ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.218 by root, Sun Mar 23 00:05:03 2008 UTC vs.
Revision 1.402 by sf-exg, Tue Dec 20 10:34:10 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
145#ifndef _WIN32 188#ifndef _WIN32
146# include <sys/time.h> 189# include <sys/time.h>
147# include <sys/wait.h> 190# include <sys/wait.h>
148# include <unistd.h> 191# include <unistd.h>
149#else 192#else
193# include <io.h>
150# define WIN32_LEAN_AND_MEAN 194# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 195# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 196# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 197# define EV_SELECT_IS_WINSOCKET 1
154# endif 198# endif
199# undef EV_AVOID_STDIO
200#endif
201
202/* OS X, in its infinite idiocy, actually HARDCODES
203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208#define _DARWIN_UNLIMITED_SELECT 1
209
210/* this block tries to deduce configuration from header-defined symbols and defaults */
211
212/* try to deduce the maximum number of signals on this platform */
213#if defined (EV_NSIG)
214/* use what's provided */
215#elif defined (NSIG)
216# define EV_NSIG (NSIG)
217#elif defined(_NSIG)
218# define EV_NSIG (_NSIG)
219#elif defined (SIGMAX)
220# define EV_NSIG (SIGMAX+1)
221#elif defined (SIG_MAX)
222# define EV_NSIG (SIG_MAX+1)
223#elif defined (_SIG_MAX)
224# define EV_NSIG (_SIG_MAX+1)
225#elif defined (MAXSIG)
226# define EV_NSIG (MAXSIG+1)
227#elif defined (MAX_SIG)
228# define EV_NSIG (MAX_SIG+1)
229#elif defined (SIGARRAYSIZE)
230# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231#elif defined (_sys_nsig)
232# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233#else
234# error "unable to find value for NSIG, please report"
235/* to make it compile regardless, just remove the above line, */
236/* but consider reporting it, too! :) */
237# define EV_NSIG 65
238#endif
239
240#ifndef EV_USE_FLOOR
241# define EV_USE_FLOOR 0
242#endif
243
244#ifndef EV_USE_CLOCK_SYSCALL
245# if __linux && __GLIBC__ >= 2
246# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247# else
248# define EV_USE_CLOCK_SYSCALL 0
155#endif 249# endif
156 250#endif
157/**/
158 251
159#ifndef EV_USE_MONOTONIC 252#ifndef EV_USE_MONOTONIC
253# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254# define EV_USE_MONOTONIC EV_FEATURE_OS
255# else
160# define EV_USE_MONOTONIC 0 256# define EV_USE_MONOTONIC 0
257# endif
161#endif 258#endif
162 259
163#ifndef EV_USE_REALTIME 260#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 261# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 262#endif
166 263
167#ifndef EV_USE_NANOSLEEP 264#ifndef EV_USE_NANOSLEEP
265# if _POSIX_C_SOURCE >= 199309L
266# define EV_USE_NANOSLEEP EV_FEATURE_OS
267# else
168# define EV_USE_NANOSLEEP 0 268# define EV_USE_NANOSLEEP 0
269# endif
169#endif 270#endif
170 271
171#ifndef EV_USE_SELECT 272#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 273# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 274#endif
174 275
175#ifndef EV_USE_POLL 276#ifndef EV_USE_POLL
176# ifdef _WIN32 277# ifdef _WIN32
177# define EV_USE_POLL 0 278# define EV_USE_POLL 0
178# else 279# else
179# define EV_USE_POLL 1 280# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 281# endif
181#endif 282#endif
182 283
183#ifndef EV_USE_EPOLL 284#ifndef EV_USE_EPOLL
285# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
286# define EV_USE_EPOLL EV_FEATURE_BACKENDS
287# else
184# define EV_USE_EPOLL 0 288# define EV_USE_EPOLL 0
289# endif
185#endif 290#endif
186 291
187#ifndef EV_USE_KQUEUE 292#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 293# define EV_USE_KQUEUE 0
189#endif 294#endif
191#ifndef EV_USE_PORT 296#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 297# define EV_USE_PORT 0
193#endif 298#endif
194 299
195#ifndef EV_USE_INOTIFY 300#ifndef EV_USE_INOTIFY
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
302# define EV_USE_INOTIFY EV_FEATURE_OS
303# else
196# define EV_USE_INOTIFY 0 304# define EV_USE_INOTIFY 0
305# endif
197#endif 306#endif
198 307
199#ifndef EV_PID_HASHSIZE 308#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 309# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 310#endif
311
312#ifndef EV_INOTIFY_HASHSIZE
313# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
314#endif
315
316#ifndef EV_USE_EVENTFD
317# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
318# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 319# else
203# define EV_PID_HASHSIZE 16 320# define EV_USE_EVENTFD 0
204# endif 321# endif
205#endif 322#endif
206 323
207#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 326# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 327# else
211# define EV_INOTIFY_HASHSIZE 16 328# define EV_USE_SIGNALFD 0
212# endif 329# endif
213#endif 330#endif
214 331
215/**/ 332#if 0 /* debugging */
333# define EV_VERIFY 3
334# define EV_USE_4HEAP 1
335# define EV_HEAP_CACHE_AT 1
336#endif
337
338#ifndef EV_VERIFY
339# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340#endif
341
342#ifndef EV_USE_4HEAP
343# define EV_USE_4HEAP EV_FEATURE_DATA
344#endif
345
346#ifndef EV_HEAP_CACHE_AT
347# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348#endif
349
350/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351/* which makes programs even slower. might work on other unices, too. */
352#if EV_USE_CLOCK_SYSCALL
353# include <syscall.h>
354# ifdef SYS_clock_gettime
355# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 1
358# else
359# undef EV_USE_CLOCK_SYSCALL
360# define EV_USE_CLOCK_SYSCALL 0
361# endif
362#endif
363
364/* this block fixes any misconfiguration where we know we run into trouble otherwise */
365
366#ifdef _AIX
367/* AIX has a completely broken poll.h header */
368# undef EV_USE_POLL
369# define EV_USE_POLL 0
370#endif
216 371
217#ifndef CLOCK_MONOTONIC 372#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 373# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 374# define EV_USE_MONOTONIC 0
220#endif 375#endif
228# undef EV_USE_INOTIFY 383# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 384# define EV_USE_INOTIFY 0
230#endif 385#endif
231 386
232#if !EV_USE_NANOSLEEP 387#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 388/* hp-ux has it in sys/time.h, which we unconditionally include above */
389# if !defined(_WIN32) && !defined(__hpux)
234# include <sys/select.h> 390# include <sys/select.h>
235# endif 391# endif
236#endif 392#endif
237 393
238#if EV_USE_INOTIFY 394#if EV_USE_INOTIFY
395# include <sys/statfs.h>
239# include <sys/inotify.h> 396# include <sys/inotify.h>
397/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398# ifndef IN_DONT_FOLLOW
399# undef EV_USE_INOTIFY
400# define EV_USE_INOTIFY 0
401# endif
240#endif 402#endif
241 403
242#if EV_SELECT_IS_WINSOCKET 404#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 405# include <winsock.h>
244#endif 406#endif
245 407
408#if EV_USE_EVENTFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef EFD_NONBLOCK
412# define EFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef EFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define EFD_CLOEXEC O_CLOEXEC
417# else
418# define EFD_CLOEXEC 02000000
419# endif
420# endif
421EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422#endif
423
424#if EV_USE_SIGNALFD
425/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426# include <stdint.h>
427# ifndef SFD_NONBLOCK
428# define SFD_NONBLOCK O_NONBLOCK
429# endif
430# ifndef SFD_CLOEXEC
431# ifdef O_CLOEXEC
432# define SFD_CLOEXEC O_CLOEXEC
433# else
434# define SFD_CLOEXEC 02000000
435# endif
436# endif
437EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439struct signalfd_siginfo
440{
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443};
444#endif
445
246/**/ 446/**/
247 447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
248/* 454/*
249 * This is used to avoid floating point rounding problems. 455 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 456 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 457 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 458#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 460
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 463
464#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466
467/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468/* ECB.H BEGIN */
469/*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
497
498#ifndef ECB_H
499#define ECB_H
500
501#ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 508 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 509 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
514 #endif
265#else 515#else
266# define expect(expr,value) (expr) 516 #include <inttypes.h>
267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif 517#endif
518
519/* many compilers define _GNUC_ to some versions but then only implement
520 * what their idiot authors think are the "more important" extensions,
521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526#ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
271#endif 531 #endif
532#endif
272 533
534/*****************************************************************************/
535
536/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539#if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541#endif
542
543#ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__)
545 #if __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #endif
562 #endif
563#endif
564
565#ifndef ECB_MEMORY_FENCE
566 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
567 #define ECB_MEMORY_FENCE __sync_synchronize ()
568 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
569 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
570 #elif _MSC_VER >= 1400 /* VC++ 2005 */
571 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
572 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
573 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
574 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
575 #elif defined(_WIN32)
576 #include <WinNT.h>
577 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
578 #endif
579#endif
580
581#ifndef ECB_MEMORY_FENCE
582 #if !ECB_AVOID_PTHREADS
583 /*
584 * if you get undefined symbol references to pthread_mutex_lock,
585 * or failure to find pthread.h, then you should implement
586 * the ECB_MEMORY_FENCE operations for your cpu/compiler
587 * OR provide pthread.h and link against the posix thread library
588 * of your system.
589 */
590 #include <pthread.h>
591 #define ECB_NEEDS_PTHREADS 1
592 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
593
594 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
595 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
596 #endif
597#endif
598
599#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
600 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
601#endif
602
603#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
604 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
605#endif
606
607/*****************************************************************************/
608
609#define ECB_C99 (__STDC_VERSION__ >= 199901L)
610
611#if __cplusplus
612 #define ecb_inline static inline
613#elif ECB_GCC_VERSION(2,5)
614 #define ecb_inline static __inline__
615#elif ECB_C99
616 #define ecb_inline static inline
617#else
618 #define ecb_inline static
619#endif
620
621#if ECB_GCC_VERSION(3,3)
622 #define ecb_restrict __restrict__
623#elif ECB_C99
624 #define ecb_restrict restrict
625#else
626 #define ecb_restrict
627#endif
628
629typedef int ecb_bool;
630
631#define ECB_CONCAT_(a, b) a ## b
632#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
633#define ECB_STRINGIFY_(a) # a
634#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
635
636#define ecb_function_ ecb_inline
637
638#if ECB_GCC_VERSION(3,1)
639 #define ecb_attribute(attrlist) __attribute__(attrlist)
640 #define ecb_is_constant(expr) __builtin_constant_p (expr)
641 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
642 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
643#else
644 #define ecb_attribute(attrlist)
645 #define ecb_is_constant(expr) 0
646 #define ecb_expect(expr,value) (expr)
647 #define ecb_prefetch(addr,rw,locality)
648#endif
649
650/* no emulation for ecb_decltype */
651#if ECB_GCC_VERSION(4,5)
652 #define ecb_decltype(x) __decltype(x)
653#elif ECB_GCC_VERSION(3,0)
654 #define ecb_decltype(x) __typeof(x)
655#endif
656
657#define ecb_noinline ecb_attribute ((__noinline__))
658#define ecb_noreturn ecb_attribute ((__noreturn__))
659#define ecb_unused ecb_attribute ((__unused__))
660#define ecb_const ecb_attribute ((__const__))
661#define ecb_pure ecb_attribute ((__pure__))
662
663#if ECB_GCC_VERSION(4,3)
664 #define ecb_artificial ecb_attribute ((__artificial__))
665 #define ecb_hot ecb_attribute ((__hot__))
666 #define ecb_cold ecb_attribute ((__cold__))
667#else
668 #define ecb_artificial
669 #define ecb_hot
670 #define ecb_cold
671#endif
672
673/* put around conditional expressions if you are very sure that the */
674/* expression is mostly true or mostly false. note that these return */
675/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 676#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 677#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
678/* for compatibility to the rest of the world */
679#define ecb_likely(expr) ecb_expect_true (expr)
680#define ecb_unlikely(expr) ecb_expect_false (expr)
681
682/* count trailing zero bits and count # of one bits */
683#if ECB_GCC_VERSION(3,4)
684 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
685 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
686 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
687 #define ecb_ctz32(x) __builtin_ctz (x)
688 #define ecb_ctz64(x) __builtin_ctzll (x)
689 #define ecb_popcount32(x) __builtin_popcount (x)
690 /* no popcountll */
691#else
692 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
693 ecb_function_ int
694 ecb_ctz32 (uint32_t x)
695 {
696 int r = 0;
697
698 x &= ~x + 1; /* this isolates the lowest bit */
699
700#if ECB_branchless_on_i386
701 r += !!(x & 0xaaaaaaaa) << 0;
702 r += !!(x & 0xcccccccc) << 1;
703 r += !!(x & 0xf0f0f0f0) << 2;
704 r += !!(x & 0xff00ff00) << 3;
705 r += !!(x & 0xffff0000) << 4;
706#else
707 if (x & 0xaaaaaaaa) r += 1;
708 if (x & 0xcccccccc) r += 2;
709 if (x & 0xf0f0f0f0) r += 4;
710 if (x & 0xff00ff00) r += 8;
711 if (x & 0xffff0000) r += 16;
712#endif
713
714 return r;
715 }
716
717 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
718 ecb_function_ int
719 ecb_ctz64 (uint64_t x)
720 {
721 int shift = x & 0xffffffffU ? 0 : 32;
722 return ecb_ctz32 (x >> shift) + shift;
723 }
724
725 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
726 ecb_function_ int
727 ecb_popcount32 (uint32_t x)
728 {
729 x -= (x >> 1) & 0x55555555;
730 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
731 x = ((x >> 4) + x) & 0x0f0f0f0f;
732 x *= 0x01010101;
733
734 return x >> 24;
735 }
736
737 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
738 ecb_function_ int ecb_ld32 (uint32_t x)
739 {
740 int r = 0;
741
742 if (x >> 16) { x >>= 16; r += 16; }
743 if (x >> 8) { x >>= 8; r += 8; }
744 if (x >> 4) { x >>= 4; r += 4; }
745 if (x >> 2) { x >>= 2; r += 2; }
746 if (x >> 1) { r += 1; }
747
748 return r;
749 }
750
751 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
752 ecb_function_ int ecb_ld64 (uint64_t x)
753 {
754 int r = 0;
755
756 if (x >> 32) { x >>= 32; r += 32; }
757
758 return r + ecb_ld32 (x);
759 }
760#endif
761
762/* popcount64 is only available on 64 bit cpus as gcc builtin */
763/* so for this version we are lazy */
764ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
765ecb_function_ int
766ecb_popcount64 (uint64_t x)
767{
768 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
769}
770
771ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
772ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
773ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
774ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
775ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
776ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
777ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
778ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
779
780ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
781ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
782ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
783ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
784ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
785ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
786ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
787ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
788
789#if ECB_GCC_VERSION(4,3)
790 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
791 #define ecb_bswap32(x) __builtin_bswap32 (x)
792 #define ecb_bswap64(x) __builtin_bswap64 (x)
793#else
794 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
795 ecb_function_ uint16_t
796 ecb_bswap16 (uint16_t x)
797 {
798 return ecb_rotl16 (x, 8);
799 }
800
801 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
802 ecb_function_ uint32_t
803 ecb_bswap32 (uint32_t x)
804 {
805 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
806 }
807
808 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
809 ecb_function_ uint64_t
810 ecb_bswap64 (uint64_t x)
811 {
812 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
813 }
814#endif
815
816#if ECB_GCC_VERSION(4,5)
817 #define ecb_unreachable() __builtin_unreachable ()
818#else
819 /* this seems to work fine, but gcc always emits a warning for it :/ */
820 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
821 ecb_function_ void ecb_unreachable (void) { }
822#endif
823
824/* try to tell the compiler that some condition is definitely true */
825#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
826
827ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
828ecb_function_ unsigned char
829ecb_byteorder_helper (void)
830{
831 const uint32_t u = 0x11223344;
832 return *(unsigned char *)&u;
833}
834
835ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
836ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
837ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
838ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
839
840#if ECB_GCC_VERSION(3,0) || ECB_C99
841 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
842#else
843 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
844#endif
845
846#if __cplusplus
847 template<typename T>
848 static inline T ecb_div_rd (T val, T div)
849 {
850 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
851 }
852 template<typename T>
853 static inline T ecb_div_ru (T val, T div)
854 {
855 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
856 }
857#else
858 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
859 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
860#endif
861
862#if ecb_cplusplus_does_not_suck
863 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
864 template<typename T, int N>
865 static inline int ecb_array_length (const T (&arr)[N])
866 {
867 return N;
868 }
869#else
870 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
871#endif
872
873#endif
874
875/* ECB.H END */
876
877#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
878/* if your architecture doesn't need memory fences, e.g. because it is
879 * single-cpu/core, or if you use libev in a project that doesn't use libev
880 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
881 * libev, in which cases the memory fences become nops.
882 * alternatively, you can remove this #error and link against libpthread,
883 * which will then provide the memory fences.
884 */
885# error "memory fences not defined for your architecture, please report"
886#endif
887
888#ifndef ECB_MEMORY_FENCE
889# define ECB_MEMORY_FENCE do { } while (0)
890# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
891# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
892#endif
893
894#define expect_false(cond) ecb_expect_false (cond)
895#define expect_true(cond) ecb_expect_true (cond)
896#define noinline ecb_noinline
897
275#define inline_size static inline 898#define inline_size ecb_inline
276 899
277#if EV_MINIMAL 900#if EV_FEATURE_CODE
901# define inline_speed ecb_inline
902#else
278# define inline_speed static noinline 903# define inline_speed static noinline
904#endif
905
906#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
907
908#if EV_MINPRI == EV_MAXPRI
909# define ABSPRI(w) (((W)w), 0)
279#else 910#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 911# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
912#endif
285 913
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 914#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 915#define EMPTY2(a,b) /* used to suppress some warnings */
288 916
289typedef ev_watcher *W; 917typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 918typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 919typedef ev_watcher_time *WT;
292 920
921#define ev_active(w) ((W)(w))->active
922#define ev_at(w) ((WT)(w))->at
923
924#if EV_USE_REALTIME
925/* sig_atomic_t is used to avoid per-thread variables or locking but still */
926/* giving it a reasonably high chance of working on typical architectures */
927static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
928#endif
929
293#if EV_USE_MONOTONIC 930#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 931static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
932#endif
933
934#ifndef EV_FD_TO_WIN32_HANDLE
935# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
936#endif
937#ifndef EV_WIN32_HANDLE_TO_FD
938# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
939#endif
940#ifndef EV_WIN32_CLOSE_FD
941# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 942#endif
298 943
299#ifdef _WIN32 944#ifdef _WIN32
300# include "ev_win32.c" 945# include "ev_win32.c"
301#endif 946#endif
302 947
303/*****************************************************************************/ 948/*****************************************************************************/
304 949
950/* define a suitable floor function (only used by periodics atm) */
951
952#if EV_USE_FLOOR
953# include <math.h>
954# define ev_floor(v) floor (v)
955#else
956
957#include <float.h>
958
959/* a floor() replacement function, should be independent of ev_tstamp type */
960static ev_tstamp noinline
961ev_floor (ev_tstamp v)
962{
963 /* the choice of shift factor is not terribly important */
964#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
965 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
966#else
967 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
968#endif
969
970 /* argument too large for an unsigned long? */
971 if (expect_false (v >= shift))
972 {
973 ev_tstamp f;
974
975 if (v == v - 1.)
976 return v; /* very large number */
977
978 f = shift * ev_floor (v * (1. / shift));
979 return f + ev_floor (v - f);
980 }
981
982 /* special treatment for negative args? */
983 if (expect_false (v < 0.))
984 {
985 ev_tstamp f = -ev_floor (-v);
986
987 return f - (f == v ? 0 : 1);
988 }
989
990 /* fits into an unsigned long */
991 return (unsigned long)v;
992}
993
994#endif
995
996/*****************************************************************************/
997
998#ifdef __linux
999# include <sys/utsname.h>
1000#endif
1001
1002static unsigned int noinline ecb_cold
1003ev_linux_version (void)
1004{
1005#ifdef __linux
1006 unsigned int v = 0;
1007 struct utsname buf;
1008 int i;
1009 char *p = buf.release;
1010
1011 if (uname (&buf))
1012 return 0;
1013
1014 for (i = 3+1; --i; )
1015 {
1016 unsigned int c = 0;
1017
1018 for (;;)
1019 {
1020 if (*p >= '0' && *p <= '9')
1021 c = c * 10 + *p++ - '0';
1022 else
1023 {
1024 p += *p == '.';
1025 break;
1026 }
1027 }
1028
1029 v = (v << 8) | c;
1030 }
1031
1032 return v;
1033#else
1034 return 0;
1035#endif
1036}
1037
1038/*****************************************************************************/
1039
1040#if EV_AVOID_STDIO
1041static void noinline ecb_cold
1042ev_printerr (const char *msg)
1043{
1044 write (STDERR_FILENO, msg, strlen (msg));
1045}
1046#endif
1047
305static void (*syserr_cb)(const char *msg); 1048static void (*syserr_cb)(const char *msg);
306 1049
307void 1050void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1051ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 1052{
310 syserr_cb = cb; 1053 syserr_cb = cb;
311} 1054}
312 1055
313static void noinline 1056static void noinline ecb_cold
314syserr (const char *msg) 1057ev_syserr (const char *msg)
315{ 1058{
316 if (!msg) 1059 if (!msg)
317 msg = "(libev) system error"; 1060 msg = "(libev) system error";
318 1061
319 if (syserr_cb) 1062 if (syserr_cb)
320 syserr_cb (msg); 1063 syserr_cb (msg);
321 else 1064 else
322 { 1065 {
1066#if EV_AVOID_STDIO
1067 ev_printerr (msg);
1068 ev_printerr (": ");
1069 ev_printerr (strerror (errno));
1070 ev_printerr ("\n");
1071#else
323 perror (msg); 1072 perror (msg);
1073#endif
324 abort (); 1074 abort ();
325 } 1075 }
326} 1076}
327 1077
1078static void *
1079ev_realloc_emul (void *ptr, long size)
1080{
1081#if __GLIBC__
1082 return realloc (ptr, size);
1083#else
1084 /* some systems, notably openbsd and darwin, fail to properly
1085 * implement realloc (x, 0) (as required by both ansi c-89 and
1086 * the single unix specification, so work around them here.
1087 */
1088
1089 if (size)
1090 return realloc (ptr, size);
1091
1092 free (ptr);
1093 return 0;
1094#endif
1095}
1096
328static void *(*alloc)(void *ptr, long size); 1097static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 1098
330void 1099void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1100ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 1101{
333 alloc = cb; 1102 alloc = cb;
334} 1103}
335 1104
336inline_speed void * 1105inline_speed void *
337ev_realloc (void *ptr, long size) 1106ev_realloc (void *ptr, long size)
338{ 1107{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1108 ptr = alloc (ptr, size);
340 1109
341 if (!ptr && size) 1110 if (!ptr && size)
342 { 1111 {
1112#if EV_AVOID_STDIO
1113 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1114#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1115 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1116#endif
344 abort (); 1117 abort ();
345 } 1118 }
346 1119
347 return ptr; 1120 return ptr;
348} 1121}
350#define ev_malloc(size) ev_realloc (0, (size)) 1123#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1124#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1125
353/*****************************************************************************/ 1126/*****************************************************************************/
354 1127
1128/* set in reify when reification needed */
1129#define EV_ANFD_REIFY 1
1130
1131/* file descriptor info structure */
355typedef struct 1132typedef struct
356{ 1133{
357 WL head; 1134 WL head;
358 unsigned char events; 1135 unsigned char events; /* the events watched for */
1136 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1137 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1138 unsigned char unused;
1139#if EV_USE_EPOLL
1140 unsigned int egen; /* generation counter to counter epoll bugs */
1141#endif
360#if EV_SELECT_IS_WINSOCKET 1142#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1143 SOCKET handle;
362#endif 1144#endif
1145#if EV_USE_IOCP
1146 OVERLAPPED or, ow;
1147#endif
363} ANFD; 1148} ANFD;
364 1149
1150/* stores the pending event set for a given watcher */
365typedef struct 1151typedef struct
366{ 1152{
367 W w; 1153 W w;
368 int events; 1154 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1155} ANPENDING;
370 1156
371#if EV_USE_INOTIFY 1157#if EV_USE_INOTIFY
1158/* hash table entry per inotify-id */
372typedef struct 1159typedef struct
373{ 1160{
374 WL head; 1161 WL head;
375} ANFS; 1162} ANFS;
1163#endif
1164
1165/* Heap Entry */
1166#if EV_HEAP_CACHE_AT
1167 /* a heap element */
1168 typedef struct {
1169 ev_tstamp at;
1170 WT w;
1171 } ANHE;
1172
1173 #define ANHE_w(he) (he).w /* access watcher, read-write */
1174 #define ANHE_at(he) (he).at /* access cached at, read-only */
1175 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1176#else
1177 /* a heap element */
1178 typedef WT ANHE;
1179
1180 #define ANHE_w(he) (he)
1181 #define ANHE_at(he) (he)->at
1182 #define ANHE_at_cache(he)
376#endif 1183#endif
377 1184
378#if EV_MULTIPLICITY 1185#if EV_MULTIPLICITY
379 1186
380 struct ev_loop 1187 struct ev_loop
386 #undef VAR 1193 #undef VAR
387 }; 1194 };
388 #include "ev_wrap.h" 1195 #include "ev_wrap.h"
389 1196
390 static struct ev_loop default_loop_struct; 1197 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1198 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1199
393#else 1200#else
394 1201
395 ev_tstamp ev_rt_now; 1202 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1203 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1204 #include "ev_vars.h"
398 #undef VAR 1205 #undef VAR
399 1206
400 static int ev_default_loop_ptr; 1207 static int ev_default_loop_ptr;
401 1208
402#endif 1209#endif
403 1210
1211#if EV_FEATURE_API
1212# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1213# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1214# define EV_INVOKE_PENDING invoke_cb (EV_A)
1215#else
1216# define EV_RELEASE_CB (void)0
1217# define EV_ACQUIRE_CB (void)0
1218# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1219#endif
1220
1221#define EVBREAK_RECURSE 0x80
1222
404/*****************************************************************************/ 1223/*****************************************************************************/
405 1224
1225#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1226ev_tstamp
407ev_time (void) 1227ev_time (void)
408{ 1228{
409#if EV_USE_REALTIME 1229#if EV_USE_REALTIME
1230 if (expect_true (have_realtime))
1231 {
410 struct timespec ts; 1232 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1233 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1234 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1235 }
1236#endif
1237
414 struct timeval tv; 1238 struct timeval tv;
415 gettimeofday (&tv, 0); 1239 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1240 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1241}
1242#endif
419 1243
420ev_tstamp inline_size 1244inline_size ev_tstamp
421get_clock (void) 1245get_clock (void)
422{ 1246{
423#if EV_USE_MONOTONIC 1247#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1248 if (expect_true (have_monotonic))
425 { 1249 {
446 if (delay > 0.) 1270 if (delay > 0.)
447 { 1271 {
448#if EV_USE_NANOSLEEP 1272#if EV_USE_NANOSLEEP
449 struct timespec ts; 1273 struct timespec ts;
450 1274
451 ts.tv_sec = (time_t)delay; 1275 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1276 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1277#elif defined(_WIN32)
456 Sleep ((unsigned long)(delay * 1e3)); 1278 Sleep ((unsigned long)(delay * 1e3));
457#else 1279#else
458 struct timeval tv; 1280 struct timeval tv;
459 1281
460 tv.tv_sec = (time_t)delay; 1282 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1283 /* something not guaranteed by newer posix versions, but guaranteed */
462 1284 /* by older ones */
1285 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1286 select (0, 0, 0, 0, &tv);
464#endif 1287#endif
465 } 1288 }
466} 1289}
467 1290
468/*****************************************************************************/ 1291/*****************************************************************************/
469 1292
470int inline_size 1293#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1294
1295/* find a suitable new size for the given array, */
1296/* hopefully by rounding to a nice-to-malloc size */
1297inline_size int
471array_nextsize (int elem, int cur, int cnt) 1298array_nextsize (int elem, int cur, int cnt)
472{ 1299{
473 int ncur = cur + 1; 1300 int ncur = cur + 1;
474 1301
475 do 1302 do
476 ncur <<= 1; 1303 ncur <<= 1;
477 while (cnt > ncur); 1304 while (cnt > ncur);
478 1305
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1306 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1307 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1308 {
482 ncur *= elem; 1309 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1310 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1311 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1312 ncur /= elem;
486 } 1313 }
487 1314
488 return ncur; 1315 return ncur;
489} 1316}
490 1317
491static noinline void * 1318static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1319array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1320{
494 *cur = array_nextsize (elem, *cur, cnt); 1321 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1322 return ev_realloc (base, elem * *cur);
496} 1323}
1324
1325#define array_init_zero(base,count) \
1326 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1327
498#define array_needsize(type,base,cur,cnt,init) \ 1328#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1329 if (expect_false ((cnt) > (cur))) \
500 { \ 1330 { \
501 int ocur_ = (cur); \ 1331 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1332 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1333 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1334 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1335 }
506 1336
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1343 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1344 }
515#endif 1345#endif
516 1346
517#define array_free(stem, idx) \ 1347#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1348 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1349
520/*****************************************************************************/ 1350/*****************************************************************************/
1351
1352/* dummy callback for pending events */
1353static void noinline
1354pendingcb (EV_P_ ev_prepare *w, int revents)
1355{
1356}
521 1357
522void noinline 1358void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1359ev_feed_event (EV_P_ void *w, int revents)
524{ 1360{
525 W w_ = (W)w; 1361 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 1370 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1371 pendings [pri][w_->pending - 1].events = revents;
536 } 1372 }
537} 1373}
538 1374
539void inline_speed 1375inline_speed void
1376feed_reverse (EV_P_ W w)
1377{
1378 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1379 rfeeds [rfeedcnt++] = w;
1380}
1381
1382inline_size void
1383feed_reverse_done (EV_P_ int revents)
1384{
1385 do
1386 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1387 while (rfeedcnt);
1388}
1389
1390inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1391queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1392{
542 int i; 1393 int i;
543 1394
544 for (i = 0; i < eventcnt; ++i) 1395 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1396 ev_feed_event (EV_A_ events [i], type);
546} 1397}
547 1398
548/*****************************************************************************/ 1399/*****************************************************************************/
549 1400
550void inline_size 1401inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1402fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1403{
566 ANFD *anfd = anfds + fd; 1404 ANFD *anfd = anfds + fd;
567 ev_io *w; 1405 ev_io *w;
568 1406
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1407 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1411 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1412 ev_feed_event (EV_A_ (W)w, ev);
575 } 1413 }
576} 1414}
577 1415
1416/* do not submit kernel events for fds that have reify set */
1417/* because that means they changed while we were polling for new events */
1418inline_speed void
1419fd_event (EV_P_ int fd, int revents)
1420{
1421 ANFD *anfd = anfds + fd;
1422
1423 if (expect_true (!anfd->reify))
1424 fd_event_nocheck (EV_A_ fd, revents);
1425}
1426
578void 1427void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1428ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 1429{
581 if (fd >= 0 && fd < anfdmax) 1430 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1431 fd_event_nocheck (EV_A_ fd, revents);
583} 1432}
584 1433
585void inline_size 1434/* make sure the external fd watch events are in-sync */
1435/* with the kernel/libev internal state */
1436inline_size void
586fd_reify (EV_P) 1437fd_reify (EV_P)
587{ 1438{
588 int i; 1439 int i;
1440
1441#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1442 for (i = 0; i < fdchangecnt; ++i)
1443 {
1444 int fd = fdchanges [i];
1445 ANFD *anfd = anfds + fd;
1446
1447 if (anfd->reify & EV__IOFDSET && anfd->head)
1448 {
1449 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1450
1451 if (handle != anfd->handle)
1452 {
1453 unsigned long arg;
1454
1455 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1456
1457 /* handle changed, but fd didn't - we need to do it in two steps */
1458 backend_modify (EV_A_ fd, anfd->events, 0);
1459 anfd->events = 0;
1460 anfd->handle = handle;
1461 }
1462 }
1463 }
1464#endif
589 1465
590 for (i = 0; i < fdchangecnt; ++i) 1466 for (i = 0; i < fdchangecnt; ++i)
591 { 1467 {
592 int fd = fdchanges [i]; 1468 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1469 ANFD *anfd = anfds + fd;
594 ev_io *w; 1470 ev_io *w;
595 1471
596 unsigned char events = 0; 1472 unsigned char o_events = anfd->events;
1473 unsigned char o_reify = anfd->reify;
597 1474
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1475 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1476
601#if EV_SELECT_IS_WINSOCKET 1477 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1478 {
604 unsigned long argp; 1479 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1480
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1481 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1482 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1483
609 #endif 1484 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1485 o_reify = EV__IOFDSET; /* actually |= */
611 } 1486 }
612#endif
613 1487
614 { 1488 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1489 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1490 }
625 1491
626 fdchangecnt = 0; 1492 fdchangecnt = 0;
627} 1493}
628 1494
629void inline_size 1495/* something about the given fd changed */
1496inline_size void
630fd_change (EV_P_ int fd, int flags) 1497fd_change (EV_P_ int fd, int flags)
631{ 1498{
632 unsigned char reify = anfds [fd].reify; 1499 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1500 anfds [fd].reify |= flags;
634 1501
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1505 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1506 fdchanges [fdchangecnt - 1] = fd;
640 } 1507 }
641} 1508}
642 1509
643void inline_speed 1510/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1511inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 1512fd_kill (EV_P_ int fd)
645{ 1513{
646 ev_io *w; 1514 ev_io *w;
647 1515
648 while ((w = (ev_io *)anfds [fd].head)) 1516 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1518 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1519 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1520 }
653} 1521}
654 1522
655int inline_size 1523/* check whether the given fd is actually valid, for error recovery */
1524inline_size int ecb_cold
656fd_valid (int fd) 1525fd_valid (int fd)
657{ 1526{
658#ifdef _WIN32 1527#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1528 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1529#else
661 return fcntl (fd, F_GETFD) != -1; 1530 return fcntl (fd, F_GETFD) != -1;
662#endif 1531#endif
663} 1532}
664 1533
665/* called on EBADF to verify fds */ 1534/* called on EBADF to verify fds */
666static void noinline 1535static void noinline ecb_cold
667fd_ebadf (EV_P) 1536fd_ebadf (EV_P)
668{ 1537{
669 int fd; 1538 int fd;
670 1539
671 for (fd = 0; fd < anfdmax; ++fd) 1540 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1541 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1542 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1543 fd_kill (EV_A_ fd);
675} 1544}
676 1545
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1546/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1547static void noinline ecb_cold
679fd_enomem (EV_P) 1548fd_enomem (EV_P)
680{ 1549{
681 int fd; 1550 int fd;
682 1551
683 for (fd = anfdmax; fd--; ) 1552 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1553 if (anfds [fd].events)
685 { 1554 {
686 fd_kill (EV_A_ fd); 1555 fd_kill (EV_A_ fd);
687 return; 1556 break;
688 } 1557 }
689} 1558}
690 1559
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1560/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1561static void noinline
696 1565
697 for (fd = 0; fd < anfdmax; ++fd) 1566 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1567 if (anfds [fd].events)
699 { 1568 {
700 anfds [fd].events = 0; 1569 anfds [fd].events = 0;
1570 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1571 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1572 }
703} 1573}
704 1574
705/*****************************************************************************/ 1575/* used to prepare libev internal fd's */
706 1576/* this is not fork-safe */
707void inline_speed 1577inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 1578fd_intern (int fd)
792{ 1579{
793#ifdef _WIN32 1580#ifdef _WIN32
794 int arg = 1; 1581 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1582 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1583#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1584 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1585 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1586#endif
800} 1587}
801 1588
1589/*****************************************************************************/
1590
1591/*
1592 * the heap functions want a real array index. array index 0 is guaranteed to not
1593 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1594 * the branching factor of the d-tree.
1595 */
1596
1597/*
1598 * at the moment we allow libev the luxury of two heaps,
1599 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1600 * which is more cache-efficient.
1601 * the difference is about 5% with 50000+ watchers.
1602 */
1603#if EV_USE_4HEAP
1604
1605#define DHEAP 4
1606#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1607#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1608#define UPHEAP_DONE(p,k) ((p) == (k))
1609
1610/* away from the root */
1611inline_speed void
1612downheap (ANHE *heap, int N, int k)
1613{
1614 ANHE he = heap [k];
1615 ANHE *E = heap + N + HEAP0;
1616
1617 for (;;)
1618 {
1619 ev_tstamp minat;
1620 ANHE *minpos;
1621 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1622
1623 /* find minimum child */
1624 if (expect_true (pos + DHEAP - 1 < E))
1625 {
1626 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1627 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1628 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1629 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1630 }
1631 else if (pos < E)
1632 {
1633 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1634 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1635 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1636 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1637 }
1638 else
1639 break;
1640
1641 if (ANHE_at (he) <= minat)
1642 break;
1643
1644 heap [k] = *minpos;
1645 ev_active (ANHE_w (*minpos)) = k;
1646
1647 k = minpos - heap;
1648 }
1649
1650 heap [k] = he;
1651 ev_active (ANHE_w (he)) = k;
1652}
1653
1654#else /* 4HEAP */
1655
1656#define HEAP0 1
1657#define HPARENT(k) ((k) >> 1)
1658#define UPHEAP_DONE(p,k) (!(p))
1659
1660/* away from the root */
1661inline_speed void
1662downheap (ANHE *heap, int N, int k)
1663{
1664 ANHE he = heap [k];
1665
1666 for (;;)
1667 {
1668 int c = k << 1;
1669
1670 if (c >= N + HEAP0)
1671 break;
1672
1673 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1674 ? 1 : 0;
1675
1676 if (ANHE_at (he) <= ANHE_at (heap [c]))
1677 break;
1678
1679 heap [k] = heap [c];
1680 ev_active (ANHE_w (heap [k])) = k;
1681
1682 k = c;
1683 }
1684
1685 heap [k] = he;
1686 ev_active (ANHE_w (he)) = k;
1687}
1688#endif
1689
1690/* towards the root */
1691inline_speed void
1692upheap (ANHE *heap, int k)
1693{
1694 ANHE he = heap [k];
1695
1696 for (;;)
1697 {
1698 int p = HPARENT (k);
1699
1700 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1701 break;
1702
1703 heap [k] = heap [p];
1704 ev_active (ANHE_w (heap [k])) = k;
1705 k = p;
1706 }
1707
1708 heap [k] = he;
1709 ev_active (ANHE_w (he)) = k;
1710}
1711
1712/* move an element suitably so it is in a correct place */
1713inline_size void
1714adjustheap (ANHE *heap, int N, int k)
1715{
1716 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1717 upheap (heap, k);
1718 else
1719 downheap (heap, N, k);
1720}
1721
1722/* rebuild the heap: this function is used only once and executed rarely */
1723inline_size void
1724reheap (ANHE *heap, int N)
1725{
1726 int i;
1727
1728 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1729 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1730 for (i = 0; i < N; ++i)
1731 upheap (heap, i + HEAP0);
1732}
1733
1734/*****************************************************************************/
1735
1736/* associate signal watchers to a signal signal */
1737typedef struct
1738{
1739 EV_ATOMIC_T pending;
1740#if EV_MULTIPLICITY
1741 EV_P;
1742#endif
1743 WL head;
1744} ANSIG;
1745
1746static ANSIG signals [EV_NSIG - 1];
1747
1748/*****************************************************************************/
1749
1750#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1751
802static void noinline 1752static void noinline ecb_cold
803evpipe_init (EV_P) 1753evpipe_init (EV_P)
804{ 1754{
805 if (!ev_is_active (&pipeev)) 1755 if (!ev_is_active (&pipe_w))
806 { 1756 {
1757# if EV_USE_EVENTFD
1758 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1759 if (evfd < 0 && errno == EINVAL)
1760 evfd = eventfd (0, 0);
1761
1762 if (evfd >= 0)
1763 {
1764 evpipe [0] = -1;
1765 fd_intern (evfd); /* doing it twice doesn't hurt */
1766 ev_io_set (&pipe_w, evfd, EV_READ);
1767 }
1768 else
1769# endif
1770 {
807 while (pipe (evpipe)) 1771 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1772 ev_syserr ("(libev) error creating signal/async pipe");
809 1773
810 fd_intern (evpipe [0]); 1774 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1775 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1776 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1777 }
1778
814 ev_io_start (EV_A_ &pipeev); 1779 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1780 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1781 }
817} 1782}
818 1783
819void inline_size 1784inline_speed void
820evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1785evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1786{
822 if (!*flag) 1787 if (expect_true (*flag))
1788 return;
1789
1790 *flag = 1;
1791
1792 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1793
1794 pipe_write_skipped = 1;
1795
1796 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1797
1798 if (pipe_write_wanted)
823 { 1799 {
1800 int old_errno;
1801
1802 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1803
824 int old_errno = errno; /* save errno because write might clobber it */ 1804 old_errno = errno; /* save errno because write will clobber it */
825 1805
826 *flag = 1; 1806#if EV_USE_EVENTFD
827 write (evpipe [1], &old_errno, 1); 1807 if (evfd >= 0)
1808 {
1809 uint64_t counter = 1;
1810 write (evfd, &counter, sizeof (uint64_t));
1811 }
1812 else
1813#endif
1814 {
1815 /* win32 people keep sending patches that change this write() to send() */
1816 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1817 /* so when you think this write should be a send instead, please find out */
1818 /* where your send() is from - it's definitely not the microsoft send, and */
1819 /* tell me. thank you. */
1820 write (evpipe [1], &(evpipe [1]), 1);
1821 }
828 1822
829 errno = old_errno; 1823 errno = old_errno;
830 } 1824 }
831} 1825}
832 1826
1827/* called whenever the libev signal pipe */
1828/* got some events (signal, async) */
833static void 1829static void
834pipecb (EV_P_ ev_io *iow, int revents) 1830pipecb (EV_P_ ev_io *iow, int revents)
835{ 1831{
1832 int i;
1833
1834 if (revents & EV_READ)
836 { 1835 {
837 int dummy; 1836#if EV_USE_EVENTFD
1837 if (evfd >= 0)
1838 {
1839 uint64_t counter;
1840 read (evfd, &counter, sizeof (uint64_t));
1841 }
1842 else
1843#endif
1844 {
1845 char dummy;
1846 /* see discussion in evpipe_write when you think this read should be recv in win32 */
838 read (evpipe [0], &dummy, 1); 1847 read (evpipe [0], &dummy, 1);
1848 }
839 } 1849 }
840 1850
841 if (gotsig && ev_is_default_loop (EV_A)) 1851 pipe_write_skipped = 0;
842 {
843 int signum;
844 gotsig = 0;
845 1852
846 for (signum = signalmax; signum--; ) 1853#if EV_SIGNAL_ENABLE
847 if (signals [signum].gotsig) 1854 if (sig_pending)
1855 {
1856 sig_pending = 0;
1857
1858 for (i = EV_NSIG - 1; i--; )
1859 if (expect_false (signals [i].pending))
848 ev_feed_signal_event (EV_A_ signum + 1); 1860 ev_feed_signal_event (EV_A_ i + 1);
849 } 1861 }
1862#endif
850 1863
851#if EV_ASYNC_ENABLE 1864#if EV_ASYNC_ENABLE
852 if (gotasync) 1865 if (async_pending)
853 { 1866 {
854 int i; 1867 async_pending = 0;
855 gotasync = 0;
856 1868
857 for (i = asynccnt; i--; ) 1869 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent) 1870 if (asyncs [i]->sent)
859 { 1871 {
860 asyncs [i]->sent = 0; 1872 asyncs [i]->sent = 0;
864#endif 1876#endif
865} 1877}
866 1878
867/*****************************************************************************/ 1879/*****************************************************************************/
868 1880
1881void
1882ev_feed_signal (int signum)
1883{
1884#if EV_MULTIPLICITY
1885 EV_P = signals [signum - 1].loop;
1886
1887 if (!EV_A)
1888 return;
1889#endif
1890
1891 if (!ev_active (&pipe_w))
1892 return;
1893
1894 signals [signum - 1].pending = 1;
1895 evpipe_write (EV_A_ &sig_pending);
1896}
1897
869static void 1898static void
870ev_sighandler (int signum) 1899ev_sighandler (int signum)
871{ 1900{
872#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct;
874#endif
875
876#if _WIN32 1901#ifdef _WIN32
877 signal (signum, ev_sighandler); 1902 signal (signum, ev_sighandler);
878#endif 1903#endif
879 1904
880 signals [signum - 1].gotsig = 1; 1905 ev_feed_signal (signum);
881 evpipe_write (EV_A_ &gotsig);
882} 1906}
883 1907
884void noinline 1908void noinline
885ev_feed_signal_event (EV_P_ int signum) 1909ev_feed_signal_event (EV_P_ int signum)
886{ 1910{
887 WL w; 1911 WL w;
888 1912
1913 if (expect_false (signum <= 0 || signum > EV_NSIG))
1914 return;
1915
1916 --signum;
1917
889#if EV_MULTIPLICITY 1918#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1919 /* it is permissible to try to feed a signal to the wrong loop */
891#endif 1920 /* or, likely more useful, feeding a signal nobody is waiting for */
892 1921
893 --signum; 1922 if (expect_false (signals [signum].loop != EV_A))
894
895 if (signum < 0 || signum >= signalmax)
896 return; 1923 return;
1924#endif
897 1925
898 signals [signum].gotsig = 0; 1926 signals [signum].pending = 0;
899 1927
900 for (w = signals [signum].head; w; w = w->next) 1928 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1929 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902} 1930}
903 1931
1932#if EV_USE_SIGNALFD
1933static void
1934sigfdcb (EV_P_ ev_io *iow, int revents)
1935{
1936 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1937
1938 for (;;)
1939 {
1940 ssize_t res = read (sigfd, si, sizeof (si));
1941
1942 /* not ISO-C, as res might be -1, but works with SuS */
1943 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1944 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1945
1946 if (res < (ssize_t)sizeof (si))
1947 break;
1948 }
1949}
1950#endif
1951
1952#endif
1953
904/*****************************************************************************/ 1954/*****************************************************************************/
905 1955
1956#if EV_CHILD_ENABLE
906static WL childs [EV_PID_HASHSIZE]; 1957static WL childs [EV_PID_HASHSIZE];
907
908#ifndef _WIN32
909 1958
910static ev_signal childev; 1959static ev_signal childev;
911 1960
912#ifndef WIFCONTINUED 1961#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 1962# define WIFCONTINUED(status) 0
914#endif 1963#endif
915 1964
916void inline_speed 1965/* handle a single child status event */
1966inline_speed void
917child_reap (EV_P_ int chain, int pid, int status) 1967child_reap (EV_P_ int chain, int pid, int status)
918{ 1968{
919 ev_child *w; 1969 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1970 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 1971
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1972 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
923 { 1973 {
924 if ((w->pid == pid || !w->pid) 1974 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1))) 1975 && (!traced || (w->flags & 1)))
926 { 1976 {
927 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1977 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
934 1984
935#ifndef WCONTINUED 1985#ifndef WCONTINUED
936# define WCONTINUED 0 1986# define WCONTINUED 0
937#endif 1987#endif
938 1988
1989/* called on sigchld etc., calls waitpid */
939static void 1990static void
940childcb (EV_P_ ev_signal *sw, int revents) 1991childcb (EV_P_ ev_signal *sw, int revents)
941{ 1992{
942 int pid, status; 1993 int pid, status;
943 1994
951 /* make sure we are called again until all children have been reaped */ 2002 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */ 2003 /* we need to do it this way so that the callback gets called before we continue */
953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2004 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
954 2005
955 child_reap (EV_A_ pid, pid, status); 2006 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1) 2007 if ((EV_PID_HASHSIZE) > 1)
957 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2008 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
958} 2009}
959 2010
960#endif 2011#endif
961 2012
962/*****************************************************************************/ 2013/*****************************************************************************/
963 2014
2015#if EV_USE_IOCP
2016# include "ev_iocp.c"
2017#endif
964#if EV_USE_PORT 2018#if EV_USE_PORT
965# include "ev_port.c" 2019# include "ev_port.c"
966#endif 2020#endif
967#if EV_USE_KQUEUE 2021#if EV_USE_KQUEUE
968# include "ev_kqueue.c" 2022# include "ev_kqueue.c"
975#endif 2029#endif
976#if EV_USE_SELECT 2030#if EV_USE_SELECT
977# include "ev_select.c" 2031# include "ev_select.c"
978#endif 2032#endif
979 2033
980int 2034int ecb_cold
981ev_version_major (void) 2035ev_version_major (void)
982{ 2036{
983 return EV_VERSION_MAJOR; 2037 return EV_VERSION_MAJOR;
984} 2038}
985 2039
986int 2040int ecb_cold
987ev_version_minor (void) 2041ev_version_minor (void)
988{ 2042{
989 return EV_VERSION_MINOR; 2043 return EV_VERSION_MINOR;
990} 2044}
991 2045
992/* return true if we are running with elevated privileges and should ignore env variables */ 2046/* return true if we are running with elevated privileges and should ignore env variables */
993int inline_size 2047int inline_size ecb_cold
994enable_secure (void) 2048enable_secure (void)
995{ 2049{
996#ifdef _WIN32 2050#ifdef _WIN32
997 return 0; 2051 return 0;
998#else 2052#else
999 return getuid () != geteuid () 2053 return getuid () != geteuid ()
1000 || getgid () != getegid (); 2054 || getgid () != getegid ();
1001#endif 2055#endif
1002} 2056}
1003 2057
1004unsigned int 2058unsigned int ecb_cold
1005ev_supported_backends (void) 2059ev_supported_backends (void)
1006{ 2060{
1007 unsigned int flags = 0; 2061 unsigned int flags = 0;
1008 2062
1009 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2063 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1013 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2067 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1014 2068
1015 return flags; 2069 return flags;
1016} 2070}
1017 2071
1018unsigned int 2072unsigned int ecb_cold
1019ev_recommended_backends (void) 2073ev_recommended_backends (void)
1020{ 2074{
1021 unsigned int flags = ev_supported_backends (); 2075 unsigned int flags = ev_supported_backends ();
1022 2076
1023#ifndef __NetBSD__ 2077#ifndef __NetBSD__
1024 /* kqueue is borked on everything but netbsd apparently */ 2078 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */ 2079 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE; 2080 flags &= ~EVBACKEND_KQUEUE;
1027#endif 2081#endif
1028#ifdef __APPLE__ 2082#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation 2083 /* only select works correctly on that "unix-certified" platform */
1030 flags &= ~EVBACKEND_POLL; 2084 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2085 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2086#endif
2087#ifdef __FreeBSD__
2088 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1031#endif 2089#endif
1032 2090
1033 return flags; 2091 return flags;
1034} 2092}
1035 2093
1036unsigned int 2094unsigned int ecb_cold
1037ev_embeddable_backends (void) 2095ev_embeddable_backends (void)
1038{ 2096{
1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2097 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1040 2098
1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2099 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */ 2100 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1043 flags &= ~EVBACKEND_EPOLL; 2101 flags &= ~EVBACKEND_EPOLL;
1044 2102
1045 return flags; 2103 return flags;
1046} 2104}
1047 2105
1048unsigned int 2106unsigned int
1049ev_backend (EV_P) 2107ev_backend (EV_P)
1050{ 2108{
1051 return backend; 2109 return backend;
1052} 2110}
1053 2111
2112#if EV_FEATURE_API
1054unsigned int 2113unsigned int
1055ev_loop_count (EV_P) 2114ev_iteration (EV_P)
1056{ 2115{
1057 return loop_count; 2116 return loop_count;
2117}
2118
2119unsigned int
2120ev_depth (EV_P)
2121{
2122 return loop_depth;
1058} 2123}
1059 2124
1060void 2125void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2126ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1062{ 2127{
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2132ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1068{ 2133{
1069 timeout_blocktime = interval; 2134 timeout_blocktime = interval;
1070} 2135}
1071 2136
2137void
2138ev_set_userdata (EV_P_ void *data)
2139{
2140 userdata = data;
2141}
2142
2143void *
2144ev_userdata (EV_P)
2145{
2146 return userdata;
2147}
2148
2149void
2150ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2151{
2152 invoke_cb = invoke_pending_cb;
2153}
2154
2155void
2156ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2157{
2158 release_cb = release;
2159 acquire_cb = acquire;
2160}
2161#endif
2162
2163/* initialise a loop structure, must be zero-initialised */
1072static void noinline 2164static void noinline ecb_cold
1073loop_init (EV_P_ unsigned int flags) 2165loop_init (EV_P_ unsigned int flags)
1074{ 2166{
1075 if (!backend) 2167 if (!backend)
1076 { 2168 {
2169 origflags = flags;
2170
2171#if EV_USE_REALTIME
2172 if (!have_realtime)
2173 {
2174 struct timespec ts;
2175
2176 if (!clock_gettime (CLOCK_REALTIME, &ts))
2177 have_realtime = 1;
2178 }
2179#endif
2180
1077#if EV_USE_MONOTONIC 2181#if EV_USE_MONOTONIC
2182 if (!have_monotonic)
1078 { 2183 {
1079 struct timespec ts; 2184 struct timespec ts;
2185
1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2186 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1081 have_monotonic = 1; 2187 have_monotonic = 1;
1082 } 2188 }
1083#endif
1084
1085 ev_rt_now = ev_time ();
1086 mn_now = get_clock ();
1087 now_floor = mn_now;
1088 rtmn_diff = ev_rt_now - mn_now;
1089
1090 io_blocktime = 0.;
1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif 2189#endif
1098 2190
1099 /* pid check not overridable via env */ 2191 /* pid check not overridable via env */
1100#ifndef _WIN32 2192#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK) 2193 if (flags & EVFLAG_FORKCHECK)
1105 if (!(flags & EVFLAG_NOENV) 2197 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 2198 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 2199 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 2200 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 2201
1110 if (!(flags & 0x0000ffffUL)) 2202 ev_rt_now = ev_time ();
2203 mn_now = get_clock ();
2204 now_floor = mn_now;
2205 rtmn_diff = ev_rt_now - mn_now;
2206#if EV_FEATURE_API
2207 invoke_cb = ev_invoke_pending;
2208#endif
2209
2210 io_blocktime = 0.;
2211 timeout_blocktime = 0.;
2212 backend = 0;
2213 backend_fd = -1;
2214 sig_pending = 0;
2215#if EV_ASYNC_ENABLE
2216 async_pending = 0;
2217#endif
2218 pipe_write_skipped = 0;
2219 pipe_write_wanted = 0;
2220#if EV_USE_INOTIFY
2221 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2222#endif
2223#if EV_USE_SIGNALFD
2224 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2225#endif
2226
2227 if (!(flags & EVBACKEND_MASK))
1111 flags |= ev_recommended_backends (); 2228 flags |= ev_recommended_backends ();
1112 2229
2230#if EV_USE_IOCP
2231 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2232#endif
1113#if EV_USE_PORT 2233#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2234 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 2235#endif
1116#if EV_USE_KQUEUE 2236#if EV_USE_KQUEUE
1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2237 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1124#endif 2244#endif
1125#if EV_USE_SELECT 2245#if EV_USE_SELECT
1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2246 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1127#endif 2247#endif
1128 2248
2249 ev_prepare_init (&pending_w, pendingcb);
2250
2251#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1129 ev_init (&pipeev, pipecb); 2252 ev_init (&pipe_w, pipecb);
1130 ev_set_priority (&pipeev, EV_MAXPRI); 2253 ev_set_priority (&pipe_w, EV_MAXPRI);
2254#endif
1131 } 2255 }
1132} 2256}
1133 2257
1134static void noinline 2258/* free up a loop structure */
2259void ecb_cold
1135loop_destroy (EV_P) 2260ev_loop_destroy (EV_P)
1136{ 2261{
1137 int i; 2262 int i;
1138 2263
2264#if EV_MULTIPLICITY
2265 /* mimic free (0) */
2266 if (!EV_A)
2267 return;
2268#endif
2269
2270#if EV_CLEANUP_ENABLE
2271 /* queue cleanup watchers (and execute them) */
2272 if (expect_false (cleanupcnt))
2273 {
2274 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2275 EV_INVOKE_PENDING;
2276 }
2277#endif
2278
2279#if EV_CHILD_ENABLE
2280 if (ev_is_active (&childev))
2281 {
2282 ev_ref (EV_A); /* child watcher */
2283 ev_signal_stop (EV_A_ &childev);
2284 }
2285#endif
2286
1139 if (ev_is_active (&pipeev)) 2287 if (ev_is_active (&pipe_w))
1140 { 2288 {
1141 ev_ref (EV_A); /* signal watcher */ 2289 /*ev_ref (EV_A);*/
1142 ev_io_stop (EV_A_ &pipeev); 2290 /*ev_io_stop (EV_A_ &pipe_w);*/
1143 2291
1144 close (evpipe [0]); evpipe [0] = 0; 2292#if EV_USE_EVENTFD
1145 close (evpipe [1]); evpipe [1] = 0; 2293 if (evfd >= 0)
2294 close (evfd);
2295#endif
2296
2297 if (evpipe [0] >= 0)
2298 {
2299 EV_WIN32_CLOSE_FD (evpipe [0]);
2300 EV_WIN32_CLOSE_FD (evpipe [1]);
2301 }
1146 } 2302 }
2303
2304#if EV_USE_SIGNALFD
2305 if (ev_is_active (&sigfd_w))
2306 close (sigfd);
2307#endif
1147 2308
1148#if EV_USE_INOTIFY 2309#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 2310 if (fs_fd >= 0)
1150 close (fs_fd); 2311 close (fs_fd);
1151#endif 2312#endif
1152 2313
1153 if (backend_fd >= 0) 2314 if (backend_fd >= 0)
1154 close (backend_fd); 2315 close (backend_fd);
1155 2316
2317#if EV_USE_IOCP
2318 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2319#endif
1156#if EV_USE_PORT 2320#if EV_USE_PORT
1157 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2321 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1158#endif 2322#endif
1159#if EV_USE_KQUEUE 2323#if EV_USE_KQUEUE
1160 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2324 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1175#if EV_IDLE_ENABLE 2339#if EV_IDLE_ENABLE
1176 array_free (idle, [i]); 2340 array_free (idle, [i]);
1177#endif 2341#endif
1178 } 2342 }
1179 2343
1180 ev_free (anfds); anfdmax = 0; 2344 ev_free (anfds); anfds = 0; anfdmax = 0;
1181 2345
1182 /* have to use the microsoft-never-gets-it-right macro */ 2346 /* have to use the microsoft-never-gets-it-right macro */
2347 array_free (rfeed, EMPTY);
1183 array_free (fdchange, EMPTY); 2348 array_free (fdchange, EMPTY);
1184 array_free (timer, EMPTY); 2349 array_free (timer, EMPTY);
1185#if EV_PERIODIC_ENABLE 2350#if EV_PERIODIC_ENABLE
1186 array_free (periodic, EMPTY); 2351 array_free (periodic, EMPTY);
1187#endif 2352#endif
1188#if EV_FORK_ENABLE 2353#if EV_FORK_ENABLE
1189 array_free (fork, EMPTY); 2354 array_free (fork, EMPTY);
1190#endif 2355#endif
2356#if EV_CLEANUP_ENABLE
2357 array_free (cleanup, EMPTY);
2358#endif
1191 array_free (prepare, EMPTY); 2359 array_free (prepare, EMPTY);
1192 array_free (check, EMPTY); 2360 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE 2361#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY); 2362 array_free (async, EMPTY);
1195#endif 2363#endif
1196 2364
1197 backend = 0; 2365 backend = 0;
1198}
1199 2366
2367#if EV_MULTIPLICITY
2368 if (ev_is_default_loop (EV_A))
2369#endif
2370 ev_default_loop_ptr = 0;
2371#if EV_MULTIPLICITY
2372 else
2373 ev_free (EV_A);
2374#endif
2375}
2376
2377#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 2378inline_size void infy_fork (EV_P);
2379#endif
1201 2380
1202void inline_size 2381inline_size void
1203loop_fork (EV_P) 2382loop_fork (EV_P)
1204{ 2383{
1205#if EV_USE_PORT 2384#if EV_USE_PORT
1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2385 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1207#endif 2386#endif
1213#endif 2392#endif
1214#if EV_USE_INOTIFY 2393#if EV_USE_INOTIFY
1215 infy_fork (EV_A); 2394 infy_fork (EV_A);
1216#endif 2395#endif
1217 2396
1218 if (ev_is_active (&pipeev)) 2397 if (ev_is_active (&pipe_w))
1219 { 2398 {
1220 /* this "locks" the handlers against writing to the pipe */ 2399 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1221 /* while we modify the fd vars */
1222 gotsig = 1;
1223#if EV_ASYNC_ENABLE
1224 gotasync = 1;
1225#endif
1226 2400
1227 ev_ref (EV_A); 2401 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev); 2402 ev_io_stop (EV_A_ &pipe_w);
1229 close (evpipe [0]);
1230 close (evpipe [1]);
1231 2403
2404#if EV_USE_EVENTFD
2405 if (evfd >= 0)
2406 close (evfd);
2407#endif
2408
2409 if (evpipe [0] >= 0)
2410 {
2411 EV_WIN32_CLOSE_FD (evpipe [0]);
2412 EV_WIN32_CLOSE_FD (evpipe [1]);
2413 }
2414
2415#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1232 evpipe_init (EV_A); 2416 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */ 2417 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ); 2418 pipecb (EV_A_ &pipe_w, EV_READ);
2419#endif
1235 } 2420 }
1236 2421
1237 postfork = 0; 2422 postfork = 0;
1238} 2423}
1239 2424
1240#if EV_MULTIPLICITY 2425#if EV_MULTIPLICITY
2426
1241struct ev_loop * 2427struct ev_loop * ecb_cold
1242ev_loop_new (unsigned int flags) 2428ev_loop_new (unsigned int flags)
1243{ 2429{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2430 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245 2431
1246 memset (loop, 0, sizeof (struct ev_loop)); 2432 memset (EV_A, 0, sizeof (struct ev_loop));
1247
1248 loop_init (EV_A_ flags); 2433 loop_init (EV_A_ flags);
1249 2434
1250 if (ev_backend (EV_A)) 2435 if (ev_backend (EV_A))
1251 return loop; 2436 return EV_A;
1252 2437
2438 ev_free (EV_A);
1253 return 0; 2439 return 0;
1254} 2440}
1255 2441
1256void 2442#endif /* multiplicity */
1257ev_loop_destroy (EV_P)
1258{
1259 loop_destroy (EV_A);
1260 ev_free (loop);
1261}
1262 2443
1263void 2444#if EV_VERIFY
1264ev_loop_fork (EV_P) 2445static void noinline ecb_cold
2446verify_watcher (EV_P_ W w)
1265{ 2447{
1266 postfork = 1; /* must be in line with ev_default_fork */ 2448 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1267}
1268 2449
2450 if (w->pending)
2451 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2452}
2453
2454static void noinline ecb_cold
2455verify_heap (EV_P_ ANHE *heap, int N)
2456{
2457 int i;
2458
2459 for (i = HEAP0; i < N + HEAP0; ++i)
2460 {
2461 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2462 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2463 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2464
2465 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2466 }
2467}
2468
2469static void noinline ecb_cold
2470array_verify (EV_P_ W *ws, int cnt)
2471{
2472 while (cnt--)
2473 {
2474 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2475 verify_watcher (EV_A_ ws [cnt]);
2476 }
2477}
2478#endif
2479
2480#if EV_FEATURE_API
2481void ecb_cold
2482ev_verify (EV_P)
2483{
2484#if EV_VERIFY
2485 int i;
2486 WL w;
2487
2488 assert (activecnt >= -1);
2489
2490 assert (fdchangemax >= fdchangecnt);
2491 for (i = 0; i < fdchangecnt; ++i)
2492 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2493
2494 assert (anfdmax >= 0);
2495 for (i = 0; i < anfdmax; ++i)
2496 for (w = anfds [i].head; w; w = w->next)
2497 {
2498 verify_watcher (EV_A_ (W)w);
2499 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2500 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2501 }
2502
2503 assert (timermax >= timercnt);
2504 verify_heap (EV_A_ timers, timercnt);
2505
2506#if EV_PERIODIC_ENABLE
2507 assert (periodicmax >= periodiccnt);
2508 verify_heap (EV_A_ periodics, periodiccnt);
2509#endif
2510
2511 for (i = NUMPRI; i--; )
2512 {
2513 assert (pendingmax [i] >= pendingcnt [i]);
2514#if EV_IDLE_ENABLE
2515 assert (idleall >= 0);
2516 assert (idlemax [i] >= idlecnt [i]);
2517 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2518#endif
2519 }
2520
2521#if EV_FORK_ENABLE
2522 assert (forkmax >= forkcnt);
2523 array_verify (EV_A_ (W *)forks, forkcnt);
2524#endif
2525
2526#if EV_CLEANUP_ENABLE
2527 assert (cleanupmax >= cleanupcnt);
2528 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2529#endif
2530
2531#if EV_ASYNC_ENABLE
2532 assert (asyncmax >= asynccnt);
2533 array_verify (EV_A_ (W *)asyncs, asynccnt);
2534#endif
2535
2536#if EV_PREPARE_ENABLE
2537 assert (preparemax >= preparecnt);
2538 array_verify (EV_A_ (W *)prepares, preparecnt);
2539#endif
2540
2541#if EV_CHECK_ENABLE
2542 assert (checkmax >= checkcnt);
2543 array_verify (EV_A_ (W *)checks, checkcnt);
2544#endif
2545
2546# if 0
2547#if EV_CHILD_ENABLE
2548 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2549 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2550#endif
2551# endif
2552#endif
2553}
1269#endif 2554#endif
1270 2555
1271#if EV_MULTIPLICITY 2556#if EV_MULTIPLICITY
1272struct ev_loop * 2557struct ev_loop * ecb_cold
1273ev_default_loop_init (unsigned int flags)
1274#else 2558#else
1275int 2559int
2560#endif
1276ev_default_loop (unsigned int flags) 2561ev_default_loop (unsigned int flags)
1277#endif
1278{ 2562{
1279 if (!ev_default_loop_ptr) 2563 if (!ev_default_loop_ptr)
1280 { 2564 {
1281#if EV_MULTIPLICITY 2565#if EV_MULTIPLICITY
1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2566 EV_P = ev_default_loop_ptr = &default_loop_struct;
1283#else 2567#else
1284 ev_default_loop_ptr = 1; 2568 ev_default_loop_ptr = 1;
1285#endif 2569#endif
1286 2570
1287 loop_init (EV_A_ flags); 2571 loop_init (EV_A_ flags);
1288 2572
1289 if (ev_backend (EV_A)) 2573 if (ev_backend (EV_A))
1290 { 2574 {
1291#ifndef _WIN32 2575#if EV_CHILD_ENABLE
1292 ev_signal_init (&childev, childcb, SIGCHLD); 2576 ev_signal_init (&childev, childcb, SIGCHLD);
1293 ev_set_priority (&childev, EV_MAXPRI); 2577 ev_set_priority (&childev, EV_MAXPRI);
1294 ev_signal_start (EV_A_ &childev); 2578 ev_signal_start (EV_A_ &childev);
1295 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2579 ev_unref (EV_A); /* child watcher should not keep loop alive */
1296#endif 2580#endif
1301 2585
1302 return ev_default_loop_ptr; 2586 return ev_default_loop_ptr;
1303} 2587}
1304 2588
1305void 2589void
1306ev_default_destroy (void) 2590ev_loop_fork (EV_P)
1307{ 2591{
1308#if EV_MULTIPLICITY
1309 struct ev_loop *loop = ev_default_loop_ptr;
1310#endif
1311
1312#ifndef _WIN32
1313 ev_ref (EV_A); /* child watcher */
1314 ev_signal_stop (EV_A_ &childev);
1315#endif
1316
1317 loop_destroy (EV_A);
1318}
1319
1320void
1321ev_default_fork (void)
1322{
1323#if EV_MULTIPLICITY
1324 struct ev_loop *loop = ev_default_loop_ptr;
1325#endif
1326
1327 if (backend)
1328 postfork = 1; /* must be in line with ev_loop_fork */ 2592 postfork = 1; /* must be in line with ev_default_fork */
1329} 2593}
1330 2594
1331/*****************************************************************************/ 2595/*****************************************************************************/
1332 2596
1333void 2597void
1334ev_invoke (EV_P_ void *w, int revents) 2598ev_invoke (EV_P_ void *w, int revents)
1335{ 2599{
1336 EV_CB_INVOKE ((W)w, revents); 2600 EV_CB_INVOKE ((W)w, revents);
1337} 2601}
1338 2602
1339void inline_speed 2603unsigned int
1340call_pending (EV_P) 2604ev_pending_count (EV_P)
2605{
2606 int pri;
2607 unsigned int count = 0;
2608
2609 for (pri = NUMPRI; pri--; )
2610 count += pendingcnt [pri];
2611
2612 return count;
2613}
2614
2615void noinline
2616ev_invoke_pending (EV_P)
1341{ 2617{
1342 int pri; 2618 int pri;
1343 2619
1344 for (pri = NUMPRI; pri--; ) 2620 for (pri = NUMPRI; pri--; )
1345 while (pendingcnt [pri]) 2621 while (pendingcnt [pri])
1346 { 2622 {
1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2623 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1348 2624
1349 if (expect_true (p->w))
1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352
1353 p->w->pending = 0; 2625 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events); 2626 EV_CB_INVOKE (p->w, p->events);
1355 } 2627 EV_FREQUENT_CHECK;
1356 } 2628 }
1357} 2629}
1358 2630
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
1377 downheap (timers, timercnt, 0);
1378 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 {
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438
1439#if EV_IDLE_ENABLE 2631#if EV_IDLE_ENABLE
1440void inline_size 2632/* make idle watchers pending. this handles the "call-idle */
2633/* only when higher priorities are idle" logic */
2634inline_size void
1441idle_reify (EV_P) 2635idle_reify (EV_P)
1442{ 2636{
1443 if (expect_false (idleall)) 2637 if (expect_false (idleall))
1444 { 2638 {
1445 int pri; 2639 int pri;
1457 } 2651 }
1458 } 2652 }
1459} 2653}
1460#endif 2654#endif
1461 2655
1462void inline_speed 2656/* make timers pending */
2657inline_size void
2658timers_reify (EV_P)
2659{
2660 EV_FREQUENT_CHECK;
2661
2662 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2663 {
2664 do
2665 {
2666 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2667
2668 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2669
2670 /* first reschedule or stop timer */
2671 if (w->repeat)
2672 {
2673 ev_at (w) += w->repeat;
2674 if (ev_at (w) < mn_now)
2675 ev_at (w) = mn_now;
2676
2677 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2678
2679 ANHE_at_cache (timers [HEAP0]);
2680 downheap (timers, timercnt, HEAP0);
2681 }
2682 else
2683 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2684
2685 EV_FREQUENT_CHECK;
2686 feed_reverse (EV_A_ (W)w);
2687 }
2688 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2689
2690 feed_reverse_done (EV_A_ EV_TIMER);
2691 }
2692}
2693
2694#if EV_PERIODIC_ENABLE
2695
2696static void noinline
2697periodic_recalc (EV_P_ ev_periodic *w)
2698{
2699 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2700 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2701
2702 /* the above almost always errs on the low side */
2703 while (at <= ev_rt_now)
2704 {
2705 ev_tstamp nat = at + w->interval;
2706
2707 /* when resolution fails us, we use ev_rt_now */
2708 if (expect_false (nat == at))
2709 {
2710 at = ev_rt_now;
2711 break;
2712 }
2713
2714 at = nat;
2715 }
2716
2717 ev_at (w) = at;
2718}
2719
2720/* make periodics pending */
2721inline_size void
2722periodics_reify (EV_P)
2723{
2724 EV_FREQUENT_CHECK;
2725
2726 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2727 {
2728 int feed_count = 0;
2729
2730 do
2731 {
2732 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2733
2734 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2735
2736 /* first reschedule or stop timer */
2737 if (w->reschedule_cb)
2738 {
2739 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2740
2741 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2742
2743 ANHE_at_cache (periodics [HEAP0]);
2744 downheap (periodics, periodiccnt, HEAP0);
2745 }
2746 else if (w->interval)
2747 {
2748 periodic_recalc (EV_A_ w);
2749 ANHE_at_cache (periodics [HEAP0]);
2750 downheap (periodics, periodiccnt, HEAP0);
2751 }
2752 else
2753 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2754
2755 EV_FREQUENT_CHECK;
2756 feed_reverse (EV_A_ (W)w);
2757 }
2758 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2759
2760 feed_reverse_done (EV_A_ EV_PERIODIC);
2761 }
2762}
2763
2764/* simply recalculate all periodics */
2765/* TODO: maybe ensure that at least one event happens when jumping forward? */
2766static void noinline ecb_cold
2767periodics_reschedule (EV_P)
2768{
2769 int i;
2770
2771 /* adjust periodics after time jump */
2772 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2773 {
2774 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2775
2776 if (w->reschedule_cb)
2777 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2778 else if (w->interval)
2779 periodic_recalc (EV_A_ w);
2780
2781 ANHE_at_cache (periodics [i]);
2782 }
2783
2784 reheap (periodics, periodiccnt);
2785}
2786#endif
2787
2788/* adjust all timers by a given offset */
2789static void noinline ecb_cold
2790timers_reschedule (EV_P_ ev_tstamp adjust)
2791{
2792 int i;
2793
2794 for (i = 0; i < timercnt; ++i)
2795 {
2796 ANHE *he = timers + i + HEAP0;
2797 ANHE_w (*he)->at += adjust;
2798 ANHE_at_cache (*he);
2799 }
2800}
2801
2802/* fetch new monotonic and realtime times from the kernel */
2803/* also detect if there was a timejump, and act accordingly */
2804inline_speed void
1463time_update (EV_P_ ev_tstamp max_block) 2805time_update (EV_P_ ev_tstamp max_block)
1464{ 2806{
1465 int i;
1466
1467#if EV_USE_MONOTONIC 2807#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic)) 2808 if (expect_true (have_monotonic))
1469 { 2809 {
2810 int i;
1470 ev_tstamp odiff = rtmn_diff; 2811 ev_tstamp odiff = rtmn_diff;
1471 2812
1472 mn_now = get_clock (); 2813 mn_now = get_clock ();
1473 2814
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2815 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1490 * doesn't hurt either as we only do this on time-jumps or 2831 * doesn't hurt either as we only do this on time-jumps or
1491 * in the unlikely event of having been preempted here. 2832 * in the unlikely event of having been preempted here.
1492 */ 2833 */
1493 for (i = 4; --i; ) 2834 for (i = 4; --i; )
1494 { 2835 {
2836 ev_tstamp diff;
1495 rtmn_diff = ev_rt_now - mn_now; 2837 rtmn_diff = ev_rt_now - mn_now;
1496 2838
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2839 diff = odiff - rtmn_diff;
2840
2841 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 2842 return; /* all is well */
1499 2843
1500 ev_rt_now = ev_time (); 2844 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 2845 mn_now = get_clock ();
1502 now_floor = mn_now; 2846 now_floor = mn_now;
1503 } 2847 }
1504 2848
2849 /* no timer adjustment, as the monotonic clock doesn't jump */
2850 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1505# if EV_PERIODIC_ENABLE 2851# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A); 2852 periodics_reschedule (EV_A);
1507# endif 2853# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 } 2854 }
1511 else 2855 else
1512#endif 2856#endif
1513 { 2857 {
1514 ev_rt_now = ev_time (); 2858 ev_rt_now = ev_time ();
1515 2859
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2860 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1517 { 2861 {
2862 /* adjust timers. this is easy, as the offset is the same for all of them */
2863 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1518#if EV_PERIODIC_ENABLE 2864#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 2865 periodics_reschedule (EV_A);
1520#endif 2866#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1524 } 2867 }
1525 2868
1526 mn_now = ev_rt_now; 2869 mn_now = ev_rt_now;
1527 } 2870 }
1528} 2871}
1529 2872
1530void 2873void
1531ev_ref (EV_P)
1532{
1533 ++activecnt;
1534}
1535
1536void
1537ev_unref (EV_P)
1538{
1539 --activecnt;
1540}
1541
1542static int loop_done;
1543
1544void
1545ev_loop (EV_P_ int flags) 2874ev_run (EV_P_ int flags)
1546{ 2875{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2876#if EV_FEATURE_API
1548 ? EVUNLOOP_ONE 2877 ++loop_depth;
1549 : EVUNLOOP_CANCEL; 2878#endif
1550 2879
2880 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2881
2882 loop_done = EVBREAK_CANCEL;
2883
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2884 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1552 2885
1553 do 2886 do
1554 { 2887 {
2888#if EV_VERIFY >= 2
2889 ev_verify (EV_A);
2890#endif
2891
1555#ifndef _WIN32 2892#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 2893 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 2894 if (expect_false (getpid () != curpid))
1558 { 2895 {
1559 curpid = getpid (); 2896 curpid = getpid ();
1565 /* we might have forked, so queue fork handlers */ 2902 /* we might have forked, so queue fork handlers */
1566 if (expect_false (postfork)) 2903 if (expect_false (postfork))
1567 if (forkcnt) 2904 if (forkcnt)
1568 { 2905 {
1569 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2906 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1570 call_pending (EV_A); 2907 EV_INVOKE_PENDING;
1571 } 2908 }
1572#endif 2909#endif
1573 2910
2911#if EV_PREPARE_ENABLE
1574 /* queue prepare watchers (and execute them) */ 2912 /* queue prepare watchers (and execute them) */
1575 if (expect_false (preparecnt)) 2913 if (expect_false (preparecnt))
1576 { 2914 {
1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2915 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1578 call_pending (EV_A); 2916 EV_INVOKE_PENDING;
1579 } 2917 }
2918#endif
1580 2919
1581 if (expect_false (!activecnt)) 2920 if (expect_false (loop_done))
1582 break; 2921 break;
1583 2922
1584 /* we might have forked, so reify kernel state if necessary */ 2923 /* we might have forked, so reify kernel state if necessary */
1585 if (expect_false (postfork)) 2924 if (expect_false (postfork))
1586 loop_fork (EV_A); 2925 loop_fork (EV_A);
1591 /* calculate blocking time */ 2930 /* calculate blocking time */
1592 { 2931 {
1593 ev_tstamp waittime = 0.; 2932 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.; 2933 ev_tstamp sleeptime = 0.;
1595 2934
2935 /* remember old timestamp for io_blocktime calculation */
2936 ev_tstamp prev_mn_now = mn_now;
2937
2938 /* update time to cancel out callback processing overhead */
2939 time_update (EV_A_ 1e100);
2940
2941 /* from now on, we want a pipe-wake-up */
2942 pipe_write_wanted = 1;
2943
2944 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2945
1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2946 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1597 { 2947 {
1598 /* update time to cancel out callback processing overhead */
1599 time_update (EV_A_ 1e100);
1600
1601 waittime = MAX_BLOCKTIME; 2948 waittime = MAX_BLOCKTIME;
1602 2949
1603 if (timercnt) 2950 if (timercnt)
1604 { 2951 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2952 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1606 if (waittime > to) waittime = to; 2953 if (waittime > to) waittime = to;
1607 } 2954 }
1608 2955
1609#if EV_PERIODIC_ENABLE 2956#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 2957 if (periodiccnt)
1611 { 2958 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2959 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1613 if (waittime > to) waittime = to; 2960 if (waittime > to) waittime = to;
1614 } 2961 }
1615#endif 2962#endif
1616 2963
2964 /* don't let timeouts decrease the waittime below timeout_blocktime */
1617 if (expect_false (waittime < timeout_blocktime)) 2965 if (expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime; 2966 waittime = timeout_blocktime;
1619 2967
1620 sleeptime = waittime - backend_fudge; 2968 /* at this point, we NEED to wait, so we have to ensure */
2969 /* to pass a minimum nonzero value to the backend */
2970 if (expect_false (waittime < backend_mintime))
2971 waittime = backend_mintime;
1621 2972
2973 /* extra check because io_blocktime is commonly 0 */
1622 if (expect_true (sleeptime > io_blocktime)) 2974 if (expect_false (io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 { 2975 {
2976 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2977
2978 if (sleeptime > waittime - backend_mintime)
2979 sleeptime = waittime - backend_mintime;
2980
2981 if (expect_true (sleeptime > 0.))
2982 {
1627 ev_sleep (sleeptime); 2983 ev_sleep (sleeptime);
1628 waittime -= sleeptime; 2984 waittime -= sleeptime;
2985 }
1629 } 2986 }
1630 } 2987 }
1631 2988
2989#if EV_FEATURE_API
1632 ++loop_count; 2990 ++loop_count;
2991#endif
2992 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1633 backend_poll (EV_A_ waittime); 2993 backend_poll (EV_A_ waittime);
2994 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2995
2996 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
2997
2998 if (pipe_write_skipped)
2999 {
3000 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3001 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3002 }
3003
1634 3004
1635 /* update ev_rt_now, do magic */ 3005 /* update ev_rt_now, do magic */
1636 time_update (EV_A_ waittime + sleeptime); 3006 time_update (EV_A_ waittime + sleeptime);
1637 } 3007 }
1638 3008
1645#if EV_IDLE_ENABLE 3015#if EV_IDLE_ENABLE
1646 /* queue idle watchers unless other events are pending */ 3016 /* queue idle watchers unless other events are pending */
1647 idle_reify (EV_A); 3017 idle_reify (EV_A);
1648#endif 3018#endif
1649 3019
3020#if EV_CHECK_ENABLE
1650 /* queue check watchers, to be executed first */ 3021 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 3022 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3024#endif
1653 3025
1654 call_pending (EV_A); 3026 EV_INVOKE_PENDING;
1655
1656 } 3027 }
1657 while (expect_true (activecnt && !loop_done)); 3028 while (expect_true (
3029 activecnt
3030 && !loop_done
3031 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3032 ));
1658 3033
1659 if (loop_done == EVUNLOOP_ONE) 3034 if (loop_done == EVBREAK_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 3035 loop_done = EVBREAK_CANCEL;
3036
3037#if EV_FEATURE_API
3038 --loop_depth;
3039#endif
1661} 3040}
1662 3041
1663void 3042void
1664ev_unloop (EV_P_ int how) 3043ev_break (EV_P_ int how)
1665{ 3044{
1666 loop_done = how; 3045 loop_done = how;
1667} 3046}
1668 3047
3048void
3049ev_ref (EV_P)
3050{
3051 ++activecnt;
3052}
3053
3054void
3055ev_unref (EV_P)
3056{
3057 --activecnt;
3058}
3059
3060void
3061ev_now_update (EV_P)
3062{
3063 time_update (EV_A_ 1e100);
3064}
3065
3066void
3067ev_suspend (EV_P)
3068{
3069 ev_now_update (EV_A);
3070}
3071
3072void
3073ev_resume (EV_P)
3074{
3075 ev_tstamp mn_prev = mn_now;
3076
3077 ev_now_update (EV_A);
3078 timers_reschedule (EV_A_ mn_now - mn_prev);
3079#if EV_PERIODIC_ENABLE
3080 /* TODO: really do this? */
3081 periodics_reschedule (EV_A);
3082#endif
3083}
3084
1669/*****************************************************************************/ 3085/*****************************************************************************/
3086/* singly-linked list management, used when the expected list length is short */
1670 3087
1671void inline_size 3088inline_size void
1672wlist_add (WL *head, WL elem) 3089wlist_add (WL *head, WL elem)
1673{ 3090{
1674 elem->next = *head; 3091 elem->next = *head;
1675 *head = elem; 3092 *head = elem;
1676} 3093}
1677 3094
1678void inline_size 3095inline_size void
1679wlist_del (WL *head, WL elem) 3096wlist_del (WL *head, WL elem)
1680{ 3097{
1681 while (*head) 3098 while (*head)
1682 { 3099 {
1683 if (*head == elem) 3100 if (expect_true (*head == elem))
1684 { 3101 {
1685 *head = elem->next; 3102 *head = elem->next;
1686 return; 3103 break;
1687 } 3104 }
1688 3105
1689 head = &(*head)->next; 3106 head = &(*head)->next;
1690 } 3107 }
1691} 3108}
1692 3109
1693void inline_speed 3110/* internal, faster, version of ev_clear_pending */
3111inline_speed void
1694clear_pending (EV_P_ W w) 3112clear_pending (EV_P_ W w)
1695{ 3113{
1696 if (w->pending) 3114 if (w->pending)
1697 { 3115 {
1698 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3116 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1699 w->pending = 0; 3117 w->pending = 0;
1700 } 3118 }
1701} 3119}
1702 3120
1703int 3121int
1707 int pending = w_->pending; 3125 int pending = w_->pending;
1708 3126
1709 if (expect_true (pending)) 3127 if (expect_true (pending))
1710 { 3128 {
1711 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3129 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3130 p->w = (W)&pending_w;
1712 w_->pending = 0; 3131 w_->pending = 0;
1713 p->w = 0;
1714 return p->events; 3132 return p->events;
1715 } 3133 }
1716 else 3134 else
1717 return 0; 3135 return 0;
1718} 3136}
1719 3137
1720void inline_size 3138inline_size void
1721pri_adjust (EV_P_ W w) 3139pri_adjust (EV_P_ W w)
1722{ 3140{
1723 int pri = w->priority; 3141 int pri = ev_priority (w);
1724 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3142 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1725 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3143 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1726 w->priority = pri; 3144 ev_set_priority (w, pri);
1727} 3145}
1728 3146
1729void inline_speed 3147inline_speed void
1730ev_start (EV_P_ W w, int active) 3148ev_start (EV_P_ W w, int active)
1731{ 3149{
1732 pri_adjust (EV_A_ w); 3150 pri_adjust (EV_A_ w);
1733 w->active = active; 3151 w->active = active;
1734 ev_ref (EV_A); 3152 ev_ref (EV_A);
1735} 3153}
1736 3154
1737void inline_size 3155inline_size void
1738ev_stop (EV_P_ W w) 3156ev_stop (EV_P_ W w)
1739{ 3157{
1740 ev_unref (EV_A); 3158 ev_unref (EV_A);
1741 w->active = 0; 3159 w->active = 0;
1742} 3160}
1749 int fd = w->fd; 3167 int fd = w->fd;
1750 3168
1751 if (expect_false (ev_is_active (w))) 3169 if (expect_false (ev_is_active (w)))
1752 return; 3170 return;
1753 3171
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 3172 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3173 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3174
3175 EV_FREQUENT_CHECK;
1755 3176
1756 ev_start (EV_A_ (W)w, 1); 3177 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3178 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1758 wlist_add (&anfds[fd].head, (WL)w); 3179 wlist_add (&anfds[fd].head, (WL)w);
1759 3180
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3181 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1761 w->events &= ~EV_IOFDSET; 3182 w->events &= ~EV__IOFDSET;
3183
3184 EV_FREQUENT_CHECK;
1762} 3185}
1763 3186
1764void noinline 3187void noinline
1765ev_io_stop (EV_P_ ev_io *w) 3188ev_io_stop (EV_P_ ev_io *w)
1766{ 3189{
1767 clear_pending (EV_A_ (W)w); 3190 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 3191 if (expect_false (!ev_is_active (w)))
1769 return; 3192 return;
1770 3193
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3194 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3195
3196 EV_FREQUENT_CHECK;
1772 3197
1773 wlist_del (&anfds[w->fd].head, (WL)w); 3198 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 3199 ev_stop (EV_A_ (W)w);
1775 3200
1776 fd_change (EV_A_ w->fd, 1); 3201 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3202
3203 EV_FREQUENT_CHECK;
1777} 3204}
1778 3205
1779void noinline 3206void noinline
1780ev_timer_start (EV_P_ ev_timer *w) 3207ev_timer_start (EV_P_ ev_timer *w)
1781{ 3208{
1782 if (expect_false (ev_is_active (w))) 3209 if (expect_false (ev_is_active (w)))
1783 return; 3210 return;
1784 3211
1785 ((WT)w)->at += mn_now; 3212 ev_at (w) += mn_now;
1786 3213
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3214 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 3215
3216 EV_FREQUENT_CHECK;
3217
3218 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 3219 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3220 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 3221 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 3222 ANHE_at_cache (timers [ev_active (w)]);
3223 upheap (timers, ev_active (w));
1793 3224
3225 EV_FREQUENT_CHECK;
3226
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3227 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 3228}
1796 3229
1797void noinline 3230void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 3231ev_timer_stop (EV_P_ ev_timer *w)
1799{ 3232{
1800 clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
1802 return; 3235 return;
1803 3236
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3237 EV_FREQUENT_CHECK;
1805 3238
1806 { 3239 {
1807 int active = ((W)w)->active; 3240 int active = ev_active (w);
1808 3241
3242 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3243
3244 --timercnt;
3245
1809 if (expect_true (--active < --timercnt)) 3246 if (expect_true (active < timercnt + HEAP0))
1810 { 3247 {
1811 timers [active] = timers [timercnt]; 3248 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 3249 adjustheap (timers, timercnt, active);
1813 } 3250 }
1814 } 3251 }
1815 3252
1816 ((WT)w)->at -= mn_now; 3253 ev_at (w) -= mn_now;
1817 3254
1818 ev_stop (EV_A_ (W)w); 3255 ev_stop (EV_A_ (W)w);
3256
3257 EV_FREQUENT_CHECK;
1819} 3258}
1820 3259
1821void noinline 3260void noinline
1822ev_timer_again (EV_P_ ev_timer *w) 3261ev_timer_again (EV_P_ ev_timer *w)
1823{ 3262{
3263 EV_FREQUENT_CHECK;
3264
1824 if (ev_is_active (w)) 3265 if (ev_is_active (w))
1825 { 3266 {
1826 if (w->repeat) 3267 if (w->repeat)
1827 { 3268 {
1828 ((WT)w)->at = mn_now + w->repeat; 3269 ev_at (w) = mn_now + w->repeat;
3270 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 3271 adjustheap (timers, timercnt, ev_active (w));
1830 } 3272 }
1831 else 3273 else
1832 ev_timer_stop (EV_A_ w); 3274 ev_timer_stop (EV_A_ w);
1833 } 3275 }
1834 else if (w->repeat) 3276 else if (w->repeat)
1835 { 3277 {
1836 w->at = w->repeat; 3278 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 3279 ev_timer_start (EV_A_ w);
1838 } 3280 }
3281
3282 EV_FREQUENT_CHECK;
3283}
3284
3285ev_tstamp
3286ev_timer_remaining (EV_P_ ev_timer *w)
3287{
3288 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1839} 3289}
1840 3290
1841#if EV_PERIODIC_ENABLE 3291#if EV_PERIODIC_ENABLE
1842void noinline 3292void noinline
1843ev_periodic_start (EV_P_ ev_periodic *w) 3293ev_periodic_start (EV_P_ ev_periodic *w)
1844{ 3294{
1845 if (expect_false (ev_is_active (w))) 3295 if (expect_false (ev_is_active (w)))
1846 return; 3296 return;
1847 3297
1848 if (w->reschedule_cb) 3298 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3299 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 3300 else if (w->interval)
1851 { 3301 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 3303 periodic_recalc (EV_A_ w);
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 3304 }
1856 else 3305 else
1857 ((WT)w)->at = w->offset; 3306 ev_at (w) = w->offset;
1858 3307
3308 EV_FREQUENT_CHECK;
3309
3310 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 3311 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3312 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 3313 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 3314 ANHE_at_cache (periodics [ev_active (w)]);
3315 upheap (periodics, ev_active (w));
1863 3316
3317 EV_FREQUENT_CHECK;
3318
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3319 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 3320}
1866 3321
1867void noinline 3322void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 3323ev_periodic_stop (EV_P_ ev_periodic *w)
1869{ 3324{
1870 clear_pending (EV_A_ (W)w); 3325 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 3326 if (expect_false (!ev_is_active (w)))
1872 return; 3327 return;
1873 3328
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3329 EV_FREQUENT_CHECK;
1875 3330
1876 { 3331 {
1877 int active = ((W)w)->active; 3332 int active = ev_active (w);
1878 3333
3334 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3335
3336 --periodiccnt;
3337
1879 if (expect_true (--active < --periodiccnt)) 3338 if (expect_true (active < periodiccnt + HEAP0))
1880 { 3339 {
1881 periodics [active] = periodics [periodiccnt]; 3340 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 3341 adjustheap (periodics, periodiccnt, active);
1883 } 3342 }
1884 } 3343 }
1885 3344
1886 ev_stop (EV_A_ (W)w); 3345 ev_stop (EV_A_ (W)w);
3346
3347 EV_FREQUENT_CHECK;
1887} 3348}
1888 3349
1889void noinline 3350void noinline
1890ev_periodic_again (EV_P_ ev_periodic *w) 3351ev_periodic_again (EV_P_ ev_periodic *w)
1891{ 3352{
1897 3358
1898#ifndef SA_RESTART 3359#ifndef SA_RESTART
1899# define SA_RESTART 0 3360# define SA_RESTART 0
1900#endif 3361#endif
1901 3362
3363#if EV_SIGNAL_ENABLE
3364
1902void noinline 3365void noinline
1903ev_signal_start (EV_P_ ev_signal *w) 3366ev_signal_start (EV_P_ ev_signal *w)
1904{ 3367{
1905#if EV_MULTIPLICITY
1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif
1908 if (expect_false (ev_is_active (w))) 3368 if (expect_false (ev_is_active (w)))
1909 return; 3369 return;
1910 3370
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3371 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1912 3372
1913 evpipe_init (EV_A); 3373#if EV_MULTIPLICITY
3374 assert (("libev: a signal must not be attached to two different loops",
3375 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1914 3376
3377 signals [w->signum - 1].loop = EV_A;
3378#endif
3379
3380 EV_FREQUENT_CHECK;
3381
3382#if EV_USE_SIGNALFD
3383 if (sigfd == -2)
1915 { 3384 {
1916#ifndef _WIN32 3385 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1917 sigset_t full, prev; 3386 if (sigfd < 0 && errno == EINVAL)
1918 sigfillset (&full); 3387 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1919 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif
1921 3388
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3389 if (sigfd >= 0)
3390 {
3391 fd_intern (sigfd); /* doing it twice will not hurt */
1923 3392
1924#ifndef _WIN32 3393 sigemptyset (&sigfd_set);
1925 sigprocmask (SIG_SETMASK, &prev, 0); 3394
1926#endif 3395 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3396 ev_set_priority (&sigfd_w, EV_MAXPRI);
3397 ev_io_start (EV_A_ &sigfd_w);
3398 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3399 }
1927 } 3400 }
3401
3402 if (sigfd >= 0)
3403 {
3404 /* TODO: check .head */
3405 sigaddset (&sigfd_set, w->signum);
3406 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3407
3408 signalfd (sigfd, &sigfd_set, 0);
3409 }
3410#endif
1928 3411
1929 ev_start (EV_A_ (W)w, 1); 3412 ev_start (EV_A_ (W)w, 1);
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 3413 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 3414
1932 if (!((WL)w)->next) 3415 if (!((WL)w)->next)
3416# if EV_USE_SIGNALFD
3417 if (sigfd < 0) /*TODO*/
3418# endif
1933 { 3419 {
1934#if _WIN32 3420# ifdef _WIN32
3421 evpipe_init (EV_A);
3422
1935 signal (w->signum, ev_sighandler); 3423 signal (w->signum, ev_sighandler);
1936#else 3424# else
1937 struct sigaction sa; 3425 struct sigaction sa;
3426
3427 evpipe_init (EV_A);
3428
1938 sa.sa_handler = ev_sighandler; 3429 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 3430 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3431 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 3432 sigaction (w->signum, &sa, 0);
3433
3434 if (origflags & EVFLAG_NOSIGMASK)
3435 {
3436 sigemptyset (&sa.sa_mask);
3437 sigaddset (&sa.sa_mask, w->signum);
3438 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3439 }
1942#endif 3440#endif
1943 } 3441 }
3442
3443 EV_FREQUENT_CHECK;
1944} 3444}
1945 3445
1946void noinline 3446void noinline
1947ev_signal_stop (EV_P_ ev_signal *w) 3447ev_signal_stop (EV_P_ ev_signal *w)
1948{ 3448{
1949 clear_pending (EV_A_ (W)w); 3449 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 3450 if (expect_false (!ev_is_active (w)))
1951 return; 3451 return;
1952 3452
3453 EV_FREQUENT_CHECK;
3454
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 3455 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 3456 ev_stop (EV_A_ (W)w);
1955 3457
1956 if (!signals [w->signum - 1].head) 3458 if (!signals [w->signum - 1].head)
3459 {
3460#if EV_MULTIPLICITY
3461 signals [w->signum - 1].loop = 0; /* unattach from signal */
3462#endif
3463#if EV_USE_SIGNALFD
3464 if (sigfd >= 0)
3465 {
3466 sigset_t ss;
3467
3468 sigemptyset (&ss);
3469 sigaddset (&ss, w->signum);
3470 sigdelset (&sigfd_set, w->signum);
3471
3472 signalfd (sigfd, &sigfd_set, 0);
3473 sigprocmask (SIG_UNBLOCK, &ss, 0);
3474 }
3475 else
3476#endif
1957 signal (w->signum, SIG_DFL); 3477 signal (w->signum, SIG_DFL);
3478 }
3479
3480 EV_FREQUENT_CHECK;
1958} 3481}
3482
3483#endif
3484
3485#if EV_CHILD_ENABLE
1959 3486
1960void 3487void
1961ev_child_start (EV_P_ ev_child *w) 3488ev_child_start (EV_P_ ev_child *w)
1962{ 3489{
1963#if EV_MULTIPLICITY 3490#if EV_MULTIPLICITY
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3491 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 3492#endif
1966 if (expect_false (ev_is_active (w))) 3493 if (expect_false (ev_is_active (w)))
1967 return; 3494 return;
1968 3495
3496 EV_FREQUENT_CHECK;
3497
1969 ev_start (EV_A_ (W)w, 1); 3498 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3499 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3500
3501 EV_FREQUENT_CHECK;
1971} 3502}
1972 3503
1973void 3504void
1974ev_child_stop (EV_P_ ev_child *w) 3505ev_child_stop (EV_P_ ev_child *w)
1975{ 3506{
1976 clear_pending (EV_A_ (W)w); 3507 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 3508 if (expect_false (!ev_is_active (w)))
1978 return; 3509 return;
1979 3510
3511 EV_FREQUENT_CHECK;
3512
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3513 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 3514 ev_stop (EV_A_ (W)w);
3515
3516 EV_FREQUENT_CHECK;
1982} 3517}
3518
3519#endif
1983 3520
1984#if EV_STAT_ENABLE 3521#if EV_STAT_ENABLE
1985 3522
1986# ifdef _WIN32 3523# ifdef _WIN32
1987# undef lstat 3524# undef lstat
1988# define lstat(a,b) _stati64 (a,b) 3525# define lstat(a,b) _stati64 (a,b)
1989# endif 3526# endif
1990 3527
1991#define DEF_STAT_INTERVAL 5.0074891 3528#define DEF_STAT_INTERVAL 5.0074891
3529#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1992#define MIN_STAT_INTERVAL 0.1074891 3530#define MIN_STAT_INTERVAL 0.1074891
1993 3531
1994static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3532static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1995 3533
1996#if EV_USE_INOTIFY 3534#if EV_USE_INOTIFY
1997# define EV_INOTIFY_BUFSIZE 8192 3535
3536/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3537# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1998 3538
1999static void noinline 3539static void noinline
2000infy_add (EV_P_ ev_stat *w) 3540infy_add (EV_P_ ev_stat *w)
2001{ 3541{
2002 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3542 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2003 3543
2004 if (w->wd < 0) 3544 if (w->wd >= 0)
3545 {
3546 struct statfs sfs;
3547
3548 /* now local changes will be tracked by inotify, but remote changes won't */
3549 /* unless the filesystem is known to be local, we therefore still poll */
3550 /* also do poll on <2.6.25, but with normal frequency */
3551
3552 if (!fs_2625)
3553 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3554 else if (!statfs (w->path, &sfs)
3555 && (sfs.f_type == 0x1373 /* devfs */
3556 || sfs.f_type == 0xEF53 /* ext2/3 */
3557 || sfs.f_type == 0x3153464a /* jfs */
3558 || sfs.f_type == 0x52654973 /* reiser3 */
3559 || sfs.f_type == 0x01021994 /* tempfs */
3560 || sfs.f_type == 0x58465342 /* xfs */))
3561 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3562 else
3563 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2005 { 3564 }
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3565 else
3566 {
3567 /* can't use inotify, continue to stat */
3568 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2007 3569
2008 /* monitor some parent directory for speedup hints */ 3570 /* if path is not there, monitor some parent directory for speedup hints */
3571 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3572 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3573 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 3574 {
2011 char path [4096]; 3575 char path [4096];
2012 strcpy (path, w->path); 3576 strcpy (path, w->path);
2013 3577
2016 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3580 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2017 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3581 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2018 3582
2019 char *pend = strrchr (path, '/'); 3583 char *pend = strrchr (path, '/');
2020 3584
2021 if (!pend) 3585 if (!pend || pend == path)
2022 break; /* whoops, no '/', complain to your admin */ 3586 break;
2023 3587
2024 *pend = 0; 3588 *pend = 0;
2025 w->wd = inotify_add_watch (fs_fd, path, mask); 3589 w->wd = inotify_add_watch (fs_fd, path, mask);
2026 } 3590 }
2027 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3591 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2028 } 3592 }
2029 } 3593 }
2030 else
2031 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2032 3594
2033 if (w->wd >= 0) 3595 if (w->wd >= 0)
2034 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3596 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3597
3598 /* now re-arm timer, if required */
3599 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3600 ev_timer_again (EV_A_ &w->timer);
3601 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2035} 3602}
2036 3603
2037static void noinline 3604static void noinline
2038infy_del (EV_P_ ev_stat *w) 3605infy_del (EV_P_ ev_stat *w)
2039{ 3606{
2042 3609
2043 if (wd < 0) 3610 if (wd < 0)
2044 return; 3611 return;
2045 3612
2046 w->wd = -2; 3613 w->wd = -2;
2047 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3614 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2048 wlist_del (&fs_hash [slot].head, (WL)w); 3615 wlist_del (&fs_hash [slot].head, (WL)w);
2049 3616
2050 /* remove this watcher, if others are watching it, they will rearm */ 3617 /* remove this watcher, if others are watching it, they will rearm */
2051 inotify_rm_watch (fs_fd, wd); 3618 inotify_rm_watch (fs_fd, wd);
2052} 3619}
2053 3620
2054static void noinline 3621static void noinline
2055infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3622infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2056{ 3623{
2057 if (slot < 0) 3624 if (slot < 0)
2058 /* overflow, need to check for all hahs slots */ 3625 /* overflow, need to check for all hash slots */
2059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3626 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2060 infy_wd (EV_A_ slot, wd, ev); 3627 infy_wd (EV_A_ slot, wd, ev);
2061 else 3628 else
2062 { 3629 {
2063 WL w_; 3630 WL w_;
2064 3631
2065 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3632 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2066 { 3633 {
2067 ev_stat *w = (ev_stat *)w_; 3634 ev_stat *w = (ev_stat *)w_;
2068 w_ = w_->next; /* lets us remove this watcher and all before it */ 3635 w_ = w_->next; /* lets us remove this watcher and all before it */
2069 3636
2070 if (w->wd == wd || wd == -1) 3637 if (w->wd == wd || wd == -1)
2071 { 3638 {
2072 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3639 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2073 { 3640 {
3641 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2074 w->wd = -1; 3642 w->wd = -1;
2075 infy_add (EV_A_ w); /* re-add, no matter what */ 3643 infy_add (EV_A_ w); /* re-add, no matter what */
2076 } 3644 }
2077 3645
2078 stat_timer_cb (EV_A_ &w->timer, 0); 3646 stat_timer_cb (EV_A_ &w->timer, 0);
2083 3651
2084static void 3652static void
2085infy_cb (EV_P_ ev_io *w, int revents) 3653infy_cb (EV_P_ ev_io *w, int revents)
2086{ 3654{
2087 char buf [EV_INOTIFY_BUFSIZE]; 3655 char buf [EV_INOTIFY_BUFSIZE];
2088 struct inotify_event *ev = (struct inotify_event *)buf;
2089 int ofs; 3656 int ofs;
2090 int len = read (fs_fd, buf, sizeof (buf)); 3657 int len = read (fs_fd, buf, sizeof (buf));
2091 3658
2092 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3659 for (ofs = 0; ofs < len; )
3660 {
3661 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2093 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3662 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3663 ofs += sizeof (struct inotify_event) + ev->len;
3664 }
2094} 3665}
2095 3666
2096void inline_size 3667inline_size void ecb_cold
3668ev_check_2625 (EV_P)
3669{
3670 /* kernels < 2.6.25 are borked
3671 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3672 */
3673 if (ev_linux_version () < 0x020619)
3674 return;
3675
3676 fs_2625 = 1;
3677}
3678
3679inline_size int
3680infy_newfd (void)
3681{
3682#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3683 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3684 if (fd >= 0)
3685 return fd;
3686#endif
3687 return inotify_init ();
3688}
3689
3690inline_size void
2097infy_init (EV_P) 3691infy_init (EV_P)
2098{ 3692{
2099 if (fs_fd != -2) 3693 if (fs_fd != -2)
2100 return; 3694 return;
2101 3695
3696 fs_fd = -1;
3697
3698 ev_check_2625 (EV_A);
3699
2102 fs_fd = inotify_init (); 3700 fs_fd = infy_newfd ();
2103 3701
2104 if (fs_fd >= 0) 3702 if (fs_fd >= 0)
2105 { 3703 {
3704 fd_intern (fs_fd);
2106 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3705 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2107 ev_set_priority (&fs_w, EV_MAXPRI); 3706 ev_set_priority (&fs_w, EV_MAXPRI);
2108 ev_io_start (EV_A_ &fs_w); 3707 ev_io_start (EV_A_ &fs_w);
3708 ev_unref (EV_A);
2109 } 3709 }
2110} 3710}
2111 3711
2112void inline_size 3712inline_size void
2113infy_fork (EV_P) 3713infy_fork (EV_P)
2114{ 3714{
2115 int slot; 3715 int slot;
2116 3716
2117 if (fs_fd < 0) 3717 if (fs_fd < 0)
2118 return; 3718 return;
2119 3719
3720 ev_ref (EV_A);
3721 ev_io_stop (EV_A_ &fs_w);
2120 close (fs_fd); 3722 close (fs_fd);
2121 fs_fd = inotify_init (); 3723 fs_fd = infy_newfd ();
2122 3724
3725 if (fs_fd >= 0)
3726 {
3727 fd_intern (fs_fd);
3728 ev_io_set (&fs_w, fs_fd, EV_READ);
3729 ev_io_start (EV_A_ &fs_w);
3730 ev_unref (EV_A);
3731 }
3732
2123 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3733 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2124 { 3734 {
2125 WL w_ = fs_hash [slot].head; 3735 WL w_ = fs_hash [slot].head;
2126 fs_hash [slot].head = 0; 3736 fs_hash [slot].head = 0;
2127 3737
2128 while (w_) 3738 while (w_)
2133 w->wd = -1; 3743 w->wd = -1;
2134 3744
2135 if (fs_fd >= 0) 3745 if (fs_fd >= 0)
2136 infy_add (EV_A_ w); /* re-add, no matter what */ 3746 infy_add (EV_A_ w); /* re-add, no matter what */
2137 else 3747 else
3748 {
3749 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3750 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2138 ev_timer_start (EV_A_ &w->timer); 3751 ev_timer_again (EV_A_ &w->timer);
3752 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3753 }
2139 } 3754 }
2140
2141 } 3755 }
2142} 3756}
2143 3757
3758#endif
3759
3760#ifdef _WIN32
3761# define EV_LSTAT(p,b) _stati64 (p, b)
3762#else
3763# define EV_LSTAT(p,b) lstat (p, b)
2144#endif 3764#endif
2145 3765
2146void 3766void
2147ev_stat_stat (EV_P_ ev_stat *w) 3767ev_stat_stat (EV_P_ ev_stat *w)
2148{ 3768{
2155static void noinline 3775static void noinline
2156stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3776stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2157{ 3777{
2158 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3778 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2159 3779
2160 /* we copy this here each the time so that */ 3780 ev_statdata prev = w->attr;
2161 /* prev has the old value when the callback gets invoked */
2162 w->prev = w->attr;
2163 ev_stat_stat (EV_A_ w); 3781 ev_stat_stat (EV_A_ w);
2164 3782
2165 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3783 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2166 if ( 3784 if (
2167 w->prev.st_dev != w->attr.st_dev 3785 prev.st_dev != w->attr.st_dev
2168 || w->prev.st_ino != w->attr.st_ino 3786 || prev.st_ino != w->attr.st_ino
2169 || w->prev.st_mode != w->attr.st_mode 3787 || prev.st_mode != w->attr.st_mode
2170 || w->prev.st_nlink != w->attr.st_nlink 3788 || prev.st_nlink != w->attr.st_nlink
2171 || w->prev.st_uid != w->attr.st_uid 3789 || prev.st_uid != w->attr.st_uid
2172 || w->prev.st_gid != w->attr.st_gid 3790 || prev.st_gid != w->attr.st_gid
2173 || w->prev.st_rdev != w->attr.st_rdev 3791 || prev.st_rdev != w->attr.st_rdev
2174 || w->prev.st_size != w->attr.st_size 3792 || prev.st_size != w->attr.st_size
2175 || w->prev.st_atime != w->attr.st_atime 3793 || prev.st_atime != w->attr.st_atime
2176 || w->prev.st_mtime != w->attr.st_mtime 3794 || prev.st_mtime != w->attr.st_mtime
2177 || w->prev.st_ctime != w->attr.st_ctime 3795 || prev.st_ctime != w->attr.st_ctime
2178 ) { 3796 ) {
3797 /* we only update w->prev on actual differences */
3798 /* in case we test more often than invoke the callback, */
3799 /* to ensure that prev is always different to attr */
3800 w->prev = prev;
3801
2179 #if EV_USE_INOTIFY 3802 #if EV_USE_INOTIFY
3803 if (fs_fd >= 0)
3804 {
2180 infy_del (EV_A_ w); 3805 infy_del (EV_A_ w);
2181 infy_add (EV_A_ w); 3806 infy_add (EV_A_ w);
2182 ev_stat_stat (EV_A_ w); /* avoid race... */ 3807 ev_stat_stat (EV_A_ w); /* avoid race... */
3808 }
2183 #endif 3809 #endif
2184 3810
2185 ev_feed_event (EV_A_ w, EV_STAT); 3811 ev_feed_event (EV_A_ w, EV_STAT);
2186 } 3812 }
2187} 3813}
2190ev_stat_start (EV_P_ ev_stat *w) 3816ev_stat_start (EV_P_ ev_stat *w)
2191{ 3817{
2192 if (expect_false (ev_is_active (w))) 3818 if (expect_false (ev_is_active (w)))
2193 return; 3819 return;
2194 3820
2195 /* since we use memcmp, we need to clear any padding data etc. */
2196 memset (&w->prev, 0, sizeof (ev_statdata));
2197 memset (&w->attr, 0, sizeof (ev_statdata));
2198
2199 ev_stat_stat (EV_A_ w); 3821 ev_stat_stat (EV_A_ w);
2200 3822
3823 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2201 if (w->interval < MIN_STAT_INTERVAL) 3824 w->interval = MIN_STAT_INTERVAL;
2202 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2203 3825
2204 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3826 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2205 ev_set_priority (&w->timer, ev_priority (w)); 3827 ev_set_priority (&w->timer, ev_priority (w));
2206 3828
2207#if EV_USE_INOTIFY 3829#if EV_USE_INOTIFY
2208 infy_init (EV_A); 3830 infy_init (EV_A);
2209 3831
2210 if (fs_fd >= 0) 3832 if (fs_fd >= 0)
2211 infy_add (EV_A_ w); 3833 infy_add (EV_A_ w);
2212 else 3834 else
2213#endif 3835#endif
3836 {
2214 ev_timer_start (EV_A_ &w->timer); 3837 ev_timer_again (EV_A_ &w->timer);
3838 ev_unref (EV_A);
3839 }
2215 3840
2216 ev_start (EV_A_ (W)w, 1); 3841 ev_start (EV_A_ (W)w, 1);
3842
3843 EV_FREQUENT_CHECK;
2217} 3844}
2218 3845
2219void 3846void
2220ev_stat_stop (EV_P_ ev_stat *w) 3847ev_stat_stop (EV_P_ ev_stat *w)
2221{ 3848{
2222 clear_pending (EV_A_ (W)w); 3849 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 3850 if (expect_false (!ev_is_active (w)))
2224 return; 3851 return;
2225 3852
3853 EV_FREQUENT_CHECK;
3854
2226#if EV_USE_INOTIFY 3855#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 3856 infy_del (EV_A_ w);
2228#endif 3857#endif
3858
3859 if (ev_is_active (&w->timer))
3860 {
3861 ev_ref (EV_A);
2229 ev_timer_stop (EV_A_ &w->timer); 3862 ev_timer_stop (EV_A_ &w->timer);
3863 }
2230 3864
2231 ev_stop (EV_A_ (W)w); 3865 ev_stop (EV_A_ (W)w);
3866
3867 EV_FREQUENT_CHECK;
2232} 3868}
2233#endif 3869#endif
2234 3870
2235#if EV_IDLE_ENABLE 3871#if EV_IDLE_ENABLE
2236void 3872void
2239 if (expect_false (ev_is_active (w))) 3875 if (expect_false (ev_is_active (w)))
2240 return; 3876 return;
2241 3877
2242 pri_adjust (EV_A_ (W)w); 3878 pri_adjust (EV_A_ (W)w);
2243 3879
3880 EV_FREQUENT_CHECK;
3881
2244 { 3882 {
2245 int active = ++idlecnt [ABSPRI (w)]; 3883 int active = ++idlecnt [ABSPRI (w)];
2246 3884
2247 ++idleall; 3885 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 3886 ev_start (EV_A_ (W)w, active);
2249 3887
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3888 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w; 3889 idles [ABSPRI (w)][active - 1] = w;
2252 } 3890 }
3891
3892 EV_FREQUENT_CHECK;
2253} 3893}
2254 3894
2255void 3895void
2256ev_idle_stop (EV_P_ ev_idle *w) 3896ev_idle_stop (EV_P_ ev_idle *w)
2257{ 3897{
2258 clear_pending (EV_A_ (W)w); 3898 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 3899 if (expect_false (!ev_is_active (w)))
2260 return; 3900 return;
2261 3901
3902 EV_FREQUENT_CHECK;
3903
2262 { 3904 {
2263 int active = ((W)w)->active; 3905 int active = ev_active (w);
2264 3906
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3907 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3908 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 3909
2268 ev_stop (EV_A_ (W)w); 3910 ev_stop (EV_A_ (W)w);
2269 --idleall; 3911 --idleall;
2270 } 3912 }
2271}
2272#endif
2273 3913
3914 EV_FREQUENT_CHECK;
3915}
3916#endif
3917
3918#if EV_PREPARE_ENABLE
2274void 3919void
2275ev_prepare_start (EV_P_ ev_prepare *w) 3920ev_prepare_start (EV_P_ ev_prepare *w)
2276{ 3921{
2277 if (expect_false (ev_is_active (w))) 3922 if (expect_false (ev_is_active (w)))
2278 return; 3923 return;
3924
3925 EV_FREQUENT_CHECK;
2279 3926
2280 ev_start (EV_A_ (W)w, ++preparecnt); 3927 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3928 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w; 3929 prepares [preparecnt - 1] = w;
3930
3931 EV_FREQUENT_CHECK;
2283} 3932}
2284 3933
2285void 3934void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 3935ev_prepare_stop (EV_P_ ev_prepare *w)
2287{ 3936{
2288 clear_pending (EV_A_ (W)w); 3937 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 3938 if (expect_false (!ev_is_active (w)))
2290 return; 3939 return;
2291 3940
3941 EV_FREQUENT_CHECK;
3942
2292 { 3943 {
2293 int active = ((W)w)->active; 3944 int active = ev_active (w);
3945
2294 prepares [active - 1] = prepares [--preparecnt]; 3946 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 3947 ev_active (prepares [active - 1]) = active;
2296 } 3948 }
2297 3949
2298 ev_stop (EV_A_ (W)w); 3950 ev_stop (EV_A_ (W)w);
2299}
2300 3951
3952 EV_FREQUENT_CHECK;
3953}
3954#endif
3955
3956#if EV_CHECK_ENABLE
2301void 3957void
2302ev_check_start (EV_P_ ev_check *w) 3958ev_check_start (EV_P_ ev_check *w)
2303{ 3959{
2304 if (expect_false (ev_is_active (w))) 3960 if (expect_false (ev_is_active (w)))
2305 return; 3961 return;
3962
3963 EV_FREQUENT_CHECK;
2306 3964
2307 ev_start (EV_A_ (W)w, ++checkcnt); 3965 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3966 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w; 3967 checks [checkcnt - 1] = w;
3968
3969 EV_FREQUENT_CHECK;
2310} 3970}
2311 3971
2312void 3972void
2313ev_check_stop (EV_P_ ev_check *w) 3973ev_check_stop (EV_P_ ev_check *w)
2314{ 3974{
2315 clear_pending (EV_A_ (W)w); 3975 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 3976 if (expect_false (!ev_is_active (w)))
2317 return; 3977 return;
2318 3978
3979 EV_FREQUENT_CHECK;
3980
2319 { 3981 {
2320 int active = ((W)w)->active; 3982 int active = ev_active (w);
3983
2321 checks [active - 1] = checks [--checkcnt]; 3984 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 3985 ev_active (checks [active - 1]) = active;
2323 } 3986 }
2324 3987
2325 ev_stop (EV_A_ (W)w); 3988 ev_stop (EV_A_ (W)w);
3989
3990 EV_FREQUENT_CHECK;
2326} 3991}
3992#endif
2327 3993
2328#if EV_EMBED_ENABLE 3994#if EV_EMBED_ENABLE
2329void noinline 3995void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w) 3996ev_embed_sweep (EV_P_ ev_embed *w)
2331{ 3997{
2332 ev_loop (w->other, EVLOOP_NONBLOCK); 3998 ev_run (w->other, EVRUN_NOWAIT);
2333} 3999}
2334 4000
2335static void 4001static void
2336embed_io_cb (EV_P_ ev_io *io, int revents) 4002embed_io_cb (EV_P_ ev_io *io, int revents)
2337{ 4003{
2338 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4004 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2339 4005
2340 if (ev_cb (w)) 4006 if (ev_cb (w))
2341 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4007 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2342 else 4008 else
2343 ev_loop (w->other, EVLOOP_NONBLOCK); 4009 ev_run (w->other, EVRUN_NOWAIT);
2344} 4010}
2345 4011
2346static void 4012static void
2347embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4013embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2348{ 4014{
2349 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4015 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2350 4016
2351 { 4017 {
2352 struct ev_loop *loop = w->other; 4018 EV_P = w->other;
2353 4019
2354 while (fdchangecnt) 4020 while (fdchangecnt)
2355 { 4021 {
2356 fd_reify (EV_A); 4022 fd_reify (EV_A);
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4023 ev_run (EV_A_ EVRUN_NOWAIT);
2358 } 4024 }
2359 } 4025 }
4026}
4027
4028static void
4029embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4030{
4031 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4032
4033 ev_embed_stop (EV_A_ w);
4034
4035 {
4036 EV_P = w->other;
4037
4038 ev_loop_fork (EV_A);
4039 ev_run (EV_A_ EVRUN_NOWAIT);
4040 }
4041
4042 ev_embed_start (EV_A_ w);
2360} 4043}
2361 4044
2362#if 0 4045#if 0
2363static void 4046static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4047embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2372{ 4055{
2373 if (expect_false (ev_is_active (w))) 4056 if (expect_false (ev_is_active (w)))
2374 return; 4057 return;
2375 4058
2376 { 4059 {
2377 struct ev_loop *loop = w->other; 4060 EV_P = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4061 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4062 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 4063 }
4064
4065 EV_FREQUENT_CHECK;
2381 4066
2382 ev_set_priority (&w->io, ev_priority (w)); 4067 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 4068 ev_io_start (EV_A_ &w->io);
2384 4069
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 4070 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 4071 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 4072 ev_prepare_start (EV_A_ &w->prepare);
2388 4073
4074 ev_fork_init (&w->fork, embed_fork_cb);
4075 ev_fork_start (EV_A_ &w->fork);
4076
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4077 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 4078
2391 ev_start (EV_A_ (W)w, 1); 4079 ev_start (EV_A_ (W)w, 1);
4080
4081 EV_FREQUENT_CHECK;
2392} 4082}
2393 4083
2394void 4084void
2395ev_embed_stop (EV_P_ ev_embed *w) 4085ev_embed_stop (EV_P_ ev_embed *w)
2396{ 4086{
2397 clear_pending (EV_A_ (W)w); 4087 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 4088 if (expect_false (!ev_is_active (w)))
2399 return; 4089 return;
2400 4090
4091 EV_FREQUENT_CHECK;
4092
2401 ev_io_stop (EV_A_ &w->io); 4093 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 4094 ev_prepare_stop (EV_A_ &w->prepare);
4095 ev_fork_stop (EV_A_ &w->fork);
2403 4096
2404 ev_stop (EV_A_ (W)w); 4097 ev_stop (EV_A_ (W)w);
4098
4099 EV_FREQUENT_CHECK;
2405} 4100}
2406#endif 4101#endif
2407 4102
2408#if EV_FORK_ENABLE 4103#if EV_FORK_ENABLE
2409void 4104void
2410ev_fork_start (EV_P_ ev_fork *w) 4105ev_fork_start (EV_P_ ev_fork *w)
2411{ 4106{
2412 if (expect_false (ev_is_active (w))) 4107 if (expect_false (ev_is_active (w)))
2413 return; 4108 return;
2414 4109
4110 EV_FREQUENT_CHECK;
4111
2415 ev_start (EV_A_ (W)w, ++forkcnt); 4112 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4113 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w; 4114 forks [forkcnt - 1] = w;
4115
4116 EV_FREQUENT_CHECK;
2418} 4117}
2419 4118
2420void 4119void
2421ev_fork_stop (EV_P_ ev_fork *w) 4120ev_fork_stop (EV_P_ ev_fork *w)
2422{ 4121{
2423 clear_pending (EV_A_ (W)w); 4122 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 4123 if (expect_false (!ev_is_active (w)))
2425 return; 4124 return;
2426 4125
4126 EV_FREQUENT_CHECK;
4127
2427 { 4128 {
2428 int active = ((W)w)->active; 4129 int active = ev_active (w);
4130
2429 forks [active - 1] = forks [--forkcnt]; 4131 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 4132 ev_active (forks [active - 1]) = active;
2431 } 4133 }
2432 4134
2433 ev_stop (EV_A_ (W)w); 4135 ev_stop (EV_A_ (W)w);
4136
4137 EV_FREQUENT_CHECK;
4138}
4139#endif
4140
4141#if EV_CLEANUP_ENABLE
4142void
4143ev_cleanup_start (EV_P_ ev_cleanup *w)
4144{
4145 if (expect_false (ev_is_active (w)))
4146 return;
4147
4148 EV_FREQUENT_CHECK;
4149
4150 ev_start (EV_A_ (W)w, ++cleanupcnt);
4151 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4152 cleanups [cleanupcnt - 1] = w;
4153
4154 /* cleanup watchers should never keep a refcount on the loop */
4155 ev_unref (EV_A);
4156 EV_FREQUENT_CHECK;
4157}
4158
4159void
4160ev_cleanup_stop (EV_P_ ev_cleanup *w)
4161{
4162 clear_pending (EV_A_ (W)w);
4163 if (expect_false (!ev_is_active (w)))
4164 return;
4165
4166 EV_FREQUENT_CHECK;
4167 ev_ref (EV_A);
4168
4169 {
4170 int active = ev_active (w);
4171
4172 cleanups [active - 1] = cleanups [--cleanupcnt];
4173 ev_active (cleanups [active - 1]) = active;
4174 }
4175
4176 ev_stop (EV_A_ (W)w);
4177
4178 EV_FREQUENT_CHECK;
2434} 4179}
2435#endif 4180#endif
2436 4181
2437#if EV_ASYNC_ENABLE 4182#if EV_ASYNC_ENABLE
2438void 4183void
2439ev_async_start (EV_P_ ev_async *w) 4184ev_async_start (EV_P_ ev_async *w)
2440{ 4185{
2441 if (expect_false (ev_is_active (w))) 4186 if (expect_false (ev_is_active (w)))
2442 return; 4187 return;
2443 4188
4189 w->sent = 0;
4190
2444 evpipe_init (EV_A); 4191 evpipe_init (EV_A);
4192
4193 EV_FREQUENT_CHECK;
2445 4194
2446 ev_start (EV_A_ (W)w, ++asynccnt); 4195 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4196 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w; 4197 asyncs [asynccnt - 1] = w;
4198
4199 EV_FREQUENT_CHECK;
2449} 4200}
2450 4201
2451void 4202void
2452ev_async_stop (EV_P_ ev_async *w) 4203ev_async_stop (EV_P_ ev_async *w)
2453{ 4204{
2454 clear_pending (EV_A_ (W)w); 4205 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 4206 if (expect_false (!ev_is_active (w)))
2456 return; 4207 return;
2457 4208
4209 EV_FREQUENT_CHECK;
4210
2458 { 4211 {
2459 int active = ((W)w)->active; 4212 int active = ev_active (w);
4213
2460 asyncs [active - 1] = asyncs [--asynccnt]; 4214 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 4215 ev_active (asyncs [active - 1]) = active;
2462 } 4216 }
2463 4217
2464 ev_stop (EV_A_ (W)w); 4218 ev_stop (EV_A_ (W)w);
4219
4220 EV_FREQUENT_CHECK;
2465} 4221}
2466 4222
2467void 4223void
2468ev_async_send (EV_P_ ev_async *w) 4224ev_async_send (EV_P_ ev_async *w)
2469{ 4225{
2470 w->sent = 1; 4226 w->sent = 1;
2471 evpipe_write (EV_A_ &gotasync); 4227 evpipe_write (EV_A_ &async_pending);
2472} 4228}
2473#endif 4229#endif
2474 4230
2475/*****************************************************************************/ 4231/*****************************************************************************/
2476 4232
2486once_cb (EV_P_ struct ev_once *once, int revents) 4242once_cb (EV_P_ struct ev_once *once, int revents)
2487{ 4243{
2488 void (*cb)(int revents, void *arg) = once->cb; 4244 void (*cb)(int revents, void *arg) = once->cb;
2489 void *arg = once->arg; 4245 void *arg = once->arg;
2490 4246
2491 ev_io_stop (EV_A_ &once->io); 4247 ev_io_stop (EV_A_ &once->io);
2492 ev_timer_stop (EV_A_ &once->to); 4248 ev_timer_stop (EV_A_ &once->to);
2493 ev_free (once); 4249 ev_free (once);
2494 4250
2495 cb (revents, arg); 4251 cb (revents, arg);
2496} 4252}
2497 4253
2498static void 4254static void
2499once_cb_io (EV_P_ ev_io *w, int revents) 4255once_cb_io (EV_P_ ev_io *w, int revents)
2500{ 4256{
2501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4257 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4258
4259 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2502} 4260}
2503 4261
2504static void 4262static void
2505once_cb_to (EV_P_ ev_timer *w, int revents) 4263once_cb_to (EV_P_ ev_timer *w, int revents)
2506{ 4264{
2507 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4265 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4266
4267 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2508} 4268}
2509 4269
2510void 4270void
2511ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4271ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2512{ 4272{
2513 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4273 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2514 4274
2515 if (expect_false (!once)) 4275 if (expect_false (!once))
2516 { 4276 {
2517 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4277 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2518 return; 4278 return;
2519 } 4279 }
2520 4280
2521 once->cb = cb; 4281 once->cb = cb;
2522 once->arg = arg; 4282 once->arg = arg;
2534 ev_timer_set (&once->to, timeout, 0.); 4294 ev_timer_set (&once->to, timeout, 0.);
2535 ev_timer_start (EV_A_ &once->to); 4295 ev_timer_start (EV_A_ &once->to);
2536 } 4296 }
2537} 4297}
2538 4298
4299/*****************************************************************************/
4300
4301#if EV_WALK_ENABLE
4302void ecb_cold
4303ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4304{
4305 int i, j;
4306 ev_watcher_list *wl, *wn;
4307
4308 if (types & (EV_IO | EV_EMBED))
4309 for (i = 0; i < anfdmax; ++i)
4310 for (wl = anfds [i].head; wl; )
4311 {
4312 wn = wl->next;
4313
4314#if EV_EMBED_ENABLE
4315 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4316 {
4317 if (types & EV_EMBED)
4318 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4319 }
4320 else
4321#endif
4322#if EV_USE_INOTIFY
4323 if (ev_cb ((ev_io *)wl) == infy_cb)
4324 ;
4325 else
4326#endif
4327 if ((ev_io *)wl != &pipe_w)
4328 if (types & EV_IO)
4329 cb (EV_A_ EV_IO, wl);
4330
4331 wl = wn;
4332 }
4333
4334 if (types & (EV_TIMER | EV_STAT))
4335 for (i = timercnt + HEAP0; i-- > HEAP0; )
4336#if EV_STAT_ENABLE
4337 /*TODO: timer is not always active*/
4338 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4339 {
4340 if (types & EV_STAT)
4341 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4342 }
4343 else
4344#endif
4345 if (types & EV_TIMER)
4346 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4347
4348#if EV_PERIODIC_ENABLE
4349 if (types & EV_PERIODIC)
4350 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4351 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4352#endif
4353
4354#if EV_IDLE_ENABLE
4355 if (types & EV_IDLE)
4356 for (j = NUMPRI; j--; )
4357 for (i = idlecnt [j]; i--; )
4358 cb (EV_A_ EV_IDLE, idles [j][i]);
4359#endif
4360
4361#if EV_FORK_ENABLE
4362 if (types & EV_FORK)
4363 for (i = forkcnt; i--; )
4364 if (ev_cb (forks [i]) != embed_fork_cb)
4365 cb (EV_A_ EV_FORK, forks [i]);
4366#endif
4367
4368#if EV_ASYNC_ENABLE
4369 if (types & EV_ASYNC)
4370 for (i = asynccnt; i--; )
4371 cb (EV_A_ EV_ASYNC, asyncs [i]);
4372#endif
4373
4374#if EV_PREPARE_ENABLE
4375 if (types & EV_PREPARE)
4376 for (i = preparecnt; i--; )
4377# if EV_EMBED_ENABLE
4378 if (ev_cb (prepares [i]) != embed_prepare_cb)
4379# endif
4380 cb (EV_A_ EV_PREPARE, prepares [i]);
4381#endif
4382
4383#if EV_CHECK_ENABLE
4384 if (types & EV_CHECK)
4385 for (i = checkcnt; i--; )
4386 cb (EV_A_ EV_CHECK, checks [i]);
4387#endif
4388
4389#if EV_SIGNAL_ENABLE
4390 if (types & EV_SIGNAL)
4391 for (i = 0; i < EV_NSIG - 1; ++i)
4392 for (wl = signals [i].head; wl; )
4393 {
4394 wn = wl->next;
4395 cb (EV_A_ EV_SIGNAL, wl);
4396 wl = wn;
4397 }
4398#endif
4399
4400#if EV_CHILD_ENABLE
4401 if (types & EV_CHILD)
4402 for (i = (EV_PID_HASHSIZE); i--; )
4403 for (wl = childs [i]; wl; )
4404 {
4405 wn = wl->next;
4406 cb (EV_A_ EV_CHILD, wl);
4407 wl = wn;
4408 }
4409#endif
4410/* EV_STAT 0x00001000 /* stat data changed */
4411/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4412}
4413#endif
4414
2539#if EV_MULTIPLICITY 4415#if EV_MULTIPLICITY
2540 #include "ev_wrap.h" 4416 #include "ev_wrap.h"
2541#endif 4417#endif
2542 4418
2543#ifdef __cplusplus
2544}
2545#endif
2546

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines