ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.150 by root, Tue Nov 27 19:41:52 2007 UTC vs.
Revision 1.219 by root, Wed Apr 2 10:55:39 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 110# else
95# define EV_USE_PORT 0 111# define EV_USE_PORT 0
96# endif 112# endif
97# endif 113# endif
98 114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
121# endif
122
99#endif 123#endif
100 124
101#include <math.h> 125#include <math.h>
102#include <stdlib.h> 126#include <stdlib.h>
103#include <fcntl.h> 127#include <fcntl.h>
109#include <errno.h> 133#include <errno.h>
110#include <sys/types.h> 134#include <sys/types.h>
111#include <time.h> 135#include <time.h>
112 136
113#include <signal.h> 137#include <signal.h>
138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
114 144
115#ifndef _WIN32 145#ifndef _WIN32
116# include <sys/time.h> 146# include <sys/time.h>
117# include <sys/wait.h> 147# include <sys/wait.h>
118# include <unistd.h> 148# include <unistd.h>
132 162
133#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
135#endif 165#endif
136 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
137#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
139#endif 173#endif
140 174
141#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
156 190
157#ifndef EV_USE_PORT 191#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 192# define EV_USE_PORT 0
159#endif 193#endif
160 194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
161#ifndef EV_PID_HASHSIZE 199#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL 200# if EV_MINIMAL
163# define EV_PID_HASHSIZE 1 201# define EV_PID_HASHSIZE 1
164# else 202# else
165# define EV_PID_HASHSIZE 16 203# define EV_PID_HASHSIZE 16
166# endif 204# endif
167#endif 205#endif
168 206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
213#endif
214
169/**/ 215/**/
170 216
171#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
172# undef EV_USE_MONOTONIC 218# undef EV_USE_MONOTONIC
173# define EV_USE_MONOTONIC 0 219# define EV_USE_MONOTONIC 0
176#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
177# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
179#endif 225#endif
180 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
181#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
182# include <winsock.h> 243# include <winsock.h>
183#endif 244#endif
184 245
185/**/ 246/**/
186 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
190 261
191#ifdef EV_H
192# include EV_H
193#else
194# include "ev.h"
195#endif
196
197#if __GNUC__ >= 3 262#if __GNUC__ >= 4
198# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
201# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif
207#else 265#else
208# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
209# define inline_speed static
210# define inline_size static
211# define noinline 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
212#endif 271#endif
213 272
214#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
215#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
216 282
217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
218#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
219 285
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
222 288
223typedef ev_watcher *W; 289typedef ev_watcher *W;
224typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
225typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
226 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
228 298
229#ifdef _WIN32 299#ifdef _WIN32
230# include "ev_win32.c" 300# include "ev_win32.c"
231#endif 301#endif
232 302
253 perror (msg); 323 perror (msg);
254 abort (); 324 abort ();
255 } 325 }
256} 326}
257 327
258static void *(*alloc)(void *ptr, size_t size) = realloc; 328static void *(*alloc)(void *ptr, long size);
259 329
260void 330void
261ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
262{ 332{
263 alloc = cb; 333 alloc = cb;
264} 334}
265 335
266inline_speed void * 336inline_speed void *
267ev_realloc (void *ptr, size_t size) 337ev_realloc (void *ptr, long size)
268{ 338{
269 ptr = alloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
270 340
271 if (!ptr && size) 341 if (!ptr && size)
272 { 342 {
273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
274 abort (); 344 abort ();
275 } 345 }
276 346
277 return ptr; 347 return ptr;
278} 348}
295typedef struct 365typedef struct
296{ 366{
297 W w; 367 W w;
298 int events; 368 int events;
299} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
300 377
301#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
302 379
303 struct ev_loop 380 struct ev_loop
304 { 381 {
361{ 438{
362 return ev_rt_now; 439 return ev_rt_now;
363} 440}
364#endif 441#endif
365 442
366#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep ((unsigned long)(delay * 1e3));
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
367 497
368#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
369 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
370 { \ 500 { \
371 int newcnt = cur; \ 501 int ocur_ = (cur); \
372 do \ 502 (base) = (type *)array_realloc \
373 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
374 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
375 } \
376 while ((cnt) > newcnt); \
377 \
378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
379 init (base + cur, newcnt - cur); \
380 cur = newcnt; \
381 } 505 }
382 506
507#if 0
383#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
385 { \ 510 { \
386 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
389 } 514 }
515#endif
390 516
391#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
393 519
394/*****************************************************************************/ 520/*****************************************************************************/
395 521
396void noinline 522void noinline
397ev_feed_event (EV_P_ void *w, int revents) 523ev_feed_event (EV_P_ void *w, int revents)
398{ 524{
399 W w_ = (W)w; 525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
400 527
401 if (expect_false (w_->pending)) 528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
402 { 531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 535 pendings [pri][w_->pending - 1].events = revents;
404 return;
405 } 536 }
406
407 w_->pending = ++pendingcnt [ABSPRI (w_)];
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411} 537}
412 538
413void inline_size 539void inline_speed
414queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
415{ 541{
416 int i; 542 int i;
417 543
418 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
450} 576}
451 577
452void 578void
453ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
454{ 580{
581 if (fd >= 0 && fd < anfdmax)
455 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
456} 583}
457 584
458void inline_size 585void inline_size
459fd_reify (EV_P) 586fd_reify (EV_P)
460{ 587{
464 { 591 {
465 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
466 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
467 ev_io *w; 594 ev_io *w;
468 595
469 int events = 0; 596 unsigned char events = 0;
470 597
471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
472 events |= w->events; 599 events |= (unsigned char)w->events;
473 600
474#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
475 if (events) 602 if (events)
476 { 603 {
477 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
478 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
480 } 611 }
481#endif 612#endif
482 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
483 anfd->reify = 0; 618 anfd->reify = 0;
484
485 backend_modify (EV_A_ fd, anfd->events, events);
486 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
487 } 624 }
488 625
489 fdchangecnt = 0; 626 fdchangecnt = 0;
490} 627}
491 628
492void inline_size 629void inline_size
493fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
494{ 631{
495 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
496 return;
497
498 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
499 634
635 if (expect_true (!reify))
636 {
500 ++fdchangecnt; 637 ++fdchangecnt;
501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
502 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
503} 641}
504 642
505void inline_speed 643void inline_speed
506fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
507{ 645{
554static void noinline 692static void noinline
555fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
556{ 694{
557 int fd; 695 int fd;
558 696
559 /* this should be highly optimised to not do anything but set a flag */
560 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
561 if (anfds [fd].events) 698 if (anfds [fd].events)
562 { 699 {
563 anfds [fd].events = 0; 700 anfds [fd].events = 0;
564 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
565 } 702 }
566} 703}
567 704
568/*****************************************************************************/ 705/*****************************************************************************/
569 706
570void inline_speed 707void inline_speed
571upheap (WT *heap, int k) 708upheap (WT *heap, int k)
572{ 709{
573 WT w = heap [k]; 710 WT w = heap [k];
574 711
575 while (k && heap [k >> 1]->at > w->at) 712 while (k)
576 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
577 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
578 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
579 k >>= 1; 721 k = p;
580 } 722 }
581 723
582 heap [k] = w; 724 heap [k] = w;
583 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
584
585} 726}
586 727
587void inline_speed 728void inline_speed
588downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
589{ 730{
590 WT w = heap [k]; 731 WT w = heap [k];
591 732
592 while (k < (N >> 1)) 733 for (;;)
593 { 734 {
594 int j = k << 1; 735 int c = (k << 1) + 1;
595 736
596 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
597 ++j;
598
599 if (w->at <= heap [j]->at)
600 break; 738 break;
601 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
602 heap [k] = heap [j]; 746 heap [k] = heap [c];
603 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
604 k = j; 749 k = c;
605 } 750 }
606 751
607 heap [k] = w; 752 heap [k] = w;
608 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
609} 754}
618/*****************************************************************************/ 763/*****************************************************************************/
619 764
620typedef struct 765typedef struct
621{ 766{
622 WL head; 767 WL head;
623 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
624} ANSIG; 769} ANSIG;
625 770
626static ANSIG *signals; 771static ANSIG *signals;
627static int signalmax; 772static int signalmax;
628 773
629static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
630static sig_atomic_t volatile gotsig;
631static ev_io sigev;
632 775
633void inline_size 776void inline_size
634signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
635{ 778{
636 while (count--) 779 while (count--)
640 783
641 ++base; 784 ++base;
642 } 785 }
643} 786}
644 787
645static void 788/*****************************************************************************/
646sighandler (int signum)
647{
648#if _WIN32
649 signal (signum, sighandler);
650#endif
651 789
652 signals [signum - 1].gotsig = 1;
653
654 if (!gotsig)
655 {
656 int old_errno = errno;
657 gotsig = 1;
658 write (sigpipe [1], &signum, 1);
659 errno = old_errno;
660 }
661}
662
663void noinline
664ev_feed_signal_event (EV_P_ int signum)
665{
666 WL w;
667
668#if EV_MULTIPLICITY
669 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
670#endif
671
672 --signum;
673
674 if (signum < 0 || signum >= signalmax)
675 return;
676
677 signals [signum].gotsig = 0;
678
679 for (w = signals [signum].head; w; w = w->next)
680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
681}
682
683static void
684sigcb (EV_P_ ev_io *iow, int revents)
685{
686 int signum;
687
688 read (sigpipe [0], &revents, 1);
689 gotsig = 0;
690
691 for (signum = signalmax; signum--; )
692 if (signals [signum].gotsig)
693 ev_feed_signal_event (EV_A_ signum + 1);
694}
695
696void inline_size 790void inline_speed
697fd_intern (int fd) 791fd_intern (int fd)
698{ 792{
699#ifdef _WIN32 793#ifdef _WIN32
700 int arg = 1; 794 int arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
704 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
705#endif 799#endif
706} 800}
707 801
708static void noinline 802static void noinline
709siginit (EV_P) 803evpipe_init (EV_P)
710{ 804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
711 fd_intern (sigpipe [0]); 810 fd_intern (evpipe [0]);
712 fd_intern (sigpipe [1]); 811 fd_intern (evpipe [1]);
713 812
714 ev_io_set (&sigev, sigpipe [0], EV_READ); 813 ev_io_set (&pipeev, evpipe [0], EV_READ);
715 ev_io_start (EV_A_ &sigev); 814 ev_io_start (EV_A_ &pipeev);
716 ev_unref (EV_A); /* child watcher should not keep loop alive */ 815 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{
822 if (!*flag)
823 {
824 int old_errno = errno; /* save errno because write might clobber it */
825
826 *flag = 1;
827 write (evpipe [1], &old_errno, 1);
828
829 errno = old_errno;
830 }
831}
832
833static void
834pipecb (EV_P_ ev_io *iow, int revents)
835{
836 {
837 int dummy;
838 read (evpipe [0], &dummy, 1);
839 }
840
841 if (gotsig && ev_is_default_loop (EV_A))
842 {
843 int signum;
844 gotsig = 0;
845
846 for (signum = signalmax; signum--; )
847 if (signals [signum].gotsig)
848 ev_feed_signal_event (EV_A_ signum + 1);
849 }
850
851#if EV_ASYNC_ENABLE
852 if (gotasync)
853 {
854 int i;
855 gotasync = 0;
856
857 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent)
859 {
860 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 }
863 }
864#endif
717} 865}
718 866
719/*****************************************************************************/ 867/*****************************************************************************/
720 868
869static void
870ev_sighandler (int signum)
871{
872#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct;
874#endif
875
876#if _WIN32
877 signal (signum, ev_sighandler);
878#endif
879
880 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig);
882}
883
884void noinline
885ev_feed_signal_event (EV_P_ int signum)
886{
887 WL w;
888
889#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif
892
893 --signum;
894
895 if (signum < 0 || signum >= signalmax)
896 return;
897
898 signals [signum].gotsig = 0;
899
900 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902}
903
904/*****************************************************************************/
905
721static ev_child *childs [EV_PID_HASHSIZE]; 906static WL childs [EV_PID_HASHSIZE];
722 907
723#ifndef _WIN32 908#ifndef _WIN32
724 909
725static ev_signal childev; 910static ev_signal childev;
726 911
912#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0
914#endif
915
727void inline_speed 916void inline_speed
728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 917child_reap (EV_P_ int chain, int pid, int status)
729{ 918{
730 ev_child *w; 919 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
731 921
732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
923 {
733 if (w->pid == pid || !w->pid) 924 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1)))
734 { 926 {
735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 927 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
736 w->rpid = pid; 928 w->rpid = pid;
737 w->rstatus = status; 929 w->rstatus = status;
738 ev_feed_event (EV_A_ (W)w, EV_CHILD); 930 ev_feed_event (EV_A_ (W)w, EV_CHILD);
739 } 931 }
932 }
740} 933}
741 934
742#ifndef WCONTINUED 935#ifndef WCONTINUED
743# define WCONTINUED 0 936# define WCONTINUED 0
744#endif 937#endif
753 if (!WCONTINUED 946 if (!WCONTINUED
754 || errno != EINVAL 947 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 948 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return; 949 return;
757 950
758 /* make sure we are called again until all childs have been reaped */ 951 /* make sure we are called again until all children have been reaped */
759 /* we need to do it this way so that the callback gets called before we continue */ 952 /* we need to do it this way so that the callback gets called before we continue */
760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
761 954
762 child_reap (EV_A_ sw, pid, pid, status); 955 child_reap (EV_A_ pid, pid, status);
763 if (EV_PID_HASHSIZE > 1) 956 if (EV_PID_HASHSIZE > 1)
764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 957 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
765} 958}
766 959
767#endif 960#endif
768 961
769/*****************************************************************************/ 962/*****************************************************************************/
841} 1034}
842 1035
843unsigned int 1036unsigned int
844ev_embeddable_backends (void) 1037ev_embeddable_backends (void)
845{ 1038{
846 return EVBACKEND_EPOLL 1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
847 | EVBACKEND_KQUEUE 1040
848 | EVBACKEND_PORT; 1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */
1043 flags &= ~EVBACKEND_EPOLL;
1044
1045 return flags;
849} 1046}
850 1047
851unsigned int 1048unsigned int
852ev_backend (EV_P) 1049ev_backend (EV_P)
853{ 1050{
854 return backend; 1051 return backend;
855} 1052}
856 1053
857static void 1054unsigned int
1055ev_loop_count (EV_P)
1056{
1057 return loop_count;
1058}
1059
1060void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1062{
1063 io_blocktime = interval;
1064}
1065
1066void
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1068{
1069 timeout_blocktime = interval;
1070}
1071
1072static void noinline
858loop_init (EV_P_ unsigned int flags) 1073loop_init (EV_P_ unsigned int flags)
859{ 1074{
860 if (!backend) 1075 if (!backend)
861 { 1076 {
862#if EV_USE_MONOTONIC 1077#if EV_USE_MONOTONIC
865 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
866 have_monotonic = 1; 1081 have_monotonic = 1;
867 } 1082 }
868#endif 1083#endif
869 1084
870 ev_rt_now = ev_time (); 1085 ev_rt_now = ev_time ();
871 mn_now = get_clock (); 1086 mn_now = get_clock ();
872 now_floor = mn_now; 1087 now_floor = mn_now;
873 rtmn_diff = ev_rt_now - mn_now; 1088 rtmn_diff = ev_rt_now - mn_now;
1089
1090 io_blocktime = 0.;
1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif
1098
1099 /* pid check not overridable via env */
1100#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK)
1102 curpid = getpid ();
1103#endif
874 1104
875 if (!(flags & EVFLAG_NOENV) 1105 if (!(flags & EVFLAG_NOENV)
876 && !enable_secure () 1106 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS")) 1107 && getenv ("LIBEV_FLAGS"))
878 flags = atoi (getenv ("LIBEV_FLAGS")); 1108 flags = atoi (getenv ("LIBEV_FLAGS"));
879 1109
880 if (!(flags & 0x0000ffffUL)) 1110 if (!(flags & 0x0000ffffUL))
881 flags |= ev_recommended_backends (); 1111 flags |= ev_recommended_backends ();
882 1112
883 backend = 0;
884#if EV_USE_PORT 1113#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif 1115#endif
887#if EV_USE_KQUEUE 1116#if EV_USE_KQUEUE
888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
895#endif 1124#endif
896#if EV_USE_SELECT 1125#if EV_USE_SELECT
897 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
898#endif 1127#endif
899 1128
900 ev_init (&sigev, sigcb); 1129 ev_init (&pipeev, pipecb);
901 ev_set_priority (&sigev, EV_MAXPRI); 1130 ev_set_priority (&pipeev, EV_MAXPRI);
902 } 1131 }
903} 1132}
904 1133
905static void 1134static void noinline
906loop_destroy (EV_P) 1135loop_destroy (EV_P)
907{ 1136{
908 int i; 1137 int i;
1138
1139 if (ev_is_active (&pipeev))
1140 {
1141 ev_ref (EV_A); /* signal watcher */
1142 ev_io_stop (EV_A_ &pipeev);
1143
1144 close (evpipe [0]); evpipe [0] = 0;
1145 close (evpipe [1]); evpipe [1] = 0;
1146 }
1147
1148#if EV_USE_INOTIFY
1149 if (fs_fd >= 0)
1150 close (fs_fd);
1151#endif
1152
1153 if (backend_fd >= 0)
1154 close (backend_fd);
909 1155
910#if EV_USE_PORT 1156#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1157 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif 1158#endif
913#if EV_USE_KQUEUE 1159#if EV_USE_KQUEUE
922#if EV_USE_SELECT 1168#if EV_USE_SELECT
923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1169 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
924#endif 1170#endif
925 1171
926 for (i = NUMPRI; i--; ) 1172 for (i = NUMPRI; i--; )
1173 {
927 array_free (pending, [i]); 1174 array_free (pending, [i]);
1175#if EV_IDLE_ENABLE
1176 array_free (idle, [i]);
1177#endif
1178 }
1179
1180 ev_free (anfds); anfdmax = 0;
928 1181
929 /* have to use the microsoft-never-gets-it-right macro */ 1182 /* have to use the microsoft-never-gets-it-right macro */
930 array_free (fdchange, EMPTY0); 1183 array_free (fdchange, EMPTY);
931 array_free (timer, EMPTY0); 1184 array_free (timer, EMPTY);
932#if EV_PERIODIC_ENABLE 1185#if EV_PERIODIC_ENABLE
933 array_free (periodic, EMPTY0); 1186 array_free (periodic, EMPTY);
934#endif 1187#endif
1188#if EV_FORK_ENABLE
935 array_free (idle, EMPTY0); 1189 array_free (fork, EMPTY);
1190#endif
936 array_free (prepare, EMPTY0); 1191 array_free (prepare, EMPTY);
937 array_free (check, EMPTY0); 1192 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY);
1195#endif
938 1196
939 backend = 0; 1197 backend = 0;
940} 1198}
941 1199
942static void 1200void inline_size infy_fork (EV_P);
1201
1202void inline_size
943loop_fork (EV_P) 1203loop_fork (EV_P)
944{ 1204{
945#if EV_USE_PORT 1205#if EV_USE_PORT
946 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
947#endif 1207#endif
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1209 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif 1210#endif
951#if EV_USE_EPOLL 1211#if EV_USE_EPOLL
952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1212 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
953#endif 1213#endif
1214#if EV_USE_INOTIFY
1215 infy_fork (EV_A);
1216#endif
954 1217
955 if (ev_is_active (&sigev)) 1218 if (ev_is_active (&pipeev))
956 { 1219 {
957 /* default loop */ 1220 /* this "locks" the handlers against writing to the pipe */
1221 /* while we modify the fd vars */
1222 gotsig = 1;
1223#if EV_ASYNC_ENABLE
1224 gotasync = 1;
1225#endif
958 1226
959 ev_ref (EV_A); 1227 ev_ref (EV_A);
960 ev_io_stop (EV_A_ &sigev); 1228 ev_io_stop (EV_A_ &pipeev);
961 close (sigpipe [0]); 1229 close (evpipe [0]);
962 close (sigpipe [1]); 1230 close (evpipe [1]);
963 1231
964 while (pipe (sigpipe))
965 syserr ("(libev) error creating pipe");
966
967 siginit (EV_A); 1232 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ);
968 } 1235 }
969 1236
970 postfork = 0; 1237 postfork = 0;
971} 1238}
972 1239
994} 1261}
995 1262
996void 1263void
997ev_loop_fork (EV_P) 1264ev_loop_fork (EV_P)
998{ 1265{
999 postfork = 1; 1266 postfork = 1; /* must be in line with ev_default_fork */
1000} 1267}
1001 1268
1002#endif 1269#endif
1003 1270
1004#if EV_MULTIPLICITY 1271#if EV_MULTIPLICITY
1007#else 1274#else
1008int 1275int
1009ev_default_loop (unsigned int flags) 1276ev_default_loop (unsigned int flags)
1010#endif 1277#endif
1011{ 1278{
1012 if (sigpipe [0] == sigpipe [1])
1013 if (pipe (sigpipe))
1014 return 0;
1015
1016 if (!ev_default_loop_ptr) 1279 if (!ev_default_loop_ptr)
1017 { 1280 {
1018#if EV_MULTIPLICITY 1281#if EV_MULTIPLICITY
1019 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1020#else 1283#else
1023 1286
1024 loop_init (EV_A_ flags); 1287 loop_init (EV_A_ flags);
1025 1288
1026 if (ev_backend (EV_A)) 1289 if (ev_backend (EV_A))
1027 { 1290 {
1028 siginit (EV_A);
1029
1030#ifndef _WIN32 1291#ifndef _WIN32
1031 ev_signal_init (&childev, childcb, SIGCHLD); 1292 ev_signal_init (&childev, childcb, SIGCHLD);
1032 ev_set_priority (&childev, EV_MAXPRI); 1293 ev_set_priority (&childev, EV_MAXPRI);
1033 ev_signal_start (EV_A_ &childev); 1294 ev_signal_start (EV_A_ &childev);
1034 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1295 ev_unref (EV_A); /* child watcher should not keep loop alive */
1051#ifndef _WIN32 1312#ifndef _WIN32
1052 ev_ref (EV_A); /* child watcher */ 1313 ev_ref (EV_A); /* child watcher */
1053 ev_signal_stop (EV_A_ &childev); 1314 ev_signal_stop (EV_A_ &childev);
1054#endif 1315#endif
1055 1316
1056 ev_ref (EV_A); /* signal watcher */
1057 ev_io_stop (EV_A_ &sigev);
1058
1059 close (sigpipe [0]); sigpipe [0] = 0;
1060 close (sigpipe [1]); sigpipe [1] = 0;
1061
1062 loop_destroy (EV_A); 1317 loop_destroy (EV_A);
1063} 1318}
1064 1319
1065void 1320void
1066ev_default_fork (void) 1321ev_default_fork (void)
1068#if EV_MULTIPLICITY 1323#if EV_MULTIPLICITY
1069 struct ev_loop *loop = ev_default_loop_ptr; 1324 struct ev_loop *loop = ev_default_loop_ptr;
1070#endif 1325#endif
1071 1326
1072 if (backend) 1327 if (backend)
1073 postfork = 1; 1328 postfork = 1; /* must be in line with ev_loop_fork */
1074} 1329}
1075 1330
1076/*****************************************************************************/ 1331/*****************************************************************************/
1077 1332
1078int inline_size 1333void
1079any_pending (EV_P) 1334ev_invoke (EV_P_ void *w, int revents)
1080{ 1335{
1081 int pri; 1336 EV_CB_INVOKE ((W)w, revents);
1082
1083 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri])
1085 return 1;
1086
1087 return 0;
1088} 1337}
1089 1338
1090void inline_speed 1339void inline_speed
1091call_pending (EV_P) 1340call_pending (EV_P)
1092{ 1341{
1097 { 1346 {
1098 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1099 1348
1100 if (expect_true (p->w)) 1349 if (expect_true (p->w))
1101 { 1350 {
1102 assert (("non-pending watcher on pending list", p->w->pending)); 1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1103 1352
1104 p->w->pending = 0; 1353 p->w->pending = 0;
1105 EV_CB_INVOKE (p->w, p->events); 1354 EV_CB_INVOKE (p->w, p->events);
1106 } 1355 }
1107 } 1356 }
1110void inline_size 1359void inline_size
1111timers_reify (EV_P) 1360timers_reify (EV_P)
1112{ 1361{
1113 while (timercnt && ((WT)timers [0])->at <= mn_now) 1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1114 { 1363 {
1115 ev_timer *w = timers [0]; 1364 ev_timer *w = (ev_timer *)timers [0];
1116 1365
1117 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1118 1367
1119 /* first reschedule or stop timer */ 1368 /* first reschedule or stop timer */
1120 if (w->repeat) 1369 if (w->repeat)
1121 { 1370 {
1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1123 1372
1124 ((WT)w)->at += w->repeat; 1373 ((WT)w)->at += w->repeat;
1125 if (((WT)w)->at < mn_now) 1374 if (((WT)w)->at < mn_now)
1126 ((WT)w)->at = mn_now; 1375 ((WT)w)->at = mn_now;
1127 1376
1128 downheap ((WT *)timers, timercnt, 0); 1377 downheap (timers, timercnt, 0);
1129 } 1378 }
1130 else 1379 else
1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1132 1381
1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1138void inline_size 1387void inline_size
1139periodics_reify (EV_P) 1388periodics_reify (EV_P)
1140{ 1389{
1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1142 { 1391 {
1143 ev_periodic *w = periodics [0]; 1392 ev_periodic *w = (ev_periodic *)periodics [0];
1144 1393
1145 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1146 1395
1147 /* first reschedule or stop timer */ 1396 /* first reschedule or stop timer */
1148 if (w->reschedule_cb) 1397 if (w->reschedule_cb)
1149 { 1398 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1152 downheap ((WT *)periodics, periodiccnt, 0); 1401 downheap (periodics, periodiccnt, 0);
1153 } 1402 }
1154 else if (w->interval) 1403 else if (w->interval)
1155 { 1404 {
1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1158 downheap ((WT *)periodics, periodiccnt, 0); 1408 downheap (periodics, periodiccnt, 0);
1159 } 1409 }
1160 else 1410 else
1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1162 1412
1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1170 int i; 1420 int i;
1171 1421
1172 /* adjust periodics after time jump */ 1422 /* adjust periodics after time jump */
1173 for (i = 0; i < periodiccnt; ++i) 1423 for (i = 0; i < periodiccnt; ++i)
1174 { 1424 {
1175 ev_periodic *w = periodics [i]; 1425 ev_periodic *w = (ev_periodic *)periodics [i];
1176 1426
1177 if (w->reschedule_cb) 1427 if (w->reschedule_cb)
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1179 else if (w->interval) 1429 else if (w->interval)
1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1181 } 1431 }
1182 1432
1183 /* now rebuild the heap */ 1433 /* now rebuild the heap */
1184 for (i = periodiccnt >> 1; i--; ) 1434 for (i = periodiccnt >> 1; i--; )
1185 downheap ((WT *)periodics, periodiccnt, i); 1435 downheap (periodics, periodiccnt, i);
1186} 1436}
1187#endif 1437#endif
1188 1438
1439#if EV_IDLE_ENABLE
1189int inline_size 1440void inline_size
1190time_update_monotonic (EV_P) 1441idle_reify (EV_P)
1191{ 1442{
1443 if (expect_false (idleall))
1444 {
1445 int pri;
1446
1447 for (pri = NUMPRI; pri--; )
1448 {
1449 if (pendingcnt [pri])
1450 break;
1451
1452 if (idlecnt [pri])
1453 {
1454 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1455 break;
1456 }
1457 }
1458 }
1459}
1460#endif
1461
1462void inline_speed
1463time_update (EV_P_ ev_tstamp max_block)
1464{
1465 int i;
1466
1467#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic))
1469 {
1470 ev_tstamp odiff = rtmn_diff;
1471
1192 mn_now = get_clock (); 1472 mn_now = get_clock ();
1193 1473
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1475 /* interpolate in the meantime */
1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1476 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1195 { 1477 {
1196 ev_rt_now = rtmn_diff + mn_now; 1478 ev_rt_now = rtmn_diff + mn_now;
1197 return 0; 1479 return;
1198 } 1480 }
1199 else 1481
1200 {
1201 now_floor = mn_now; 1482 now_floor = mn_now;
1202 ev_rt_now = ev_time (); 1483 ev_rt_now = ev_time ();
1203 return 1;
1204 }
1205}
1206 1484
1207void inline_size 1485 /* loop a few times, before making important decisions.
1208time_update (EV_P) 1486 * on the choice of "4": one iteration isn't enough,
1209{ 1487 * in case we get preempted during the calls to
1210 int i; 1488 * ev_time and get_clock. a second call is almost guaranteed
1211 1489 * to succeed in that case, though. and looping a few more times
1212#if EV_USE_MONOTONIC 1490 * doesn't hurt either as we only do this on time-jumps or
1213 if (expect_true (have_monotonic)) 1491 * in the unlikely event of having been preempted here.
1214 { 1492 */
1215 if (time_update_monotonic (EV_A)) 1493 for (i = 4; --i; )
1216 { 1494 {
1217 ev_tstamp odiff = rtmn_diff;
1218
1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1228 {
1229 rtmn_diff = ev_rt_now - mn_now; 1495 rtmn_diff = ev_rt_now - mn_now;
1230 1496
1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1232 return; /* all is well */ 1498 return; /* all is well */
1233 1499
1234 ev_rt_now = ev_time (); 1500 ev_rt_now = ev_time ();
1235 mn_now = get_clock (); 1501 mn_now = get_clock ();
1236 now_floor = mn_now; 1502 now_floor = mn_now;
1237 } 1503 }
1238 1504
1239# if EV_PERIODIC_ENABLE 1505# if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 1506 periodics_reschedule (EV_A);
1241# endif 1507# endif
1242 /* no timer adjustment, as the monotonic clock doesn't jump */ 1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1244 }
1245 } 1510 }
1246 else 1511 else
1247#endif 1512#endif
1248 { 1513 {
1249 ev_rt_now = ev_time (); 1514 ev_rt_now = ev_time ();
1250 1515
1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1252 { 1517 {
1253#if EV_PERIODIC_ENABLE 1518#if EV_PERIODIC_ENABLE
1254 periodics_reschedule (EV_A); 1519 periodics_reschedule (EV_A);
1255#endif 1520#endif
1256
1257 /* adjust timers. this is easy, as the offset is the same for all */ 1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1258 for (i = 0; i < timercnt; ++i) 1522 for (i = 0; i < timercnt; ++i)
1259 ((WT)timers [i])->at += ev_rt_now - mn_now; 1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1260 } 1524 }
1261 1525
1262 mn_now = ev_rt_now; 1526 mn_now = ev_rt_now;
1278static int loop_done; 1542static int loop_done;
1279 1543
1280void 1544void
1281ev_loop (EV_P_ int flags) 1545ev_loop (EV_P_ int flags)
1282{ 1546{
1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1547 loop_done = EVUNLOOP_CANCEL;
1284 ? EVUNLOOP_ONE
1285 : EVUNLOOP_CANCEL;
1286 1548
1287 while (activecnt) 1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1550
1551 do
1288 { 1552 {
1289 /* we might have forked, so reify kernel state if necessary */ 1553#ifndef _WIN32
1554 if (expect_false (curpid)) /* penalise the forking check even more */
1555 if (expect_false (getpid () != curpid))
1556 {
1557 curpid = getpid ();
1558 postfork = 1;
1559 }
1560#endif
1561
1290 #if EV_FORK_ENABLE 1562#if EV_FORK_ENABLE
1563 /* we might have forked, so queue fork handlers */
1291 if (expect_false (postfork)) 1564 if (expect_false (postfork))
1292 if (forkcnt) 1565 if (forkcnt)
1293 { 1566 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A); 1568 call_pending (EV_A);
1296 } 1569 }
1297 #endif 1570#endif
1298 1571
1299 /* queue check watchers (and execute them) */ 1572 /* queue prepare watchers (and execute them) */
1300 if (expect_false (preparecnt)) 1573 if (expect_false (preparecnt))
1301 { 1574 {
1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1575 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1303 call_pending (EV_A); 1576 call_pending (EV_A);
1304 } 1577 }
1305 1578
1579 if (expect_false (!activecnt))
1580 break;
1581
1306 /* we might have forked, so reify kernel state if necessary */ 1582 /* we might have forked, so reify kernel state if necessary */
1307 if (expect_false (postfork)) 1583 if (expect_false (postfork))
1308 loop_fork (EV_A); 1584 loop_fork (EV_A);
1309 1585
1310 /* update fd-related kernel structures */ 1586 /* update fd-related kernel structures */
1311 fd_reify (EV_A); 1587 fd_reify (EV_A);
1312 1588
1313 /* calculate blocking time */ 1589 /* calculate blocking time */
1314 { 1590 {
1315 double block; 1591 ev_tstamp waittime = 0.;
1592 ev_tstamp sleeptime = 0.;
1316 1593
1317 if (flags & EVLOOP_NONBLOCK || idlecnt) 1594 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1318 block = 0.; /* do not block at all */
1319 else
1320 { 1595 {
1321 /* update time to cancel out callback processing overhead */ 1596 /* update time to cancel out callback processing overhead */
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 time_update_monotonic (EV_A); 1597 time_update (EV_A_ 1e100);
1325 else
1326#endif
1327 {
1328 ev_rt_now = ev_time ();
1329 mn_now = ev_rt_now;
1330 }
1331 1598
1332 block = MAX_BLOCKTIME; 1599 waittime = MAX_BLOCKTIME;
1333 1600
1334 if (timercnt) 1601 if (timercnt)
1335 { 1602 {
1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1337 if (block > to) block = to; 1604 if (waittime > to) waittime = to;
1338 } 1605 }
1339 1606
1340#if EV_PERIODIC_ENABLE 1607#if EV_PERIODIC_ENABLE
1341 if (periodiccnt) 1608 if (periodiccnt)
1342 { 1609 {
1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1344 if (block > to) block = to; 1611 if (waittime > to) waittime = to;
1345 } 1612 }
1346#endif 1613#endif
1347 1614
1348 if (expect_false (block < 0.)) block = 0.; 1615 if (expect_false (waittime < timeout_blocktime))
1616 waittime = timeout_blocktime;
1617
1618 sleeptime = waittime - backend_fudge;
1619
1620 if (expect_true (sleeptime > io_blocktime))
1621 sleeptime = io_blocktime;
1622
1623 if (sleeptime)
1624 {
1625 ev_sleep (sleeptime);
1626 waittime -= sleeptime;
1627 }
1349 } 1628 }
1350 1629
1630 ++loop_count;
1351 backend_poll (EV_A_ block); 1631 backend_poll (EV_A_ waittime);
1632
1633 /* update ev_rt_now, do magic */
1634 time_update (EV_A_ waittime + sleeptime);
1352 } 1635 }
1353
1354 /* update ev_rt_now, do magic */
1355 time_update (EV_A);
1356 1636
1357 /* queue pending timers and reschedule them */ 1637 /* queue pending timers and reschedule them */
1358 timers_reify (EV_A); /* relative timers called last */ 1638 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE 1639#if EV_PERIODIC_ENABLE
1360 periodics_reify (EV_A); /* absolute timers called first */ 1640 periodics_reify (EV_A); /* absolute timers called first */
1361#endif 1641#endif
1362 1642
1643#if EV_IDLE_ENABLE
1363 /* queue idle watchers unless other events are pending */ 1644 /* queue idle watchers unless other events are pending */
1364 if (idlecnt && !any_pending (EV_A)) 1645 idle_reify (EV_A);
1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1646#endif
1366 1647
1367 /* queue check watchers, to be executed first */ 1648 /* queue check watchers, to be executed first */
1368 if (expect_false (checkcnt)) 1649 if (expect_false (checkcnt))
1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1370 1651
1371 call_pending (EV_A); 1652 call_pending (EV_A);
1372
1373 if (expect_false (loop_done))
1374 break;
1375 } 1653 }
1654 while (expect_true (
1655 activecnt
1656 && !loop_done
1657 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1658 ));
1376 1659
1377 if (loop_done == EVUNLOOP_ONE) 1660 if (loop_done == EVUNLOOP_ONE)
1378 loop_done = EVUNLOOP_CANCEL; 1661 loop_done = EVUNLOOP_CANCEL;
1379} 1662}
1380 1663
1407 head = &(*head)->next; 1690 head = &(*head)->next;
1408 } 1691 }
1409} 1692}
1410 1693
1411void inline_speed 1694void inline_speed
1412ev_clear_pending (EV_P_ W w) 1695clear_pending (EV_P_ W w)
1413{ 1696{
1414 if (w->pending) 1697 if (w->pending)
1415 { 1698 {
1416 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1699 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1417 w->pending = 0; 1700 w->pending = 0;
1418 } 1701 }
1419} 1702}
1420 1703
1704int
1705ev_clear_pending (EV_P_ void *w)
1706{
1707 W w_ = (W)w;
1708 int pending = w_->pending;
1709
1710 if (expect_true (pending))
1711 {
1712 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1713 w_->pending = 0;
1714 p->w = 0;
1715 return p->events;
1716 }
1717 else
1718 return 0;
1719}
1720
1721void inline_size
1722pri_adjust (EV_P_ W w)
1723{
1724 int pri = w->priority;
1725 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1726 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1727 w->priority = pri;
1728}
1729
1421void inline_speed 1730void inline_speed
1422ev_start (EV_P_ W w, int active) 1731ev_start (EV_P_ W w, int active)
1423{ 1732{
1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1733 pri_adjust (EV_A_ w);
1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1426
1427 w->active = active; 1734 w->active = active;
1428 ev_ref (EV_A); 1735 ev_ref (EV_A);
1429} 1736}
1430 1737
1431void inline_size 1738void inline_size
1435 w->active = 0; 1742 w->active = 0;
1436} 1743}
1437 1744
1438/*****************************************************************************/ 1745/*****************************************************************************/
1439 1746
1440void 1747void noinline
1441ev_io_start (EV_P_ ev_io *w) 1748ev_io_start (EV_P_ ev_io *w)
1442{ 1749{
1443 int fd = w->fd; 1750 int fd = w->fd;
1444 1751
1445 if (expect_false (ev_is_active (w))) 1752 if (expect_false (ev_is_active (w)))
1447 1754
1448 assert (("ev_io_start called with negative fd", fd >= 0)); 1755 assert (("ev_io_start called with negative fd", fd >= 0));
1449 1756
1450 ev_start (EV_A_ (W)w, 1); 1757 ev_start (EV_A_ (W)w, 1);
1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1758 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1452 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1759 wlist_add (&anfds[fd].head, (WL)w);
1453 1760
1454 fd_change (EV_A_ fd); 1761 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1762 w->events &= ~EV_IOFDSET;
1455} 1763}
1456 1764
1457void 1765void noinline
1458ev_io_stop (EV_P_ ev_io *w) 1766ev_io_stop (EV_P_ ev_io *w)
1459{ 1767{
1460 ev_clear_pending (EV_A_ (W)w); 1768 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 1769 if (expect_false (!ev_is_active (w)))
1462 return; 1770 return;
1463 1771
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1772 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1465 1773
1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1774 wlist_del (&anfds[w->fd].head, (WL)w);
1467 ev_stop (EV_A_ (W)w); 1775 ev_stop (EV_A_ (W)w);
1468 1776
1469 fd_change (EV_A_ w->fd); 1777 fd_change (EV_A_ w->fd, 1);
1470} 1778}
1471 1779
1472void 1780void noinline
1473ev_timer_start (EV_P_ ev_timer *w) 1781ev_timer_start (EV_P_ ev_timer *w)
1474{ 1782{
1475 if (expect_false (ev_is_active (w))) 1783 if (expect_false (ev_is_active (w)))
1476 return; 1784 return;
1477 1785
1478 ((WT)w)->at += mn_now; 1786 ((WT)w)->at += mn_now;
1479 1787
1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1788 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1481 1789
1482 ev_start (EV_A_ (W)w, ++timercnt); 1790 ev_start (EV_A_ (W)w, ++timercnt);
1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1791 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1484 timers [timercnt - 1] = w; 1792 timers [timercnt - 1] = (WT)w;
1485 upheap ((WT *)timers, timercnt - 1); 1793 upheap (timers, timercnt - 1);
1486 1794
1487 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1795 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1488} 1796}
1489 1797
1490void 1798void noinline
1491ev_timer_stop (EV_P_ ev_timer *w) 1799ev_timer_stop (EV_P_ ev_timer *w)
1492{ 1800{
1493 ev_clear_pending (EV_A_ (W)w); 1801 clear_pending (EV_A_ (W)w);
1494 if (expect_false (!ev_is_active (w))) 1802 if (expect_false (!ev_is_active (w)))
1495 return; 1803 return;
1496 1804
1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1805 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1498 1806
1807 {
1808 int active = ((W)w)->active;
1809
1499 if (expect_true (((W)w)->active < timercnt--)) 1810 if (expect_true (--active < --timercnt))
1500 { 1811 {
1501 timers [((W)w)->active - 1] = timers [timercnt]; 1812 timers [active] = timers [timercnt];
1502 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1813 adjustheap (timers, timercnt, active);
1503 } 1814 }
1815 }
1504 1816
1505 ((WT)w)->at -= mn_now; 1817 ((WT)w)->at -= mn_now;
1506 1818
1507 ev_stop (EV_A_ (W)w); 1819 ev_stop (EV_A_ (W)w);
1508} 1820}
1509 1821
1510void 1822void noinline
1511ev_timer_again (EV_P_ ev_timer *w) 1823ev_timer_again (EV_P_ ev_timer *w)
1512{ 1824{
1513 if (ev_is_active (w)) 1825 if (ev_is_active (w))
1514 { 1826 {
1515 if (w->repeat) 1827 if (w->repeat)
1516 { 1828 {
1517 ((WT)w)->at = mn_now + w->repeat; 1829 ((WT)w)->at = mn_now + w->repeat;
1518 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1830 adjustheap (timers, timercnt, ((W)w)->active - 1);
1519 } 1831 }
1520 else 1832 else
1521 ev_timer_stop (EV_A_ w); 1833 ev_timer_stop (EV_A_ w);
1522 } 1834 }
1523 else if (w->repeat) 1835 else if (w->repeat)
1526 ev_timer_start (EV_A_ w); 1838 ev_timer_start (EV_A_ w);
1527 } 1839 }
1528} 1840}
1529 1841
1530#if EV_PERIODIC_ENABLE 1842#if EV_PERIODIC_ENABLE
1531void 1843void noinline
1532ev_periodic_start (EV_P_ ev_periodic *w) 1844ev_periodic_start (EV_P_ ev_periodic *w)
1533{ 1845{
1534 if (expect_false (ev_is_active (w))) 1846 if (expect_false (ev_is_active (w)))
1535 return; 1847 return;
1536 1848
1538 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1850 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1539 else if (w->interval) 1851 else if (w->interval)
1540 { 1852 {
1541 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1853 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1542 /* this formula differs from the one in periodic_reify because we do not always round up */ 1854 /* this formula differs from the one in periodic_reify because we do not always round up */
1543 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1855 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1544 } 1856 }
1857 else
1858 ((WT)w)->at = w->offset;
1545 1859
1546 ev_start (EV_A_ (W)w, ++periodiccnt); 1860 ev_start (EV_A_ (W)w, ++periodiccnt);
1547 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1861 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1548 periodics [periodiccnt - 1] = w; 1862 periodics [periodiccnt - 1] = (WT)w;
1549 upheap ((WT *)periodics, periodiccnt - 1); 1863 upheap (periodics, periodiccnt - 1);
1550 1864
1551 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1865 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1552} 1866}
1553 1867
1554void 1868void noinline
1555ev_periodic_stop (EV_P_ ev_periodic *w) 1869ev_periodic_stop (EV_P_ ev_periodic *w)
1556{ 1870{
1557 ev_clear_pending (EV_A_ (W)w); 1871 clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w))) 1872 if (expect_false (!ev_is_active (w)))
1559 return; 1873 return;
1560 1874
1561 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1875 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1562 1876
1877 {
1878 int active = ((W)w)->active;
1879
1563 if (expect_true (((W)w)->active < periodiccnt--)) 1880 if (expect_true (--active < --periodiccnt))
1564 { 1881 {
1565 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1882 periodics [active] = periodics [periodiccnt];
1566 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1883 adjustheap (periodics, periodiccnt, active);
1567 } 1884 }
1885 }
1568 1886
1569 ev_stop (EV_A_ (W)w); 1887 ev_stop (EV_A_ (W)w);
1570} 1888}
1571 1889
1572void 1890void noinline
1573ev_periodic_again (EV_P_ ev_periodic *w) 1891ev_periodic_again (EV_P_ ev_periodic *w)
1574{ 1892{
1575 /* TODO: use adjustheap and recalculation */ 1893 /* TODO: use adjustheap and recalculation */
1576 ev_periodic_stop (EV_A_ w); 1894 ev_periodic_stop (EV_A_ w);
1577 ev_periodic_start (EV_A_ w); 1895 ev_periodic_start (EV_A_ w);
1580 1898
1581#ifndef SA_RESTART 1899#ifndef SA_RESTART
1582# define SA_RESTART 0 1900# define SA_RESTART 0
1583#endif 1901#endif
1584 1902
1585void 1903void noinline
1586ev_signal_start (EV_P_ ev_signal *w) 1904ev_signal_start (EV_P_ ev_signal *w)
1587{ 1905{
1588#if EV_MULTIPLICITY 1906#if EV_MULTIPLICITY
1589 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1907 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1590#endif 1908#endif
1591 if (expect_false (ev_is_active (w))) 1909 if (expect_false (ev_is_active (w)))
1592 return; 1910 return;
1593 1911
1594 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1912 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1595 1913
1914 evpipe_init (EV_A);
1915
1916 {
1917#ifndef _WIN32
1918 sigset_t full, prev;
1919 sigfillset (&full);
1920 sigprocmask (SIG_SETMASK, &full, &prev);
1921#endif
1922
1923 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1924
1925#ifndef _WIN32
1926 sigprocmask (SIG_SETMASK, &prev, 0);
1927#endif
1928 }
1929
1596 ev_start (EV_A_ (W)w, 1); 1930 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1598 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1931 wlist_add (&signals [w->signum - 1].head, (WL)w);
1599 1932
1600 if (!((WL)w)->next) 1933 if (!((WL)w)->next)
1601 { 1934 {
1602#if _WIN32 1935#if _WIN32
1603 signal (w->signum, sighandler); 1936 signal (w->signum, ev_sighandler);
1604#else 1937#else
1605 struct sigaction sa; 1938 struct sigaction sa;
1606 sa.sa_handler = sighandler; 1939 sa.sa_handler = ev_sighandler;
1607 sigfillset (&sa.sa_mask); 1940 sigfillset (&sa.sa_mask);
1608 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1941 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1609 sigaction (w->signum, &sa, 0); 1942 sigaction (w->signum, &sa, 0);
1610#endif 1943#endif
1611 } 1944 }
1612} 1945}
1613 1946
1614void 1947void noinline
1615ev_signal_stop (EV_P_ ev_signal *w) 1948ev_signal_stop (EV_P_ ev_signal *w)
1616{ 1949{
1617 ev_clear_pending (EV_A_ (W)w); 1950 clear_pending (EV_A_ (W)w);
1618 if (expect_false (!ev_is_active (w))) 1951 if (expect_false (!ev_is_active (w)))
1619 return; 1952 return;
1620 1953
1621 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1954 wlist_del (&signals [w->signum - 1].head, (WL)w);
1622 ev_stop (EV_A_ (W)w); 1955 ev_stop (EV_A_ (W)w);
1623 1956
1624 if (!signals [w->signum - 1].head) 1957 if (!signals [w->signum - 1].head)
1625 signal (w->signum, SIG_DFL); 1958 signal (w->signum, SIG_DFL);
1626} 1959}
1633#endif 1966#endif
1634 if (expect_false (ev_is_active (w))) 1967 if (expect_false (ev_is_active (w)))
1635 return; 1968 return;
1636 1969
1637 ev_start (EV_A_ (W)w, 1); 1970 ev_start (EV_A_ (W)w, 1);
1638 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1971 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1639} 1972}
1640 1973
1641void 1974void
1642ev_child_stop (EV_P_ ev_child *w) 1975ev_child_stop (EV_P_ ev_child *w)
1643{ 1976{
1644 ev_clear_pending (EV_A_ (W)w); 1977 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 1978 if (expect_false (!ev_is_active (w)))
1646 return; 1979 return;
1647 1980
1648 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1981 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1649 ev_stop (EV_A_ (W)w); 1982 ev_stop (EV_A_ (W)w);
1650} 1983}
1651 1984
1652#if EV_STAT_ENABLE 1985#if EV_STAT_ENABLE
1653 1986
1657# endif 1990# endif
1658 1991
1659#define DEF_STAT_INTERVAL 5.0074891 1992#define DEF_STAT_INTERVAL 5.0074891
1660#define MIN_STAT_INTERVAL 0.1074891 1993#define MIN_STAT_INTERVAL 0.1074891
1661 1994
1995static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1996
1997#if EV_USE_INOTIFY
1998# define EV_INOTIFY_BUFSIZE 8192
1999
2000static void noinline
2001infy_add (EV_P_ ev_stat *w)
2002{
2003 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2004
2005 if (w->wd < 0)
2006 {
2007 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2008
2009 /* monitor some parent directory for speedup hints */
2010 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2011 {
2012 char path [4096];
2013 strcpy (path, w->path);
2014
2015 do
2016 {
2017 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2018 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2019
2020 char *pend = strrchr (path, '/');
2021
2022 if (!pend)
2023 break; /* whoops, no '/', complain to your admin */
2024
2025 *pend = 0;
2026 w->wd = inotify_add_watch (fs_fd, path, mask);
2027 }
2028 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2029 }
2030 }
2031 else
2032 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2033
2034 if (w->wd >= 0)
2035 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2036}
2037
2038static void noinline
2039infy_del (EV_P_ ev_stat *w)
2040{
2041 int slot;
2042 int wd = w->wd;
2043
2044 if (wd < 0)
2045 return;
2046
2047 w->wd = -2;
2048 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2049 wlist_del (&fs_hash [slot].head, (WL)w);
2050
2051 /* remove this watcher, if others are watching it, they will rearm */
2052 inotify_rm_watch (fs_fd, wd);
2053}
2054
2055static void noinline
2056infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2057{
2058 if (slot < 0)
2059 /* overflow, need to check for all hahs slots */
2060 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2061 infy_wd (EV_A_ slot, wd, ev);
2062 else
2063 {
2064 WL w_;
2065
2066 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2067 {
2068 ev_stat *w = (ev_stat *)w_;
2069 w_ = w_->next; /* lets us remove this watcher and all before it */
2070
2071 if (w->wd == wd || wd == -1)
2072 {
2073 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2074 {
2075 w->wd = -1;
2076 infy_add (EV_A_ w); /* re-add, no matter what */
2077 }
2078
2079 stat_timer_cb (EV_A_ &w->timer, 0);
2080 }
2081 }
2082 }
2083}
2084
2085static void
2086infy_cb (EV_P_ ev_io *w, int revents)
2087{
2088 char buf [EV_INOTIFY_BUFSIZE];
2089 struct inotify_event *ev = (struct inotify_event *)buf;
2090 int ofs;
2091 int len = read (fs_fd, buf, sizeof (buf));
2092
2093 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2094 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2095}
2096
2097void inline_size
2098infy_init (EV_P)
2099{
2100 if (fs_fd != -2)
2101 return;
2102
2103 fs_fd = inotify_init ();
2104
2105 if (fs_fd >= 0)
2106 {
2107 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2108 ev_set_priority (&fs_w, EV_MAXPRI);
2109 ev_io_start (EV_A_ &fs_w);
2110 }
2111}
2112
2113void inline_size
2114infy_fork (EV_P)
2115{
2116 int slot;
2117
2118 if (fs_fd < 0)
2119 return;
2120
2121 close (fs_fd);
2122 fs_fd = inotify_init ();
2123
2124 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2125 {
2126 WL w_ = fs_hash [slot].head;
2127 fs_hash [slot].head = 0;
2128
2129 while (w_)
2130 {
2131 ev_stat *w = (ev_stat *)w_;
2132 w_ = w_->next; /* lets us add this watcher */
2133
2134 w->wd = -1;
2135
2136 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); /* re-add, no matter what */
2138 else
2139 ev_timer_start (EV_A_ &w->timer);
2140 }
2141
2142 }
2143}
2144
2145#endif
2146
1662void 2147void
1663ev_stat_stat (EV_P_ ev_stat *w) 2148ev_stat_stat (EV_P_ ev_stat *w)
1664{ 2149{
1665 if (lstat (w->path, &w->attr) < 0) 2150 if (lstat (w->path, &w->attr) < 0)
1666 w->attr.st_nlink = 0; 2151 w->attr.st_nlink = 0;
1667 else if (!w->attr.st_nlink) 2152 else if (!w->attr.st_nlink)
1668 w->attr.st_nlink = 1; 2153 w->attr.st_nlink = 1;
1669} 2154}
1670 2155
1671static void 2156static void noinline
1672stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2157stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1673{ 2158{
1674 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2159 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1675 2160
1676 /* we copy this here each the time so that */ 2161 /* we copy this here each the time so that */
1677 /* prev has the old value when the callback gets invoked */ 2162 /* prev has the old value when the callback gets invoked */
1678 w->prev = w->attr; 2163 w->prev = w->attr;
1679 ev_stat_stat (EV_A_ w); 2164 ev_stat_stat (EV_A_ w);
1680 2165
1681 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2166 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2167 if (
2168 w->prev.st_dev != w->attr.st_dev
2169 || w->prev.st_ino != w->attr.st_ino
2170 || w->prev.st_mode != w->attr.st_mode
2171 || w->prev.st_nlink != w->attr.st_nlink
2172 || w->prev.st_uid != w->attr.st_uid
2173 || w->prev.st_gid != w->attr.st_gid
2174 || w->prev.st_rdev != w->attr.st_rdev
2175 || w->prev.st_size != w->attr.st_size
2176 || w->prev.st_atime != w->attr.st_atime
2177 || w->prev.st_mtime != w->attr.st_mtime
2178 || w->prev.st_ctime != w->attr.st_ctime
2179 ) {
2180 #if EV_USE_INOTIFY
2181 infy_del (EV_A_ w);
2182 infy_add (EV_A_ w);
2183 ev_stat_stat (EV_A_ w); /* avoid race... */
2184 #endif
2185
1682 ev_feed_event (EV_A_ w, EV_STAT); 2186 ev_feed_event (EV_A_ w, EV_STAT);
2187 }
1683} 2188}
1684 2189
1685void 2190void
1686ev_stat_start (EV_P_ ev_stat *w) 2191ev_stat_start (EV_P_ ev_stat *w)
1687{ 2192{
1697 if (w->interval < MIN_STAT_INTERVAL) 2202 if (w->interval < MIN_STAT_INTERVAL)
1698 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2203 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1699 2204
1700 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2205 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1701 ev_set_priority (&w->timer, ev_priority (w)); 2206 ev_set_priority (&w->timer, ev_priority (w));
2207
2208#if EV_USE_INOTIFY
2209 infy_init (EV_A);
2210
2211 if (fs_fd >= 0)
2212 infy_add (EV_A_ w);
2213 else
2214#endif
1702 ev_timer_start (EV_A_ &w->timer); 2215 ev_timer_start (EV_A_ &w->timer);
1703 2216
1704 ev_start (EV_A_ (W)w, 1); 2217 ev_start (EV_A_ (W)w, 1);
1705} 2218}
1706 2219
1707void 2220void
1708ev_stat_stop (EV_P_ ev_stat *w) 2221ev_stat_stop (EV_P_ ev_stat *w)
1709{ 2222{
1710 ev_clear_pending (EV_A_ (W)w); 2223 clear_pending (EV_A_ (W)w);
1711 if (expect_false (!ev_is_active (w))) 2224 if (expect_false (!ev_is_active (w)))
1712 return; 2225 return;
1713 2226
2227#if EV_USE_INOTIFY
2228 infy_del (EV_A_ w);
2229#endif
1714 ev_timer_stop (EV_A_ &w->timer); 2230 ev_timer_stop (EV_A_ &w->timer);
1715 2231
1716 ev_stop (EV_A_ (W)w); 2232 ev_stop (EV_A_ (W)w);
1717} 2233}
1718#endif 2234#endif
1719 2235
2236#if EV_IDLE_ENABLE
1720void 2237void
1721ev_idle_start (EV_P_ ev_idle *w) 2238ev_idle_start (EV_P_ ev_idle *w)
1722{ 2239{
1723 if (expect_false (ev_is_active (w))) 2240 if (expect_false (ev_is_active (w)))
1724 return; 2241 return;
1725 2242
2243 pri_adjust (EV_A_ (W)w);
2244
2245 {
2246 int active = ++idlecnt [ABSPRI (w)];
2247
2248 ++idleall;
1726 ev_start (EV_A_ (W)w, ++idlecnt); 2249 ev_start (EV_A_ (W)w, active);
2250
1727 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2251 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1728 idles [idlecnt - 1] = w; 2252 idles [ABSPRI (w)][active - 1] = w;
2253 }
1729} 2254}
1730 2255
1731void 2256void
1732ev_idle_stop (EV_P_ ev_idle *w) 2257ev_idle_stop (EV_P_ ev_idle *w)
1733{ 2258{
1734 ev_clear_pending (EV_A_ (W)w); 2259 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 2260 if (expect_false (!ev_is_active (w)))
1736 return; 2261 return;
1737 2262
1738 { 2263 {
1739 int active = ((W)w)->active; 2264 int active = ((W)w)->active;
1740 idles [active - 1] = idles [--idlecnt]; 2265
2266 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1741 ((W)idles [active - 1])->active = active; 2267 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2268
2269 ev_stop (EV_A_ (W)w);
2270 --idleall;
1742 } 2271 }
1743
1744 ev_stop (EV_A_ (W)w);
1745} 2272}
2273#endif
1746 2274
1747void 2275void
1748ev_prepare_start (EV_P_ ev_prepare *w) 2276ev_prepare_start (EV_P_ ev_prepare *w)
1749{ 2277{
1750 if (expect_false (ev_is_active (w))) 2278 if (expect_false (ev_is_active (w)))
1756} 2284}
1757 2285
1758void 2286void
1759ev_prepare_stop (EV_P_ ev_prepare *w) 2287ev_prepare_stop (EV_P_ ev_prepare *w)
1760{ 2288{
1761 ev_clear_pending (EV_A_ (W)w); 2289 clear_pending (EV_A_ (W)w);
1762 if (expect_false (!ev_is_active (w))) 2290 if (expect_false (!ev_is_active (w)))
1763 return; 2291 return;
1764 2292
1765 { 2293 {
1766 int active = ((W)w)->active; 2294 int active = ((W)w)->active;
1783} 2311}
1784 2312
1785void 2313void
1786ev_check_stop (EV_P_ ev_check *w) 2314ev_check_stop (EV_P_ ev_check *w)
1787{ 2315{
1788 ev_clear_pending (EV_A_ (W)w); 2316 clear_pending (EV_A_ (W)w);
1789 if (expect_false (!ev_is_active (w))) 2317 if (expect_false (!ev_is_active (w)))
1790 return; 2318 return;
1791 2319
1792 { 2320 {
1793 int active = ((W)w)->active; 2321 int active = ((W)w)->active;
1800 2328
1801#if EV_EMBED_ENABLE 2329#if EV_EMBED_ENABLE
1802void noinline 2330void noinline
1803ev_embed_sweep (EV_P_ ev_embed *w) 2331ev_embed_sweep (EV_P_ ev_embed *w)
1804{ 2332{
1805 ev_loop (w->loop, EVLOOP_NONBLOCK); 2333 ev_loop (w->other, EVLOOP_NONBLOCK);
1806} 2334}
1807 2335
1808static void 2336static void
1809embed_cb (EV_P_ ev_io *io, int revents) 2337embed_io_cb (EV_P_ ev_io *io, int revents)
1810{ 2338{
1811 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2339 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1812 2340
1813 if (ev_cb (w)) 2341 if (ev_cb (w))
1814 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2342 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1815 else 2343 else
1816 ev_embed_sweep (loop, w); 2344 ev_loop (w->other, EVLOOP_NONBLOCK);
1817} 2345}
2346
2347static void
2348embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2349{
2350 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2351
2352 {
2353 struct ev_loop *loop = w->other;
2354
2355 while (fdchangecnt)
2356 {
2357 fd_reify (EV_A);
2358 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2359 }
2360 }
2361}
2362
2363#if 0
2364static void
2365embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2366{
2367 ev_idle_stop (EV_A_ idle);
2368}
2369#endif
1818 2370
1819void 2371void
1820ev_embed_start (EV_P_ ev_embed *w) 2372ev_embed_start (EV_P_ ev_embed *w)
1821{ 2373{
1822 if (expect_false (ev_is_active (w))) 2374 if (expect_false (ev_is_active (w)))
1823 return; 2375 return;
1824 2376
1825 { 2377 {
1826 struct ev_loop *loop = w->loop; 2378 struct ev_loop *loop = w->other;
1827 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2379 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1828 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2380 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1829 } 2381 }
1830 2382
1831 ev_set_priority (&w->io, ev_priority (w)); 2383 ev_set_priority (&w->io, ev_priority (w));
1832 ev_io_start (EV_A_ &w->io); 2384 ev_io_start (EV_A_ &w->io);
1833 2385
2386 ev_prepare_init (&w->prepare, embed_prepare_cb);
2387 ev_set_priority (&w->prepare, EV_MINPRI);
2388 ev_prepare_start (EV_A_ &w->prepare);
2389
2390 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2391
1834 ev_start (EV_A_ (W)w, 1); 2392 ev_start (EV_A_ (W)w, 1);
1835} 2393}
1836 2394
1837void 2395void
1838ev_embed_stop (EV_P_ ev_embed *w) 2396ev_embed_stop (EV_P_ ev_embed *w)
1839{ 2397{
1840 ev_clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1841 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
1842 return; 2400 return;
1843 2401
1844 ev_io_stop (EV_A_ &w->io); 2402 ev_io_stop (EV_A_ &w->io);
2403 ev_prepare_stop (EV_A_ &w->prepare);
1845 2404
1846 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
1847} 2406}
1848#endif 2407#endif
1849 2408
1860} 2419}
1861 2420
1862void 2421void
1863ev_fork_stop (EV_P_ ev_fork *w) 2422ev_fork_stop (EV_P_ ev_fork *w)
1864{ 2423{
1865 ev_clear_pending (EV_A_ (W)w); 2424 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 2425 if (expect_false (!ev_is_active (w)))
1867 return; 2426 return;
1868 2427
1869 { 2428 {
1870 int active = ((W)w)->active; 2429 int active = ((W)w)->active;
1874 2433
1875 ev_stop (EV_A_ (W)w); 2434 ev_stop (EV_A_ (W)w);
1876} 2435}
1877#endif 2436#endif
1878 2437
2438#if EV_ASYNC_ENABLE
2439void
2440ev_async_start (EV_P_ ev_async *w)
2441{
2442 if (expect_false (ev_is_active (w)))
2443 return;
2444
2445 evpipe_init (EV_A);
2446
2447 ev_start (EV_A_ (W)w, ++asynccnt);
2448 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2449 asyncs [asynccnt - 1] = w;
2450}
2451
2452void
2453ev_async_stop (EV_P_ ev_async *w)
2454{
2455 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w)))
2457 return;
2458
2459 {
2460 int active = ((W)w)->active;
2461 asyncs [active - 1] = asyncs [--asynccnt];
2462 ((W)asyncs [active - 1])->active = active;
2463 }
2464
2465 ev_stop (EV_A_ (W)w);
2466}
2467
2468void
2469ev_async_send (EV_P_ ev_async *w)
2470{
2471 w->sent = 1;
2472 evpipe_write (EV_A_ &gotasync);
2473}
2474#endif
2475
1879/*****************************************************************************/ 2476/*****************************************************************************/
1880 2477
1881struct ev_once 2478struct ev_once
1882{ 2479{
1883 ev_io io; 2480 ev_io io;
1938 ev_timer_set (&once->to, timeout, 0.); 2535 ev_timer_set (&once->to, timeout, 0.);
1939 ev_timer_start (EV_A_ &once->to); 2536 ev_timer_start (EV_A_ &once->to);
1940 } 2537 }
1941} 2538}
1942 2539
2540#if EV_MULTIPLICITY
2541 #include "ev_wrap.h"
2542#endif
2543
1943#ifdef __cplusplus 2544#ifdef __cplusplus
1944} 2545}
1945#endif 2546#endif
1946 2547

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines