ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.218 by root, Sun Mar 23 00:05:03 2008 UTC vs.
Revision 1.410 by root, Sat Feb 4 17:57:55 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
141#else 184#else
142# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
143#endif 197#endif
144 198
145#ifndef _WIN32 199#ifndef _WIN32
146# include <sys/time.h> 200# include <sys/time.h>
147# include <sys/wait.h> 201# include <sys/wait.h>
148# include <unistd.h> 202# include <unistd.h>
149#else 203#else
204# include <io.h>
150# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 206# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
154# endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined (EV_NSIG)
225/* use what's provided */
226#elif defined (NSIG)
227# define EV_NSIG (NSIG)
228#elif defined(_NSIG)
229# define EV_NSIG (_NSIG)
230#elif defined (SIGMAX)
231# define EV_NSIG (SIGMAX+1)
232#elif defined (SIG_MAX)
233# define EV_NSIG (SIG_MAX+1)
234#elif defined (_SIG_MAX)
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined (MAXSIG)
237# define EV_NSIG (MAXSIG+1)
238#elif defined (MAX_SIG)
239# define EV_NSIG (MAX_SIG+1)
240#elif defined (SIGARRAYSIZE)
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined (_sys_nsig)
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
155#endif 260# endif
156 261#endif
157/**/
158 262
159#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
160# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
161#endif 269#endif
162 270
163#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 273#endif
166 274
167#ifndef EV_USE_NANOSLEEP 275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
168# define EV_USE_NANOSLEEP 0 279# define EV_USE_NANOSLEEP 0
280# endif
169#endif 281#endif
170 282
171#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 285#endif
174 286
175#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
176# ifdef _WIN32 288# ifdef _WIN32
177# define EV_USE_POLL 0 289# define EV_USE_POLL 0
178# else 290# else
179# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 292# endif
181#endif 293#endif
182 294
183#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
184# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
300# endif
185#endif 301#endif
186 302
187#ifndef EV_USE_KQUEUE 303#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 304# define EV_USE_KQUEUE 0
189#endif 305#endif
191#ifndef EV_USE_PORT 307#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 308# define EV_USE_PORT 0
193#endif 309#endif
194 310
195#ifndef EV_USE_INOTIFY 311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
196# define EV_USE_INOTIFY 0 315# define EV_USE_INOTIFY 0
316# endif
197#endif 317#endif
198 318
199#ifndef EV_PID_HASHSIZE 319#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 330# else
203# define EV_PID_HASHSIZE 16 331# define EV_USE_EVENTFD 0
204# endif 332# endif
205#endif 333#endif
206 334
207#ifndef EV_INOTIFY_HASHSIZE 335#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 337# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 338# else
211# define EV_INOTIFY_HASHSIZE 16 339# define EV_USE_SIGNALFD 0
212# endif 340# endif
213#endif 341#endif
214 342
215/**/ 343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
216 382
217#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
220#endif 386#endif
228# undef EV_USE_INOTIFY 394# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 395# define EV_USE_INOTIFY 0
230#endif 396#endif
231 397
232#if !EV_USE_NANOSLEEP 398#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined(_WIN32) && !defined(__hpux)
234# include <sys/select.h> 401# include <sys/select.h>
235# endif 402# endif
236#endif 403#endif
237 404
238#if EV_USE_INOTIFY 405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
239# include <sys/inotify.h> 407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
240#endif 413#endif
241 414
242#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 416# include <winsock.h>
244#endif 417#endif
245 418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
246/**/ 457/**/
247 458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
248/* 465/*
249 * This is used to avoid floating point rounding problems. 466 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 467 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 468 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 471
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 519 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
265#else 526#else
266# define expect(expr,value) (expr) 527 #include <inttypes.h>
267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif 528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
271#endif 542 #endif
543#endif
272 544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined(__s390__) || defined(__s390x__)
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #endif
583 #endif
584#endif
585
586#ifndef ECB_MEMORY_FENCE
587 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
588 #define ECB_MEMORY_FENCE __sync_synchronize ()
589 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
590 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
591 #elif _MSC_VER >= 1400 /* VC++ 2005 */
592 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
593 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
594 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
595 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
596 #elif defined(_WIN32)
597 #include <WinNT.h>
598 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
599 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600 #include <mbarrier.h>
601 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
602 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
603 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
604 #endif
605#endif
606
607#ifndef ECB_MEMORY_FENCE
608 #if !ECB_AVOID_PTHREADS
609 /*
610 * if you get undefined symbol references to pthread_mutex_lock,
611 * or failure to find pthread.h, then you should implement
612 * the ECB_MEMORY_FENCE operations for your cpu/compiler
613 * OR provide pthread.h and link against the posix thread library
614 * of your system.
615 */
616 #include <pthread.h>
617 #define ECB_NEEDS_PTHREADS 1
618 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
619
620 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
621 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
622 #endif
623#endif
624
625#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
626 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
627#endif
628
629#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
630 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
631#endif
632
633/*****************************************************************************/
634
635#define ECB_C99 (__STDC_VERSION__ >= 199901L)
636
637#if __cplusplus
638 #define ecb_inline static inline
639#elif ECB_GCC_VERSION(2,5)
640 #define ecb_inline static __inline__
641#elif ECB_C99
642 #define ecb_inline static inline
643#else
644 #define ecb_inline static
645#endif
646
647#if ECB_GCC_VERSION(3,3)
648 #define ecb_restrict __restrict__
649#elif ECB_C99
650 #define ecb_restrict restrict
651#else
652 #define ecb_restrict
653#endif
654
655typedef int ecb_bool;
656
657#define ECB_CONCAT_(a, b) a ## b
658#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
659#define ECB_STRINGIFY_(a) # a
660#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
661
662#define ecb_function_ ecb_inline
663
664#if ECB_GCC_VERSION(3,1)
665 #define ecb_attribute(attrlist) __attribute__(attrlist)
666 #define ecb_is_constant(expr) __builtin_constant_p (expr)
667 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
668 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
669#else
670 #define ecb_attribute(attrlist)
671 #define ecb_is_constant(expr) 0
672 #define ecb_expect(expr,value) (expr)
673 #define ecb_prefetch(addr,rw,locality)
674#endif
675
676/* no emulation for ecb_decltype */
677#if ECB_GCC_VERSION(4,5)
678 #define ecb_decltype(x) __decltype(x)
679#elif ECB_GCC_VERSION(3,0)
680 #define ecb_decltype(x) __typeof(x)
681#endif
682
683#define ecb_noinline ecb_attribute ((__noinline__))
684#define ecb_noreturn ecb_attribute ((__noreturn__))
685#define ecb_unused ecb_attribute ((__unused__))
686#define ecb_const ecb_attribute ((__const__))
687#define ecb_pure ecb_attribute ((__pure__))
688
689#if ECB_GCC_VERSION(4,3)
690 #define ecb_artificial ecb_attribute ((__artificial__))
691 #define ecb_hot ecb_attribute ((__hot__))
692 #define ecb_cold ecb_attribute ((__cold__))
693#else
694 #define ecb_artificial
695 #define ecb_hot
696 #define ecb_cold
697#endif
698
699/* put around conditional expressions if you are very sure that the */
700/* expression is mostly true or mostly false. note that these return */
701/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 702#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 703#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
704/* for compatibility to the rest of the world */
705#define ecb_likely(expr) ecb_expect_true (expr)
706#define ecb_unlikely(expr) ecb_expect_false (expr)
707
708/* count trailing zero bits and count # of one bits */
709#if ECB_GCC_VERSION(3,4)
710 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
711 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
712 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
713 #define ecb_ctz32(x) __builtin_ctz (x)
714 #define ecb_ctz64(x) __builtin_ctzll (x)
715 #define ecb_popcount32(x) __builtin_popcount (x)
716 /* no popcountll */
717#else
718 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
719 ecb_function_ int
720 ecb_ctz32 (uint32_t x)
721 {
722 int r = 0;
723
724 x &= ~x + 1; /* this isolates the lowest bit */
725
726#if ECB_branchless_on_i386
727 r += !!(x & 0xaaaaaaaa) << 0;
728 r += !!(x & 0xcccccccc) << 1;
729 r += !!(x & 0xf0f0f0f0) << 2;
730 r += !!(x & 0xff00ff00) << 3;
731 r += !!(x & 0xffff0000) << 4;
732#else
733 if (x & 0xaaaaaaaa) r += 1;
734 if (x & 0xcccccccc) r += 2;
735 if (x & 0xf0f0f0f0) r += 4;
736 if (x & 0xff00ff00) r += 8;
737 if (x & 0xffff0000) r += 16;
738#endif
739
740 return r;
741 }
742
743 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
744 ecb_function_ int
745 ecb_ctz64 (uint64_t x)
746 {
747 int shift = x & 0xffffffffU ? 0 : 32;
748 return ecb_ctz32 (x >> shift) + shift;
749 }
750
751 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
752 ecb_function_ int
753 ecb_popcount32 (uint32_t x)
754 {
755 x -= (x >> 1) & 0x55555555;
756 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
757 x = ((x >> 4) + x) & 0x0f0f0f0f;
758 x *= 0x01010101;
759
760 return x >> 24;
761 }
762
763 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
764 ecb_function_ int ecb_ld32 (uint32_t x)
765 {
766 int r = 0;
767
768 if (x >> 16) { x >>= 16; r += 16; }
769 if (x >> 8) { x >>= 8; r += 8; }
770 if (x >> 4) { x >>= 4; r += 4; }
771 if (x >> 2) { x >>= 2; r += 2; }
772 if (x >> 1) { r += 1; }
773
774 return r;
775 }
776
777 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
778 ecb_function_ int ecb_ld64 (uint64_t x)
779 {
780 int r = 0;
781
782 if (x >> 32) { x >>= 32; r += 32; }
783
784 return r + ecb_ld32 (x);
785 }
786#endif
787
788ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
789ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
790{
791 return ( (x * 0x0802U & 0x22110U)
792 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
793}
794
795ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
796ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
797{
798 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
799 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
800 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
801 x = ( x >> 8 ) | ( x << 8);
802
803 return x;
804}
805
806ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
807ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
808{
809 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
810 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
811 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
812 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
813 x = ( x >> 16 ) | ( x << 16);
814
815 return x;
816}
817
818/* popcount64 is only available on 64 bit cpus as gcc builtin */
819/* so for this version we are lazy */
820ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
821ecb_function_ int
822ecb_popcount64 (uint64_t x)
823{
824 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
825}
826
827ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
828ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
829ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
830ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
831ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
832ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
833ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
834ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
835
836ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
837ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
838ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
839ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
840ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
841ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
842ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
843ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
844
845#if ECB_GCC_VERSION(4,3)
846 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
847 #define ecb_bswap32(x) __builtin_bswap32 (x)
848 #define ecb_bswap64(x) __builtin_bswap64 (x)
849#else
850 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
851 ecb_function_ uint16_t
852 ecb_bswap16 (uint16_t x)
853 {
854 return ecb_rotl16 (x, 8);
855 }
856
857 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
858 ecb_function_ uint32_t
859 ecb_bswap32 (uint32_t x)
860 {
861 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
862 }
863
864 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
865 ecb_function_ uint64_t
866 ecb_bswap64 (uint64_t x)
867 {
868 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
869 }
870#endif
871
872#if ECB_GCC_VERSION(4,5)
873 #define ecb_unreachable() __builtin_unreachable ()
874#else
875 /* this seems to work fine, but gcc always emits a warning for it :/ */
876 ecb_inline void ecb_unreachable (void) ecb_noreturn;
877 ecb_inline void ecb_unreachable (void) { }
878#endif
879
880/* try to tell the compiler that some condition is definitely true */
881#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
882
883ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
884ecb_inline unsigned char
885ecb_byteorder_helper (void)
886{
887 const uint32_t u = 0x11223344;
888 return *(unsigned char *)&u;
889}
890
891ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
892ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
893ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
894ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
895
896#if ECB_GCC_VERSION(3,0) || ECB_C99
897 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
898#else
899 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
900#endif
901
902#if __cplusplus
903 template<typename T>
904 static inline T ecb_div_rd (T val, T div)
905 {
906 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
907 }
908 template<typename T>
909 static inline T ecb_div_ru (T val, T div)
910 {
911 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
912 }
913#else
914 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
915 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
916#endif
917
918#if ecb_cplusplus_does_not_suck
919 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
920 template<typename T, int N>
921 static inline int ecb_array_length (const T (&arr)[N])
922 {
923 return N;
924 }
925#else
926 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
927#endif
928
929#endif
930
931/* ECB.H END */
932
933#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
934/* if your architecture doesn't need memory fences, e.g. because it is
935 * single-cpu/core, or if you use libev in a project that doesn't use libev
936 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
937 * libev, in which cases the memory fences become nops.
938 * alternatively, you can remove this #error and link against libpthread,
939 * which will then provide the memory fences.
940 */
941# error "memory fences not defined for your architecture, please report"
942#endif
943
944#ifndef ECB_MEMORY_FENCE
945# define ECB_MEMORY_FENCE do { } while (0)
946# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
947# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
948#endif
949
950#define expect_false(cond) ecb_expect_false (cond)
951#define expect_true(cond) ecb_expect_true (cond)
952#define noinline ecb_noinline
953
275#define inline_size static inline 954#define inline_size ecb_inline
276 955
277#if EV_MINIMAL 956#if EV_FEATURE_CODE
957# define inline_speed ecb_inline
958#else
278# define inline_speed static noinline 959# define inline_speed static noinline
960#endif
961
962#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
963
964#if EV_MINPRI == EV_MAXPRI
965# define ABSPRI(w) (((W)w), 0)
279#else 966#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 967# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
968#endif
285 969
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 970#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 971#define EMPTY2(a,b) /* used to suppress some warnings */
288 972
289typedef ev_watcher *W; 973typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 974typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 975typedef ev_watcher_time *WT;
292 976
977#define ev_active(w) ((W)(w))->active
978#define ev_at(w) ((WT)(w))->at
979
980#if EV_USE_REALTIME
981/* sig_atomic_t is used to avoid per-thread variables or locking but still */
982/* giving it a reasonably high chance of working on typical architectures */
983static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
984#endif
985
293#if EV_USE_MONOTONIC 986#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 987static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
988#endif
989
990#ifndef EV_FD_TO_WIN32_HANDLE
991# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
992#endif
993#ifndef EV_WIN32_HANDLE_TO_FD
994# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
995#endif
996#ifndef EV_WIN32_CLOSE_FD
997# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 998#endif
298 999
299#ifdef _WIN32 1000#ifdef _WIN32
300# include "ev_win32.c" 1001# include "ev_win32.c"
301#endif 1002#endif
302 1003
303/*****************************************************************************/ 1004/*****************************************************************************/
304 1005
1006/* define a suitable floor function (only used by periodics atm) */
1007
1008#if EV_USE_FLOOR
1009# include <math.h>
1010# define ev_floor(v) floor (v)
1011#else
1012
1013#include <float.h>
1014
1015/* a floor() replacement function, should be independent of ev_tstamp type */
1016static ev_tstamp noinline
1017ev_floor (ev_tstamp v)
1018{
1019 /* the choice of shift factor is not terribly important */
1020#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1021 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1022#else
1023 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1024#endif
1025
1026 /* argument too large for an unsigned long? */
1027 if (expect_false (v >= shift))
1028 {
1029 ev_tstamp f;
1030
1031 if (v == v - 1.)
1032 return v; /* very large number */
1033
1034 f = shift * ev_floor (v * (1. / shift));
1035 return f + ev_floor (v - f);
1036 }
1037
1038 /* special treatment for negative args? */
1039 if (expect_false (v < 0.))
1040 {
1041 ev_tstamp f = -ev_floor (-v);
1042
1043 return f - (f == v ? 0 : 1);
1044 }
1045
1046 /* fits into an unsigned long */
1047 return (unsigned long)v;
1048}
1049
1050#endif
1051
1052/*****************************************************************************/
1053
1054#ifdef __linux
1055# include <sys/utsname.h>
1056#endif
1057
1058static unsigned int noinline ecb_cold
1059ev_linux_version (void)
1060{
1061#ifdef __linux
1062 unsigned int v = 0;
1063 struct utsname buf;
1064 int i;
1065 char *p = buf.release;
1066
1067 if (uname (&buf))
1068 return 0;
1069
1070 for (i = 3+1; --i; )
1071 {
1072 unsigned int c = 0;
1073
1074 for (;;)
1075 {
1076 if (*p >= '0' && *p <= '9')
1077 c = c * 10 + *p++ - '0';
1078 else
1079 {
1080 p += *p == '.';
1081 break;
1082 }
1083 }
1084
1085 v = (v << 8) | c;
1086 }
1087
1088 return v;
1089#else
1090 return 0;
1091#endif
1092}
1093
1094/*****************************************************************************/
1095
1096#if EV_AVOID_STDIO
1097static void noinline ecb_cold
1098ev_printerr (const char *msg)
1099{
1100 write (STDERR_FILENO, msg, strlen (msg));
1101}
1102#endif
1103
305static void (*syserr_cb)(const char *msg); 1104static void (*syserr_cb)(const char *msg);
306 1105
307void 1106void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1107ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 1108{
310 syserr_cb = cb; 1109 syserr_cb = cb;
311} 1110}
312 1111
313static void noinline 1112static void noinline ecb_cold
314syserr (const char *msg) 1113ev_syserr (const char *msg)
315{ 1114{
316 if (!msg) 1115 if (!msg)
317 msg = "(libev) system error"; 1116 msg = "(libev) system error";
318 1117
319 if (syserr_cb) 1118 if (syserr_cb)
320 syserr_cb (msg); 1119 syserr_cb (msg);
321 else 1120 else
322 { 1121 {
1122#if EV_AVOID_STDIO
1123 ev_printerr (msg);
1124 ev_printerr (": ");
1125 ev_printerr (strerror (errno));
1126 ev_printerr ("\n");
1127#else
323 perror (msg); 1128 perror (msg);
1129#endif
324 abort (); 1130 abort ();
325 } 1131 }
326} 1132}
327 1133
1134static void *
1135ev_realloc_emul (void *ptr, long size)
1136{
1137#if __GLIBC__
1138 return realloc (ptr, size);
1139#else
1140 /* some systems, notably openbsd and darwin, fail to properly
1141 * implement realloc (x, 0) (as required by both ansi c-89 and
1142 * the single unix specification, so work around them here.
1143 */
1144
1145 if (size)
1146 return realloc (ptr, size);
1147
1148 free (ptr);
1149 return 0;
1150#endif
1151}
1152
328static void *(*alloc)(void *ptr, long size); 1153static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 1154
330void 1155void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1156ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 1157{
333 alloc = cb; 1158 alloc = cb;
334} 1159}
335 1160
336inline_speed void * 1161inline_speed void *
337ev_realloc (void *ptr, long size) 1162ev_realloc (void *ptr, long size)
338{ 1163{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1164 ptr = alloc (ptr, size);
340 1165
341 if (!ptr && size) 1166 if (!ptr && size)
342 { 1167 {
1168#if EV_AVOID_STDIO
1169 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1170#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1171 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1172#endif
344 abort (); 1173 abort ();
345 } 1174 }
346 1175
347 return ptr; 1176 return ptr;
348} 1177}
350#define ev_malloc(size) ev_realloc (0, (size)) 1179#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1180#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1181
353/*****************************************************************************/ 1182/*****************************************************************************/
354 1183
1184/* set in reify when reification needed */
1185#define EV_ANFD_REIFY 1
1186
1187/* file descriptor info structure */
355typedef struct 1188typedef struct
356{ 1189{
357 WL head; 1190 WL head;
358 unsigned char events; 1191 unsigned char events; /* the events watched for */
1192 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1193 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1194 unsigned char unused;
1195#if EV_USE_EPOLL
1196 unsigned int egen; /* generation counter to counter epoll bugs */
1197#endif
360#if EV_SELECT_IS_WINSOCKET 1198#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1199 SOCKET handle;
362#endif 1200#endif
1201#if EV_USE_IOCP
1202 OVERLAPPED or, ow;
1203#endif
363} ANFD; 1204} ANFD;
364 1205
1206/* stores the pending event set for a given watcher */
365typedef struct 1207typedef struct
366{ 1208{
367 W w; 1209 W w;
368 int events; 1210 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1211} ANPENDING;
370 1212
371#if EV_USE_INOTIFY 1213#if EV_USE_INOTIFY
1214/* hash table entry per inotify-id */
372typedef struct 1215typedef struct
373{ 1216{
374 WL head; 1217 WL head;
375} ANFS; 1218} ANFS;
1219#endif
1220
1221/* Heap Entry */
1222#if EV_HEAP_CACHE_AT
1223 /* a heap element */
1224 typedef struct {
1225 ev_tstamp at;
1226 WT w;
1227 } ANHE;
1228
1229 #define ANHE_w(he) (he).w /* access watcher, read-write */
1230 #define ANHE_at(he) (he).at /* access cached at, read-only */
1231 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1232#else
1233 /* a heap element */
1234 typedef WT ANHE;
1235
1236 #define ANHE_w(he) (he)
1237 #define ANHE_at(he) (he)->at
1238 #define ANHE_at_cache(he)
376#endif 1239#endif
377 1240
378#if EV_MULTIPLICITY 1241#if EV_MULTIPLICITY
379 1242
380 struct ev_loop 1243 struct ev_loop
386 #undef VAR 1249 #undef VAR
387 }; 1250 };
388 #include "ev_wrap.h" 1251 #include "ev_wrap.h"
389 1252
390 static struct ev_loop default_loop_struct; 1253 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1254 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1255
393#else 1256#else
394 1257
395 ev_tstamp ev_rt_now; 1258 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1259 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1260 #include "ev_vars.h"
398 #undef VAR 1261 #undef VAR
399 1262
400 static int ev_default_loop_ptr; 1263 static int ev_default_loop_ptr;
401 1264
402#endif 1265#endif
403 1266
1267#if EV_FEATURE_API
1268# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1269# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1270# define EV_INVOKE_PENDING invoke_cb (EV_A)
1271#else
1272# define EV_RELEASE_CB (void)0
1273# define EV_ACQUIRE_CB (void)0
1274# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1275#endif
1276
1277#define EVBREAK_RECURSE 0x80
1278
404/*****************************************************************************/ 1279/*****************************************************************************/
405 1280
1281#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1282ev_tstamp
407ev_time (void) 1283ev_time (void)
408{ 1284{
409#if EV_USE_REALTIME 1285#if EV_USE_REALTIME
1286 if (expect_true (have_realtime))
1287 {
410 struct timespec ts; 1288 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1289 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1290 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1291 }
1292#endif
1293
414 struct timeval tv; 1294 struct timeval tv;
415 gettimeofday (&tv, 0); 1295 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1296 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1297}
1298#endif
419 1299
420ev_tstamp inline_size 1300inline_size ev_tstamp
421get_clock (void) 1301get_clock (void)
422{ 1302{
423#if EV_USE_MONOTONIC 1303#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1304 if (expect_true (have_monotonic))
425 { 1305 {
446 if (delay > 0.) 1326 if (delay > 0.)
447 { 1327 {
448#if EV_USE_NANOSLEEP 1328#if EV_USE_NANOSLEEP
449 struct timespec ts; 1329 struct timespec ts;
450 1330
451 ts.tv_sec = (time_t)delay; 1331 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1332 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1333#elif defined(_WIN32)
456 Sleep ((unsigned long)(delay * 1e3)); 1334 Sleep ((unsigned long)(delay * 1e3));
457#else 1335#else
458 struct timeval tv; 1336 struct timeval tv;
459 1337
460 tv.tv_sec = (time_t)delay; 1338 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1339 /* something not guaranteed by newer posix versions, but guaranteed */
462 1340 /* by older ones */
1341 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1342 select (0, 0, 0, 0, &tv);
464#endif 1343#endif
465 } 1344 }
466} 1345}
467 1346
468/*****************************************************************************/ 1347/*****************************************************************************/
469 1348
470int inline_size 1349#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1350
1351/* find a suitable new size for the given array, */
1352/* hopefully by rounding to a nice-to-malloc size */
1353inline_size int
471array_nextsize (int elem, int cur, int cnt) 1354array_nextsize (int elem, int cur, int cnt)
472{ 1355{
473 int ncur = cur + 1; 1356 int ncur = cur + 1;
474 1357
475 do 1358 do
476 ncur <<= 1; 1359 ncur <<= 1;
477 while (cnt > ncur); 1360 while (cnt > ncur);
478 1361
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1362 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1363 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1364 {
482 ncur *= elem; 1365 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1366 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1367 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1368 ncur /= elem;
486 } 1369 }
487 1370
488 return ncur; 1371 return ncur;
489} 1372}
490 1373
491static noinline void * 1374static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1375array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1376{
494 *cur = array_nextsize (elem, *cur, cnt); 1377 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1378 return ev_realloc (base, elem * *cur);
496} 1379}
1380
1381#define array_init_zero(base,count) \
1382 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1383
498#define array_needsize(type,base,cur,cnt,init) \ 1384#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1385 if (expect_false ((cnt) > (cur))) \
500 { \ 1386 { \
501 int ocur_ = (cur); \ 1387 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1388 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1389 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1390 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1391 }
506 1392
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1399 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1400 }
515#endif 1401#endif
516 1402
517#define array_free(stem, idx) \ 1403#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1404 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1405
520/*****************************************************************************/ 1406/*****************************************************************************/
1407
1408/* dummy callback for pending events */
1409static void noinline
1410pendingcb (EV_P_ ev_prepare *w, int revents)
1411{
1412}
521 1413
522void noinline 1414void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1415ev_feed_event (EV_P_ void *w, int revents)
524{ 1416{
525 W w_ = (W)w; 1417 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 1426 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1427 pendings [pri][w_->pending - 1].events = revents;
536 } 1428 }
537} 1429}
538 1430
539void inline_speed 1431inline_speed void
1432feed_reverse (EV_P_ W w)
1433{
1434 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1435 rfeeds [rfeedcnt++] = w;
1436}
1437
1438inline_size void
1439feed_reverse_done (EV_P_ int revents)
1440{
1441 do
1442 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1443 while (rfeedcnt);
1444}
1445
1446inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1447queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1448{
542 int i; 1449 int i;
543 1450
544 for (i = 0; i < eventcnt; ++i) 1451 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1452 ev_feed_event (EV_A_ events [i], type);
546} 1453}
547 1454
548/*****************************************************************************/ 1455/*****************************************************************************/
549 1456
550void inline_size 1457inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1458fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1459{
566 ANFD *anfd = anfds + fd; 1460 ANFD *anfd = anfds + fd;
567 ev_io *w; 1461 ev_io *w;
568 1462
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1463 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1467 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1468 ev_feed_event (EV_A_ (W)w, ev);
575 } 1469 }
576} 1470}
577 1471
1472/* do not submit kernel events for fds that have reify set */
1473/* because that means they changed while we were polling for new events */
1474inline_speed void
1475fd_event (EV_P_ int fd, int revents)
1476{
1477 ANFD *anfd = anfds + fd;
1478
1479 if (expect_true (!anfd->reify))
1480 fd_event_nocheck (EV_A_ fd, revents);
1481}
1482
578void 1483void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1484ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 1485{
581 if (fd >= 0 && fd < anfdmax) 1486 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1487 fd_event_nocheck (EV_A_ fd, revents);
583} 1488}
584 1489
585void inline_size 1490/* make sure the external fd watch events are in-sync */
1491/* with the kernel/libev internal state */
1492inline_size void
586fd_reify (EV_P) 1493fd_reify (EV_P)
587{ 1494{
588 int i; 1495 int i;
1496
1497#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1498 for (i = 0; i < fdchangecnt; ++i)
1499 {
1500 int fd = fdchanges [i];
1501 ANFD *anfd = anfds + fd;
1502
1503 if (anfd->reify & EV__IOFDSET && anfd->head)
1504 {
1505 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1506
1507 if (handle != anfd->handle)
1508 {
1509 unsigned long arg;
1510
1511 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1512
1513 /* handle changed, but fd didn't - we need to do it in two steps */
1514 backend_modify (EV_A_ fd, anfd->events, 0);
1515 anfd->events = 0;
1516 anfd->handle = handle;
1517 }
1518 }
1519 }
1520#endif
589 1521
590 for (i = 0; i < fdchangecnt; ++i) 1522 for (i = 0; i < fdchangecnt; ++i)
591 { 1523 {
592 int fd = fdchanges [i]; 1524 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1525 ANFD *anfd = anfds + fd;
594 ev_io *w; 1526 ev_io *w;
595 1527
596 unsigned char events = 0; 1528 unsigned char o_events = anfd->events;
1529 unsigned char o_reify = anfd->reify;
597 1530
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1531 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1532
601#if EV_SELECT_IS_WINSOCKET 1533 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1534 {
604 unsigned long argp; 1535 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1536
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1537 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1538 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1539
609 #endif 1540 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1541 o_reify = EV__IOFDSET; /* actually |= */
611 } 1542 }
612#endif
613 1543
614 { 1544 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1545 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1546 }
625 1547
626 fdchangecnt = 0; 1548 fdchangecnt = 0;
627} 1549}
628 1550
629void inline_size 1551/* something about the given fd changed */
1552inline_size void
630fd_change (EV_P_ int fd, int flags) 1553fd_change (EV_P_ int fd, int flags)
631{ 1554{
632 unsigned char reify = anfds [fd].reify; 1555 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1556 anfds [fd].reify |= flags;
634 1557
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1561 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1562 fdchanges [fdchangecnt - 1] = fd;
640 } 1563 }
641} 1564}
642 1565
643void inline_speed 1566/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1567inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 1568fd_kill (EV_P_ int fd)
645{ 1569{
646 ev_io *w; 1570 ev_io *w;
647 1571
648 while ((w = (ev_io *)anfds [fd].head)) 1572 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1574 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1575 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1576 }
653} 1577}
654 1578
655int inline_size 1579/* check whether the given fd is actually valid, for error recovery */
1580inline_size int ecb_cold
656fd_valid (int fd) 1581fd_valid (int fd)
657{ 1582{
658#ifdef _WIN32 1583#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1584 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1585#else
661 return fcntl (fd, F_GETFD) != -1; 1586 return fcntl (fd, F_GETFD) != -1;
662#endif 1587#endif
663} 1588}
664 1589
665/* called on EBADF to verify fds */ 1590/* called on EBADF to verify fds */
666static void noinline 1591static void noinline ecb_cold
667fd_ebadf (EV_P) 1592fd_ebadf (EV_P)
668{ 1593{
669 int fd; 1594 int fd;
670 1595
671 for (fd = 0; fd < anfdmax; ++fd) 1596 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1597 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1598 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1599 fd_kill (EV_A_ fd);
675} 1600}
676 1601
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1602/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1603static void noinline ecb_cold
679fd_enomem (EV_P) 1604fd_enomem (EV_P)
680{ 1605{
681 int fd; 1606 int fd;
682 1607
683 for (fd = anfdmax; fd--; ) 1608 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1609 if (anfds [fd].events)
685 { 1610 {
686 fd_kill (EV_A_ fd); 1611 fd_kill (EV_A_ fd);
687 return; 1612 break;
688 } 1613 }
689} 1614}
690 1615
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1616/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1617static void noinline
696 1621
697 for (fd = 0; fd < anfdmax; ++fd) 1622 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1623 if (anfds [fd].events)
699 { 1624 {
700 anfds [fd].events = 0; 1625 anfds [fd].events = 0;
1626 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1627 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1628 }
703} 1629}
704 1630
705/*****************************************************************************/ 1631/* used to prepare libev internal fd's */
706 1632/* this is not fork-safe */
707void inline_speed 1633inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 1634fd_intern (int fd)
792{ 1635{
793#ifdef _WIN32 1636#ifdef _WIN32
794 int arg = 1; 1637 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1638 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1639#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1640 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1641 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1642#endif
800} 1643}
801 1644
1645/*****************************************************************************/
1646
1647/*
1648 * the heap functions want a real array index. array index 0 is guaranteed to not
1649 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1650 * the branching factor of the d-tree.
1651 */
1652
1653/*
1654 * at the moment we allow libev the luxury of two heaps,
1655 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1656 * which is more cache-efficient.
1657 * the difference is about 5% with 50000+ watchers.
1658 */
1659#if EV_USE_4HEAP
1660
1661#define DHEAP 4
1662#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1663#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1664#define UPHEAP_DONE(p,k) ((p) == (k))
1665
1666/* away from the root */
1667inline_speed void
1668downheap (ANHE *heap, int N, int k)
1669{
1670 ANHE he = heap [k];
1671 ANHE *E = heap + N + HEAP0;
1672
1673 for (;;)
1674 {
1675 ev_tstamp minat;
1676 ANHE *minpos;
1677 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1678
1679 /* find minimum child */
1680 if (expect_true (pos + DHEAP - 1 < E))
1681 {
1682 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1683 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1684 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1685 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1686 }
1687 else if (pos < E)
1688 {
1689 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1690 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1691 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1692 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1693 }
1694 else
1695 break;
1696
1697 if (ANHE_at (he) <= minat)
1698 break;
1699
1700 heap [k] = *minpos;
1701 ev_active (ANHE_w (*minpos)) = k;
1702
1703 k = minpos - heap;
1704 }
1705
1706 heap [k] = he;
1707 ev_active (ANHE_w (he)) = k;
1708}
1709
1710#else /* 4HEAP */
1711
1712#define HEAP0 1
1713#define HPARENT(k) ((k) >> 1)
1714#define UPHEAP_DONE(p,k) (!(p))
1715
1716/* away from the root */
1717inline_speed void
1718downheap (ANHE *heap, int N, int k)
1719{
1720 ANHE he = heap [k];
1721
1722 for (;;)
1723 {
1724 int c = k << 1;
1725
1726 if (c >= N + HEAP0)
1727 break;
1728
1729 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1730 ? 1 : 0;
1731
1732 if (ANHE_at (he) <= ANHE_at (heap [c]))
1733 break;
1734
1735 heap [k] = heap [c];
1736 ev_active (ANHE_w (heap [k])) = k;
1737
1738 k = c;
1739 }
1740
1741 heap [k] = he;
1742 ev_active (ANHE_w (he)) = k;
1743}
1744#endif
1745
1746/* towards the root */
1747inline_speed void
1748upheap (ANHE *heap, int k)
1749{
1750 ANHE he = heap [k];
1751
1752 for (;;)
1753 {
1754 int p = HPARENT (k);
1755
1756 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1757 break;
1758
1759 heap [k] = heap [p];
1760 ev_active (ANHE_w (heap [k])) = k;
1761 k = p;
1762 }
1763
1764 heap [k] = he;
1765 ev_active (ANHE_w (he)) = k;
1766}
1767
1768/* move an element suitably so it is in a correct place */
1769inline_size void
1770adjustheap (ANHE *heap, int N, int k)
1771{
1772 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1773 upheap (heap, k);
1774 else
1775 downheap (heap, N, k);
1776}
1777
1778/* rebuild the heap: this function is used only once and executed rarely */
1779inline_size void
1780reheap (ANHE *heap, int N)
1781{
1782 int i;
1783
1784 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1785 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1786 for (i = 0; i < N; ++i)
1787 upheap (heap, i + HEAP0);
1788}
1789
1790/*****************************************************************************/
1791
1792/* associate signal watchers to a signal signal */
1793typedef struct
1794{
1795 EV_ATOMIC_T pending;
1796#if EV_MULTIPLICITY
1797 EV_P;
1798#endif
1799 WL head;
1800} ANSIG;
1801
1802static ANSIG signals [EV_NSIG - 1];
1803
1804/*****************************************************************************/
1805
1806#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1807
802static void noinline 1808static void noinline ecb_cold
803evpipe_init (EV_P) 1809evpipe_init (EV_P)
804{ 1810{
805 if (!ev_is_active (&pipeev)) 1811 if (!ev_is_active (&pipe_w))
806 { 1812 {
1813# if EV_USE_EVENTFD
1814 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1815 if (evfd < 0 && errno == EINVAL)
1816 evfd = eventfd (0, 0);
1817
1818 if (evfd >= 0)
1819 {
1820 evpipe [0] = -1;
1821 fd_intern (evfd); /* doing it twice doesn't hurt */
1822 ev_io_set (&pipe_w, evfd, EV_READ);
1823 }
1824 else
1825# endif
1826 {
807 while (pipe (evpipe)) 1827 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1828 ev_syserr ("(libev) error creating signal/async pipe");
809 1829
810 fd_intern (evpipe [0]); 1830 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1831 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1832 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1833 }
1834
814 ev_io_start (EV_A_ &pipeev); 1835 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1836 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1837 }
817} 1838}
818 1839
819void inline_size 1840inline_speed void
820evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1841evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1842{
822 if (!*flag) 1843 if (expect_true (*flag))
1844 return;
1845
1846 *flag = 1;
1847
1848 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1849
1850 pipe_write_skipped = 1;
1851
1852 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1853
1854 if (pipe_write_wanted)
823 { 1855 {
1856 int old_errno;
1857
1858 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1859
824 int old_errno = errno; /* save errno because write might clobber it */ 1860 old_errno = errno; /* save errno because write will clobber it */
825 1861
826 *flag = 1; 1862#if EV_USE_EVENTFD
827 write (evpipe [1], &old_errno, 1); 1863 if (evfd >= 0)
1864 {
1865 uint64_t counter = 1;
1866 write (evfd, &counter, sizeof (uint64_t));
1867 }
1868 else
1869#endif
1870 {
1871 /* win32 people keep sending patches that change this write() to send() */
1872 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1873 /* so when you think this write should be a send instead, please find out */
1874 /* where your send() is from - it's definitely not the microsoft send, and */
1875 /* tell me. thank you. */
1876 write (evpipe [1], &(evpipe [1]), 1);
1877 }
828 1878
829 errno = old_errno; 1879 errno = old_errno;
830 } 1880 }
831} 1881}
832 1882
1883/* called whenever the libev signal pipe */
1884/* got some events (signal, async) */
833static void 1885static void
834pipecb (EV_P_ ev_io *iow, int revents) 1886pipecb (EV_P_ ev_io *iow, int revents)
835{ 1887{
1888 int i;
1889
1890 if (revents & EV_READ)
836 { 1891 {
837 int dummy; 1892#if EV_USE_EVENTFD
1893 if (evfd >= 0)
1894 {
1895 uint64_t counter;
1896 read (evfd, &counter, sizeof (uint64_t));
1897 }
1898 else
1899#endif
1900 {
1901 char dummy;
1902 /* see discussion in evpipe_write when you think this read should be recv in win32 */
838 read (evpipe [0], &dummy, 1); 1903 read (evpipe [0], &dummy, 1);
1904 }
839 } 1905 }
840 1906
841 if (gotsig && ev_is_default_loop (EV_A)) 1907 pipe_write_skipped = 0;
842 {
843 int signum;
844 gotsig = 0;
845 1908
846 for (signum = signalmax; signum--; ) 1909#if EV_SIGNAL_ENABLE
847 if (signals [signum].gotsig) 1910 if (sig_pending)
1911 {
1912 sig_pending = 0;
1913
1914 for (i = EV_NSIG - 1; i--; )
1915 if (expect_false (signals [i].pending))
848 ev_feed_signal_event (EV_A_ signum + 1); 1916 ev_feed_signal_event (EV_A_ i + 1);
849 } 1917 }
1918#endif
850 1919
851#if EV_ASYNC_ENABLE 1920#if EV_ASYNC_ENABLE
852 if (gotasync) 1921 if (async_pending)
853 { 1922 {
854 int i; 1923 async_pending = 0;
855 gotasync = 0;
856 1924
857 for (i = asynccnt; i--; ) 1925 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent) 1926 if (asyncs [i]->sent)
859 { 1927 {
860 asyncs [i]->sent = 0; 1928 asyncs [i]->sent = 0;
864#endif 1932#endif
865} 1933}
866 1934
867/*****************************************************************************/ 1935/*****************************************************************************/
868 1936
1937void
1938ev_feed_signal (int signum)
1939{
1940#if EV_MULTIPLICITY
1941 EV_P = signals [signum - 1].loop;
1942
1943 if (!EV_A)
1944 return;
1945#endif
1946
1947 if (!ev_active (&pipe_w))
1948 return;
1949
1950 signals [signum - 1].pending = 1;
1951 evpipe_write (EV_A_ &sig_pending);
1952}
1953
869static void 1954static void
870ev_sighandler (int signum) 1955ev_sighandler (int signum)
871{ 1956{
872#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct;
874#endif
875
876#if _WIN32 1957#ifdef _WIN32
877 signal (signum, ev_sighandler); 1958 signal (signum, ev_sighandler);
878#endif 1959#endif
879 1960
880 signals [signum - 1].gotsig = 1; 1961 ev_feed_signal (signum);
881 evpipe_write (EV_A_ &gotsig);
882} 1962}
883 1963
884void noinline 1964void noinline
885ev_feed_signal_event (EV_P_ int signum) 1965ev_feed_signal_event (EV_P_ int signum)
886{ 1966{
887 WL w; 1967 WL w;
888 1968
1969 if (expect_false (signum <= 0 || signum > EV_NSIG))
1970 return;
1971
1972 --signum;
1973
889#if EV_MULTIPLICITY 1974#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1975 /* it is permissible to try to feed a signal to the wrong loop */
891#endif 1976 /* or, likely more useful, feeding a signal nobody is waiting for */
892 1977
893 --signum; 1978 if (expect_false (signals [signum].loop != EV_A))
894
895 if (signum < 0 || signum >= signalmax)
896 return; 1979 return;
1980#endif
897 1981
898 signals [signum].gotsig = 0; 1982 signals [signum].pending = 0;
899 1983
900 for (w = signals [signum].head; w; w = w->next) 1984 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1985 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902} 1986}
903 1987
1988#if EV_USE_SIGNALFD
1989static void
1990sigfdcb (EV_P_ ev_io *iow, int revents)
1991{
1992 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1993
1994 for (;;)
1995 {
1996 ssize_t res = read (sigfd, si, sizeof (si));
1997
1998 /* not ISO-C, as res might be -1, but works with SuS */
1999 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2000 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2001
2002 if (res < (ssize_t)sizeof (si))
2003 break;
2004 }
2005}
2006#endif
2007
2008#endif
2009
904/*****************************************************************************/ 2010/*****************************************************************************/
905 2011
2012#if EV_CHILD_ENABLE
906static WL childs [EV_PID_HASHSIZE]; 2013static WL childs [EV_PID_HASHSIZE];
907
908#ifndef _WIN32
909 2014
910static ev_signal childev; 2015static ev_signal childev;
911 2016
912#ifndef WIFCONTINUED 2017#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 2018# define WIFCONTINUED(status) 0
914#endif 2019#endif
915 2020
916void inline_speed 2021/* handle a single child status event */
2022inline_speed void
917child_reap (EV_P_ int chain, int pid, int status) 2023child_reap (EV_P_ int chain, int pid, int status)
918{ 2024{
919 ev_child *w; 2025 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2026 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 2027
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2028 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
923 { 2029 {
924 if ((w->pid == pid || !w->pid) 2030 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1))) 2031 && (!traced || (w->flags & 1)))
926 { 2032 {
927 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2033 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
934 2040
935#ifndef WCONTINUED 2041#ifndef WCONTINUED
936# define WCONTINUED 0 2042# define WCONTINUED 0
937#endif 2043#endif
938 2044
2045/* called on sigchld etc., calls waitpid */
939static void 2046static void
940childcb (EV_P_ ev_signal *sw, int revents) 2047childcb (EV_P_ ev_signal *sw, int revents)
941{ 2048{
942 int pid, status; 2049 int pid, status;
943 2050
951 /* make sure we are called again until all children have been reaped */ 2058 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */ 2059 /* we need to do it this way so that the callback gets called before we continue */
953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2060 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
954 2061
955 child_reap (EV_A_ pid, pid, status); 2062 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1) 2063 if ((EV_PID_HASHSIZE) > 1)
957 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2064 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
958} 2065}
959 2066
960#endif 2067#endif
961 2068
962/*****************************************************************************/ 2069/*****************************************************************************/
963 2070
2071#if EV_USE_IOCP
2072# include "ev_iocp.c"
2073#endif
964#if EV_USE_PORT 2074#if EV_USE_PORT
965# include "ev_port.c" 2075# include "ev_port.c"
966#endif 2076#endif
967#if EV_USE_KQUEUE 2077#if EV_USE_KQUEUE
968# include "ev_kqueue.c" 2078# include "ev_kqueue.c"
975#endif 2085#endif
976#if EV_USE_SELECT 2086#if EV_USE_SELECT
977# include "ev_select.c" 2087# include "ev_select.c"
978#endif 2088#endif
979 2089
980int 2090int ecb_cold
981ev_version_major (void) 2091ev_version_major (void)
982{ 2092{
983 return EV_VERSION_MAJOR; 2093 return EV_VERSION_MAJOR;
984} 2094}
985 2095
986int 2096int ecb_cold
987ev_version_minor (void) 2097ev_version_minor (void)
988{ 2098{
989 return EV_VERSION_MINOR; 2099 return EV_VERSION_MINOR;
990} 2100}
991 2101
992/* return true if we are running with elevated privileges and should ignore env variables */ 2102/* return true if we are running with elevated privileges and should ignore env variables */
993int inline_size 2103int inline_size ecb_cold
994enable_secure (void) 2104enable_secure (void)
995{ 2105{
996#ifdef _WIN32 2106#ifdef _WIN32
997 return 0; 2107 return 0;
998#else 2108#else
999 return getuid () != geteuid () 2109 return getuid () != geteuid ()
1000 || getgid () != getegid (); 2110 || getgid () != getegid ();
1001#endif 2111#endif
1002} 2112}
1003 2113
1004unsigned int 2114unsigned int ecb_cold
1005ev_supported_backends (void) 2115ev_supported_backends (void)
1006{ 2116{
1007 unsigned int flags = 0; 2117 unsigned int flags = 0;
1008 2118
1009 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2119 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1013 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2123 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1014 2124
1015 return flags; 2125 return flags;
1016} 2126}
1017 2127
1018unsigned int 2128unsigned int ecb_cold
1019ev_recommended_backends (void) 2129ev_recommended_backends (void)
1020{ 2130{
1021 unsigned int flags = ev_supported_backends (); 2131 unsigned int flags = ev_supported_backends ();
1022 2132
1023#ifndef __NetBSD__ 2133#ifndef __NetBSD__
1024 /* kqueue is borked on everything but netbsd apparently */ 2134 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */ 2135 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE; 2136 flags &= ~EVBACKEND_KQUEUE;
1027#endif 2137#endif
1028#ifdef __APPLE__ 2138#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation 2139 /* only select works correctly on that "unix-certified" platform */
1030 flags &= ~EVBACKEND_POLL; 2140 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2141 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2142#endif
2143#ifdef __FreeBSD__
2144 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1031#endif 2145#endif
1032 2146
1033 return flags; 2147 return flags;
1034} 2148}
1035 2149
1036unsigned int 2150unsigned int ecb_cold
1037ev_embeddable_backends (void) 2151ev_embeddable_backends (void)
1038{ 2152{
1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2153 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1040 2154
1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2155 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */ 2156 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1043 flags &= ~EVBACKEND_EPOLL; 2157 flags &= ~EVBACKEND_EPOLL;
1044 2158
1045 return flags; 2159 return flags;
1046} 2160}
1047 2161
1048unsigned int 2162unsigned int
1049ev_backend (EV_P) 2163ev_backend (EV_P)
1050{ 2164{
1051 return backend; 2165 return backend;
1052} 2166}
1053 2167
2168#if EV_FEATURE_API
1054unsigned int 2169unsigned int
1055ev_loop_count (EV_P) 2170ev_iteration (EV_P)
1056{ 2171{
1057 return loop_count; 2172 return loop_count;
2173}
2174
2175unsigned int
2176ev_depth (EV_P)
2177{
2178 return loop_depth;
1058} 2179}
1059 2180
1060void 2181void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2182ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1062{ 2183{
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2188ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1068{ 2189{
1069 timeout_blocktime = interval; 2190 timeout_blocktime = interval;
1070} 2191}
1071 2192
2193void
2194ev_set_userdata (EV_P_ void *data)
2195{
2196 userdata = data;
2197}
2198
2199void *
2200ev_userdata (EV_P)
2201{
2202 return userdata;
2203}
2204
2205void
2206ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2207{
2208 invoke_cb = invoke_pending_cb;
2209}
2210
2211void
2212ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2213{
2214 release_cb = release;
2215 acquire_cb = acquire;
2216}
2217#endif
2218
2219/* initialise a loop structure, must be zero-initialised */
1072static void noinline 2220static void noinline ecb_cold
1073loop_init (EV_P_ unsigned int flags) 2221loop_init (EV_P_ unsigned int flags)
1074{ 2222{
1075 if (!backend) 2223 if (!backend)
1076 { 2224 {
2225 origflags = flags;
2226
2227#if EV_USE_REALTIME
2228 if (!have_realtime)
2229 {
2230 struct timespec ts;
2231
2232 if (!clock_gettime (CLOCK_REALTIME, &ts))
2233 have_realtime = 1;
2234 }
2235#endif
2236
1077#if EV_USE_MONOTONIC 2237#if EV_USE_MONOTONIC
2238 if (!have_monotonic)
1078 { 2239 {
1079 struct timespec ts; 2240 struct timespec ts;
2241
1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2242 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1081 have_monotonic = 1; 2243 have_monotonic = 1;
1082 } 2244 }
1083#endif
1084
1085 ev_rt_now = ev_time ();
1086 mn_now = get_clock ();
1087 now_floor = mn_now;
1088 rtmn_diff = ev_rt_now - mn_now;
1089
1090 io_blocktime = 0.;
1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif 2245#endif
1098 2246
1099 /* pid check not overridable via env */ 2247 /* pid check not overridable via env */
1100#ifndef _WIN32 2248#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK) 2249 if (flags & EVFLAG_FORKCHECK)
1105 if (!(flags & EVFLAG_NOENV) 2253 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 2254 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 2255 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 2256 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 2257
1110 if (!(flags & 0x0000ffffUL)) 2258 ev_rt_now = ev_time ();
2259 mn_now = get_clock ();
2260 now_floor = mn_now;
2261 rtmn_diff = ev_rt_now - mn_now;
2262#if EV_FEATURE_API
2263 invoke_cb = ev_invoke_pending;
2264#endif
2265
2266 io_blocktime = 0.;
2267 timeout_blocktime = 0.;
2268 backend = 0;
2269 backend_fd = -1;
2270 sig_pending = 0;
2271#if EV_ASYNC_ENABLE
2272 async_pending = 0;
2273#endif
2274 pipe_write_skipped = 0;
2275 pipe_write_wanted = 0;
2276#if EV_USE_INOTIFY
2277 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2278#endif
2279#if EV_USE_SIGNALFD
2280 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2281#endif
2282
2283 if (!(flags & EVBACKEND_MASK))
1111 flags |= ev_recommended_backends (); 2284 flags |= ev_recommended_backends ();
1112 2285
2286#if EV_USE_IOCP
2287 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2288#endif
1113#if EV_USE_PORT 2289#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2290 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 2291#endif
1116#if EV_USE_KQUEUE 2292#if EV_USE_KQUEUE
1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2293 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1124#endif 2300#endif
1125#if EV_USE_SELECT 2301#if EV_USE_SELECT
1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2302 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1127#endif 2303#endif
1128 2304
2305 ev_prepare_init (&pending_w, pendingcb);
2306
2307#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1129 ev_init (&pipeev, pipecb); 2308 ev_init (&pipe_w, pipecb);
1130 ev_set_priority (&pipeev, EV_MAXPRI); 2309 ev_set_priority (&pipe_w, EV_MAXPRI);
2310#endif
1131 } 2311 }
1132} 2312}
1133 2313
1134static void noinline 2314/* free up a loop structure */
2315void ecb_cold
1135loop_destroy (EV_P) 2316ev_loop_destroy (EV_P)
1136{ 2317{
1137 int i; 2318 int i;
1138 2319
2320#if EV_MULTIPLICITY
2321 /* mimic free (0) */
2322 if (!EV_A)
2323 return;
2324#endif
2325
2326#if EV_CLEANUP_ENABLE
2327 /* queue cleanup watchers (and execute them) */
2328 if (expect_false (cleanupcnt))
2329 {
2330 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2331 EV_INVOKE_PENDING;
2332 }
2333#endif
2334
2335#if EV_CHILD_ENABLE
2336 if (ev_is_active (&childev))
2337 {
2338 ev_ref (EV_A); /* child watcher */
2339 ev_signal_stop (EV_A_ &childev);
2340 }
2341#endif
2342
1139 if (ev_is_active (&pipeev)) 2343 if (ev_is_active (&pipe_w))
1140 { 2344 {
1141 ev_ref (EV_A); /* signal watcher */ 2345 /*ev_ref (EV_A);*/
1142 ev_io_stop (EV_A_ &pipeev); 2346 /*ev_io_stop (EV_A_ &pipe_w);*/
1143 2347
1144 close (evpipe [0]); evpipe [0] = 0; 2348#if EV_USE_EVENTFD
1145 close (evpipe [1]); evpipe [1] = 0; 2349 if (evfd >= 0)
2350 close (evfd);
2351#endif
2352
2353 if (evpipe [0] >= 0)
2354 {
2355 EV_WIN32_CLOSE_FD (evpipe [0]);
2356 EV_WIN32_CLOSE_FD (evpipe [1]);
2357 }
1146 } 2358 }
2359
2360#if EV_USE_SIGNALFD
2361 if (ev_is_active (&sigfd_w))
2362 close (sigfd);
2363#endif
1147 2364
1148#if EV_USE_INOTIFY 2365#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 2366 if (fs_fd >= 0)
1150 close (fs_fd); 2367 close (fs_fd);
1151#endif 2368#endif
1152 2369
1153 if (backend_fd >= 0) 2370 if (backend_fd >= 0)
1154 close (backend_fd); 2371 close (backend_fd);
1155 2372
2373#if EV_USE_IOCP
2374 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2375#endif
1156#if EV_USE_PORT 2376#if EV_USE_PORT
1157 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2377 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1158#endif 2378#endif
1159#if EV_USE_KQUEUE 2379#if EV_USE_KQUEUE
1160 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2380 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1175#if EV_IDLE_ENABLE 2395#if EV_IDLE_ENABLE
1176 array_free (idle, [i]); 2396 array_free (idle, [i]);
1177#endif 2397#endif
1178 } 2398 }
1179 2399
1180 ev_free (anfds); anfdmax = 0; 2400 ev_free (anfds); anfds = 0; anfdmax = 0;
1181 2401
1182 /* have to use the microsoft-never-gets-it-right macro */ 2402 /* have to use the microsoft-never-gets-it-right macro */
2403 array_free (rfeed, EMPTY);
1183 array_free (fdchange, EMPTY); 2404 array_free (fdchange, EMPTY);
1184 array_free (timer, EMPTY); 2405 array_free (timer, EMPTY);
1185#if EV_PERIODIC_ENABLE 2406#if EV_PERIODIC_ENABLE
1186 array_free (periodic, EMPTY); 2407 array_free (periodic, EMPTY);
1187#endif 2408#endif
1188#if EV_FORK_ENABLE 2409#if EV_FORK_ENABLE
1189 array_free (fork, EMPTY); 2410 array_free (fork, EMPTY);
1190#endif 2411#endif
2412#if EV_CLEANUP_ENABLE
2413 array_free (cleanup, EMPTY);
2414#endif
1191 array_free (prepare, EMPTY); 2415 array_free (prepare, EMPTY);
1192 array_free (check, EMPTY); 2416 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE 2417#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY); 2418 array_free (async, EMPTY);
1195#endif 2419#endif
1196 2420
1197 backend = 0; 2421 backend = 0;
1198}
1199 2422
2423#if EV_MULTIPLICITY
2424 if (ev_is_default_loop (EV_A))
2425#endif
2426 ev_default_loop_ptr = 0;
2427#if EV_MULTIPLICITY
2428 else
2429 ev_free (EV_A);
2430#endif
2431}
2432
2433#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 2434inline_size void infy_fork (EV_P);
2435#endif
1201 2436
1202void inline_size 2437inline_size void
1203loop_fork (EV_P) 2438loop_fork (EV_P)
1204{ 2439{
1205#if EV_USE_PORT 2440#if EV_USE_PORT
1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2441 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1207#endif 2442#endif
1213#endif 2448#endif
1214#if EV_USE_INOTIFY 2449#if EV_USE_INOTIFY
1215 infy_fork (EV_A); 2450 infy_fork (EV_A);
1216#endif 2451#endif
1217 2452
1218 if (ev_is_active (&pipeev)) 2453 if (ev_is_active (&pipe_w))
1219 { 2454 {
1220 /* this "locks" the handlers against writing to the pipe */ 2455 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1221 /* while we modify the fd vars */
1222 gotsig = 1;
1223#if EV_ASYNC_ENABLE
1224 gotasync = 1;
1225#endif
1226 2456
1227 ev_ref (EV_A); 2457 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev); 2458 ev_io_stop (EV_A_ &pipe_w);
1229 close (evpipe [0]);
1230 close (evpipe [1]);
1231 2459
2460#if EV_USE_EVENTFD
2461 if (evfd >= 0)
2462 close (evfd);
2463#endif
2464
2465 if (evpipe [0] >= 0)
2466 {
2467 EV_WIN32_CLOSE_FD (evpipe [0]);
2468 EV_WIN32_CLOSE_FD (evpipe [1]);
2469 }
2470
2471#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1232 evpipe_init (EV_A); 2472 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */ 2473 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ); 2474 pipecb (EV_A_ &pipe_w, EV_READ);
2475#endif
1235 } 2476 }
1236 2477
1237 postfork = 0; 2478 postfork = 0;
1238} 2479}
1239 2480
1240#if EV_MULTIPLICITY 2481#if EV_MULTIPLICITY
2482
1241struct ev_loop * 2483struct ev_loop * ecb_cold
1242ev_loop_new (unsigned int flags) 2484ev_loop_new (unsigned int flags)
1243{ 2485{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2486 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245 2487
1246 memset (loop, 0, sizeof (struct ev_loop)); 2488 memset (EV_A, 0, sizeof (struct ev_loop));
1247
1248 loop_init (EV_A_ flags); 2489 loop_init (EV_A_ flags);
1249 2490
1250 if (ev_backend (EV_A)) 2491 if (ev_backend (EV_A))
1251 return loop; 2492 return EV_A;
1252 2493
2494 ev_free (EV_A);
1253 return 0; 2495 return 0;
1254} 2496}
1255 2497
1256void 2498#endif /* multiplicity */
1257ev_loop_destroy (EV_P)
1258{
1259 loop_destroy (EV_A);
1260 ev_free (loop);
1261}
1262 2499
1263void 2500#if EV_VERIFY
1264ev_loop_fork (EV_P) 2501static void noinline ecb_cold
2502verify_watcher (EV_P_ W w)
1265{ 2503{
1266 postfork = 1; /* must be in line with ev_default_fork */ 2504 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1267}
1268 2505
2506 if (w->pending)
2507 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2508}
2509
2510static void noinline ecb_cold
2511verify_heap (EV_P_ ANHE *heap, int N)
2512{
2513 int i;
2514
2515 for (i = HEAP0; i < N + HEAP0; ++i)
2516 {
2517 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2518 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2519 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2520
2521 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2522 }
2523}
2524
2525static void noinline ecb_cold
2526array_verify (EV_P_ W *ws, int cnt)
2527{
2528 while (cnt--)
2529 {
2530 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2531 verify_watcher (EV_A_ ws [cnt]);
2532 }
2533}
2534#endif
2535
2536#if EV_FEATURE_API
2537void ecb_cold
2538ev_verify (EV_P)
2539{
2540#if EV_VERIFY
2541 int i;
2542 WL w;
2543
2544 assert (activecnt >= -1);
2545
2546 assert (fdchangemax >= fdchangecnt);
2547 for (i = 0; i < fdchangecnt; ++i)
2548 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2549
2550 assert (anfdmax >= 0);
2551 for (i = 0; i < anfdmax; ++i)
2552 for (w = anfds [i].head; w; w = w->next)
2553 {
2554 verify_watcher (EV_A_ (W)w);
2555 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2556 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2557 }
2558
2559 assert (timermax >= timercnt);
2560 verify_heap (EV_A_ timers, timercnt);
2561
2562#if EV_PERIODIC_ENABLE
2563 assert (periodicmax >= periodiccnt);
2564 verify_heap (EV_A_ periodics, periodiccnt);
2565#endif
2566
2567 for (i = NUMPRI; i--; )
2568 {
2569 assert (pendingmax [i] >= pendingcnt [i]);
2570#if EV_IDLE_ENABLE
2571 assert (idleall >= 0);
2572 assert (idlemax [i] >= idlecnt [i]);
2573 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2574#endif
2575 }
2576
2577#if EV_FORK_ENABLE
2578 assert (forkmax >= forkcnt);
2579 array_verify (EV_A_ (W *)forks, forkcnt);
2580#endif
2581
2582#if EV_CLEANUP_ENABLE
2583 assert (cleanupmax >= cleanupcnt);
2584 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2585#endif
2586
2587#if EV_ASYNC_ENABLE
2588 assert (asyncmax >= asynccnt);
2589 array_verify (EV_A_ (W *)asyncs, asynccnt);
2590#endif
2591
2592#if EV_PREPARE_ENABLE
2593 assert (preparemax >= preparecnt);
2594 array_verify (EV_A_ (W *)prepares, preparecnt);
2595#endif
2596
2597#if EV_CHECK_ENABLE
2598 assert (checkmax >= checkcnt);
2599 array_verify (EV_A_ (W *)checks, checkcnt);
2600#endif
2601
2602# if 0
2603#if EV_CHILD_ENABLE
2604 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2605 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2606#endif
2607# endif
2608#endif
2609}
1269#endif 2610#endif
1270 2611
1271#if EV_MULTIPLICITY 2612#if EV_MULTIPLICITY
1272struct ev_loop * 2613struct ev_loop * ecb_cold
1273ev_default_loop_init (unsigned int flags)
1274#else 2614#else
1275int 2615int
2616#endif
1276ev_default_loop (unsigned int flags) 2617ev_default_loop (unsigned int flags)
1277#endif
1278{ 2618{
1279 if (!ev_default_loop_ptr) 2619 if (!ev_default_loop_ptr)
1280 { 2620 {
1281#if EV_MULTIPLICITY 2621#if EV_MULTIPLICITY
1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2622 EV_P = ev_default_loop_ptr = &default_loop_struct;
1283#else 2623#else
1284 ev_default_loop_ptr = 1; 2624 ev_default_loop_ptr = 1;
1285#endif 2625#endif
1286 2626
1287 loop_init (EV_A_ flags); 2627 loop_init (EV_A_ flags);
1288 2628
1289 if (ev_backend (EV_A)) 2629 if (ev_backend (EV_A))
1290 { 2630 {
1291#ifndef _WIN32 2631#if EV_CHILD_ENABLE
1292 ev_signal_init (&childev, childcb, SIGCHLD); 2632 ev_signal_init (&childev, childcb, SIGCHLD);
1293 ev_set_priority (&childev, EV_MAXPRI); 2633 ev_set_priority (&childev, EV_MAXPRI);
1294 ev_signal_start (EV_A_ &childev); 2634 ev_signal_start (EV_A_ &childev);
1295 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2635 ev_unref (EV_A); /* child watcher should not keep loop alive */
1296#endif 2636#endif
1301 2641
1302 return ev_default_loop_ptr; 2642 return ev_default_loop_ptr;
1303} 2643}
1304 2644
1305void 2645void
1306ev_default_destroy (void) 2646ev_loop_fork (EV_P)
1307{ 2647{
1308#if EV_MULTIPLICITY
1309 struct ev_loop *loop = ev_default_loop_ptr;
1310#endif
1311
1312#ifndef _WIN32
1313 ev_ref (EV_A); /* child watcher */
1314 ev_signal_stop (EV_A_ &childev);
1315#endif
1316
1317 loop_destroy (EV_A);
1318}
1319
1320void
1321ev_default_fork (void)
1322{
1323#if EV_MULTIPLICITY
1324 struct ev_loop *loop = ev_default_loop_ptr;
1325#endif
1326
1327 if (backend)
1328 postfork = 1; /* must be in line with ev_loop_fork */ 2648 postfork = 1; /* must be in line with ev_default_fork */
1329} 2649}
1330 2650
1331/*****************************************************************************/ 2651/*****************************************************************************/
1332 2652
1333void 2653void
1334ev_invoke (EV_P_ void *w, int revents) 2654ev_invoke (EV_P_ void *w, int revents)
1335{ 2655{
1336 EV_CB_INVOKE ((W)w, revents); 2656 EV_CB_INVOKE ((W)w, revents);
1337} 2657}
1338 2658
1339void inline_speed 2659unsigned int
1340call_pending (EV_P) 2660ev_pending_count (EV_P)
2661{
2662 int pri;
2663 unsigned int count = 0;
2664
2665 for (pri = NUMPRI; pri--; )
2666 count += pendingcnt [pri];
2667
2668 return count;
2669}
2670
2671void noinline
2672ev_invoke_pending (EV_P)
1341{ 2673{
1342 int pri; 2674 int pri;
1343 2675
1344 for (pri = NUMPRI; pri--; ) 2676 for (pri = NUMPRI; pri--; )
1345 while (pendingcnt [pri]) 2677 while (pendingcnt [pri])
1346 { 2678 {
1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2679 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1348 2680
1349 if (expect_true (p->w))
1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352
1353 p->w->pending = 0; 2681 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events); 2682 EV_CB_INVOKE (p->w, p->events);
1355 } 2683 EV_FREQUENT_CHECK;
1356 } 2684 }
1357} 2685}
1358 2686
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
1377 downheap (timers, timercnt, 0);
1378 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 {
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438
1439#if EV_IDLE_ENABLE 2687#if EV_IDLE_ENABLE
1440void inline_size 2688/* make idle watchers pending. this handles the "call-idle */
2689/* only when higher priorities are idle" logic */
2690inline_size void
1441idle_reify (EV_P) 2691idle_reify (EV_P)
1442{ 2692{
1443 if (expect_false (idleall)) 2693 if (expect_false (idleall))
1444 { 2694 {
1445 int pri; 2695 int pri;
1457 } 2707 }
1458 } 2708 }
1459} 2709}
1460#endif 2710#endif
1461 2711
1462void inline_speed 2712/* make timers pending */
2713inline_size void
2714timers_reify (EV_P)
2715{
2716 EV_FREQUENT_CHECK;
2717
2718 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2719 {
2720 do
2721 {
2722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2723
2724 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2725
2726 /* first reschedule or stop timer */
2727 if (w->repeat)
2728 {
2729 ev_at (w) += w->repeat;
2730 if (ev_at (w) < mn_now)
2731 ev_at (w) = mn_now;
2732
2733 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2734
2735 ANHE_at_cache (timers [HEAP0]);
2736 downheap (timers, timercnt, HEAP0);
2737 }
2738 else
2739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2740
2741 EV_FREQUENT_CHECK;
2742 feed_reverse (EV_A_ (W)w);
2743 }
2744 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2745
2746 feed_reverse_done (EV_A_ EV_TIMER);
2747 }
2748}
2749
2750#if EV_PERIODIC_ENABLE
2751
2752static void noinline
2753periodic_recalc (EV_P_ ev_periodic *w)
2754{
2755 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2756 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2757
2758 /* the above almost always errs on the low side */
2759 while (at <= ev_rt_now)
2760 {
2761 ev_tstamp nat = at + w->interval;
2762
2763 /* when resolution fails us, we use ev_rt_now */
2764 if (expect_false (nat == at))
2765 {
2766 at = ev_rt_now;
2767 break;
2768 }
2769
2770 at = nat;
2771 }
2772
2773 ev_at (w) = at;
2774}
2775
2776/* make periodics pending */
2777inline_size void
2778periodics_reify (EV_P)
2779{
2780 EV_FREQUENT_CHECK;
2781
2782 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2783 {
2784 int feed_count = 0;
2785
2786 do
2787 {
2788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2789
2790 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2791
2792 /* first reschedule or stop timer */
2793 if (w->reschedule_cb)
2794 {
2795 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2796
2797 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2798
2799 ANHE_at_cache (periodics [HEAP0]);
2800 downheap (periodics, periodiccnt, HEAP0);
2801 }
2802 else if (w->interval)
2803 {
2804 periodic_recalc (EV_A_ w);
2805 ANHE_at_cache (periodics [HEAP0]);
2806 downheap (periodics, periodiccnt, HEAP0);
2807 }
2808 else
2809 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2810
2811 EV_FREQUENT_CHECK;
2812 feed_reverse (EV_A_ (W)w);
2813 }
2814 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2815
2816 feed_reverse_done (EV_A_ EV_PERIODIC);
2817 }
2818}
2819
2820/* simply recalculate all periodics */
2821/* TODO: maybe ensure that at least one event happens when jumping forward? */
2822static void noinline ecb_cold
2823periodics_reschedule (EV_P)
2824{
2825 int i;
2826
2827 /* adjust periodics after time jump */
2828 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2829 {
2830 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2831
2832 if (w->reschedule_cb)
2833 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2834 else if (w->interval)
2835 periodic_recalc (EV_A_ w);
2836
2837 ANHE_at_cache (periodics [i]);
2838 }
2839
2840 reheap (periodics, periodiccnt);
2841}
2842#endif
2843
2844/* adjust all timers by a given offset */
2845static void noinline ecb_cold
2846timers_reschedule (EV_P_ ev_tstamp adjust)
2847{
2848 int i;
2849
2850 for (i = 0; i < timercnt; ++i)
2851 {
2852 ANHE *he = timers + i + HEAP0;
2853 ANHE_w (*he)->at += adjust;
2854 ANHE_at_cache (*he);
2855 }
2856}
2857
2858/* fetch new monotonic and realtime times from the kernel */
2859/* also detect if there was a timejump, and act accordingly */
2860inline_speed void
1463time_update (EV_P_ ev_tstamp max_block) 2861time_update (EV_P_ ev_tstamp max_block)
1464{ 2862{
1465 int i;
1466
1467#if EV_USE_MONOTONIC 2863#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic)) 2864 if (expect_true (have_monotonic))
1469 { 2865 {
2866 int i;
1470 ev_tstamp odiff = rtmn_diff; 2867 ev_tstamp odiff = rtmn_diff;
1471 2868
1472 mn_now = get_clock (); 2869 mn_now = get_clock ();
1473 2870
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2871 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1490 * doesn't hurt either as we only do this on time-jumps or 2887 * doesn't hurt either as we only do this on time-jumps or
1491 * in the unlikely event of having been preempted here. 2888 * in the unlikely event of having been preempted here.
1492 */ 2889 */
1493 for (i = 4; --i; ) 2890 for (i = 4; --i; )
1494 { 2891 {
2892 ev_tstamp diff;
1495 rtmn_diff = ev_rt_now - mn_now; 2893 rtmn_diff = ev_rt_now - mn_now;
1496 2894
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2895 diff = odiff - rtmn_diff;
2896
2897 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 2898 return; /* all is well */
1499 2899
1500 ev_rt_now = ev_time (); 2900 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 2901 mn_now = get_clock ();
1502 now_floor = mn_now; 2902 now_floor = mn_now;
1503 } 2903 }
1504 2904
2905 /* no timer adjustment, as the monotonic clock doesn't jump */
2906 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1505# if EV_PERIODIC_ENABLE 2907# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A); 2908 periodics_reschedule (EV_A);
1507# endif 2909# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 } 2910 }
1511 else 2911 else
1512#endif 2912#endif
1513 { 2913 {
1514 ev_rt_now = ev_time (); 2914 ev_rt_now = ev_time ();
1515 2915
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2916 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1517 { 2917 {
2918 /* adjust timers. this is easy, as the offset is the same for all of them */
2919 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1518#if EV_PERIODIC_ENABLE 2920#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 2921 periodics_reschedule (EV_A);
1520#endif 2922#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1524 } 2923 }
1525 2924
1526 mn_now = ev_rt_now; 2925 mn_now = ev_rt_now;
1527 } 2926 }
1528} 2927}
1529 2928
1530void 2929void
1531ev_ref (EV_P)
1532{
1533 ++activecnt;
1534}
1535
1536void
1537ev_unref (EV_P)
1538{
1539 --activecnt;
1540}
1541
1542static int loop_done;
1543
1544void
1545ev_loop (EV_P_ int flags) 2930ev_run (EV_P_ int flags)
1546{ 2931{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2932#if EV_FEATURE_API
1548 ? EVUNLOOP_ONE 2933 ++loop_depth;
1549 : EVUNLOOP_CANCEL; 2934#endif
1550 2935
2936 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2937
2938 loop_done = EVBREAK_CANCEL;
2939
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2940 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1552 2941
1553 do 2942 do
1554 { 2943 {
2944#if EV_VERIFY >= 2
2945 ev_verify (EV_A);
2946#endif
2947
1555#ifndef _WIN32 2948#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 2949 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 2950 if (expect_false (getpid () != curpid))
1558 { 2951 {
1559 curpid = getpid (); 2952 curpid = getpid ();
1565 /* we might have forked, so queue fork handlers */ 2958 /* we might have forked, so queue fork handlers */
1566 if (expect_false (postfork)) 2959 if (expect_false (postfork))
1567 if (forkcnt) 2960 if (forkcnt)
1568 { 2961 {
1569 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2962 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1570 call_pending (EV_A); 2963 EV_INVOKE_PENDING;
1571 } 2964 }
1572#endif 2965#endif
1573 2966
2967#if EV_PREPARE_ENABLE
1574 /* queue prepare watchers (and execute them) */ 2968 /* queue prepare watchers (and execute them) */
1575 if (expect_false (preparecnt)) 2969 if (expect_false (preparecnt))
1576 { 2970 {
1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2971 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1578 call_pending (EV_A); 2972 EV_INVOKE_PENDING;
1579 } 2973 }
2974#endif
1580 2975
1581 if (expect_false (!activecnt)) 2976 if (expect_false (loop_done))
1582 break; 2977 break;
1583 2978
1584 /* we might have forked, so reify kernel state if necessary */ 2979 /* we might have forked, so reify kernel state if necessary */
1585 if (expect_false (postfork)) 2980 if (expect_false (postfork))
1586 loop_fork (EV_A); 2981 loop_fork (EV_A);
1591 /* calculate blocking time */ 2986 /* calculate blocking time */
1592 { 2987 {
1593 ev_tstamp waittime = 0.; 2988 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.; 2989 ev_tstamp sleeptime = 0.;
1595 2990
2991 /* remember old timestamp for io_blocktime calculation */
2992 ev_tstamp prev_mn_now = mn_now;
2993
2994 /* update time to cancel out callback processing overhead */
2995 time_update (EV_A_ 1e100);
2996
2997 /* from now on, we want a pipe-wake-up */
2998 pipe_write_wanted = 1;
2999
3000 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3001
1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3002 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1597 { 3003 {
1598 /* update time to cancel out callback processing overhead */
1599 time_update (EV_A_ 1e100);
1600
1601 waittime = MAX_BLOCKTIME; 3004 waittime = MAX_BLOCKTIME;
1602 3005
1603 if (timercnt) 3006 if (timercnt)
1604 { 3007 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3008 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1606 if (waittime > to) waittime = to; 3009 if (waittime > to) waittime = to;
1607 } 3010 }
1608 3011
1609#if EV_PERIODIC_ENABLE 3012#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 3013 if (periodiccnt)
1611 { 3014 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3015 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1613 if (waittime > to) waittime = to; 3016 if (waittime > to) waittime = to;
1614 } 3017 }
1615#endif 3018#endif
1616 3019
3020 /* don't let timeouts decrease the waittime below timeout_blocktime */
1617 if (expect_false (waittime < timeout_blocktime)) 3021 if (expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime; 3022 waittime = timeout_blocktime;
1619 3023
1620 sleeptime = waittime - backend_fudge; 3024 /* at this point, we NEED to wait, so we have to ensure */
3025 /* to pass a minimum nonzero value to the backend */
3026 if (expect_false (waittime < backend_mintime))
3027 waittime = backend_mintime;
1621 3028
3029 /* extra check because io_blocktime is commonly 0 */
1622 if (expect_true (sleeptime > io_blocktime)) 3030 if (expect_false (io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 { 3031 {
3032 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3033
3034 if (sleeptime > waittime - backend_mintime)
3035 sleeptime = waittime - backend_mintime;
3036
3037 if (expect_true (sleeptime > 0.))
3038 {
1627 ev_sleep (sleeptime); 3039 ev_sleep (sleeptime);
1628 waittime -= sleeptime; 3040 waittime -= sleeptime;
3041 }
1629 } 3042 }
1630 } 3043 }
1631 3044
3045#if EV_FEATURE_API
1632 ++loop_count; 3046 ++loop_count;
3047#endif
3048 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1633 backend_poll (EV_A_ waittime); 3049 backend_poll (EV_A_ waittime);
3050 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3051
3052 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3053
3054 if (pipe_write_skipped)
3055 {
3056 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3057 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3058 }
3059
1634 3060
1635 /* update ev_rt_now, do magic */ 3061 /* update ev_rt_now, do magic */
1636 time_update (EV_A_ waittime + sleeptime); 3062 time_update (EV_A_ waittime + sleeptime);
1637 } 3063 }
1638 3064
1645#if EV_IDLE_ENABLE 3071#if EV_IDLE_ENABLE
1646 /* queue idle watchers unless other events are pending */ 3072 /* queue idle watchers unless other events are pending */
1647 idle_reify (EV_A); 3073 idle_reify (EV_A);
1648#endif 3074#endif
1649 3075
3076#if EV_CHECK_ENABLE
1650 /* queue check watchers, to be executed first */ 3077 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 3078 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3079 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3080#endif
1653 3081
1654 call_pending (EV_A); 3082 EV_INVOKE_PENDING;
1655
1656 } 3083 }
1657 while (expect_true (activecnt && !loop_done)); 3084 while (expect_true (
3085 activecnt
3086 && !loop_done
3087 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3088 ));
1658 3089
1659 if (loop_done == EVUNLOOP_ONE) 3090 if (loop_done == EVBREAK_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 3091 loop_done = EVBREAK_CANCEL;
3092
3093#if EV_FEATURE_API
3094 --loop_depth;
3095#endif
1661} 3096}
1662 3097
1663void 3098void
1664ev_unloop (EV_P_ int how) 3099ev_break (EV_P_ int how)
1665{ 3100{
1666 loop_done = how; 3101 loop_done = how;
1667} 3102}
1668 3103
3104void
3105ev_ref (EV_P)
3106{
3107 ++activecnt;
3108}
3109
3110void
3111ev_unref (EV_P)
3112{
3113 --activecnt;
3114}
3115
3116void
3117ev_now_update (EV_P)
3118{
3119 time_update (EV_A_ 1e100);
3120}
3121
3122void
3123ev_suspend (EV_P)
3124{
3125 ev_now_update (EV_A);
3126}
3127
3128void
3129ev_resume (EV_P)
3130{
3131 ev_tstamp mn_prev = mn_now;
3132
3133 ev_now_update (EV_A);
3134 timers_reschedule (EV_A_ mn_now - mn_prev);
3135#if EV_PERIODIC_ENABLE
3136 /* TODO: really do this? */
3137 periodics_reschedule (EV_A);
3138#endif
3139}
3140
1669/*****************************************************************************/ 3141/*****************************************************************************/
3142/* singly-linked list management, used when the expected list length is short */
1670 3143
1671void inline_size 3144inline_size void
1672wlist_add (WL *head, WL elem) 3145wlist_add (WL *head, WL elem)
1673{ 3146{
1674 elem->next = *head; 3147 elem->next = *head;
1675 *head = elem; 3148 *head = elem;
1676} 3149}
1677 3150
1678void inline_size 3151inline_size void
1679wlist_del (WL *head, WL elem) 3152wlist_del (WL *head, WL elem)
1680{ 3153{
1681 while (*head) 3154 while (*head)
1682 { 3155 {
1683 if (*head == elem) 3156 if (expect_true (*head == elem))
1684 { 3157 {
1685 *head = elem->next; 3158 *head = elem->next;
1686 return; 3159 break;
1687 } 3160 }
1688 3161
1689 head = &(*head)->next; 3162 head = &(*head)->next;
1690 } 3163 }
1691} 3164}
1692 3165
1693void inline_speed 3166/* internal, faster, version of ev_clear_pending */
3167inline_speed void
1694clear_pending (EV_P_ W w) 3168clear_pending (EV_P_ W w)
1695{ 3169{
1696 if (w->pending) 3170 if (w->pending)
1697 { 3171 {
1698 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3172 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1699 w->pending = 0; 3173 w->pending = 0;
1700 } 3174 }
1701} 3175}
1702 3176
1703int 3177int
1707 int pending = w_->pending; 3181 int pending = w_->pending;
1708 3182
1709 if (expect_true (pending)) 3183 if (expect_true (pending))
1710 { 3184 {
1711 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3185 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3186 p->w = (W)&pending_w;
1712 w_->pending = 0; 3187 w_->pending = 0;
1713 p->w = 0;
1714 return p->events; 3188 return p->events;
1715 } 3189 }
1716 else 3190 else
1717 return 0; 3191 return 0;
1718} 3192}
1719 3193
1720void inline_size 3194inline_size void
1721pri_adjust (EV_P_ W w) 3195pri_adjust (EV_P_ W w)
1722{ 3196{
1723 int pri = w->priority; 3197 int pri = ev_priority (w);
1724 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3198 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1725 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3199 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1726 w->priority = pri; 3200 ev_set_priority (w, pri);
1727} 3201}
1728 3202
1729void inline_speed 3203inline_speed void
1730ev_start (EV_P_ W w, int active) 3204ev_start (EV_P_ W w, int active)
1731{ 3205{
1732 pri_adjust (EV_A_ w); 3206 pri_adjust (EV_A_ w);
1733 w->active = active; 3207 w->active = active;
1734 ev_ref (EV_A); 3208 ev_ref (EV_A);
1735} 3209}
1736 3210
1737void inline_size 3211inline_size void
1738ev_stop (EV_P_ W w) 3212ev_stop (EV_P_ W w)
1739{ 3213{
1740 ev_unref (EV_A); 3214 ev_unref (EV_A);
1741 w->active = 0; 3215 w->active = 0;
1742} 3216}
1749 int fd = w->fd; 3223 int fd = w->fd;
1750 3224
1751 if (expect_false (ev_is_active (w))) 3225 if (expect_false (ev_is_active (w)))
1752 return; 3226 return;
1753 3227
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 3228 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3229 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3230
3231 EV_FREQUENT_CHECK;
1755 3232
1756 ev_start (EV_A_ (W)w, 1); 3233 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3234 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1758 wlist_add (&anfds[fd].head, (WL)w); 3235 wlist_add (&anfds[fd].head, (WL)w);
1759 3236
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3237 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1761 w->events &= ~EV_IOFDSET; 3238 w->events &= ~EV__IOFDSET;
3239
3240 EV_FREQUENT_CHECK;
1762} 3241}
1763 3242
1764void noinline 3243void noinline
1765ev_io_stop (EV_P_ ev_io *w) 3244ev_io_stop (EV_P_ ev_io *w)
1766{ 3245{
1767 clear_pending (EV_A_ (W)w); 3246 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 3247 if (expect_false (!ev_is_active (w)))
1769 return; 3248 return;
1770 3249
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3250 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3251
3252 EV_FREQUENT_CHECK;
1772 3253
1773 wlist_del (&anfds[w->fd].head, (WL)w); 3254 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 3255 ev_stop (EV_A_ (W)w);
1775 3256
1776 fd_change (EV_A_ w->fd, 1); 3257 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3258
3259 EV_FREQUENT_CHECK;
1777} 3260}
1778 3261
1779void noinline 3262void noinline
1780ev_timer_start (EV_P_ ev_timer *w) 3263ev_timer_start (EV_P_ ev_timer *w)
1781{ 3264{
1782 if (expect_false (ev_is_active (w))) 3265 if (expect_false (ev_is_active (w)))
1783 return; 3266 return;
1784 3267
1785 ((WT)w)->at += mn_now; 3268 ev_at (w) += mn_now;
1786 3269
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3270 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 3271
3272 EV_FREQUENT_CHECK;
3273
3274 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 3275 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3276 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 3277 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 3278 ANHE_at_cache (timers [ev_active (w)]);
3279 upheap (timers, ev_active (w));
1793 3280
3281 EV_FREQUENT_CHECK;
3282
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3283 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 3284}
1796 3285
1797void noinline 3286void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 3287ev_timer_stop (EV_P_ ev_timer *w)
1799{ 3288{
1800 clear_pending (EV_A_ (W)w); 3289 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 3290 if (expect_false (!ev_is_active (w)))
1802 return; 3291 return;
1803 3292
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3293 EV_FREQUENT_CHECK;
1805 3294
1806 { 3295 {
1807 int active = ((W)w)->active; 3296 int active = ev_active (w);
1808 3297
3298 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3299
3300 --timercnt;
3301
1809 if (expect_true (--active < --timercnt)) 3302 if (expect_true (active < timercnt + HEAP0))
1810 { 3303 {
1811 timers [active] = timers [timercnt]; 3304 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 3305 adjustheap (timers, timercnt, active);
1813 } 3306 }
1814 } 3307 }
1815 3308
1816 ((WT)w)->at -= mn_now; 3309 ev_at (w) -= mn_now;
1817 3310
1818 ev_stop (EV_A_ (W)w); 3311 ev_stop (EV_A_ (W)w);
3312
3313 EV_FREQUENT_CHECK;
1819} 3314}
1820 3315
1821void noinline 3316void noinline
1822ev_timer_again (EV_P_ ev_timer *w) 3317ev_timer_again (EV_P_ ev_timer *w)
1823{ 3318{
3319 EV_FREQUENT_CHECK;
3320
3321 clear_pending (EV_A_ (W)w);
3322
1824 if (ev_is_active (w)) 3323 if (ev_is_active (w))
1825 { 3324 {
1826 if (w->repeat) 3325 if (w->repeat)
1827 { 3326 {
1828 ((WT)w)->at = mn_now + w->repeat; 3327 ev_at (w) = mn_now + w->repeat;
3328 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 3329 adjustheap (timers, timercnt, ev_active (w));
1830 } 3330 }
1831 else 3331 else
1832 ev_timer_stop (EV_A_ w); 3332 ev_timer_stop (EV_A_ w);
1833 } 3333 }
1834 else if (w->repeat) 3334 else if (w->repeat)
1835 { 3335 {
1836 w->at = w->repeat; 3336 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 3337 ev_timer_start (EV_A_ w);
1838 } 3338 }
3339
3340 EV_FREQUENT_CHECK;
3341}
3342
3343ev_tstamp
3344ev_timer_remaining (EV_P_ ev_timer *w)
3345{
3346 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1839} 3347}
1840 3348
1841#if EV_PERIODIC_ENABLE 3349#if EV_PERIODIC_ENABLE
1842void noinline 3350void noinline
1843ev_periodic_start (EV_P_ ev_periodic *w) 3351ev_periodic_start (EV_P_ ev_periodic *w)
1844{ 3352{
1845 if (expect_false (ev_is_active (w))) 3353 if (expect_false (ev_is_active (w)))
1846 return; 3354 return;
1847 3355
1848 if (w->reschedule_cb) 3356 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3357 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 3358 else if (w->interval)
1851 { 3359 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3360 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 3361 periodic_recalc (EV_A_ w);
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 3362 }
1856 else 3363 else
1857 ((WT)w)->at = w->offset; 3364 ev_at (w) = w->offset;
1858 3365
3366 EV_FREQUENT_CHECK;
3367
3368 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 3369 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3370 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 3371 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 3372 ANHE_at_cache (periodics [ev_active (w)]);
3373 upheap (periodics, ev_active (w));
1863 3374
3375 EV_FREQUENT_CHECK;
3376
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3377 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 3378}
1866 3379
1867void noinline 3380void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 3381ev_periodic_stop (EV_P_ ev_periodic *w)
1869{ 3382{
1870 clear_pending (EV_A_ (W)w); 3383 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 3384 if (expect_false (!ev_is_active (w)))
1872 return; 3385 return;
1873 3386
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3387 EV_FREQUENT_CHECK;
1875 3388
1876 { 3389 {
1877 int active = ((W)w)->active; 3390 int active = ev_active (w);
1878 3391
3392 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3393
3394 --periodiccnt;
3395
1879 if (expect_true (--active < --periodiccnt)) 3396 if (expect_true (active < periodiccnt + HEAP0))
1880 { 3397 {
1881 periodics [active] = periodics [periodiccnt]; 3398 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 3399 adjustheap (periodics, periodiccnt, active);
1883 } 3400 }
1884 } 3401 }
1885 3402
1886 ev_stop (EV_A_ (W)w); 3403 ev_stop (EV_A_ (W)w);
3404
3405 EV_FREQUENT_CHECK;
1887} 3406}
1888 3407
1889void noinline 3408void noinline
1890ev_periodic_again (EV_P_ ev_periodic *w) 3409ev_periodic_again (EV_P_ ev_periodic *w)
1891{ 3410{
1897 3416
1898#ifndef SA_RESTART 3417#ifndef SA_RESTART
1899# define SA_RESTART 0 3418# define SA_RESTART 0
1900#endif 3419#endif
1901 3420
3421#if EV_SIGNAL_ENABLE
3422
1902void noinline 3423void noinline
1903ev_signal_start (EV_P_ ev_signal *w) 3424ev_signal_start (EV_P_ ev_signal *w)
1904{ 3425{
1905#if EV_MULTIPLICITY
1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif
1908 if (expect_false (ev_is_active (w))) 3426 if (expect_false (ev_is_active (w)))
1909 return; 3427 return;
1910 3428
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3429 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1912 3430
1913 evpipe_init (EV_A); 3431#if EV_MULTIPLICITY
3432 assert (("libev: a signal must not be attached to two different loops",
3433 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1914 3434
3435 signals [w->signum - 1].loop = EV_A;
3436#endif
3437
3438 EV_FREQUENT_CHECK;
3439
3440#if EV_USE_SIGNALFD
3441 if (sigfd == -2)
1915 { 3442 {
1916#ifndef _WIN32 3443 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1917 sigset_t full, prev; 3444 if (sigfd < 0 && errno == EINVAL)
1918 sigfillset (&full); 3445 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1919 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif
1921 3446
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3447 if (sigfd >= 0)
3448 {
3449 fd_intern (sigfd); /* doing it twice will not hurt */
1923 3450
1924#ifndef _WIN32 3451 sigemptyset (&sigfd_set);
1925 sigprocmask (SIG_SETMASK, &prev, 0); 3452
1926#endif 3453 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3454 ev_set_priority (&sigfd_w, EV_MAXPRI);
3455 ev_io_start (EV_A_ &sigfd_w);
3456 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3457 }
1927 } 3458 }
3459
3460 if (sigfd >= 0)
3461 {
3462 /* TODO: check .head */
3463 sigaddset (&sigfd_set, w->signum);
3464 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3465
3466 signalfd (sigfd, &sigfd_set, 0);
3467 }
3468#endif
1928 3469
1929 ev_start (EV_A_ (W)w, 1); 3470 ev_start (EV_A_ (W)w, 1);
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 3471 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 3472
1932 if (!((WL)w)->next) 3473 if (!((WL)w)->next)
3474# if EV_USE_SIGNALFD
3475 if (sigfd < 0) /*TODO*/
3476# endif
1933 { 3477 {
1934#if _WIN32 3478# ifdef _WIN32
3479 evpipe_init (EV_A);
3480
1935 signal (w->signum, ev_sighandler); 3481 signal (w->signum, ev_sighandler);
1936#else 3482# else
1937 struct sigaction sa; 3483 struct sigaction sa;
3484
3485 evpipe_init (EV_A);
3486
1938 sa.sa_handler = ev_sighandler; 3487 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 3488 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3489 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 3490 sigaction (w->signum, &sa, 0);
3491
3492 if (origflags & EVFLAG_NOSIGMASK)
3493 {
3494 sigemptyset (&sa.sa_mask);
3495 sigaddset (&sa.sa_mask, w->signum);
3496 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3497 }
1942#endif 3498#endif
1943 } 3499 }
3500
3501 EV_FREQUENT_CHECK;
1944} 3502}
1945 3503
1946void noinline 3504void noinline
1947ev_signal_stop (EV_P_ ev_signal *w) 3505ev_signal_stop (EV_P_ ev_signal *w)
1948{ 3506{
1949 clear_pending (EV_A_ (W)w); 3507 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 3508 if (expect_false (!ev_is_active (w)))
1951 return; 3509 return;
1952 3510
3511 EV_FREQUENT_CHECK;
3512
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 3513 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 3514 ev_stop (EV_A_ (W)w);
1955 3515
1956 if (!signals [w->signum - 1].head) 3516 if (!signals [w->signum - 1].head)
3517 {
3518#if EV_MULTIPLICITY
3519 signals [w->signum - 1].loop = 0; /* unattach from signal */
3520#endif
3521#if EV_USE_SIGNALFD
3522 if (sigfd >= 0)
3523 {
3524 sigset_t ss;
3525
3526 sigemptyset (&ss);
3527 sigaddset (&ss, w->signum);
3528 sigdelset (&sigfd_set, w->signum);
3529
3530 signalfd (sigfd, &sigfd_set, 0);
3531 sigprocmask (SIG_UNBLOCK, &ss, 0);
3532 }
3533 else
3534#endif
1957 signal (w->signum, SIG_DFL); 3535 signal (w->signum, SIG_DFL);
3536 }
3537
3538 EV_FREQUENT_CHECK;
1958} 3539}
3540
3541#endif
3542
3543#if EV_CHILD_ENABLE
1959 3544
1960void 3545void
1961ev_child_start (EV_P_ ev_child *w) 3546ev_child_start (EV_P_ ev_child *w)
1962{ 3547{
1963#if EV_MULTIPLICITY 3548#if EV_MULTIPLICITY
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3549 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 3550#endif
1966 if (expect_false (ev_is_active (w))) 3551 if (expect_false (ev_is_active (w)))
1967 return; 3552 return;
1968 3553
3554 EV_FREQUENT_CHECK;
3555
1969 ev_start (EV_A_ (W)w, 1); 3556 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3557 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3558
3559 EV_FREQUENT_CHECK;
1971} 3560}
1972 3561
1973void 3562void
1974ev_child_stop (EV_P_ ev_child *w) 3563ev_child_stop (EV_P_ ev_child *w)
1975{ 3564{
1976 clear_pending (EV_A_ (W)w); 3565 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 3566 if (expect_false (!ev_is_active (w)))
1978 return; 3567 return;
1979 3568
3569 EV_FREQUENT_CHECK;
3570
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3571 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 3572 ev_stop (EV_A_ (W)w);
3573
3574 EV_FREQUENT_CHECK;
1982} 3575}
3576
3577#endif
1983 3578
1984#if EV_STAT_ENABLE 3579#if EV_STAT_ENABLE
1985 3580
1986# ifdef _WIN32 3581# ifdef _WIN32
1987# undef lstat 3582# undef lstat
1988# define lstat(a,b) _stati64 (a,b) 3583# define lstat(a,b) _stati64 (a,b)
1989# endif 3584# endif
1990 3585
1991#define DEF_STAT_INTERVAL 5.0074891 3586#define DEF_STAT_INTERVAL 5.0074891
3587#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1992#define MIN_STAT_INTERVAL 0.1074891 3588#define MIN_STAT_INTERVAL 0.1074891
1993 3589
1994static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3590static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1995 3591
1996#if EV_USE_INOTIFY 3592#if EV_USE_INOTIFY
1997# define EV_INOTIFY_BUFSIZE 8192 3593
3594/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3595# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1998 3596
1999static void noinline 3597static void noinline
2000infy_add (EV_P_ ev_stat *w) 3598infy_add (EV_P_ ev_stat *w)
2001{ 3599{
2002 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3600 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2003 3601
2004 if (w->wd < 0) 3602 if (w->wd >= 0)
3603 {
3604 struct statfs sfs;
3605
3606 /* now local changes will be tracked by inotify, but remote changes won't */
3607 /* unless the filesystem is known to be local, we therefore still poll */
3608 /* also do poll on <2.6.25, but with normal frequency */
3609
3610 if (!fs_2625)
3611 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3612 else if (!statfs (w->path, &sfs)
3613 && (sfs.f_type == 0x1373 /* devfs */
3614 || sfs.f_type == 0xEF53 /* ext2/3 */
3615 || sfs.f_type == 0x3153464a /* jfs */
3616 || sfs.f_type == 0x52654973 /* reiser3 */
3617 || sfs.f_type == 0x01021994 /* tempfs */
3618 || sfs.f_type == 0x58465342 /* xfs */))
3619 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3620 else
3621 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2005 { 3622 }
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3623 else
3624 {
3625 /* can't use inotify, continue to stat */
3626 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2007 3627
2008 /* monitor some parent directory for speedup hints */ 3628 /* if path is not there, monitor some parent directory for speedup hints */
3629 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3630 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3631 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 3632 {
2011 char path [4096]; 3633 char path [4096];
2012 strcpy (path, w->path); 3634 strcpy (path, w->path);
2013 3635
2016 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3638 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2017 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3639 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2018 3640
2019 char *pend = strrchr (path, '/'); 3641 char *pend = strrchr (path, '/');
2020 3642
2021 if (!pend) 3643 if (!pend || pend == path)
2022 break; /* whoops, no '/', complain to your admin */ 3644 break;
2023 3645
2024 *pend = 0; 3646 *pend = 0;
2025 w->wd = inotify_add_watch (fs_fd, path, mask); 3647 w->wd = inotify_add_watch (fs_fd, path, mask);
2026 } 3648 }
2027 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3649 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2028 } 3650 }
2029 } 3651 }
2030 else
2031 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2032 3652
2033 if (w->wd >= 0) 3653 if (w->wd >= 0)
2034 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3654 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3655
3656 /* now re-arm timer, if required */
3657 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3658 ev_timer_again (EV_A_ &w->timer);
3659 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2035} 3660}
2036 3661
2037static void noinline 3662static void noinline
2038infy_del (EV_P_ ev_stat *w) 3663infy_del (EV_P_ ev_stat *w)
2039{ 3664{
2042 3667
2043 if (wd < 0) 3668 if (wd < 0)
2044 return; 3669 return;
2045 3670
2046 w->wd = -2; 3671 w->wd = -2;
2047 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3672 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2048 wlist_del (&fs_hash [slot].head, (WL)w); 3673 wlist_del (&fs_hash [slot].head, (WL)w);
2049 3674
2050 /* remove this watcher, if others are watching it, they will rearm */ 3675 /* remove this watcher, if others are watching it, they will rearm */
2051 inotify_rm_watch (fs_fd, wd); 3676 inotify_rm_watch (fs_fd, wd);
2052} 3677}
2053 3678
2054static void noinline 3679static void noinline
2055infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3680infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2056{ 3681{
2057 if (slot < 0) 3682 if (slot < 0)
2058 /* overflow, need to check for all hahs slots */ 3683 /* overflow, need to check for all hash slots */
2059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3684 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2060 infy_wd (EV_A_ slot, wd, ev); 3685 infy_wd (EV_A_ slot, wd, ev);
2061 else 3686 else
2062 { 3687 {
2063 WL w_; 3688 WL w_;
2064 3689
2065 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3690 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2066 { 3691 {
2067 ev_stat *w = (ev_stat *)w_; 3692 ev_stat *w = (ev_stat *)w_;
2068 w_ = w_->next; /* lets us remove this watcher and all before it */ 3693 w_ = w_->next; /* lets us remove this watcher and all before it */
2069 3694
2070 if (w->wd == wd || wd == -1) 3695 if (w->wd == wd || wd == -1)
2071 { 3696 {
2072 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3697 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2073 { 3698 {
3699 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2074 w->wd = -1; 3700 w->wd = -1;
2075 infy_add (EV_A_ w); /* re-add, no matter what */ 3701 infy_add (EV_A_ w); /* re-add, no matter what */
2076 } 3702 }
2077 3703
2078 stat_timer_cb (EV_A_ &w->timer, 0); 3704 stat_timer_cb (EV_A_ &w->timer, 0);
2083 3709
2084static void 3710static void
2085infy_cb (EV_P_ ev_io *w, int revents) 3711infy_cb (EV_P_ ev_io *w, int revents)
2086{ 3712{
2087 char buf [EV_INOTIFY_BUFSIZE]; 3713 char buf [EV_INOTIFY_BUFSIZE];
2088 struct inotify_event *ev = (struct inotify_event *)buf;
2089 int ofs; 3714 int ofs;
2090 int len = read (fs_fd, buf, sizeof (buf)); 3715 int len = read (fs_fd, buf, sizeof (buf));
2091 3716
2092 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3717 for (ofs = 0; ofs < len; )
3718 {
3719 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2093 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3720 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3721 ofs += sizeof (struct inotify_event) + ev->len;
3722 }
2094} 3723}
2095 3724
2096void inline_size 3725inline_size void ecb_cold
3726ev_check_2625 (EV_P)
3727{
3728 /* kernels < 2.6.25 are borked
3729 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3730 */
3731 if (ev_linux_version () < 0x020619)
3732 return;
3733
3734 fs_2625 = 1;
3735}
3736
3737inline_size int
3738infy_newfd (void)
3739{
3740#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3741 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3742 if (fd >= 0)
3743 return fd;
3744#endif
3745 return inotify_init ();
3746}
3747
3748inline_size void
2097infy_init (EV_P) 3749infy_init (EV_P)
2098{ 3750{
2099 if (fs_fd != -2) 3751 if (fs_fd != -2)
2100 return; 3752 return;
2101 3753
3754 fs_fd = -1;
3755
3756 ev_check_2625 (EV_A);
3757
2102 fs_fd = inotify_init (); 3758 fs_fd = infy_newfd ();
2103 3759
2104 if (fs_fd >= 0) 3760 if (fs_fd >= 0)
2105 { 3761 {
3762 fd_intern (fs_fd);
2106 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3763 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2107 ev_set_priority (&fs_w, EV_MAXPRI); 3764 ev_set_priority (&fs_w, EV_MAXPRI);
2108 ev_io_start (EV_A_ &fs_w); 3765 ev_io_start (EV_A_ &fs_w);
3766 ev_unref (EV_A);
2109 } 3767 }
2110} 3768}
2111 3769
2112void inline_size 3770inline_size void
2113infy_fork (EV_P) 3771infy_fork (EV_P)
2114{ 3772{
2115 int slot; 3773 int slot;
2116 3774
2117 if (fs_fd < 0) 3775 if (fs_fd < 0)
2118 return; 3776 return;
2119 3777
3778 ev_ref (EV_A);
3779 ev_io_stop (EV_A_ &fs_w);
2120 close (fs_fd); 3780 close (fs_fd);
2121 fs_fd = inotify_init (); 3781 fs_fd = infy_newfd ();
2122 3782
3783 if (fs_fd >= 0)
3784 {
3785 fd_intern (fs_fd);
3786 ev_io_set (&fs_w, fs_fd, EV_READ);
3787 ev_io_start (EV_A_ &fs_w);
3788 ev_unref (EV_A);
3789 }
3790
2123 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3791 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2124 { 3792 {
2125 WL w_ = fs_hash [slot].head; 3793 WL w_ = fs_hash [slot].head;
2126 fs_hash [slot].head = 0; 3794 fs_hash [slot].head = 0;
2127 3795
2128 while (w_) 3796 while (w_)
2133 w->wd = -1; 3801 w->wd = -1;
2134 3802
2135 if (fs_fd >= 0) 3803 if (fs_fd >= 0)
2136 infy_add (EV_A_ w); /* re-add, no matter what */ 3804 infy_add (EV_A_ w); /* re-add, no matter what */
2137 else 3805 else
3806 {
3807 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3808 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2138 ev_timer_start (EV_A_ &w->timer); 3809 ev_timer_again (EV_A_ &w->timer);
3810 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3811 }
2139 } 3812 }
2140
2141 } 3813 }
2142} 3814}
2143 3815
3816#endif
3817
3818#ifdef _WIN32
3819# define EV_LSTAT(p,b) _stati64 (p, b)
3820#else
3821# define EV_LSTAT(p,b) lstat (p, b)
2144#endif 3822#endif
2145 3823
2146void 3824void
2147ev_stat_stat (EV_P_ ev_stat *w) 3825ev_stat_stat (EV_P_ ev_stat *w)
2148{ 3826{
2155static void noinline 3833static void noinline
2156stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3834stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2157{ 3835{
2158 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3836 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2159 3837
2160 /* we copy this here each the time so that */ 3838 ev_statdata prev = w->attr;
2161 /* prev has the old value when the callback gets invoked */
2162 w->prev = w->attr;
2163 ev_stat_stat (EV_A_ w); 3839 ev_stat_stat (EV_A_ w);
2164 3840
2165 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3841 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2166 if ( 3842 if (
2167 w->prev.st_dev != w->attr.st_dev 3843 prev.st_dev != w->attr.st_dev
2168 || w->prev.st_ino != w->attr.st_ino 3844 || prev.st_ino != w->attr.st_ino
2169 || w->prev.st_mode != w->attr.st_mode 3845 || prev.st_mode != w->attr.st_mode
2170 || w->prev.st_nlink != w->attr.st_nlink 3846 || prev.st_nlink != w->attr.st_nlink
2171 || w->prev.st_uid != w->attr.st_uid 3847 || prev.st_uid != w->attr.st_uid
2172 || w->prev.st_gid != w->attr.st_gid 3848 || prev.st_gid != w->attr.st_gid
2173 || w->prev.st_rdev != w->attr.st_rdev 3849 || prev.st_rdev != w->attr.st_rdev
2174 || w->prev.st_size != w->attr.st_size 3850 || prev.st_size != w->attr.st_size
2175 || w->prev.st_atime != w->attr.st_atime 3851 || prev.st_atime != w->attr.st_atime
2176 || w->prev.st_mtime != w->attr.st_mtime 3852 || prev.st_mtime != w->attr.st_mtime
2177 || w->prev.st_ctime != w->attr.st_ctime 3853 || prev.st_ctime != w->attr.st_ctime
2178 ) { 3854 ) {
3855 /* we only update w->prev on actual differences */
3856 /* in case we test more often than invoke the callback, */
3857 /* to ensure that prev is always different to attr */
3858 w->prev = prev;
3859
2179 #if EV_USE_INOTIFY 3860 #if EV_USE_INOTIFY
3861 if (fs_fd >= 0)
3862 {
2180 infy_del (EV_A_ w); 3863 infy_del (EV_A_ w);
2181 infy_add (EV_A_ w); 3864 infy_add (EV_A_ w);
2182 ev_stat_stat (EV_A_ w); /* avoid race... */ 3865 ev_stat_stat (EV_A_ w); /* avoid race... */
3866 }
2183 #endif 3867 #endif
2184 3868
2185 ev_feed_event (EV_A_ w, EV_STAT); 3869 ev_feed_event (EV_A_ w, EV_STAT);
2186 } 3870 }
2187} 3871}
2190ev_stat_start (EV_P_ ev_stat *w) 3874ev_stat_start (EV_P_ ev_stat *w)
2191{ 3875{
2192 if (expect_false (ev_is_active (w))) 3876 if (expect_false (ev_is_active (w)))
2193 return; 3877 return;
2194 3878
2195 /* since we use memcmp, we need to clear any padding data etc. */
2196 memset (&w->prev, 0, sizeof (ev_statdata));
2197 memset (&w->attr, 0, sizeof (ev_statdata));
2198
2199 ev_stat_stat (EV_A_ w); 3879 ev_stat_stat (EV_A_ w);
2200 3880
3881 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2201 if (w->interval < MIN_STAT_INTERVAL) 3882 w->interval = MIN_STAT_INTERVAL;
2202 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2203 3883
2204 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3884 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2205 ev_set_priority (&w->timer, ev_priority (w)); 3885 ev_set_priority (&w->timer, ev_priority (w));
2206 3886
2207#if EV_USE_INOTIFY 3887#if EV_USE_INOTIFY
2208 infy_init (EV_A); 3888 infy_init (EV_A);
2209 3889
2210 if (fs_fd >= 0) 3890 if (fs_fd >= 0)
2211 infy_add (EV_A_ w); 3891 infy_add (EV_A_ w);
2212 else 3892 else
2213#endif 3893#endif
3894 {
2214 ev_timer_start (EV_A_ &w->timer); 3895 ev_timer_again (EV_A_ &w->timer);
3896 ev_unref (EV_A);
3897 }
2215 3898
2216 ev_start (EV_A_ (W)w, 1); 3899 ev_start (EV_A_ (W)w, 1);
3900
3901 EV_FREQUENT_CHECK;
2217} 3902}
2218 3903
2219void 3904void
2220ev_stat_stop (EV_P_ ev_stat *w) 3905ev_stat_stop (EV_P_ ev_stat *w)
2221{ 3906{
2222 clear_pending (EV_A_ (W)w); 3907 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 3908 if (expect_false (!ev_is_active (w)))
2224 return; 3909 return;
2225 3910
3911 EV_FREQUENT_CHECK;
3912
2226#if EV_USE_INOTIFY 3913#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 3914 infy_del (EV_A_ w);
2228#endif 3915#endif
3916
3917 if (ev_is_active (&w->timer))
3918 {
3919 ev_ref (EV_A);
2229 ev_timer_stop (EV_A_ &w->timer); 3920 ev_timer_stop (EV_A_ &w->timer);
3921 }
2230 3922
2231 ev_stop (EV_A_ (W)w); 3923 ev_stop (EV_A_ (W)w);
3924
3925 EV_FREQUENT_CHECK;
2232} 3926}
2233#endif 3927#endif
2234 3928
2235#if EV_IDLE_ENABLE 3929#if EV_IDLE_ENABLE
2236void 3930void
2239 if (expect_false (ev_is_active (w))) 3933 if (expect_false (ev_is_active (w)))
2240 return; 3934 return;
2241 3935
2242 pri_adjust (EV_A_ (W)w); 3936 pri_adjust (EV_A_ (W)w);
2243 3937
3938 EV_FREQUENT_CHECK;
3939
2244 { 3940 {
2245 int active = ++idlecnt [ABSPRI (w)]; 3941 int active = ++idlecnt [ABSPRI (w)];
2246 3942
2247 ++idleall; 3943 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 3944 ev_start (EV_A_ (W)w, active);
2249 3945
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3946 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w; 3947 idles [ABSPRI (w)][active - 1] = w;
2252 } 3948 }
3949
3950 EV_FREQUENT_CHECK;
2253} 3951}
2254 3952
2255void 3953void
2256ev_idle_stop (EV_P_ ev_idle *w) 3954ev_idle_stop (EV_P_ ev_idle *w)
2257{ 3955{
2258 clear_pending (EV_A_ (W)w); 3956 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 3957 if (expect_false (!ev_is_active (w)))
2260 return; 3958 return;
2261 3959
3960 EV_FREQUENT_CHECK;
3961
2262 { 3962 {
2263 int active = ((W)w)->active; 3963 int active = ev_active (w);
2264 3964
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3965 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3966 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 3967
2268 ev_stop (EV_A_ (W)w); 3968 ev_stop (EV_A_ (W)w);
2269 --idleall; 3969 --idleall;
2270 } 3970 }
2271}
2272#endif
2273 3971
3972 EV_FREQUENT_CHECK;
3973}
3974#endif
3975
3976#if EV_PREPARE_ENABLE
2274void 3977void
2275ev_prepare_start (EV_P_ ev_prepare *w) 3978ev_prepare_start (EV_P_ ev_prepare *w)
2276{ 3979{
2277 if (expect_false (ev_is_active (w))) 3980 if (expect_false (ev_is_active (w)))
2278 return; 3981 return;
3982
3983 EV_FREQUENT_CHECK;
2279 3984
2280 ev_start (EV_A_ (W)w, ++preparecnt); 3985 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3986 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w; 3987 prepares [preparecnt - 1] = w;
3988
3989 EV_FREQUENT_CHECK;
2283} 3990}
2284 3991
2285void 3992void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 3993ev_prepare_stop (EV_P_ ev_prepare *w)
2287{ 3994{
2288 clear_pending (EV_A_ (W)w); 3995 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 3996 if (expect_false (!ev_is_active (w)))
2290 return; 3997 return;
2291 3998
3999 EV_FREQUENT_CHECK;
4000
2292 { 4001 {
2293 int active = ((W)w)->active; 4002 int active = ev_active (w);
4003
2294 prepares [active - 1] = prepares [--preparecnt]; 4004 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 4005 ev_active (prepares [active - 1]) = active;
2296 } 4006 }
2297 4007
2298 ev_stop (EV_A_ (W)w); 4008 ev_stop (EV_A_ (W)w);
2299}
2300 4009
4010 EV_FREQUENT_CHECK;
4011}
4012#endif
4013
4014#if EV_CHECK_ENABLE
2301void 4015void
2302ev_check_start (EV_P_ ev_check *w) 4016ev_check_start (EV_P_ ev_check *w)
2303{ 4017{
2304 if (expect_false (ev_is_active (w))) 4018 if (expect_false (ev_is_active (w)))
2305 return; 4019 return;
4020
4021 EV_FREQUENT_CHECK;
2306 4022
2307 ev_start (EV_A_ (W)w, ++checkcnt); 4023 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4024 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w; 4025 checks [checkcnt - 1] = w;
4026
4027 EV_FREQUENT_CHECK;
2310} 4028}
2311 4029
2312void 4030void
2313ev_check_stop (EV_P_ ev_check *w) 4031ev_check_stop (EV_P_ ev_check *w)
2314{ 4032{
2315 clear_pending (EV_A_ (W)w); 4033 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 4034 if (expect_false (!ev_is_active (w)))
2317 return; 4035 return;
2318 4036
4037 EV_FREQUENT_CHECK;
4038
2319 { 4039 {
2320 int active = ((W)w)->active; 4040 int active = ev_active (w);
4041
2321 checks [active - 1] = checks [--checkcnt]; 4042 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 4043 ev_active (checks [active - 1]) = active;
2323 } 4044 }
2324 4045
2325 ev_stop (EV_A_ (W)w); 4046 ev_stop (EV_A_ (W)w);
4047
4048 EV_FREQUENT_CHECK;
2326} 4049}
4050#endif
2327 4051
2328#if EV_EMBED_ENABLE 4052#if EV_EMBED_ENABLE
2329void noinline 4053void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w) 4054ev_embed_sweep (EV_P_ ev_embed *w)
2331{ 4055{
2332 ev_loop (w->other, EVLOOP_NONBLOCK); 4056 ev_run (w->other, EVRUN_NOWAIT);
2333} 4057}
2334 4058
2335static void 4059static void
2336embed_io_cb (EV_P_ ev_io *io, int revents) 4060embed_io_cb (EV_P_ ev_io *io, int revents)
2337{ 4061{
2338 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4062 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2339 4063
2340 if (ev_cb (w)) 4064 if (ev_cb (w))
2341 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4065 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2342 else 4066 else
2343 ev_loop (w->other, EVLOOP_NONBLOCK); 4067 ev_run (w->other, EVRUN_NOWAIT);
2344} 4068}
2345 4069
2346static void 4070static void
2347embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4071embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2348{ 4072{
2349 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4073 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2350 4074
2351 { 4075 {
2352 struct ev_loop *loop = w->other; 4076 EV_P = w->other;
2353 4077
2354 while (fdchangecnt) 4078 while (fdchangecnt)
2355 { 4079 {
2356 fd_reify (EV_A); 4080 fd_reify (EV_A);
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4081 ev_run (EV_A_ EVRUN_NOWAIT);
2358 } 4082 }
2359 } 4083 }
4084}
4085
4086static void
4087embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4088{
4089 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4090
4091 ev_embed_stop (EV_A_ w);
4092
4093 {
4094 EV_P = w->other;
4095
4096 ev_loop_fork (EV_A);
4097 ev_run (EV_A_ EVRUN_NOWAIT);
4098 }
4099
4100 ev_embed_start (EV_A_ w);
2360} 4101}
2361 4102
2362#if 0 4103#if 0
2363static void 4104static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4105embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2372{ 4113{
2373 if (expect_false (ev_is_active (w))) 4114 if (expect_false (ev_is_active (w)))
2374 return; 4115 return;
2375 4116
2376 { 4117 {
2377 struct ev_loop *loop = w->other; 4118 EV_P = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4119 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4120 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 4121 }
4122
4123 EV_FREQUENT_CHECK;
2381 4124
2382 ev_set_priority (&w->io, ev_priority (w)); 4125 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 4126 ev_io_start (EV_A_ &w->io);
2384 4127
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 4128 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 4129 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 4130 ev_prepare_start (EV_A_ &w->prepare);
2388 4131
4132 ev_fork_init (&w->fork, embed_fork_cb);
4133 ev_fork_start (EV_A_ &w->fork);
4134
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4135 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 4136
2391 ev_start (EV_A_ (W)w, 1); 4137 ev_start (EV_A_ (W)w, 1);
4138
4139 EV_FREQUENT_CHECK;
2392} 4140}
2393 4141
2394void 4142void
2395ev_embed_stop (EV_P_ ev_embed *w) 4143ev_embed_stop (EV_P_ ev_embed *w)
2396{ 4144{
2397 clear_pending (EV_A_ (W)w); 4145 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 4146 if (expect_false (!ev_is_active (w)))
2399 return; 4147 return;
2400 4148
4149 EV_FREQUENT_CHECK;
4150
2401 ev_io_stop (EV_A_ &w->io); 4151 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 4152 ev_prepare_stop (EV_A_ &w->prepare);
4153 ev_fork_stop (EV_A_ &w->fork);
2403 4154
2404 ev_stop (EV_A_ (W)w); 4155 ev_stop (EV_A_ (W)w);
4156
4157 EV_FREQUENT_CHECK;
2405} 4158}
2406#endif 4159#endif
2407 4160
2408#if EV_FORK_ENABLE 4161#if EV_FORK_ENABLE
2409void 4162void
2410ev_fork_start (EV_P_ ev_fork *w) 4163ev_fork_start (EV_P_ ev_fork *w)
2411{ 4164{
2412 if (expect_false (ev_is_active (w))) 4165 if (expect_false (ev_is_active (w)))
2413 return; 4166 return;
2414 4167
4168 EV_FREQUENT_CHECK;
4169
2415 ev_start (EV_A_ (W)w, ++forkcnt); 4170 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4171 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w; 4172 forks [forkcnt - 1] = w;
4173
4174 EV_FREQUENT_CHECK;
2418} 4175}
2419 4176
2420void 4177void
2421ev_fork_stop (EV_P_ ev_fork *w) 4178ev_fork_stop (EV_P_ ev_fork *w)
2422{ 4179{
2423 clear_pending (EV_A_ (W)w); 4180 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 4181 if (expect_false (!ev_is_active (w)))
2425 return; 4182 return;
2426 4183
4184 EV_FREQUENT_CHECK;
4185
2427 { 4186 {
2428 int active = ((W)w)->active; 4187 int active = ev_active (w);
4188
2429 forks [active - 1] = forks [--forkcnt]; 4189 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 4190 ev_active (forks [active - 1]) = active;
2431 } 4191 }
2432 4192
2433 ev_stop (EV_A_ (W)w); 4193 ev_stop (EV_A_ (W)w);
4194
4195 EV_FREQUENT_CHECK;
4196}
4197#endif
4198
4199#if EV_CLEANUP_ENABLE
4200void
4201ev_cleanup_start (EV_P_ ev_cleanup *w)
4202{
4203 if (expect_false (ev_is_active (w)))
4204 return;
4205
4206 EV_FREQUENT_CHECK;
4207
4208 ev_start (EV_A_ (W)w, ++cleanupcnt);
4209 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4210 cleanups [cleanupcnt - 1] = w;
4211
4212 /* cleanup watchers should never keep a refcount on the loop */
4213 ev_unref (EV_A);
4214 EV_FREQUENT_CHECK;
4215}
4216
4217void
4218ev_cleanup_stop (EV_P_ ev_cleanup *w)
4219{
4220 clear_pending (EV_A_ (W)w);
4221 if (expect_false (!ev_is_active (w)))
4222 return;
4223
4224 EV_FREQUENT_CHECK;
4225 ev_ref (EV_A);
4226
4227 {
4228 int active = ev_active (w);
4229
4230 cleanups [active - 1] = cleanups [--cleanupcnt];
4231 ev_active (cleanups [active - 1]) = active;
4232 }
4233
4234 ev_stop (EV_A_ (W)w);
4235
4236 EV_FREQUENT_CHECK;
2434} 4237}
2435#endif 4238#endif
2436 4239
2437#if EV_ASYNC_ENABLE 4240#if EV_ASYNC_ENABLE
2438void 4241void
2439ev_async_start (EV_P_ ev_async *w) 4242ev_async_start (EV_P_ ev_async *w)
2440{ 4243{
2441 if (expect_false (ev_is_active (w))) 4244 if (expect_false (ev_is_active (w)))
2442 return; 4245 return;
2443 4246
4247 w->sent = 0;
4248
2444 evpipe_init (EV_A); 4249 evpipe_init (EV_A);
4250
4251 EV_FREQUENT_CHECK;
2445 4252
2446 ev_start (EV_A_ (W)w, ++asynccnt); 4253 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4254 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w; 4255 asyncs [asynccnt - 1] = w;
4256
4257 EV_FREQUENT_CHECK;
2449} 4258}
2450 4259
2451void 4260void
2452ev_async_stop (EV_P_ ev_async *w) 4261ev_async_stop (EV_P_ ev_async *w)
2453{ 4262{
2454 clear_pending (EV_A_ (W)w); 4263 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 4264 if (expect_false (!ev_is_active (w)))
2456 return; 4265 return;
2457 4266
4267 EV_FREQUENT_CHECK;
4268
2458 { 4269 {
2459 int active = ((W)w)->active; 4270 int active = ev_active (w);
4271
2460 asyncs [active - 1] = asyncs [--asynccnt]; 4272 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 4273 ev_active (asyncs [active - 1]) = active;
2462 } 4274 }
2463 4275
2464 ev_stop (EV_A_ (W)w); 4276 ev_stop (EV_A_ (W)w);
4277
4278 EV_FREQUENT_CHECK;
2465} 4279}
2466 4280
2467void 4281void
2468ev_async_send (EV_P_ ev_async *w) 4282ev_async_send (EV_P_ ev_async *w)
2469{ 4283{
2470 w->sent = 1; 4284 w->sent = 1;
2471 evpipe_write (EV_A_ &gotasync); 4285 evpipe_write (EV_A_ &async_pending);
2472} 4286}
2473#endif 4287#endif
2474 4288
2475/*****************************************************************************/ 4289/*****************************************************************************/
2476 4290
2486once_cb (EV_P_ struct ev_once *once, int revents) 4300once_cb (EV_P_ struct ev_once *once, int revents)
2487{ 4301{
2488 void (*cb)(int revents, void *arg) = once->cb; 4302 void (*cb)(int revents, void *arg) = once->cb;
2489 void *arg = once->arg; 4303 void *arg = once->arg;
2490 4304
2491 ev_io_stop (EV_A_ &once->io); 4305 ev_io_stop (EV_A_ &once->io);
2492 ev_timer_stop (EV_A_ &once->to); 4306 ev_timer_stop (EV_A_ &once->to);
2493 ev_free (once); 4307 ev_free (once);
2494 4308
2495 cb (revents, arg); 4309 cb (revents, arg);
2496} 4310}
2497 4311
2498static void 4312static void
2499once_cb_io (EV_P_ ev_io *w, int revents) 4313once_cb_io (EV_P_ ev_io *w, int revents)
2500{ 4314{
2501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4315 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4316
4317 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2502} 4318}
2503 4319
2504static void 4320static void
2505once_cb_to (EV_P_ ev_timer *w, int revents) 4321once_cb_to (EV_P_ ev_timer *w, int revents)
2506{ 4322{
2507 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4323 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4324
4325 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2508} 4326}
2509 4327
2510void 4328void
2511ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4329ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2512{ 4330{
2513 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4331 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2514 4332
2515 if (expect_false (!once)) 4333 if (expect_false (!once))
2516 { 4334 {
2517 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4335 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2518 return; 4336 return;
2519 } 4337 }
2520 4338
2521 once->cb = cb; 4339 once->cb = cb;
2522 once->arg = arg; 4340 once->arg = arg;
2534 ev_timer_set (&once->to, timeout, 0.); 4352 ev_timer_set (&once->to, timeout, 0.);
2535 ev_timer_start (EV_A_ &once->to); 4353 ev_timer_start (EV_A_ &once->to);
2536 } 4354 }
2537} 4355}
2538 4356
4357/*****************************************************************************/
4358
4359#if EV_WALK_ENABLE
4360void ecb_cold
4361ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4362{
4363 int i, j;
4364 ev_watcher_list *wl, *wn;
4365
4366 if (types & (EV_IO | EV_EMBED))
4367 for (i = 0; i < anfdmax; ++i)
4368 for (wl = anfds [i].head; wl; )
4369 {
4370 wn = wl->next;
4371
4372#if EV_EMBED_ENABLE
4373 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4374 {
4375 if (types & EV_EMBED)
4376 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4377 }
4378 else
4379#endif
4380#if EV_USE_INOTIFY
4381 if (ev_cb ((ev_io *)wl) == infy_cb)
4382 ;
4383 else
4384#endif
4385 if ((ev_io *)wl != &pipe_w)
4386 if (types & EV_IO)
4387 cb (EV_A_ EV_IO, wl);
4388
4389 wl = wn;
4390 }
4391
4392 if (types & (EV_TIMER | EV_STAT))
4393 for (i = timercnt + HEAP0; i-- > HEAP0; )
4394#if EV_STAT_ENABLE
4395 /*TODO: timer is not always active*/
4396 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4397 {
4398 if (types & EV_STAT)
4399 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4400 }
4401 else
4402#endif
4403 if (types & EV_TIMER)
4404 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4405
4406#if EV_PERIODIC_ENABLE
4407 if (types & EV_PERIODIC)
4408 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4409 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4410#endif
4411
4412#if EV_IDLE_ENABLE
4413 if (types & EV_IDLE)
4414 for (j = NUMPRI; j--; )
4415 for (i = idlecnt [j]; i--; )
4416 cb (EV_A_ EV_IDLE, idles [j][i]);
4417#endif
4418
4419#if EV_FORK_ENABLE
4420 if (types & EV_FORK)
4421 for (i = forkcnt; i--; )
4422 if (ev_cb (forks [i]) != embed_fork_cb)
4423 cb (EV_A_ EV_FORK, forks [i]);
4424#endif
4425
4426#if EV_ASYNC_ENABLE
4427 if (types & EV_ASYNC)
4428 for (i = asynccnt; i--; )
4429 cb (EV_A_ EV_ASYNC, asyncs [i]);
4430#endif
4431
4432#if EV_PREPARE_ENABLE
4433 if (types & EV_PREPARE)
4434 for (i = preparecnt; i--; )
4435# if EV_EMBED_ENABLE
4436 if (ev_cb (prepares [i]) != embed_prepare_cb)
4437# endif
4438 cb (EV_A_ EV_PREPARE, prepares [i]);
4439#endif
4440
4441#if EV_CHECK_ENABLE
4442 if (types & EV_CHECK)
4443 for (i = checkcnt; i--; )
4444 cb (EV_A_ EV_CHECK, checks [i]);
4445#endif
4446
4447#if EV_SIGNAL_ENABLE
4448 if (types & EV_SIGNAL)
4449 for (i = 0; i < EV_NSIG - 1; ++i)
4450 for (wl = signals [i].head; wl; )
4451 {
4452 wn = wl->next;
4453 cb (EV_A_ EV_SIGNAL, wl);
4454 wl = wn;
4455 }
4456#endif
4457
4458#if EV_CHILD_ENABLE
4459 if (types & EV_CHILD)
4460 for (i = (EV_PID_HASHSIZE); i--; )
4461 for (wl = childs [i]; wl; )
4462 {
4463 wn = wl->next;
4464 cb (EV_A_ EV_CHILD, wl);
4465 wl = wn;
4466 }
4467#endif
4468/* EV_STAT 0x00001000 /* stat data changed */
4469/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4470}
4471#endif
4472
2539#if EV_MULTIPLICITY 4473#if EV_MULTIPLICITY
2540 #include "ev_wrap.h" 4474 #include "ev_wrap.h"
2541#endif 4475#endif
2542 4476
2543#ifdef __cplusplus
2544}
2545#endif
2546

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines