ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.218 by root, Sun Mar 23 00:05:03 2008 UTC vs.
Revision 1.355 by root, Fri Oct 22 10:09:12 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
51# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
54# endif 65# endif
55# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
57# endif 68# endif
58# else 69# else
59# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
61# endif 72# endif
62# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
64# endif 75# endif
65# endif 76# endif
66 77
78# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
70# else 82# else
83# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
73# endif 94# endif
74 95
96# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 99# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 100# else
101# undef EV_USE_POLL
87# define EV_USE_POLL 0 102# define EV_USE_POLL 0
88# endif
89# endif 103# endif
90 104
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
94# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
97# endif 112# endif
98 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
105# endif 121# endif
106 122
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
110# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
113# endif 130# endif
114 131
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
121# endif 139# endif
122 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
123#endif 159#endif
124 160
125#include <math.h> 161#include <math.h>
126#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
127#include <fcntl.h> 164#include <fcntl.h>
128#include <stddef.h> 165#include <stddef.h>
129 166
130#include <stdio.h> 167#include <stdio.h>
131 168
132#include <assert.h> 169#include <assert.h>
133#include <errno.h> 170#include <errno.h>
134#include <sys/types.h> 171#include <sys/types.h>
135#include <time.h> 172#include <time.h>
173#include <limits.h>
136 174
137#include <signal.h> 175#include <signal.h>
138 176
139#ifdef EV_H 177#ifdef EV_H
140# include EV_H 178# include EV_H
141#else 179#else
142# include "ev.h" 180# include "ev.h"
143#endif 181#endif
182
183EV_CPP(extern "C" {)
144 184
145#ifndef _WIN32 185#ifndef _WIN32
146# include <sys/time.h> 186# include <sys/time.h>
147# include <sys/wait.h> 187# include <sys/wait.h>
148# include <unistd.h> 188# include <unistd.h>
149#else 189#else
190# include <io.h>
150# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 192# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
154# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
155#endif 242# endif
156 243#endif
157/**/
158 244
159#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
160# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
161#endif 251#endif
162 252
163#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 255#endif
166 256
167#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
168# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
169#endif 263#endif
170 264
171#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 267#endif
174 268
175#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
176# ifdef _WIN32 270# ifdef _WIN32
177# define EV_USE_POLL 0 271# define EV_USE_POLL 0
178# else 272# else
179# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 274# endif
181#endif 275#endif
182 276
183#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
184# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
185#endif 283#endif
186 284
187#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
189#endif 287#endif
191#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 290# define EV_USE_PORT 0
193#endif 291#endif
194 292
195#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
196# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
197#endif 299#endif
198 300
199#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 312# else
203# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
204# endif 314# endif
205#endif 315#endif
206 316
207#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 320# else
211# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
212# endif 322# endif
213#endif 323#endif
214 324
215/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
216 364
217#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
220#endif 368#endif
234# include <sys/select.h> 382# include <sys/select.h>
235# endif 383# endif
236#endif 384#endif
237 385
238#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/utsname.h>
388# include <sys/statfs.h>
239# include <sys/inotify.h> 389# include <sys/inotify.h>
390/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
391# ifndef IN_DONT_FOLLOW
392# undef EV_USE_INOTIFY
393# define EV_USE_INOTIFY 0
394# endif
240#endif 395#endif
241 396
242#if EV_SELECT_IS_WINSOCKET 397#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 398# include <winsock.h>
244#endif 399#endif
245 400
401#if EV_USE_EVENTFD
402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
403# include <stdint.h>
404# ifndef EFD_NONBLOCK
405# define EFD_NONBLOCK O_NONBLOCK
406# endif
407# ifndef EFD_CLOEXEC
408# ifdef O_CLOEXEC
409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
413# endif
414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437#endif
438
246/**/ 439/**/
440
441#if EV_VERIFY >= 3
442# define EV_FREQUENT_CHECK ev_verify (EV_A)
443#else
444# define EV_FREQUENT_CHECK do { } while (0)
445#endif
247 446
248/* 447/*
249 * This is used to avoid floating point rounding problems. 448 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 449 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 450 * to ensure progress, time-wise, even when rounding
255 */ 454 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257 456
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 459
460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
261 462
262#if __GNUC__ >= 4 463#if __GNUC__ >= 4
263# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
265#else 466#else
266# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
267# define noinline 468# define noinline
268# if __STDC_VERSION__ < 199901L 469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 470# define inline
270# endif 471# endif
271#endif 472#endif
272 473
273#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline 476#define inline_size static inline
276 477
277#if EV_MINIMAL 478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
278# define inline_speed static noinline 481# define inline_speed static noinline
482#endif
483
484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
279#else 488#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
285 491
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
288 494
289typedef ev_watcher *W; 495typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
292 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architectures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
293#if EV_USE_MONOTONIC 508#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 520#endif
298 521
299#ifdef _WIN32 522#ifdef _WIN32
300# include "ev_win32.c" 523# include "ev_win32.c"
301#endif 524#endif
302 525
303/*****************************************************************************/ 526/*****************************************************************************/
304 527
528static unsigned int noinline
529ev_linux_version (void)
530{
531#ifdef __linux
532 struct utsname buf;
533 unsigned int v;
534 int i;
535 char *p = buf.release;
536
537 if (uname (&buf))
538 return 0;
539
540 for (i = 3+1; --i; )
541 {
542 unsigned int c = 0;
543
544 for (;;)
545 {
546 if (*p >= '0' && *p <= '9')
547 c = c * 10 + *p++ - '0';
548 else
549 {
550 p += *p == '.';
551 break;
552 }
553 }
554
555 v = (v << 8) | c;
556 }
557
558 return v;
559#else
560 return 0;
561#endif
562}
563
564/*****************************************************************************/
565
566#if EV_AVOID_STDIO
567static void noinline
568ev_printerr (const char *msg)
569{
570 write (STDERR_FILENO, msg, strlen (msg));
571}
572#endif
573
305static void (*syserr_cb)(const char *msg); 574static void (*syserr_cb)(const char *msg);
306 575
307void 576void
308ev_set_syserr_cb (void (*cb)(const char *msg)) 577ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 578{
310 syserr_cb = cb; 579 syserr_cb = cb;
311} 580}
312 581
313static void noinline 582static void noinline
314syserr (const char *msg) 583ev_syserr (const char *msg)
315{ 584{
316 if (!msg) 585 if (!msg)
317 msg = "(libev) system error"; 586 msg = "(libev) system error";
318 587
319 if (syserr_cb) 588 if (syserr_cb)
320 syserr_cb (msg); 589 syserr_cb (msg);
321 else 590 else
322 { 591 {
592#if EV_AVOID_STDIO
593 const char *err = strerror (errno);
594
595 ev_printerr (msg);
596 ev_printerr (": ");
597 ev_printerr (err);
598 ev_printerr ("\n");
599#else
323 perror (msg); 600 perror (msg);
601#endif
324 abort (); 602 abort ();
325 } 603 }
326} 604}
327 605
606static void *
607ev_realloc_emul (void *ptr, long size)
608{
609#if __GLIBC__
610 return realloc (ptr, size);
611#else
612 /* some systems, notably openbsd and darwin, fail to properly
613 * implement realloc (x, 0) (as required by both ansi c-89 and
614 * the single unix specification, so work around them here.
615 */
616
617 if (size)
618 return realloc (ptr, size);
619
620 free (ptr);
621 return 0;
622#endif
623}
624
328static void *(*alloc)(void *ptr, long size); 625static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 626
330void 627void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 628ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 629{
333 alloc = cb; 630 alloc = cb;
334} 631}
335 632
336inline_speed void * 633inline_speed void *
337ev_realloc (void *ptr, long size) 634ev_realloc (void *ptr, long size)
338{ 635{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 636 ptr = alloc (ptr, size);
340 637
341 if (!ptr && size) 638 if (!ptr && size)
342 { 639 {
640#if EV_AVOID_STDIO
641 ev_printerr ("libev: memory allocation failed, aborting.\n");
642#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 643 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
644#endif
344 abort (); 645 abort ();
345 } 646 }
346 647
347 return ptr; 648 return ptr;
348} 649}
350#define ev_malloc(size) ev_realloc (0, (size)) 651#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 652#define ev_free(ptr) ev_realloc ((ptr), 0)
352 653
353/*****************************************************************************/ 654/*****************************************************************************/
354 655
656/* set in reify when reification needed */
657#define EV_ANFD_REIFY 1
658
659/* file descriptor info structure */
355typedef struct 660typedef struct
356{ 661{
357 WL head; 662 WL head;
358 unsigned char events; 663 unsigned char events; /* the events watched for */
664 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
665 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 666 unsigned char unused;
667#if EV_USE_EPOLL
668 unsigned int egen; /* generation counter to counter epoll bugs */
669#endif
360#if EV_SELECT_IS_WINSOCKET 670#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 671 SOCKET handle;
362#endif 672#endif
363} ANFD; 673} ANFD;
364 674
675/* stores the pending event set for a given watcher */
365typedef struct 676typedef struct
366{ 677{
367 W w; 678 W w;
368 int events; 679 int events; /* the pending event set for the given watcher */
369} ANPENDING; 680} ANPENDING;
370 681
371#if EV_USE_INOTIFY 682#if EV_USE_INOTIFY
683/* hash table entry per inotify-id */
372typedef struct 684typedef struct
373{ 685{
374 WL head; 686 WL head;
375} ANFS; 687} ANFS;
688#endif
689
690/* Heap Entry */
691#if EV_HEAP_CACHE_AT
692 /* a heap element */
693 typedef struct {
694 ev_tstamp at;
695 WT w;
696 } ANHE;
697
698 #define ANHE_w(he) (he).w /* access watcher, read-write */
699 #define ANHE_at(he) (he).at /* access cached at, read-only */
700 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
701#else
702 /* a heap element */
703 typedef WT ANHE;
704
705 #define ANHE_w(he) (he)
706 #define ANHE_at(he) (he)->at
707 #define ANHE_at_cache(he)
376#endif 708#endif
377 709
378#if EV_MULTIPLICITY 710#if EV_MULTIPLICITY
379 711
380 struct ev_loop 712 struct ev_loop
399 731
400 static int ev_default_loop_ptr; 732 static int ev_default_loop_ptr;
401 733
402#endif 734#endif
403 735
736#if EV_FEATURE_API
737# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
738# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
739# define EV_INVOKE_PENDING invoke_cb (EV_A)
740#else
741# define EV_RELEASE_CB (void)0
742# define EV_ACQUIRE_CB (void)0
743# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
744#endif
745
746#define EVBREAK_RECURSE 0x80
747
404/*****************************************************************************/ 748/*****************************************************************************/
405 749
750#ifndef EV_HAVE_EV_TIME
406ev_tstamp 751ev_tstamp
407ev_time (void) 752ev_time (void)
408{ 753{
409#if EV_USE_REALTIME 754#if EV_USE_REALTIME
755 if (expect_true (have_realtime))
756 {
410 struct timespec ts; 757 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 758 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 759 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 760 }
761#endif
762
414 struct timeval tv; 763 struct timeval tv;
415 gettimeofday (&tv, 0); 764 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 765 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 766}
767#endif
419 768
420ev_tstamp inline_size 769inline_size ev_tstamp
421get_clock (void) 770get_clock (void)
422{ 771{
423#if EV_USE_MONOTONIC 772#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 773 if (expect_true (have_monotonic))
425 { 774 {
446 if (delay > 0.) 795 if (delay > 0.)
447 { 796 {
448#if EV_USE_NANOSLEEP 797#if EV_USE_NANOSLEEP
449 struct timespec ts; 798 struct timespec ts;
450 799
451 ts.tv_sec = (time_t)delay; 800 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 801 nanosleep (&ts, 0);
455#elif defined(_WIN32) 802#elif defined(_WIN32)
456 Sleep ((unsigned long)(delay * 1e3)); 803 Sleep ((unsigned long)(delay * 1e3));
457#else 804#else
458 struct timeval tv; 805 struct timeval tv;
459 806
460 tv.tv_sec = (time_t)delay; 807 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 808 /* something not guaranteed by newer posix versions, but guaranteed */
462 809 /* by older ones */
810 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 811 select (0, 0, 0, 0, &tv);
464#endif 812#endif
465 } 813 }
466} 814}
467 815
468/*****************************************************************************/ 816/*****************************************************************************/
469 817
470int inline_size 818#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
819
820/* find a suitable new size for the given array, */
821/* hopefully by rounding to a nice-to-malloc size */
822inline_size int
471array_nextsize (int elem, int cur, int cnt) 823array_nextsize (int elem, int cur, int cnt)
472{ 824{
473 int ncur = cur + 1; 825 int ncur = cur + 1;
474 826
475 do 827 do
476 ncur <<= 1; 828 ncur <<= 1;
477 while (cnt > ncur); 829 while (cnt > ncur);
478 830
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 831 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 832 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 833 {
482 ncur *= elem; 834 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 835 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 836 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 837 ncur /= elem;
486 } 838 }
487 839
488 return ncur; 840 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 844array_realloc (int elem, void *base, int *cur, int cnt)
493{ 845{
494 *cur = array_nextsize (elem, *cur, cnt); 846 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 847 return ev_realloc (base, elem * *cur);
496} 848}
849
850#define array_init_zero(base,count) \
851 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 852
498#define array_needsize(type,base,cur,cnt,init) \ 853#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 854 if (expect_false ((cnt) > (cur))) \
500 { \ 855 { \
501 int ocur_ = (cur); \ 856 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 868 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 869 }
515#endif 870#endif
516 871
517#define array_free(stem, idx) \ 872#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 873 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 874
520/*****************************************************************************/ 875/*****************************************************************************/
876
877/* dummy callback for pending events */
878static void noinline
879pendingcb (EV_P_ ev_prepare *w, int revents)
880{
881}
521 882
522void noinline 883void noinline
523ev_feed_event (EV_P_ void *w, int revents) 884ev_feed_event (EV_P_ void *w, int revents)
524{ 885{
525 W w_ = (W)w; 886 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 895 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 896 pendings [pri][w_->pending - 1].events = revents;
536 } 897 }
537} 898}
538 899
539void inline_speed 900inline_speed void
901feed_reverse (EV_P_ W w)
902{
903 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
904 rfeeds [rfeedcnt++] = w;
905}
906
907inline_size void
908feed_reverse_done (EV_P_ int revents)
909{
910 do
911 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
912 while (rfeedcnt);
913}
914
915inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 916queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 917{
542 int i; 918 int i;
543 919
544 for (i = 0; i < eventcnt; ++i) 920 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 921 ev_feed_event (EV_A_ events [i], type);
546} 922}
547 923
548/*****************************************************************************/ 924/*****************************************************************************/
549 925
550void inline_size 926inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 927fd_event_nocheck (EV_P_ int fd, int revents)
565{ 928{
566 ANFD *anfd = anfds + fd; 929 ANFD *anfd = anfds + fd;
567 ev_io *w; 930 ev_io *w;
568 931
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 932 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 936 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 937 ev_feed_event (EV_A_ (W)w, ev);
575 } 938 }
576} 939}
577 940
941/* do not submit kernel events for fds that have reify set */
942/* because that means they changed while we were polling for new events */
943inline_speed void
944fd_event (EV_P_ int fd, int revents)
945{
946 ANFD *anfd = anfds + fd;
947
948 if (expect_true (!anfd->reify))
949 fd_event_nocheck (EV_A_ fd, revents);
950}
951
578void 952void
579ev_feed_fd_event (EV_P_ int fd, int revents) 953ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 954{
581 if (fd >= 0 && fd < anfdmax) 955 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 956 fd_event_nocheck (EV_A_ fd, revents);
583} 957}
584 958
585void inline_size 959/* make sure the external fd watch events are in-sync */
960/* with the kernel/libev internal state */
961inline_size void
586fd_reify (EV_P) 962fd_reify (EV_P)
587{ 963{
588 int i; 964 int i;
589 965
590 for (i = 0; i < fdchangecnt; ++i) 966 for (i = 0; i < fdchangecnt; ++i)
591 { 967 {
592 int fd = fdchanges [i]; 968 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 969 ANFD *anfd = anfds + fd;
594 ev_io *w; 970 ev_io *w;
595 971
596 unsigned char events = 0; 972 unsigned char o_events = anfd->events;
973 unsigned char o_reify = anfd->reify;
597 974
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 975 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 976
601#if EV_SELECT_IS_WINSOCKET 977#if EV_SELECT_IS_WINSOCKET
602 if (events) 978 if (o_reify & EV__IOFDSET)
603 { 979 {
604 unsigned long argp; 980 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 981 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 982 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 983 }
612#endif 984#endif
613 985
986 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
614 { 987 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events; 988 anfd->events = 0;
620 989
621 if (o_events != events || o_reify & EV_IOFDSET) 990 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
991 anfd->events |= (unsigned char)w->events;
992
993 if (o_events != anfd->events)
994 o_reify = EV__IOFDSET; /* actually |= */
995 }
996
997 if (o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 998 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 999 }
625 1000
626 fdchangecnt = 0; 1001 fdchangecnt = 0;
627} 1002}
628 1003
629void inline_size 1004/* something about the given fd changed */
1005inline_size void
630fd_change (EV_P_ int fd, int flags) 1006fd_change (EV_P_ int fd, int flags)
631{ 1007{
632 unsigned char reify = anfds [fd].reify; 1008 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1009 anfds [fd].reify |= flags;
634 1010
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1014 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1015 fdchanges [fdchangecnt - 1] = fd;
640 } 1016 }
641} 1017}
642 1018
643void inline_speed 1019/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1020inline_speed void
644fd_kill (EV_P_ int fd) 1021fd_kill (EV_P_ int fd)
645{ 1022{
646 ev_io *w; 1023 ev_io *w;
647 1024
648 while ((w = (ev_io *)anfds [fd].head)) 1025 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1027 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1028 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1029 }
653} 1030}
654 1031
655int inline_size 1032/* check whether the given fd is actually valid, for error recovery */
1033inline_size int
656fd_valid (int fd) 1034fd_valid (int fd)
657{ 1035{
658#ifdef _WIN32 1036#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1037 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1038#else
661 return fcntl (fd, F_GETFD) != -1; 1039 return fcntl (fd, F_GETFD) != -1;
662#endif 1040#endif
663} 1041}
664 1042
668{ 1046{
669 int fd; 1047 int fd;
670 1048
671 for (fd = 0; fd < anfdmax; ++fd) 1049 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1050 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1051 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1052 fd_kill (EV_A_ fd);
675} 1053}
676 1054
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1055/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1056static void noinline
682 1060
683 for (fd = anfdmax; fd--; ) 1061 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1062 if (anfds [fd].events)
685 { 1063 {
686 fd_kill (EV_A_ fd); 1064 fd_kill (EV_A_ fd);
687 return; 1065 break;
688 } 1066 }
689} 1067}
690 1068
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1069/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1070static void noinline
696 1074
697 for (fd = 0; fd < anfdmax; ++fd) 1075 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1076 if (anfds [fd].events)
699 { 1077 {
700 anfds [fd].events = 0; 1078 anfds [fd].events = 0;
1079 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1080 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1081 }
703} 1082}
704 1083
705/*****************************************************************************/ 1084/* used to prepare libev internal fd's */
706 1085/* this is not fork-safe */
707void inline_speed 1086inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 1087fd_intern (int fd)
792{ 1088{
793#ifdef _WIN32 1089#ifdef _WIN32
794 int arg = 1; 1090 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1091 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1092#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1093 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1094 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1095#endif
800} 1096}
801 1097
1098/*****************************************************************************/
1099
1100/*
1101 * the heap functions want a real array index. array index 0 is guaranteed to not
1102 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1103 * the branching factor of the d-tree.
1104 */
1105
1106/*
1107 * at the moment we allow libev the luxury of two heaps,
1108 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1109 * which is more cache-efficient.
1110 * the difference is about 5% with 50000+ watchers.
1111 */
1112#if EV_USE_4HEAP
1113
1114#define DHEAP 4
1115#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1116#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1117#define UPHEAP_DONE(p,k) ((p) == (k))
1118
1119/* away from the root */
1120inline_speed void
1121downheap (ANHE *heap, int N, int k)
1122{
1123 ANHE he = heap [k];
1124 ANHE *E = heap + N + HEAP0;
1125
1126 for (;;)
1127 {
1128 ev_tstamp minat;
1129 ANHE *minpos;
1130 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1131
1132 /* find minimum child */
1133 if (expect_true (pos + DHEAP - 1 < E))
1134 {
1135 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1136 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1137 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1138 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1139 }
1140 else if (pos < E)
1141 {
1142 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else
1148 break;
1149
1150 if (ANHE_at (he) <= minat)
1151 break;
1152
1153 heap [k] = *minpos;
1154 ev_active (ANHE_w (*minpos)) = k;
1155
1156 k = minpos - heap;
1157 }
1158
1159 heap [k] = he;
1160 ev_active (ANHE_w (he)) = k;
1161}
1162
1163#else /* 4HEAP */
1164
1165#define HEAP0 1
1166#define HPARENT(k) ((k) >> 1)
1167#define UPHEAP_DONE(p,k) (!(p))
1168
1169/* away from the root */
1170inline_speed void
1171downheap (ANHE *heap, int N, int k)
1172{
1173 ANHE he = heap [k];
1174
1175 for (;;)
1176 {
1177 int c = k << 1;
1178
1179 if (c >= N + HEAP0)
1180 break;
1181
1182 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1183 ? 1 : 0;
1184
1185 if (ANHE_at (he) <= ANHE_at (heap [c]))
1186 break;
1187
1188 heap [k] = heap [c];
1189 ev_active (ANHE_w (heap [k])) = k;
1190
1191 k = c;
1192 }
1193
1194 heap [k] = he;
1195 ev_active (ANHE_w (he)) = k;
1196}
1197#endif
1198
1199/* towards the root */
1200inline_speed void
1201upheap (ANHE *heap, int k)
1202{
1203 ANHE he = heap [k];
1204
1205 for (;;)
1206 {
1207 int p = HPARENT (k);
1208
1209 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1210 break;
1211
1212 heap [k] = heap [p];
1213 ev_active (ANHE_w (heap [k])) = k;
1214 k = p;
1215 }
1216
1217 heap [k] = he;
1218 ev_active (ANHE_w (he)) = k;
1219}
1220
1221/* move an element suitably so it is in a correct place */
1222inline_size void
1223adjustheap (ANHE *heap, int N, int k)
1224{
1225 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1226 upheap (heap, k);
1227 else
1228 downheap (heap, N, k);
1229}
1230
1231/* rebuild the heap: this function is used only once and executed rarely */
1232inline_size void
1233reheap (ANHE *heap, int N)
1234{
1235 int i;
1236
1237 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1238 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1239 for (i = 0; i < N; ++i)
1240 upheap (heap, i + HEAP0);
1241}
1242
1243/*****************************************************************************/
1244
1245/* associate signal watchers to a signal signal */
1246typedef struct
1247{
1248 EV_ATOMIC_T pending;
1249#if EV_MULTIPLICITY
1250 EV_P;
1251#endif
1252 WL head;
1253} ANSIG;
1254
1255static ANSIG signals [EV_NSIG - 1];
1256
1257/*****************************************************************************/
1258
1259#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1260
802static void noinline 1261static void noinline
803evpipe_init (EV_P) 1262evpipe_init (EV_P)
804{ 1263{
805 if (!ev_is_active (&pipeev)) 1264 if (!ev_is_active (&pipe_w))
806 { 1265 {
1266# if EV_USE_EVENTFD
1267 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1268 if (evfd < 0 && errno == EINVAL)
1269 evfd = eventfd (0, 0);
1270
1271 if (evfd >= 0)
1272 {
1273 evpipe [0] = -1;
1274 fd_intern (evfd); /* doing it twice doesn't hurt */
1275 ev_io_set (&pipe_w, evfd, EV_READ);
1276 }
1277 else
1278# endif
1279 {
807 while (pipe (evpipe)) 1280 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1281 ev_syserr ("(libev) error creating signal/async pipe");
809 1282
810 fd_intern (evpipe [0]); 1283 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1284 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1285 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1286 }
1287
814 ev_io_start (EV_A_ &pipeev); 1288 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1289 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1290 }
817} 1291}
818 1292
819void inline_size 1293inline_size void
820evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1294evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1295{
822 if (!*flag) 1296 if (!*flag)
823 { 1297 {
824 int old_errno = errno; /* save errno because write might clobber it */ 1298 int old_errno = errno; /* save errno because write might clobber it */
1299 char dummy;
825 1300
826 *flag = 1; 1301 *flag = 1;
1302
1303#if EV_USE_EVENTFD
1304 if (evfd >= 0)
1305 {
1306 uint64_t counter = 1;
1307 write (evfd, &counter, sizeof (uint64_t));
1308 }
1309 else
1310#endif
1311 /* win32 people keep sending patches that change this write() to send() */
1312 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1313 /* so when you think this write should be a send instead, please find out */
1314 /* where your send() is from - it's definitely not the microsoft send, and */
1315 /* tell me. thank you. */
827 write (evpipe [1], &old_errno, 1); 1316 write (evpipe [1], &dummy, 1);
828 1317
829 errno = old_errno; 1318 errno = old_errno;
830 } 1319 }
831} 1320}
832 1321
1322/* called whenever the libev signal pipe */
1323/* got some events (signal, async) */
833static void 1324static void
834pipecb (EV_P_ ev_io *iow, int revents) 1325pipecb (EV_P_ ev_io *iow, int revents)
835{ 1326{
1327 int i;
1328
1329#if EV_USE_EVENTFD
1330 if (evfd >= 0)
836 { 1331 {
837 int dummy; 1332 uint64_t counter;
1333 read (evfd, &counter, sizeof (uint64_t));
1334 }
1335 else
1336#endif
1337 {
1338 char dummy;
1339 /* see discussion in evpipe_write when you think this read should be recv in win32 */
838 read (evpipe [0], &dummy, 1); 1340 read (evpipe [0], &dummy, 1);
839 } 1341 }
840 1342
841 if (gotsig && ev_is_default_loop (EV_A)) 1343 if (sig_pending)
842 { 1344 {
843 int signum; 1345 sig_pending = 0;
844 gotsig = 0;
845 1346
846 for (signum = signalmax; signum--; ) 1347 for (i = EV_NSIG - 1; i--; )
847 if (signals [signum].gotsig) 1348 if (expect_false (signals [i].pending))
848 ev_feed_signal_event (EV_A_ signum + 1); 1349 ev_feed_signal_event (EV_A_ i + 1);
849 } 1350 }
850 1351
851#if EV_ASYNC_ENABLE 1352#if EV_ASYNC_ENABLE
852 if (gotasync) 1353 if (async_pending)
853 { 1354 {
854 int i; 1355 async_pending = 0;
855 gotasync = 0;
856 1356
857 for (i = asynccnt; i--; ) 1357 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent) 1358 if (asyncs [i]->sent)
859 { 1359 {
860 asyncs [i]->sent = 0; 1360 asyncs [i]->sent = 0;
868 1368
869static void 1369static void
870ev_sighandler (int signum) 1370ev_sighandler (int signum)
871{ 1371{
872#if EV_MULTIPLICITY 1372#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 1373 EV_P = signals [signum - 1].loop;
874#endif 1374#endif
875 1375
876#if _WIN32 1376#ifdef _WIN32
877 signal (signum, ev_sighandler); 1377 signal (signum, ev_sighandler);
878#endif 1378#endif
879 1379
880 signals [signum - 1].gotsig = 1; 1380 signals [signum - 1].pending = 1;
881 evpipe_write (EV_A_ &gotsig); 1381 evpipe_write (EV_A_ &sig_pending);
882} 1382}
883 1383
884void noinline 1384void noinline
885ev_feed_signal_event (EV_P_ int signum) 1385ev_feed_signal_event (EV_P_ int signum)
886{ 1386{
887 WL w; 1387 WL w;
888 1388
1389 if (expect_false (signum <= 0 || signum > EV_NSIG))
1390 return;
1391
1392 --signum;
1393
889#if EV_MULTIPLICITY 1394#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1395 /* it is permissible to try to feed a signal to the wrong loop */
891#endif 1396 /* or, likely more useful, feeding a signal nobody is waiting for */
892 1397
893 --signum; 1398 if (expect_false (signals [signum].loop != EV_A))
894
895 if (signum < 0 || signum >= signalmax)
896 return; 1399 return;
1400#endif
897 1401
898 signals [signum].gotsig = 0; 1402 signals [signum].pending = 0;
899 1403
900 for (w = signals [signum].head; w; w = w->next) 1404 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1405 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902} 1406}
903 1407
1408#if EV_USE_SIGNALFD
1409static void
1410sigfdcb (EV_P_ ev_io *iow, int revents)
1411{
1412 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1413
1414 for (;;)
1415 {
1416 ssize_t res = read (sigfd, si, sizeof (si));
1417
1418 /* not ISO-C, as res might be -1, but works with SuS */
1419 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1420 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1421
1422 if (res < (ssize_t)sizeof (si))
1423 break;
1424 }
1425}
1426#endif
1427
1428#endif
1429
904/*****************************************************************************/ 1430/*****************************************************************************/
905 1431
1432#if EV_CHILD_ENABLE
906static WL childs [EV_PID_HASHSIZE]; 1433static WL childs [EV_PID_HASHSIZE];
907
908#ifndef _WIN32
909 1434
910static ev_signal childev; 1435static ev_signal childev;
911 1436
912#ifndef WIFCONTINUED 1437#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 1438# define WIFCONTINUED(status) 0
914#endif 1439#endif
915 1440
916void inline_speed 1441/* handle a single child status event */
1442inline_speed void
917child_reap (EV_P_ int chain, int pid, int status) 1443child_reap (EV_P_ int chain, int pid, int status)
918{ 1444{
919 ev_child *w; 1445 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1446 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 1447
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1448 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
923 { 1449 {
924 if ((w->pid == pid || !w->pid) 1450 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1))) 1451 && (!traced || (w->flags & 1)))
926 { 1452 {
927 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1453 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
934 1460
935#ifndef WCONTINUED 1461#ifndef WCONTINUED
936# define WCONTINUED 0 1462# define WCONTINUED 0
937#endif 1463#endif
938 1464
1465/* called on sigchld etc., calls waitpid */
939static void 1466static void
940childcb (EV_P_ ev_signal *sw, int revents) 1467childcb (EV_P_ ev_signal *sw, int revents)
941{ 1468{
942 int pid, status; 1469 int pid, status;
943 1470
951 /* make sure we are called again until all children have been reaped */ 1478 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */ 1479 /* we need to do it this way so that the callback gets called before we continue */
953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1480 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
954 1481
955 child_reap (EV_A_ pid, pid, status); 1482 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1) 1483 if ((EV_PID_HASHSIZE) > 1)
957 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1484 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
958} 1485}
959 1486
960#endif 1487#endif
961 1488
1024 /* kqueue is borked on everything but netbsd apparently */ 1551 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */ 1552 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE; 1553 flags &= ~EVBACKEND_KQUEUE;
1027#endif 1554#endif
1028#ifdef __APPLE__ 1555#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation 1556 /* only select works correctly on that "unix-certified" platform */
1030 flags &= ~EVBACKEND_POLL; 1557 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1558 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1559#endif
1560#ifdef __FreeBSD__
1561 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1031#endif 1562#endif
1032 1563
1033 return flags; 1564 return flags;
1034} 1565}
1035 1566
1037ev_embeddable_backends (void) 1568ev_embeddable_backends (void)
1038{ 1569{
1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1570 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1040 1571
1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1572 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */ 1573 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1043 flags &= ~EVBACKEND_EPOLL; 1574 flags &= ~EVBACKEND_EPOLL;
1044 1575
1045 return flags; 1576 return flags;
1046} 1577}
1047 1578
1048unsigned int 1579unsigned int
1049ev_backend (EV_P) 1580ev_backend (EV_P)
1050{ 1581{
1051 return backend; 1582 return backend;
1052} 1583}
1053 1584
1585#if EV_FEATURE_API
1054unsigned int 1586unsigned int
1055ev_loop_count (EV_P) 1587ev_iteration (EV_P)
1056{ 1588{
1057 return loop_count; 1589 return loop_count;
1058} 1590}
1059 1591
1592unsigned int
1593ev_depth (EV_P)
1594{
1595 return loop_depth;
1596}
1597
1060void 1598void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1599ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1062{ 1600{
1063 io_blocktime = interval; 1601 io_blocktime = interval;
1064} 1602}
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1605ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1068{ 1606{
1069 timeout_blocktime = interval; 1607 timeout_blocktime = interval;
1070} 1608}
1071 1609
1610void
1611ev_set_userdata (EV_P_ void *data)
1612{
1613 userdata = data;
1614}
1615
1616void *
1617ev_userdata (EV_P)
1618{
1619 return userdata;
1620}
1621
1622void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1623{
1624 invoke_cb = invoke_pending_cb;
1625}
1626
1627void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1628{
1629 release_cb = release;
1630 acquire_cb = acquire;
1631}
1632#endif
1633
1634/* initialise a loop structure, must be zero-initialised */
1072static void noinline 1635static void noinline
1073loop_init (EV_P_ unsigned int flags) 1636loop_init (EV_P_ unsigned int flags)
1074{ 1637{
1075 if (!backend) 1638 if (!backend)
1076 { 1639 {
1640#if EV_USE_REALTIME
1641 if (!have_realtime)
1642 {
1643 struct timespec ts;
1644
1645 if (!clock_gettime (CLOCK_REALTIME, &ts))
1646 have_realtime = 1;
1647 }
1648#endif
1649
1077#if EV_USE_MONOTONIC 1650#if EV_USE_MONOTONIC
1651 if (!have_monotonic)
1078 { 1652 {
1079 struct timespec ts; 1653 struct timespec ts;
1654
1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1655 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1081 have_monotonic = 1; 1656 have_monotonic = 1;
1082 } 1657 }
1083#endif 1658#endif
1659
1660 /* pid check not overridable via env */
1661#ifndef _WIN32
1662 if (flags & EVFLAG_FORKCHECK)
1663 curpid = getpid ();
1664#endif
1665
1666 if (!(flags & EVFLAG_NOENV)
1667 && !enable_secure ()
1668 && getenv ("LIBEV_FLAGS"))
1669 flags = atoi (getenv ("LIBEV_FLAGS"));
1084 1670
1085 ev_rt_now = ev_time (); 1671 ev_rt_now = ev_time ();
1086 mn_now = get_clock (); 1672 mn_now = get_clock ();
1087 now_floor = mn_now; 1673 now_floor = mn_now;
1088 rtmn_diff = ev_rt_now - mn_now; 1674 rtmn_diff = ev_rt_now - mn_now;
1675#if EV_FEATURE_API
1676 invoke_cb = ev_invoke_pending;
1677#endif
1089 1678
1090 io_blocktime = 0.; 1679 io_blocktime = 0.;
1091 timeout_blocktime = 0.; 1680 timeout_blocktime = 0.;
1092 backend = 0; 1681 backend = 0;
1093 backend_fd = -1; 1682 backend_fd = -1;
1094 gotasync = 0; 1683 sig_pending = 0;
1684#if EV_ASYNC_ENABLE
1685 async_pending = 0;
1686#endif
1095#if EV_USE_INOTIFY 1687#if EV_USE_INOTIFY
1096 fs_fd = -2; 1688 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1097#endif 1689#endif
1098 1690#if EV_USE_SIGNALFD
1099 /* pid check not overridable via env */ 1691 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1100#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK)
1102 curpid = getpid ();
1103#endif 1692#endif
1104 1693
1105 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS"));
1109
1110 if (!(flags & 0x0000ffffUL)) 1694 if (!(flags & 0x0000ffffU))
1111 flags |= ev_recommended_backends (); 1695 flags |= ev_recommended_backends ();
1112 1696
1113#if EV_USE_PORT 1697#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1698 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 1699#endif
1124#endif 1708#endif
1125#if EV_USE_SELECT 1709#if EV_USE_SELECT
1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1710 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1127#endif 1711#endif
1128 1712
1713 ev_prepare_init (&pending_w, pendingcb);
1714
1715#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1129 ev_init (&pipeev, pipecb); 1716 ev_init (&pipe_w, pipecb);
1130 ev_set_priority (&pipeev, EV_MAXPRI); 1717 ev_set_priority (&pipe_w, EV_MAXPRI);
1718#endif
1131 } 1719 }
1132} 1720}
1133 1721
1722/* free up a loop structure */
1134static void noinline 1723static void noinline
1135loop_destroy (EV_P) 1724loop_destroy (EV_P)
1136{ 1725{
1137 int i; 1726 int i;
1138 1727
1139 if (ev_is_active (&pipeev)) 1728 if (ev_is_active (&pipe_w))
1140 { 1729 {
1141 ev_ref (EV_A); /* signal watcher */ 1730 /*ev_ref (EV_A);*/
1142 ev_io_stop (EV_A_ &pipeev); 1731 /*ev_io_stop (EV_A_ &pipe_w);*/
1143 1732
1144 close (evpipe [0]); evpipe [0] = 0; 1733#if EV_USE_EVENTFD
1145 close (evpipe [1]); evpipe [1] = 0; 1734 if (evfd >= 0)
1735 close (evfd);
1736#endif
1737
1738 if (evpipe [0] >= 0)
1739 {
1740 EV_WIN32_CLOSE_FD (evpipe [0]);
1741 EV_WIN32_CLOSE_FD (evpipe [1]);
1742 }
1146 } 1743 }
1744
1745#if EV_USE_SIGNALFD
1746 if (ev_is_active (&sigfd_w))
1747 close (sigfd);
1748#endif
1147 1749
1148#if EV_USE_INOTIFY 1750#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 1751 if (fs_fd >= 0)
1150 close (fs_fd); 1752 close (fs_fd);
1151#endif 1753#endif
1175#if EV_IDLE_ENABLE 1777#if EV_IDLE_ENABLE
1176 array_free (idle, [i]); 1778 array_free (idle, [i]);
1177#endif 1779#endif
1178 } 1780 }
1179 1781
1180 ev_free (anfds); anfdmax = 0; 1782 ev_free (anfds); anfds = 0; anfdmax = 0;
1181 1783
1182 /* have to use the microsoft-never-gets-it-right macro */ 1784 /* have to use the microsoft-never-gets-it-right macro */
1785 array_free (rfeed, EMPTY);
1183 array_free (fdchange, EMPTY); 1786 array_free (fdchange, EMPTY);
1184 array_free (timer, EMPTY); 1787 array_free (timer, EMPTY);
1185#if EV_PERIODIC_ENABLE 1788#if EV_PERIODIC_ENABLE
1186 array_free (periodic, EMPTY); 1789 array_free (periodic, EMPTY);
1187#endif 1790#endif
1195#endif 1798#endif
1196 1799
1197 backend = 0; 1800 backend = 0;
1198} 1801}
1199 1802
1803#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 1804inline_size void infy_fork (EV_P);
1805#endif
1201 1806
1202void inline_size 1807inline_size void
1203loop_fork (EV_P) 1808loop_fork (EV_P)
1204{ 1809{
1205#if EV_USE_PORT 1810#if EV_USE_PORT
1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1811 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1207#endif 1812#endif
1213#endif 1818#endif
1214#if EV_USE_INOTIFY 1819#if EV_USE_INOTIFY
1215 infy_fork (EV_A); 1820 infy_fork (EV_A);
1216#endif 1821#endif
1217 1822
1218 if (ev_is_active (&pipeev)) 1823 if (ev_is_active (&pipe_w))
1219 { 1824 {
1220 /* this "locks" the handlers against writing to the pipe */ 1825 /* this "locks" the handlers against writing to the pipe */
1221 /* while we modify the fd vars */ 1826 /* while we modify the fd vars */
1222 gotsig = 1; 1827 sig_pending = 1;
1223#if EV_ASYNC_ENABLE 1828#if EV_ASYNC_ENABLE
1224 gotasync = 1; 1829 async_pending = 1;
1225#endif 1830#endif
1226 1831
1227 ev_ref (EV_A); 1832 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev); 1833 ev_io_stop (EV_A_ &pipe_w);
1229 close (evpipe [0]);
1230 close (evpipe [1]);
1231 1834
1835#if EV_USE_EVENTFD
1836 if (evfd >= 0)
1837 close (evfd);
1838#endif
1839
1840 if (evpipe [0] >= 0)
1841 {
1842 EV_WIN32_CLOSE_FD (evpipe [0]);
1843 EV_WIN32_CLOSE_FD (evpipe [1]);
1844 }
1845
1846#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1232 evpipe_init (EV_A); 1847 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */ 1848 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ); 1849 pipecb (EV_A_ &pipe_w, EV_READ);
1850#endif
1235 } 1851 }
1236 1852
1237 postfork = 0; 1853 postfork = 0;
1238} 1854}
1239 1855
1240#if EV_MULTIPLICITY 1856#if EV_MULTIPLICITY
1857
1241struct ev_loop * 1858struct ev_loop *
1242ev_loop_new (unsigned int flags) 1859ev_loop_new (unsigned int flags)
1243{ 1860{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1861 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245 1862
1246 memset (loop, 0, sizeof (struct ev_loop)); 1863 memset (EV_A, 0, sizeof (struct ev_loop));
1247
1248 loop_init (EV_A_ flags); 1864 loop_init (EV_A_ flags);
1249 1865
1250 if (ev_backend (EV_A)) 1866 if (ev_backend (EV_A))
1251 return loop; 1867 return EV_A;
1252 1868
1253 return 0; 1869 return 0;
1254} 1870}
1255 1871
1256void 1872void
1263void 1879void
1264ev_loop_fork (EV_P) 1880ev_loop_fork (EV_P)
1265{ 1881{
1266 postfork = 1; /* must be in line with ev_default_fork */ 1882 postfork = 1; /* must be in line with ev_default_fork */
1267} 1883}
1884#endif /* multiplicity */
1268 1885
1886#if EV_VERIFY
1887static void noinline
1888verify_watcher (EV_P_ W w)
1889{
1890 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1891
1892 if (w->pending)
1893 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1894}
1895
1896static void noinline
1897verify_heap (EV_P_ ANHE *heap, int N)
1898{
1899 int i;
1900
1901 for (i = HEAP0; i < N + HEAP0; ++i)
1902 {
1903 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1904 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1905 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1906
1907 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1908 }
1909}
1910
1911static void noinline
1912array_verify (EV_P_ W *ws, int cnt)
1913{
1914 while (cnt--)
1915 {
1916 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1917 verify_watcher (EV_A_ ws [cnt]);
1918 }
1919}
1920#endif
1921
1922#if EV_FEATURE_API
1923void
1924ev_verify (EV_P)
1925{
1926#if EV_VERIFY
1927 int i;
1928 WL w;
1929
1930 assert (activecnt >= -1);
1931
1932 assert (fdchangemax >= fdchangecnt);
1933 for (i = 0; i < fdchangecnt; ++i)
1934 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1935
1936 assert (anfdmax >= 0);
1937 for (i = 0; i < anfdmax; ++i)
1938 for (w = anfds [i].head; w; w = w->next)
1939 {
1940 verify_watcher (EV_A_ (W)w);
1941 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1942 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1943 }
1944
1945 assert (timermax >= timercnt);
1946 verify_heap (EV_A_ timers, timercnt);
1947
1948#if EV_PERIODIC_ENABLE
1949 assert (periodicmax >= periodiccnt);
1950 verify_heap (EV_A_ periodics, periodiccnt);
1951#endif
1952
1953 for (i = NUMPRI; i--; )
1954 {
1955 assert (pendingmax [i] >= pendingcnt [i]);
1956#if EV_IDLE_ENABLE
1957 assert (idleall >= 0);
1958 assert (idlemax [i] >= idlecnt [i]);
1959 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1960#endif
1961 }
1962
1963#if EV_FORK_ENABLE
1964 assert (forkmax >= forkcnt);
1965 array_verify (EV_A_ (W *)forks, forkcnt);
1966#endif
1967
1968#if EV_ASYNC_ENABLE
1969 assert (asyncmax >= asynccnt);
1970 array_verify (EV_A_ (W *)asyncs, asynccnt);
1971#endif
1972
1973#if EV_PREPARE_ENABLE
1974 assert (preparemax >= preparecnt);
1975 array_verify (EV_A_ (W *)prepares, preparecnt);
1976#endif
1977
1978#if EV_CHECK_ENABLE
1979 assert (checkmax >= checkcnt);
1980 array_verify (EV_A_ (W *)checks, checkcnt);
1981#endif
1982
1983# if 0
1984#if EV_CHILD_ENABLE
1985 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1986 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1987#endif
1988# endif
1989#endif
1990}
1269#endif 1991#endif
1270 1992
1271#if EV_MULTIPLICITY 1993#if EV_MULTIPLICITY
1272struct ev_loop * 1994struct ev_loop *
1273ev_default_loop_init (unsigned int flags) 1995ev_default_loop_init (unsigned int flags)
1277#endif 1999#endif
1278{ 2000{
1279 if (!ev_default_loop_ptr) 2001 if (!ev_default_loop_ptr)
1280 { 2002 {
1281#if EV_MULTIPLICITY 2003#if EV_MULTIPLICITY
1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2004 EV_P = ev_default_loop_ptr = &default_loop_struct;
1283#else 2005#else
1284 ev_default_loop_ptr = 1; 2006 ev_default_loop_ptr = 1;
1285#endif 2007#endif
1286 2008
1287 loop_init (EV_A_ flags); 2009 loop_init (EV_A_ flags);
1288 2010
1289 if (ev_backend (EV_A)) 2011 if (ev_backend (EV_A))
1290 { 2012 {
1291#ifndef _WIN32 2013#if EV_CHILD_ENABLE
1292 ev_signal_init (&childev, childcb, SIGCHLD); 2014 ev_signal_init (&childev, childcb, SIGCHLD);
1293 ev_set_priority (&childev, EV_MAXPRI); 2015 ev_set_priority (&childev, EV_MAXPRI);
1294 ev_signal_start (EV_A_ &childev); 2016 ev_signal_start (EV_A_ &childev);
1295 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2017 ev_unref (EV_A); /* child watcher should not keep loop alive */
1296#endif 2018#endif
1304 2026
1305void 2027void
1306ev_default_destroy (void) 2028ev_default_destroy (void)
1307{ 2029{
1308#if EV_MULTIPLICITY 2030#if EV_MULTIPLICITY
1309 struct ev_loop *loop = ev_default_loop_ptr; 2031 EV_P = ev_default_loop_ptr;
1310#endif 2032#endif
1311 2033
1312#ifndef _WIN32 2034 ev_default_loop_ptr = 0;
2035
2036#if EV_CHILD_ENABLE
1313 ev_ref (EV_A); /* child watcher */ 2037 ev_ref (EV_A); /* child watcher */
1314 ev_signal_stop (EV_A_ &childev); 2038 ev_signal_stop (EV_A_ &childev);
1315#endif 2039#endif
1316 2040
1317 loop_destroy (EV_A); 2041 loop_destroy (EV_A);
1319 2043
1320void 2044void
1321ev_default_fork (void) 2045ev_default_fork (void)
1322{ 2046{
1323#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
1324 struct ev_loop *loop = ev_default_loop_ptr; 2048 EV_P = ev_default_loop_ptr;
1325#endif 2049#endif
1326 2050
1327 if (backend)
1328 postfork = 1; /* must be in line with ev_loop_fork */ 2051 postfork = 1; /* must be in line with ev_loop_fork */
1329} 2052}
1330 2053
1331/*****************************************************************************/ 2054/*****************************************************************************/
1332 2055
1333void 2056void
1334ev_invoke (EV_P_ void *w, int revents) 2057ev_invoke (EV_P_ void *w, int revents)
1335{ 2058{
1336 EV_CB_INVOKE ((W)w, revents); 2059 EV_CB_INVOKE ((W)w, revents);
1337} 2060}
1338 2061
1339void inline_speed 2062unsigned int
1340call_pending (EV_P) 2063ev_pending_count (EV_P)
2064{
2065 int pri;
2066 unsigned int count = 0;
2067
2068 for (pri = NUMPRI; pri--; )
2069 count += pendingcnt [pri];
2070
2071 return count;
2072}
2073
2074void noinline
2075ev_invoke_pending (EV_P)
1341{ 2076{
1342 int pri; 2077 int pri;
1343 2078
1344 for (pri = NUMPRI; pri--; ) 2079 for (pri = NUMPRI; pri--; )
1345 while (pendingcnt [pri]) 2080 while (pendingcnt [pri])
1346 { 2081 {
1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2082 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1348 2083
1349 if (expect_true (p->w))
1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2084 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2085 /* ^ this is no longer true, as pending_w could be here */
1352 2086
1353 p->w->pending = 0; 2087 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events); 2088 EV_CB_INVOKE (p->w, p->events);
1355 } 2089 EV_FREQUENT_CHECK;
1356 } 2090 }
1357} 2091}
1358 2092
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
1377 downheap (timers, timercnt, 0);
1378 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 {
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438
1439#if EV_IDLE_ENABLE 2093#if EV_IDLE_ENABLE
1440void inline_size 2094/* make idle watchers pending. this handles the "call-idle */
2095/* only when higher priorities are idle" logic */
2096inline_size void
1441idle_reify (EV_P) 2097idle_reify (EV_P)
1442{ 2098{
1443 if (expect_false (idleall)) 2099 if (expect_false (idleall))
1444 { 2100 {
1445 int pri; 2101 int pri;
1457 } 2113 }
1458 } 2114 }
1459} 2115}
1460#endif 2116#endif
1461 2117
1462void inline_speed 2118/* make timers pending */
2119inline_size void
2120timers_reify (EV_P)
2121{
2122 EV_FREQUENT_CHECK;
2123
2124 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2125 {
2126 do
2127 {
2128 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2129
2130 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2131
2132 /* first reschedule or stop timer */
2133 if (w->repeat)
2134 {
2135 ev_at (w) += w->repeat;
2136 if (ev_at (w) < mn_now)
2137 ev_at (w) = mn_now;
2138
2139 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2140
2141 ANHE_at_cache (timers [HEAP0]);
2142 downheap (timers, timercnt, HEAP0);
2143 }
2144 else
2145 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2146
2147 EV_FREQUENT_CHECK;
2148 feed_reverse (EV_A_ (W)w);
2149 }
2150 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2151
2152 feed_reverse_done (EV_A_ EV_TIMER);
2153 }
2154}
2155
2156#if EV_PERIODIC_ENABLE
2157/* make periodics pending */
2158inline_size void
2159periodics_reify (EV_P)
2160{
2161 EV_FREQUENT_CHECK;
2162
2163 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2164 {
2165 int feed_count = 0;
2166
2167 do
2168 {
2169 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2170
2171 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2172
2173 /* first reschedule or stop timer */
2174 if (w->reschedule_cb)
2175 {
2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2177
2178 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2179
2180 ANHE_at_cache (periodics [HEAP0]);
2181 downheap (periodics, periodiccnt, HEAP0);
2182 }
2183 else if (w->interval)
2184 {
2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2186 /* if next trigger time is not sufficiently in the future, put it there */
2187 /* this might happen because of floating point inexactness */
2188 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2189 {
2190 ev_at (w) += w->interval;
2191
2192 /* if interval is unreasonably low we might still have a time in the past */
2193 /* so correct this. this will make the periodic very inexact, but the user */
2194 /* has effectively asked to get triggered more often than possible */
2195 if (ev_at (w) < ev_rt_now)
2196 ev_at (w) = ev_rt_now;
2197 }
2198
2199 ANHE_at_cache (periodics [HEAP0]);
2200 downheap (periodics, periodiccnt, HEAP0);
2201 }
2202 else
2203 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2204
2205 EV_FREQUENT_CHECK;
2206 feed_reverse (EV_A_ (W)w);
2207 }
2208 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2209
2210 feed_reverse_done (EV_A_ EV_PERIODIC);
2211 }
2212}
2213
2214/* simply recalculate all periodics */
2215/* TODO: maybe ensure that at least one event happens when jumping forward? */
2216static void noinline
2217periodics_reschedule (EV_P)
2218{
2219 int i;
2220
2221 /* adjust periodics after time jump */
2222 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2223 {
2224 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2225
2226 if (w->reschedule_cb)
2227 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2228 else if (w->interval)
2229 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2230
2231 ANHE_at_cache (periodics [i]);
2232 }
2233
2234 reheap (periodics, periodiccnt);
2235}
2236#endif
2237
2238/* adjust all timers by a given offset */
2239static void noinline
2240timers_reschedule (EV_P_ ev_tstamp adjust)
2241{
2242 int i;
2243
2244 for (i = 0; i < timercnt; ++i)
2245 {
2246 ANHE *he = timers + i + HEAP0;
2247 ANHE_w (*he)->at += adjust;
2248 ANHE_at_cache (*he);
2249 }
2250}
2251
2252/* fetch new monotonic and realtime times from the kernel */
2253/* also detect if there was a timejump, and act accordingly */
2254inline_speed void
1463time_update (EV_P_ ev_tstamp max_block) 2255time_update (EV_P_ ev_tstamp max_block)
1464{ 2256{
1465 int i;
1466
1467#if EV_USE_MONOTONIC 2257#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic)) 2258 if (expect_true (have_monotonic))
1469 { 2259 {
2260 int i;
1470 ev_tstamp odiff = rtmn_diff; 2261 ev_tstamp odiff = rtmn_diff;
1471 2262
1472 mn_now = get_clock (); 2263 mn_now = get_clock ();
1473 2264
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2265 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1492 */ 2283 */
1493 for (i = 4; --i; ) 2284 for (i = 4; --i; )
1494 { 2285 {
1495 rtmn_diff = ev_rt_now - mn_now; 2286 rtmn_diff = ev_rt_now - mn_now;
1496 2287
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2288 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 2289 return; /* all is well */
1499 2290
1500 ev_rt_now = ev_time (); 2291 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 2292 mn_now = get_clock ();
1502 now_floor = mn_now; 2293 now_floor = mn_now;
1503 } 2294 }
1504 2295
2296 /* no timer adjustment, as the monotonic clock doesn't jump */
2297 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1505# if EV_PERIODIC_ENABLE 2298# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A); 2299 periodics_reschedule (EV_A);
1507# endif 2300# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 } 2301 }
1511 else 2302 else
1512#endif 2303#endif
1513 { 2304 {
1514 ev_rt_now = ev_time (); 2305 ev_rt_now = ev_time ();
1515 2306
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2307 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1517 { 2308 {
2309 /* adjust timers. this is easy, as the offset is the same for all of them */
2310 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1518#if EV_PERIODIC_ENABLE 2311#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 2312 periodics_reschedule (EV_A);
1520#endif 2313#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1524 } 2314 }
1525 2315
1526 mn_now = ev_rt_now; 2316 mn_now = ev_rt_now;
1527 } 2317 }
1528} 2318}
1529 2319
1530void 2320void
1531ev_ref (EV_P)
1532{
1533 ++activecnt;
1534}
1535
1536void
1537ev_unref (EV_P)
1538{
1539 --activecnt;
1540}
1541
1542static int loop_done;
1543
1544void
1545ev_loop (EV_P_ int flags) 2321ev_run (EV_P_ int flags)
1546{ 2322{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2323#if EV_FEATURE_API
1548 ? EVUNLOOP_ONE 2324 ++loop_depth;
1549 : EVUNLOOP_CANCEL; 2325#endif
1550 2326
2327 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2328
2329 loop_done = EVBREAK_CANCEL;
2330
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2331 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1552 2332
1553 do 2333 do
1554 { 2334 {
2335#if EV_VERIFY >= 2
2336 ev_verify (EV_A);
2337#endif
2338
1555#ifndef _WIN32 2339#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 2340 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 2341 if (expect_false (getpid () != curpid))
1558 { 2342 {
1559 curpid = getpid (); 2343 curpid = getpid ();
1565 /* we might have forked, so queue fork handlers */ 2349 /* we might have forked, so queue fork handlers */
1566 if (expect_false (postfork)) 2350 if (expect_false (postfork))
1567 if (forkcnt) 2351 if (forkcnt)
1568 { 2352 {
1569 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2353 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1570 call_pending (EV_A); 2354 EV_INVOKE_PENDING;
1571 } 2355 }
1572#endif 2356#endif
1573 2357
2358#if EV_PREPARE_ENABLE
1574 /* queue prepare watchers (and execute them) */ 2359 /* queue prepare watchers (and execute them) */
1575 if (expect_false (preparecnt)) 2360 if (expect_false (preparecnt))
1576 { 2361 {
1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2362 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1578 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
1579 } 2364 }
2365#endif
1580 2366
1581 if (expect_false (!activecnt)) 2367 if (expect_false (loop_done))
1582 break; 2368 break;
1583 2369
1584 /* we might have forked, so reify kernel state if necessary */ 2370 /* we might have forked, so reify kernel state if necessary */
1585 if (expect_false (postfork)) 2371 if (expect_false (postfork))
1586 loop_fork (EV_A); 2372 loop_fork (EV_A);
1591 /* calculate blocking time */ 2377 /* calculate blocking time */
1592 { 2378 {
1593 ev_tstamp waittime = 0.; 2379 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.; 2380 ev_tstamp sleeptime = 0.;
1595 2381
2382 /* remember old timestamp for io_blocktime calculation */
2383 ev_tstamp prev_mn_now = mn_now;
2384
2385 /* update time to cancel out callback processing overhead */
2386 time_update (EV_A_ 1e100);
2387
1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2388 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1597 { 2389 {
1598 /* update time to cancel out callback processing overhead */
1599 time_update (EV_A_ 1e100);
1600
1601 waittime = MAX_BLOCKTIME; 2390 waittime = MAX_BLOCKTIME;
1602 2391
1603 if (timercnt) 2392 if (timercnt)
1604 { 2393 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2394 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1606 if (waittime > to) waittime = to; 2395 if (waittime > to) waittime = to;
1607 } 2396 }
1608 2397
1609#if EV_PERIODIC_ENABLE 2398#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 2399 if (periodiccnt)
1611 { 2400 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2401 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1613 if (waittime > to) waittime = to; 2402 if (waittime > to) waittime = to;
1614 } 2403 }
1615#endif 2404#endif
1616 2405
2406 /* don't let timeouts decrease the waittime below timeout_blocktime */
1617 if (expect_false (waittime < timeout_blocktime)) 2407 if (expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime; 2408 waittime = timeout_blocktime;
1619 2409
1620 sleeptime = waittime - backend_fudge; 2410 /* extra check because io_blocktime is commonly 0 */
1621
1622 if (expect_true (sleeptime > io_blocktime)) 2411 if (expect_false (io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 { 2412 {
2413 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2414
2415 if (sleeptime > waittime - backend_fudge)
2416 sleeptime = waittime - backend_fudge;
2417
2418 if (expect_true (sleeptime > 0.))
2419 {
1627 ev_sleep (sleeptime); 2420 ev_sleep (sleeptime);
1628 waittime -= sleeptime; 2421 waittime -= sleeptime;
2422 }
1629 } 2423 }
1630 } 2424 }
1631 2425
2426#if EV_FEATURE_API
1632 ++loop_count; 2427 ++loop_count;
2428#endif
2429 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1633 backend_poll (EV_A_ waittime); 2430 backend_poll (EV_A_ waittime);
2431 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1634 2432
1635 /* update ev_rt_now, do magic */ 2433 /* update ev_rt_now, do magic */
1636 time_update (EV_A_ waittime + sleeptime); 2434 time_update (EV_A_ waittime + sleeptime);
1637 } 2435 }
1638 2436
1645#if EV_IDLE_ENABLE 2443#if EV_IDLE_ENABLE
1646 /* queue idle watchers unless other events are pending */ 2444 /* queue idle watchers unless other events are pending */
1647 idle_reify (EV_A); 2445 idle_reify (EV_A);
1648#endif 2446#endif
1649 2447
2448#if EV_CHECK_ENABLE
1650 /* queue check watchers, to be executed first */ 2449 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 2450 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2451 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2452#endif
1653 2453
1654 call_pending (EV_A); 2454 EV_INVOKE_PENDING;
1655
1656 } 2455 }
1657 while (expect_true (activecnt && !loop_done)); 2456 while (expect_true (
2457 activecnt
2458 && !loop_done
2459 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2460 ));
1658 2461
1659 if (loop_done == EVUNLOOP_ONE) 2462 if (loop_done == EVBREAK_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 2463 loop_done = EVBREAK_CANCEL;
1661}
1662 2464
2465#if EV_FEATURE_API
2466 --loop_depth;
2467#endif
2468}
2469
1663void 2470void
1664ev_unloop (EV_P_ int how) 2471ev_break (EV_P_ int how)
1665{ 2472{
1666 loop_done = how; 2473 loop_done = how;
1667} 2474}
1668 2475
2476void
2477ev_ref (EV_P)
2478{
2479 ++activecnt;
2480}
2481
2482void
2483ev_unref (EV_P)
2484{
2485 --activecnt;
2486}
2487
2488void
2489ev_now_update (EV_P)
2490{
2491 time_update (EV_A_ 1e100);
2492}
2493
2494void
2495ev_suspend (EV_P)
2496{
2497 ev_now_update (EV_A);
2498}
2499
2500void
2501ev_resume (EV_P)
2502{
2503 ev_tstamp mn_prev = mn_now;
2504
2505 ev_now_update (EV_A);
2506 timers_reschedule (EV_A_ mn_now - mn_prev);
2507#if EV_PERIODIC_ENABLE
2508 /* TODO: really do this? */
2509 periodics_reschedule (EV_A);
2510#endif
2511}
2512
1669/*****************************************************************************/ 2513/*****************************************************************************/
2514/* singly-linked list management, used when the expected list length is short */
1670 2515
1671void inline_size 2516inline_size void
1672wlist_add (WL *head, WL elem) 2517wlist_add (WL *head, WL elem)
1673{ 2518{
1674 elem->next = *head; 2519 elem->next = *head;
1675 *head = elem; 2520 *head = elem;
1676} 2521}
1677 2522
1678void inline_size 2523inline_size void
1679wlist_del (WL *head, WL elem) 2524wlist_del (WL *head, WL elem)
1680{ 2525{
1681 while (*head) 2526 while (*head)
1682 { 2527 {
1683 if (*head == elem) 2528 if (expect_true (*head == elem))
1684 { 2529 {
1685 *head = elem->next; 2530 *head = elem->next;
1686 return; 2531 break;
1687 } 2532 }
1688 2533
1689 head = &(*head)->next; 2534 head = &(*head)->next;
1690 } 2535 }
1691} 2536}
1692 2537
1693void inline_speed 2538/* internal, faster, version of ev_clear_pending */
2539inline_speed void
1694clear_pending (EV_P_ W w) 2540clear_pending (EV_P_ W w)
1695{ 2541{
1696 if (w->pending) 2542 if (w->pending)
1697 { 2543 {
1698 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2544 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1699 w->pending = 0; 2545 w->pending = 0;
1700 } 2546 }
1701} 2547}
1702 2548
1703int 2549int
1707 int pending = w_->pending; 2553 int pending = w_->pending;
1708 2554
1709 if (expect_true (pending)) 2555 if (expect_true (pending))
1710 { 2556 {
1711 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2557 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2558 p->w = (W)&pending_w;
1712 w_->pending = 0; 2559 w_->pending = 0;
1713 p->w = 0;
1714 return p->events; 2560 return p->events;
1715 } 2561 }
1716 else 2562 else
1717 return 0; 2563 return 0;
1718} 2564}
1719 2565
1720void inline_size 2566inline_size void
1721pri_adjust (EV_P_ W w) 2567pri_adjust (EV_P_ W w)
1722{ 2568{
1723 int pri = w->priority; 2569 int pri = ev_priority (w);
1724 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2570 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1725 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2571 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1726 w->priority = pri; 2572 ev_set_priority (w, pri);
1727} 2573}
1728 2574
1729void inline_speed 2575inline_speed void
1730ev_start (EV_P_ W w, int active) 2576ev_start (EV_P_ W w, int active)
1731{ 2577{
1732 pri_adjust (EV_A_ w); 2578 pri_adjust (EV_A_ w);
1733 w->active = active; 2579 w->active = active;
1734 ev_ref (EV_A); 2580 ev_ref (EV_A);
1735} 2581}
1736 2582
1737void inline_size 2583inline_size void
1738ev_stop (EV_P_ W w) 2584ev_stop (EV_P_ W w)
1739{ 2585{
1740 ev_unref (EV_A); 2586 ev_unref (EV_A);
1741 w->active = 0; 2587 w->active = 0;
1742} 2588}
1749 int fd = w->fd; 2595 int fd = w->fd;
1750 2596
1751 if (expect_false (ev_is_active (w))) 2597 if (expect_false (ev_is_active (w)))
1752 return; 2598 return;
1753 2599
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 2600 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2601 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2602
2603 EV_FREQUENT_CHECK;
1755 2604
1756 ev_start (EV_A_ (W)w, 1); 2605 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2606 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1758 wlist_add (&anfds[fd].head, (WL)w); 2607 wlist_add (&anfds[fd].head, (WL)w);
1759 2608
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2609 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1761 w->events &= ~EV_IOFDSET; 2610 w->events &= ~EV__IOFDSET;
2611
2612 EV_FREQUENT_CHECK;
1762} 2613}
1763 2614
1764void noinline 2615void noinline
1765ev_io_stop (EV_P_ ev_io *w) 2616ev_io_stop (EV_P_ ev_io *w)
1766{ 2617{
1767 clear_pending (EV_A_ (W)w); 2618 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 2619 if (expect_false (!ev_is_active (w)))
1769 return; 2620 return;
1770 2621
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2622 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2623
2624 EV_FREQUENT_CHECK;
1772 2625
1773 wlist_del (&anfds[w->fd].head, (WL)w); 2626 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 2627 ev_stop (EV_A_ (W)w);
1775 2628
1776 fd_change (EV_A_ w->fd, 1); 2629 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2630
2631 EV_FREQUENT_CHECK;
1777} 2632}
1778 2633
1779void noinline 2634void noinline
1780ev_timer_start (EV_P_ ev_timer *w) 2635ev_timer_start (EV_P_ ev_timer *w)
1781{ 2636{
1782 if (expect_false (ev_is_active (w))) 2637 if (expect_false (ev_is_active (w)))
1783 return; 2638 return;
1784 2639
1785 ((WT)w)->at += mn_now; 2640 ev_at (w) += mn_now;
1786 2641
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2642 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 2643
2644 EV_FREQUENT_CHECK;
2645
2646 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 2647 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2648 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 2649 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 2650 ANHE_at_cache (timers [ev_active (w)]);
2651 upheap (timers, ev_active (w));
1793 2652
2653 EV_FREQUENT_CHECK;
2654
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2655 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 2656}
1796 2657
1797void noinline 2658void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 2659ev_timer_stop (EV_P_ ev_timer *w)
1799{ 2660{
1800 clear_pending (EV_A_ (W)w); 2661 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2662 if (expect_false (!ev_is_active (w)))
1802 return; 2663 return;
1803 2664
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2665 EV_FREQUENT_CHECK;
1805 2666
1806 { 2667 {
1807 int active = ((W)w)->active; 2668 int active = ev_active (w);
1808 2669
2670 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2671
2672 --timercnt;
2673
1809 if (expect_true (--active < --timercnt)) 2674 if (expect_true (active < timercnt + HEAP0))
1810 { 2675 {
1811 timers [active] = timers [timercnt]; 2676 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 2677 adjustheap (timers, timercnt, active);
1813 } 2678 }
1814 } 2679 }
1815 2680
1816 ((WT)w)->at -= mn_now; 2681 ev_at (w) -= mn_now;
1817 2682
1818 ev_stop (EV_A_ (W)w); 2683 ev_stop (EV_A_ (W)w);
2684
2685 EV_FREQUENT_CHECK;
1819} 2686}
1820 2687
1821void noinline 2688void noinline
1822ev_timer_again (EV_P_ ev_timer *w) 2689ev_timer_again (EV_P_ ev_timer *w)
1823{ 2690{
2691 EV_FREQUENT_CHECK;
2692
1824 if (ev_is_active (w)) 2693 if (ev_is_active (w))
1825 { 2694 {
1826 if (w->repeat) 2695 if (w->repeat)
1827 { 2696 {
1828 ((WT)w)->at = mn_now + w->repeat; 2697 ev_at (w) = mn_now + w->repeat;
2698 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 2699 adjustheap (timers, timercnt, ev_active (w));
1830 } 2700 }
1831 else 2701 else
1832 ev_timer_stop (EV_A_ w); 2702 ev_timer_stop (EV_A_ w);
1833 } 2703 }
1834 else if (w->repeat) 2704 else if (w->repeat)
1835 { 2705 {
1836 w->at = w->repeat; 2706 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 2707 ev_timer_start (EV_A_ w);
1838 } 2708 }
2709
2710 EV_FREQUENT_CHECK;
2711}
2712
2713ev_tstamp
2714ev_timer_remaining (EV_P_ ev_timer *w)
2715{
2716 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1839} 2717}
1840 2718
1841#if EV_PERIODIC_ENABLE 2719#if EV_PERIODIC_ENABLE
1842void noinline 2720void noinline
1843ev_periodic_start (EV_P_ ev_periodic *w) 2721ev_periodic_start (EV_P_ ev_periodic *w)
1844{ 2722{
1845 if (expect_false (ev_is_active (w))) 2723 if (expect_false (ev_is_active (w)))
1846 return; 2724 return;
1847 2725
1848 if (w->reschedule_cb) 2726 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2727 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 2728 else if (w->interval)
1851 { 2729 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2730 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 2731 /* this formula differs from the one in periodic_reify because we do not always round up */
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2732 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 2733 }
1856 else 2734 else
1857 ((WT)w)->at = w->offset; 2735 ev_at (w) = w->offset;
1858 2736
2737 EV_FREQUENT_CHECK;
2738
2739 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 2740 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2741 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 2742 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 2743 ANHE_at_cache (periodics [ev_active (w)]);
2744 upheap (periodics, ev_active (w));
1863 2745
2746 EV_FREQUENT_CHECK;
2747
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2748 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 2749}
1866 2750
1867void noinline 2751void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 2752ev_periodic_stop (EV_P_ ev_periodic *w)
1869{ 2753{
1870 clear_pending (EV_A_ (W)w); 2754 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 2755 if (expect_false (!ev_is_active (w)))
1872 return; 2756 return;
1873 2757
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2758 EV_FREQUENT_CHECK;
1875 2759
1876 { 2760 {
1877 int active = ((W)w)->active; 2761 int active = ev_active (w);
1878 2762
2763 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2764
2765 --periodiccnt;
2766
1879 if (expect_true (--active < --periodiccnt)) 2767 if (expect_true (active < periodiccnt + HEAP0))
1880 { 2768 {
1881 periodics [active] = periodics [periodiccnt]; 2769 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 2770 adjustheap (periodics, periodiccnt, active);
1883 } 2771 }
1884 } 2772 }
1885 2773
1886 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
1887} 2777}
1888 2778
1889void noinline 2779void noinline
1890ev_periodic_again (EV_P_ ev_periodic *w) 2780ev_periodic_again (EV_P_ ev_periodic *w)
1891{ 2781{
1897 2787
1898#ifndef SA_RESTART 2788#ifndef SA_RESTART
1899# define SA_RESTART 0 2789# define SA_RESTART 0
1900#endif 2790#endif
1901 2791
2792#if EV_SIGNAL_ENABLE
2793
1902void noinline 2794void noinline
1903ev_signal_start (EV_P_ ev_signal *w) 2795ev_signal_start (EV_P_ ev_signal *w)
1904{ 2796{
1905#if EV_MULTIPLICITY
1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif
1908 if (expect_false (ev_is_active (w))) 2797 if (expect_false (ev_is_active (w)))
1909 return; 2798 return;
1910 2799
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2800 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1912 2801
1913 evpipe_init (EV_A); 2802#if EV_MULTIPLICITY
2803 assert (("libev: a signal must not be attached to two different loops",
2804 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1914 2805
2806 signals [w->signum - 1].loop = EV_A;
2807#endif
2808
2809 EV_FREQUENT_CHECK;
2810
2811#if EV_USE_SIGNALFD
2812 if (sigfd == -2)
1915 { 2813 {
1916#ifndef _WIN32 2814 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1917 sigset_t full, prev; 2815 if (sigfd < 0 && errno == EINVAL)
1918 sigfillset (&full); 2816 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1919 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif
1921 2817
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2818 if (sigfd >= 0)
2819 {
2820 fd_intern (sigfd); /* doing it twice will not hurt */
1923 2821
1924#ifndef _WIN32 2822 sigemptyset (&sigfd_set);
1925 sigprocmask (SIG_SETMASK, &prev, 0); 2823
1926#endif 2824 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2825 ev_set_priority (&sigfd_w, EV_MAXPRI);
2826 ev_io_start (EV_A_ &sigfd_w);
2827 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2828 }
1927 } 2829 }
2830
2831 if (sigfd >= 0)
2832 {
2833 /* TODO: check .head */
2834 sigaddset (&sigfd_set, w->signum);
2835 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2836
2837 signalfd (sigfd, &sigfd_set, 0);
2838 }
2839#endif
1928 2840
1929 ev_start (EV_A_ (W)w, 1); 2841 ev_start (EV_A_ (W)w, 1);
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 2842 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 2843
1932 if (!((WL)w)->next) 2844 if (!((WL)w)->next)
2845# if EV_USE_SIGNALFD
2846 if (sigfd < 0) /*TODO*/
2847# endif
1933 { 2848 {
1934#if _WIN32 2849# ifdef _WIN32
2850 evpipe_init (EV_A);
2851
1935 signal (w->signum, ev_sighandler); 2852 signal (w->signum, ev_sighandler);
1936#else 2853# else
1937 struct sigaction sa; 2854 struct sigaction sa;
2855
2856 evpipe_init (EV_A);
2857
1938 sa.sa_handler = ev_sighandler; 2858 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 2859 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2860 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 2861 sigaction (w->signum, &sa, 0);
2862
2863 sigemptyset (&sa.sa_mask);
2864 sigaddset (&sa.sa_mask, w->signum);
2865 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1942#endif 2866#endif
1943 } 2867 }
2868
2869 EV_FREQUENT_CHECK;
1944} 2870}
1945 2871
1946void noinline 2872void noinline
1947ev_signal_stop (EV_P_ ev_signal *w) 2873ev_signal_stop (EV_P_ ev_signal *w)
1948{ 2874{
1949 clear_pending (EV_A_ (W)w); 2875 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 2876 if (expect_false (!ev_is_active (w)))
1951 return; 2877 return;
1952 2878
2879 EV_FREQUENT_CHECK;
2880
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 2881 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 2882 ev_stop (EV_A_ (W)w);
1955 2883
1956 if (!signals [w->signum - 1].head) 2884 if (!signals [w->signum - 1].head)
2885 {
2886#if EV_MULTIPLICITY
2887 signals [w->signum - 1].loop = 0; /* unattach from signal */
2888#endif
2889#if EV_USE_SIGNALFD
2890 if (sigfd >= 0)
2891 {
2892 sigset_t ss;
2893
2894 sigemptyset (&ss);
2895 sigaddset (&ss, w->signum);
2896 sigdelset (&sigfd_set, w->signum);
2897
2898 signalfd (sigfd, &sigfd_set, 0);
2899 sigprocmask (SIG_UNBLOCK, &ss, 0);
2900 }
2901 else
2902#endif
1957 signal (w->signum, SIG_DFL); 2903 signal (w->signum, SIG_DFL);
2904 }
2905
2906 EV_FREQUENT_CHECK;
1958} 2907}
2908
2909#endif
2910
2911#if EV_CHILD_ENABLE
1959 2912
1960void 2913void
1961ev_child_start (EV_P_ ev_child *w) 2914ev_child_start (EV_P_ ev_child *w)
1962{ 2915{
1963#if EV_MULTIPLICITY 2916#if EV_MULTIPLICITY
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2917 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 2918#endif
1966 if (expect_false (ev_is_active (w))) 2919 if (expect_false (ev_is_active (w)))
1967 return; 2920 return;
1968 2921
2922 EV_FREQUENT_CHECK;
2923
1969 ev_start (EV_A_ (W)w, 1); 2924 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2925 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2926
2927 EV_FREQUENT_CHECK;
1971} 2928}
1972 2929
1973void 2930void
1974ev_child_stop (EV_P_ ev_child *w) 2931ev_child_stop (EV_P_ ev_child *w)
1975{ 2932{
1976 clear_pending (EV_A_ (W)w); 2933 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 2934 if (expect_false (!ev_is_active (w)))
1978 return; 2935 return;
1979 2936
2937 EV_FREQUENT_CHECK;
2938
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2939 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
1982} 2943}
2944
2945#endif
1983 2946
1984#if EV_STAT_ENABLE 2947#if EV_STAT_ENABLE
1985 2948
1986# ifdef _WIN32 2949# ifdef _WIN32
1987# undef lstat 2950# undef lstat
1988# define lstat(a,b) _stati64 (a,b) 2951# define lstat(a,b) _stati64 (a,b)
1989# endif 2952# endif
1990 2953
1991#define DEF_STAT_INTERVAL 5.0074891 2954#define DEF_STAT_INTERVAL 5.0074891
2955#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1992#define MIN_STAT_INTERVAL 0.1074891 2956#define MIN_STAT_INTERVAL 0.1074891
1993 2957
1994static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2958static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1995 2959
1996#if EV_USE_INOTIFY 2960#if EV_USE_INOTIFY
1997# define EV_INOTIFY_BUFSIZE 8192 2961
2962/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2963# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1998 2964
1999static void noinline 2965static void noinline
2000infy_add (EV_P_ ev_stat *w) 2966infy_add (EV_P_ ev_stat *w)
2001{ 2967{
2002 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2968 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2003 2969
2004 if (w->wd < 0) 2970 if (w->wd >= 0)
2971 {
2972 struct statfs sfs;
2973
2974 /* now local changes will be tracked by inotify, but remote changes won't */
2975 /* unless the filesystem is known to be local, we therefore still poll */
2976 /* also do poll on <2.6.25, but with normal frequency */
2977
2978 if (!fs_2625)
2979 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2980 else if (!statfs (w->path, &sfs)
2981 && (sfs.f_type == 0x1373 /* devfs */
2982 || sfs.f_type == 0xEF53 /* ext2/3 */
2983 || sfs.f_type == 0x3153464a /* jfs */
2984 || sfs.f_type == 0x52654973 /* reiser3 */
2985 || sfs.f_type == 0x01021994 /* tempfs */
2986 || sfs.f_type == 0x58465342 /* xfs */))
2987 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2988 else
2989 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2005 { 2990 }
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2991 else
2992 {
2993 /* can't use inotify, continue to stat */
2994 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2007 2995
2008 /* monitor some parent directory for speedup hints */ 2996 /* if path is not there, monitor some parent directory for speedup hints */
2997 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2998 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2999 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 3000 {
2011 char path [4096]; 3001 char path [4096];
2012 strcpy (path, w->path); 3002 strcpy (path, w->path);
2013 3003
2016 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3006 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2017 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3007 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2018 3008
2019 char *pend = strrchr (path, '/'); 3009 char *pend = strrchr (path, '/');
2020 3010
2021 if (!pend) 3011 if (!pend || pend == path)
2022 break; /* whoops, no '/', complain to your admin */ 3012 break;
2023 3013
2024 *pend = 0; 3014 *pend = 0;
2025 w->wd = inotify_add_watch (fs_fd, path, mask); 3015 w->wd = inotify_add_watch (fs_fd, path, mask);
2026 } 3016 }
2027 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3017 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2028 } 3018 }
2029 } 3019 }
2030 else
2031 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2032 3020
2033 if (w->wd >= 0) 3021 if (w->wd >= 0)
2034 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3022 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3023
3024 /* now re-arm timer, if required */
3025 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3026 ev_timer_again (EV_A_ &w->timer);
3027 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2035} 3028}
2036 3029
2037static void noinline 3030static void noinline
2038infy_del (EV_P_ ev_stat *w) 3031infy_del (EV_P_ ev_stat *w)
2039{ 3032{
2042 3035
2043 if (wd < 0) 3036 if (wd < 0)
2044 return; 3037 return;
2045 3038
2046 w->wd = -2; 3039 w->wd = -2;
2047 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3040 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2048 wlist_del (&fs_hash [slot].head, (WL)w); 3041 wlist_del (&fs_hash [slot].head, (WL)w);
2049 3042
2050 /* remove this watcher, if others are watching it, they will rearm */ 3043 /* remove this watcher, if others are watching it, they will rearm */
2051 inotify_rm_watch (fs_fd, wd); 3044 inotify_rm_watch (fs_fd, wd);
2052} 3045}
2053 3046
2054static void noinline 3047static void noinline
2055infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3048infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2056{ 3049{
2057 if (slot < 0) 3050 if (slot < 0)
2058 /* overflow, need to check for all hahs slots */ 3051 /* overflow, need to check for all hash slots */
2059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3052 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2060 infy_wd (EV_A_ slot, wd, ev); 3053 infy_wd (EV_A_ slot, wd, ev);
2061 else 3054 else
2062 { 3055 {
2063 WL w_; 3056 WL w_;
2064 3057
2065 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3058 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2066 { 3059 {
2067 ev_stat *w = (ev_stat *)w_; 3060 ev_stat *w = (ev_stat *)w_;
2068 w_ = w_->next; /* lets us remove this watcher and all before it */ 3061 w_ = w_->next; /* lets us remove this watcher and all before it */
2069 3062
2070 if (w->wd == wd || wd == -1) 3063 if (w->wd == wd || wd == -1)
2071 { 3064 {
2072 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3065 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2073 { 3066 {
3067 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2074 w->wd = -1; 3068 w->wd = -1;
2075 infy_add (EV_A_ w); /* re-add, no matter what */ 3069 infy_add (EV_A_ w); /* re-add, no matter what */
2076 } 3070 }
2077 3071
2078 stat_timer_cb (EV_A_ &w->timer, 0); 3072 stat_timer_cb (EV_A_ &w->timer, 0);
2083 3077
2084static void 3078static void
2085infy_cb (EV_P_ ev_io *w, int revents) 3079infy_cb (EV_P_ ev_io *w, int revents)
2086{ 3080{
2087 char buf [EV_INOTIFY_BUFSIZE]; 3081 char buf [EV_INOTIFY_BUFSIZE];
2088 struct inotify_event *ev = (struct inotify_event *)buf;
2089 int ofs; 3082 int ofs;
2090 int len = read (fs_fd, buf, sizeof (buf)); 3083 int len = read (fs_fd, buf, sizeof (buf));
2091 3084
2092 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3085 for (ofs = 0; ofs < len; )
3086 {
3087 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2093 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3088 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3089 ofs += sizeof (struct inotify_event) + ev->len;
3090 }
2094} 3091}
2095 3092
2096void inline_size 3093inline_size void
3094ev_check_2625 (EV_P)
3095{
3096 /* kernels < 2.6.25 are borked
3097 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3098 */
3099 if (ev_linux_version () < 0x020619)
3100 return;
3101
3102 fs_2625 = 1;
3103}
3104
3105inline_size int
3106infy_newfd (void)
3107{
3108#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3109 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3110 if (fd >= 0)
3111 return fd;
3112#endif
3113 return inotify_init ();
3114}
3115
3116inline_size void
2097infy_init (EV_P) 3117infy_init (EV_P)
2098{ 3118{
2099 if (fs_fd != -2) 3119 if (fs_fd != -2)
2100 return; 3120 return;
2101 3121
3122 fs_fd = -1;
3123
3124 ev_check_2625 (EV_A);
3125
2102 fs_fd = inotify_init (); 3126 fs_fd = infy_newfd ();
2103 3127
2104 if (fs_fd >= 0) 3128 if (fs_fd >= 0)
2105 { 3129 {
3130 fd_intern (fs_fd);
2106 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3131 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2107 ev_set_priority (&fs_w, EV_MAXPRI); 3132 ev_set_priority (&fs_w, EV_MAXPRI);
2108 ev_io_start (EV_A_ &fs_w); 3133 ev_io_start (EV_A_ &fs_w);
3134 ev_unref (EV_A);
2109 } 3135 }
2110} 3136}
2111 3137
2112void inline_size 3138inline_size void
2113infy_fork (EV_P) 3139infy_fork (EV_P)
2114{ 3140{
2115 int slot; 3141 int slot;
2116 3142
2117 if (fs_fd < 0) 3143 if (fs_fd < 0)
2118 return; 3144 return;
2119 3145
3146 ev_ref (EV_A);
3147 ev_io_stop (EV_A_ &fs_w);
2120 close (fs_fd); 3148 close (fs_fd);
2121 fs_fd = inotify_init (); 3149 fs_fd = infy_newfd ();
2122 3150
3151 if (fs_fd >= 0)
3152 {
3153 fd_intern (fs_fd);
3154 ev_io_set (&fs_w, fs_fd, EV_READ);
3155 ev_io_start (EV_A_ &fs_w);
3156 ev_unref (EV_A);
3157 }
3158
2123 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3159 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2124 { 3160 {
2125 WL w_ = fs_hash [slot].head; 3161 WL w_ = fs_hash [slot].head;
2126 fs_hash [slot].head = 0; 3162 fs_hash [slot].head = 0;
2127 3163
2128 while (w_) 3164 while (w_)
2133 w->wd = -1; 3169 w->wd = -1;
2134 3170
2135 if (fs_fd >= 0) 3171 if (fs_fd >= 0)
2136 infy_add (EV_A_ w); /* re-add, no matter what */ 3172 infy_add (EV_A_ w); /* re-add, no matter what */
2137 else 3173 else
3174 {
3175 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3176 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2138 ev_timer_start (EV_A_ &w->timer); 3177 ev_timer_again (EV_A_ &w->timer);
3178 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3179 }
2139 } 3180 }
2140
2141 } 3181 }
2142} 3182}
2143 3183
3184#endif
3185
3186#ifdef _WIN32
3187# define EV_LSTAT(p,b) _stati64 (p, b)
3188#else
3189# define EV_LSTAT(p,b) lstat (p, b)
2144#endif 3190#endif
2145 3191
2146void 3192void
2147ev_stat_stat (EV_P_ ev_stat *w) 3193ev_stat_stat (EV_P_ ev_stat *w)
2148{ 3194{
2155static void noinline 3201static void noinline
2156stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3202stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2157{ 3203{
2158 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3204 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2159 3205
2160 /* we copy this here each the time so that */ 3206 ev_statdata prev = w->attr;
2161 /* prev has the old value when the callback gets invoked */
2162 w->prev = w->attr;
2163 ev_stat_stat (EV_A_ w); 3207 ev_stat_stat (EV_A_ w);
2164 3208
2165 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3209 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2166 if ( 3210 if (
2167 w->prev.st_dev != w->attr.st_dev 3211 prev.st_dev != w->attr.st_dev
2168 || w->prev.st_ino != w->attr.st_ino 3212 || prev.st_ino != w->attr.st_ino
2169 || w->prev.st_mode != w->attr.st_mode 3213 || prev.st_mode != w->attr.st_mode
2170 || w->prev.st_nlink != w->attr.st_nlink 3214 || prev.st_nlink != w->attr.st_nlink
2171 || w->prev.st_uid != w->attr.st_uid 3215 || prev.st_uid != w->attr.st_uid
2172 || w->prev.st_gid != w->attr.st_gid 3216 || prev.st_gid != w->attr.st_gid
2173 || w->prev.st_rdev != w->attr.st_rdev 3217 || prev.st_rdev != w->attr.st_rdev
2174 || w->prev.st_size != w->attr.st_size 3218 || prev.st_size != w->attr.st_size
2175 || w->prev.st_atime != w->attr.st_atime 3219 || prev.st_atime != w->attr.st_atime
2176 || w->prev.st_mtime != w->attr.st_mtime 3220 || prev.st_mtime != w->attr.st_mtime
2177 || w->prev.st_ctime != w->attr.st_ctime 3221 || prev.st_ctime != w->attr.st_ctime
2178 ) { 3222 ) {
3223 /* we only update w->prev on actual differences */
3224 /* in case we test more often than invoke the callback, */
3225 /* to ensure that prev is always different to attr */
3226 w->prev = prev;
3227
2179 #if EV_USE_INOTIFY 3228 #if EV_USE_INOTIFY
3229 if (fs_fd >= 0)
3230 {
2180 infy_del (EV_A_ w); 3231 infy_del (EV_A_ w);
2181 infy_add (EV_A_ w); 3232 infy_add (EV_A_ w);
2182 ev_stat_stat (EV_A_ w); /* avoid race... */ 3233 ev_stat_stat (EV_A_ w); /* avoid race... */
3234 }
2183 #endif 3235 #endif
2184 3236
2185 ev_feed_event (EV_A_ w, EV_STAT); 3237 ev_feed_event (EV_A_ w, EV_STAT);
2186 } 3238 }
2187} 3239}
2190ev_stat_start (EV_P_ ev_stat *w) 3242ev_stat_start (EV_P_ ev_stat *w)
2191{ 3243{
2192 if (expect_false (ev_is_active (w))) 3244 if (expect_false (ev_is_active (w)))
2193 return; 3245 return;
2194 3246
2195 /* since we use memcmp, we need to clear any padding data etc. */
2196 memset (&w->prev, 0, sizeof (ev_statdata));
2197 memset (&w->attr, 0, sizeof (ev_statdata));
2198
2199 ev_stat_stat (EV_A_ w); 3247 ev_stat_stat (EV_A_ w);
2200 3248
3249 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2201 if (w->interval < MIN_STAT_INTERVAL) 3250 w->interval = MIN_STAT_INTERVAL;
2202 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2203 3251
2204 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3252 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2205 ev_set_priority (&w->timer, ev_priority (w)); 3253 ev_set_priority (&w->timer, ev_priority (w));
2206 3254
2207#if EV_USE_INOTIFY 3255#if EV_USE_INOTIFY
2208 infy_init (EV_A); 3256 infy_init (EV_A);
2209 3257
2210 if (fs_fd >= 0) 3258 if (fs_fd >= 0)
2211 infy_add (EV_A_ w); 3259 infy_add (EV_A_ w);
2212 else 3260 else
2213#endif 3261#endif
3262 {
2214 ev_timer_start (EV_A_ &w->timer); 3263 ev_timer_again (EV_A_ &w->timer);
3264 ev_unref (EV_A);
3265 }
2215 3266
2216 ev_start (EV_A_ (W)w, 1); 3267 ev_start (EV_A_ (W)w, 1);
3268
3269 EV_FREQUENT_CHECK;
2217} 3270}
2218 3271
2219void 3272void
2220ev_stat_stop (EV_P_ ev_stat *w) 3273ev_stat_stop (EV_P_ ev_stat *w)
2221{ 3274{
2222 clear_pending (EV_A_ (W)w); 3275 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 3276 if (expect_false (!ev_is_active (w)))
2224 return; 3277 return;
2225 3278
3279 EV_FREQUENT_CHECK;
3280
2226#if EV_USE_INOTIFY 3281#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 3282 infy_del (EV_A_ w);
2228#endif 3283#endif
3284
3285 if (ev_is_active (&w->timer))
3286 {
3287 ev_ref (EV_A);
2229 ev_timer_stop (EV_A_ &w->timer); 3288 ev_timer_stop (EV_A_ &w->timer);
3289 }
2230 3290
2231 ev_stop (EV_A_ (W)w); 3291 ev_stop (EV_A_ (W)w);
3292
3293 EV_FREQUENT_CHECK;
2232} 3294}
2233#endif 3295#endif
2234 3296
2235#if EV_IDLE_ENABLE 3297#if EV_IDLE_ENABLE
2236void 3298void
2238{ 3300{
2239 if (expect_false (ev_is_active (w))) 3301 if (expect_false (ev_is_active (w)))
2240 return; 3302 return;
2241 3303
2242 pri_adjust (EV_A_ (W)w); 3304 pri_adjust (EV_A_ (W)w);
3305
3306 EV_FREQUENT_CHECK;
2243 3307
2244 { 3308 {
2245 int active = ++idlecnt [ABSPRI (w)]; 3309 int active = ++idlecnt [ABSPRI (w)];
2246 3310
2247 ++idleall; 3311 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 3312 ev_start (EV_A_ (W)w, active);
2249 3313
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3314 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w; 3315 idles [ABSPRI (w)][active - 1] = w;
2252 } 3316 }
3317
3318 EV_FREQUENT_CHECK;
2253} 3319}
2254 3320
2255void 3321void
2256ev_idle_stop (EV_P_ ev_idle *w) 3322ev_idle_stop (EV_P_ ev_idle *w)
2257{ 3323{
2258 clear_pending (EV_A_ (W)w); 3324 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 3325 if (expect_false (!ev_is_active (w)))
2260 return; 3326 return;
2261 3327
3328 EV_FREQUENT_CHECK;
3329
2262 { 3330 {
2263 int active = ((W)w)->active; 3331 int active = ev_active (w);
2264 3332
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3333 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3334 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 3335
2268 ev_stop (EV_A_ (W)w); 3336 ev_stop (EV_A_ (W)w);
2269 --idleall; 3337 --idleall;
2270 } 3338 }
2271}
2272#endif
2273 3339
3340 EV_FREQUENT_CHECK;
3341}
3342#endif
3343
3344#if EV_PREPARE_ENABLE
2274void 3345void
2275ev_prepare_start (EV_P_ ev_prepare *w) 3346ev_prepare_start (EV_P_ ev_prepare *w)
2276{ 3347{
2277 if (expect_false (ev_is_active (w))) 3348 if (expect_false (ev_is_active (w)))
2278 return; 3349 return;
3350
3351 EV_FREQUENT_CHECK;
2279 3352
2280 ev_start (EV_A_ (W)w, ++preparecnt); 3353 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3354 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w; 3355 prepares [preparecnt - 1] = w;
3356
3357 EV_FREQUENT_CHECK;
2283} 3358}
2284 3359
2285void 3360void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 3361ev_prepare_stop (EV_P_ ev_prepare *w)
2287{ 3362{
2288 clear_pending (EV_A_ (W)w); 3363 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 3364 if (expect_false (!ev_is_active (w)))
2290 return; 3365 return;
2291 3366
3367 EV_FREQUENT_CHECK;
3368
2292 { 3369 {
2293 int active = ((W)w)->active; 3370 int active = ev_active (w);
3371
2294 prepares [active - 1] = prepares [--preparecnt]; 3372 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 3373 ev_active (prepares [active - 1]) = active;
2296 } 3374 }
2297 3375
2298 ev_stop (EV_A_ (W)w); 3376 ev_stop (EV_A_ (W)w);
2299}
2300 3377
3378 EV_FREQUENT_CHECK;
3379}
3380#endif
3381
3382#if EV_CHECK_ENABLE
2301void 3383void
2302ev_check_start (EV_P_ ev_check *w) 3384ev_check_start (EV_P_ ev_check *w)
2303{ 3385{
2304 if (expect_false (ev_is_active (w))) 3386 if (expect_false (ev_is_active (w)))
2305 return; 3387 return;
3388
3389 EV_FREQUENT_CHECK;
2306 3390
2307 ev_start (EV_A_ (W)w, ++checkcnt); 3391 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3392 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w; 3393 checks [checkcnt - 1] = w;
3394
3395 EV_FREQUENT_CHECK;
2310} 3396}
2311 3397
2312void 3398void
2313ev_check_stop (EV_P_ ev_check *w) 3399ev_check_stop (EV_P_ ev_check *w)
2314{ 3400{
2315 clear_pending (EV_A_ (W)w); 3401 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 3402 if (expect_false (!ev_is_active (w)))
2317 return; 3403 return;
2318 3404
3405 EV_FREQUENT_CHECK;
3406
2319 { 3407 {
2320 int active = ((W)w)->active; 3408 int active = ev_active (w);
3409
2321 checks [active - 1] = checks [--checkcnt]; 3410 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 3411 ev_active (checks [active - 1]) = active;
2323 } 3412 }
2324 3413
2325 ev_stop (EV_A_ (W)w); 3414 ev_stop (EV_A_ (W)w);
3415
3416 EV_FREQUENT_CHECK;
2326} 3417}
3418#endif
2327 3419
2328#if EV_EMBED_ENABLE 3420#if EV_EMBED_ENABLE
2329void noinline 3421void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w) 3422ev_embed_sweep (EV_P_ ev_embed *w)
2331{ 3423{
2332 ev_loop (w->other, EVLOOP_NONBLOCK); 3424 ev_run (w->other, EVRUN_NOWAIT);
2333} 3425}
2334 3426
2335static void 3427static void
2336embed_io_cb (EV_P_ ev_io *io, int revents) 3428embed_io_cb (EV_P_ ev_io *io, int revents)
2337{ 3429{
2338 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3430 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2339 3431
2340 if (ev_cb (w)) 3432 if (ev_cb (w))
2341 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3433 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2342 else 3434 else
2343 ev_loop (w->other, EVLOOP_NONBLOCK); 3435 ev_run (w->other, EVRUN_NOWAIT);
2344} 3436}
2345 3437
2346static void 3438static void
2347embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3439embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2348{ 3440{
2349 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3441 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2350 3442
2351 { 3443 {
2352 struct ev_loop *loop = w->other; 3444 EV_P = w->other;
2353 3445
2354 while (fdchangecnt) 3446 while (fdchangecnt)
2355 { 3447 {
2356 fd_reify (EV_A); 3448 fd_reify (EV_A);
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3449 ev_run (EV_A_ EVRUN_NOWAIT);
2358 } 3450 }
2359 } 3451 }
3452}
3453
3454static void
3455embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3456{
3457 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3458
3459 ev_embed_stop (EV_A_ w);
3460
3461 {
3462 EV_P = w->other;
3463
3464 ev_loop_fork (EV_A);
3465 ev_run (EV_A_ EVRUN_NOWAIT);
3466 }
3467
3468 ev_embed_start (EV_A_ w);
2360} 3469}
2361 3470
2362#if 0 3471#if 0
2363static void 3472static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2372{ 3481{
2373 if (expect_false (ev_is_active (w))) 3482 if (expect_false (ev_is_active (w)))
2374 return; 3483 return;
2375 3484
2376 { 3485 {
2377 struct ev_loop *loop = w->other; 3486 EV_P = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3487 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 3489 }
3490
3491 EV_FREQUENT_CHECK;
2381 3492
2382 ev_set_priority (&w->io, ev_priority (w)); 3493 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 3494 ev_io_start (EV_A_ &w->io);
2384 3495
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 3496 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 3497 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 3498 ev_prepare_start (EV_A_ &w->prepare);
2388 3499
3500 ev_fork_init (&w->fork, embed_fork_cb);
3501 ev_fork_start (EV_A_ &w->fork);
3502
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3503 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 3504
2391 ev_start (EV_A_ (W)w, 1); 3505 ev_start (EV_A_ (W)w, 1);
3506
3507 EV_FREQUENT_CHECK;
2392} 3508}
2393 3509
2394void 3510void
2395ev_embed_stop (EV_P_ ev_embed *w) 3511ev_embed_stop (EV_P_ ev_embed *w)
2396{ 3512{
2397 clear_pending (EV_A_ (W)w); 3513 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 3514 if (expect_false (!ev_is_active (w)))
2399 return; 3515 return;
2400 3516
3517 EV_FREQUENT_CHECK;
3518
2401 ev_io_stop (EV_A_ &w->io); 3519 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 3520 ev_prepare_stop (EV_A_ &w->prepare);
3521 ev_fork_stop (EV_A_ &w->fork);
2403 3522
2404 ev_stop (EV_A_ (W)w); 3523 ev_stop (EV_A_ (W)w);
3524
3525 EV_FREQUENT_CHECK;
2405} 3526}
2406#endif 3527#endif
2407 3528
2408#if EV_FORK_ENABLE 3529#if EV_FORK_ENABLE
2409void 3530void
2410ev_fork_start (EV_P_ ev_fork *w) 3531ev_fork_start (EV_P_ ev_fork *w)
2411{ 3532{
2412 if (expect_false (ev_is_active (w))) 3533 if (expect_false (ev_is_active (w)))
2413 return; 3534 return;
3535
3536 EV_FREQUENT_CHECK;
2414 3537
2415 ev_start (EV_A_ (W)w, ++forkcnt); 3538 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3539 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w; 3540 forks [forkcnt - 1] = w;
3541
3542 EV_FREQUENT_CHECK;
2418} 3543}
2419 3544
2420void 3545void
2421ev_fork_stop (EV_P_ ev_fork *w) 3546ev_fork_stop (EV_P_ ev_fork *w)
2422{ 3547{
2423 clear_pending (EV_A_ (W)w); 3548 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 3549 if (expect_false (!ev_is_active (w)))
2425 return; 3550 return;
2426 3551
3552 EV_FREQUENT_CHECK;
3553
2427 { 3554 {
2428 int active = ((W)w)->active; 3555 int active = ev_active (w);
3556
2429 forks [active - 1] = forks [--forkcnt]; 3557 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 3558 ev_active (forks [active - 1]) = active;
2431 } 3559 }
2432 3560
2433 ev_stop (EV_A_ (W)w); 3561 ev_stop (EV_A_ (W)w);
3562
3563 EV_FREQUENT_CHECK;
2434} 3564}
2435#endif 3565#endif
2436 3566
2437#if EV_ASYNC_ENABLE 3567#if EV_ASYNC_ENABLE
2438void 3568void
2439ev_async_start (EV_P_ ev_async *w) 3569ev_async_start (EV_P_ ev_async *w)
2440{ 3570{
2441 if (expect_false (ev_is_active (w))) 3571 if (expect_false (ev_is_active (w)))
2442 return; 3572 return;
2443 3573
3574 w->sent = 0;
3575
2444 evpipe_init (EV_A); 3576 evpipe_init (EV_A);
3577
3578 EV_FREQUENT_CHECK;
2445 3579
2446 ev_start (EV_A_ (W)w, ++asynccnt); 3580 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3581 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w; 3582 asyncs [asynccnt - 1] = w;
3583
3584 EV_FREQUENT_CHECK;
2449} 3585}
2450 3586
2451void 3587void
2452ev_async_stop (EV_P_ ev_async *w) 3588ev_async_stop (EV_P_ ev_async *w)
2453{ 3589{
2454 clear_pending (EV_A_ (W)w); 3590 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 3591 if (expect_false (!ev_is_active (w)))
2456 return; 3592 return;
2457 3593
3594 EV_FREQUENT_CHECK;
3595
2458 { 3596 {
2459 int active = ((W)w)->active; 3597 int active = ev_active (w);
3598
2460 asyncs [active - 1] = asyncs [--asynccnt]; 3599 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 3600 ev_active (asyncs [active - 1]) = active;
2462 } 3601 }
2463 3602
2464 ev_stop (EV_A_ (W)w); 3603 ev_stop (EV_A_ (W)w);
3604
3605 EV_FREQUENT_CHECK;
2465} 3606}
2466 3607
2467void 3608void
2468ev_async_send (EV_P_ ev_async *w) 3609ev_async_send (EV_P_ ev_async *w)
2469{ 3610{
2470 w->sent = 1; 3611 w->sent = 1;
2471 evpipe_write (EV_A_ &gotasync); 3612 evpipe_write (EV_A_ &async_pending);
2472} 3613}
2473#endif 3614#endif
2474 3615
2475/*****************************************************************************/ 3616/*****************************************************************************/
2476 3617
2486once_cb (EV_P_ struct ev_once *once, int revents) 3627once_cb (EV_P_ struct ev_once *once, int revents)
2487{ 3628{
2488 void (*cb)(int revents, void *arg) = once->cb; 3629 void (*cb)(int revents, void *arg) = once->cb;
2489 void *arg = once->arg; 3630 void *arg = once->arg;
2490 3631
2491 ev_io_stop (EV_A_ &once->io); 3632 ev_io_stop (EV_A_ &once->io);
2492 ev_timer_stop (EV_A_ &once->to); 3633 ev_timer_stop (EV_A_ &once->to);
2493 ev_free (once); 3634 ev_free (once);
2494 3635
2495 cb (revents, arg); 3636 cb (revents, arg);
2496} 3637}
2497 3638
2498static void 3639static void
2499once_cb_io (EV_P_ ev_io *w, int revents) 3640once_cb_io (EV_P_ ev_io *w, int revents)
2500{ 3641{
2501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3642 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3643
3644 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2502} 3645}
2503 3646
2504static void 3647static void
2505once_cb_to (EV_P_ ev_timer *w, int revents) 3648once_cb_to (EV_P_ ev_timer *w, int revents)
2506{ 3649{
2507 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3650 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3651
3652 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2508} 3653}
2509 3654
2510void 3655void
2511ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3656ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2512{ 3657{
2513 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3658 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2514 3659
2515 if (expect_false (!once)) 3660 if (expect_false (!once))
2516 { 3661 {
2517 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3662 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2518 return; 3663 return;
2519 } 3664 }
2520 3665
2521 once->cb = cb; 3666 once->cb = cb;
2522 once->arg = arg; 3667 once->arg = arg;
2534 ev_timer_set (&once->to, timeout, 0.); 3679 ev_timer_set (&once->to, timeout, 0.);
2535 ev_timer_start (EV_A_ &once->to); 3680 ev_timer_start (EV_A_ &once->to);
2536 } 3681 }
2537} 3682}
2538 3683
3684/*****************************************************************************/
3685
3686#if EV_WALK_ENABLE
3687void
3688ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3689{
3690 int i, j;
3691 ev_watcher_list *wl, *wn;
3692
3693 if (types & (EV_IO | EV_EMBED))
3694 for (i = 0; i < anfdmax; ++i)
3695 for (wl = anfds [i].head; wl; )
3696 {
3697 wn = wl->next;
3698
3699#if EV_EMBED_ENABLE
3700 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3701 {
3702 if (types & EV_EMBED)
3703 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3704 }
3705 else
3706#endif
3707#if EV_USE_INOTIFY
3708 if (ev_cb ((ev_io *)wl) == infy_cb)
3709 ;
3710 else
3711#endif
3712 if ((ev_io *)wl != &pipe_w)
3713 if (types & EV_IO)
3714 cb (EV_A_ EV_IO, wl);
3715
3716 wl = wn;
3717 }
3718
3719 if (types & (EV_TIMER | EV_STAT))
3720 for (i = timercnt + HEAP0; i-- > HEAP0; )
3721#if EV_STAT_ENABLE
3722 /*TODO: timer is not always active*/
3723 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3724 {
3725 if (types & EV_STAT)
3726 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3727 }
3728 else
3729#endif
3730 if (types & EV_TIMER)
3731 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3732
3733#if EV_PERIODIC_ENABLE
3734 if (types & EV_PERIODIC)
3735 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3736 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3737#endif
3738
3739#if EV_IDLE_ENABLE
3740 if (types & EV_IDLE)
3741 for (j = NUMPRI; i--; )
3742 for (i = idlecnt [j]; i--; )
3743 cb (EV_A_ EV_IDLE, idles [j][i]);
3744#endif
3745
3746#if EV_FORK_ENABLE
3747 if (types & EV_FORK)
3748 for (i = forkcnt; i--; )
3749 if (ev_cb (forks [i]) != embed_fork_cb)
3750 cb (EV_A_ EV_FORK, forks [i]);
3751#endif
3752
3753#if EV_ASYNC_ENABLE
3754 if (types & EV_ASYNC)
3755 for (i = asynccnt; i--; )
3756 cb (EV_A_ EV_ASYNC, asyncs [i]);
3757#endif
3758
3759#if EV_PREPARE_ENABLE
3760 if (types & EV_PREPARE)
3761 for (i = preparecnt; i--; )
3762# if EV_EMBED_ENABLE
3763 if (ev_cb (prepares [i]) != embed_prepare_cb)
3764# endif
3765 cb (EV_A_ EV_PREPARE, prepares [i]);
3766#endif
3767
3768#if EV_CHECK_ENABLE
3769 if (types & EV_CHECK)
3770 for (i = checkcnt; i--; )
3771 cb (EV_A_ EV_CHECK, checks [i]);
3772#endif
3773
3774#if EV_SIGNAL_ENABLE
3775 if (types & EV_SIGNAL)
3776 for (i = 0; i < EV_NSIG - 1; ++i)
3777 for (wl = signals [i].head; wl; )
3778 {
3779 wn = wl->next;
3780 cb (EV_A_ EV_SIGNAL, wl);
3781 wl = wn;
3782 }
3783#endif
3784
3785#if EV_CHILD_ENABLE
3786 if (types & EV_CHILD)
3787 for (i = (EV_PID_HASHSIZE); i--; )
3788 for (wl = childs [i]; wl; )
3789 {
3790 wn = wl->next;
3791 cb (EV_A_ EV_CHILD, wl);
3792 wl = wn;
3793 }
3794#endif
3795/* EV_STAT 0x00001000 /* stat data changed */
3796/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3797}
3798#endif
3799
2539#if EV_MULTIPLICITY 3800#if EV_MULTIPLICITY
2540 #include "ev_wrap.h" 3801 #include "ev_wrap.h"
2541#endif 3802#endif
2542 3803
2543#ifdef __cplusplus 3804EV_CPP(})
2544}
2545#endif
2546 3805

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines