return 0;
1419}
1420
328static void *(*alloc)(void *ptr, long size); 1421static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
329 1422
330void 1423void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1424ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
332{ 1425{
333 alloc = cb; 1426 alloc = cb;
334} 1427}
335 1428
336inline_speed void * 1429inline_speed void *
337ev_realloc (void *ptr, long size) 1430ev_realloc (void *ptr, long size)
338{ 1431{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1432 ptr = alloc (ptr, size);
340 1433
341 if (!ptr && size) 1434 if (!ptr && size)
342 { 1435 {
1436#if EV_AVOID_STDIO
1437 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1438#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1439 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1440#endif
344 abort (); 1441 abort ();
345 } 1442 }
346 1443
347 return ptr; 1444 return ptr;
348} 1445}
350#define ev_malloc(size) ev_realloc (0, (size)) 1447#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1448#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1449
353/*****************************************************************************/ 1450/*****************************************************************************/
354 1451
1452/* set in reify when reification needed */
1453#define EV_ANFD_REIFY 1
1454
1455/* file descriptor info structure */
355typedef struct 1456typedef struct
356{ 1457{
357 WL head; 1458 WL head;
358 unsigned char events; 1459 unsigned char events; /* the events watched for */
1460 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1461 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1462 unsigned char unused;
1463#if EV_USE_EPOLL
1464 unsigned int egen; /* generation counter to counter epoll bugs */
1465#endif
360#if EV_SELECT_IS_WINSOCKET 1466#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1467 SOCKET handle;
362#endif 1468#endif
1469#if EV_USE_IOCP
1470 OVERLAPPED or, ow;
1471#endif
363} ANFD; 1472} ANFD;
364 1473
1474/* stores the pending event set for a given watcher */
365typedef struct 1475typedef struct
366{ 1476{
367 W w; 1477 W w;
368 int events; 1478 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1479} ANPENDING;
370 1480
371#if EV_USE_INOTIFY 1481#if EV_USE_INOTIFY
1482/* hash table entry per inotify-id */
372typedef struct 1483typedef struct
373{ 1484{
374 WL head; 1485 WL head;
375} ANFS; 1486} ANFS;
1487#endif
1488
1489/* Heap Entry */
1490#if EV_HEAP_CACHE_AT
1491 /* a heap element */
1492 typedef struct {
1493 ev_tstamp at;
1494 WT w;
1495 } ANHE;
1496
1497 #define ANHE_w(he) (he).w /* access watcher, read-write */
1498 #define ANHE_at(he) (he).at /* access cached at, read-only */
1499 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1500#else
1501 /* a heap element */
1502 typedef WT ANHE;
1503
1504 #define ANHE_w(he) (he)
1505 #define ANHE_at(he) (he)->at
1506 #define ANHE_at_cache(he)
376#endif 1507#endif
377 1508
378#if EV_MULTIPLICITY 1509#if EV_MULTIPLICITY
379 1510
380 struct ev_loop 1511 struct ev_loop
386 #undef VAR 1517 #undef VAR
387 }; 1518 };
388 #include "ev_wrap.h" 1519 #include "ev_wrap.h"
389 1520
390 static struct ev_loop default_loop_struct; 1521 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1522 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1523
393#else 1524#else
394 1525
395 ev_tstamp ev_rt_now; 1526 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1527 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1528 #include "ev_vars.h"
398 #undef VAR 1529 #undef VAR
399 1530
400 static int ev_default_loop_ptr; 1531 static int ev_default_loop_ptr;
401 1532
402#endif 1533#endif
403 1534
1535#if EV_FEATURE_API
1536# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1537# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1538# define EV_INVOKE_PENDING invoke_cb (EV_A)
1539#else
1540# define EV_RELEASE_CB (void)0
1541# define EV_ACQUIRE_CB (void)0
1542# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1543#endif
1544
1545#define EVBREAK_RECURSE 0x80
1546
404/*****************************************************************************/ 1547/*****************************************************************************/
405 1548
1549#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1550ev_tstamp
407ev_time (void) 1551ev_time (void) EV_THROW
408{ 1552{
409#if EV_USE_REALTIME 1553#if EV_USE_REALTIME
1554 if (expect_true (have_realtime))
1555 {
410 struct timespec ts; 1556 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1557 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1558 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1559 }
1560#endif
1561
414 struct timeval tv; 1562 struct timeval tv;
415 gettimeofday (&tv, 0); 1563 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1564 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1565}
1566#endif
419 1567
420ev_tstamp inline_size 1568inline_size ev_tstamp
421get_clock (void) 1569get_clock (void)
422{ 1570{
423#if EV_USE_MONOTONIC 1571#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1572 if (expect_true (have_monotonic))
425 { 1573 {
432 return ev_time (); 1580 return ev_time ();
433} 1581}
434 1582
435#if EV_MULTIPLICITY 1583#if EV_MULTIPLICITY
436ev_tstamp 1584ev_tstamp
437ev_now (EV_P) 1585ev_now (EV_P) EV_THROW
438{ 1586{
439 return ev_rt_now; 1587 return ev_rt_now;
440} 1588}
441#endif 1589#endif
442 1590
443void 1591void
444ev_sleep (ev_tstamp delay) 1592ev_sleep (ev_tstamp delay) EV_THROW
445{ 1593{
446 if (delay > 0.) 1594 if (delay > 0.)
447 { 1595 {
448#if EV_USE_NANOSLEEP 1596#if EV_USE_NANOSLEEP
449 struct timespec ts; 1597 struct timespec ts;
450 1598
451 ts.tv_sec = (time_t)delay; 1599 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1600 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1601#elif defined _WIN32
456 Sleep (delay * 1e3); 1602 Sleep ((unsigned long)(delay * 1e3));
457#else 1603#else
458 struct timeval tv; 1604 struct timeval tv;
459 1605
460 tv.tv_sec = (time_t)delay; 1606 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1607 /* something not guaranteed by newer posix versions, but guaranteed */
462 1608 /* by older ones */
1609 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1610 select (0, 0, 0, 0, &tv);
464#endif 1611#endif
465 } 1612 }
466} 1613}
467 1614
468/*****************************************************************************/ 1615/*****************************************************************************/
469 1616
470int inline_size 1617#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1618
1619/* find a suitable new size for the given array, */
1620/* hopefully by rounding to a nice-to-malloc size */
1621inline_size int
471array_nextsize (int elem, int cur, int cnt) 1622array_nextsize (int elem, int cur, int cnt)
472{ 1623{
473 int ncur = cur + 1; 1624 int ncur = cur + 1;
474 1625
475 do 1626 do
476 ncur <<= 1; 1627 ncur <<= 1;
477 while (cnt > ncur); 1628 while (cnt > ncur);
478 1629
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1630 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1631 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1632 {
482 ncur *= elem; 1633 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1634 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1635 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1636 ncur /= elem;
486 } 1637 }
487 1638
488 return ncur; 1639 return ncur;
489} 1640}
490 1641
491static noinline void * 1642static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1643array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1644{
494 *cur = array_nextsize (elem, *cur, cnt); 1645 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1646 return ev_realloc (base, elem * *cur);
496} 1647}
1648
1649#define array_init_zero(base,count) \
1650 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1651
498#define array_needsize(type,base,cur,cnt,init) \ 1652#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1653 if (expect_false ((cnt) > (cur))) \
500 { \ 1654 { \
501 int ocur_ = (cur); \ 1655 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1656 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1657 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1658 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1659 }
506 1660
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1667 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1668 }
515#endif 1669#endif
516 1670
517#define array_free(stem, idx) \ 1671#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1672 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1673
520/*****************************************************************************/ 1674/*****************************************************************************/
521 1675
1676/* dummy callback for pending events */
1677static void noinline
1678pendingcb (EV_P_ ev_prepare *w, int revents)
1679{
1680}
1681
522void noinline 1682void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1683ev_feed_event (EV_P_ void *w, int revents) EV_THROW
524{ 1684{
525 W w_ = (W)w; 1685 W w_ = (W)w;
526 int pri = ABSPRI (w_); 1686 int pri = ABSPRI (w_);
527 1687
528 if (expect_false (w_->pending)) 1688 if (expect_false (w_->pending))
532 w_->pending = ++pendingcnt [pri]; 1692 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1693 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_; 1694 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1695 pendings [pri][w_->pending - 1].events = revents;
536 } 1696 }
537}
538 1697
539void inline_speed 1698 pendingpri = NUMPRI - 1;
1699}
1700
1701inline_speed void
1702feed_reverse (EV_P_ W w)
1703{
1704 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1705 rfeeds [rfeedcnt++] = w;
1706}
1707
1708inline_size void
1709feed_reverse_done (EV_P_ int revents)
1710{
1711 do
1712 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1713 while (rfeedcnt);
1714}
1715
1716inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1717queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1718{
542 int i; 1719 int i;
543 1720
544 for (i = 0; i < eventcnt; ++i) 1721 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1722 ev_feed_event (EV_A_ events [i], type);
546} 1723}
547 1724
548/*****************************************************************************/ 1725/*****************************************************************************/
549 1726
550void inline_size 1727inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1728fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1729{
566 ANFD *anfd = anfds + fd; 1730 ANFD *anfd = anfds + fd;
567 ev_io *w; 1731 ev_io *w;
568 1732
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1733 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1737 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1738 ev_feed_event (EV_A_ (W)w, ev);
575 } 1739 }
576} 1740}
577 1741
1742/* do not submit kernel events for fds that have reify set */
1743/* because that means they changed while we were polling for new events */
1744inline_speed void
1745fd_event (EV_P_ int fd, int revents)
1746{
1747 ANFD *anfd = anfds + fd;
1748
1749 if (expect_true (!anfd->reify))
1750 fd_event_nocheck (EV_A_ fd, revents);
1751}
1752
578void 1753void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1754ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
580{ 1755{
581 if (fd >= 0 && fd < anfdmax) 1756 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1757 fd_event_nocheck (EV_A_ fd, revents);
583} 1758}
584 1759
585void inline_size 1760/* make sure the external fd watch events are in-sync */
1761/* with the kernel/libev internal state */
1762inline_size void
586fd_reify (EV_P) 1763fd_reify (EV_P)
587{ 1764{
588 int i; 1765 int i;
1766
1767#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1768 for (i = 0; i < fdchangecnt; ++i)
1769 {
1770 int fd = fdchanges [i];
1771 ANFD *anfd = anfds + fd;
1772
1773 if (anfd->reify & EV__IOFDSET && anfd->head)
1774 {
1775 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1776
1777 if (handle != anfd->handle)
1778 {
1779 unsigned long arg;
1780
1781 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1782
1783 /* handle changed, but fd didn't - we need to do it in two steps */
1784 backend_modify (EV_A_ fd, anfd->events, 0);
1785 anfd->events = 0;
1786 anfd->handle = handle;
1787 }
1788 }
1789 }
1790#endif
589 1791
590 for (i = 0; i < fdchangecnt; ++i) 1792 for (i = 0; i < fdchangecnt; ++i)
591 { 1793 {
592 int fd = fdchanges [i]; 1794 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1795 ANFD *anfd = anfds + fd;
594 ev_io *w; 1796 ev_io *w;
595 1797
596 unsigned char events = 0; 1798 unsigned char o_events = anfd->events;
1799 unsigned char o_reify = anfd->reify;
597 1800
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1801 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1802
601#if EV_SELECT_IS_WINSOCKET 1803 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1804 {
604 unsigned long argp; 1805 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1806
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1807 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1808 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1809
609 #endif 1810 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1811 o_reify = EV__IOFDSET; /* actually |= */
611 } 1812 }
612#endif
613 1813
614 { 1814 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1815 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1816 }
625 1817
626 fdchangecnt = 0; 1818 fdchangecnt = 0;
627} 1819}
628 1820
629void inline_size 1821/* something about the given fd changed */
1822inline_size void
630fd_change (EV_P_ int fd, int flags) 1823fd_change (EV_P_ int fd, int flags)
631{ 1824{
632 unsigned char reify = anfds [fd].reify; 1825 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1826 anfds [fd].reify |= flags;
634 1827
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1831 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1832 fdchanges [fdchangecnt - 1] = fd;
640 } 1833 }
641} 1834}
642 1835
643void inline_speed 1836/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1837inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 1838fd_kill (EV_P_ int fd)
645{ 1839{
646 ev_io *w; 1840 ev_io *w;
647 1841
648 while ((w = (ev_io *)anfds [fd].head)) 1842 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1844 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1845 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1846 }
653} 1847}
654 1848
655int inline_size 1849/* check whether the given fd is actually valid, for error recovery */
1850inline_size int ecb_cold
656fd_valid (int fd) 1851fd_valid (int fd)
657{ 1852{
658#ifdef _WIN32 1853#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1854 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1855#else
661 return fcntl (fd, F_GETFD) != -1; 1856 return fcntl (fd, F_GETFD) != -1;
662#endif 1857#endif
663} 1858}
664 1859
665/* called on EBADF to verify fds */ 1860/* called on EBADF to verify fds */
666static void noinline 1861static void noinline ecb_cold
667fd_ebadf (EV_P) 1862fd_ebadf (EV_P)
668{ 1863{
669 int fd; 1864 int fd;
670 1865
671 for (fd = 0; fd < anfdmax; ++fd) 1866 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1867 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1868 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1869 fd_kill (EV_A_ fd);
675} 1870}
676 1871
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1872/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1873static void noinline ecb_cold
679fd_enomem (EV_P) 1874fd_enomem (EV_P)
680{ 1875{
681 int fd; 1876 int fd;
682 1877
683 for (fd = anfdmax; fd--; ) 1878 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1879 if (anfds [fd].events)
685 { 1880 {
686 fd_kill (EV_A_ fd); 1881 fd_kill (EV_A_ fd);
687 return; 1882 break;
688 } 1883 }
689} 1884}
690 1885
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1886/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1887static void noinline
696 1891
697 for (fd = 0; fd < anfdmax; ++fd) 1892 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1893 if (anfds [fd].events)
699 { 1894 {
700 anfds [fd].events = 0; 1895 anfds [fd].events = 0;
1896 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1897 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1898 }
703} 1899}
704 1900
705/*****************************************************************************/ 1901/* used to prepare libev internal fd's */
706 1902/* this is not fork-safe */
707void inline_speed 1903inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 1904fd_intern (int fd)
792{ 1905{
793#ifdef _WIN32 1906#ifdef _WIN32
794 int arg = 1; 1907 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1908 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1909#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1910 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1911 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1912#endif
800} 1913}
801 1914
1915/*****************************************************************************/
1916
1917/*
1918 * the heap functions want a real array index. array index 0 is guaranteed to not
1919 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1920 * the branching factor of the d-tree.
1921 */
1922
1923/*
1924 * at the moment we allow libev the luxury of two heaps,
1925 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1926 * which is more cache-efficient.
1927 * the difference is about 5% with 50000+ watchers.
1928 */
1929#if EV_USE_4HEAP
1930
1931#define DHEAP 4
1932#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1933#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1934#define UPHEAP_DONE(p,k) ((p) == (k))
1935
1936/* away from the root */
1937inline_speed void
1938downheap (ANHE *heap, int N, int k)
1939{
1940 ANHE he = heap [k];
1941 ANHE *E = heap + N + HEAP0;
1942
1943 for (;;)
1944 {
1945 ev_tstamp minat;
1946 ANHE *minpos;
1947 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1948
1949 /* find minimum child */
1950 if (expect_true (pos + DHEAP - 1 < E))
1951 {
1952 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1953 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1954 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1955 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1956 }
1957 else if (pos < E)
1958 {
1959 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1960 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1961 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1962 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1963 }
1964 else
1965 break;
1966
1967 if (ANHE_at (he) <= minat)
1968 break;
1969
1970 heap [k] = *minpos;
1971 ev_active (ANHE_w (*minpos)) = k;
1972
1973 k = minpos - heap;
1974 }
1975
1976 heap [k] = he;
1977 ev_active (ANHE_w (he)) = k;
1978}
1979
1980#else /* 4HEAP */
1981
1982#define HEAP0 1
1983#define HPARENT(k) ((k) >> 1)
1984#define UPHEAP_DONE(p,k) (!(p))
1985
1986/* away from the root */
1987inline_speed void
1988downheap (ANHE *heap, int N, int k)
1989{
1990 ANHE he = heap [k];
1991
1992 for (;;)
1993 {
1994 int c = k << 1;
1995
1996 if (c >= N + HEAP0)
1997 break;
1998
1999 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2000 ? 1 : 0;
2001
2002 if (ANHE_at (he) <= ANHE_at (heap [c]))
2003 break;
2004
2005 heap [k] = heap [c];
2006 ev_active (ANHE_w (heap [k])) = k;
2007
2008 k = c;
2009 }
2010
2011 heap [k] = he;
2012 ev_active (ANHE_w (he)) = k;
2013}
2014#endif
2015
2016/* towards the root */
2017inline_speed void
2018upheap (ANHE *heap, int k)
2019{
2020 ANHE he = heap [k];
2021
2022 for (;;)
2023 {
2024 int p = HPARENT (k);
2025
2026 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2027 break;
2028
2029 heap [k] = heap [p];
2030 ev_active (ANHE_w (heap [k])) = k;
2031 k = p;
2032 }
2033
2034 heap [k] = he;
2035 ev_active (ANHE_w (he)) = k;
2036}
2037
2038/* move an element suitably so it is in a correct place */
2039inline_size void
2040adjustheap (ANHE *heap, int N, int k)
2041{
2042 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2043 upheap (heap, k);
2044 else
2045 downheap (heap, N, k);
2046}
2047
2048/* rebuild the heap: this function is used only once and executed rarely */
2049inline_size void
2050reheap (ANHE *heap, int N)
2051{
2052 int i;
2053
2054 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2055 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2056 for (i = 0; i < N; ++i)
2057 upheap (heap, i + HEAP0);
2058}
2059
2060/*****************************************************************************/
2061
2062/* associate signal watchers to a signal signal */
2063typedef struct
2064{
2065 EV_ATOMIC_T pending;
2066#if EV_MULTIPLICITY
2067 EV_P;
2068#endif
2069 WL head;
2070} ANSIG;
2071
2072static ANSIG signals [EV_NSIG - 1];
2073
2074/*****************************************************************************/
2075
2076#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2077
802static void noinline 2078static void noinline ecb_cold
803evpipe_init (EV_P) 2079evpipe_init (EV_P)
804{ 2080{
805 if (!ev_is_active (&pipeev)) 2081 if (!ev_is_active (&pipe_w))
806 { 2082 {
2083 int fds [2];
2084
2085# if EV_USE_EVENTFD
2086 fds [0] = -1;
2087 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2088 if (fds [1] < 0 && errno == EINVAL)
2089 fds [1] = eventfd (0, 0);
2090
2091 if (fds [1] < 0)
2092# endif
2093 {
807 while (pipe (evpipe)) 2094 while (pipe (fds))
808 syserr ("(libev) error creating signal/async pipe"); 2095 ev_syserr ("(libev) error creating signal/async pipe");
809 2096
810 fd_intern (evpipe [0]); 2097 fd_intern (fds [0]);
2098 }
2099
811 fd_intern (evpipe [1]); 2100 fd_intern (fds [1]);
812 2101
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 2102 evpipe [0] = fds [0];
2103
2104 if (evpipe [1] < 0)
2105 evpipe [1] = fds [1]; /* first call, set write fd */
2106 else
2107 {
2108 /* on subsequent calls, do not change evpipe [1] */
2109 /* so that evpipe_write can always rely on its value. */
2110 /* this branch does not do anything sensible on windows, */
2111 /* so must not be executed on windows */
2112
2113 dup2 (fds [1], evpipe [1]);
2114 close (fds [1]);
2115 }
2116
2117 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
814 ev_io_start (EV_A_ &pipeev); 2118 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 2119 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 2120 }
817} 2121}
818 2122
819void inline_size 2123inline_speed void
820evpipe_write (EV_P_ EV_ATOMIC_T *flag) 2124evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 2125{
822 if (!*flag) 2126 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2127
2128 if (expect_true (*flag))
2129 return;
2130
2131 *flag = 1;
2132 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2133
2134 pipe_write_skipped = 1;
2135
2136 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2137
2138 if (pipe_write_wanted)
823 { 2139 {
2140 int old_errno;
2141
2142 pipe_write_skipped = 0;
2143 ECB_MEMORY_FENCE_RELEASE;
2144
824 int old_errno = errno; /* save errno because write might clobber it */ 2145 old_errno = errno; /* save errno because write will clobber it */
825 2146
826 *flag = 1; 2147#if EV_USE_EVENTFD
827 write (evpipe [1], &old_errno, 1); 2148 if (evpipe [0] < 0)
2149 {
2150 uint64_t counter = 1;
2151 write (evpipe [1], &counter, sizeof (uint64_t));
2152 }
2153 else
2154#endif
2155 {
2156#ifdef _WIN32
2157 WSABUF buf;
2158 DWORD sent;
2159 buf.buf = &buf;
2160 buf.len = 1;
2161 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2162#else
2163 write (evpipe [1], &(evpipe [1]), 1);
2164#endif
2165 }
828 2166
829 errno = old_errno; 2167 errno = old_errno;
830 } 2168 }
831} 2169}
832 2170
2171/* called whenever the libev signal pipe */
2172/* got some events (signal, async) */
833static void 2173static void
834pipecb (EV_P_ ev_io *iow, int revents) 2174pipecb (EV_P_ ev_io *iow, int revents)
835{ 2175{
2176 int i;
2177
2178 if (revents & EV_READ)
836 { 2179 {
837 int dummy; 2180#if EV_USE_EVENTFD
2181 if (evpipe [0] < 0)
2182 {
2183 uint64_t counter;
2184 read (evpipe [1], &counter, sizeof (uint64_t));
2185 }
2186 else
2187#endif
2188 {
2189 char dummy[4];
2190#ifdef _WIN32
2191 WSABUF buf;
2192 DWORD recvd;
2193 DWORD flags = 0;
2194 buf.buf = dummy;
2195 buf.len = sizeof (dummy);
2196 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2197#else
838 read (evpipe [0], &dummy, 1); 2198 read (evpipe [0], &dummy, sizeof (dummy));
2199#endif
2200 }
839 } 2201 }
840 2202
841 if (gotsig && ev_is_default_loop (EV_A)) 2203 pipe_write_skipped = 0;
842 {
843 int signum;
844 gotsig = 0;
845 2204
846 for (signum = signalmax; signum--; ) 2205 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
847 if (signals [signum].gotsig) 2206
2207#if EV_SIGNAL_ENABLE
2208 if (sig_pending)
2209 {
2210 sig_pending = 0;
2211
2212 ECB_MEMORY_FENCE;
2213
2214 for (i = EV_NSIG - 1; i--; )
2215 if (expect_false (signals [i].pending))
848 ev_feed_signal_event (EV_A_ signum + 1); 2216 ev_feed_signal_event (EV_A_ i + 1);
849 } 2217 }
2218#endif
850 2219
851#if EV_ASYNC_ENABLE 2220#if EV_ASYNC_ENABLE
852 if (gotasync) 2221 if (async_pending)
853 { 2222 {
854 int i; 2223 async_pending = 0;
855 gotasync = 0; 2224
2225 ECB_MEMORY_FENCE;
856 2226
857 for (i = asynccnt; i--; ) 2227 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent) 2228 if (asyncs [i]->sent)
859 { 2229 {
860 asyncs [i]->sent = 0; 2230 asyncs [i]->sent = 0;
2231 ECB_MEMORY_FENCE_RELEASE;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2232 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 } 2233 }
863 } 2234 }
864#endif 2235#endif
865} 2236}
866 2237
867/*****************************************************************************/ 2238/*****************************************************************************/
868 2239
2240void
2241ev_feed_signal (int signum) EV_THROW
2242{
2243#if EV_MULTIPLICITY
2244 EV_P;
2245 ECB_MEMORY_FENCE_ACQUIRE;
2246 EV_A = signals [signum - 1].loop;
2247
2248 if (!EV_A)
2249 return;
2250#endif
2251
2252 signals [signum - 1].pending = 1;
2253 evpipe_write (EV_A_ &sig_pending);
2254}
2255
869static void 2256static void
870sighandler (int signum) 2257ev_sighandler (int signum)
871{ 2258{
2259#ifdef _WIN32
2260 signal (signum, ev_sighandler);
2261#endif
2262
2263 ev_feed_signal (signum);
2264}
2265
2266void noinline
2267ev_feed_signal_event (EV_P_ int signum) EV_THROW
2268{
2269 WL w;
2270
2271 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2272 return;
2273
2274 --signum;
2275
872#if EV_MULTIPLICITY 2276#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 2277 /* it is permissible to try to feed a signal to the wrong loop */
874#endif 2278 /* or, likely more useful, feeding a signal nobody is waiting for */
875 2279
876#if _WIN32 2280 if (expect_false (signals [signum].loop != EV_A))
877 signal (signum, sighandler);
878#endif
879
880 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig);
882}
883
884void noinline
885ev_feed_signal_event (EV_P_ int signum)
886{
887 WL w;
888
889#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif
892
893 --signum;
894
895 if (signum < 0 || signum >= signalmax)
896 return; 2281 return;
2282#endif
897 2283
898 signals [signum].gotsig = 0; 2284 signals [signum].pending = 0;
2285 ECB_MEMORY_FENCE_RELEASE;
899 2286
900 for (w = signals [signum].head; w; w = w->next) 2287 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2288 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902} 2289}
903 2290
2291#if EV_USE_SIGNALFD
2292static void
2293sigfdcb (EV_P_ ev_io *iow, int revents)
2294{
2295 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2296
2297 for (;;)
2298 {
2299 ssize_t res = read (sigfd, si, sizeof (si));
2300
2301 /* not ISO-C, as res might be -1, but works with SuS */
2302 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2303 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2304
2305 if (res < (ssize_t)sizeof (si))
2306 break;
2307 }
2308}
2309#endif
2310
2311#endif
2312
904/*****************************************************************************/ 2313/*****************************************************************************/
905 2314
2315#if EV_CHILD_ENABLE
906static WL childs [EV_PID_HASHSIZE]; 2316static WL childs [EV_PID_HASHSIZE];
907
908#ifndef _WIN32
909 2317
910static ev_signal childev; 2318static ev_signal childev;
911 2319
912#ifndef WIFCONTINUED 2320#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 2321# define WIFCONTINUED(status) 0
914#endif 2322#endif
915 2323
916void inline_speed 2324/* handle a single child status event */
2325inline_speed void
917child_reap (EV_P_ int chain, int pid, int status) 2326child_reap (EV_P_ int chain, int pid, int status)
918{ 2327{
919 ev_child *w; 2328 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2329 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 2330
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2331 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
923 { 2332 {
924 if ((w->pid == pid || !w->pid) 2333 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1))) 2334 && (!traced || (w->flags & 1)))
926 { 2335 {
927 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2336 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
934 2343
935#ifndef WCONTINUED 2344#ifndef WCONTINUED
936# define WCONTINUED 0 2345# define WCONTINUED 0
937#endif 2346#endif
938 2347
2348/* called on sigchld etc., calls waitpid */
939static void 2349static void
940childcb (EV_P_ ev_signal *sw, int revents) 2350childcb (EV_P_ ev_signal *sw, int revents)
941{ 2351{
942 int pid, status; 2352 int pid, status;
943 2353
951 /* make sure we are called again until all children have been reaped */ 2361 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */ 2362 /* we need to do it this way so that the callback gets called before we continue */
953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2363 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
954 2364
955 child_reap (EV_A_ pid, pid, status); 2365 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1) 2366 if ((EV_PID_HASHSIZE) > 1)
957 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2367 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
958} 2368}
959 2369
960#endif 2370#endif
961 2371
962/*****************************************************************************/ 2372/*****************************************************************************/
963 2373
2374#if EV_USE_IOCP
2375# include "ev_iocp.c"
2376#endif
964#if EV_USE_PORT 2377#if EV_USE_PORT
965# include "ev_port.c" 2378# include "ev_port.c"
966#endif 2379#endif
967#if EV_USE_KQUEUE 2380#if EV_USE_KQUEUE
968# include "ev_kqueue.c" 2381# include "ev_kqueue.c"
975#endif 2388#endif
976#if EV_USE_SELECT 2389#if EV_USE_SELECT
977# include "ev_select.c" 2390# include "ev_select.c"
978#endif 2391#endif
979 2392
980int 2393int ecb_cold
981ev_version_major (void) 2394ev_version_major (void) EV_THROW
982{ 2395{
983 return EV_VERSION_MAJOR; 2396 return EV_VERSION_MAJOR;
984} 2397}
985 2398
986int 2399int ecb_cold
987ev_version_minor (void) 2400ev_version_minor (void) EV_THROW
988{ 2401{
989 return EV_VERSION_MINOR; 2402 return EV_VERSION_MINOR;
990} 2403}
991 2404
992/* return true if we are running with elevated privileges and should ignore env variables */ 2405/* return true if we are running with elevated privileges and should ignore env variables */
993int inline_size 2406int inline_size ecb_cold
994enable_secure (void) 2407enable_secure (void)
995{ 2408{
996#ifdef _WIN32 2409#ifdef _WIN32
997 return 0; 2410 return 0;
998#else 2411#else
999 return getuid () != geteuid () 2412 return getuid () != geteuid ()
1000 || getgid () != getegid (); 2413 || getgid () != getegid ();
1001#endif 2414#endif
1002} 2415}
1003 2416
1004unsigned int 2417unsigned int ecb_cold
1005ev_supported_backends (void) 2418ev_supported_backends (void) EV_THROW
1006{ 2419{
1007 unsigned int flags = 0; 2420 unsigned int flags = 0;
1008 2421
1009 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2422 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1010 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2423 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1013 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2426 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1014 2427
1015 return flags; 2428 return flags;
1016} 2429}
1017 2430
1018unsigned int 2431unsigned int ecb_cold
1019ev_recommended_backends (void) 2432ev_recommended_backends (void) EV_THROW
1020{ 2433{
1021 unsigned int flags = ev_supported_backends (); 2434 unsigned int flags = ev_supported_backends ();
1022 2435
1023#ifndef __NetBSD__ 2436#ifndef __NetBSD__
1024 /* kqueue is borked on everything but netbsd apparently */ 2437 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */ 2438 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE; 2439 flags &= ~EVBACKEND_KQUEUE;
1027#endif 2440#endif
1028#ifdef __APPLE__ 2441#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation 2442 /* only select works correctly on that "unix-certified" platform */
1030 flags &= ~EVBACKEND_POLL; 2443 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2444 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2445#endif
2446#ifdef __FreeBSD__
2447 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1031#endif 2448#endif
1032 2449
1033 return flags; 2450 return flags;
1034} 2451}
1035 2452
2453unsigned int ecb_cold
2454ev_embeddable_backends (void) EV_THROW
2455{
2456 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2457
2458 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2459 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2460 flags &= ~EVBACKEND_EPOLL;
2461
2462 return flags;
2463}
2464
1036unsigned int 2465unsigned int
1037ev_embeddable_backends (void) 2466ev_backend (EV_P) EV_THROW
1038{ 2467{
1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2468 return backend;
1040
1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */
1043 flags &= ~EVBACKEND_EPOLL;
1044
1045 return flags;
1046} 2469}
1047 2470
2471#if EV_FEATURE_API
1048unsigned int 2472unsigned int
1049ev_backend (EV_P) 2473ev_iteration (EV_P) EV_THROW
1050{ 2474{
1051 return backend; 2475 return loop_count;
1052} 2476}
1053 2477
1054unsigned int 2478unsigned int
1055ev_loop_count (EV_P) 2479ev_depth (EV_P) EV_THROW
1056{ 2480{
1057 return loop_count; 2481 return loop_depth;
1058} 2482}
1059 2483
1060void 2484void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2485ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1062{ 2486{
1063 io_blocktime = interval; 2487 io_blocktime = interval;
1064} 2488}
1065 2489
1066void 2490void
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2491ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1068{ 2492{
1069 timeout_blocktime = interval; 2493 timeout_blocktime = interval;
1070} 2494}
1071 2495
2496void
2497ev_set_userdata (EV_P_ void *data) EV_THROW
2498{
2499 userdata = data;
2500}
2501
2502void *
2503ev_userdata (EV_P) EV_THROW
2504{
2505 return userdata;
2506}
2507
2508void
2509ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2510{
2511 invoke_cb = invoke_pending_cb;
2512}
2513
2514void
2515ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2516{
2517 release_cb = release;
2518 acquire_cb = acquire;
2519}
2520#endif
2521
2522/* initialise a loop structure, must be zero-initialised */
1072static void noinline 2523static void noinline ecb_cold
1073loop_init (EV_P_ unsigned int flags) 2524loop_init (EV_P_ unsigned int flags) EV_THROW
1074{ 2525{
1075 if (!backend) 2526 if (!backend)
1076 { 2527 {
2528 origflags = flags;
2529
2530#if EV_USE_REALTIME
2531 if (!have_realtime)
2532 {
2533 struct timespec ts;
2534
2535 if (!clock_gettime (CLOCK_REALTIME, &ts))
2536 have_realtime = 1;
2537 }
2538#endif
2539
1077#if EV_USE_MONOTONIC 2540#if EV_USE_MONOTONIC
2541 if (!have_monotonic)
1078 { 2542 {
1079 struct timespec ts; 2543 struct timespec ts;
2544
1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2545 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1081 have_monotonic = 1; 2546 have_monotonic = 1;
1082 } 2547 }
1083#endif
1084
1085 ev_rt_now = ev_time ();
1086 mn_now = get_clock ();
1087 now_floor = mn_now;
1088 rtmn_diff = ev_rt_now - mn_now;
1089
1090 io_blocktime = 0.;
1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif 2548#endif
1098 2549
1099 /* pid check not overridable via env */ 2550 /* pid check not overridable via env */
1100#ifndef _WIN32 2551#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK) 2552 if (flags & EVFLAG_FORKCHECK)
1105 if (!(flags & EVFLAG_NOENV) 2556 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 2557 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 2558 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 2559 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 2560
1110 if (!(flags & 0x0000ffffUL)) 2561 ev_rt_now = ev_time ();
2562 mn_now = get_clock ();
2563 now_floor = mn_now;
2564 rtmn_diff = ev_rt_now - mn_now;
2565#if EV_FEATURE_API
2566 invoke_cb = ev_invoke_pending;
2567#endif
2568
2569 io_blocktime = 0.;
2570 timeout_blocktime = 0.;
2571 backend = 0;
2572 backend_fd = -1;
2573 sig_pending = 0;
2574#if EV_ASYNC_ENABLE
2575 async_pending = 0;
2576#endif
2577 pipe_write_skipped = 0;
2578 pipe_write_wanted = 0;
2579 evpipe [0] = -1;
2580 evpipe [1] = -1;
2581#if EV_USE_INOTIFY
2582 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2583#endif
2584#if EV_USE_SIGNALFD
2585 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2586#endif
2587
2588 if (!(flags & EVBACKEND_MASK))
1111 flags |= ev_recommended_backends (); 2589 flags |= ev_recommended_backends ();
1112 2590
2591#if EV_USE_IOCP
2592 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2593#endif
1113#if EV_USE_PORT 2594#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2595 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 2596#endif
1116#if EV_USE_KQUEUE 2597#if EV_USE_KQUEUE
1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2598 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1124#endif 2605#endif
1125#if EV_USE_SELECT 2606#if EV_USE_SELECT
1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2607 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1127#endif 2608#endif
1128 2609
2610 ev_prepare_init (&pending_w, pendingcb);
2611
2612#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1129 ev_init (&pipeev, pipecb); 2613 ev_init (&pipe_w, pipecb);
1130 ev_set_priority (&pipeev, EV_MAXPRI); 2614 ev_set_priority (&pipe_w, EV_MAXPRI);
2615#endif
1131 } 2616 }
1132} 2617}
1133 2618
1134static void noinline 2619/* free up a loop structure */
2620void ecb_cold
1135loop_destroy (EV_P) 2621ev_loop_destroy (EV_P)
1136{ 2622{
1137 int i; 2623 int i;
1138 2624
2625#if EV_MULTIPLICITY
2626 /* mimic free (0) */
2627 if (!EV_A)
2628 return;
2629#endif
2630
2631#if EV_CLEANUP_ENABLE
2632 /* queue cleanup watchers (and execute them) */
2633 if (expect_false (cleanupcnt))
2634 {
2635 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2636 EV_INVOKE_PENDING;
2637 }
2638#endif
2639
2640#if EV_CHILD_ENABLE
2641 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2642 {
2643 ev_ref (EV_A); /* child watcher */
2644 ev_signal_stop (EV_A_ &childev);
2645 }
2646#endif
2647
1139 if (ev_is_active (&pipeev)) 2648 if (ev_is_active (&pipe_w))
1140 { 2649 {
1141 ev_ref (EV_A); /* signal watcher */ 2650 /*ev_ref (EV_A);*/
1142 ev_io_stop (EV_A_ &pipeev); 2651 /*ev_io_stop (EV_A_ &pipe_w);*/
1143 2652
1144 close (evpipe [0]); evpipe [0] = 0; 2653 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
1145 close (evpipe [1]); evpipe [1] = 0; 2654 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
1146 } 2655 }
2656
2657#if EV_USE_SIGNALFD
2658 if (ev_is_active (&sigfd_w))
2659 close (sigfd);
2660#endif
1147 2661
1148#if EV_USE_INOTIFY 2662#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 2663 if (fs_fd >= 0)
1150 close (fs_fd); 2664 close (fs_fd);
1151#endif 2665#endif
1152 2666
1153 if (backend_fd >= 0) 2667 if (backend_fd >= 0)
1154 close (backend_fd); 2668 close (backend_fd);
1155 2669
2670#if EV_USE_IOCP
2671 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2672#endif
1156#if EV_USE_PORT 2673#if EV_USE_PORT
1157 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2674 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1158#endif 2675#endif
1159#if EV_USE_KQUEUE 2676#if EV_USE_KQUEUE
1160 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2677 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1175#if EV_IDLE_ENABLE 2692#if EV_IDLE_ENABLE
1176 array_free (idle, [i]); 2693 array_free (idle, [i]);
1177#endif 2694#endif
1178 } 2695 }
1179 2696
1180 ev_free (anfds); anfdmax = 0; 2697 ev_free (anfds); anfds = 0; anfdmax = 0;
1181 2698
1182 /* have to use the microsoft-never-gets-it-right macro */ 2699 /* have to use the microsoft-never-gets-it-right macro */
2700 array_free (rfeed, EMPTY);
1183 array_free (fdchange, EMPTY); 2701 array_free (fdchange, EMPTY);
1184 array_free (timer, EMPTY); 2702 array_free (timer, EMPTY);
1185#if EV_PERIODIC_ENABLE 2703#if EV_PERIODIC_ENABLE
1186 array_free (periodic, EMPTY); 2704 array_free (periodic, EMPTY);
1187#endif 2705#endif
1188#if EV_FORK_ENABLE 2706#if EV_FORK_ENABLE
1189 array_free (fork, EMPTY); 2707 array_free (fork, EMPTY);
1190#endif 2708#endif
2709#if EV_CLEANUP_ENABLE
2710 array_free (cleanup, EMPTY);
2711#endif
1191 array_free (prepare, EMPTY); 2712 array_free (prepare, EMPTY);
1192 array_free (check, EMPTY); 2713 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE 2714#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY); 2715 array_free (async, EMPTY);
1195#endif 2716#endif
1196 2717
1197 backend = 0; 2718 backend = 0;
1198}
1199 2719
2720#if EV_MULTIPLICITY
2721 if (ev_is_default_loop (EV_A))
2722#endif
2723 ev_default_loop_ptr = 0;
2724#if EV_MULTIPLICITY
2725 else
2726 ev_free (EV_A);
2727#endif
2728}
2729
2730#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 2731inline_size void infy_fork (EV_P);
2732#endif
1201 2733
1202void inline_size 2734inline_size void
1203loop_fork (EV_P) 2735loop_fork (EV_P)
1204{ 2736{
1205#if EV_USE_PORT 2737#if EV_USE_PORT
1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2738 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1207#endif 2739#endif
1213#endif 2745#endif
1214#if EV_USE_INOTIFY 2746#if EV_USE_INOTIFY
1215 infy_fork (EV_A); 2747 infy_fork (EV_A);
1216#endif 2748#endif
1217 2749
2750#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1218 if (ev_is_active (&pipeev)) 2751 if (ev_is_active (&pipe_w))
2752 {
2753 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2754
2755 ev_ref (EV_A);
2756 ev_io_stop (EV_A_ &pipe_w);
2757
2758 if (evpipe [0] >= 0)
2759 EV_WIN32_CLOSE_FD (evpipe [0]);
2760
2761 evpipe_init (EV_A);
2762 /* iterate over everything, in case we missed something before */
2763 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1219 { 2764 }
1220 /* this "locks" the handlers against writing to the pipe */ 2765#endif
1221 /* while we modify the fd vars */ 2766
1222 gotsig = 1; 2767 postfork = 0;
2768}
2769
2770#if EV_MULTIPLICITY
2771
2772struct ev_loop * ecb_cold
2773ev_loop_new (unsigned int flags) EV_THROW
2774{
2775 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2776
2777 memset (EV_A, 0, sizeof (struct ev_loop));
2778 loop_init (EV_A_ flags);
2779
2780 if (ev_backend (EV_A))
2781 return EV_A;
2782
2783 ev_free (EV_A);
2784 return 0;
2785}
2786
2787#endif /* multiplicity */
2788
2789#if EV_VERIFY
2790static void noinline ecb_cold
2791verify_watcher (EV_P_ W w)
2792{
2793 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2794
2795 if (w->pending)
2796 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2797}
2798
2799static void noinline ecb_cold
2800verify_heap (EV_P_ ANHE *heap, int N)
2801{
2802 int i;
2803
2804 for (i = HEAP0; i < N + HEAP0; ++i)
2805 {
2806 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2807 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2808 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2809
2810 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2811 }
2812}
2813
2814static void noinline ecb_cold
2815array_verify (EV_P_ W *ws, int cnt)
2816{
2817 while (cnt--)
2818 {
2819 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2820 verify_watcher (EV_A_ ws [cnt]);
2821 }
2822}
2823#endif
2824
2825#if EV_FEATURE_API
2826void ecb_cold
2827ev_verify (EV_P) EV_THROW
2828{
2829#if EV_VERIFY
2830 int i;
2831 WL w, w2;
2832
2833 assert (activecnt >= -1);
2834
2835 assert (fdchangemax >= fdchangecnt);
2836 for (i = 0; i < fdchangecnt; ++i)
2837 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2838
2839 assert (anfdmax >= 0);
2840 for (i = 0; i < anfdmax; ++i)
2841 {
2842 int j = 0;
2843
2844 for (w = w2 = anfds [i].head; w; w = w->next)
2845 {
2846 verify_watcher (EV_A_ (W)w);
2847
2848 if (j++ & 1)
2849 {
2850 assert (("libev: io watcher list contains a loop", w != w2));
2851 w2 = w2->next;
2852 }
2853
2854 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2855 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2856 }
2857 }
2858
2859 assert (timermax >= timercnt);
2860 verify_heap (EV_A_ timers, timercnt);
2861
2862#if EV_PERIODIC_ENABLE
2863 assert (periodicmax >= periodiccnt);
2864 verify_heap (EV_A_ periodics, periodiccnt);
2865#endif
2866
2867 for (i = NUMPRI; i--; )
2868 {
2869 assert (pendingmax [i] >= pendingcnt [i]);
2870#if EV_IDLE_ENABLE
2871 assert (idleall >= 0);
2872 assert (idlemax [i] >= idlecnt [i]);
2873 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2874#endif
2875 }
2876
2877#if EV_FORK_ENABLE
2878 assert (forkmax >= forkcnt);
2879 array_verify (EV_A_ (W *)forks, forkcnt);
2880#endif
2881
2882#if EV_CLEANUP_ENABLE
2883 assert (cleanupmax >= cleanupcnt);
2884 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2885#endif
2886
1223#if EV_ASYNC_ENABLE 2887#if EV_ASYNC_ENABLE
1224 gotasync = 1; 2888 assert (asyncmax >= asynccnt);
2889 array_verify (EV_A_ (W *)asyncs, asynccnt);
2890#endif
2891
2892#if EV_PREPARE_ENABLE
2893 assert (preparemax >= preparecnt);
2894 array_verify (EV_A_ (W *)prepares, preparecnt);
2895#endif
2896
2897#if EV_CHECK_ENABLE
2898 assert (checkmax >= checkcnt);
2899 array_verify (EV_A_ (W *)checks, checkcnt);
2900#endif
2901
2902# if 0
2903#if EV_CHILD_ENABLE
2904 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2905 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2906#endif
1225#endif 2907# endif
1226 2908#endif
1227 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev);
1229 close (evpipe [0]);
1230 close (evpipe [1]);
1231
1232 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ);
1235 }
1236
1237 postfork = 0;
1238} 2909}
2910#endif
1239 2911
1240#if EV_MULTIPLICITY 2912#if EV_MULTIPLICITY
1241struct ev_loop * 2913struct ev_loop * ecb_cold
1242ev_loop_new (unsigned int flags)
1243{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245
1246 memset (loop, 0, sizeof (struct ev_loop));
1247
1248 loop_init (EV_A_ flags);
1249
1250 if (ev_backend (EV_A))
1251 return loop;
1252
1253 return 0;
1254}
1255
1256void
1257ev_loop_destroy (EV_P)
1258{
1259 loop_destroy (EV_A);
1260 ev_free (loop);
1261}
1262
1263void
1264ev_loop_fork (EV_P)
1265{
1266 postfork = 1; /* must be in line with ev_default_fork */
1267}
1268
1269#endif
1270
1271#if EV_MULTIPLICITY
1272struct ev_loop *
1273ev_default_loop_init (unsigned int flags)
1274#else 2914#else
1275int 2915int
2916#endif
1276ev_default_loop (unsigned int flags) 2917ev_default_loop (unsigned int flags) EV_THROW
1277#endif
1278{ 2918{
1279 if (!ev_default_loop_ptr) 2919 if (!ev_default_loop_ptr)
1280 { 2920 {
1281#if EV_MULTIPLICITY 2921#if EV_MULTIPLICITY
1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2922 EV_P = ev_default_loop_ptr = &default_loop_struct;
1283#else 2923#else
1284 ev_default_loop_ptr = 1; 2924 ev_default_loop_ptr = 1;
1285#endif 2925#endif
1286 2926
1287 loop_init (EV_A_ flags); 2927 loop_init (EV_A_ flags);
1288 2928
1289 if (ev_backend (EV_A)) 2929 if (ev_backend (EV_A))
1290 { 2930 {
1291#ifndef _WIN32 2931#if EV_CHILD_ENABLE
1292 ev_signal_init (&childev, childcb, SIGCHLD); 2932 ev_signal_init (&childev, childcb, SIGCHLD);
1293 ev_set_priority (&childev, EV_MAXPRI); 2933 ev_set_priority (&childev, EV_MAXPRI);
1294 ev_signal_start (EV_A_ &childev); 2934 ev_signal_start (EV_A_ &childev);
1295 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2935 ev_unref (EV_A); /* child watcher should not keep loop alive */
1296#endif 2936#endif
1301 2941
1302 return ev_default_loop_ptr; 2942 return ev_default_loop_ptr;
1303} 2943}
1304 2944
1305void 2945void
1306ev_default_destroy (void) 2946ev_loop_fork (EV_P) EV_THROW
1307{ 2947{
1308#if EV_MULTIPLICITY 2948 postfork = 1;
1309 struct ev_loop *loop = ev_default_loop_ptr;
1310#endif
1311
1312#ifndef _WIN32
1313 ev_ref (EV_A); /* child watcher */
1314 ev_signal_stop (EV_A_ &childev);
1315#endif
1316
1317 loop_destroy (EV_A);
1318}
1319
1320void
1321ev_default_fork (void)
1322{
1323#if EV_MULTIPLICITY
1324 struct ev_loop *loop = ev_default_loop_ptr;
1325#endif
1326
1327 if (backend)
1328 postfork = 1; /* must be in line with ev_loop_fork */
1329} 2949}
1330 2950
1331/*****************************************************************************/ 2951/*****************************************************************************/
1332 2952
1333void 2953void
1334ev_invoke (EV_P_ void *w, int revents) 2954ev_invoke (EV_P_ void *w, int revents)
1335{ 2955{
1336 EV_CB_INVOKE ((W)w, revents); 2956 EV_CB_INVOKE ((W)w, revents);
1337} 2957}
1338 2958
1339void inline_speed 2959unsigned int
1340call_pending (EV_P) 2960ev_pending_count (EV_P) EV_THROW
1341{ 2961{
1342 int pri; 2962 int pri;
2963 unsigned int count = 0;
1343 2964
1344 for (pri = NUMPRI; pri--; ) 2965 for (pri = NUMPRI; pri--; )
2966 count += pendingcnt [pri];
2967
2968 return count;
2969}
2970
2971void noinline
2972ev_invoke_pending (EV_P)
2973{
2974 pendingpri = NUMPRI;
2975
2976 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2977 {
2978 --pendingpri;
2979
1345 while (pendingcnt [pri]) 2980 while (pendingcnt [pendingpri])
1346 {
1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1348
1349 if (expect_true (p->w))
1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352
1353 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events);
1355 }
1356 }
1357}
1358
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 { 2981 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2982 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1372 2983
1373 ((WT)w)->at += w->repeat; 2984 p->w->pending = 0;
1374 if (((WT)w)->at < mn_now) 2985 EV_CB_INVOKE (p->w, p->events);
1375 ((WT)w)->at = mn_now; 2986 EV_FREQUENT_CHECK;
1376
1377 downheap (timers, timercnt, 0);
1378 } 2987 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 { 2988 }
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415} 2989}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438 2990
1439#if EV_IDLE_ENABLE 2991#if EV_IDLE_ENABLE
1440void inline_size 2992/* make idle watchers pending. this handles the "call-idle */
2993/* only when higher priorities are idle" logic */
2994inline_size void
1441idle_reify (EV_P) 2995idle_reify (EV_P)
1442{ 2996{
1443 if (expect_false (idleall)) 2997 if (expect_false (idleall))
1444 { 2998 {
1445 int pri; 2999 int pri;
1457 } 3011 }
1458 } 3012 }
1459} 3013}
1460#endif 3014#endif
1461 3015
1462void inline_speed 3016/* make timers pending */
3017inline_size void
3018timers_reify (EV_P)
3019{
3020 EV_FREQUENT_CHECK;
3021
3022 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3023 {
3024 do
3025 {
3026 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3027
3028 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3029
3030 /* first reschedule or stop timer */
3031 if (w->repeat)
3032 {
3033 ev_at (w) += w->repeat;
3034 if (ev_at (w) < mn_now)
3035 ev_at (w) = mn_now;
3036
3037 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3038
3039 ANHE_at_cache (timers [HEAP0]);
3040 downheap (timers, timercnt, HEAP0);
3041 }
3042 else
3043 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3044
3045 EV_FREQUENT_CHECK;
3046 feed_reverse (EV_A_ (W)w);
3047 }
3048 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3049
3050 feed_reverse_done (EV_A_ EV_TIMER);
3051 }
3052}
3053
3054#if EV_PERIODIC_ENABLE
3055
3056static void noinline
3057periodic_recalc (EV_P_ ev_periodic *w)
3058{
3059 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3060 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3061
3062 /* the above almost always errs on the low side */
3063 while (at <= ev_rt_now)
3064 {
3065 ev_tstamp nat = at + w->interval;
3066
3067 /* when resolution fails us, we use ev_rt_now */
3068 if (expect_false (nat == at))
3069 {
3070 at = ev_rt_now;
3071 break;
3072 }
3073
3074 at = nat;
3075 }
3076
3077 ev_at (w) = at;
3078}
3079
3080/* make periodics pending */
3081inline_size void
3082periodics_reify (EV_P)
3083{
3084 EV_FREQUENT_CHECK;
3085
3086 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3087 {
3088 do
3089 {
3090 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3091
3092 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3093
3094 /* first reschedule or stop timer */
3095 if (w->reschedule_cb)
3096 {
3097 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3098
3099 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3100
3101 ANHE_at_cache (periodics [HEAP0]);
3102 downheap (periodics, periodiccnt, HEAP0);
3103 }
3104 else if (w->interval)
3105 {
3106 periodic_recalc (EV_A_ w);
3107 ANHE_at_cache (periodics [HEAP0]);
3108 downheap (periodics, periodiccnt, HEAP0);
3109 }
3110 else
3111 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3112
3113 EV_FREQUENT_CHECK;
3114 feed_reverse (EV_A_ (W)w);
3115 }
3116 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3117
3118 feed_reverse_done (EV_A_ EV_PERIODIC);
3119 }
3120}
3121
3122/* simply recalculate all periodics */
3123/* TODO: maybe ensure that at least one event happens when jumping forward? */
3124static void noinline ecb_cold
3125periodics_reschedule (EV_P)
3126{
3127 int i;
3128
3129 /* adjust periodics after time jump */
3130 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3131 {
3132 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3133
3134 if (w->reschedule_cb)
3135 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3136 else if (w->interval)
3137 periodic_recalc (EV_A_ w);
3138
3139 ANHE_at_cache (periodics [i]);
3140 }
3141
3142 reheap (periodics, periodiccnt);
3143}
3144#endif
3145
3146/* adjust all timers by a given offset */
3147static void noinline ecb_cold
3148timers_reschedule (EV_P_ ev_tstamp adjust)
3149{
3150 int i;
3151
3152 for (i = 0; i < timercnt; ++i)
3153 {
3154 ANHE *he = timers + i + HEAP0;
3155 ANHE_w (*he)->at += adjust;
3156 ANHE_at_cache (*he);
3157 }
3158}
3159
3160/* fetch new monotonic and realtime times from the kernel */
3161/* also detect if there was a timejump, and act accordingly */
3162inline_speed void
1463time_update (EV_P_ ev_tstamp max_block) 3163time_update (EV_P_ ev_tstamp max_block)
1464{ 3164{
1465 int i;
1466
1467#if EV_USE_MONOTONIC 3165#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic)) 3166 if (expect_true (have_monotonic))
1469 { 3167 {
3168 int i;
1470 ev_tstamp odiff = rtmn_diff; 3169 ev_tstamp odiff = rtmn_diff;
1471 3170
1472 mn_now = get_clock (); 3171 mn_now = get_clock ();
1473 3172
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3173 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1490 * doesn't hurt either as we only do this on time-jumps or 3189 * doesn't hurt either as we only do this on time-jumps or
1491 * in the unlikely event of having been preempted here. 3190 * in the unlikely event of having been preempted here.
1492 */ 3191 */
1493 for (i = 4; --i; ) 3192 for (i = 4; --i; )
1494 { 3193 {
3194 ev_tstamp diff;
1495 rtmn_diff = ev_rt_now - mn_now; 3195 rtmn_diff = ev_rt_now - mn_now;
1496 3196
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3197 diff = odiff - rtmn_diff;
3198
3199 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 3200 return; /* all is well */
1499 3201
1500 ev_rt_now = ev_time (); 3202 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 3203 mn_now = get_clock ();
1502 now_floor = mn_now; 3204 now_floor = mn_now;
1503 } 3205 }
1504 3206
3207 /* no timer adjustment, as the monotonic clock doesn't jump */
3208 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1505# if EV_PERIODIC_ENABLE 3209# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A); 3210 periodics_reschedule (EV_A);
1507# endif 3211# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 } 3212 }
1511 else 3213 else
1512#endif 3214#endif
1513 { 3215 {
1514 ev_rt_now = ev_time (); 3216 ev_rt_now = ev_time ();
1515 3217
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3218 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1517 { 3219 {
3220 /* adjust timers. this is easy, as the offset is the same for all of them */
3221 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1518#if EV_PERIODIC_ENABLE 3222#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 3223 periodics_reschedule (EV_A);
1520#endif 3224#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1524 } 3225 }
1525 3226
1526 mn_now = ev_rt_now; 3227 mn_now = ev_rt_now;
1527 } 3228 }
1528} 3229}
1529 3230
1530void 3231int
1531ev_ref (EV_P)
1532{
1533 ++activecnt;
1534}
1535
1536void
1537ev_unref (EV_P)
1538{
1539 --activecnt;
1540}
1541
1542static int loop_done;
1543
1544void
1545ev_loop (EV_P_ int flags) 3232ev_run (EV_P_ int flags)
1546{ 3233{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3234#if EV_FEATURE_API
1548 ? EVUNLOOP_ONE 3235 ++loop_depth;
1549 : EVUNLOOP_CANCEL; 3236#endif
1550 3237
3238 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3239
3240 loop_done = EVBREAK_CANCEL;
3241
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3242 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1552 3243
1553 do 3244 do
1554 { 3245 {
3246#if EV_VERIFY >= 2
3247 ev_verify (EV_A);
3248#endif
3249
1555#ifndef _WIN32 3250#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 3251 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 3252 if (expect_false (getpid () != curpid))
1558 { 3253 {
1559 curpid = getpid (); 3254 curpid = getpid ();
1565 /* we might have forked, so queue fork handlers */ 3260 /* we might have forked, so queue fork handlers */
1566 if (expect_false (postfork)) 3261 if (expect_false (postfork))
1567 if (forkcnt) 3262 if (forkcnt)
1568 { 3263 {
1569 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3264 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1570 call_pending (EV_A); 3265 EV_INVOKE_PENDING;
1571 } 3266 }
1572#endif 3267#endif
1573 3268
3269#if EV_PREPARE_ENABLE
1574 /* queue prepare watchers (and execute them) */ 3270 /* queue prepare watchers (and execute them) */
1575 if (expect_false (preparecnt)) 3271 if (expect_false (preparecnt))
1576 { 3272 {
1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3273 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1578 call_pending (EV_A); 3274 EV_INVOKE_PENDING;
1579 } 3275 }
3276#endif
1580 3277
1581 if (expect_false (!activecnt)) 3278 if (expect_false (loop_done))
1582 break; 3279 break;
1583 3280
1584 /* we might have forked, so reify kernel state if necessary */ 3281 /* we might have forked, so reify kernel state if necessary */
1585 if (expect_false (postfork)) 3282 if (expect_false (postfork))
1586 loop_fork (EV_A); 3283 loop_fork (EV_A);
1591 /* calculate blocking time */ 3288 /* calculate blocking time */
1592 { 3289 {
1593 ev_tstamp waittime = 0.; 3290 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.; 3291 ev_tstamp sleeptime = 0.;
1595 3292
3293 /* remember old timestamp for io_blocktime calculation */
3294 ev_tstamp prev_mn_now = mn_now;
3295
3296 /* update time to cancel out callback processing overhead */
3297 time_update (EV_A_ 1e100);
3298
3299 /* from now on, we want a pipe-wake-up */
3300 pipe_write_wanted = 1;
3301
3302 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3303
1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3304 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1597 { 3305 {
1598 /* update time to cancel out callback processing overhead */
1599 time_update (EV_A_ 1e100);
1600
1601 waittime = MAX_BLOCKTIME; 3306 waittime = MAX_BLOCKTIME;
1602 3307
1603 if (timercnt) 3308 if (timercnt)
1604 { 3309 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3310 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1606 if (waittime > to) waittime = to; 3311 if (waittime > to) waittime = to;
1607 } 3312 }
1608 3313
1609#if EV_PERIODIC_ENABLE 3314#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 3315 if (periodiccnt)
1611 { 3316 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3317 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1613 if (waittime > to) waittime = to; 3318 if (waittime > to) waittime = to;
1614 } 3319 }
1615#endif 3320#endif
1616 3321
3322 /* don't let timeouts decrease the waittime below timeout_blocktime */
1617 if (expect_false (waittime < timeout_blocktime)) 3323 if (expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime; 3324 waittime = timeout_blocktime;
1619 3325
1620 sleeptime = waittime - backend_fudge; 3326 /* at this point, we NEED to wait, so we have to ensure */
3327 /* to pass a minimum nonzero value to the backend */
3328 if (expect_false (waittime < backend_mintime))
3329 waittime = backend_mintime;
1621 3330
3331 /* extra check because io_blocktime is commonly 0 */
1622 if (expect_true (sleeptime > io_blocktime)) 3332 if (expect_false (io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 { 3333 {
3334 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3335
3336 if (sleeptime > waittime - backend_mintime)
3337 sleeptime = waittime - backend_mintime;
3338
3339 if (expect_true (sleeptime > 0.))
3340 {
1627 ev_sleep (sleeptime); 3341 ev_sleep (sleeptime);
1628 waittime -= sleeptime; 3342 waittime -= sleeptime;
3343 }
1629 } 3344 }
1630 } 3345 }
1631 3346
3347#if EV_FEATURE_API
1632 ++loop_count; 3348 ++loop_count;
3349#endif
3350 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1633 backend_poll (EV_A_ waittime); 3351 backend_poll (EV_A_ waittime);
3352 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3353
3354 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3355
3356 ECB_MEMORY_FENCE_ACQUIRE;
3357 if (pipe_write_skipped)
3358 {
3359 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3360 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3361 }
3362
1634 3363
1635 /* update ev_rt_now, do magic */ 3364 /* update ev_rt_now, do magic */
1636 time_update (EV_A_ waittime + sleeptime); 3365 time_update (EV_A_ waittime + sleeptime);
1637 } 3366 }
1638 3367
1645#if EV_IDLE_ENABLE 3374#if EV_IDLE_ENABLE
1646 /* queue idle watchers unless other events are pending */ 3375 /* queue idle watchers unless other events are pending */
1647 idle_reify (EV_A); 3376 idle_reify (EV_A);
1648#endif 3377#endif
1649 3378
3379#if EV_CHECK_ENABLE
1650 /* queue check watchers, to be executed first */ 3380 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 3381 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3382 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3383#endif
1653 3384
1654 call_pending (EV_A); 3385 EV_INVOKE_PENDING;
1655
1656 } 3386 }
1657 while (expect_true (activecnt && !loop_done)); 3387 while (expect_true (
3388 activecnt
3389 && !loop_done
3390 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3391 ));
1658 3392
1659 if (loop_done == EVUNLOOP_ONE) 3393 if (loop_done == EVBREAK_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 3394 loop_done = EVBREAK_CANCEL;
3395
3396#if EV_FEATURE_API
3397 --loop_depth;
3398#endif
3399
3400 return activecnt;
1661} 3401}
1662 3402
1663void 3403void
1664ev_unloop (EV_P_ int how) 3404ev_break (EV_P_ int how) EV_THROW
1665{ 3405{
1666 loop_done = how; 3406 loop_done = how;
1667} 3407}
1668 3408
3409void
3410ev_ref (EV_P) EV_THROW
3411{
3412 ++activecnt;
3413}
3414
3415void
3416ev_unref (EV_P) EV_THROW
3417{
3418 --activecnt;
3419}
3420
3421void
3422ev_now_update (EV_P) EV_THROW
3423{
3424 time_update (EV_A_ 1e100);
3425}
3426
3427void
3428ev_suspend (EV_P) EV_THROW
3429{
3430 ev_now_update (EV_A);
3431}
3432
3433void
3434ev_resume (EV_P) EV_THROW
3435{
3436 ev_tstamp mn_prev = mn_now;
3437
3438 ev_now_update (EV_A);
3439 timers_reschedule (EV_A_ mn_now - mn_prev);
3440#if EV_PERIODIC_ENABLE
3441 /* TODO: really do this? */
3442 periodics_reschedule (EV_A);
3443#endif
3444}
3445
1669/*****************************************************************************/ 3446/*****************************************************************************/
3447/* singly-linked list management, used when the expected list length is short */
1670 3448
1671void inline_size 3449inline_size void
1672wlist_add (WL *head, WL elem) 3450wlist_add (WL *head, WL elem)
1673{ 3451{
1674 elem->next = *head; 3452 elem->next = *head;
1675 *head = elem; 3453 *head = elem;
1676} 3454}
1677 3455
1678void inline_size 3456inline_size void
1679wlist_del (WL *head, WL elem) 3457wlist_del (WL *head, WL elem)
1680{ 3458{
1681 while (*head) 3459 while (*head)
1682 { 3460 {
1683 if (*head == elem) 3461 if (expect_true (*head == elem))
1684 { 3462 {
1685 *head = elem->next; 3463 *head = elem->next;
1686 return; 3464 break;
1687 } 3465 }
1688 3466
1689 head = &(*head)->next; 3467 head = &(*head)->next;
1690 } 3468 }
1691} 3469}
1692 3470
1693void inline_speed 3471/* internal, faster, version of ev_clear_pending */
3472inline_speed void
1694clear_pending (EV_P_ W w) 3473clear_pending (EV_P_ W w)
1695{ 3474{
1696 if (w->pending) 3475 if (w->pending)
1697 { 3476 {
1698 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3477 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1699 w->pending = 0; 3478 w->pending = 0;
1700 } 3479 }
1701} 3480}
1702 3481
1703int 3482int
1704ev_clear_pending (EV_P_ void *w) 3483ev_clear_pending (EV_P_ void *w) EV_THROW
1705{ 3484{
1706 W w_ = (W)w; 3485 W w_ = (W)w;
1707 int pending = w_->pending; 3486 int pending = w_->pending;
1708 3487
1709 if (expect_true (pending)) 3488 if (expect_true (pending))
1710 { 3489 {
1711 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3490 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3491 p->w = (W)&pending_w;
1712 w_->pending = 0; 3492 w_->pending = 0;
1713 p->w = 0;
1714 return p->events; 3493 return p->events;
1715 } 3494 }
1716 else 3495 else
1717 return 0; 3496 return 0;
1718} 3497}
1719 3498
1720void inline_size 3499inline_size void
1721pri_adjust (EV_P_ W w) 3500pri_adjust (EV_P_ W w)
1722{ 3501{
1723 int pri = w->priority; 3502 int pri = ev_priority (w);
1724 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3503 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1725 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3504 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1726 w->priority = pri; 3505 ev_set_priority (w, pri);
1727} 3506}
1728 3507
1729void inline_speed 3508inline_speed void
1730ev_start (EV_P_ W w, int active) 3509ev_start (EV_P_ W w, int active)
1731{ 3510{
1732 pri_adjust (EV_A_ w); 3511 pri_adjust (EV_A_ w);
1733 w->active = active; 3512 w->active = active;
1734 ev_ref (EV_A); 3513 ev_ref (EV_A);
1735} 3514}
1736 3515
1737void inline_size 3516inline_size void
1738ev_stop (EV_P_ W w) 3517ev_stop (EV_P_ W w)
1739{ 3518{
1740 ev_unref (EV_A); 3519 ev_unref (EV_A);
1741 w->active = 0; 3520 w->active = 0;
1742} 3521}
1743 3522
1744/*****************************************************************************/ 3523/*****************************************************************************/
1745 3524
1746void noinline 3525void noinline
1747ev_io_start (EV_P_ ev_io *w) 3526ev_io_start (EV_P_ ev_io *w) EV_THROW
1748{ 3527{
1749 int fd = w->fd; 3528 int fd = w->fd;
1750 3529
1751 if (expect_false (ev_is_active (w))) 3530 if (expect_false (ev_is_active (w)))
1752 return; 3531 return;
1753 3532
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 3533 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3534 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3535
3536 EV_FREQUENT_CHECK;
1755 3537
1756 ev_start (EV_A_ (W)w, 1); 3538 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3539 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1758 wlist_add (&anfds[fd].head, (WL)w); 3540 wlist_add (&anfds[fd].head, (WL)w);
1759 3541
3542 /* common bug, apparently */
3543 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3544
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3545 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1761 w->events &= ~EV_IOFDSET; 3546 w->events &= ~EV__IOFDSET;
3547
3548 EV_FREQUENT_CHECK;
1762} 3549}
1763 3550
1764void noinline 3551void noinline
1765ev_io_stop (EV_P_ ev_io *w) 3552ev_io_stop (EV_P_ ev_io *w) EV_THROW
1766{ 3553{
1767 clear_pending (EV_A_ (W)w); 3554 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 3555 if (expect_false (!ev_is_active (w)))
1769 return; 3556 return;
1770 3557
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3558 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3559
3560 EV_FREQUENT_CHECK;
1772 3561
1773 wlist_del (&anfds[w->fd].head, (WL)w); 3562 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 3563 ev_stop (EV_A_ (W)w);
1775 3564
1776 fd_change (EV_A_ w->fd, 1); 3565 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3566
3567 EV_FREQUENT_CHECK;
1777} 3568}
1778 3569
1779void noinline 3570void noinline
1780ev_timer_start (EV_P_ ev_timer *w) 3571ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1781{ 3572{
1782 if (expect_false (ev_is_active (w))) 3573 if (expect_false (ev_is_active (w)))
1783 return; 3574 return;
1784 3575
1785 ((WT)w)->at += mn_now; 3576 ev_at (w) += mn_now;
1786 3577
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3578 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 3579
3580 EV_FREQUENT_CHECK;
3581
3582 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 3583 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3584 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 3585 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 3586 ANHE_at_cache (timers [ev_active (w)]);
3587 upheap (timers, ev_active (w));
1793 3588
3589 EV_FREQUENT_CHECK;
3590
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3591 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 3592}
1796 3593
1797void noinline 3594void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 3595ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1799{ 3596{
1800 clear_pending (EV_A_ (W)w); 3597 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 3598 if (expect_false (!ev_is_active (w)))
1802 return; 3599 return;
1803 3600
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3601 EV_FREQUENT_CHECK;
1805 3602
1806 { 3603 {
1807 int active = ((W)w)->active; 3604 int active = ev_active (w);
1808 3605
3606 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3607
3608 --timercnt;
3609
1809 if (expect_true (--active < --timercnt)) 3610 if (expect_true (active < timercnt + HEAP0))
1810 { 3611 {
1811 timers [active] = timers [timercnt]; 3612 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 3613 adjustheap (timers, timercnt, active);
1813 } 3614 }
1814 } 3615 }
1815 3616
1816 ((WT)w)->at -= mn_now; 3617 ev_at (w) -= mn_now;
1817 3618
1818 ev_stop (EV_A_ (W)w); 3619 ev_stop (EV_A_ (W)w);
3620
3621 EV_FREQUENT_CHECK;
1819} 3622}
1820 3623
1821void noinline 3624void noinline
1822ev_timer_again (EV_P_ ev_timer *w) 3625ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1823{ 3626{
3627 EV_FREQUENT_CHECK;
3628
3629 clear_pending (EV_A_ (W)w);
3630
1824 if (ev_is_active (w)) 3631 if (ev_is_active (w))
1825 { 3632 {
1826 if (w->repeat) 3633 if (w->repeat)
1827 { 3634 {
1828 ((WT)w)->at = mn_now + w->repeat; 3635 ev_at (w) = mn_now + w->repeat;
3636 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 3637 adjustheap (timers, timercnt, ev_active (w));
1830 } 3638 }
1831 else 3639 else
1832 ev_timer_stop (EV_A_ w); 3640 ev_timer_stop (EV_A_ w);
1833 } 3641 }
1834 else if (w->repeat) 3642 else if (w->repeat)
1835 { 3643 {
1836 w->at = w->repeat; 3644 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 3645 ev_timer_start (EV_A_ w);
1838 } 3646 }
3647
3648 EV_FREQUENT_CHECK;
3649}
3650
3651ev_tstamp
3652ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3653{
3654 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1839} 3655}
1840 3656
1841#if EV_PERIODIC_ENABLE 3657#if EV_PERIODIC_ENABLE
1842void noinline 3658void noinline
1843ev_periodic_start (EV_P_ ev_periodic *w) 3659ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1844{ 3660{
1845 if (expect_false (ev_is_active (w))) 3661 if (expect_false (ev_is_active (w)))
1846 return; 3662 return;
1847 3663
1848 if (w->reschedule_cb) 3664 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 3666 else if (w->interval)
1851 { 3667 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3668 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 3669 periodic_recalc (EV_A_ w);
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 3670 }
1856 else 3671 else
1857 ((WT)w)->at = w->offset; 3672 ev_at (w) = w->offset;
1858 3673
3674 EV_FREQUENT_CHECK;
3675
3676 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 3677 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3678 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 3679 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 3680 ANHE_at_cache (periodics [ev_active (w)]);
3681 upheap (periodics, ev_active (w));
1863 3682
3683 EV_FREQUENT_CHECK;
3684
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3685 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 3686}
1866 3687
1867void noinline 3688void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 3689ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1869{ 3690{
1870 clear_pending (EV_A_ (W)w); 3691 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 3692 if (expect_false (!ev_is_active (w)))
1872 return; 3693 return;
1873 3694
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3695 EV_FREQUENT_CHECK;
1875 3696
1876 { 3697 {
1877 int active = ((W)w)->active; 3698 int active = ev_active (w);
1878 3699
3700 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3701
3702 --periodiccnt;
3703
1879 if (expect_true (--active < --periodiccnt)) 3704 if (expect_true (active < periodiccnt + HEAP0))
1880 { 3705 {
1881 periodics [active] = periodics [periodiccnt]; 3706 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 3707 adjustheap (periodics, periodiccnt, active);
1883 } 3708 }
1884 } 3709 }
1885 3710
1886 ev_stop (EV_A_ (W)w); 3711 ev_stop (EV_A_ (W)w);
3712
3713 EV_FREQUENT_CHECK;
1887} 3714}
1888 3715
1889void noinline 3716void noinline
1890ev_periodic_again (EV_P_ ev_periodic *w) 3717ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1891{ 3718{
1892 /* TODO: use adjustheap and recalculation */ 3719 /* TODO: use adjustheap and recalculation */
1893 ev_periodic_stop (EV_A_ w); 3720 ev_periodic_stop (EV_A_ w);
1894 ev_periodic_start (EV_A_ w); 3721 ev_periodic_start (EV_A_ w);
1895} 3722}
1897 3724
1898#ifndef SA_RESTART 3725#ifndef SA_RESTART
1899# define SA_RESTART 0 3726# define SA_RESTART 0
1900#endif 3727#endif
1901 3728
3729#if EV_SIGNAL_ENABLE
3730
1902void noinline 3731void noinline
1903ev_signal_start (EV_P_ ev_signal *w) 3732ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1904{ 3733{
1905#if EV_MULTIPLICITY
1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif
1908 if (expect_false (ev_is_active (w))) 3734 if (expect_false (ev_is_active (w)))
1909 return; 3735 return;
1910 3736
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3737 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1912 3738
1913 evpipe_init (EV_A); 3739#if EV_MULTIPLICITY
3740 assert (("libev: a signal must not be attached to two different loops",
3741 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1914 3742
3743 signals [w->signum - 1].loop = EV_A;
3744 ECB_MEMORY_FENCE_RELEASE;
3745#endif
3746
3747 EV_FREQUENT_CHECK;
3748
3749#if EV_USE_SIGNALFD
3750 if (sigfd == -2)
1915 { 3751 {
1916#ifndef _WIN32 3752 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1917 sigset_t full, prev; 3753 if (sigfd < 0 && errno == EINVAL)
1918 sigfillset (&full); 3754 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1919 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif
1921 3755
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3756 if (sigfd >= 0)
3757 {
3758 fd_intern (sigfd); /* doing it twice will not hurt */
1923 3759
1924#ifndef _WIN32 3760 sigemptyset (&sigfd_set);
1925 sigprocmask (SIG_SETMASK, &prev, 0); 3761
1926#endif 3762 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3763 ev_set_priority (&sigfd_w, EV_MAXPRI);
3764 ev_io_start (EV_A_ &sigfd_w);
3765 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3766 }
1927 } 3767 }
3768
3769 if (sigfd >= 0)
3770 {
3771 /* TODO: check .head */
3772 sigaddset (&sigfd_set, w->signum);
3773 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3774
3775 signalfd (sigfd, &sigfd_set, 0);
3776 }
3777#endif
1928 3778
1929 ev_start (EV_A_ (W)w, 1); 3779 ev_start (EV_A_ (W)w, 1);
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 3780 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 3781
1932 if (!((WL)w)->next) 3782 if (!((WL)w)->next)
3783# if EV_USE_SIGNALFD
3784 if (sigfd < 0) /*TODO*/
3785# endif
1933 { 3786 {
1934#if _WIN32 3787# ifdef _WIN32
3788 evpipe_init (EV_A);
3789
1935 signal (w->signum, sighandler); 3790 signal (w->signum, ev_sighandler);
1936#else 3791# else
1937 struct sigaction sa; 3792 struct sigaction sa;
3793
3794 evpipe_init (EV_A);
3795
1938 sa.sa_handler = sighandler; 3796 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 3797 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3798 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 3799 sigaction (w->signum, &sa, 0);
3800
3801 if (origflags & EVFLAG_NOSIGMASK)
3802 {
3803 sigemptyset (&sa.sa_mask);
3804 sigaddset (&sa.sa_mask, w->signum);
3805 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3806 }
1942#endif 3807#endif
1943 } 3808 }
3809
3810 EV_FREQUENT_CHECK;
1944} 3811}
1945 3812
1946void noinline 3813void noinline
1947ev_signal_stop (EV_P_ ev_signal *w) 3814ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1948{ 3815{
1949 clear_pending (EV_A_ (W)w); 3816 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 3817 if (expect_false (!ev_is_active (w)))
1951 return; 3818 return;
1952 3819
3820 EV_FREQUENT_CHECK;
3821
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 3822 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 3823 ev_stop (EV_A_ (W)w);
1955 3824
1956 if (!signals [w->signum - 1].head) 3825 if (!signals [w->signum - 1].head)
3826 {
3827#if EV_MULTIPLICITY
3828 signals [w->signum - 1].loop = 0; /* unattach from signal */
3829#endif
3830#if EV_USE_SIGNALFD
3831 if (sigfd >= 0)
3832 {
3833 sigset_t ss;
3834
3835 sigemptyset (&ss);
3836 sigaddset (&ss, w->signum);
3837 sigdelset (&sigfd_set, w->signum);
3838
3839 signalfd (sigfd, &sigfd_set, 0);
3840 sigprocmask (SIG_UNBLOCK, &ss, 0);
3841 }
3842 else
3843#endif
1957 signal (w->signum, SIG_DFL); 3844 signal (w->signum, SIG_DFL);
3845 }
3846
3847 EV_FREQUENT_CHECK;
1958} 3848}
3849
3850#endif
3851
3852#if EV_CHILD_ENABLE
1959 3853
1960void 3854void
1961ev_child_start (EV_P_ ev_child *w) 3855ev_child_start (EV_P_ ev_child *w) EV_THROW
1962{ 3856{
1963#if EV_MULTIPLICITY 3857#if EV_MULTIPLICITY
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3858 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 3859#endif
1966 if (expect_false (ev_is_active (w))) 3860 if (expect_false (ev_is_active (w)))
1967 return; 3861 return;
1968 3862
3863 EV_FREQUENT_CHECK;
3864
1969 ev_start (EV_A_ (W)w, 1); 3865 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3866 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3867
3868 EV_FREQUENT_CHECK;
1971} 3869}
1972 3870
1973void 3871void
1974ev_child_stop (EV_P_ ev_child *w) 3872ev_child_stop (EV_P_ ev_child *w) EV_THROW
1975{ 3873{
1976 clear_pending (EV_A_ (W)w); 3874 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 3875 if (expect_false (!ev_is_active (w)))
1978 return; 3876 return;
1979 3877
3878 EV_FREQUENT_CHECK;
3879
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3880 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 3881 ev_stop (EV_A_ (W)w);
3882
3883 EV_FREQUENT_CHECK;
1982} 3884}
3885
3886#endif
1983 3887
1984#if EV_STAT_ENABLE 3888#if EV_STAT_ENABLE
1985 3889
1986# ifdef _WIN32 3890# ifdef _WIN32
1987# undef lstat 3891# undef lstat
1988# define lstat(a,b) _stati64 (a,b) 3892# define lstat(a,b) _stati64 (a,b)
1989# endif 3893# endif
1990 3894
1991#define DEF_STAT_INTERVAL 5.0074891 3895#define DEF_STAT_INTERVAL 5.0074891
3896#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1992#define MIN_STAT_INTERVAL 0.1074891 3897#define MIN_STAT_INTERVAL 0.1074891
1993 3898
1994static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3899static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1995 3900
1996#if EV_USE_INOTIFY 3901#if EV_USE_INOTIFY
1997# define EV_INOTIFY_BUFSIZE 8192 3902
3903/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3904# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1998 3905
1999static void noinline 3906static void noinline
2000infy_add (EV_P_ ev_stat *w) 3907infy_add (EV_P_ ev_stat *w)
2001{ 3908{
2002 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3909 w->wd = inotify_add_watch (fs_fd, w->path,
3910 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3911 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3912 | IN_DONT_FOLLOW | IN_MASK_ADD);
2003 3913
2004 if (w->wd < 0) 3914 if (w->wd >= 0)
3915 {
3916 struct statfs sfs;
3917
3918 /* now local changes will be tracked by inotify, but remote changes won't */
3919 /* unless the filesystem is known to be local, we therefore still poll */
3920 /* also do poll on <2.6.25, but with normal frequency */
3921
3922 if (!fs_2625)
3923 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3924 else if (!statfs (w->path, &sfs)
3925 && (sfs.f_type == 0x1373 /* devfs */
3926 || sfs.f_type == 0x4006 /* fat */
3927 || sfs.f_type == 0x4d44 /* msdos */
3928 || sfs.f_type == 0xEF53 /* ext2/3 */
3929 || sfs.f_type == 0x72b6 /* jffs2 */
3930 || sfs.f_type == 0x858458f6 /* ramfs */
3931 || sfs.f_type == 0x5346544e /* ntfs */
3932 || sfs.f_type == 0x3153464a /* jfs */
3933 || sfs.f_type == 0x9123683e /* btrfs */
3934 || sfs.f_type == 0x52654973 /* reiser3 */
3935 || sfs.f_type == 0x01021994 /* tmpfs */
3936 || sfs.f_type == 0x58465342 /* xfs */))
3937 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3938 else
3939 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2005 { 3940 }
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3941 else
3942 {
3943 /* can't use inotify, continue to stat */
3944 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2007 3945
2008 /* monitor some parent directory for speedup hints */ 3946 /* if path is not there, monitor some parent directory for speedup hints */
3947 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3948 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3949 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 3950 {
2011 char path [4096]; 3951 char path [4096];
2012 strcpy (path, w->path); 3952 strcpy (path, w->path);
2013 3953
2016 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3956 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2017 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3957 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2018 3958
2019 char *pend = strrchr (path, '/'); 3959 char *pend = strrchr (path, '/');
2020 3960
2021 if (!pend) 3961 if (!pend || pend == path)
2022 break; /* whoops, no '/', complain to your admin */ 3962 break;
2023 3963
2024 *pend = 0; 3964 *pend = 0;
2025 w->wd = inotify_add_watch (fs_fd, path, mask); 3965 w->wd = inotify_add_watch (fs_fd, path, mask);
2026 } 3966 }
2027 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3967 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2028 } 3968 }
2029 } 3969 }
2030 else
2031 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2032 3970
2033 if (w->wd >= 0) 3971 if (w->wd >= 0)
2034 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3972 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3973
3974 /* now re-arm timer, if required */
3975 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3976 ev_timer_again (EV_A_ &w->timer);
3977 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2035} 3978}
2036 3979
2037static void noinline 3980static void noinline
2038infy_del (EV_P_ ev_stat *w) 3981infy_del (EV_P_ ev_stat *w)
2039{ 3982{
2042 3985
2043 if (wd < 0) 3986 if (wd < 0)
2044 return; 3987 return;
2045 3988
2046 w->wd = -2; 3989 w->wd = -2;
2047 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3990 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2048 wlist_del (&fs_hash [slot].head, (WL)w); 3991 wlist_del (&fs_hash [slot].head, (WL)w);
2049 3992
2050 /* remove this watcher, if others are watching it, they will rearm */ 3993 /* remove this watcher, if others are watching it, they will rearm */
2051 inotify_rm_watch (fs_fd, wd); 3994 inotify_rm_watch (fs_fd, wd);
2052} 3995}
2053 3996
2054static void noinline 3997static void noinline
2055infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3998infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2056{ 3999{
2057 if (slot < 0) 4000 if (slot < 0)
2058 /* overflow, need to check for all hahs slots */ 4001 /* overflow, need to check for all hash slots */
2059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4002 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2060 infy_wd (EV_A_ slot, wd, ev); 4003 infy_wd (EV_A_ slot, wd, ev);
2061 else 4004 else
2062 { 4005 {
2063 WL w_; 4006 WL w_;
2064 4007
2065 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4008 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2066 { 4009 {
2067 ev_stat *w = (ev_stat *)w_; 4010 ev_stat *w = (ev_stat *)w_;
2068 w_ = w_->next; /* lets us remove this watcher and all before it */ 4011 w_ = w_->next; /* lets us remove this watcher and all before it */
2069 4012
2070 if (w->wd == wd || wd == -1) 4013 if (w->wd == wd || wd == -1)
2071 { 4014 {
2072 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4015 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2073 { 4016 {
4017 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2074 w->wd = -1; 4018 w->wd = -1;
2075 infy_add (EV_A_ w); /* re-add, no matter what */ 4019 infy_add (EV_A_ w); /* re-add, no matter what */
2076 } 4020 }
2077 4021
2078 stat_timer_cb (EV_A_ &w->timer, 0); 4022 stat_timer_cb (EV_A_ &w->timer, 0);
2083 4027
2084static void 4028static void
2085infy_cb (EV_P_ ev_io *w, int revents) 4029infy_cb (EV_P_ ev_io *w, int revents)
2086{ 4030{
2087 char buf [EV_INOTIFY_BUFSIZE]; 4031 char buf [EV_INOTIFY_BUFSIZE];
2088 struct inotify_event *ev = (struct inotify_event *)buf;
2089 int ofs; 4032 int ofs;
2090 int len = read (fs_fd, buf, sizeof (buf)); 4033 int len = read (fs_fd, buf, sizeof (buf));
2091 4034
2092 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4035 for (ofs = 0; ofs < len; )
4036 {
4037 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2093 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4038 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4039 ofs += sizeof (struct inotify_event) + ev->len;
4040 }
2094} 4041}
2095 4042
2096void inline_size 4043inline_size void ecb_cold
4044ev_check_2625 (EV_P)
4045{
4046 /* kernels < 2.6.25 are borked
4047 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4048 */
4049 if (ev_linux_version () < 0x020619)
4050 return;
4051
4052 fs_2625 = 1;
4053}
4054
4055inline_size int
4056infy_newfd (void)
4057{
4058#if defined IN_CLOEXEC && defined IN_NONBLOCK
4059 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4060 if (fd >= 0)
4061 return fd;
4062#endif
4063 return inotify_init ();
4064}
4065
4066inline_size void
2097infy_init (EV_P) 4067infy_init (EV_P)
2098{ 4068{
2099 if (fs_fd != -2) 4069 if (fs_fd != -2)
2100 return; 4070 return;
2101 4071
4072 fs_fd = -1;
4073
4074 ev_check_2625 (EV_A);
4075
2102 fs_fd = inotify_init (); 4076 fs_fd = infy_newfd ();
2103 4077
2104 if (fs_fd >= 0) 4078 if (fs_fd >= 0)
2105 { 4079 {
4080 fd_intern (fs_fd);
2106 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4081 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2107 ev_set_priority (&fs_w, EV_MAXPRI); 4082 ev_set_priority (&fs_w, EV_MAXPRI);
2108 ev_io_start (EV_A_ &fs_w); 4083 ev_io_start (EV_A_ &fs_w);
4084 ev_unref (EV_A);
2109 } 4085 }
2110} 4086}
2111 4087
2112void inline_size 4088inline_size void
2113infy_fork (EV_P) 4089infy_fork (EV_P)
2114{ 4090{
2115 int slot; 4091 int slot;
2116 4092
2117 if (fs_fd < 0) 4093 if (fs_fd < 0)
2118 return; 4094 return;
2119 4095
4096 ev_ref (EV_A);
4097 ev_io_stop (EV_A_ &fs_w);
2120 close (fs_fd); 4098 close (fs_fd);
2121 fs_fd = inotify_init (); 4099 fs_fd = infy_newfd ();
2122 4100
4101 if (fs_fd >= 0)
4102 {
4103 fd_intern (fs_fd);
4104 ev_io_set (&fs_w, fs_fd, EV_READ);
4105 ev_io_start (EV_A_ &fs_w);
4106 ev_unref (EV_A);
4107 }
4108
2123 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4109 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2124 { 4110 {
2125 WL w_ = fs_hash [slot].head; 4111 WL w_ = fs_hash [slot].head;
2126 fs_hash [slot].head = 0; 4112 fs_hash [slot].head = 0;
2127 4113
2128 while (w_) 4114 while (w_)
2133 w->wd = -1; 4119 w->wd = -1;
2134 4120
2135 if (fs_fd >= 0) 4121 if (fs_fd >= 0)
2136 infy_add (EV_A_ w); /* re-add, no matter what */ 4122 infy_add (EV_A_ w); /* re-add, no matter what */
2137 else 4123 else
4124 {
4125 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4126 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2138 ev_timer_start (EV_A_ &w->timer); 4127 ev_timer_again (EV_A_ &w->timer);
4128 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4129 }
2139 } 4130 }
2140
2141 } 4131 }
2142} 4132}
2143 4133
4134#endif
4135
4136#ifdef _WIN32
4137# define EV_LSTAT(p,b) _stati64 (p, b)
4138#else
4139# define EV_LSTAT(p,b) lstat (p, b)
2144#endif 4140#endif
2145 4141
2146void 4142void
2147ev_stat_stat (EV_P_ ev_stat *w) 4143ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2148{ 4144{
2149 if (lstat (w->path, &w->attr) < 0) 4145 if (lstat (w->path, &w->attr) < 0)
2150 w->attr.st_nlink = 0; 4146 w->attr.st_nlink = 0;
2151 else if (!w->attr.st_nlink) 4147 else if (!w->attr.st_nlink)
2152 w->attr.st_nlink = 1; 4148 w->attr.st_nlink = 1;
2155static void noinline 4151static void noinline
2156stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4152stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2157{ 4153{
2158 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4154 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2159 4155
2160 /* we copy this here each the time so that */ 4156 ev_statdata prev = w->attr;
2161 /* prev has the old value when the callback gets invoked */
2162 w->prev = w->attr;
2163 ev_stat_stat (EV_A_ w); 4157 ev_stat_stat (EV_A_ w);
2164 4158
2165 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4159 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2166 if ( 4160 if (
2167 w->prev.st_dev != w->attr.st_dev 4161 prev.st_dev != w->attr.st_dev
2168 || w->prev.st_ino != w->attr.st_ino 4162 || prev.st_ino != w->attr.st_ino
2169 || w->prev.st_mode != w->attr.st_mode 4163 || prev.st_mode != w->attr.st_mode
2170 || w->prev.st_nlink != w->attr.st_nlink 4164 || prev.st_nlink != w->attr.st_nlink
2171 || w->prev.st_uid != w->attr.st_uid 4165 || prev.st_uid != w->attr.st_uid
2172 || w->prev.st_gid != w->attr.st_gid 4166 || prev.st_gid != w->attr.st_gid
2173 || w->prev.st_rdev != w->attr.st_rdev 4167 || prev.st_rdev != w->attr.st_rdev
2174 || w->prev.st_size != w->attr.st_size 4168 || prev.st_size != w->attr.st_size
2175 || w->prev.st_atime != w->attr.st_atime 4169 || prev.st_atime != w->attr.st_atime
2176 || w->prev.st_mtime != w->attr.st_mtime 4170 || prev.st_mtime != w->attr.st_mtime
2177 || w->prev.st_ctime != w->attr.st_ctime 4171 || prev.st_ctime != w->attr.st_ctime
2178 ) { 4172 ) {
4173 /* we only update w->prev on actual differences */
4174 /* in case we test more often than invoke the callback, */
4175 /* to ensure that prev is always different to attr */
4176 w->prev = prev;
4177
2179 #if EV_USE_INOTIFY 4178 #if EV_USE_INOTIFY
4179 if (fs_fd >= 0)
4180 {
2180 infy_del (EV_A_ w); 4181 infy_del (EV_A_ w);
2181 infy_add (EV_A_ w); 4182 infy_add (EV_A_ w);
2182 ev_stat_stat (EV_A_ w); /* avoid race... */ 4183 ev_stat_stat (EV_A_ w); /* avoid race... */
4184 }
2183 #endif 4185 #endif
2184 4186
2185 ev_feed_event (EV_A_ w, EV_STAT); 4187 ev_feed_event (EV_A_ w, EV_STAT);
2186 } 4188 }
2187} 4189}
2188 4190
2189void 4191void
2190ev_stat_start (EV_P_ ev_stat *w) 4192ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2191{ 4193{
2192 if (expect_false (ev_is_active (w))) 4194 if (expect_false (ev_is_active (w)))
2193 return; 4195 return;
2194 4196
2195 /* since we use memcmp, we need to clear any padding data etc. */
2196 memset (&w->prev, 0, sizeof (ev_statdata));
2197 memset (&w->attr, 0, sizeof (ev_statdata));
2198
2199 ev_stat_stat (EV_A_ w); 4197 ev_stat_stat (EV_A_ w);
2200 4198
4199 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2201 if (w->interval < MIN_STAT_INTERVAL) 4200 w->interval = MIN_STAT_INTERVAL;
2202 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2203 4201
2204 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4202 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2205 ev_set_priority (&w->timer, ev_priority (w)); 4203 ev_set_priority (&w->timer, ev_priority (w));
2206 4204
2207#if EV_USE_INOTIFY 4205#if EV_USE_INOTIFY
2208 infy_init (EV_A); 4206 infy_init (EV_A);
2209 4207
2210 if (fs_fd >= 0) 4208 if (fs_fd >= 0)
2211 infy_add (EV_A_ w); 4209 infy_add (EV_A_ w);
2212 else 4210 else
2213#endif 4211#endif
4212 {
2214 ev_timer_start (EV_A_ &w->timer); 4213 ev_timer_again (EV_A_ &w->timer);
4214 ev_unref (EV_A);
4215 }
2215 4216
2216 ev_start (EV_A_ (W)w, 1); 4217 ev_start (EV_A_ (W)w, 1);
4218
4219 EV_FREQUENT_CHECK;
2217} 4220}
2218 4221
2219void 4222void
2220ev_stat_stop (EV_P_ ev_stat *w) 4223ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2221{ 4224{
2222 clear_pending (EV_A_ (W)w); 4225 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 4226 if (expect_false (!ev_is_active (w)))
2224 return; 4227 return;
2225 4228
4229 EV_FREQUENT_CHECK;
4230
2226#if EV_USE_INOTIFY 4231#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 4232 infy_del (EV_A_ w);
2228#endif 4233#endif
4234
4235 if (ev_is_active (&w->timer))
4236 {
4237 ev_ref (EV_A);
2229 ev_timer_stop (EV_A_ &w->timer); 4238 ev_timer_stop (EV_A_ &w->timer);
4239 }
2230 4240
2231 ev_stop (EV_A_ (W)w); 4241 ev_stop (EV_A_ (W)w);
4242
4243 EV_FREQUENT_CHECK;
2232} 4244}
2233#endif 4245#endif
2234 4246
2235#if EV_IDLE_ENABLE 4247#if EV_IDLE_ENABLE
2236void 4248void
2237ev_idle_start (EV_P_ ev_idle *w) 4249ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2238{ 4250{
2239 if (expect_false (ev_is_active (w))) 4251 if (expect_false (ev_is_active (w)))
2240 return; 4252 return;
2241 4253
2242 pri_adjust (EV_A_ (W)w); 4254 pri_adjust (EV_A_ (W)w);
4255
4256 EV_FREQUENT_CHECK;
2243 4257
2244 { 4258 {
2245 int active = ++idlecnt [ABSPRI (w)]; 4259 int active = ++idlecnt [ABSPRI (w)];
2246 4260
2247 ++idleall; 4261 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 4262 ev_start (EV_A_ (W)w, active);
2249 4263
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4264 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w; 4265 idles [ABSPRI (w)][active - 1] = w;
2252 } 4266 }
4267
4268 EV_FREQUENT_CHECK;
2253} 4269}
2254 4270
2255void 4271void
2256ev_idle_stop (EV_P_ ev_idle *w) 4272ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2257{ 4273{
2258 clear_pending (EV_A_ (W)w); 4274 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 4275 if (expect_false (!ev_is_active (w)))
2260 return; 4276 return;
2261 4277
4278 EV_FREQUENT_CHECK;
4279
2262 { 4280 {
2263 int active = ((W)w)->active; 4281 int active = ev_active (w);
2264 4282
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4283 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4284 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 4285
2268 ev_stop (EV_A_ (W)w); 4286 ev_stop (EV_A_ (W)w);
2269 --idleall; 4287 --idleall;
2270 } 4288 }
2271}
2272#endif
2273 4289
4290 EV_FREQUENT_CHECK;
4291}
4292#endif
4293
4294#if EV_PREPARE_ENABLE
2274void 4295void
2275ev_prepare_start (EV_P_ ev_prepare *w) 4296ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2276{ 4297{
2277 if (expect_false (ev_is_active (w))) 4298 if (expect_false (ev_is_active (w)))
2278 return; 4299 return;
4300
4301 EV_FREQUENT_CHECK;
2279 4302
2280 ev_start (EV_A_ (W)w, ++preparecnt); 4303 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4304 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w; 4305 prepares [preparecnt - 1] = w;
4306
4307 EV_FREQUENT_CHECK;
2283} 4308}
2284 4309
2285void 4310void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 4311ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2287{ 4312{
2288 clear_pending (EV_A_ (W)w); 4313 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 4314 if (expect_false (!ev_is_active (w)))
2290 return; 4315 return;
2291 4316
4317 EV_FREQUENT_CHECK;
4318
2292 { 4319 {
2293 int active = ((W)w)->active; 4320 int active = ev_active (w);
4321
2294 prepares [active - 1] = prepares [--preparecnt]; 4322 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 4323 ev_active (prepares [active - 1]) = active;
2296 } 4324 }
2297 4325
2298 ev_stop (EV_A_ (W)w); 4326 ev_stop (EV_A_ (W)w);
2299}
2300 4327
4328 EV_FREQUENT_CHECK;
4329}
4330#endif
4331
4332#if EV_CHECK_ENABLE
2301void 4333void
2302ev_check_start (EV_P_ ev_check *w) 4334ev_check_start (EV_P_ ev_check *w) EV_THROW
2303{ 4335{
2304 if (expect_false (ev_is_active (w))) 4336 if (expect_false (ev_is_active (w)))
2305 return; 4337 return;
4338
4339 EV_FREQUENT_CHECK;
2306 4340
2307 ev_start (EV_A_ (W)w, ++checkcnt); 4341 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4342 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w; 4343 checks [checkcnt - 1] = w;
4344
4345 EV_FREQUENT_CHECK;
2310} 4346}
2311 4347
2312void 4348void
2313ev_check_stop (EV_P_ ev_check *w) 4349ev_check_stop (EV_P_ ev_check *w) EV_THROW
2314{ 4350{
2315 clear_pending (EV_A_ (W)w); 4351 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 4352 if (expect_false (!ev_is_active (w)))
2317 return; 4353 return;
2318 4354
4355 EV_FREQUENT_CHECK;
4356
2319 { 4357 {
2320 int active = ((W)w)->active; 4358 int active = ev_active (w);
4359
2321 checks [active - 1] = checks [--checkcnt]; 4360 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 4361 ev_active (checks [active - 1]) = active;
2323 } 4362 }
2324 4363
2325 ev_stop (EV_A_ (W)w); 4364 ev_stop (EV_A_ (W)w);
4365
4366 EV_FREQUENT_CHECK;
2326} 4367}
4368#endif
2327 4369
2328#if EV_EMBED_ENABLE 4370#if EV_EMBED_ENABLE
2329void noinline 4371void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w) 4372ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2331{ 4373{
2332 ev_loop (w->other, EVLOOP_NONBLOCK); 4374 ev_run (w->other, EVRUN_NOWAIT);
2333} 4375}
2334 4376
2335static void 4377static void
2336embed_io_cb (EV_P_ ev_io *io, int revents) 4378embed_io_cb (EV_P_ ev_io *io, int revents)
2337{ 4379{
2338 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4380 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2339 4381
2340 if (ev_cb (w)) 4382 if (ev_cb (w))
2341 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4383 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2342 else 4384 else
2343 ev_loop (w->other, EVLOOP_NONBLOCK); 4385 ev_run (w->other, EVRUN_NOWAIT);
2344} 4386}
2345 4387
2346static void 4388static void
2347embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4389embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2348{ 4390{
2349 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4391 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2350 4392
2351 { 4393 {
2352 struct ev_loop *loop = w->other; 4394 EV_P = w->other;
2353 4395
2354 while (fdchangecnt) 4396 while (fdchangecnt)
2355 { 4397 {
2356 fd_reify (EV_A); 4398 fd_reify (EV_A);
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4399 ev_run (EV_A_ EVRUN_NOWAIT);
2358 } 4400 }
2359 } 4401 }
4402}
4403
4404static void
4405embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4406{
4407 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4408
4409 ev_embed_stop (EV_A_ w);
4410
4411 {
4412 EV_P = w->other;
4413
4414 ev_loop_fork (EV_A);
4415 ev_run (EV_A_ EVRUN_NOWAIT);
4416 }
4417
4418 ev_embed_start (EV_A_ w);
2360} 4419}
2361 4420
2362#if 0 4421#if 0
2363static void 4422static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4423embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2366 ev_idle_stop (EV_A_ idle); 4425 ev_idle_stop (EV_A_ idle);
2367} 4426}
2368#endif 4427#endif
2369 4428
2370void 4429void
2371ev_embed_start (EV_P_ ev_embed *w) 4430ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2372{ 4431{
2373 if (expect_false (ev_is_active (w))) 4432 if (expect_false (ev_is_active (w)))
2374 return; 4433 return;
2375 4434
2376 { 4435 {
2377 struct ev_loop *loop = w->other; 4436 EV_P = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4437 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4438 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 4439 }
4440
4441 EV_FREQUENT_CHECK;
2381 4442
2382 ev_set_priority (&w->io, ev_priority (w)); 4443 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 4444 ev_io_start (EV_A_ &w->io);
2384 4445
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 4446 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 4447 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 4448 ev_prepare_start (EV_A_ &w->prepare);
2388 4449
4450 ev_fork_init (&w->fork, embed_fork_cb);
4451 ev_fork_start (EV_A_ &w->fork);
4452
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4453 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 4454
2391 ev_start (EV_A_ (W)w, 1); 4455 ev_start (EV_A_ (W)w, 1);
4456
4457 EV_FREQUENT_CHECK;
2392} 4458}
2393 4459
2394void 4460void
2395ev_embed_stop (EV_P_ ev_embed *w) 4461ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2396{ 4462{
2397 clear_pending (EV_A_ (W)w); 4463 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 4464 if (expect_false (!ev_is_active (w)))
2399 return; 4465 return;
2400 4466
4467 EV_FREQUENT_CHECK;
4468
2401 ev_io_stop (EV_A_ &w->io); 4469 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 4470 ev_prepare_stop (EV_A_ &w->prepare);
4471 ev_fork_stop (EV_A_ &w->fork);
2403 4472
2404 ev_stop (EV_A_ (W)w); 4473 ev_stop (EV_A_ (W)w);
4474
4475 EV_FREQUENT_CHECK;
2405} 4476}
2406#endif 4477#endif
2407 4478
2408#if EV_FORK_ENABLE 4479#if EV_FORK_ENABLE
2409void 4480void
2410ev_fork_start (EV_P_ ev_fork *w) 4481ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2411{ 4482{
2412 if (expect_false (ev_is_active (w))) 4483 if (expect_false (ev_is_active (w)))
2413 return; 4484 return;
4485
4486 EV_FREQUENT_CHECK;
2414 4487
2415 ev_start (EV_A_ (W)w, ++forkcnt); 4488 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4489 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w; 4490 forks [forkcnt - 1] = w;
4491
4492 EV_FREQUENT_CHECK;
2418} 4493}
2419 4494
2420void 4495void
2421ev_fork_stop (EV_P_ ev_fork *w) 4496ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2422{ 4497{
2423 clear_pending (EV_A_ (W)w); 4498 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 4499 if (expect_false (!ev_is_active (w)))
2425 return; 4500 return;
2426 4501
4502 EV_FREQUENT_CHECK;
4503
2427 { 4504 {
2428 int active = ((W)w)->active; 4505 int active = ev_active (w);
4506
2429 forks [active - 1] = forks [--forkcnt]; 4507 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 4508 ev_active (forks [active - 1]) = active;
2431 } 4509 }
2432 4510
2433 ev_stop (EV_A_ (W)w); 4511 ev_stop (EV_A_ (W)w);
4512
4513 EV_FREQUENT_CHECK;
4514}
4515#endif
4516
4517#if EV_CLEANUP_ENABLE
4518void
4519ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4520{
4521 if (expect_false (ev_is_active (w)))
4522 return;
4523
4524 EV_FREQUENT_CHECK;
4525
4526 ev_start (EV_A_ (W)w, ++cleanupcnt);
4527 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4528 cleanups [cleanupcnt - 1] = w;
4529
4530 /* cleanup watchers should never keep a refcount on the loop */
4531 ev_unref (EV_A);
4532 EV_FREQUENT_CHECK;
4533}
4534
4535void
4536ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4537{
4538 clear_pending (EV_A_ (W)w);
4539 if (expect_false (!ev_is_active (w)))
4540 return;
4541
4542 EV_FREQUENT_CHECK;
4543 ev_ref (EV_A);
4544
4545 {
4546 int active = ev_active (w);
4547
4548 cleanups [active - 1] = cleanups [--cleanupcnt];
4549 ev_active (cleanups [active - 1]) = active;
4550 }
4551
4552 ev_stop (EV_A_ (W)w);
4553
4554 EV_FREQUENT_CHECK;
2434} 4555}
2435#endif 4556#endif
2436 4557
2437#if EV_ASYNC_ENABLE 4558#if EV_ASYNC_ENABLE
2438void 4559void
2439ev_async_start (EV_P_ ev_async *w) 4560ev_async_start (EV_P_ ev_async *w) EV_THROW
2440{ 4561{
2441 if (expect_false (ev_is_active (w))) 4562 if (expect_false (ev_is_active (w)))
2442 return; 4563 return;
2443 4564
4565 w->sent = 0;
4566
2444 evpipe_init (EV_A); 4567 evpipe_init (EV_A);
4568
4569 EV_FREQUENT_CHECK;
2445 4570
2446 ev_start (EV_A_ (W)w, ++asynccnt); 4571 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4572 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w; 4573 asyncs [asynccnt - 1] = w;
4574
4575 EV_FREQUENT_CHECK;
2449} 4576}
2450 4577
2451void 4578void
2452ev_async_stop (EV_P_ ev_async *w) 4579ev_async_stop (EV_P_ ev_async *w) EV_THROW
2453{ 4580{
2454 clear_pending (EV_A_ (W)w); 4581 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 4582 if (expect_false (!ev_is_active (w)))
2456 return; 4583 return;
2457 4584
4585 EV_FREQUENT_CHECK;
4586
2458 { 4587 {
2459 int active = ((W)w)->active; 4588 int active = ev_active (w);
4589
2460 asyncs [active - 1] = asyncs [--asynccnt]; 4590 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 4591 ev_active (asyncs [active - 1]) = active;
2462 } 4592 }
2463 4593
2464 ev_stop (EV_A_ (W)w); 4594 ev_stop (EV_A_ (W)w);
4595
4596 EV_FREQUENT_CHECK;
2465} 4597}
2466 4598
2467void 4599void
2468ev_async_send (EV_P_ ev_async *w) 4600ev_async_send (EV_P_ ev_async *w) EV_THROW
2469{ 4601{
2470 w->sent = 1; 4602 w->sent = 1;
2471 evpipe_write (EV_A_ &gotasync); 4603 evpipe_write (EV_A_ &async_pending);
2472} 4604}
2473#endif 4605#endif
2474 4606
2475/*****************************************************************************/ 4607/*****************************************************************************/
2476 4608
2486once_cb (EV_P_ struct ev_once *once, int revents) 4618once_cb (EV_P_ struct ev_once *once, int revents)
2487{ 4619{
2488 void (*cb)(int revents, void *arg) = once->cb; 4620 void (*cb)(int revents, void *arg) = once->cb;
2489 void *arg = once->arg; 4621 void *arg = once->arg;
2490 4622
2491 ev_io_stop (EV_A_ &once->io); 4623 ev_io_stop (EV_A_ &once->io);
2492 ev_timer_stop (EV_A_ &once->to); 4624 ev_timer_stop (EV_A_ &once->to);
2493 ev_free (once); 4625 ev_free (once);
2494 4626
2495 cb (revents, arg); 4627 cb (revents, arg);
2496} 4628}
2497 4629
2498static void 4630static void
2499once_cb_io (EV_P_ ev_io *w, int revents) 4631once_cb_io (EV_P_ ev_io *w, int revents)
2500{ 4632{
2501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4633 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4634
4635 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2502} 4636}
2503 4637
2504static void 4638static void
2505once_cb_to (EV_P_ ev_timer *w, int revents) 4639once_cb_to (EV_P_ ev_timer *w, int revents)
2506{ 4640{
2507 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4641 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4642
4643 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2508} 4644}
2509 4645
2510void 4646void
2511ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4647ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2512{ 4648{
2513 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4649 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2514 4650
2515 if (expect_false (!once)) 4651 if (expect_false (!once))
2516 { 4652 {
2517 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4653 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2518 return; 4654 return;
2519 } 4655 }
2520 4656
2521 once->cb = cb; 4657 once->cb = cb;
2522 once->arg = arg; 4658 once->arg = arg;
2534 ev_timer_set (&once->to, timeout, 0.); 4670 ev_timer_set (&once->to, timeout, 0.);
2535 ev_timer_start (EV_A_ &once->to); 4671 ev_timer_start (EV_A_ &once->to);
2536 } 4672 }
2537} 4673}
2538 4674
4675/*****************************************************************************/
4676
4677#if EV_WALK_ENABLE
4678void ecb_cold
4679ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4680{
4681 int i, j;
4682 ev_watcher_list *wl, *wn;
4683
4684 if (types & (EV_IO | EV_EMBED))
4685 for (i = 0; i < anfdmax; ++i)
4686 for (wl = anfds [i].head; wl; )
4687 {
4688 wn = wl->next;
4689
4690#if EV_EMBED_ENABLE
4691 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4692 {
4693 if (types & EV_EMBED)
4694 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4695 }
4696 else
4697#endif
4698#if EV_USE_INOTIFY
4699 if (ev_cb ((ev_io *)wl) == infy_cb)
4700 ;
4701 else
4702#endif
4703 if ((ev_io *)wl != &pipe_w)
4704 if (types & EV_IO)
4705 cb (EV_A_ EV_IO, wl);
4706
4707 wl = wn;
4708 }
4709
4710 if (types & (EV_TIMER | EV_STAT))
4711 for (i = timercnt + HEAP0; i-- > HEAP0; )
4712#if EV_STAT_ENABLE
4713 /*TODO: timer is not always active*/
4714 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4715 {
4716 if (types & EV_STAT)
4717 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4718 }
4719 else
4720#endif
4721 if (types & EV_TIMER)
4722 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4723
4724#if EV_PERIODIC_ENABLE
4725 if (types & EV_PERIODIC)
4726 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4727 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4728#endif
4729
4730#if EV_IDLE_ENABLE
4731 if (types & EV_IDLE)
4732 for (j = NUMPRI; j--; )
4733 for (i = idlecnt [j]; i--; )
4734 cb (EV_A_ EV_IDLE, idles [j][i]);
4735#endif
4736
4737#if EV_FORK_ENABLE
4738 if (types & EV_FORK)
4739 for (i = forkcnt; i--; )
4740 if (ev_cb (forks [i]) != embed_fork_cb)
4741 cb (EV_A_ EV_FORK, forks [i]);
4742#endif
4743
4744#if EV_ASYNC_ENABLE
4745 if (types & EV_ASYNC)
4746 for (i = asynccnt; i--; )
4747 cb (EV_A_ EV_ASYNC, asyncs [i]);
4748#endif
4749
4750#if EV_PREPARE_ENABLE
4751 if (types & EV_PREPARE)
4752 for (i = preparecnt; i--; )
4753# if EV_EMBED_ENABLE
4754 if (ev_cb (prepares [i]) != embed_prepare_cb)
4755# endif
4756 cb (EV_A_ EV_PREPARE, prepares [i]);
4757#endif
4758
4759#if EV_CHECK_ENABLE
4760 if (types & EV_CHECK)
4761 for (i = checkcnt; i--; )
4762 cb (EV_A_ EV_CHECK, checks [i]);
4763#endif
4764
4765#if EV_SIGNAL_ENABLE
4766 if (types & EV_SIGNAL)
4767 for (i = 0; i < EV_NSIG - 1; ++i)
4768 for (wl = signals [i].head; wl; )
4769 {
4770 wn = wl->next;
4771 cb (EV_A_ EV_SIGNAL, wl);
4772 wl = wn;
4773 }
4774#endif
4775
4776#if EV_CHILD_ENABLE
4777 if (types & EV_CHILD)
4778 for (i = (EV_PID_HASHSIZE); i--; )
4779 for (wl = childs [i]; wl; )
4780 {
4781 wn = wl->next;
4782 cb (EV_A_ EV_CHILD, wl);
4783 wl = wn;
4784 }
4785#endif
4786/* EV_STAT 0x00001000 /* stat data changed */
4787/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4788}
4789#endif
4790
2539#if EV_MULTIPLICITY 4791#if EV_MULTIPLICITY
2540 #include "ev_wrap.h" 4792 #include "ev_wrap.h"
2541#endif 4793#endif
2542 4794
2543#ifdef __cplusplus
2544}
2545#endif
2546

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines