ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.134 by root, Fri Nov 23 19:13:33 2007 UTC vs.
Revision 1.218 by root, Sun Mar 23 00:05:03 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 110# else
95# define EV_USE_PORT 0 111# define EV_USE_PORT 0
96# endif 112# endif
97# endif 113# endif
98 114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
121# endif
122
99#endif 123#endif
100 124
101#include <math.h> 125#include <math.h>
102#include <stdlib.h> 126#include <stdlib.h>
103#include <fcntl.h> 127#include <fcntl.h>
110#include <sys/types.h> 134#include <sys/types.h>
111#include <time.h> 135#include <time.h>
112 136
113#include <signal.h> 137#include <signal.h>
114 138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
115#ifndef _WIN32 145#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 146# include <sys/time.h>
118# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
119#else 149#else
120# define WIN32_LEAN_AND_MEAN 150# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 151# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 152# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 153# define EV_SELECT_IS_WINSOCKET 1
132 162
133#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
135#endif 165#endif
136 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
137#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
139#endif 173#endif
140 174
141#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
156 190
157#ifndef EV_USE_PORT 191#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 192# define EV_USE_PORT 0
159#endif 193#endif
160 194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
202# else
203# define EV_PID_HASHSIZE 16
204# endif
205#endif
206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
213#endif
214
161/**/ 215/**/
162 216
163#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 218# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 219# define EV_USE_MONOTONIC 0
168#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
171#endif 225#endif
172 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
173#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 243# include <winsock.h>
175#endif 244#endif
176 245
177/**/ 246/**/
178 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 261
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 262#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 264# define noinline __attribute__ ((noinline))
193#else 265#else
194# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
195# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
196#endif 271#endif
197 272
198#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
200 282
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 285
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
206 288
207typedef struct ev_watcher *W; 289typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
210 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
212 298
213#ifdef _WIN32 299#ifdef _WIN32
214# include "ev_win32.c" 300# include "ev_win32.c"
215#endif 301#endif
216 302
217/*****************************************************************************/ 303/*****************************************************************************/
218 304
219static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
220 306
307void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 309{
223 syserr_cb = cb; 310 syserr_cb = cb;
224} 311}
225 312
226static void 313static void noinline
227syserr (const char *msg) 314syserr (const char *msg)
228{ 315{
229 if (!msg) 316 if (!msg)
230 msg = "(libev) system error"; 317 msg = "(libev) system error";
231 318
238 } 325 }
239} 326}
240 327
241static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
242 329
330void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 332{
245 alloc = cb; 333 alloc = cb;
246} 334}
247 335
248static void * 336inline_speed void *
249ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
250{ 338{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252 340
253 if (!ptr && size) 341 if (!ptr && size)
277typedef struct 365typedef struct
278{ 366{
279 W w; 367 W w;
280 int events; 368 int events;
281} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
282 377
283#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
284 379
285 struct ev_loop 380 struct ev_loop
286 { 381 {
320 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 417#endif
323} 418}
324 419
325inline ev_tstamp 420ev_tstamp inline_size
326get_clock (void) 421get_clock (void)
327{ 422{
328#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
330 { 425 {
343{ 438{
344 return ev_rt_now; 439 return ev_rt_now;
345} 440}
346#endif 441#endif
347 442
348#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep ((unsigned long)(delay * 1e3));
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
349 497
350#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
352 { \ 500 { \
353 int newcnt = cur; \ 501 int ocur_ = (cur); \
354 do \ 502 (base) = (type *)array_realloc \
355 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 505 }
364 506
507#if 0
365#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 510 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 514 }
515#endif
372 516
373#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 519
376/*****************************************************************************/ 520/*****************************************************************************/
377 521
378static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
379anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
380{ 552{
381 while (count--) 553 while (count--)
382 { 554 {
383 base->head = 0; 555 base->head = 0;
386 558
387 ++base; 559 ++base;
388 } 560 }
389} 561}
390 562
391void 563void inline_speed
392ev_feed_event (EV_P_ void *w, int revents)
393{
394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
397 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return;
400 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409}
410
411static void
412queue_events (EV_P_ W *events, int eventcnt, int type)
413{
414 int i;
415
416 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type);
418}
419
420inline void
421fd_event (EV_P_ int fd, int revents) 564fd_event (EV_P_ int fd, int revents)
422{ 565{
423 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 567 ev_io *w;
425 568
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 570 {
428 int ev = w->events & revents; 571 int ev = w->events & revents;
429 572
430 if (ev) 573 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
433} 576}
434 577
435void 578void
436ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 580{
581 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
439} 583}
440 584
441/*****************************************************************************/ 585void inline_size
442
443inline void
444fd_reify (EV_P) 586fd_reify (EV_P)
445{ 587{
446 int i; 588 int i;
447 589
448 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
449 { 591 {
450 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 594 ev_io *w;
453 595
454 int events = 0; 596 unsigned char events = 0;
455 597
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 599 events |= (unsigned char)w->events;
458 600
459#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
460 if (events) 602 if (events)
461 { 603 {
462 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
463 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
465 } 611 }
466#endif 612#endif
467 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
468 anfd->reify = 0; 618 anfd->reify = 0;
469
470 backend_modify (EV_A_ fd, anfd->events, events);
471 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
472 } 624 }
473 625
474 fdchangecnt = 0; 626 fdchangecnt = 0;
475} 627}
476 628
477static void 629void inline_size
478fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
479{ 631{
480 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
484 634
635 if (expect_true (!reify))
636 {
485 ++fdchangecnt; 637 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
488} 641}
489 642
490static void 643void inline_speed
491fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
492{ 645{
493 struct ev_io *w; 646 ev_io *w;
494 647
495 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
496 { 649 {
497 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 652 }
500} 653}
501 654
502inline int 655int inline_size
503fd_valid (int fd) 656fd_valid (int fd)
504{ 657{
505#ifdef _WIN32 658#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 659 return _get_osfhandle (fd) != -1;
507#else 660#else
508 return fcntl (fd, F_GETFD) != -1; 661 return fcntl (fd, F_GETFD) != -1;
509#endif 662#endif
510} 663}
511 664
512/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
513static void 666static void noinline
514fd_ebadf (EV_P) 667fd_ebadf (EV_P)
515{ 668{
516 int fd; 669 int fd;
517 670
518 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
522} 675}
523 676
524/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 678static void noinline
526fd_enomem (EV_P) 679fd_enomem (EV_P)
527{ 680{
528 int fd; 681 int fd;
529 682
530 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
534 return; 687 return;
535 } 688 }
536} 689}
537 690
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 692static void noinline
540fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
541{ 694{
542 int fd; 695 int fd;
543 696
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 698 if (anfds [fd].events)
547 { 699 {
548 anfds [fd].events = 0; 700 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
550 } 702 }
551} 703}
552 704
553/*****************************************************************************/ 705/*****************************************************************************/
554 706
555static void 707void inline_speed
556upheap (WT *heap, int k) 708upheap (WT *heap, int k)
557{ 709{
558 WT w = heap [k]; 710 WT w = heap [k];
559 711
560 while (k && heap [k >> 1]->at > w->at) 712 while (k)
561 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
562 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
563 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
564 k >>= 1; 721 k = p;
565 } 722 }
566 723
567 heap [k] = w; 724 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
569
570} 726}
571 727
572static void 728void inline_speed
573downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
574{ 730{
575 WT w = heap [k]; 731 WT w = heap [k];
576 732
577 while (k < (N >> 1)) 733 for (;;)
578 { 734 {
579 int j = k << 1; 735 int c = (k << 1) + 1;
580 736
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break; 738 break;
586 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
587 heap [k] = heap [j]; 746 heap [k] = heap [c];
588 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
589 k = j; 749 k = c;
590 } 750 }
591 751
592 heap [k] = w; 752 heap [k] = w;
593 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
594} 754}
595 755
596inline void 756void inline_size
597adjustheap (WT *heap, int N, int k) 757adjustheap (WT *heap, int N, int k)
598{ 758{
599 upheap (heap, k); 759 upheap (heap, k);
600 downheap (heap, N, k); 760 downheap (heap, N, k);
601} 761}
603/*****************************************************************************/ 763/*****************************************************************************/
604 764
605typedef struct 765typedef struct
606{ 766{
607 WL head; 767 WL head;
608 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
609} ANSIG; 769} ANSIG;
610 770
611static ANSIG *signals; 771static ANSIG *signals;
612static int signalmax; 772static int signalmax;
613 773
614static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617 775
618static void 776void inline_size
619signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
620{ 778{
621 while (count--) 779 while (count--)
622 { 780 {
623 base->head = 0; 781 base->head = 0;
625 783
626 ++base; 784 ++base;
627 } 785 }
628} 786}
629 787
630static void 788/*****************************************************************************/
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636 789
637 signals [signum - 1].gotsig = 1; 790void inline_speed
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 791fd_intern (int fd)
683{ 792{
684#ifdef _WIN32 793#ifdef _WIN32
685 int arg = 1; 794 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 797 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 799#endif
691} 800}
692 801
802static void noinline
803evpipe_init (EV_P)
804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
810 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ);
814 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{
822 if (!*flag)
823 {
824 int old_errno = errno; /* save errno because write might clobber it */
825
826 *flag = 1;
827 write (evpipe [1], &old_errno, 1);
828
829 errno = old_errno;
830 }
831}
832
693static void 833static void
694siginit (EV_P) 834pipecb (EV_P_ ev_io *iow, int revents)
695{ 835{
696 fd_intern (sigpipe [0]); 836 {
697 fd_intern (sigpipe [1]); 837 int dummy;
838 read (evpipe [0], &dummy, 1);
839 }
698 840
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 841 if (gotsig && ev_is_default_loop (EV_A))
700 ev_io_start (EV_A_ &sigev); 842 {
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 843 int signum;
844 gotsig = 0;
845
846 for (signum = signalmax; signum--; )
847 if (signals [signum].gotsig)
848 ev_feed_signal_event (EV_A_ signum + 1);
849 }
850
851#if EV_ASYNC_ENABLE
852 if (gotasync)
853 {
854 int i;
855 gotasync = 0;
856
857 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent)
859 {
860 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 }
863 }
864#endif
702} 865}
703 866
704/*****************************************************************************/ 867/*****************************************************************************/
705 868
706static struct ev_child *childs [PID_HASHSIZE]; 869static void
870ev_sighandler (int signum)
871{
872#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct;
874#endif
875
876#if _WIN32
877 signal (signum, ev_sighandler);
878#endif
879
880 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig);
882}
883
884void noinline
885ev_feed_signal_event (EV_P_ int signum)
886{
887 WL w;
888
889#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif
892
893 --signum;
894
895 if (signum < 0 || signum >= signalmax)
896 return;
897
898 signals [signum].gotsig = 0;
899
900 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902}
903
904/*****************************************************************************/
905
906static WL childs [EV_PID_HASHSIZE];
707 907
708#ifndef _WIN32 908#ifndef _WIN32
709 909
710static struct ev_signal childev; 910static ev_signal childev;
911
912#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0
914#endif
915
916void inline_speed
917child_reap (EV_P_ int chain, int pid, int status)
918{
919 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
923 {
924 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1)))
926 {
927 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
928 w->rpid = pid;
929 w->rstatus = status;
930 ev_feed_event (EV_A_ (W)w, EV_CHILD);
931 }
932 }
933}
711 934
712#ifndef WCONTINUED 935#ifndef WCONTINUED
713# define WCONTINUED 0 936# define WCONTINUED 0
714#endif 937#endif
715 938
716static void 939static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 940childcb (EV_P_ ev_signal *sw, int revents)
733{ 941{
734 int pid, status; 942 int pid, status;
735 943
944 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 945 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 946 if (!WCONTINUED
947 || errno != EINVAL
948 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
949 return;
950
738 /* make sure we are called again until all childs have been reaped */ 951 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 952 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 954
742 child_reap (EV_A_ sw, pid, pid, status); 955 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 957 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 958}
746 959
747#endif 960#endif
748 961
749/*****************************************************************************/ 962/*****************************************************************************/
775{ 988{
776 return EV_VERSION_MINOR; 989 return EV_VERSION_MINOR;
777} 990}
778 991
779/* return true if we are running with elevated privileges and should ignore env variables */ 992/* return true if we are running with elevated privileges and should ignore env variables */
780static int 993int inline_size
781enable_secure (void) 994enable_secure (void)
782{ 995{
783#ifdef _WIN32 996#ifdef _WIN32
784 return 0; 997 return 0;
785#else 998#else
821} 1034}
822 1035
823unsigned int 1036unsigned int
824ev_embeddable_backends (void) 1037ev_embeddable_backends (void)
825{ 1038{
826 return EVBACKEND_EPOLL 1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
827 | EVBACKEND_KQUEUE 1040
828 | EVBACKEND_PORT; 1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */
1043 flags &= ~EVBACKEND_EPOLL;
1044
1045 return flags;
829} 1046}
830 1047
831unsigned int 1048unsigned int
832ev_backend (EV_P) 1049ev_backend (EV_P)
833{ 1050{
834 return backend; 1051 return backend;
835} 1052}
836 1053
837static void 1054unsigned int
1055ev_loop_count (EV_P)
1056{
1057 return loop_count;
1058}
1059
1060void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1062{
1063 io_blocktime = interval;
1064}
1065
1066void
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1068{
1069 timeout_blocktime = interval;
1070}
1071
1072static void noinline
838loop_init (EV_P_ unsigned int flags) 1073loop_init (EV_P_ unsigned int flags)
839{ 1074{
840 if (!backend) 1075 if (!backend)
841 { 1076 {
842#if EV_USE_MONOTONIC 1077#if EV_USE_MONOTONIC
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 1081 have_monotonic = 1;
847 } 1082 }
848#endif 1083#endif
849 1084
850 ev_rt_now = ev_time (); 1085 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 1086 mn_now = get_clock ();
852 now_floor = mn_now; 1087 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 1088 rtmn_diff = ev_rt_now - mn_now;
1089
1090 io_blocktime = 0.;
1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif
1098
1099 /* pid check not overridable via env */
1100#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK)
1102 curpid = getpid ();
1103#endif
854 1104
855 if (!(flags & EVFLAG_NOENV) 1105 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 1106 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 1107 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 1108 flags = atoi (getenv ("LIBEV_FLAGS"));
859 1109
860 if (!(flags & 0x0000ffffUL)) 1110 if (!(flags & 0x0000ffffUL))
861 flags |= ev_recommended_backends (); 1111 flags |= ev_recommended_backends ();
862 1112
863 backend = 0;
864#if EV_USE_PORT 1113#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 1115#endif
867#if EV_USE_KQUEUE 1116#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 1124#endif
876#if EV_USE_SELECT 1125#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 1127#endif
879 1128
880 ev_init (&sigev, sigcb); 1129 ev_init (&pipeev, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1130 ev_set_priority (&pipeev, EV_MAXPRI);
882 } 1131 }
883} 1132}
884 1133
885static void 1134static void noinline
886loop_destroy (EV_P) 1135loop_destroy (EV_P)
887{ 1136{
888 int i; 1137 int i;
1138
1139 if (ev_is_active (&pipeev))
1140 {
1141 ev_ref (EV_A); /* signal watcher */
1142 ev_io_stop (EV_A_ &pipeev);
1143
1144 close (evpipe [0]); evpipe [0] = 0;
1145 close (evpipe [1]); evpipe [1] = 0;
1146 }
1147
1148#if EV_USE_INOTIFY
1149 if (fs_fd >= 0)
1150 close (fs_fd);
1151#endif
1152
1153 if (backend_fd >= 0)
1154 close (backend_fd);
889 1155
890#if EV_USE_PORT 1156#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1157 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1158#endif
893#if EV_USE_KQUEUE 1159#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1168#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1169 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1170#endif
905 1171
906 for (i = NUMPRI; i--; ) 1172 for (i = NUMPRI; i--; )
1173 {
907 array_free (pending, [i]); 1174 array_free (pending, [i]);
1175#if EV_IDLE_ENABLE
1176 array_free (idle, [i]);
1177#endif
1178 }
1179
1180 ev_free (anfds); anfdmax = 0;
908 1181
909 /* have to use the microsoft-never-gets-it-right macro */ 1182 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 1183 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1184 array_free (timer, EMPTY);
912#if EV_PERIODICS 1185#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1186 array_free (periodic, EMPTY);
914#endif 1187#endif
1188#if EV_FORK_ENABLE
915 array_free (idle, EMPTY0); 1189 array_free (fork, EMPTY);
1190#endif
916 array_free (prepare, EMPTY0); 1191 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1192 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY);
1195#endif
918 1196
919 backend = 0; 1197 backend = 0;
920} 1198}
921 1199
922static void 1200void inline_size infy_fork (EV_P);
1201
1202void inline_size
923loop_fork (EV_P) 1203loop_fork (EV_P)
924{ 1204{
925#if EV_USE_PORT 1205#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1207#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1209 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1210#endif
931#if EV_USE_EPOLL 1211#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1212 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 1213#endif
1214#if EV_USE_INOTIFY
1215 infy_fork (EV_A);
1216#endif
934 1217
935 if (ev_is_active (&sigev)) 1218 if (ev_is_active (&pipeev))
936 { 1219 {
937 /* default loop */ 1220 /* this "locks" the handlers against writing to the pipe */
1221 /* while we modify the fd vars */
1222 gotsig = 1;
1223#if EV_ASYNC_ENABLE
1224 gotasync = 1;
1225#endif
938 1226
939 ev_ref (EV_A); 1227 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 1228 ev_io_stop (EV_A_ &pipeev);
941 close (sigpipe [0]); 1229 close (evpipe [0]);
942 close (sigpipe [1]); 1230 close (evpipe [1]);
943 1231
944 while (pipe (sigpipe))
945 syserr ("(libev) error creating pipe");
946
947 siginit (EV_A); 1232 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ);
948 } 1235 }
949 1236
950 postfork = 0; 1237 postfork = 0;
951} 1238}
952 1239
974} 1261}
975 1262
976void 1263void
977ev_loop_fork (EV_P) 1264ev_loop_fork (EV_P)
978{ 1265{
979 postfork = 1; 1266 postfork = 1; /* must be in line with ev_default_fork */
980} 1267}
981 1268
982#endif 1269#endif
983 1270
984#if EV_MULTIPLICITY 1271#if EV_MULTIPLICITY
987#else 1274#else
988int 1275int
989ev_default_loop (unsigned int flags) 1276ev_default_loop (unsigned int flags)
990#endif 1277#endif
991{ 1278{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 1279 if (!ev_default_loop_ptr)
997 { 1280 {
998#if EV_MULTIPLICITY 1281#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1000#else 1283#else
1003 1286
1004 loop_init (EV_A_ flags); 1287 loop_init (EV_A_ flags);
1005 1288
1006 if (ev_backend (EV_A)) 1289 if (ev_backend (EV_A))
1007 { 1290 {
1008 siginit (EV_A);
1009
1010#ifndef _WIN32 1291#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 1292 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 1293 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 1294 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1295 ev_unref (EV_A); /* child watcher should not keep loop alive */
1031#ifndef _WIN32 1312#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */ 1313 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev); 1314 ev_signal_stop (EV_A_ &childev);
1034#endif 1315#endif
1035 1316
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A); 1317 loop_destroy (EV_A);
1043} 1318}
1044 1319
1045void 1320void
1046ev_default_fork (void) 1321ev_default_fork (void)
1048#if EV_MULTIPLICITY 1323#if EV_MULTIPLICITY
1049 struct ev_loop *loop = ev_default_loop_ptr; 1324 struct ev_loop *loop = ev_default_loop_ptr;
1050#endif 1325#endif
1051 1326
1052 if (backend) 1327 if (backend)
1053 postfork = 1; 1328 postfork = 1; /* must be in line with ev_loop_fork */
1054} 1329}
1055 1330
1056/*****************************************************************************/ 1331/*****************************************************************************/
1057 1332
1058static int 1333void
1059any_pending (EV_P) 1334ev_invoke (EV_P_ void *w, int revents)
1060{ 1335{
1061 int pri; 1336 EV_CB_INVOKE ((W)w, revents);
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068} 1337}
1069 1338
1070inline void 1339void inline_speed
1071call_pending (EV_P) 1340call_pending (EV_P)
1072{ 1341{
1073 int pri; 1342 int pri;
1074 1343
1075 for (pri = NUMPRI; pri--; ) 1344 for (pri = NUMPRI; pri--; )
1077 { 1346 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1348
1080 if (expect_true (p->w)) 1349 if (expect_true (p->w))
1081 { 1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352
1082 p->w->pending = 0; 1353 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1354 EV_CB_INVOKE (p->w, p->events);
1084 } 1355 }
1085 } 1356 }
1086} 1357}
1087 1358
1088inline void 1359void inline_size
1089timers_reify (EV_P) 1360timers_reify (EV_P)
1090{ 1361{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1092 { 1363 {
1093 struct ev_timer *w = timers [0]; 1364 ev_timer *w = (ev_timer *)timers [0];
1094 1365
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1367
1097 /* first reschedule or stop timer */ 1368 /* first reschedule or stop timer */
1098 if (w->repeat) 1369 if (w->repeat)
1099 { 1370 {
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 1372
1102 ((WT)w)->at += w->repeat; 1373 ((WT)w)->at += w->repeat;
1103 if (((WT)w)->at < mn_now) 1374 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now; 1375 ((WT)w)->at = mn_now;
1105 1376
1106 downheap ((WT *)timers, timercnt, 0); 1377 downheap (timers, timercnt, 0);
1107 } 1378 }
1108 else 1379 else
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 1381
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1383 }
1113} 1384}
1114 1385
1115#if EV_PERIODICS 1386#if EV_PERIODIC_ENABLE
1116inline void 1387void inline_size
1117periodics_reify (EV_P) 1388periodics_reify (EV_P)
1118{ 1389{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1120 { 1391 {
1121 struct ev_periodic *w = periodics [0]; 1392 ev_periodic *w = (ev_periodic *)periodics [0];
1122 1393
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1395
1125 /* first reschedule or stop timer */ 1396 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1397 if (w->reschedule_cb)
1127 { 1398 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0); 1401 downheap (periodics, periodiccnt, 0);
1131 } 1402 }
1132 else if (w->interval) 1403 else if (w->interval)
1133 { 1404 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0); 1408 downheap (periodics, periodiccnt, 0);
1137 } 1409 }
1138 else 1410 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1412
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1414 }
1143} 1415}
1144 1416
1145static void 1417static void noinline
1146periodics_reschedule (EV_P) 1418periodics_reschedule (EV_P)
1147{ 1419{
1148 int i; 1420 int i;
1149 1421
1150 /* adjust periodics after time jump */ 1422 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1423 for (i = 0; i < periodiccnt; ++i)
1152 { 1424 {
1153 struct ev_periodic *w = periodics [i]; 1425 ev_periodic *w = (ev_periodic *)periodics [i];
1154 1426
1155 if (w->reschedule_cb) 1427 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1429 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1159 } 1431 }
1160 1432
1161 /* now rebuild the heap */ 1433 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; ) 1434 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1435 downheap (periodics, periodiccnt, i);
1164} 1436}
1165#endif 1437#endif
1166 1438
1167inline int 1439#if EV_IDLE_ENABLE
1168time_update_monotonic (EV_P) 1440void inline_size
1441idle_reify (EV_P)
1169{ 1442{
1443 if (expect_false (idleall))
1444 {
1445 int pri;
1446
1447 for (pri = NUMPRI; pri--; )
1448 {
1449 if (pendingcnt [pri])
1450 break;
1451
1452 if (idlecnt [pri])
1453 {
1454 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1455 break;
1456 }
1457 }
1458 }
1459}
1460#endif
1461
1462void inline_speed
1463time_update (EV_P_ ev_tstamp max_block)
1464{
1465 int i;
1466
1467#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic))
1469 {
1470 ev_tstamp odiff = rtmn_diff;
1471
1170 mn_now = get_clock (); 1472 mn_now = get_clock ();
1171 1473
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1475 /* interpolate in the meantime */
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1476 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 { 1477 {
1174 ev_rt_now = rtmn_diff + mn_now; 1478 ev_rt_now = rtmn_diff + mn_now;
1175 return 0; 1479 return;
1176 } 1480 }
1177 else 1481
1178 {
1179 now_floor = mn_now; 1482 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 1483 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 1484
1185inline void 1485 /* loop a few times, before making important decisions.
1186time_update (EV_P) 1486 * on the choice of "4": one iteration isn't enough,
1187{ 1487 * in case we get preempted during the calls to
1188 int i; 1488 * ev_time and get_clock. a second call is almost guaranteed
1189 1489 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 1490 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 1491 * in the unlikely event of having been preempted here.
1192 { 1492 */
1193 if (time_update_monotonic (EV_A)) 1493 for (i = 4; --i; )
1194 { 1494 {
1195 ev_tstamp odiff = rtmn_diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 1495 rtmn_diff = ev_rt_now - mn_now;
1200 1496
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */ 1498 return; /* all is well */
1203 1499
1204 ev_rt_now = ev_time (); 1500 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1501 mn_now = get_clock ();
1206 now_floor = mn_now; 1502 now_floor = mn_now;
1207 } 1503 }
1208 1504
1209# if EV_PERIODICS 1505# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A);
1507# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 }
1511 else
1512#endif
1513 {
1514 ev_rt_now = ev_time ();
1515
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1517 {
1518#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1519 periodics_reschedule (EV_A);
1211# endif 1520#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */ 1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1228 for (i = 0; i < timercnt; ++i) 1522 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now; 1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 } 1524 }
1231 1525
1232 mn_now = ev_rt_now; 1526 mn_now = ev_rt_now;
1248static int loop_done; 1542static int loop_done;
1249 1543
1250void 1544void
1251ev_loop (EV_P_ int flags) 1545ev_loop (EV_P_ int flags)
1252{ 1546{
1253 double block;
1254 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1548 ? EVUNLOOP_ONE
1549 : EVUNLOOP_CANCEL;
1255 1550
1256 while (activecnt) 1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1552
1553 do
1257 { 1554 {
1555#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid))
1558 {
1559 curpid = getpid ();
1560 postfork = 1;
1561 }
1562#endif
1563
1564#if EV_FORK_ENABLE
1565 /* we might have forked, so queue fork handlers */
1566 if (expect_false (postfork))
1567 if (forkcnt)
1568 {
1569 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1570 call_pending (EV_A);
1571 }
1572#endif
1573
1258 /* queue check watchers (and execute them) */ 1574 /* queue prepare watchers (and execute them) */
1259 if (expect_false (preparecnt)) 1575 if (expect_false (preparecnt))
1260 { 1576 {
1261 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1262 call_pending (EV_A); 1578 call_pending (EV_A);
1263 } 1579 }
1264 1580
1581 if (expect_false (!activecnt))
1582 break;
1583
1265 /* we might have forked, so reify kernel state if necessary */ 1584 /* we might have forked, so reify kernel state if necessary */
1266 if (expect_false (postfork)) 1585 if (expect_false (postfork))
1267 loop_fork (EV_A); 1586 loop_fork (EV_A);
1268 1587
1269 /* update fd-related kernel structures */ 1588 /* update fd-related kernel structures */
1270 fd_reify (EV_A); 1589 fd_reify (EV_A);
1271 1590
1272 /* calculate blocking time */ 1591 /* calculate blocking time */
1592 {
1593 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.;
1273 1595
1274 /* we only need this for !monotonic clock or timers, but as we basically 1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1275 always have timers, we just calculate it always */
1276#if EV_USE_MONOTONIC
1277 if (expect_true (have_monotonic))
1278 time_update_monotonic (EV_A);
1279 else
1280#endif
1281 { 1597 {
1282 ev_rt_now = ev_time (); 1598 /* update time to cancel out callback processing overhead */
1283 mn_now = ev_rt_now; 1599 time_update (EV_A_ 1e100);
1284 }
1285 1600
1286 if (flags & EVLOOP_NONBLOCK || idlecnt)
1287 block = 0.;
1288 else
1289 {
1290 block = MAX_BLOCKTIME; 1601 waittime = MAX_BLOCKTIME;
1291 1602
1292 if (timercnt) 1603 if (timercnt)
1293 { 1604 {
1294 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1295 if (block > to) block = to; 1606 if (waittime > to) waittime = to;
1296 } 1607 }
1297 1608
1298#if EV_PERIODICS 1609#if EV_PERIODIC_ENABLE
1299 if (periodiccnt) 1610 if (periodiccnt)
1300 { 1611 {
1301 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1302 if (block > to) block = to; 1613 if (waittime > to) waittime = to;
1303 } 1614 }
1304#endif 1615#endif
1305 1616
1306 if (expect_false (block < 0.)) block = 0.; 1617 if (expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime;
1619
1620 sleeptime = waittime - backend_fudge;
1621
1622 if (expect_true (sleeptime > io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 {
1627 ev_sleep (sleeptime);
1628 waittime -= sleeptime;
1629 }
1307 } 1630 }
1308 1631
1632 ++loop_count;
1309 backend_poll (EV_A_ block); 1633 backend_poll (EV_A_ waittime);
1310 1634
1311 /* update ev_rt_now, do magic */ 1635 /* update ev_rt_now, do magic */
1312 time_update (EV_A); 1636 time_update (EV_A_ waittime + sleeptime);
1637 }
1313 1638
1314 /* queue pending timers and reschedule them */ 1639 /* queue pending timers and reschedule them */
1315 timers_reify (EV_A); /* relative timers called last */ 1640 timers_reify (EV_A); /* relative timers called last */
1316#if EV_PERIODICS 1641#if EV_PERIODIC_ENABLE
1317 periodics_reify (EV_A); /* absolute timers called first */ 1642 periodics_reify (EV_A); /* absolute timers called first */
1318#endif 1643#endif
1319 1644
1645#if EV_IDLE_ENABLE
1320 /* queue idle watchers unless io or timers are pending */ 1646 /* queue idle watchers unless other events are pending */
1321 if (idlecnt && !any_pending (EV_A)) 1647 idle_reify (EV_A);
1322 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1648#endif
1323 1649
1324 /* queue check watchers, to be executed first */ 1650 /* queue check watchers, to be executed first */
1325 if (expect_false (checkcnt)) 1651 if (expect_false (checkcnt))
1326 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1327 1653
1328 call_pending (EV_A); 1654 call_pending (EV_A);
1329 1655
1330 if (expect_false (loop_done))
1331 break;
1332 } 1656 }
1657 while (expect_true (activecnt && !loop_done));
1333 1658
1334 if (loop_done != 2) 1659 if (loop_done == EVUNLOOP_ONE)
1335 loop_done = 0; 1660 loop_done = EVUNLOOP_CANCEL;
1336} 1661}
1337 1662
1338void 1663void
1339ev_unloop (EV_P_ int how) 1664ev_unloop (EV_P_ int how)
1340{ 1665{
1341 loop_done = how; 1666 loop_done = how;
1342} 1667}
1343 1668
1344/*****************************************************************************/ 1669/*****************************************************************************/
1345 1670
1346inline void 1671void inline_size
1347wlist_add (WL *head, WL elem) 1672wlist_add (WL *head, WL elem)
1348{ 1673{
1349 elem->next = *head; 1674 elem->next = *head;
1350 *head = elem; 1675 *head = elem;
1351} 1676}
1352 1677
1353inline void 1678void inline_size
1354wlist_del (WL *head, WL elem) 1679wlist_del (WL *head, WL elem)
1355{ 1680{
1356 while (*head) 1681 while (*head)
1357 { 1682 {
1358 if (*head == elem) 1683 if (*head == elem)
1363 1688
1364 head = &(*head)->next; 1689 head = &(*head)->next;
1365 } 1690 }
1366} 1691}
1367 1692
1368inline void 1693void inline_speed
1369ev_clear_pending (EV_P_ W w) 1694clear_pending (EV_P_ W w)
1370{ 1695{
1371 if (w->pending) 1696 if (w->pending)
1372 { 1697 {
1373 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1698 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1374 w->pending = 0; 1699 w->pending = 0;
1375 } 1700 }
1376} 1701}
1377 1702
1378inline void 1703int
1704ev_clear_pending (EV_P_ void *w)
1705{
1706 W w_ = (W)w;
1707 int pending = w_->pending;
1708
1709 if (expect_true (pending))
1710 {
1711 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1712 w_->pending = 0;
1713 p->w = 0;
1714 return p->events;
1715 }
1716 else
1717 return 0;
1718}
1719
1720void inline_size
1721pri_adjust (EV_P_ W w)
1722{
1723 int pri = w->priority;
1724 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1725 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1726 w->priority = pri;
1727}
1728
1729void inline_speed
1379ev_start (EV_P_ W w, int active) 1730ev_start (EV_P_ W w, int active)
1380{ 1731{
1381 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1732 pri_adjust (EV_A_ w);
1382 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1383
1384 w->active = active; 1733 w->active = active;
1385 ev_ref (EV_A); 1734 ev_ref (EV_A);
1386} 1735}
1387 1736
1388inline void 1737void inline_size
1389ev_stop (EV_P_ W w) 1738ev_stop (EV_P_ W w)
1390{ 1739{
1391 ev_unref (EV_A); 1740 ev_unref (EV_A);
1392 w->active = 0; 1741 w->active = 0;
1393} 1742}
1394 1743
1395/*****************************************************************************/ 1744/*****************************************************************************/
1396 1745
1397void 1746void noinline
1398ev_io_start (EV_P_ struct ev_io *w) 1747ev_io_start (EV_P_ ev_io *w)
1399{ 1748{
1400 int fd = w->fd; 1749 int fd = w->fd;
1401 1750
1402 if (expect_false (ev_is_active (w))) 1751 if (expect_false (ev_is_active (w)))
1403 return; 1752 return;
1404 1753
1405 assert (("ev_io_start called with negative fd", fd >= 0)); 1754 assert (("ev_io_start called with negative fd", fd >= 0));
1406 1755
1407 ev_start (EV_A_ (W)w, 1); 1756 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1409 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1758 wlist_add (&anfds[fd].head, (WL)w);
1410 1759
1411 fd_change (EV_A_ fd); 1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1761 w->events &= ~EV_IOFDSET;
1412} 1762}
1413 1763
1414void 1764void noinline
1415ev_io_stop (EV_P_ struct ev_io *w) 1765ev_io_stop (EV_P_ ev_io *w)
1416{ 1766{
1417 ev_clear_pending (EV_A_ (W)w); 1767 clear_pending (EV_A_ (W)w);
1418 if (expect_false (!ev_is_active (w))) 1768 if (expect_false (!ev_is_active (w)))
1419 return; 1769 return;
1420 1770
1421 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1422 1772
1423 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1773 wlist_del (&anfds[w->fd].head, (WL)w);
1424 ev_stop (EV_A_ (W)w); 1774 ev_stop (EV_A_ (W)w);
1425 1775
1426 fd_change (EV_A_ w->fd); 1776 fd_change (EV_A_ w->fd, 1);
1427} 1777}
1428 1778
1429void 1779void noinline
1430ev_timer_start (EV_P_ struct ev_timer *w) 1780ev_timer_start (EV_P_ ev_timer *w)
1431{ 1781{
1432 if (expect_false (ev_is_active (w))) 1782 if (expect_false (ev_is_active (w)))
1433 return; 1783 return;
1434 1784
1435 ((WT)w)->at += mn_now; 1785 ((WT)w)->at += mn_now;
1436 1786
1437 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1438 1788
1439 ev_start (EV_A_ (W)w, ++timercnt); 1789 ev_start (EV_A_ (W)w, ++timercnt);
1440 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1441 timers [timercnt - 1] = w; 1791 timers [timercnt - 1] = (WT)w;
1442 upheap ((WT *)timers, timercnt - 1); 1792 upheap (timers, timercnt - 1);
1443 1793
1444 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1445} 1795}
1446 1796
1447void 1797void noinline
1448ev_timer_stop (EV_P_ struct ev_timer *w) 1798ev_timer_stop (EV_P_ ev_timer *w)
1449{ 1799{
1450 ev_clear_pending (EV_A_ (W)w); 1800 clear_pending (EV_A_ (W)w);
1451 if (expect_false (!ev_is_active (w))) 1801 if (expect_false (!ev_is_active (w)))
1452 return; 1802 return;
1453 1803
1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1455 1805
1806 {
1807 int active = ((W)w)->active;
1808
1456 if (expect_true (((W)w)->active < timercnt--)) 1809 if (expect_true (--active < --timercnt))
1457 { 1810 {
1458 timers [((W)w)->active - 1] = timers [timercnt]; 1811 timers [active] = timers [timercnt];
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1812 adjustheap (timers, timercnt, active);
1460 } 1813 }
1814 }
1461 1815
1462 ((WT)w)->at -= mn_now; 1816 ((WT)w)->at -= mn_now;
1463 1817
1464 ev_stop (EV_A_ (W)w); 1818 ev_stop (EV_A_ (W)w);
1465} 1819}
1466 1820
1467void 1821void noinline
1468ev_timer_again (EV_P_ struct ev_timer *w) 1822ev_timer_again (EV_P_ ev_timer *w)
1469{ 1823{
1470 if (ev_is_active (w)) 1824 if (ev_is_active (w))
1471 { 1825 {
1472 if (w->repeat) 1826 if (w->repeat)
1473 { 1827 {
1474 ((WT)w)->at = mn_now + w->repeat; 1828 ((WT)w)->at = mn_now + w->repeat;
1475 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1829 adjustheap (timers, timercnt, ((W)w)->active - 1);
1476 } 1830 }
1477 else 1831 else
1478 ev_timer_stop (EV_A_ w); 1832 ev_timer_stop (EV_A_ w);
1479 } 1833 }
1480 else if (w->repeat) 1834 else if (w->repeat)
1482 w->at = w->repeat; 1836 w->at = w->repeat;
1483 ev_timer_start (EV_A_ w); 1837 ev_timer_start (EV_A_ w);
1484 } 1838 }
1485} 1839}
1486 1840
1487#if EV_PERIODICS 1841#if EV_PERIODIC_ENABLE
1488void 1842void noinline
1489ev_periodic_start (EV_P_ struct ev_periodic *w) 1843ev_periodic_start (EV_P_ ev_periodic *w)
1490{ 1844{
1491 if (expect_false (ev_is_active (w))) 1845 if (expect_false (ev_is_active (w)))
1492 return; 1846 return;
1493 1847
1494 if (w->reschedule_cb) 1848 if (w->reschedule_cb)
1495 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1496 else if (w->interval) 1850 else if (w->interval)
1497 { 1851 {
1498 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1499 /* this formula differs from the one in periodic_reify because we do not always round up */ 1853 /* this formula differs from the one in periodic_reify because we do not always round up */
1500 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1501 } 1855 }
1856 else
1857 ((WT)w)->at = w->offset;
1502 1858
1503 ev_start (EV_A_ (W)w, ++periodiccnt); 1859 ev_start (EV_A_ (W)w, ++periodiccnt);
1504 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1505 periodics [periodiccnt - 1] = w; 1861 periodics [periodiccnt - 1] = (WT)w;
1506 upheap ((WT *)periodics, periodiccnt - 1); 1862 upheap (periodics, periodiccnt - 1);
1507 1863
1508 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1509} 1865}
1510 1866
1511void 1867void noinline
1512ev_periodic_stop (EV_P_ struct ev_periodic *w) 1868ev_periodic_stop (EV_P_ ev_periodic *w)
1513{ 1869{
1514 ev_clear_pending (EV_A_ (W)w); 1870 clear_pending (EV_A_ (W)w);
1515 if (expect_false (!ev_is_active (w))) 1871 if (expect_false (!ev_is_active (w)))
1516 return; 1872 return;
1517 1873
1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1519 1875
1876 {
1877 int active = ((W)w)->active;
1878
1520 if (expect_true (((W)w)->active < periodiccnt--)) 1879 if (expect_true (--active < --periodiccnt))
1521 { 1880 {
1522 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1881 periodics [active] = periodics [periodiccnt];
1523 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1882 adjustheap (periodics, periodiccnt, active);
1524 } 1883 }
1884 }
1525 1885
1526 ev_stop (EV_A_ (W)w); 1886 ev_stop (EV_A_ (W)w);
1527} 1887}
1528 1888
1529void 1889void noinline
1530ev_periodic_again (EV_P_ struct ev_periodic *w) 1890ev_periodic_again (EV_P_ ev_periodic *w)
1531{ 1891{
1532 /* TODO: use adjustheap and recalculation */ 1892 /* TODO: use adjustheap and recalculation */
1533 ev_periodic_stop (EV_A_ w); 1893 ev_periodic_stop (EV_A_ w);
1534 ev_periodic_start (EV_A_ w); 1894 ev_periodic_start (EV_A_ w);
1535} 1895}
1536#endif 1896#endif
1537 1897
1538void
1539ev_idle_start (EV_P_ struct ev_idle *w)
1540{
1541 if (expect_false (ev_is_active (w)))
1542 return;
1543
1544 ev_start (EV_A_ (W)w, ++idlecnt);
1545 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1546 idles [idlecnt - 1] = w;
1547}
1548
1549void
1550ev_idle_stop (EV_P_ struct ev_idle *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 idles [((W)w)->active - 1] = idles [--idlecnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560void
1561ev_prepare_start (EV_P_ struct ev_prepare *w)
1562{
1563 if (expect_false (ev_is_active (w)))
1564 return;
1565
1566 ev_start (EV_A_ (W)w, ++preparecnt);
1567 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1568 prepares [preparecnt - 1] = w;
1569}
1570
1571void
1572ev_prepare_stop (EV_P_ struct ev_prepare *w)
1573{
1574 ev_clear_pending (EV_A_ (W)w);
1575 if (expect_false (!ev_is_active (w)))
1576 return;
1577
1578 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1579 ev_stop (EV_A_ (W)w);
1580}
1581
1582void
1583ev_check_start (EV_P_ struct ev_check *w)
1584{
1585 if (expect_false (ev_is_active (w)))
1586 return;
1587
1588 ev_start (EV_A_ (W)w, ++checkcnt);
1589 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1590 checks [checkcnt - 1] = w;
1591}
1592
1593void
1594ev_check_stop (EV_P_ struct ev_check *w)
1595{
1596 ev_clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w)))
1598 return;
1599
1600 checks [((W)w)->active - 1] = checks [--checkcnt];
1601 ev_stop (EV_A_ (W)w);
1602}
1603
1604#ifndef SA_RESTART 1898#ifndef SA_RESTART
1605# define SA_RESTART 0 1899# define SA_RESTART 0
1606#endif 1900#endif
1607 1901
1608void 1902void noinline
1609ev_signal_start (EV_P_ struct ev_signal *w) 1903ev_signal_start (EV_P_ ev_signal *w)
1610{ 1904{
1611#if EV_MULTIPLICITY 1905#if EV_MULTIPLICITY
1612 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1613#endif 1907#endif
1614 if (expect_false (ev_is_active (w))) 1908 if (expect_false (ev_is_active (w)))
1615 return; 1909 return;
1616 1910
1617 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1618 1912
1913 evpipe_init (EV_A);
1914
1915 {
1916#ifndef _WIN32
1917 sigset_t full, prev;
1918 sigfillset (&full);
1919 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif
1921
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1923
1924#ifndef _WIN32
1925 sigprocmask (SIG_SETMASK, &prev, 0);
1926#endif
1927 }
1928
1619 ev_start (EV_A_ (W)w, 1); 1929 ev_start (EV_A_ (W)w, 1);
1620 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1621 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1930 wlist_add (&signals [w->signum - 1].head, (WL)w);
1622 1931
1623 if (!((WL)w)->next) 1932 if (!((WL)w)->next)
1624 { 1933 {
1625#if _WIN32 1934#if _WIN32
1626 signal (w->signum, sighandler); 1935 signal (w->signum, ev_sighandler);
1627#else 1936#else
1628 struct sigaction sa; 1937 struct sigaction sa;
1629 sa.sa_handler = sighandler; 1938 sa.sa_handler = ev_sighandler;
1630 sigfillset (&sa.sa_mask); 1939 sigfillset (&sa.sa_mask);
1631 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1632 sigaction (w->signum, &sa, 0); 1941 sigaction (w->signum, &sa, 0);
1633#endif 1942#endif
1634 } 1943 }
1635} 1944}
1636 1945
1637void 1946void noinline
1638ev_signal_stop (EV_P_ struct ev_signal *w) 1947ev_signal_stop (EV_P_ ev_signal *w)
1639{ 1948{
1640 ev_clear_pending (EV_A_ (W)w); 1949 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 1950 if (expect_false (!ev_is_active (w)))
1642 return; 1951 return;
1643 1952
1644 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1953 wlist_del (&signals [w->signum - 1].head, (WL)w);
1645 ev_stop (EV_A_ (W)w); 1954 ev_stop (EV_A_ (W)w);
1646 1955
1647 if (!signals [w->signum - 1].head) 1956 if (!signals [w->signum - 1].head)
1648 signal (w->signum, SIG_DFL); 1957 signal (w->signum, SIG_DFL);
1649} 1958}
1650 1959
1651void 1960void
1652ev_child_start (EV_P_ struct ev_child *w) 1961ev_child_start (EV_P_ ev_child *w)
1653{ 1962{
1654#if EV_MULTIPLICITY 1963#if EV_MULTIPLICITY
1655 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1656#endif 1965#endif
1657 if (expect_false (ev_is_active (w))) 1966 if (expect_false (ev_is_active (w)))
1658 return; 1967 return;
1659 1968
1660 ev_start (EV_A_ (W)w, 1); 1969 ev_start (EV_A_ (W)w, 1);
1661 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1662} 1971}
1663 1972
1664void 1973void
1665ev_child_stop (EV_P_ struct ev_child *w) 1974ev_child_stop (EV_P_ ev_child *w)
1666{ 1975{
1667 ev_clear_pending (EV_A_ (W)w); 1976 clear_pending (EV_A_ (W)w);
1668 if (expect_false (!ev_is_active (w))) 1977 if (expect_false (!ev_is_active (w)))
1669 return; 1978 return;
1670 1979
1671 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1672 ev_stop (EV_A_ (W)w); 1981 ev_stop (EV_A_ (W)w);
1673} 1982}
1674 1983
1675#if EV_MULTIPLICITY 1984#if EV_STAT_ENABLE
1985
1986# ifdef _WIN32
1987# undef lstat
1988# define lstat(a,b) _stati64 (a,b)
1989# endif
1990
1991#define DEF_STAT_INTERVAL 5.0074891
1992#define MIN_STAT_INTERVAL 0.1074891
1993
1994static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1995
1996#if EV_USE_INOTIFY
1997# define EV_INOTIFY_BUFSIZE 8192
1998
1999static void noinline
2000infy_add (EV_P_ ev_stat *w)
2001{
2002 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2003
2004 if (w->wd < 0)
2005 {
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2007
2008 /* monitor some parent directory for speedup hints */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 {
2011 char path [4096];
2012 strcpy (path, w->path);
2013
2014 do
2015 {
2016 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2017 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2018
2019 char *pend = strrchr (path, '/');
2020
2021 if (!pend)
2022 break; /* whoops, no '/', complain to your admin */
2023
2024 *pend = 0;
2025 w->wd = inotify_add_watch (fs_fd, path, mask);
2026 }
2027 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2028 }
2029 }
2030 else
2031 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2032
2033 if (w->wd >= 0)
2034 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2035}
2036
2037static void noinline
2038infy_del (EV_P_ ev_stat *w)
2039{
2040 int slot;
2041 int wd = w->wd;
2042
2043 if (wd < 0)
2044 return;
2045
2046 w->wd = -2;
2047 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2048 wlist_del (&fs_hash [slot].head, (WL)w);
2049
2050 /* remove this watcher, if others are watching it, they will rearm */
2051 inotify_rm_watch (fs_fd, wd);
2052}
2053
2054static void noinline
2055infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2056{
2057 if (slot < 0)
2058 /* overflow, need to check for all hahs slots */
2059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2060 infy_wd (EV_A_ slot, wd, ev);
2061 else
2062 {
2063 WL w_;
2064
2065 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2066 {
2067 ev_stat *w = (ev_stat *)w_;
2068 w_ = w_->next; /* lets us remove this watcher and all before it */
2069
2070 if (w->wd == wd || wd == -1)
2071 {
2072 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2073 {
2074 w->wd = -1;
2075 infy_add (EV_A_ w); /* re-add, no matter what */
2076 }
2077
2078 stat_timer_cb (EV_A_ &w->timer, 0);
2079 }
2080 }
2081 }
2082}
2083
1676static void 2084static void
1677embed_cb (EV_P_ struct ev_io *io, int revents) 2085infy_cb (EV_P_ ev_io *w, int revents)
1678{ 2086{
1679 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 2087 char buf [EV_INOTIFY_BUFSIZE];
2088 struct inotify_event *ev = (struct inotify_event *)buf;
2089 int ofs;
2090 int len = read (fs_fd, buf, sizeof (buf));
1680 2091
2092 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2093 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2094}
2095
2096void inline_size
2097infy_init (EV_P)
2098{
2099 if (fs_fd != -2)
2100 return;
2101
2102 fs_fd = inotify_init ();
2103
2104 if (fs_fd >= 0)
2105 {
2106 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2107 ev_set_priority (&fs_w, EV_MAXPRI);
2108 ev_io_start (EV_A_ &fs_w);
2109 }
2110}
2111
2112void inline_size
2113infy_fork (EV_P)
2114{
2115 int slot;
2116
2117 if (fs_fd < 0)
2118 return;
2119
2120 close (fs_fd);
2121 fs_fd = inotify_init ();
2122
2123 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2124 {
2125 WL w_ = fs_hash [slot].head;
2126 fs_hash [slot].head = 0;
2127
2128 while (w_)
2129 {
2130 ev_stat *w = (ev_stat *)w_;
2131 w_ = w_->next; /* lets us add this watcher */
2132
2133 w->wd = -1;
2134
2135 if (fs_fd >= 0)
2136 infy_add (EV_A_ w); /* re-add, no matter what */
2137 else
2138 ev_timer_start (EV_A_ &w->timer);
2139 }
2140
2141 }
2142}
2143
2144#endif
2145
2146void
2147ev_stat_stat (EV_P_ ev_stat *w)
2148{
2149 if (lstat (w->path, &w->attr) < 0)
2150 w->attr.st_nlink = 0;
2151 else if (!w->attr.st_nlink)
2152 w->attr.st_nlink = 1;
2153}
2154
2155static void noinline
2156stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2157{
2158 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2159
2160 /* we copy this here each the time so that */
2161 /* prev has the old value when the callback gets invoked */
2162 w->prev = w->attr;
2163 ev_stat_stat (EV_A_ w);
2164
2165 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2166 if (
2167 w->prev.st_dev != w->attr.st_dev
2168 || w->prev.st_ino != w->attr.st_ino
2169 || w->prev.st_mode != w->attr.st_mode
2170 || w->prev.st_nlink != w->attr.st_nlink
2171 || w->prev.st_uid != w->attr.st_uid
2172 || w->prev.st_gid != w->attr.st_gid
2173 || w->prev.st_rdev != w->attr.st_rdev
2174 || w->prev.st_size != w->attr.st_size
2175 || w->prev.st_atime != w->attr.st_atime
2176 || w->prev.st_mtime != w->attr.st_mtime
2177 || w->prev.st_ctime != w->attr.st_ctime
2178 ) {
2179 #if EV_USE_INOTIFY
2180 infy_del (EV_A_ w);
2181 infy_add (EV_A_ w);
2182 ev_stat_stat (EV_A_ w); /* avoid race... */
2183 #endif
2184
1681 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2185 ev_feed_event (EV_A_ w, EV_STAT);
1682 ev_loop (w->loop, EVLOOP_NONBLOCK); 2186 }
1683} 2187}
1684 2188
1685void 2189void
1686ev_embed_start (EV_P_ struct ev_embed *w) 2190ev_stat_start (EV_P_ ev_stat *w)
1687{ 2191{
1688 if (expect_false (ev_is_active (w))) 2192 if (expect_false (ev_is_active (w)))
1689 return; 2193 return;
1690 2194
2195 /* since we use memcmp, we need to clear any padding data etc. */
2196 memset (&w->prev, 0, sizeof (ev_statdata));
2197 memset (&w->attr, 0, sizeof (ev_statdata));
2198
2199 ev_stat_stat (EV_A_ w);
2200
2201 if (w->interval < MIN_STAT_INTERVAL)
2202 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2203
2204 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2205 ev_set_priority (&w->timer, ev_priority (w));
2206
2207#if EV_USE_INOTIFY
2208 infy_init (EV_A);
2209
2210 if (fs_fd >= 0)
2211 infy_add (EV_A_ w);
2212 else
2213#endif
2214 ev_timer_start (EV_A_ &w->timer);
2215
2216 ev_start (EV_A_ (W)w, 1);
2217}
2218
2219void
2220ev_stat_stop (EV_P_ ev_stat *w)
2221{
2222 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w)))
2224 return;
2225
2226#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w);
2228#endif
2229 ev_timer_stop (EV_A_ &w->timer);
2230
2231 ev_stop (EV_A_ (W)w);
2232}
2233#endif
2234
2235#if EV_IDLE_ENABLE
2236void
2237ev_idle_start (EV_P_ ev_idle *w)
2238{
2239 if (expect_false (ev_is_active (w)))
2240 return;
2241
2242 pri_adjust (EV_A_ (W)w);
2243
1691 { 2244 {
2245 int active = ++idlecnt [ABSPRI (w)];
2246
2247 ++idleall;
2248 ev_start (EV_A_ (W)w, active);
2249
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w;
2252 }
2253}
2254
2255void
2256ev_idle_stop (EV_P_ ev_idle *w)
2257{
2258 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w)))
2260 return;
2261
2262 {
2263 int active = ((W)w)->active;
2264
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2267
2268 ev_stop (EV_A_ (W)w);
2269 --idleall;
2270 }
2271}
2272#endif
2273
2274void
2275ev_prepare_start (EV_P_ ev_prepare *w)
2276{
2277 if (expect_false (ev_is_active (w)))
2278 return;
2279
2280 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w;
2283}
2284
2285void
2286ev_prepare_stop (EV_P_ ev_prepare *w)
2287{
2288 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w)))
2290 return;
2291
2292 {
2293 int active = ((W)w)->active;
2294 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active;
2296 }
2297
2298 ev_stop (EV_A_ (W)w);
2299}
2300
2301void
2302ev_check_start (EV_P_ ev_check *w)
2303{
2304 if (expect_false (ev_is_active (w)))
2305 return;
2306
2307 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w;
2310}
2311
2312void
2313ev_check_stop (EV_P_ ev_check *w)
2314{
2315 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w)))
2317 return;
2318
2319 {
2320 int active = ((W)w)->active;
2321 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active;
2323 }
2324
2325 ev_stop (EV_A_ (W)w);
2326}
2327
2328#if EV_EMBED_ENABLE
2329void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w)
2331{
2332 ev_loop (w->other, EVLOOP_NONBLOCK);
2333}
2334
2335static void
2336embed_io_cb (EV_P_ ev_io *io, int revents)
2337{
2338 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2339
2340 if (ev_cb (w))
2341 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2342 else
2343 ev_loop (w->other, EVLOOP_NONBLOCK);
2344}
2345
2346static void
2347embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2348{
2349 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2350
2351 {
1692 struct ev_loop *loop = w->loop; 2352 struct ev_loop *loop = w->other;
2353
2354 while (fdchangecnt)
2355 {
2356 fd_reify (EV_A);
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2358 }
2359 }
2360}
2361
2362#if 0
2363static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2365{
2366 ev_idle_stop (EV_A_ idle);
2367}
2368#endif
2369
2370void
2371ev_embed_start (EV_P_ ev_embed *w)
2372{
2373 if (expect_false (ev_is_active (w)))
2374 return;
2375
2376 {
2377 struct ev_loop *loop = w->other;
1693 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1694 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1695 } 2380 }
1696 2381
2382 ev_set_priority (&w->io, ev_priority (w));
1697 ev_io_start (EV_A_ &w->io); 2383 ev_io_start (EV_A_ &w->io);
2384
2385 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare);
2388
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390
1698 ev_start (EV_A_ (W)w, 1); 2391 ev_start (EV_A_ (W)w, 1);
1699} 2392}
1700 2393
1701void 2394void
1702ev_embed_stop (EV_P_ struct ev_embed *w) 2395ev_embed_stop (EV_P_ ev_embed *w)
1703{ 2396{
1704 ev_clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 2398 if (expect_false (!ev_is_active (w)))
1706 return; 2399 return;
1707 2400
1708 ev_io_stop (EV_A_ &w->io); 2401 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare);
2403
1709 ev_stop (EV_A_ (W)w); 2404 ev_stop (EV_A_ (W)w);
1710} 2405}
1711#endif 2406#endif
1712 2407
2408#if EV_FORK_ENABLE
2409void
2410ev_fork_start (EV_P_ ev_fork *w)
2411{
2412 if (expect_false (ev_is_active (w)))
2413 return;
2414
2415 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w;
2418}
2419
2420void
2421ev_fork_stop (EV_P_ ev_fork *w)
2422{
2423 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w)))
2425 return;
2426
2427 {
2428 int active = ((W)w)->active;
2429 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active;
2431 }
2432
2433 ev_stop (EV_A_ (W)w);
2434}
2435#endif
2436
2437#if EV_ASYNC_ENABLE
2438void
2439ev_async_start (EV_P_ ev_async *w)
2440{
2441 if (expect_false (ev_is_active (w)))
2442 return;
2443
2444 evpipe_init (EV_A);
2445
2446 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w;
2449}
2450
2451void
2452ev_async_stop (EV_P_ ev_async *w)
2453{
2454 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w)))
2456 return;
2457
2458 {
2459 int active = ((W)w)->active;
2460 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active;
2462 }
2463
2464 ev_stop (EV_A_ (W)w);
2465}
2466
2467void
2468ev_async_send (EV_P_ ev_async *w)
2469{
2470 w->sent = 1;
2471 evpipe_write (EV_A_ &gotasync);
2472}
2473#endif
2474
1713/*****************************************************************************/ 2475/*****************************************************************************/
1714 2476
1715struct ev_once 2477struct ev_once
1716{ 2478{
1717 struct ev_io io; 2479 ev_io io;
1718 struct ev_timer to; 2480 ev_timer to;
1719 void (*cb)(int revents, void *arg); 2481 void (*cb)(int revents, void *arg);
1720 void *arg; 2482 void *arg;
1721}; 2483};
1722 2484
1723static void 2485static void
1732 2494
1733 cb (revents, arg); 2495 cb (revents, arg);
1734} 2496}
1735 2497
1736static void 2498static void
1737once_cb_io (EV_P_ struct ev_io *w, int revents) 2499once_cb_io (EV_P_ ev_io *w, int revents)
1738{ 2500{
1739 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1740} 2502}
1741 2503
1742static void 2504static void
1743once_cb_to (EV_P_ struct ev_timer *w, int revents) 2505once_cb_to (EV_P_ ev_timer *w, int revents)
1744{ 2506{
1745 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2507 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1746} 2508}
1747 2509
1748void 2510void
1772 ev_timer_set (&once->to, timeout, 0.); 2534 ev_timer_set (&once->to, timeout, 0.);
1773 ev_timer_start (EV_A_ &once->to); 2535 ev_timer_start (EV_A_ &once->to);
1774 } 2536 }
1775} 2537}
1776 2538
2539#if EV_MULTIPLICITY
2540 #include "ev_wrap.h"
2541#endif
2542
1777#ifdef __cplusplus 2543#ifdef __cplusplus
1778} 2544}
1779#endif 2545#endif
1780 2546

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines