ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.219 by root, Wed Apr 2 10:55:39 2008 UTC vs.
Revision 1.468 by root, Fri Sep 5 16:00:17 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
141#else 184#else
142# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
143#endif 197#endif
144 198
145#ifndef _WIN32 199#ifndef _WIN32
146# include <sys/time.h> 200# include <sys/time.h>
147# include <sys/wait.h> 201# include <sys/wait.h>
148# include <unistd.h> 202# include <unistd.h>
149#else 203#else
204# include <io.h>
150# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
151# include <windows.h> 207# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
154# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
155#endif 258# endif
156 259#endif
157/**/
158 260
159#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263# define EV_USE_MONOTONIC EV_FEATURE_OS
264# else
160# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
266# endif
161#endif 267#endif
162 268
163#ifndef EV_USE_REALTIME 269#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 271#endif
166 272
167#ifndef EV_USE_NANOSLEEP 273#ifndef EV_USE_NANOSLEEP
274# if _POSIX_C_SOURCE >= 199309L
275# define EV_USE_NANOSLEEP EV_FEATURE_OS
276# else
168# define EV_USE_NANOSLEEP 0 277# define EV_USE_NANOSLEEP 0
278# endif
169#endif 279#endif
170 280
171#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 283#endif
174 284
175#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
176# ifdef _WIN32 286# ifdef _WIN32
177# define EV_USE_POLL 0 287# define EV_USE_POLL 0
178# else 288# else
179# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 290# endif
181#endif 291#endif
182 292
183#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
296# else
184# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
298# endif
185#endif 299#endif
186 300
187#ifndef EV_USE_KQUEUE 301#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 302# define EV_USE_KQUEUE 0
189#endif 303#endif
191#ifndef EV_USE_PORT 305#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 306# define EV_USE_PORT 0
193#endif 307#endif
194 308
195#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311# define EV_USE_INOTIFY EV_FEATURE_OS
312# else
196# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
314# endif
197#endif 315#endif
198 316
199#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 319#endif
320
321#ifndef EV_INOTIFY_HASHSIZE
322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323#endif
324
325#ifndef EV_USE_EVENTFD
326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 328# else
203# define EV_PID_HASHSIZE 16 329# define EV_USE_EVENTFD 0
204# endif 330# endif
205#endif 331#endif
206 332
207#ifndef EV_INOTIFY_HASHSIZE 333#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 335# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 336# else
211# define EV_INOTIFY_HASHSIZE 16 337# define EV_USE_SIGNALFD 0
212# endif 338# endif
213#endif 339#endif
214 340
215/**/ 341#if 0 /* debugging */
342# define EV_VERIFY 3
343# define EV_USE_4HEAP 1
344# define EV_HEAP_CACHE_AT 1
345#endif
346
347#ifndef EV_VERIFY
348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349#endif
350
351#ifndef EV_USE_4HEAP
352# define EV_USE_4HEAP EV_FEATURE_DATA
353#endif
354
355#ifndef EV_HEAP_CACHE_AT
356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
387#endif
388
389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 390
217#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 392# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 393# define EV_USE_MONOTONIC 0
220#endif 394#endif
228# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
230#endif 404#endif
231 405
232#if !EV_USE_NANOSLEEP 406#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
234# include <sys/select.h> 409# include <sys/select.h>
235# endif 410# endif
236#endif 411#endif
237 412
238#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
239# include <sys/inotify.h> 415# include <sys/inotify.h>
416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417# ifndef IN_DONT_FOLLOW
418# undef EV_USE_INOTIFY
419# define EV_USE_INOTIFY 0
240#endif 420# endif
421#endif
241 422
242#if EV_SELECT_IS_WINSOCKET 423#if EV_USE_EVENTFD
424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
243# include <winsock.h> 425# include <stdint.h>
426# ifndef EFD_NONBLOCK
427# define EFD_NONBLOCK O_NONBLOCK
428# endif
429# ifndef EFD_CLOEXEC
430# ifdef O_CLOEXEC
431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
244#endif 459#endif
245 460
246/**/ 461/**/
247 462
463#if EV_VERIFY >= 3
464# define EV_FREQUENT_CHECK ev_verify (EV_A)
465#else
466# define EV_FREQUENT_CHECK do { } while (0)
467#endif
468
248/* 469/*
249 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 472 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 475
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 *
512 * Alternatively, the contents of this file may be used under the terms of
513 * the GNU General Public License ("GPL") version 2 or any later version,
514 * in which case the provisions of the GPL are applicable instead of
515 * the above. If you wish to allow the use of your version of this file
516 * only under the terms of the GPL and not to allow others to use your
517 * version of this file under the BSD license, indicate your decision
518 * by deleting the provisions above and replace them with the notice
519 * and other provisions required by the GPL. If you do not delete the
520 * provisions above, a recipient may use your version of this file under
521 * either the BSD or the GPL.
522 */
523
524#ifndef ECB_H
525#define ECB_H
526
527/* 16 bits major, 16 bits minor */
528#define ECB_VERSION 0x00010003
529
530#ifdef _WIN32
531 typedef signed char int8_t;
532 typedef unsigned char uint8_t;
533 typedef signed short int16_t;
534 typedef unsigned short uint16_t;
535 typedef signed int int32_t;
536 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 537 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 538 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 539 typedef unsigned long long uint64_t;
540 #else /* _MSC_VER || __BORLANDC__ */
541 typedef signed __int64 int64_t;
542 typedef unsigned __int64 uint64_t;
543 #endif
544 #ifdef _WIN64
545 #define ECB_PTRSIZE 8
546 typedef uint64_t uintptr_t;
547 typedef int64_t intptr_t;
548 #else
549 #define ECB_PTRSIZE 4
550 typedef uint32_t uintptr_t;
551 typedef int32_t intptr_t;
552 #endif
265#else 553#else
266# define expect(expr,value) (expr) 554 #include <inttypes.h>
267# define noinline 555 #if UINTMAX_MAX > 0xffffffffU
268# if __STDC_VERSION__ < 199901L 556 #define ECB_PTRSIZE 8
269# define inline 557 #else
558 #define ECB_PTRSIZE 4
559 #endif
270# endif 560#endif
561
562/* work around x32 idiocy by defining proper macros */
563#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
564 #if _ILP32
565 #define ECB_AMD64_X32 1
566 #else
567 #define ECB_AMD64 1
271#endif 568 #endif
569#endif
272 570
571/* many compilers define _GNUC_ to some versions but then only implement
572 * what their idiot authors think are the "more important" extensions,
573 * causing enormous grief in return for some better fake benchmark numbers.
574 * or so.
575 * we try to detect these and simply assume they are not gcc - if they have
576 * an issue with that they should have done it right in the first place.
577 */
578#ifndef ECB_GCC_VERSION
579 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
580 #define ECB_GCC_VERSION(major,minor) 0
581 #else
582 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
583 #endif
584#endif
585
586#define ECB_CPP (__cplusplus+0)
587#define ECB_CPP11 (__cplusplus >= 201103L)
588
589#if ECB_CPP
590 #define ECB_C 0
591 #define ECB_STDC_VERSION 0
592#else
593 #define ECB_C 1
594 #define ECB_STDC_VERSION __STDC_VERSION__
595#endif
596
597#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
598#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
599
600#if ECB_CPP
601 #define ECB_EXTERN_C extern "C"
602 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
603 #define ECB_EXTERN_C_END }
604#else
605 #define ECB_EXTERN_C extern
606 #define ECB_EXTERN_C_BEG
607 #define ECB_EXTERN_C_END
608#endif
609
610/*****************************************************************************/
611
612/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
613/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
614
615#if ECB_NO_THREADS
616 #define ECB_NO_SMP 1
617#endif
618
619#if ECB_NO_SMP
620 #define ECB_MEMORY_FENCE do { } while (0)
621#endif
622
623#ifndef ECB_MEMORY_FENCE
624 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
625 #if __i386 || __i386__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
631 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
632 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
633 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
635 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
636 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
637 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
638 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
639 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
641 #elif __aarch64__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
643 #elif (__sparc || __sparc__) && !__sparcv8
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
645 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
646 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
647 #elif defined __s390__ || defined __s390x__
648 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
649 #elif defined __mips__
650 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
651 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
652 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
653 #elif defined __alpha__
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
655 #elif defined __hppa__
656 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif defined __ia64__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
660 #elif defined __m68k__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
662 #elif defined __m88k__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
664 #elif defined __sh__
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 #endif
667 #endif
668#endif
669
670#ifndef ECB_MEMORY_FENCE
671 #if ECB_GCC_VERSION(4,7)
672 /* see comment below (stdatomic.h) about the C11 memory model. */
673 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
674 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
675 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
676
677 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
678 * without risking compile time errors with other compilers. We *could*
679 * define our own ecb_clang_has_feature, but I just can't be bothered to work
680 * around this shit time and again.
681 * #elif defined __clang && __has_feature (cxx_atomic)
682 * // see comment below (stdatomic.h) about the C11 memory model.
683 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
684 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
685 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
686 */
687
688 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
689 #define ECB_MEMORY_FENCE __sync_synchronize ()
690 #elif _MSC_VER >= 1500 /* VC++ 2008 */
691 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
692 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
693 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
694 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
695 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
696 #elif _MSC_VER >= 1400 /* VC++ 2005 */
697 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
698 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
699 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
700 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
701 #elif defined _WIN32
702 #include <WinNT.h>
703 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
704 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
705 #include <mbarrier.h>
706 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
707 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
708 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
709 #elif __xlC__
710 #define ECB_MEMORY_FENCE __sync ()
711 #endif
712#endif
713
714#ifndef ECB_MEMORY_FENCE
715 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
716 /* we assume that these memory fences work on all variables/all memory accesses, */
717 /* not just C11 atomics and atomic accesses */
718 #include <stdatomic.h>
719 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
720 /* any fence other than seq_cst, which isn't very efficient for us. */
721 /* Why that is, we don't know - either the C11 memory model is quite useless */
722 /* for most usages, or gcc and clang have a bug */
723 /* I *currently* lean towards the latter, and inefficiently implement */
724 /* all three of ecb's fences as a seq_cst fence */
725 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
726 /* for all __atomic_thread_fence's except seq_cst */
727 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
728 #endif
729#endif
730
731#ifndef ECB_MEMORY_FENCE
732 #if !ECB_AVOID_PTHREADS
733 /*
734 * if you get undefined symbol references to pthread_mutex_lock,
735 * or failure to find pthread.h, then you should implement
736 * the ECB_MEMORY_FENCE operations for your cpu/compiler
737 * OR provide pthread.h and link against the posix thread library
738 * of your system.
739 */
740 #include <pthread.h>
741 #define ECB_NEEDS_PTHREADS 1
742 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
743
744 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
745 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
746 #endif
747#endif
748
749#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
750 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
751#endif
752
753#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
754 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
755#endif
756
757/*****************************************************************************/
758
759#if __cplusplus
760 #define ecb_inline static inline
761#elif ECB_GCC_VERSION(2,5)
762 #define ecb_inline static __inline__
763#elif ECB_C99
764 #define ecb_inline static inline
765#else
766 #define ecb_inline static
767#endif
768
769#if ECB_GCC_VERSION(3,3)
770 #define ecb_restrict __restrict__
771#elif ECB_C99
772 #define ecb_restrict restrict
773#else
774 #define ecb_restrict
775#endif
776
777typedef int ecb_bool;
778
779#define ECB_CONCAT_(a, b) a ## b
780#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
781#define ECB_STRINGIFY_(a) # a
782#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
783
784#define ecb_function_ ecb_inline
785
786#if ECB_GCC_VERSION(3,1)
787 #define ecb_attribute(attrlist) __attribute__(attrlist)
788 #define ecb_is_constant(expr) __builtin_constant_p (expr)
789 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
790 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
791#else
792 #define ecb_attribute(attrlist)
793
794 /* possible C11 impl for integral types
795 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
796 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
797
798 #define ecb_is_constant(expr) 0
799 #define ecb_expect(expr,value) (expr)
800 #define ecb_prefetch(addr,rw,locality)
801#endif
802
803/* no emulation for ecb_decltype */
804#if ECB_GCC_VERSION(4,5)
805 #define ecb_decltype(x) __decltype(x)
806#elif ECB_GCC_VERSION(3,0)
807 #define ecb_decltype(x) __typeof(x)
808#endif
809
810#if _MSC_VER >= 1300
811 #define ecb_deprecated __declspec(deprecated)
812#else
813 #define ecb_deprecated ecb_attribute ((__deprecated__))
814#endif
815
816#define ecb_noinline ecb_attribute ((__noinline__))
817#define ecb_unused ecb_attribute ((__unused__))
818#define ecb_const ecb_attribute ((__const__))
819#define ecb_pure ecb_attribute ((__pure__))
820
821/* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
822#if ECB_C11
823 #define ecb_noreturn _Noreturn
824#else
825 #define ecb_noreturn ecb_attribute ((__noreturn__))
826#endif
827
828#if ECB_GCC_VERSION(4,3)
829 #define ecb_artificial ecb_attribute ((__artificial__))
830 #define ecb_hot ecb_attribute ((__hot__))
831 #define ecb_cold ecb_attribute ((__cold__))
832#else
833 #define ecb_artificial
834 #define ecb_hot
835 #define ecb_cold
836#endif
837
838/* put around conditional expressions if you are very sure that the */
839/* expression is mostly true or mostly false. note that these return */
840/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 841#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 842#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
843/* for compatibility to the rest of the world */
844#define ecb_likely(expr) ecb_expect_true (expr)
845#define ecb_unlikely(expr) ecb_expect_false (expr)
846
847/* count trailing zero bits and count # of one bits */
848#if ECB_GCC_VERSION(3,4)
849 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
850 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
851 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
852 #define ecb_ctz32(x) __builtin_ctz (x)
853 #define ecb_ctz64(x) __builtin_ctzll (x)
854 #define ecb_popcount32(x) __builtin_popcount (x)
855 /* no popcountll */
856#else
857 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
858 ecb_function_ int
859 ecb_ctz32 (uint32_t x)
860 {
861 int r = 0;
862
863 x &= ~x + 1; /* this isolates the lowest bit */
864
865#if ECB_branchless_on_i386
866 r += !!(x & 0xaaaaaaaa) << 0;
867 r += !!(x & 0xcccccccc) << 1;
868 r += !!(x & 0xf0f0f0f0) << 2;
869 r += !!(x & 0xff00ff00) << 3;
870 r += !!(x & 0xffff0000) << 4;
871#else
872 if (x & 0xaaaaaaaa) r += 1;
873 if (x & 0xcccccccc) r += 2;
874 if (x & 0xf0f0f0f0) r += 4;
875 if (x & 0xff00ff00) r += 8;
876 if (x & 0xffff0000) r += 16;
877#endif
878
879 return r;
880 }
881
882 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
883 ecb_function_ int
884 ecb_ctz64 (uint64_t x)
885 {
886 int shift = x & 0xffffffffU ? 0 : 32;
887 return ecb_ctz32 (x >> shift) + shift;
888 }
889
890 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
891 ecb_function_ int
892 ecb_popcount32 (uint32_t x)
893 {
894 x -= (x >> 1) & 0x55555555;
895 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
896 x = ((x >> 4) + x) & 0x0f0f0f0f;
897 x *= 0x01010101;
898
899 return x >> 24;
900 }
901
902 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
903 ecb_function_ int ecb_ld32 (uint32_t x)
904 {
905 int r = 0;
906
907 if (x >> 16) { x >>= 16; r += 16; }
908 if (x >> 8) { x >>= 8; r += 8; }
909 if (x >> 4) { x >>= 4; r += 4; }
910 if (x >> 2) { x >>= 2; r += 2; }
911 if (x >> 1) { r += 1; }
912
913 return r;
914 }
915
916 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
917 ecb_function_ int ecb_ld64 (uint64_t x)
918 {
919 int r = 0;
920
921 if (x >> 32) { x >>= 32; r += 32; }
922
923 return r + ecb_ld32 (x);
924 }
925#endif
926
927ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
928ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
929ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
930ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
931
932ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
933ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
934{
935 return ( (x * 0x0802U & 0x22110U)
936 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
937}
938
939ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
940ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
941{
942 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
943 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
944 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
945 x = ( x >> 8 ) | ( x << 8);
946
947 return x;
948}
949
950ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
951ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
952{
953 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
954 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
955 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
956 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
957 x = ( x >> 16 ) | ( x << 16);
958
959 return x;
960}
961
962/* popcount64 is only available on 64 bit cpus as gcc builtin */
963/* so for this version we are lazy */
964ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
965ecb_function_ int
966ecb_popcount64 (uint64_t x)
967{
968 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
969}
970
971ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
972ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
973ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
974ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
975ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
976ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
977ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
978ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
979
980ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
981ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
982ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
983ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
984ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
985ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
986ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
987ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
988
989#if ECB_GCC_VERSION(4,3)
990 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
991 #define ecb_bswap32(x) __builtin_bswap32 (x)
992 #define ecb_bswap64(x) __builtin_bswap64 (x)
993#else
994 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
995 ecb_function_ uint16_t
996 ecb_bswap16 (uint16_t x)
997 {
998 return ecb_rotl16 (x, 8);
999 }
1000
1001 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
1002 ecb_function_ uint32_t
1003 ecb_bswap32 (uint32_t x)
1004 {
1005 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1006 }
1007
1008 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1009 ecb_function_ uint64_t
1010 ecb_bswap64 (uint64_t x)
1011 {
1012 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1013 }
1014#endif
1015
1016#if ECB_GCC_VERSION(4,5)
1017 #define ecb_unreachable() __builtin_unreachable ()
1018#else
1019 /* this seems to work fine, but gcc always emits a warning for it :/ */
1020 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1021 ecb_inline void ecb_unreachable (void) { }
1022#endif
1023
1024/* try to tell the compiler that some condition is definitely true */
1025#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1026
1027ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1028ecb_inline unsigned char
1029ecb_byteorder_helper (void)
1030{
1031 /* the union code still generates code under pressure in gcc, */
1032 /* but less than using pointers, and always seems to */
1033 /* successfully return a constant. */
1034 /* the reason why we have this horrible preprocessor mess */
1035 /* is to avoid it in all cases, at least on common architectures */
1036 /* or when using a recent enough gcc version (>= 4.6) */
1037#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1038 return 0x44;
1039#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1040 return 0x44;
1041#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1042 return 0x11;
1043#else
1044 union
1045 {
1046 uint32_t i;
1047 uint8_t c;
1048 } u = { 0x11223344 };
1049 return u.c;
1050#endif
1051}
1052
1053ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1054ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1055ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1056ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1057
1058#if ECB_GCC_VERSION(3,0) || ECB_C99
1059 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1060#else
1061 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1062#endif
1063
1064#if __cplusplus
1065 template<typename T>
1066 static inline T ecb_div_rd (T val, T div)
1067 {
1068 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1069 }
1070 template<typename T>
1071 static inline T ecb_div_ru (T val, T div)
1072 {
1073 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1074 }
1075#else
1076 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1077 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1078#endif
1079
1080#if ecb_cplusplus_does_not_suck
1081 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1082 template<typename T, int N>
1083 static inline int ecb_array_length (const T (&arr)[N])
1084 {
1085 return N;
1086 }
1087#else
1088 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1089#endif
1090
1091/*******************************************************************************/
1092/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1093
1094/* basically, everything uses "ieee pure-endian" floating point numbers */
1095/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1096#if 0 \
1097 || __i386 || __i386__ \
1098 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1099 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1100 || defined __s390__ || defined __s390x__ \
1101 || defined __mips__ \
1102 || defined __alpha__ \
1103 || defined __hppa__ \
1104 || defined __ia64__ \
1105 || defined __m68k__ \
1106 || defined __m88k__ \
1107 || defined __sh__ \
1108 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1109 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1110 || defined __aarch64__
1111 #define ECB_STDFP 1
1112 #include <string.h> /* for memcpy */
1113#else
1114 #define ECB_STDFP 0
1115#endif
1116
1117#ifndef ECB_NO_LIBM
1118
1119 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1120
1121 /* only the oldest of old doesn't have this one. solaris. */
1122 #ifdef INFINITY
1123 #define ECB_INFINITY INFINITY
1124 #else
1125 #define ECB_INFINITY HUGE_VAL
1126 #endif
1127
1128 #ifdef NAN
1129 #define ECB_NAN NAN
1130 #else
1131 #define ECB_NAN ECB_INFINITY
1132 #endif
1133
1134 /* converts an ieee half/binary16 to a float */
1135 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1136 ecb_function_ float
1137 ecb_binary16_to_float (uint16_t x)
1138 {
1139 int e = (x >> 10) & 0x1f;
1140 int m = x & 0x3ff;
1141 float r;
1142
1143 if (!e ) r = ldexpf (m , -24);
1144 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1145 else if (m ) r = ECB_NAN;
1146 else r = ECB_INFINITY;
1147
1148 return x & 0x8000 ? -r : r;
1149 }
1150
1151 /* convert a float to ieee single/binary32 */
1152 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1153 ecb_function_ uint32_t
1154 ecb_float_to_binary32 (float x)
1155 {
1156 uint32_t r;
1157
1158 #if ECB_STDFP
1159 memcpy (&r, &x, 4);
1160 #else
1161 /* slow emulation, works for anything but -0 */
1162 uint32_t m;
1163 int e;
1164
1165 if (x == 0e0f ) return 0x00000000U;
1166 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1167 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1168 if (x != x ) return 0x7fbfffffU;
1169
1170 m = frexpf (x, &e) * 0x1000000U;
1171
1172 r = m & 0x80000000U;
1173
1174 if (r)
1175 m = -m;
1176
1177 if (e <= -126)
1178 {
1179 m &= 0xffffffU;
1180 m >>= (-125 - e);
1181 e = -126;
1182 }
1183
1184 r |= (e + 126) << 23;
1185 r |= m & 0x7fffffU;
1186 #endif
1187
1188 return r;
1189 }
1190
1191 /* converts an ieee single/binary32 to a float */
1192 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1193 ecb_function_ float
1194 ecb_binary32_to_float (uint32_t x)
1195 {
1196 float r;
1197
1198 #if ECB_STDFP
1199 memcpy (&r, &x, 4);
1200 #else
1201 /* emulation, only works for normals and subnormals and +0 */
1202 int neg = x >> 31;
1203 int e = (x >> 23) & 0xffU;
1204
1205 x &= 0x7fffffU;
1206
1207 if (e)
1208 x |= 0x800000U;
1209 else
1210 e = 1;
1211
1212 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1213 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1214
1215 r = neg ? -r : r;
1216 #endif
1217
1218 return r;
1219 }
1220
1221 /* convert a double to ieee double/binary64 */
1222 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1223 ecb_function_ uint64_t
1224 ecb_double_to_binary64 (double x)
1225 {
1226 uint64_t r;
1227
1228 #if ECB_STDFP
1229 memcpy (&r, &x, 8);
1230 #else
1231 /* slow emulation, works for anything but -0 */
1232 uint64_t m;
1233 int e;
1234
1235 if (x == 0e0 ) return 0x0000000000000000U;
1236 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1237 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1238 if (x != x ) return 0X7ff7ffffffffffffU;
1239
1240 m = frexp (x, &e) * 0x20000000000000U;
1241
1242 r = m & 0x8000000000000000;;
1243
1244 if (r)
1245 m = -m;
1246
1247 if (e <= -1022)
1248 {
1249 m &= 0x1fffffffffffffU;
1250 m >>= (-1021 - e);
1251 e = -1022;
1252 }
1253
1254 r |= ((uint64_t)(e + 1022)) << 52;
1255 r |= m & 0xfffffffffffffU;
1256 #endif
1257
1258 return r;
1259 }
1260
1261 /* converts an ieee double/binary64 to a double */
1262 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1263 ecb_function_ double
1264 ecb_binary64_to_double (uint64_t x)
1265 {
1266 double r;
1267
1268 #if ECB_STDFP
1269 memcpy (&r, &x, 8);
1270 #else
1271 /* emulation, only works for normals and subnormals and +0 */
1272 int neg = x >> 63;
1273 int e = (x >> 52) & 0x7ffU;
1274
1275 x &= 0xfffffffffffffU;
1276
1277 if (e)
1278 x |= 0x10000000000000U;
1279 else
1280 e = 1;
1281
1282 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1283 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1284
1285 r = neg ? -r : r;
1286 #endif
1287
1288 return r;
1289 }
1290
1291#endif
1292
1293#endif
1294
1295/* ECB.H END */
1296
1297#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1298/* if your architecture doesn't need memory fences, e.g. because it is
1299 * single-cpu/core, or if you use libev in a project that doesn't use libev
1300 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1301 * libev, in which cases the memory fences become nops.
1302 * alternatively, you can remove this #error and link against libpthread,
1303 * which will then provide the memory fences.
1304 */
1305# error "memory fences not defined for your architecture, please report"
1306#endif
1307
1308#ifndef ECB_MEMORY_FENCE
1309# define ECB_MEMORY_FENCE do { } while (0)
1310# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1311# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1312#endif
1313
1314#define expect_false(cond) ecb_expect_false (cond)
1315#define expect_true(cond) ecb_expect_true (cond)
1316#define noinline ecb_noinline
1317
275#define inline_size static inline 1318#define inline_size ecb_inline
276 1319
277#if EV_MINIMAL 1320#if EV_FEATURE_CODE
1321# define inline_speed ecb_inline
1322#else
278# define inline_speed static noinline 1323# define inline_speed static noinline
1324#endif
1325
1326#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1327
1328#if EV_MINPRI == EV_MAXPRI
1329# define ABSPRI(w) (((W)w), 0)
279#else 1330#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1331# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1332#endif
285 1333
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1334#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 1335#define EMPTY2(a,b) /* used to suppress some warnings */
288 1336
289typedef ev_watcher *W; 1337typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 1338typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 1339typedef ev_watcher_time *WT;
292 1340
1341#define ev_active(w) ((W)(w))->active
1342#define ev_at(w) ((WT)(w))->at
1343
1344#if EV_USE_REALTIME
1345/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1346/* giving it a reasonably high chance of working on typical architectures */
1347static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1348#endif
1349
293#if EV_USE_MONOTONIC 1350#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1351static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1352#endif
1353
1354#ifndef EV_FD_TO_WIN32_HANDLE
1355# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1356#endif
1357#ifndef EV_WIN32_HANDLE_TO_FD
1358# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1359#endif
1360#ifndef EV_WIN32_CLOSE_FD
1361# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1362#endif
298 1363
299#ifdef _WIN32 1364#ifdef _WIN32
300# include "ev_win32.c" 1365# include "ev_win32.c"
301#endif 1366#endif
302 1367
303/*****************************************************************************/ 1368/*****************************************************************************/
304 1369
1370/* define a suitable floor function (only used by periodics atm) */
1371
1372#if EV_USE_FLOOR
1373# include <math.h>
1374# define ev_floor(v) floor (v)
1375#else
1376
1377#include <float.h>
1378
1379/* a floor() replacement function, should be independent of ev_tstamp type */
1380static ev_tstamp noinline
1381ev_floor (ev_tstamp v)
1382{
1383 /* the choice of shift factor is not terribly important */
1384#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1385 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1386#else
1387 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1388#endif
1389
1390 /* argument too large for an unsigned long? */
1391 if (expect_false (v >= shift))
1392 {
1393 ev_tstamp f;
1394
1395 if (v == v - 1.)
1396 return v; /* very large number */
1397
1398 f = shift * ev_floor (v * (1. / shift));
1399 return f + ev_floor (v - f);
1400 }
1401
1402 /* special treatment for negative args? */
1403 if (expect_false (v < 0.))
1404 {
1405 ev_tstamp f = -ev_floor (-v);
1406
1407 return f - (f == v ? 0 : 1);
1408 }
1409
1410 /* fits into an unsigned long */
1411 return (unsigned long)v;
1412}
1413
1414#endif
1415
1416/*****************************************************************************/
1417
1418#ifdef __linux
1419# include <sys/utsname.h>
1420#endif
1421
1422static unsigned int noinline ecb_cold
1423ev_linux_version (void)
1424{
1425#ifdef __linux
1426 unsigned int v = 0;
1427 struct utsname buf;
1428 int i;
1429 char *p = buf.release;
1430
1431 if (uname (&buf))
1432 return 0;
1433
1434 for (i = 3+1; --i; )
1435 {
1436 unsigned int c = 0;
1437
1438 for (;;)
1439 {
1440 if (*p >= '0' && *p <= '9')
1441 c = c * 10 + *p++ - '0';
1442 else
1443 {
1444 p += *p == '.';
1445 break;
1446 }
1447 }
1448
1449 v = (v << 8) | c;
1450 }
1451
1452 return v;
1453#else
1454 return 0;
1455#endif
1456}
1457
1458/*****************************************************************************/
1459
1460#if EV_AVOID_STDIO
1461static void noinline ecb_cold
1462ev_printerr (const char *msg)
1463{
1464 write (STDERR_FILENO, msg, strlen (msg));
1465}
1466#endif
1467
305static void (*syserr_cb)(const char *msg); 1468static void (*syserr_cb)(const char *msg) EV_THROW;
306 1469
307void 1470void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1471ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
309{ 1472{
310 syserr_cb = cb; 1473 syserr_cb = cb;
311} 1474}
312 1475
313static void noinline 1476static void noinline ecb_cold
314syserr (const char *msg) 1477ev_syserr (const char *msg)
315{ 1478{
316 if (!msg) 1479 if (!msg)
317 msg = "(libev) system error"; 1480 msg = "(libev) system error";
318 1481
319 if (syserr_cb) 1482 if (syserr_cb)
320 syserr_cb (msg); 1483 syserr_cb (msg);
321 else 1484 else
322 { 1485 {
1486#if EV_AVOID_STDIO
1487 ev_printerr (msg);
1488 ev_printerr (": ");
1489 ev_printerr (strerror (errno));
1490 ev_printerr ("\n");
1491#else
323 perror (msg); 1492 perror (msg);
1493#endif
324 abort (); 1494 abort ();
325 } 1495 }
326} 1496}
327 1497
1498static void *
1499ev_realloc_emul (void *ptr, long size) EV_THROW
1500{
1501 /* some systems, notably openbsd and darwin, fail to properly
1502 * implement realloc (x, 0) (as required by both ansi c-89 and
1503 * the single unix specification, so work around them here.
1504 * recently, also (at least) fedora and debian started breaking it,
1505 * despite documenting it otherwise.
1506 */
1507
1508 if (size)
1509 return realloc (ptr, size);
1510
1511 free (ptr);
1512 return 0;
1513}
1514
328static void *(*alloc)(void *ptr, long size); 1515static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
329 1516
330void 1517void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1518ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
332{ 1519{
333 alloc = cb; 1520 alloc = cb;
334} 1521}
335 1522
336inline_speed void * 1523inline_speed void *
337ev_realloc (void *ptr, long size) 1524ev_realloc (void *ptr, long size)
338{ 1525{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1526 ptr = alloc (ptr, size);
340 1527
341 if (!ptr && size) 1528 if (!ptr && size)
342 { 1529 {
1530#if EV_AVOID_STDIO
1531 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1532#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1533 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1534#endif
344 abort (); 1535 abort ();
345 } 1536 }
346 1537
347 return ptr; 1538 return ptr;
348} 1539}
350#define ev_malloc(size) ev_realloc (0, (size)) 1541#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1542#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1543
353/*****************************************************************************/ 1544/*****************************************************************************/
354 1545
1546/* set in reify when reification needed */
1547#define EV_ANFD_REIFY 1
1548
1549/* file descriptor info structure */
355typedef struct 1550typedef struct
356{ 1551{
357 WL head; 1552 WL head;
358 unsigned char events; 1553 unsigned char events; /* the events watched for */
1554 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1555 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1556 unsigned char unused;
1557#if EV_USE_EPOLL
1558 unsigned int egen; /* generation counter to counter epoll bugs */
1559#endif
360#if EV_SELECT_IS_WINSOCKET 1560#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1561 SOCKET handle;
362#endif 1562#endif
1563#if EV_USE_IOCP
1564 OVERLAPPED or, ow;
1565#endif
363} ANFD; 1566} ANFD;
364 1567
1568/* stores the pending event set for a given watcher */
365typedef struct 1569typedef struct
366{ 1570{
367 W w; 1571 W w;
368 int events; 1572 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1573} ANPENDING;
370 1574
371#if EV_USE_INOTIFY 1575#if EV_USE_INOTIFY
1576/* hash table entry per inotify-id */
372typedef struct 1577typedef struct
373{ 1578{
374 WL head; 1579 WL head;
375} ANFS; 1580} ANFS;
1581#endif
1582
1583/* Heap Entry */
1584#if EV_HEAP_CACHE_AT
1585 /* a heap element */
1586 typedef struct {
1587 ev_tstamp at;
1588 WT w;
1589 } ANHE;
1590
1591 #define ANHE_w(he) (he).w /* access watcher, read-write */
1592 #define ANHE_at(he) (he).at /* access cached at, read-only */
1593 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1594#else
1595 /* a heap element */
1596 typedef WT ANHE;
1597
1598 #define ANHE_w(he) (he)
1599 #define ANHE_at(he) (he)->at
1600 #define ANHE_at_cache(he)
376#endif 1601#endif
377 1602
378#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
379 1604
380 struct ev_loop 1605 struct ev_loop
386 #undef VAR 1611 #undef VAR
387 }; 1612 };
388 #include "ev_wrap.h" 1613 #include "ev_wrap.h"
389 1614
390 static struct ev_loop default_loop_struct; 1615 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1616 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1617
393#else 1618#else
394 1619
395 ev_tstamp ev_rt_now; 1620 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1621 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1622 #include "ev_vars.h"
398 #undef VAR 1623 #undef VAR
399 1624
400 static int ev_default_loop_ptr; 1625 static int ev_default_loop_ptr;
401 1626
402#endif 1627#endif
403 1628
1629#if EV_FEATURE_API
1630# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1631# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1632# define EV_INVOKE_PENDING invoke_cb (EV_A)
1633#else
1634# define EV_RELEASE_CB (void)0
1635# define EV_ACQUIRE_CB (void)0
1636# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1637#endif
1638
1639#define EVBREAK_RECURSE 0x80
1640
404/*****************************************************************************/ 1641/*****************************************************************************/
405 1642
1643#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1644ev_tstamp
407ev_time (void) 1645ev_time (void) EV_THROW
408{ 1646{
409#if EV_USE_REALTIME 1647#if EV_USE_REALTIME
1648 if (expect_true (have_realtime))
1649 {
410 struct timespec ts; 1650 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1651 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1652 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1653 }
1654#endif
1655
414 struct timeval tv; 1656 struct timeval tv;
415 gettimeofday (&tv, 0); 1657 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1658 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1659}
1660#endif
419 1661
420ev_tstamp inline_size 1662inline_size ev_tstamp
421get_clock (void) 1663get_clock (void)
422{ 1664{
423#if EV_USE_MONOTONIC 1665#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1666 if (expect_true (have_monotonic))
425 { 1667 {
432 return ev_time (); 1674 return ev_time ();
433} 1675}
434 1676
435#if EV_MULTIPLICITY 1677#if EV_MULTIPLICITY
436ev_tstamp 1678ev_tstamp
437ev_now (EV_P) 1679ev_now (EV_P) EV_THROW
438{ 1680{
439 return ev_rt_now; 1681 return ev_rt_now;
440} 1682}
441#endif 1683#endif
442 1684
443void 1685void
444ev_sleep (ev_tstamp delay) 1686ev_sleep (ev_tstamp delay) EV_THROW
445{ 1687{
446 if (delay > 0.) 1688 if (delay > 0.)
447 { 1689 {
448#if EV_USE_NANOSLEEP 1690#if EV_USE_NANOSLEEP
449 struct timespec ts; 1691 struct timespec ts;
450 1692
451 ts.tv_sec = (time_t)delay; 1693 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1694 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1695#elif defined _WIN32
456 Sleep ((unsigned long)(delay * 1e3)); 1696 Sleep ((unsigned long)(delay * 1e3));
457#else 1697#else
458 struct timeval tv; 1698 struct timeval tv;
459 1699
460 tv.tv_sec = (time_t)delay; 1700 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1701 /* something not guaranteed by newer posix versions, but guaranteed */
462 1702 /* by older ones */
1703 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1704 select (0, 0, 0, 0, &tv);
464#endif 1705#endif
465 } 1706 }
466} 1707}
467 1708
468/*****************************************************************************/ 1709/*****************************************************************************/
469 1710
470int inline_size 1711#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1712
1713/* find a suitable new size for the given array, */
1714/* hopefully by rounding to a nice-to-malloc size */
1715inline_size int
471array_nextsize (int elem, int cur, int cnt) 1716array_nextsize (int elem, int cur, int cnt)
472{ 1717{
473 int ncur = cur + 1; 1718 int ncur = cur + 1;
474 1719
475 do 1720 do
476 ncur <<= 1; 1721 ncur <<= 1;
477 while (cnt > ncur); 1722 while (cnt > ncur);
478 1723
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1724 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1725 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1726 {
482 ncur *= elem; 1727 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1728 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1729 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1730 ncur /= elem;
486 } 1731 }
487 1732
488 return ncur; 1733 return ncur;
489} 1734}
490 1735
491static noinline void * 1736static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1737array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1738{
494 *cur = array_nextsize (elem, *cur, cnt); 1739 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1740 return ev_realloc (base, elem * *cur);
496} 1741}
1742
1743#define array_init_zero(base,count) \
1744 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1745
498#define array_needsize(type,base,cur,cnt,init) \ 1746#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1747 if (expect_false ((cnt) > (cur))) \
500 { \ 1748 { \
501 int ocur_ = (cur); \ 1749 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1750 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1751 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1752 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1753 }
506 1754
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1761 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1762 }
515#endif 1763#endif
516 1764
517#define array_free(stem, idx) \ 1765#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1766 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1767
520/*****************************************************************************/ 1768/*****************************************************************************/
521 1769
1770/* dummy callback for pending events */
1771static void noinline
1772pendingcb (EV_P_ ev_prepare *w, int revents)
1773{
1774}
1775
522void noinline 1776void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1777ev_feed_event (EV_P_ void *w, int revents) EV_THROW
524{ 1778{
525 W w_ = (W)w; 1779 W w_ = (W)w;
526 int pri = ABSPRI (w_); 1780 int pri = ABSPRI (w_);
527 1781
528 if (expect_false (w_->pending)) 1782 if (expect_false (w_->pending))
532 w_->pending = ++pendingcnt [pri]; 1786 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1787 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_; 1788 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1789 pendings [pri][w_->pending - 1].events = revents;
536 } 1790 }
537}
538 1791
539void inline_speed 1792 pendingpri = NUMPRI - 1;
1793}
1794
1795inline_speed void
1796feed_reverse (EV_P_ W w)
1797{
1798 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1799 rfeeds [rfeedcnt++] = w;
1800}
1801
1802inline_size void
1803feed_reverse_done (EV_P_ int revents)
1804{
1805 do
1806 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1807 while (rfeedcnt);
1808}
1809
1810inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1811queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1812{
542 int i; 1813 int i;
543 1814
544 for (i = 0; i < eventcnt; ++i) 1815 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1816 ev_feed_event (EV_A_ events [i], type);
546} 1817}
547 1818
548/*****************************************************************************/ 1819/*****************************************************************************/
549 1820
550void inline_size 1821inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1822fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1823{
566 ANFD *anfd = anfds + fd; 1824 ANFD *anfd = anfds + fd;
567 ev_io *w; 1825 ev_io *w;
568 1826
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1827 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1831 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1832 ev_feed_event (EV_A_ (W)w, ev);
575 } 1833 }
576} 1834}
577 1835
1836/* do not submit kernel events for fds that have reify set */
1837/* because that means they changed while we were polling for new events */
1838inline_speed void
1839fd_event (EV_P_ int fd, int revents)
1840{
1841 ANFD *anfd = anfds + fd;
1842
1843 if (expect_true (!anfd->reify))
1844 fd_event_nocheck (EV_A_ fd, revents);
1845}
1846
578void 1847void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1848ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
580{ 1849{
581 if (fd >= 0 && fd < anfdmax) 1850 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1851 fd_event_nocheck (EV_A_ fd, revents);
583} 1852}
584 1853
585void inline_size 1854/* make sure the external fd watch events are in-sync */
1855/* with the kernel/libev internal state */
1856inline_size void
586fd_reify (EV_P) 1857fd_reify (EV_P)
587{ 1858{
588 int i; 1859 int i;
1860
1861#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1862 for (i = 0; i < fdchangecnt; ++i)
1863 {
1864 int fd = fdchanges [i];
1865 ANFD *anfd = anfds + fd;
1866
1867 if (anfd->reify & EV__IOFDSET && anfd->head)
1868 {
1869 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1870
1871 if (handle != anfd->handle)
1872 {
1873 unsigned long arg;
1874
1875 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1876
1877 /* handle changed, but fd didn't - we need to do it in two steps */
1878 backend_modify (EV_A_ fd, anfd->events, 0);
1879 anfd->events = 0;
1880 anfd->handle = handle;
1881 }
1882 }
1883 }
1884#endif
589 1885
590 for (i = 0; i < fdchangecnt; ++i) 1886 for (i = 0; i < fdchangecnt; ++i)
591 { 1887 {
592 int fd = fdchanges [i]; 1888 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1889 ANFD *anfd = anfds + fd;
594 ev_io *w; 1890 ev_io *w;
595 1891
596 unsigned char events = 0; 1892 unsigned char o_events = anfd->events;
1893 unsigned char o_reify = anfd->reify;
597 1894
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1895 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1896
601#if EV_SELECT_IS_WINSOCKET 1897 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1898 {
604 unsigned long argp; 1899 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1900
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1902 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1903
609 #endif 1904 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1905 o_reify = EV__IOFDSET; /* actually |= */
611 } 1906 }
612#endif
613 1907
614 { 1908 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1909 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1910 }
625 1911
626 fdchangecnt = 0; 1912 fdchangecnt = 0;
627} 1913}
628 1914
629void inline_size 1915/* something about the given fd changed */
1916inline_size void
630fd_change (EV_P_ int fd, int flags) 1917fd_change (EV_P_ int fd, int flags)
631{ 1918{
632 unsigned char reify = anfds [fd].reify; 1919 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1920 anfds [fd].reify |= flags;
634 1921
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1925 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1926 fdchanges [fdchangecnt - 1] = fd;
640 } 1927 }
641} 1928}
642 1929
643void inline_speed 1930/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1931inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 1932fd_kill (EV_P_ int fd)
645{ 1933{
646 ev_io *w; 1934 ev_io *w;
647 1935
648 while ((w = (ev_io *)anfds [fd].head)) 1936 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1938 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1939 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1940 }
653} 1941}
654 1942
655int inline_size 1943/* check whether the given fd is actually valid, for error recovery */
1944inline_size int ecb_cold
656fd_valid (int fd) 1945fd_valid (int fd)
657{ 1946{
658#ifdef _WIN32 1947#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1948 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1949#else
661 return fcntl (fd, F_GETFD) != -1; 1950 return fcntl (fd, F_GETFD) != -1;
662#endif 1951#endif
663} 1952}
664 1953
665/* called on EBADF to verify fds */ 1954/* called on EBADF to verify fds */
666static void noinline 1955static void noinline ecb_cold
667fd_ebadf (EV_P) 1956fd_ebadf (EV_P)
668{ 1957{
669 int fd; 1958 int fd;
670 1959
671 for (fd = 0; fd < anfdmax; ++fd) 1960 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1961 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1962 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1963 fd_kill (EV_A_ fd);
675} 1964}
676 1965
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1966/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1967static void noinline ecb_cold
679fd_enomem (EV_P) 1968fd_enomem (EV_P)
680{ 1969{
681 int fd; 1970 int fd;
682 1971
683 for (fd = anfdmax; fd--; ) 1972 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1973 if (anfds [fd].events)
685 { 1974 {
686 fd_kill (EV_A_ fd); 1975 fd_kill (EV_A_ fd);
687 return; 1976 break;
688 } 1977 }
689} 1978}
690 1979
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1980/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1981static void noinline
696 1985
697 for (fd = 0; fd < anfdmax; ++fd) 1986 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1987 if (anfds [fd].events)
699 { 1988 {
700 anfds [fd].events = 0; 1989 anfds [fd].events = 0;
1990 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1991 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1992 }
703} 1993}
704 1994
705/*****************************************************************************/ 1995/* used to prepare libev internal fd's */
706 1996/* this is not fork-safe */
707void inline_speed 1997inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 1998fd_intern (int fd)
792{ 1999{
793#ifdef _WIN32 2000#ifdef _WIN32
794 int arg = 1; 2001 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2002 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 2003#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 2004 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 2005 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 2006#endif
800} 2007}
801 2008
2009/*****************************************************************************/
2010
2011/*
2012 * the heap functions want a real array index. array index 0 is guaranteed to not
2013 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2014 * the branching factor of the d-tree.
2015 */
2016
2017/*
2018 * at the moment we allow libev the luxury of two heaps,
2019 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2020 * which is more cache-efficient.
2021 * the difference is about 5% with 50000+ watchers.
2022 */
2023#if EV_USE_4HEAP
2024
2025#define DHEAP 4
2026#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2027#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2028#define UPHEAP_DONE(p,k) ((p) == (k))
2029
2030/* away from the root */
2031inline_speed void
2032downheap (ANHE *heap, int N, int k)
2033{
2034 ANHE he = heap [k];
2035 ANHE *E = heap + N + HEAP0;
2036
2037 for (;;)
2038 {
2039 ev_tstamp minat;
2040 ANHE *minpos;
2041 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2042
2043 /* find minimum child */
2044 if (expect_true (pos + DHEAP - 1 < E))
2045 {
2046 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2047 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2048 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2049 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2050 }
2051 else if (pos < E)
2052 {
2053 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2054 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2055 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2056 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2057 }
2058 else
2059 break;
2060
2061 if (ANHE_at (he) <= minat)
2062 break;
2063
2064 heap [k] = *minpos;
2065 ev_active (ANHE_w (*minpos)) = k;
2066
2067 k = minpos - heap;
2068 }
2069
2070 heap [k] = he;
2071 ev_active (ANHE_w (he)) = k;
2072}
2073
2074#else /* 4HEAP */
2075
2076#define HEAP0 1
2077#define HPARENT(k) ((k) >> 1)
2078#define UPHEAP_DONE(p,k) (!(p))
2079
2080/* away from the root */
2081inline_speed void
2082downheap (ANHE *heap, int N, int k)
2083{
2084 ANHE he = heap [k];
2085
2086 for (;;)
2087 {
2088 int c = k << 1;
2089
2090 if (c >= N + HEAP0)
2091 break;
2092
2093 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2094 ? 1 : 0;
2095
2096 if (ANHE_at (he) <= ANHE_at (heap [c]))
2097 break;
2098
2099 heap [k] = heap [c];
2100 ev_active (ANHE_w (heap [k])) = k;
2101
2102 k = c;
2103 }
2104
2105 heap [k] = he;
2106 ev_active (ANHE_w (he)) = k;
2107}
2108#endif
2109
2110/* towards the root */
2111inline_speed void
2112upheap (ANHE *heap, int k)
2113{
2114 ANHE he = heap [k];
2115
2116 for (;;)
2117 {
2118 int p = HPARENT (k);
2119
2120 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2121 break;
2122
2123 heap [k] = heap [p];
2124 ev_active (ANHE_w (heap [k])) = k;
2125 k = p;
2126 }
2127
2128 heap [k] = he;
2129 ev_active (ANHE_w (he)) = k;
2130}
2131
2132/* move an element suitably so it is in a correct place */
2133inline_size void
2134adjustheap (ANHE *heap, int N, int k)
2135{
2136 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2137 upheap (heap, k);
2138 else
2139 downheap (heap, N, k);
2140}
2141
2142/* rebuild the heap: this function is used only once and executed rarely */
2143inline_size void
2144reheap (ANHE *heap, int N)
2145{
2146 int i;
2147
2148 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2149 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2150 for (i = 0; i < N; ++i)
2151 upheap (heap, i + HEAP0);
2152}
2153
2154/*****************************************************************************/
2155
2156/* associate signal watchers to a signal signal */
2157typedef struct
2158{
2159 EV_ATOMIC_T pending;
2160#if EV_MULTIPLICITY
2161 EV_P;
2162#endif
2163 WL head;
2164} ANSIG;
2165
2166static ANSIG signals [EV_NSIG - 1];
2167
2168/*****************************************************************************/
2169
2170#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2171
802static void noinline 2172static void noinline ecb_cold
803evpipe_init (EV_P) 2173evpipe_init (EV_P)
804{ 2174{
805 if (!ev_is_active (&pipeev)) 2175 if (!ev_is_active (&pipe_w))
806 { 2176 {
2177 int fds [2];
2178
2179# if EV_USE_EVENTFD
2180 fds [0] = -1;
2181 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2182 if (fds [1] < 0 && errno == EINVAL)
2183 fds [1] = eventfd (0, 0);
2184
2185 if (fds [1] < 0)
2186# endif
2187 {
807 while (pipe (evpipe)) 2188 while (pipe (fds))
808 syserr ("(libev) error creating signal/async pipe"); 2189 ev_syserr ("(libev) error creating signal/async pipe");
809 2190
810 fd_intern (evpipe [0]); 2191 fd_intern (fds [0]);
2192 }
2193
2194 evpipe [0] = fds [0];
2195
2196 if (evpipe [1] < 0)
2197 evpipe [1] = fds [1]; /* first call, set write fd */
2198 else
2199 {
2200 /* on subsequent calls, do not change evpipe [1] */
2201 /* so that evpipe_write can always rely on its value. */
2202 /* this branch does not do anything sensible on windows, */
2203 /* so must not be executed on windows */
2204
2205 dup2 (fds [1], evpipe [1]);
2206 close (fds [1]);
2207 }
2208
811 fd_intern (evpipe [1]); 2209 fd_intern (evpipe [1]);
812 2210
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 2211 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
814 ev_io_start (EV_A_ &pipeev); 2212 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 2213 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 2214 }
817} 2215}
818 2216
819void inline_size 2217inline_speed void
820evpipe_write (EV_P_ EV_ATOMIC_T *flag) 2218evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 2219{
822 if (!*flag) 2220 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2221
2222 if (expect_true (*flag))
2223 return;
2224
2225 *flag = 1;
2226 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2227
2228 pipe_write_skipped = 1;
2229
2230 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2231
2232 if (pipe_write_wanted)
823 { 2233 {
2234 int old_errno;
2235
2236 pipe_write_skipped = 0;
2237 ECB_MEMORY_FENCE_RELEASE;
2238
824 int old_errno = errno; /* save errno because write might clobber it */ 2239 old_errno = errno; /* save errno because write will clobber it */
825 2240
826 *flag = 1; 2241#if EV_USE_EVENTFD
827 write (evpipe [1], &old_errno, 1); 2242 if (evpipe [0] < 0)
2243 {
2244 uint64_t counter = 1;
2245 write (evpipe [1], &counter, sizeof (uint64_t));
2246 }
2247 else
2248#endif
2249 {
2250#ifdef _WIN32
2251 WSABUF buf;
2252 DWORD sent;
2253 buf.buf = &buf;
2254 buf.len = 1;
2255 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2256#else
2257 write (evpipe [1], &(evpipe [1]), 1);
2258#endif
2259 }
828 2260
829 errno = old_errno; 2261 errno = old_errno;
830 } 2262 }
831} 2263}
832 2264
2265/* called whenever the libev signal pipe */
2266/* got some events (signal, async) */
833static void 2267static void
834pipecb (EV_P_ ev_io *iow, int revents) 2268pipecb (EV_P_ ev_io *iow, int revents)
835{ 2269{
2270 int i;
2271
2272 if (revents & EV_READ)
836 { 2273 {
837 int dummy; 2274#if EV_USE_EVENTFD
2275 if (evpipe [0] < 0)
2276 {
2277 uint64_t counter;
2278 read (evpipe [1], &counter, sizeof (uint64_t));
2279 }
2280 else
2281#endif
2282 {
2283 char dummy[4];
2284#ifdef _WIN32
2285 WSABUF buf;
2286 DWORD recvd;
2287 DWORD flags = 0;
2288 buf.buf = dummy;
2289 buf.len = sizeof (dummy);
2290 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2291#else
838 read (evpipe [0], &dummy, 1); 2292 read (evpipe [0], &dummy, sizeof (dummy));
2293#endif
2294 }
839 } 2295 }
840 2296
841 if (gotsig && ev_is_default_loop (EV_A)) 2297 pipe_write_skipped = 0;
842 {
843 int signum;
844 gotsig = 0;
845 2298
846 for (signum = signalmax; signum--; ) 2299 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
847 if (signals [signum].gotsig) 2300
2301#if EV_SIGNAL_ENABLE
2302 if (sig_pending)
2303 {
2304 sig_pending = 0;
2305
2306 ECB_MEMORY_FENCE;
2307
2308 for (i = EV_NSIG - 1; i--; )
2309 if (expect_false (signals [i].pending))
848 ev_feed_signal_event (EV_A_ signum + 1); 2310 ev_feed_signal_event (EV_A_ i + 1);
849 } 2311 }
2312#endif
850 2313
851#if EV_ASYNC_ENABLE 2314#if EV_ASYNC_ENABLE
852 if (gotasync) 2315 if (async_pending)
853 { 2316 {
854 int i; 2317 async_pending = 0;
855 gotasync = 0; 2318
2319 ECB_MEMORY_FENCE;
856 2320
857 for (i = asynccnt; i--; ) 2321 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent) 2322 if (asyncs [i]->sent)
859 { 2323 {
860 asyncs [i]->sent = 0; 2324 asyncs [i]->sent = 0;
2325 ECB_MEMORY_FENCE_RELEASE;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2326 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 } 2327 }
863 } 2328 }
864#endif 2329#endif
865} 2330}
866 2331
867/*****************************************************************************/ 2332/*****************************************************************************/
868 2333
2334void
2335ev_feed_signal (int signum) EV_THROW
2336{
2337#if EV_MULTIPLICITY
2338 EV_P;
2339 ECB_MEMORY_FENCE_ACQUIRE;
2340 EV_A = signals [signum - 1].loop;
2341
2342 if (!EV_A)
2343 return;
2344#endif
2345
2346 signals [signum - 1].pending = 1;
2347 evpipe_write (EV_A_ &sig_pending);
2348}
2349
869static void 2350static void
870ev_sighandler (int signum) 2351ev_sighandler (int signum)
871{ 2352{
2353#ifdef _WIN32
2354 signal (signum, ev_sighandler);
2355#endif
2356
2357 ev_feed_signal (signum);
2358}
2359
2360void noinline
2361ev_feed_signal_event (EV_P_ int signum) EV_THROW
2362{
2363 WL w;
2364
2365 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2366 return;
2367
2368 --signum;
2369
872#if EV_MULTIPLICITY 2370#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 2371 /* it is permissible to try to feed a signal to the wrong loop */
874#endif 2372 /* or, likely more useful, feeding a signal nobody is waiting for */
875 2373
876#if _WIN32 2374 if (expect_false (signals [signum].loop != EV_A))
877 signal (signum, ev_sighandler);
878#endif
879
880 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig);
882}
883
884void noinline
885ev_feed_signal_event (EV_P_ int signum)
886{
887 WL w;
888
889#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif
892
893 --signum;
894
895 if (signum < 0 || signum >= signalmax)
896 return; 2375 return;
2376#endif
897 2377
898 signals [signum].gotsig = 0; 2378 signals [signum].pending = 0;
2379 ECB_MEMORY_FENCE_RELEASE;
899 2380
900 for (w = signals [signum].head; w; w = w->next) 2381 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2382 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902} 2383}
903 2384
2385#if EV_USE_SIGNALFD
2386static void
2387sigfdcb (EV_P_ ev_io *iow, int revents)
2388{
2389 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2390
2391 for (;;)
2392 {
2393 ssize_t res = read (sigfd, si, sizeof (si));
2394
2395 /* not ISO-C, as res might be -1, but works with SuS */
2396 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2397 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2398
2399 if (res < (ssize_t)sizeof (si))
2400 break;
2401 }
2402}
2403#endif
2404
2405#endif
2406
904/*****************************************************************************/ 2407/*****************************************************************************/
905 2408
2409#if EV_CHILD_ENABLE
906static WL childs [EV_PID_HASHSIZE]; 2410static WL childs [EV_PID_HASHSIZE];
907
908#ifndef _WIN32
909 2411
910static ev_signal childev; 2412static ev_signal childev;
911 2413
912#ifndef WIFCONTINUED 2414#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 2415# define WIFCONTINUED(status) 0
914#endif 2416#endif
915 2417
916void inline_speed 2418/* handle a single child status event */
2419inline_speed void
917child_reap (EV_P_ int chain, int pid, int status) 2420child_reap (EV_P_ int chain, int pid, int status)
918{ 2421{
919 ev_child *w; 2422 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2423 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 2424
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2425 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
923 { 2426 {
924 if ((w->pid == pid || !w->pid) 2427 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1))) 2428 && (!traced || (w->flags & 1)))
926 { 2429 {
927 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2430 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
934 2437
935#ifndef WCONTINUED 2438#ifndef WCONTINUED
936# define WCONTINUED 0 2439# define WCONTINUED 0
937#endif 2440#endif
938 2441
2442/* called on sigchld etc., calls waitpid */
939static void 2443static void
940childcb (EV_P_ ev_signal *sw, int revents) 2444childcb (EV_P_ ev_signal *sw, int revents)
941{ 2445{
942 int pid, status; 2446 int pid, status;
943 2447
951 /* make sure we are called again until all children have been reaped */ 2455 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */ 2456 /* we need to do it this way so that the callback gets called before we continue */
953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2457 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
954 2458
955 child_reap (EV_A_ pid, pid, status); 2459 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1) 2460 if ((EV_PID_HASHSIZE) > 1)
957 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2461 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
958} 2462}
959 2463
960#endif 2464#endif
961 2465
962/*****************************************************************************/ 2466/*****************************************************************************/
963 2467
2468#if EV_USE_IOCP
2469# include "ev_iocp.c"
2470#endif
964#if EV_USE_PORT 2471#if EV_USE_PORT
965# include "ev_port.c" 2472# include "ev_port.c"
966#endif 2473#endif
967#if EV_USE_KQUEUE 2474#if EV_USE_KQUEUE
968# include "ev_kqueue.c" 2475# include "ev_kqueue.c"
975#endif 2482#endif
976#if EV_USE_SELECT 2483#if EV_USE_SELECT
977# include "ev_select.c" 2484# include "ev_select.c"
978#endif 2485#endif
979 2486
980int 2487int ecb_cold
981ev_version_major (void) 2488ev_version_major (void) EV_THROW
982{ 2489{
983 return EV_VERSION_MAJOR; 2490 return EV_VERSION_MAJOR;
984} 2491}
985 2492
986int 2493int ecb_cold
987ev_version_minor (void) 2494ev_version_minor (void) EV_THROW
988{ 2495{
989 return EV_VERSION_MINOR; 2496 return EV_VERSION_MINOR;
990} 2497}
991 2498
992/* return true if we are running with elevated privileges and should ignore env variables */ 2499/* return true if we are running with elevated privileges and should ignore env variables */
993int inline_size 2500int inline_size ecb_cold
994enable_secure (void) 2501enable_secure (void)
995{ 2502{
996#ifdef _WIN32 2503#ifdef _WIN32
997 return 0; 2504 return 0;
998#else 2505#else
999 return getuid () != geteuid () 2506 return getuid () != geteuid ()
1000 || getgid () != getegid (); 2507 || getgid () != getegid ();
1001#endif 2508#endif
1002} 2509}
1003 2510
1004unsigned int 2511unsigned int ecb_cold
1005ev_supported_backends (void) 2512ev_supported_backends (void) EV_THROW
1006{ 2513{
1007 unsigned int flags = 0; 2514 unsigned int flags = 0;
1008 2515
1009 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2516 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1010 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2517 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1013 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2520 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1014 2521
1015 return flags; 2522 return flags;
1016} 2523}
1017 2524
1018unsigned int 2525unsigned int ecb_cold
1019ev_recommended_backends (void) 2526ev_recommended_backends (void) EV_THROW
1020{ 2527{
1021 unsigned int flags = ev_supported_backends (); 2528 unsigned int flags = ev_supported_backends ();
1022 2529
1023#ifndef __NetBSD__ 2530#ifndef __NetBSD__
1024 /* kqueue is borked on everything but netbsd apparently */ 2531 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */ 2532 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE; 2533 flags &= ~EVBACKEND_KQUEUE;
1027#endif 2534#endif
1028#ifdef __APPLE__ 2535#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation 2536 /* only select works correctly on that "unix-certified" platform */
1030 flags &= ~EVBACKEND_POLL; 2537 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2538 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2539#endif
2540#ifdef __FreeBSD__
2541 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1031#endif 2542#endif
1032 2543
1033 return flags; 2544 return flags;
1034} 2545}
1035 2546
2547unsigned int ecb_cold
2548ev_embeddable_backends (void) EV_THROW
2549{
2550 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2551
2552 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2553 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2554 flags &= ~EVBACKEND_EPOLL;
2555
2556 return flags;
2557}
2558
1036unsigned int 2559unsigned int
1037ev_embeddable_backends (void) 2560ev_backend (EV_P) EV_THROW
1038{ 2561{
1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2562 return backend;
1040
1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */
1043 flags &= ~EVBACKEND_EPOLL;
1044
1045 return flags;
1046} 2563}
1047 2564
2565#if EV_FEATURE_API
1048unsigned int 2566unsigned int
1049ev_backend (EV_P) 2567ev_iteration (EV_P) EV_THROW
1050{ 2568{
1051 return backend; 2569 return loop_count;
1052} 2570}
1053 2571
1054unsigned int 2572unsigned int
1055ev_loop_count (EV_P) 2573ev_depth (EV_P) EV_THROW
1056{ 2574{
1057 return loop_count; 2575 return loop_depth;
1058} 2576}
1059 2577
1060void 2578void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2579ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1062{ 2580{
1063 io_blocktime = interval; 2581 io_blocktime = interval;
1064} 2582}
1065 2583
1066void 2584void
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2585ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1068{ 2586{
1069 timeout_blocktime = interval; 2587 timeout_blocktime = interval;
1070} 2588}
1071 2589
2590void
2591ev_set_userdata (EV_P_ void *data) EV_THROW
2592{
2593 userdata = data;
2594}
2595
2596void *
2597ev_userdata (EV_P) EV_THROW
2598{
2599 return userdata;
2600}
2601
2602void
2603ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2604{
2605 invoke_cb = invoke_pending_cb;
2606}
2607
2608void
2609ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2610{
2611 release_cb = release;
2612 acquire_cb = acquire;
2613}
2614#endif
2615
2616/* initialise a loop structure, must be zero-initialised */
1072static void noinline 2617static void noinline ecb_cold
1073loop_init (EV_P_ unsigned int flags) 2618loop_init (EV_P_ unsigned int flags) EV_THROW
1074{ 2619{
1075 if (!backend) 2620 if (!backend)
1076 { 2621 {
2622 origflags = flags;
2623
2624#if EV_USE_REALTIME
2625 if (!have_realtime)
2626 {
2627 struct timespec ts;
2628
2629 if (!clock_gettime (CLOCK_REALTIME, &ts))
2630 have_realtime = 1;
2631 }
2632#endif
2633
1077#if EV_USE_MONOTONIC 2634#if EV_USE_MONOTONIC
2635 if (!have_monotonic)
1078 { 2636 {
1079 struct timespec ts; 2637 struct timespec ts;
2638
1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2639 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1081 have_monotonic = 1; 2640 have_monotonic = 1;
1082 } 2641 }
1083#endif
1084
1085 ev_rt_now = ev_time ();
1086 mn_now = get_clock ();
1087 now_floor = mn_now;
1088 rtmn_diff = ev_rt_now - mn_now;
1089
1090 io_blocktime = 0.;
1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif 2642#endif
1098 2643
1099 /* pid check not overridable via env */ 2644 /* pid check not overridable via env */
1100#ifndef _WIN32 2645#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK) 2646 if (flags & EVFLAG_FORKCHECK)
1105 if (!(flags & EVFLAG_NOENV) 2650 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 2651 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 2652 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 2653 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 2654
1110 if (!(flags & 0x0000ffffUL)) 2655 ev_rt_now = ev_time ();
2656 mn_now = get_clock ();
2657 now_floor = mn_now;
2658 rtmn_diff = ev_rt_now - mn_now;
2659#if EV_FEATURE_API
2660 invoke_cb = ev_invoke_pending;
2661#endif
2662
2663 io_blocktime = 0.;
2664 timeout_blocktime = 0.;
2665 backend = 0;
2666 backend_fd = -1;
2667 sig_pending = 0;
2668#if EV_ASYNC_ENABLE
2669 async_pending = 0;
2670#endif
2671 pipe_write_skipped = 0;
2672 pipe_write_wanted = 0;
2673 evpipe [0] = -1;
2674 evpipe [1] = -1;
2675#if EV_USE_INOTIFY
2676 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2677#endif
2678#if EV_USE_SIGNALFD
2679 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2680#endif
2681
2682 if (!(flags & EVBACKEND_MASK))
1111 flags |= ev_recommended_backends (); 2683 flags |= ev_recommended_backends ();
1112 2684
2685#if EV_USE_IOCP
2686 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2687#endif
1113#if EV_USE_PORT 2688#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2689 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 2690#endif
1116#if EV_USE_KQUEUE 2691#if EV_USE_KQUEUE
1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2692 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1124#endif 2699#endif
1125#if EV_USE_SELECT 2700#if EV_USE_SELECT
1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2701 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1127#endif 2702#endif
1128 2703
2704 ev_prepare_init (&pending_w, pendingcb);
2705
2706#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1129 ev_init (&pipeev, pipecb); 2707 ev_init (&pipe_w, pipecb);
1130 ev_set_priority (&pipeev, EV_MAXPRI); 2708 ev_set_priority (&pipe_w, EV_MAXPRI);
2709#endif
1131 } 2710 }
1132} 2711}
1133 2712
1134static void noinline 2713/* free up a loop structure */
2714void ecb_cold
1135loop_destroy (EV_P) 2715ev_loop_destroy (EV_P)
1136{ 2716{
1137 int i; 2717 int i;
1138 2718
2719#if EV_MULTIPLICITY
2720 /* mimic free (0) */
2721 if (!EV_A)
2722 return;
2723#endif
2724
2725#if EV_CLEANUP_ENABLE
2726 /* queue cleanup watchers (and execute them) */
2727 if (expect_false (cleanupcnt))
2728 {
2729 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2730 EV_INVOKE_PENDING;
2731 }
2732#endif
2733
2734#if EV_CHILD_ENABLE
2735 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2736 {
2737 ev_ref (EV_A); /* child watcher */
2738 ev_signal_stop (EV_A_ &childev);
2739 }
2740#endif
2741
1139 if (ev_is_active (&pipeev)) 2742 if (ev_is_active (&pipe_w))
1140 { 2743 {
1141 ev_ref (EV_A); /* signal watcher */ 2744 /*ev_ref (EV_A);*/
1142 ev_io_stop (EV_A_ &pipeev); 2745 /*ev_io_stop (EV_A_ &pipe_w);*/
1143 2746
1144 close (evpipe [0]); evpipe [0] = 0; 2747 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
1145 close (evpipe [1]); evpipe [1] = 0; 2748 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
1146 } 2749 }
2750
2751#if EV_USE_SIGNALFD
2752 if (ev_is_active (&sigfd_w))
2753 close (sigfd);
2754#endif
1147 2755
1148#if EV_USE_INOTIFY 2756#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 2757 if (fs_fd >= 0)
1150 close (fs_fd); 2758 close (fs_fd);
1151#endif 2759#endif
1152 2760
1153 if (backend_fd >= 0) 2761 if (backend_fd >= 0)
1154 close (backend_fd); 2762 close (backend_fd);
1155 2763
2764#if EV_USE_IOCP
2765 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2766#endif
1156#if EV_USE_PORT 2767#if EV_USE_PORT
1157 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2768 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1158#endif 2769#endif
1159#if EV_USE_KQUEUE 2770#if EV_USE_KQUEUE
1160 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2771 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1175#if EV_IDLE_ENABLE 2786#if EV_IDLE_ENABLE
1176 array_free (idle, [i]); 2787 array_free (idle, [i]);
1177#endif 2788#endif
1178 } 2789 }
1179 2790
1180 ev_free (anfds); anfdmax = 0; 2791 ev_free (anfds); anfds = 0; anfdmax = 0;
1181 2792
1182 /* have to use the microsoft-never-gets-it-right macro */ 2793 /* have to use the microsoft-never-gets-it-right macro */
2794 array_free (rfeed, EMPTY);
1183 array_free (fdchange, EMPTY); 2795 array_free (fdchange, EMPTY);
1184 array_free (timer, EMPTY); 2796 array_free (timer, EMPTY);
1185#if EV_PERIODIC_ENABLE 2797#if EV_PERIODIC_ENABLE
1186 array_free (periodic, EMPTY); 2798 array_free (periodic, EMPTY);
1187#endif 2799#endif
1188#if EV_FORK_ENABLE 2800#if EV_FORK_ENABLE
1189 array_free (fork, EMPTY); 2801 array_free (fork, EMPTY);
1190#endif 2802#endif
2803#if EV_CLEANUP_ENABLE
2804 array_free (cleanup, EMPTY);
2805#endif
1191 array_free (prepare, EMPTY); 2806 array_free (prepare, EMPTY);
1192 array_free (check, EMPTY); 2807 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE 2808#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY); 2809 array_free (async, EMPTY);
1195#endif 2810#endif
1196 2811
1197 backend = 0; 2812 backend = 0;
1198}
1199 2813
2814#if EV_MULTIPLICITY
2815 if (ev_is_default_loop (EV_A))
2816#endif
2817 ev_default_loop_ptr = 0;
2818#if EV_MULTIPLICITY
2819 else
2820 ev_free (EV_A);
2821#endif
2822}
2823
2824#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 2825inline_size void infy_fork (EV_P);
2826#endif
1201 2827
1202void inline_size 2828inline_size void
1203loop_fork (EV_P) 2829loop_fork (EV_P)
1204{ 2830{
1205#if EV_USE_PORT 2831#if EV_USE_PORT
1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2832 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1207#endif 2833#endif
1213#endif 2839#endif
1214#if EV_USE_INOTIFY 2840#if EV_USE_INOTIFY
1215 infy_fork (EV_A); 2841 infy_fork (EV_A);
1216#endif 2842#endif
1217 2843
2844#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1218 if (ev_is_active (&pipeev)) 2845 if (ev_is_active (&pipe_w))
2846 {
2847 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2848
2849 ev_ref (EV_A);
2850 ev_io_stop (EV_A_ &pipe_w);
2851
2852 if (evpipe [0] >= 0)
2853 EV_WIN32_CLOSE_FD (evpipe [0]);
2854
2855 evpipe_init (EV_A);
2856 /* iterate over everything, in case we missed something before */
2857 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1219 { 2858 }
1220 /* this "locks" the handlers against writing to the pipe */ 2859#endif
1221 /* while we modify the fd vars */ 2860
1222 gotsig = 1; 2861 postfork = 0;
2862}
2863
2864#if EV_MULTIPLICITY
2865
2866struct ev_loop * ecb_cold
2867ev_loop_new (unsigned int flags) EV_THROW
2868{
2869 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2870
2871 memset (EV_A, 0, sizeof (struct ev_loop));
2872 loop_init (EV_A_ flags);
2873
2874 if (ev_backend (EV_A))
2875 return EV_A;
2876
2877 ev_free (EV_A);
2878 return 0;
2879}
2880
2881#endif /* multiplicity */
2882
2883#if EV_VERIFY
2884static void noinline ecb_cold
2885verify_watcher (EV_P_ W w)
2886{
2887 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2888
2889 if (w->pending)
2890 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2891}
2892
2893static void noinline ecb_cold
2894verify_heap (EV_P_ ANHE *heap, int N)
2895{
2896 int i;
2897
2898 for (i = HEAP0; i < N + HEAP0; ++i)
2899 {
2900 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2901 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2902 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2903
2904 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2905 }
2906}
2907
2908static void noinline ecb_cold
2909array_verify (EV_P_ W *ws, int cnt)
2910{
2911 while (cnt--)
2912 {
2913 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2914 verify_watcher (EV_A_ ws [cnt]);
2915 }
2916}
2917#endif
2918
2919#if EV_FEATURE_API
2920void ecb_cold
2921ev_verify (EV_P) EV_THROW
2922{
2923#if EV_VERIFY
2924 int i;
2925 WL w, w2;
2926
2927 assert (activecnt >= -1);
2928
2929 assert (fdchangemax >= fdchangecnt);
2930 for (i = 0; i < fdchangecnt; ++i)
2931 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2932
2933 assert (anfdmax >= 0);
2934 for (i = 0; i < anfdmax; ++i)
2935 {
2936 int j = 0;
2937
2938 for (w = w2 = anfds [i].head; w; w = w->next)
2939 {
2940 verify_watcher (EV_A_ (W)w);
2941
2942 if (j++ & 1)
2943 {
2944 assert (("libev: io watcher list contains a loop", w != w2));
2945 w2 = w2->next;
2946 }
2947
2948 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2949 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2950 }
2951 }
2952
2953 assert (timermax >= timercnt);
2954 verify_heap (EV_A_ timers, timercnt);
2955
2956#if EV_PERIODIC_ENABLE
2957 assert (periodicmax >= periodiccnt);
2958 verify_heap (EV_A_ periodics, periodiccnt);
2959#endif
2960
2961 for (i = NUMPRI; i--; )
2962 {
2963 assert (pendingmax [i] >= pendingcnt [i]);
2964#if EV_IDLE_ENABLE
2965 assert (idleall >= 0);
2966 assert (idlemax [i] >= idlecnt [i]);
2967 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2968#endif
2969 }
2970
2971#if EV_FORK_ENABLE
2972 assert (forkmax >= forkcnt);
2973 array_verify (EV_A_ (W *)forks, forkcnt);
2974#endif
2975
2976#if EV_CLEANUP_ENABLE
2977 assert (cleanupmax >= cleanupcnt);
2978 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2979#endif
2980
1223#if EV_ASYNC_ENABLE 2981#if EV_ASYNC_ENABLE
1224 gotasync = 1; 2982 assert (asyncmax >= asynccnt);
2983 array_verify (EV_A_ (W *)asyncs, asynccnt);
2984#endif
2985
2986#if EV_PREPARE_ENABLE
2987 assert (preparemax >= preparecnt);
2988 array_verify (EV_A_ (W *)prepares, preparecnt);
2989#endif
2990
2991#if EV_CHECK_ENABLE
2992 assert (checkmax >= checkcnt);
2993 array_verify (EV_A_ (W *)checks, checkcnt);
2994#endif
2995
2996# if 0
2997#if EV_CHILD_ENABLE
2998 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2999 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3000#endif
1225#endif 3001# endif
1226 3002#endif
1227 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev);
1229 close (evpipe [0]);
1230 close (evpipe [1]);
1231
1232 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ);
1235 }
1236
1237 postfork = 0;
1238} 3003}
3004#endif
1239 3005
1240#if EV_MULTIPLICITY 3006#if EV_MULTIPLICITY
1241struct ev_loop * 3007struct ev_loop * ecb_cold
1242ev_loop_new (unsigned int flags)
1243{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245
1246 memset (loop, 0, sizeof (struct ev_loop));
1247
1248 loop_init (EV_A_ flags);
1249
1250 if (ev_backend (EV_A))
1251 return loop;
1252
1253 return 0;
1254}
1255
1256void
1257ev_loop_destroy (EV_P)
1258{
1259 loop_destroy (EV_A);
1260 ev_free (loop);
1261}
1262
1263void
1264ev_loop_fork (EV_P)
1265{
1266 postfork = 1; /* must be in line with ev_default_fork */
1267}
1268
1269#endif
1270
1271#if EV_MULTIPLICITY
1272struct ev_loop *
1273ev_default_loop_init (unsigned int flags)
1274#else 3008#else
1275int 3009int
3010#endif
1276ev_default_loop (unsigned int flags) 3011ev_default_loop (unsigned int flags) EV_THROW
1277#endif
1278{ 3012{
1279 if (!ev_default_loop_ptr) 3013 if (!ev_default_loop_ptr)
1280 { 3014 {
1281#if EV_MULTIPLICITY 3015#if EV_MULTIPLICITY
1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3016 EV_P = ev_default_loop_ptr = &default_loop_struct;
1283#else 3017#else
1284 ev_default_loop_ptr = 1; 3018 ev_default_loop_ptr = 1;
1285#endif 3019#endif
1286 3020
1287 loop_init (EV_A_ flags); 3021 loop_init (EV_A_ flags);
1288 3022
1289 if (ev_backend (EV_A)) 3023 if (ev_backend (EV_A))
1290 { 3024 {
1291#ifndef _WIN32 3025#if EV_CHILD_ENABLE
1292 ev_signal_init (&childev, childcb, SIGCHLD); 3026 ev_signal_init (&childev, childcb, SIGCHLD);
1293 ev_set_priority (&childev, EV_MAXPRI); 3027 ev_set_priority (&childev, EV_MAXPRI);
1294 ev_signal_start (EV_A_ &childev); 3028 ev_signal_start (EV_A_ &childev);
1295 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3029 ev_unref (EV_A); /* child watcher should not keep loop alive */
1296#endif 3030#endif
1301 3035
1302 return ev_default_loop_ptr; 3036 return ev_default_loop_ptr;
1303} 3037}
1304 3038
1305void 3039void
1306ev_default_destroy (void) 3040ev_loop_fork (EV_P) EV_THROW
1307{ 3041{
1308#if EV_MULTIPLICITY 3042 postfork = 1;
1309 struct ev_loop *loop = ev_default_loop_ptr;
1310#endif
1311
1312#ifndef _WIN32
1313 ev_ref (EV_A); /* child watcher */
1314 ev_signal_stop (EV_A_ &childev);
1315#endif
1316
1317 loop_destroy (EV_A);
1318}
1319
1320void
1321ev_default_fork (void)
1322{
1323#if EV_MULTIPLICITY
1324 struct ev_loop *loop = ev_default_loop_ptr;
1325#endif
1326
1327 if (backend)
1328 postfork = 1; /* must be in line with ev_loop_fork */
1329} 3043}
1330 3044
1331/*****************************************************************************/ 3045/*****************************************************************************/
1332 3046
1333void 3047void
1334ev_invoke (EV_P_ void *w, int revents) 3048ev_invoke (EV_P_ void *w, int revents)
1335{ 3049{
1336 EV_CB_INVOKE ((W)w, revents); 3050 EV_CB_INVOKE ((W)w, revents);
1337} 3051}
1338 3052
1339void inline_speed 3053unsigned int
1340call_pending (EV_P) 3054ev_pending_count (EV_P) EV_THROW
1341{ 3055{
1342 int pri; 3056 int pri;
3057 unsigned int count = 0;
1343 3058
1344 for (pri = NUMPRI; pri--; ) 3059 for (pri = NUMPRI; pri--; )
3060 count += pendingcnt [pri];
3061
3062 return count;
3063}
3064
3065void noinline
3066ev_invoke_pending (EV_P)
3067{
3068 pendingpri = NUMPRI;
3069
3070 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3071 {
3072 --pendingpri;
3073
1345 while (pendingcnt [pri]) 3074 while (pendingcnt [pendingpri])
1346 {
1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1348
1349 if (expect_true (p->w))
1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352
1353 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events);
1355 }
1356 }
1357}
1358
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 { 3075 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3076 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1372 3077
1373 ((WT)w)->at += w->repeat; 3078 p->w->pending = 0;
1374 if (((WT)w)->at < mn_now) 3079 EV_CB_INVOKE (p->w, p->events);
1375 ((WT)w)->at = mn_now; 3080 EV_FREQUENT_CHECK;
1376
1377 downheap (timers, timercnt, 0);
1378 } 3081 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 { 3082 }
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415} 3083}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438 3084
1439#if EV_IDLE_ENABLE 3085#if EV_IDLE_ENABLE
1440void inline_size 3086/* make idle watchers pending. this handles the "call-idle */
3087/* only when higher priorities are idle" logic */
3088inline_size void
1441idle_reify (EV_P) 3089idle_reify (EV_P)
1442{ 3090{
1443 if (expect_false (idleall)) 3091 if (expect_false (idleall))
1444 { 3092 {
1445 int pri; 3093 int pri;
1457 } 3105 }
1458 } 3106 }
1459} 3107}
1460#endif 3108#endif
1461 3109
1462void inline_speed 3110/* make timers pending */
3111inline_size void
3112timers_reify (EV_P)
3113{
3114 EV_FREQUENT_CHECK;
3115
3116 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3117 {
3118 do
3119 {
3120 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3121
3122 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3123
3124 /* first reschedule or stop timer */
3125 if (w->repeat)
3126 {
3127 ev_at (w) += w->repeat;
3128 if (ev_at (w) < mn_now)
3129 ev_at (w) = mn_now;
3130
3131 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3132
3133 ANHE_at_cache (timers [HEAP0]);
3134 downheap (timers, timercnt, HEAP0);
3135 }
3136 else
3137 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3138
3139 EV_FREQUENT_CHECK;
3140 feed_reverse (EV_A_ (W)w);
3141 }
3142 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3143
3144 feed_reverse_done (EV_A_ EV_TIMER);
3145 }
3146}
3147
3148#if EV_PERIODIC_ENABLE
3149
3150static void noinline
3151periodic_recalc (EV_P_ ev_periodic *w)
3152{
3153 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3154 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3155
3156 /* the above almost always errs on the low side */
3157 while (at <= ev_rt_now)
3158 {
3159 ev_tstamp nat = at + w->interval;
3160
3161 /* when resolution fails us, we use ev_rt_now */
3162 if (expect_false (nat == at))
3163 {
3164 at = ev_rt_now;
3165 break;
3166 }
3167
3168 at = nat;
3169 }
3170
3171 ev_at (w) = at;
3172}
3173
3174/* make periodics pending */
3175inline_size void
3176periodics_reify (EV_P)
3177{
3178 EV_FREQUENT_CHECK;
3179
3180 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3181 {
3182 do
3183 {
3184 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3185
3186 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3187
3188 /* first reschedule or stop timer */
3189 if (w->reschedule_cb)
3190 {
3191 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3192
3193 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3194
3195 ANHE_at_cache (periodics [HEAP0]);
3196 downheap (periodics, periodiccnt, HEAP0);
3197 }
3198 else if (w->interval)
3199 {
3200 periodic_recalc (EV_A_ w);
3201 ANHE_at_cache (periodics [HEAP0]);
3202 downheap (periodics, periodiccnt, HEAP0);
3203 }
3204 else
3205 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3206
3207 EV_FREQUENT_CHECK;
3208 feed_reverse (EV_A_ (W)w);
3209 }
3210 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3211
3212 feed_reverse_done (EV_A_ EV_PERIODIC);
3213 }
3214}
3215
3216/* simply recalculate all periodics */
3217/* TODO: maybe ensure that at least one event happens when jumping forward? */
3218static void noinline ecb_cold
3219periodics_reschedule (EV_P)
3220{
3221 int i;
3222
3223 /* adjust periodics after time jump */
3224 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3225 {
3226 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3227
3228 if (w->reschedule_cb)
3229 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3230 else if (w->interval)
3231 periodic_recalc (EV_A_ w);
3232
3233 ANHE_at_cache (periodics [i]);
3234 }
3235
3236 reheap (periodics, periodiccnt);
3237}
3238#endif
3239
3240/* adjust all timers by a given offset */
3241static void noinline ecb_cold
3242timers_reschedule (EV_P_ ev_tstamp adjust)
3243{
3244 int i;
3245
3246 for (i = 0; i < timercnt; ++i)
3247 {
3248 ANHE *he = timers + i + HEAP0;
3249 ANHE_w (*he)->at += adjust;
3250 ANHE_at_cache (*he);
3251 }
3252}
3253
3254/* fetch new monotonic and realtime times from the kernel */
3255/* also detect if there was a timejump, and act accordingly */
3256inline_speed void
1463time_update (EV_P_ ev_tstamp max_block) 3257time_update (EV_P_ ev_tstamp max_block)
1464{ 3258{
1465 int i;
1466
1467#if EV_USE_MONOTONIC 3259#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic)) 3260 if (expect_true (have_monotonic))
1469 { 3261 {
3262 int i;
1470 ev_tstamp odiff = rtmn_diff; 3263 ev_tstamp odiff = rtmn_diff;
1471 3264
1472 mn_now = get_clock (); 3265 mn_now = get_clock ();
1473 3266
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3267 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1490 * doesn't hurt either as we only do this on time-jumps or 3283 * doesn't hurt either as we only do this on time-jumps or
1491 * in the unlikely event of having been preempted here. 3284 * in the unlikely event of having been preempted here.
1492 */ 3285 */
1493 for (i = 4; --i; ) 3286 for (i = 4; --i; )
1494 { 3287 {
3288 ev_tstamp diff;
1495 rtmn_diff = ev_rt_now - mn_now; 3289 rtmn_diff = ev_rt_now - mn_now;
1496 3290
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3291 diff = odiff - rtmn_diff;
3292
3293 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 3294 return; /* all is well */
1499 3295
1500 ev_rt_now = ev_time (); 3296 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 3297 mn_now = get_clock ();
1502 now_floor = mn_now; 3298 now_floor = mn_now;
1503 } 3299 }
1504 3300
3301 /* no timer adjustment, as the monotonic clock doesn't jump */
3302 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1505# if EV_PERIODIC_ENABLE 3303# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A); 3304 periodics_reschedule (EV_A);
1507# endif 3305# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 } 3306 }
1511 else 3307 else
1512#endif 3308#endif
1513 { 3309 {
1514 ev_rt_now = ev_time (); 3310 ev_rt_now = ev_time ();
1515 3311
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3312 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1517 { 3313 {
3314 /* adjust timers. this is easy, as the offset is the same for all of them */
3315 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1518#if EV_PERIODIC_ENABLE 3316#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 3317 periodics_reschedule (EV_A);
1520#endif 3318#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1524 } 3319 }
1525 3320
1526 mn_now = ev_rt_now; 3321 mn_now = ev_rt_now;
1527 } 3322 }
1528} 3323}
1529 3324
1530void 3325int
1531ev_ref (EV_P)
1532{
1533 ++activecnt;
1534}
1535
1536void
1537ev_unref (EV_P)
1538{
1539 --activecnt;
1540}
1541
1542static int loop_done;
1543
1544void
1545ev_loop (EV_P_ int flags) 3326ev_run (EV_P_ int flags)
1546{ 3327{
3328#if EV_FEATURE_API
3329 ++loop_depth;
3330#endif
3331
3332 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3333
1547 loop_done = EVUNLOOP_CANCEL; 3334 loop_done = EVBREAK_CANCEL;
1548 3335
1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3336 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1550 3337
1551 do 3338 do
1552 { 3339 {
3340#if EV_VERIFY >= 2
3341 ev_verify (EV_A);
3342#endif
3343
1553#ifndef _WIN32 3344#ifndef _WIN32
1554 if (expect_false (curpid)) /* penalise the forking check even more */ 3345 if (expect_false (curpid)) /* penalise the forking check even more */
1555 if (expect_false (getpid () != curpid)) 3346 if (expect_false (getpid () != curpid))
1556 { 3347 {
1557 curpid = getpid (); 3348 curpid = getpid ();
1563 /* we might have forked, so queue fork handlers */ 3354 /* we might have forked, so queue fork handlers */
1564 if (expect_false (postfork)) 3355 if (expect_false (postfork))
1565 if (forkcnt) 3356 if (forkcnt)
1566 { 3357 {
1567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3358 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1568 call_pending (EV_A); 3359 EV_INVOKE_PENDING;
1569 } 3360 }
1570#endif 3361#endif
1571 3362
3363#if EV_PREPARE_ENABLE
1572 /* queue prepare watchers (and execute them) */ 3364 /* queue prepare watchers (and execute them) */
1573 if (expect_false (preparecnt)) 3365 if (expect_false (preparecnt))
1574 { 3366 {
1575 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3367 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1576 call_pending (EV_A); 3368 EV_INVOKE_PENDING;
1577 } 3369 }
3370#endif
1578 3371
1579 if (expect_false (!activecnt)) 3372 if (expect_false (loop_done))
1580 break; 3373 break;
1581 3374
1582 /* we might have forked, so reify kernel state if necessary */ 3375 /* we might have forked, so reify kernel state if necessary */
1583 if (expect_false (postfork)) 3376 if (expect_false (postfork))
1584 loop_fork (EV_A); 3377 loop_fork (EV_A);
1589 /* calculate blocking time */ 3382 /* calculate blocking time */
1590 { 3383 {
1591 ev_tstamp waittime = 0.; 3384 ev_tstamp waittime = 0.;
1592 ev_tstamp sleeptime = 0.; 3385 ev_tstamp sleeptime = 0.;
1593 3386
3387 /* remember old timestamp for io_blocktime calculation */
3388 ev_tstamp prev_mn_now = mn_now;
3389
3390 /* update time to cancel out callback processing overhead */
3391 time_update (EV_A_ 1e100);
3392
3393 /* from now on, we want a pipe-wake-up */
3394 pipe_write_wanted = 1;
3395
3396 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3397
1594 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3398 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1595 { 3399 {
1596 /* update time to cancel out callback processing overhead */
1597 time_update (EV_A_ 1e100);
1598
1599 waittime = MAX_BLOCKTIME; 3400 waittime = MAX_BLOCKTIME;
1600 3401
1601 if (timercnt) 3402 if (timercnt)
1602 { 3403 {
1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3404 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1604 if (waittime > to) waittime = to; 3405 if (waittime > to) waittime = to;
1605 } 3406 }
1606 3407
1607#if EV_PERIODIC_ENABLE 3408#if EV_PERIODIC_ENABLE
1608 if (periodiccnt) 3409 if (periodiccnt)
1609 { 3410 {
1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3411 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1611 if (waittime > to) waittime = to; 3412 if (waittime > to) waittime = to;
1612 } 3413 }
1613#endif 3414#endif
1614 3415
3416 /* don't let timeouts decrease the waittime below timeout_blocktime */
1615 if (expect_false (waittime < timeout_blocktime)) 3417 if (expect_false (waittime < timeout_blocktime))
1616 waittime = timeout_blocktime; 3418 waittime = timeout_blocktime;
1617 3419
1618 sleeptime = waittime - backend_fudge; 3420 /* at this point, we NEED to wait, so we have to ensure */
3421 /* to pass a minimum nonzero value to the backend */
3422 if (expect_false (waittime < backend_mintime))
3423 waittime = backend_mintime;
1619 3424
3425 /* extra check because io_blocktime is commonly 0 */
1620 if (expect_true (sleeptime > io_blocktime)) 3426 if (expect_false (io_blocktime))
1621 sleeptime = io_blocktime;
1622
1623 if (sleeptime)
1624 { 3427 {
3428 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3429
3430 if (sleeptime > waittime - backend_mintime)
3431 sleeptime = waittime - backend_mintime;
3432
3433 if (expect_true (sleeptime > 0.))
3434 {
1625 ev_sleep (sleeptime); 3435 ev_sleep (sleeptime);
1626 waittime -= sleeptime; 3436 waittime -= sleeptime;
3437 }
1627 } 3438 }
1628 } 3439 }
1629 3440
3441#if EV_FEATURE_API
1630 ++loop_count; 3442 ++loop_count;
3443#endif
3444 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1631 backend_poll (EV_A_ waittime); 3445 backend_poll (EV_A_ waittime);
3446 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3447
3448 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3449
3450 ECB_MEMORY_FENCE_ACQUIRE;
3451 if (pipe_write_skipped)
3452 {
3453 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3454 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3455 }
3456
1632 3457
1633 /* update ev_rt_now, do magic */ 3458 /* update ev_rt_now, do magic */
1634 time_update (EV_A_ waittime + sleeptime); 3459 time_update (EV_A_ waittime + sleeptime);
1635 } 3460 }
1636 3461
1643#if EV_IDLE_ENABLE 3468#if EV_IDLE_ENABLE
1644 /* queue idle watchers unless other events are pending */ 3469 /* queue idle watchers unless other events are pending */
1645 idle_reify (EV_A); 3470 idle_reify (EV_A);
1646#endif 3471#endif
1647 3472
3473#if EV_CHECK_ENABLE
1648 /* queue check watchers, to be executed first */ 3474 /* queue check watchers, to be executed first */
1649 if (expect_false (checkcnt)) 3475 if (expect_false (checkcnt))
1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3476 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3477#endif
1651 3478
1652 call_pending (EV_A); 3479 EV_INVOKE_PENDING;
1653 } 3480 }
1654 while (expect_true ( 3481 while (expect_true (
1655 activecnt 3482 activecnt
1656 && !loop_done 3483 && !loop_done
1657 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3484 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1658 )); 3485 ));
1659 3486
1660 if (loop_done == EVUNLOOP_ONE) 3487 if (loop_done == EVBREAK_ONE)
1661 loop_done = EVUNLOOP_CANCEL; 3488 loop_done = EVBREAK_CANCEL;
3489
3490#if EV_FEATURE_API
3491 --loop_depth;
3492#endif
3493
3494 return activecnt;
1662} 3495}
1663 3496
1664void 3497void
1665ev_unloop (EV_P_ int how) 3498ev_break (EV_P_ int how) EV_THROW
1666{ 3499{
1667 loop_done = how; 3500 loop_done = how;
1668} 3501}
1669 3502
3503void
3504ev_ref (EV_P) EV_THROW
3505{
3506 ++activecnt;
3507}
3508
3509void
3510ev_unref (EV_P) EV_THROW
3511{
3512 --activecnt;
3513}
3514
3515void
3516ev_now_update (EV_P) EV_THROW
3517{
3518 time_update (EV_A_ 1e100);
3519}
3520
3521void
3522ev_suspend (EV_P) EV_THROW
3523{
3524 ev_now_update (EV_A);
3525}
3526
3527void
3528ev_resume (EV_P) EV_THROW
3529{
3530 ev_tstamp mn_prev = mn_now;
3531
3532 ev_now_update (EV_A);
3533 timers_reschedule (EV_A_ mn_now - mn_prev);
3534#if EV_PERIODIC_ENABLE
3535 /* TODO: really do this? */
3536 periodics_reschedule (EV_A);
3537#endif
3538}
3539
1670/*****************************************************************************/ 3540/*****************************************************************************/
3541/* singly-linked list management, used when the expected list length is short */
1671 3542
1672void inline_size 3543inline_size void
1673wlist_add (WL *head, WL elem) 3544wlist_add (WL *head, WL elem)
1674{ 3545{
1675 elem->next = *head; 3546 elem->next = *head;
1676 *head = elem; 3547 *head = elem;
1677} 3548}
1678 3549
1679void inline_size 3550inline_size void
1680wlist_del (WL *head, WL elem) 3551wlist_del (WL *head, WL elem)
1681{ 3552{
1682 while (*head) 3553 while (*head)
1683 { 3554 {
1684 if (*head == elem) 3555 if (expect_true (*head == elem))
1685 { 3556 {
1686 *head = elem->next; 3557 *head = elem->next;
1687 return; 3558 break;
1688 } 3559 }
1689 3560
1690 head = &(*head)->next; 3561 head = &(*head)->next;
1691 } 3562 }
1692} 3563}
1693 3564
1694void inline_speed 3565/* internal, faster, version of ev_clear_pending */
3566inline_speed void
1695clear_pending (EV_P_ W w) 3567clear_pending (EV_P_ W w)
1696{ 3568{
1697 if (w->pending) 3569 if (w->pending)
1698 { 3570 {
1699 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3571 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1700 w->pending = 0; 3572 w->pending = 0;
1701 } 3573 }
1702} 3574}
1703 3575
1704int 3576int
1705ev_clear_pending (EV_P_ void *w) 3577ev_clear_pending (EV_P_ void *w) EV_THROW
1706{ 3578{
1707 W w_ = (W)w; 3579 W w_ = (W)w;
1708 int pending = w_->pending; 3580 int pending = w_->pending;
1709 3581
1710 if (expect_true (pending)) 3582 if (expect_true (pending))
1711 { 3583 {
1712 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3584 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3585 p->w = (W)&pending_w;
1713 w_->pending = 0; 3586 w_->pending = 0;
1714 p->w = 0;
1715 return p->events; 3587 return p->events;
1716 } 3588 }
1717 else 3589 else
1718 return 0; 3590 return 0;
1719} 3591}
1720 3592
1721void inline_size 3593inline_size void
1722pri_adjust (EV_P_ W w) 3594pri_adjust (EV_P_ W w)
1723{ 3595{
1724 int pri = w->priority; 3596 int pri = ev_priority (w);
1725 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3597 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1726 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3598 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1727 w->priority = pri; 3599 ev_set_priority (w, pri);
1728} 3600}
1729 3601
1730void inline_speed 3602inline_speed void
1731ev_start (EV_P_ W w, int active) 3603ev_start (EV_P_ W w, int active)
1732{ 3604{
1733 pri_adjust (EV_A_ w); 3605 pri_adjust (EV_A_ w);
1734 w->active = active; 3606 w->active = active;
1735 ev_ref (EV_A); 3607 ev_ref (EV_A);
1736} 3608}
1737 3609
1738void inline_size 3610inline_size void
1739ev_stop (EV_P_ W w) 3611ev_stop (EV_P_ W w)
1740{ 3612{
1741 ev_unref (EV_A); 3613 ev_unref (EV_A);
1742 w->active = 0; 3614 w->active = 0;
1743} 3615}
1744 3616
1745/*****************************************************************************/ 3617/*****************************************************************************/
1746 3618
1747void noinline 3619void noinline
1748ev_io_start (EV_P_ ev_io *w) 3620ev_io_start (EV_P_ ev_io *w) EV_THROW
1749{ 3621{
1750 int fd = w->fd; 3622 int fd = w->fd;
1751 3623
1752 if (expect_false (ev_is_active (w))) 3624 if (expect_false (ev_is_active (w)))
1753 return; 3625 return;
1754 3626
1755 assert (("ev_io_start called with negative fd", fd >= 0)); 3627 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3628 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3629
3630 EV_FREQUENT_CHECK;
1756 3631
1757 ev_start (EV_A_ (W)w, 1); 3632 ev_start (EV_A_ (W)w, 1);
1758 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3633 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1759 wlist_add (&anfds[fd].head, (WL)w); 3634 wlist_add (&anfds[fd].head, (WL)w);
1760 3635
3636 /* common bug, apparently */
3637 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3638
1761 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3639 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1762 w->events &= ~EV_IOFDSET; 3640 w->events &= ~EV__IOFDSET;
3641
3642 EV_FREQUENT_CHECK;
1763} 3643}
1764 3644
1765void noinline 3645void noinline
1766ev_io_stop (EV_P_ ev_io *w) 3646ev_io_stop (EV_P_ ev_io *w) EV_THROW
1767{ 3647{
1768 clear_pending (EV_A_ (W)w); 3648 clear_pending (EV_A_ (W)w);
1769 if (expect_false (!ev_is_active (w))) 3649 if (expect_false (!ev_is_active (w)))
1770 return; 3650 return;
1771 3651
1772 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3652 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3653
3654 EV_FREQUENT_CHECK;
1773 3655
1774 wlist_del (&anfds[w->fd].head, (WL)w); 3656 wlist_del (&anfds[w->fd].head, (WL)w);
1775 ev_stop (EV_A_ (W)w); 3657 ev_stop (EV_A_ (W)w);
1776 3658
1777 fd_change (EV_A_ w->fd, 1); 3659 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3660
3661 EV_FREQUENT_CHECK;
1778} 3662}
1779 3663
1780void noinline 3664void noinline
1781ev_timer_start (EV_P_ ev_timer *w) 3665ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1782{ 3666{
1783 if (expect_false (ev_is_active (w))) 3667 if (expect_false (ev_is_active (w)))
1784 return; 3668 return;
1785 3669
1786 ((WT)w)->at += mn_now; 3670 ev_at (w) += mn_now;
1787 3671
1788 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3672 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1789 3673
3674 EV_FREQUENT_CHECK;
3675
3676 ++timercnt;
1790 ev_start (EV_A_ (W)w, ++timercnt); 3677 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1791 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3678 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1792 timers [timercnt - 1] = (WT)w; 3679 ANHE_w (timers [ev_active (w)]) = (WT)w;
1793 upheap (timers, timercnt - 1); 3680 ANHE_at_cache (timers [ev_active (w)]);
3681 upheap (timers, ev_active (w));
1794 3682
3683 EV_FREQUENT_CHECK;
3684
1795 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3685 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1796} 3686}
1797 3687
1798void noinline 3688void noinline
1799ev_timer_stop (EV_P_ ev_timer *w) 3689ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1800{ 3690{
1801 clear_pending (EV_A_ (W)w); 3691 clear_pending (EV_A_ (W)w);
1802 if (expect_false (!ev_is_active (w))) 3692 if (expect_false (!ev_is_active (w)))
1803 return; 3693 return;
1804 3694
1805 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3695 EV_FREQUENT_CHECK;
1806 3696
1807 { 3697 {
1808 int active = ((W)w)->active; 3698 int active = ev_active (w);
1809 3699
3700 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3701
3702 --timercnt;
3703
1810 if (expect_true (--active < --timercnt)) 3704 if (expect_true (active < timercnt + HEAP0))
1811 { 3705 {
1812 timers [active] = timers [timercnt]; 3706 timers [active] = timers [timercnt + HEAP0];
1813 adjustheap (timers, timercnt, active); 3707 adjustheap (timers, timercnt, active);
1814 } 3708 }
1815 } 3709 }
1816 3710
1817 ((WT)w)->at -= mn_now; 3711 ev_at (w) -= mn_now;
1818 3712
1819 ev_stop (EV_A_ (W)w); 3713 ev_stop (EV_A_ (W)w);
3714
3715 EV_FREQUENT_CHECK;
1820} 3716}
1821 3717
1822void noinline 3718void noinline
1823ev_timer_again (EV_P_ ev_timer *w) 3719ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1824{ 3720{
3721 EV_FREQUENT_CHECK;
3722
3723 clear_pending (EV_A_ (W)w);
3724
1825 if (ev_is_active (w)) 3725 if (ev_is_active (w))
1826 { 3726 {
1827 if (w->repeat) 3727 if (w->repeat)
1828 { 3728 {
1829 ((WT)w)->at = mn_now + w->repeat; 3729 ev_at (w) = mn_now + w->repeat;
3730 ANHE_at_cache (timers [ev_active (w)]);
1830 adjustheap (timers, timercnt, ((W)w)->active - 1); 3731 adjustheap (timers, timercnt, ev_active (w));
1831 } 3732 }
1832 else 3733 else
1833 ev_timer_stop (EV_A_ w); 3734 ev_timer_stop (EV_A_ w);
1834 } 3735 }
1835 else if (w->repeat) 3736 else if (w->repeat)
1836 { 3737 {
1837 w->at = w->repeat; 3738 ev_at (w) = w->repeat;
1838 ev_timer_start (EV_A_ w); 3739 ev_timer_start (EV_A_ w);
1839 } 3740 }
3741
3742 EV_FREQUENT_CHECK;
3743}
3744
3745ev_tstamp
3746ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3747{
3748 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1840} 3749}
1841 3750
1842#if EV_PERIODIC_ENABLE 3751#if EV_PERIODIC_ENABLE
1843void noinline 3752void noinline
1844ev_periodic_start (EV_P_ ev_periodic *w) 3753ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1845{ 3754{
1846 if (expect_false (ev_is_active (w))) 3755 if (expect_false (ev_is_active (w)))
1847 return; 3756 return;
1848 3757
1849 if (w->reschedule_cb) 3758 if (w->reschedule_cb)
1850 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3759 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1851 else if (w->interval) 3760 else if (w->interval)
1852 { 3761 {
1853 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3762 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1854 /* this formula differs from the one in periodic_reify because we do not always round up */ 3763 periodic_recalc (EV_A_ w);
1855 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1856 } 3764 }
1857 else 3765 else
1858 ((WT)w)->at = w->offset; 3766 ev_at (w) = w->offset;
1859 3767
3768 EV_FREQUENT_CHECK;
3769
3770 ++periodiccnt;
1860 ev_start (EV_A_ (W)w, ++periodiccnt); 3771 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1861 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3772 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1862 periodics [periodiccnt - 1] = (WT)w; 3773 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1863 upheap (periodics, periodiccnt - 1); 3774 ANHE_at_cache (periodics [ev_active (w)]);
3775 upheap (periodics, ev_active (w));
1864 3776
3777 EV_FREQUENT_CHECK;
3778
1865 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3779 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1866} 3780}
1867 3781
1868void noinline 3782void noinline
1869ev_periodic_stop (EV_P_ ev_periodic *w) 3783ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1870{ 3784{
1871 clear_pending (EV_A_ (W)w); 3785 clear_pending (EV_A_ (W)w);
1872 if (expect_false (!ev_is_active (w))) 3786 if (expect_false (!ev_is_active (w)))
1873 return; 3787 return;
1874 3788
1875 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3789 EV_FREQUENT_CHECK;
1876 3790
1877 { 3791 {
1878 int active = ((W)w)->active; 3792 int active = ev_active (w);
1879 3793
3794 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3795
3796 --periodiccnt;
3797
1880 if (expect_true (--active < --periodiccnt)) 3798 if (expect_true (active < periodiccnt + HEAP0))
1881 { 3799 {
1882 periodics [active] = periodics [periodiccnt]; 3800 periodics [active] = periodics [periodiccnt + HEAP0];
1883 adjustheap (periodics, periodiccnt, active); 3801 adjustheap (periodics, periodiccnt, active);
1884 } 3802 }
1885 } 3803 }
1886 3804
1887 ev_stop (EV_A_ (W)w); 3805 ev_stop (EV_A_ (W)w);
3806
3807 EV_FREQUENT_CHECK;
1888} 3808}
1889 3809
1890void noinline 3810void noinline
1891ev_periodic_again (EV_P_ ev_periodic *w) 3811ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1892{ 3812{
1893 /* TODO: use adjustheap and recalculation */ 3813 /* TODO: use adjustheap and recalculation */
1894 ev_periodic_stop (EV_A_ w); 3814 ev_periodic_stop (EV_A_ w);
1895 ev_periodic_start (EV_A_ w); 3815 ev_periodic_start (EV_A_ w);
1896} 3816}
1898 3818
1899#ifndef SA_RESTART 3819#ifndef SA_RESTART
1900# define SA_RESTART 0 3820# define SA_RESTART 0
1901#endif 3821#endif
1902 3822
3823#if EV_SIGNAL_ENABLE
3824
1903void noinline 3825void noinline
1904ev_signal_start (EV_P_ ev_signal *w) 3826ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1905{ 3827{
1906#if EV_MULTIPLICITY
1907 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1908#endif
1909 if (expect_false (ev_is_active (w))) 3828 if (expect_false (ev_is_active (w)))
1910 return; 3829 return;
1911 3830
1912 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3831 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1913 3832
1914 evpipe_init (EV_A); 3833#if EV_MULTIPLICITY
3834 assert (("libev: a signal must not be attached to two different loops",
3835 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1915 3836
3837 signals [w->signum - 1].loop = EV_A;
3838 ECB_MEMORY_FENCE_RELEASE;
3839#endif
3840
3841 EV_FREQUENT_CHECK;
3842
3843#if EV_USE_SIGNALFD
3844 if (sigfd == -2)
1916 { 3845 {
1917#ifndef _WIN32 3846 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1918 sigset_t full, prev; 3847 if (sigfd < 0 && errno == EINVAL)
1919 sigfillset (&full); 3848 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1920 sigprocmask (SIG_SETMASK, &full, &prev);
1921#endif
1922 3849
1923 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3850 if (sigfd >= 0)
3851 {
3852 fd_intern (sigfd); /* doing it twice will not hurt */
1924 3853
1925#ifndef _WIN32 3854 sigemptyset (&sigfd_set);
1926 sigprocmask (SIG_SETMASK, &prev, 0); 3855
1927#endif 3856 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3857 ev_set_priority (&sigfd_w, EV_MAXPRI);
3858 ev_io_start (EV_A_ &sigfd_w);
3859 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3860 }
1928 } 3861 }
3862
3863 if (sigfd >= 0)
3864 {
3865 /* TODO: check .head */
3866 sigaddset (&sigfd_set, w->signum);
3867 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3868
3869 signalfd (sigfd, &sigfd_set, 0);
3870 }
3871#endif
1929 3872
1930 ev_start (EV_A_ (W)w, 1); 3873 ev_start (EV_A_ (W)w, 1);
1931 wlist_add (&signals [w->signum - 1].head, (WL)w); 3874 wlist_add (&signals [w->signum - 1].head, (WL)w);
1932 3875
1933 if (!((WL)w)->next) 3876 if (!((WL)w)->next)
3877# if EV_USE_SIGNALFD
3878 if (sigfd < 0) /*TODO*/
3879# endif
1934 { 3880 {
1935#if _WIN32 3881# ifdef _WIN32
3882 evpipe_init (EV_A);
3883
1936 signal (w->signum, ev_sighandler); 3884 signal (w->signum, ev_sighandler);
1937#else 3885# else
1938 struct sigaction sa; 3886 struct sigaction sa;
3887
3888 evpipe_init (EV_A);
3889
1939 sa.sa_handler = ev_sighandler; 3890 sa.sa_handler = ev_sighandler;
1940 sigfillset (&sa.sa_mask); 3891 sigfillset (&sa.sa_mask);
1941 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3892 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1942 sigaction (w->signum, &sa, 0); 3893 sigaction (w->signum, &sa, 0);
3894
3895 if (origflags & EVFLAG_NOSIGMASK)
3896 {
3897 sigemptyset (&sa.sa_mask);
3898 sigaddset (&sa.sa_mask, w->signum);
3899 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3900 }
1943#endif 3901#endif
1944 } 3902 }
3903
3904 EV_FREQUENT_CHECK;
1945} 3905}
1946 3906
1947void noinline 3907void noinline
1948ev_signal_stop (EV_P_ ev_signal *w) 3908ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1949{ 3909{
1950 clear_pending (EV_A_ (W)w); 3910 clear_pending (EV_A_ (W)w);
1951 if (expect_false (!ev_is_active (w))) 3911 if (expect_false (!ev_is_active (w)))
1952 return; 3912 return;
1953 3913
3914 EV_FREQUENT_CHECK;
3915
1954 wlist_del (&signals [w->signum - 1].head, (WL)w); 3916 wlist_del (&signals [w->signum - 1].head, (WL)w);
1955 ev_stop (EV_A_ (W)w); 3917 ev_stop (EV_A_ (W)w);
1956 3918
1957 if (!signals [w->signum - 1].head) 3919 if (!signals [w->signum - 1].head)
3920 {
3921#if EV_MULTIPLICITY
3922 signals [w->signum - 1].loop = 0; /* unattach from signal */
3923#endif
3924#if EV_USE_SIGNALFD
3925 if (sigfd >= 0)
3926 {
3927 sigset_t ss;
3928
3929 sigemptyset (&ss);
3930 sigaddset (&ss, w->signum);
3931 sigdelset (&sigfd_set, w->signum);
3932
3933 signalfd (sigfd, &sigfd_set, 0);
3934 sigprocmask (SIG_UNBLOCK, &ss, 0);
3935 }
3936 else
3937#endif
1958 signal (w->signum, SIG_DFL); 3938 signal (w->signum, SIG_DFL);
3939 }
3940
3941 EV_FREQUENT_CHECK;
1959} 3942}
3943
3944#endif
3945
3946#if EV_CHILD_ENABLE
1960 3947
1961void 3948void
1962ev_child_start (EV_P_ ev_child *w) 3949ev_child_start (EV_P_ ev_child *w) EV_THROW
1963{ 3950{
1964#if EV_MULTIPLICITY 3951#if EV_MULTIPLICITY
1965 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3952 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1966#endif 3953#endif
1967 if (expect_false (ev_is_active (w))) 3954 if (expect_false (ev_is_active (w)))
1968 return; 3955 return;
1969 3956
3957 EV_FREQUENT_CHECK;
3958
1970 ev_start (EV_A_ (W)w, 1); 3959 ev_start (EV_A_ (W)w, 1);
1971 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3960 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3961
3962 EV_FREQUENT_CHECK;
1972} 3963}
1973 3964
1974void 3965void
1975ev_child_stop (EV_P_ ev_child *w) 3966ev_child_stop (EV_P_ ev_child *w) EV_THROW
1976{ 3967{
1977 clear_pending (EV_A_ (W)w); 3968 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 3969 if (expect_false (!ev_is_active (w)))
1979 return; 3970 return;
1980 3971
3972 EV_FREQUENT_CHECK;
3973
1981 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3974 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1982 ev_stop (EV_A_ (W)w); 3975 ev_stop (EV_A_ (W)w);
3976
3977 EV_FREQUENT_CHECK;
1983} 3978}
3979
3980#endif
1984 3981
1985#if EV_STAT_ENABLE 3982#if EV_STAT_ENABLE
1986 3983
1987# ifdef _WIN32 3984# ifdef _WIN32
1988# undef lstat 3985# undef lstat
1989# define lstat(a,b) _stati64 (a,b) 3986# define lstat(a,b) _stati64 (a,b)
1990# endif 3987# endif
1991 3988
1992#define DEF_STAT_INTERVAL 5.0074891 3989#define DEF_STAT_INTERVAL 5.0074891
3990#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1993#define MIN_STAT_INTERVAL 0.1074891 3991#define MIN_STAT_INTERVAL 0.1074891
1994 3992
1995static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3993static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1996 3994
1997#if EV_USE_INOTIFY 3995#if EV_USE_INOTIFY
1998# define EV_INOTIFY_BUFSIZE 8192 3996
3997/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3998# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1999 3999
2000static void noinline 4000static void noinline
2001infy_add (EV_P_ ev_stat *w) 4001infy_add (EV_P_ ev_stat *w)
2002{ 4002{
2003 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4003 w->wd = inotify_add_watch (fs_fd, w->path,
4004 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4005 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4006 | IN_DONT_FOLLOW | IN_MASK_ADD);
2004 4007
2005 if (w->wd < 0) 4008 if (w->wd >= 0)
4009 {
4010 struct statfs sfs;
4011
4012 /* now local changes will be tracked by inotify, but remote changes won't */
4013 /* unless the filesystem is known to be local, we therefore still poll */
4014 /* also do poll on <2.6.25, but with normal frequency */
4015
4016 if (!fs_2625)
4017 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4018 else if (!statfs (w->path, &sfs)
4019 && (sfs.f_type == 0x1373 /* devfs */
4020 || sfs.f_type == 0x4006 /* fat */
4021 || sfs.f_type == 0x4d44 /* msdos */
4022 || sfs.f_type == 0xEF53 /* ext2/3 */
4023 || sfs.f_type == 0x72b6 /* jffs2 */
4024 || sfs.f_type == 0x858458f6 /* ramfs */
4025 || sfs.f_type == 0x5346544e /* ntfs */
4026 || sfs.f_type == 0x3153464a /* jfs */
4027 || sfs.f_type == 0x9123683e /* btrfs */
4028 || sfs.f_type == 0x52654973 /* reiser3 */
4029 || sfs.f_type == 0x01021994 /* tmpfs */
4030 || sfs.f_type == 0x58465342 /* xfs */))
4031 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4032 else
4033 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2006 { 4034 }
2007 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4035 else
4036 {
4037 /* can't use inotify, continue to stat */
4038 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2008 4039
2009 /* monitor some parent directory for speedup hints */ 4040 /* if path is not there, monitor some parent directory for speedup hints */
4041 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4042 /* but an efficiency issue only */
2010 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4043 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2011 { 4044 {
2012 char path [4096]; 4045 char path [4096];
2013 strcpy (path, w->path); 4046 strcpy (path, w->path);
2014 4047
2017 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4050 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2018 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4051 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2019 4052
2020 char *pend = strrchr (path, '/'); 4053 char *pend = strrchr (path, '/');
2021 4054
2022 if (!pend) 4055 if (!pend || pend == path)
2023 break; /* whoops, no '/', complain to your admin */ 4056 break;
2024 4057
2025 *pend = 0; 4058 *pend = 0;
2026 w->wd = inotify_add_watch (fs_fd, path, mask); 4059 w->wd = inotify_add_watch (fs_fd, path, mask);
2027 } 4060 }
2028 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4061 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2029 } 4062 }
2030 } 4063 }
2031 else
2032 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2033 4064
2034 if (w->wd >= 0) 4065 if (w->wd >= 0)
2035 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4066 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4067
4068 /* now re-arm timer, if required */
4069 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4070 ev_timer_again (EV_A_ &w->timer);
4071 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2036} 4072}
2037 4073
2038static void noinline 4074static void noinline
2039infy_del (EV_P_ ev_stat *w) 4075infy_del (EV_P_ ev_stat *w)
2040{ 4076{
2043 4079
2044 if (wd < 0) 4080 if (wd < 0)
2045 return; 4081 return;
2046 4082
2047 w->wd = -2; 4083 w->wd = -2;
2048 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4084 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2049 wlist_del (&fs_hash [slot].head, (WL)w); 4085 wlist_del (&fs_hash [slot].head, (WL)w);
2050 4086
2051 /* remove this watcher, if others are watching it, they will rearm */ 4087 /* remove this watcher, if others are watching it, they will rearm */
2052 inotify_rm_watch (fs_fd, wd); 4088 inotify_rm_watch (fs_fd, wd);
2053} 4089}
2054 4090
2055static void noinline 4091static void noinline
2056infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4092infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2057{ 4093{
2058 if (slot < 0) 4094 if (slot < 0)
2059 /* overflow, need to check for all hahs slots */ 4095 /* overflow, need to check for all hash slots */
2060 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4096 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2061 infy_wd (EV_A_ slot, wd, ev); 4097 infy_wd (EV_A_ slot, wd, ev);
2062 else 4098 else
2063 { 4099 {
2064 WL w_; 4100 WL w_;
2065 4101
2066 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4102 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2067 { 4103 {
2068 ev_stat *w = (ev_stat *)w_; 4104 ev_stat *w = (ev_stat *)w_;
2069 w_ = w_->next; /* lets us remove this watcher and all before it */ 4105 w_ = w_->next; /* lets us remove this watcher and all before it */
2070 4106
2071 if (w->wd == wd || wd == -1) 4107 if (w->wd == wd || wd == -1)
2072 { 4108 {
2073 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4109 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2074 { 4110 {
4111 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2075 w->wd = -1; 4112 w->wd = -1;
2076 infy_add (EV_A_ w); /* re-add, no matter what */ 4113 infy_add (EV_A_ w); /* re-add, no matter what */
2077 } 4114 }
2078 4115
2079 stat_timer_cb (EV_A_ &w->timer, 0); 4116 stat_timer_cb (EV_A_ &w->timer, 0);
2084 4121
2085static void 4122static void
2086infy_cb (EV_P_ ev_io *w, int revents) 4123infy_cb (EV_P_ ev_io *w, int revents)
2087{ 4124{
2088 char buf [EV_INOTIFY_BUFSIZE]; 4125 char buf [EV_INOTIFY_BUFSIZE];
2089 struct inotify_event *ev = (struct inotify_event *)buf;
2090 int ofs; 4126 int ofs;
2091 int len = read (fs_fd, buf, sizeof (buf)); 4127 int len = read (fs_fd, buf, sizeof (buf));
2092 4128
2093 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4129 for (ofs = 0; ofs < len; )
4130 {
4131 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2094 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4132 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4133 ofs += sizeof (struct inotify_event) + ev->len;
4134 }
2095} 4135}
2096 4136
2097void inline_size 4137inline_size void ecb_cold
4138ev_check_2625 (EV_P)
4139{
4140 /* kernels < 2.6.25 are borked
4141 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4142 */
4143 if (ev_linux_version () < 0x020619)
4144 return;
4145
4146 fs_2625 = 1;
4147}
4148
4149inline_size int
4150infy_newfd (void)
4151{
4152#if defined IN_CLOEXEC && defined IN_NONBLOCK
4153 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4154 if (fd >= 0)
4155 return fd;
4156#endif
4157 return inotify_init ();
4158}
4159
4160inline_size void
2098infy_init (EV_P) 4161infy_init (EV_P)
2099{ 4162{
2100 if (fs_fd != -2) 4163 if (fs_fd != -2)
2101 return; 4164 return;
2102 4165
4166 fs_fd = -1;
4167
4168 ev_check_2625 (EV_A);
4169
2103 fs_fd = inotify_init (); 4170 fs_fd = infy_newfd ();
2104 4171
2105 if (fs_fd >= 0) 4172 if (fs_fd >= 0)
2106 { 4173 {
4174 fd_intern (fs_fd);
2107 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4175 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2108 ev_set_priority (&fs_w, EV_MAXPRI); 4176 ev_set_priority (&fs_w, EV_MAXPRI);
2109 ev_io_start (EV_A_ &fs_w); 4177 ev_io_start (EV_A_ &fs_w);
4178 ev_unref (EV_A);
2110 } 4179 }
2111} 4180}
2112 4181
2113void inline_size 4182inline_size void
2114infy_fork (EV_P) 4183infy_fork (EV_P)
2115{ 4184{
2116 int slot; 4185 int slot;
2117 4186
2118 if (fs_fd < 0) 4187 if (fs_fd < 0)
2119 return; 4188 return;
2120 4189
4190 ev_ref (EV_A);
4191 ev_io_stop (EV_A_ &fs_w);
2121 close (fs_fd); 4192 close (fs_fd);
2122 fs_fd = inotify_init (); 4193 fs_fd = infy_newfd ();
2123 4194
4195 if (fs_fd >= 0)
4196 {
4197 fd_intern (fs_fd);
4198 ev_io_set (&fs_w, fs_fd, EV_READ);
4199 ev_io_start (EV_A_ &fs_w);
4200 ev_unref (EV_A);
4201 }
4202
2124 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4203 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2125 { 4204 {
2126 WL w_ = fs_hash [slot].head; 4205 WL w_ = fs_hash [slot].head;
2127 fs_hash [slot].head = 0; 4206 fs_hash [slot].head = 0;
2128 4207
2129 while (w_) 4208 while (w_)
2134 w->wd = -1; 4213 w->wd = -1;
2135 4214
2136 if (fs_fd >= 0) 4215 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); /* re-add, no matter what */ 4216 infy_add (EV_A_ w); /* re-add, no matter what */
2138 else 4217 else
4218 {
4219 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4220 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2139 ev_timer_start (EV_A_ &w->timer); 4221 ev_timer_again (EV_A_ &w->timer);
4222 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4223 }
2140 } 4224 }
2141
2142 } 4225 }
2143} 4226}
2144 4227
4228#endif
4229
4230#ifdef _WIN32
4231# define EV_LSTAT(p,b) _stati64 (p, b)
4232#else
4233# define EV_LSTAT(p,b) lstat (p, b)
2145#endif 4234#endif
2146 4235
2147void 4236void
2148ev_stat_stat (EV_P_ ev_stat *w) 4237ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2149{ 4238{
2150 if (lstat (w->path, &w->attr) < 0) 4239 if (lstat (w->path, &w->attr) < 0)
2151 w->attr.st_nlink = 0; 4240 w->attr.st_nlink = 0;
2152 else if (!w->attr.st_nlink) 4241 else if (!w->attr.st_nlink)
2153 w->attr.st_nlink = 1; 4242 w->attr.st_nlink = 1;
2156static void noinline 4245static void noinline
2157stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4246stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2158{ 4247{
2159 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4248 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2160 4249
2161 /* we copy this here each the time so that */ 4250 ev_statdata prev = w->attr;
2162 /* prev has the old value when the callback gets invoked */
2163 w->prev = w->attr;
2164 ev_stat_stat (EV_A_ w); 4251 ev_stat_stat (EV_A_ w);
2165 4252
2166 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4253 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2167 if ( 4254 if (
2168 w->prev.st_dev != w->attr.st_dev 4255 prev.st_dev != w->attr.st_dev
2169 || w->prev.st_ino != w->attr.st_ino 4256 || prev.st_ino != w->attr.st_ino
2170 || w->prev.st_mode != w->attr.st_mode 4257 || prev.st_mode != w->attr.st_mode
2171 || w->prev.st_nlink != w->attr.st_nlink 4258 || prev.st_nlink != w->attr.st_nlink
2172 || w->prev.st_uid != w->attr.st_uid 4259 || prev.st_uid != w->attr.st_uid
2173 || w->prev.st_gid != w->attr.st_gid 4260 || prev.st_gid != w->attr.st_gid
2174 || w->prev.st_rdev != w->attr.st_rdev 4261 || prev.st_rdev != w->attr.st_rdev
2175 || w->prev.st_size != w->attr.st_size 4262 || prev.st_size != w->attr.st_size
2176 || w->prev.st_atime != w->attr.st_atime 4263 || prev.st_atime != w->attr.st_atime
2177 || w->prev.st_mtime != w->attr.st_mtime 4264 || prev.st_mtime != w->attr.st_mtime
2178 || w->prev.st_ctime != w->attr.st_ctime 4265 || prev.st_ctime != w->attr.st_ctime
2179 ) { 4266 ) {
4267 /* we only update w->prev on actual differences */
4268 /* in case we test more often than invoke the callback, */
4269 /* to ensure that prev is always different to attr */
4270 w->prev = prev;
4271
2180 #if EV_USE_INOTIFY 4272 #if EV_USE_INOTIFY
4273 if (fs_fd >= 0)
4274 {
2181 infy_del (EV_A_ w); 4275 infy_del (EV_A_ w);
2182 infy_add (EV_A_ w); 4276 infy_add (EV_A_ w);
2183 ev_stat_stat (EV_A_ w); /* avoid race... */ 4277 ev_stat_stat (EV_A_ w); /* avoid race... */
4278 }
2184 #endif 4279 #endif
2185 4280
2186 ev_feed_event (EV_A_ w, EV_STAT); 4281 ev_feed_event (EV_A_ w, EV_STAT);
2187 } 4282 }
2188} 4283}
2189 4284
2190void 4285void
2191ev_stat_start (EV_P_ ev_stat *w) 4286ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2192{ 4287{
2193 if (expect_false (ev_is_active (w))) 4288 if (expect_false (ev_is_active (w)))
2194 return; 4289 return;
2195 4290
2196 /* since we use memcmp, we need to clear any padding data etc. */
2197 memset (&w->prev, 0, sizeof (ev_statdata));
2198 memset (&w->attr, 0, sizeof (ev_statdata));
2199
2200 ev_stat_stat (EV_A_ w); 4291 ev_stat_stat (EV_A_ w);
2201 4292
4293 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2202 if (w->interval < MIN_STAT_INTERVAL) 4294 w->interval = MIN_STAT_INTERVAL;
2203 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2204 4295
2205 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4296 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2206 ev_set_priority (&w->timer, ev_priority (w)); 4297 ev_set_priority (&w->timer, ev_priority (w));
2207 4298
2208#if EV_USE_INOTIFY 4299#if EV_USE_INOTIFY
2209 infy_init (EV_A); 4300 infy_init (EV_A);
2210 4301
2211 if (fs_fd >= 0) 4302 if (fs_fd >= 0)
2212 infy_add (EV_A_ w); 4303 infy_add (EV_A_ w);
2213 else 4304 else
2214#endif 4305#endif
4306 {
2215 ev_timer_start (EV_A_ &w->timer); 4307 ev_timer_again (EV_A_ &w->timer);
4308 ev_unref (EV_A);
4309 }
2216 4310
2217 ev_start (EV_A_ (W)w, 1); 4311 ev_start (EV_A_ (W)w, 1);
4312
4313 EV_FREQUENT_CHECK;
2218} 4314}
2219 4315
2220void 4316void
2221ev_stat_stop (EV_P_ ev_stat *w) 4317ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2222{ 4318{
2223 clear_pending (EV_A_ (W)w); 4319 clear_pending (EV_A_ (W)w);
2224 if (expect_false (!ev_is_active (w))) 4320 if (expect_false (!ev_is_active (w)))
2225 return; 4321 return;
2226 4322
4323 EV_FREQUENT_CHECK;
4324
2227#if EV_USE_INOTIFY 4325#if EV_USE_INOTIFY
2228 infy_del (EV_A_ w); 4326 infy_del (EV_A_ w);
2229#endif 4327#endif
4328
4329 if (ev_is_active (&w->timer))
4330 {
4331 ev_ref (EV_A);
2230 ev_timer_stop (EV_A_ &w->timer); 4332 ev_timer_stop (EV_A_ &w->timer);
4333 }
2231 4334
2232 ev_stop (EV_A_ (W)w); 4335 ev_stop (EV_A_ (W)w);
4336
4337 EV_FREQUENT_CHECK;
2233} 4338}
2234#endif 4339#endif
2235 4340
2236#if EV_IDLE_ENABLE 4341#if EV_IDLE_ENABLE
2237void 4342void
2238ev_idle_start (EV_P_ ev_idle *w) 4343ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2239{ 4344{
2240 if (expect_false (ev_is_active (w))) 4345 if (expect_false (ev_is_active (w)))
2241 return; 4346 return;
2242 4347
2243 pri_adjust (EV_A_ (W)w); 4348 pri_adjust (EV_A_ (W)w);
4349
4350 EV_FREQUENT_CHECK;
2244 4351
2245 { 4352 {
2246 int active = ++idlecnt [ABSPRI (w)]; 4353 int active = ++idlecnt [ABSPRI (w)];
2247 4354
2248 ++idleall; 4355 ++idleall;
2249 ev_start (EV_A_ (W)w, active); 4356 ev_start (EV_A_ (W)w, active);
2250 4357
2251 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4358 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2252 idles [ABSPRI (w)][active - 1] = w; 4359 idles [ABSPRI (w)][active - 1] = w;
2253 } 4360 }
4361
4362 EV_FREQUENT_CHECK;
2254} 4363}
2255 4364
2256void 4365void
2257ev_idle_stop (EV_P_ ev_idle *w) 4366ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2258{ 4367{
2259 clear_pending (EV_A_ (W)w); 4368 clear_pending (EV_A_ (W)w);
2260 if (expect_false (!ev_is_active (w))) 4369 if (expect_false (!ev_is_active (w)))
2261 return; 4370 return;
2262 4371
4372 EV_FREQUENT_CHECK;
4373
2263 { 4374 {
2264 int active = ((W)w)->active; 4375 int active = ev_active (w);
2265 4376
2266 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4377 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2267 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4378 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2268 4379
2269 ev_stop (EV_A_ (W)w); 4380 ev_stop (EV_A_ (W)w);
2270 --idleall; 4381 --idleall;
2271 } 4382 }
2272}
2273#endif
2274 4383
4384 EV_FREQUENT_CHECK;
4385}
4386#endif
4387
4388#if EV_PREPARE_ENABLE
2275void 4389void
2276ev_prepare_start (EV_P_ ev_prepare *w) 4390ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2277{ 4391{
2278 if (expect_false (ev_is_active (w))) 4392 if (expect_false (ev_is_active (w)))
2279 return; 4393 return;
4394
4395 EV_FREQUENT_CHECK;
2280 4396
2281 ev_start (EV_A_ (W)w, ++preparecnt); 4397 ev_start (EV_A_ (W)w, ++preparecnt);
2282 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4398 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2283 prepares [preparecnt - 1] = w; 4399 prepares [preparecnt - 1] = w;
4400
4401 EV_FREQUENT_CHECK;
2284} 4402}
2285 4403
2286void 4404void
2287ev_prepare_stop (EV_P_ ev_prepare *w) 4405ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2288{ 4406{
2289 clear_pending (EV_A_ (W)w); 4407 clear_pending (EV_A_ (W)w);
2290 if (expect_false (!ev_is_active (w))) 4408 if (expect_false (!ev_is_active (w)))
2291 return; 4409 return;
2292 4410
4411 EV_FREQUENT_CHECK;
4412
2293 { 4413 {
2294 int active = ((W)w)->active; 4414 int active = ev_active (w);
4415
2295 prepares [active - 1] = prepares [--preparecnt]; 4416 prepares [active - 1] = prepares [--preparecnt];
2296 ((W)prepares [active - 1])->active = active; 4417 ev_active (prepares [active - 1]) = active;
2297 } 4418 }
2298 4419
2299 ev_stop (EV_A_ (W)w); 4420 ev_stop (EV_A_ (W)w);
2300}
2301 4421
4422 EV_FREQUENT_CHECK;
4423}
4424#endif
4425
4426#if EV_CHECK_ENABLE
2302void 4427void
2303ev_check_start (EV_P_ ev_check *w) 4428ev_check_start (EV_P_ ev_check *w) EV_THROW
2304{ 4429{
2305 if (expect_false (ev_is_active (w))) 4430 if (expect_false (ev_is_active (w)))
2306 return; 4431 return;
4432
4433 EV_FREQUENT_CHECK;
2307 4434
2308 ev_start (EV_A_ (W)w, ++checkcnt); 4435 ev_start (EV_A_ (W)w, ++checkcnt);
2309 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4436 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2310 checks [checkcnt - 1] = w; 4437 checks [checkcnt - 1] = w;
4438
4439 EV_FREQUENT_CHECK;
2311} 4440}
2312 4441
2313void 4442void
2314ev_check_stop (EV_P_ ev_check *w) 4443ev_check_stop (EV_P_ ev_check *w) EV_THROW
2315{ 4444{
2316 clear_pending (EV_A_ (W)w); 4445 clear_pending (EV_A_ (W)w);
2317 if (expect_false (!ev_is_active (w))) 4446 if (expect_false (!ev_is_active (w)))
2318 return; 4447 return;
2319 4448
4449 EV_FREQUENT_CHECK;
4450
2320 { 4451 {
2321 int active = ((W)w)->active; 4452 int active = ev_active (w);
4453
2322 checks [active - 1] = checks [--checkcnt]; 4454 checks [active - 1] = checks [--checkcnt];
2323 ((W)checks [active - 1])->active = active; 4455 ev_active (checks [active - 1]) = active;
2324 } 4456 }
2325 4457
2326 ev_stop (EV_A_ (W)w); 4458 ev_stop (EV_A_ (W)w);
4459
4460 EV_FREQUENT_CHECK;
2327} 4461}
4462#endif
2328 4463
2329#if EV_EMBED_ENABLE 4464#if EV_EMBED_ENABLE
2330void noinline 4465void noinline
2331ev_embed_sweep (EV_P_ ev_embed *w) 4466ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2332{ 4467{
2333 ev_loop (w->other, EVLOOP_NONBLOCK); 4468 ev_run (w->other, EVRUN_NOWAIT);
2334} 4469}
2335 4470
2336static void 4471static void
2337embed_io_cb (EV_P_ ev_io *io, int revents) 4472embed_io_cb (EV_P_ ev_io *io, int revents)
2338{ 4473{
2339 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4474 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2340 4475
2341 if (ev_cb (w)) 4476 if (ev_cb (w))
2342 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4477 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2343 else 4478 else
2344 ev_loop (w->other, EVLOOP_NONBLOCK); 4479 ev_run (w->other, EVRUN_NOWAIT);
2345} 4480}
2346 4481
2347static void 4482static void
2348embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4483embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2349{ 4484{
2350 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4485 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2351 4486
2352 { 4487 {
2353 struct ev_loop *loop = w->other; 4488 EV_P = w->other;
2354 4489
2355 while (fdchangecnt) 4490 while (fdchangecnt)
2356 { 4491 {
2357 fd_reify (EV_A); 4492 fd_reify (EV_A);
2358 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4493 ev_run (EV_A_ EVRUN_NOWAIT);
2359 } 4494 }
2360 } 4495 }
4496}
4497
4498static void
4499embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4500{
4501 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4502
4503 ev_embed_stop (EV_A_ w);
4504
4505 {
4506 EV_P = w->other;
4507
4508 ev_loop_fork (EV_A);
4509 ev_run (EV_A_ EVRUN_NOWAIT);
4510 }
4511
4512 ev_embed_start (EV_A_ w);
2361} 4513}
2362 4514
2363#if 0 4515#if 0
2364static void 4516static void
2365embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4517embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2367 ev_idle_stop (EV_A_ idle); 4519 ev_idle_stop (EV_A_ idle);
2368} 4520}
2369#endif 4521#endif
2370 4522
2371void 4523void
2372ev_embed_start (EV_P_ ev_embed *w) 4524ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2373{ 4525{
2374 if (expect_false (ev_is_active (w))) 4526 if (expect_false (ev_is_active (w)))
2375 return; 4527 return;
2376 4528
2377 { 4529 {
2378 struct ev_loop *loop = w->other; 4530 EV_P = w->other;
2379 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4531 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2380 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4532 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2381 } 4533 }
4534
4535 EV_FREQUENT_CHECK;
2382 4536
2383 ev_set_priority (&w->io, ev_priority (w)); 4537 ev_set_priority (&w->io, ev_priority (w));
2384 ev_io_start (EV_A_ &w->io); 4538 ev_io_start (EV_A_ &w->io);
2385 4539
2386 ev_prepare_init (&w->prepare, embed_prepare_cb); 4540 ev_prepare_init (&w->prepare, embed_prepare_cb);
2387 ev_set_priority (&w->prepare, EV_MINPRI); 4541 ev_set_priority (&w->prepare, EV_MINPRI);
2388 ev_prepare_start (EV_A_ &w->prepare); 4542 ev_prepare_start (EV_A_ &w->prepare);
2389 4543
4544 ev_fork_init (&w->fork, embed_fork_cb);
4545 ev_fork_start (EV_A_ &w->fork);
4546
2390 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4547 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2391 4548
2392 ev_start (EV_A_ (W)w, 1); 4549 ev_start (EV_A_ (W)w, 1);
4550
4551 EV_FREQUENT_CHECK;
2393} 4552}
2394 4553
2395void 4554void
2396ev_embed_stop (EV_P_ ev_embed *w) 4555ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2397{ 4556{
2398 clear_pending (EV_A_ (W)w); 4557 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 4558 if (expect_false (!ev_is_active (w)))
2400 return; 4559 return;
2401 4560
4561 EV_FREQUENT_CHECK;
4562
2402 ev_io_stop (EV_A_ &w->io); 4563 ev_io_stop (EV_A_ &w->io);
2403 ev_prepare_stop (EV_A_ &w->prepare); 4564 ev_prepare_stop (EV_A_ &w->prepare);
4565 ev_fork_stop (EV_A_ &w->fork);
2404 4566
2405 ev_stop (EV_A_ (W)w); 4567 ev_stop (EV_A_ (W)w);
4568
4569 EV_FREQUENT_CHECK;
2406} 4570}
2407#endif 4571#endif
2408 4572
2409#if EV_FORK_ENABLE 4573#if EV_FORK_ENABLE
2410void 4574void
2411ev_fork_start (EV_P_ ev_fork *w) 4575ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2412{ 4576{
2413 if (expect_false (ev_is_active (w))) 4577 if (expect_false (ev_is_active (w)))
2414 return; 4578 return;
4579
4580 EV_FREQUENT_CHECK;
2415 4581
2416 ev_start (EV_A_ (W)w, ++forkcnt); 4582 ev_start (EV_A_ (W)w, ++forkcnt);
2417 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4583 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2418 forks [forkcnt - 1] = w; 4584 forks [forkcnt - 1] = w;
4585
4586 EV_FREQUENT_CHECK;
2419} 4587}
2420 4588
2421void 4589void
2422ev_fork_stop (EV_P_ ev_fork *w) 4590ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2423{ 4591{
2424 clear_pending (EV_A_ (W)w); 4592 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 4593 if (expect_false (!ev_is_active (w)))
2426 return; 4594 return;
2427 4595
4596 EV_FREQUENT_CHECK;
4597
2428 { 4598 {
2429 int active = ((W)w)->active; 4599 int active = ev_active (w);
4600
2430 forks [active - 1] = forks [--forkcnt]; 4601 forks [active - 1] = forks [--forkcnt];
2431 ((W)forks [active - 1])->active = active; 4602 ev_active (forks [active - 1]) = active;
2432 } 4603 }
2433 4604
2434 ev_stop (EV_A_ (W)w); 4605 ev_stop (EV_A_ (W)w);
4606
4607 EV_FREQUENT_CHECK;
4608}
4609#endif
4610
4611#if EV_CLEANUP_ENABLE
4612void
4613ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4614{
4615 if (expect_false (ev_is_active (w)))
4616 return;
4617
4618 EV_FREQUENT_CHECK;
4619
4620 ev_start (EV_A_ (W)w, ++cleanupcnt);
4621 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4622 cleanups [cleanupcnt - 1] = w;
4623
4624 /* cleanup watchers should never keep a refcount on the loop */
4625 ev_unref (EV_A);
4626 EV_FREQUENT_CHECK;
4627}
4628
4629void
4630ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4631{
4632 clear_pending (EV_A_ (W)w);
4633 if (expect_false (!ev_is_active (w)))
4634 return;
4635
4636 EV_FREQUENT_CHECK;
4637 ev_ref (EV_A);
4638
4639 {
4640 int active = ev_active (w);
4641
4642 cleanups [active - 1] = cleanups [--cleanupcnt];
4643 ev_active (cleanups [active - 1]) = active;
4644 }
4645
4646 ev_stop (EV_A_ (W)w);
4647
4648 EV_FREQUENT_CHECK;
2435} 4649}
2436#endif 4650#endif
2437 4651
2438#if EV_ASYNC_ENABLE 4652#if EV_ASYNC_ENABLE
2439void 4653void
2440ev_async_start (EV_P_ ev_async *w) 4654ev_async_start (EV_P_ ev_async *w) EV_THROW
2441{ 4655{
2442 if (expect_false (ev_is_active (w))) 4656 if (expect_false (ev_is_active (w)))
2443 return; 4657 return;
2444 4658
4659 w->sent = 0;
4660
2445 evpipe_init (EV_A); 4661 evpipe_init (EV_A);
4662
4663 EV_FREQUENT_CHECK;
2446 4664
2447 ev_start (EV_A_ (W)w, ++asynccnt); 4665 ev_start (EV_A_ (W)w, ++asynccnt);
2448 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4666 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2449 asyncs [asynccnt - 1] = w; 4667 asyncs [asynccnt - 1] = w;
4668
4669 EV_FREQUENT_CHECK;
2450} 4670}
2451 4671
2452void 4672void
2453ev_async_stop (EV_P_ ev_async *w) 4673ev_async_stop (EV_P_ ev_async *w) EV_THROW
2454{ 4674{
2455 clear_pending (EV_A_ (W)w); 4675 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 4676 if (expect_false (!ev_is_active (w)))
2457 return; 4677 return;
2458 4678
4679 EV_FREQUENT_CHECK;
4680
2459 { 4681 {
2460 int active = ((W)w)->active; 4682 int active = ev_active (w);
4683
2461 asyncs [active - 1] = asyncs [--asynccnt]; 4684 asyncs [active - 1] = asyncs [--asynccnt];
2462 ((W)asyncs [active - 1])->active = active; 4685 ev_active (asyncs [active - 1]) = active;
2463 } 4686 }
2464 4687
2465 ev_stop (EV_A_ (W)w); 4688 ev_stop (EV_A_ (W)w);
4689
4690 EV_FREQUENT_CHECK;
2466} 4691}
2467 4692
2468void 4693void
2469ev_async_send (EV_P_ ev_async *w) 4694ev_async_send (EV_P_ ev_async *w) EV_THROW
2470{ 4695{
2471 w->sent = 1; 4696 w->sent = 1;
2472 evpipe_write (EV_A_ &gotasync); 4697 evpipe_write (EV_A_ &async_pending);
2473} 4698}
2474#endif 4699#endif
2475 4700
2476/*****************************************************************************/ 4701/*****************************************************************************/
2477 4702
2487once_cb (EV_P_ struct ev_once *once, int revents) 4712once_cb (EV_P_ struct ev_once *once, int revents)
2488{ 4713{
2489 void (*cb)(int revents, void *arg) = once->cb; 4714 void (*cb)(int revents, void *arg) = once->cb;
2490 void *arg = once->arg; 4715 void *arg = once->arg;
2491 4716
2492 ev_io_stop (EV_A_ &once->io); 4717 ev_io_stop (EV_A_ &once->io);
2493 ev_timer_stop (EV_A_ &once->to); 4718 ev_timer_stop (EV_A_ &once->to);
2494 ev_free (once); 4719 ev_free (once);
2495 4720
2496 cb (revents, arg); 4721 cb (revents, arg);
2497} 4722}
2498 4723
2499static void 4724static void
2500once_cb_io (EV_P_ ev_io *w, int revents) 4725once_cb_io (EV_P_ ev_io *w, int revents)
2501{ 4726{
2502 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4727 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4728
4729 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2503} 4730}
2504 4731
2505static void 4732static void
2506once_cb_to (EV_P_ ev_timer *w, int revents) 4733once_cb_to (EV_P_ ev_timer *w, int revents)
2507{ 4734{
2508 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4735 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4736
4737 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2509} 4738}
2510 4739
2511void 4740void
2512ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4741ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2513{ 4742{
2514 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4743 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2515 4744
2516 if (expect_false (!once)) 4745 if (expect_false (!once))
2517 { 4746 {
2518 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4747 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2519 return; 4748 return;
2520 } 4749 }
2521 4750
2522 once->cb = cb; 4751 once->cb = cb;
2523 once->arg = arg; 4752 once->arg = arg;
2535 ev_timer_set (&once->to, timeout, 0.); 4764 ev_timer_set (&once->to, timeout, 0.);
2536 ev_timer_start (EV_A_ &once->to); 4765 ev_timer_start (EV_A_ &once->to);
2537 } 4766 }
2538} 4767}
2539 4768
4769/*****************************************************************************/
4770
4771#if EV_WALK_ENABLE
4772void ecb_cold
4773ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4774{
4775 int i, j;
4776 ev_watcher_list *wl, *wn;
4777
4778 if (types & (EV_IO | EV_EMBED))
4779 for (i = 0; i < anfdmax; ++i)
4780 for (wl = anfds [i].head; wl; )
4781 {
4782 wn = wl->next;
4783
4784#if EV_EMBED_ENABLE
4785 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4786 {
4787 if (types & EV_EMBED)
4788 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4789 }
4790 else
4791#endif
4792#if EV_USE_INOTIFY
4793 if (ev_cb ((ev_io *)wl) == infy_cb)
4794 ;
4795 else
4796#endif
4797 if ((ev_io *)wl != &pipe_w)
4798 if (types & EV_IO)
4799 cb (EV_A_ EV_IO, wl);
4800
4801 wl = wn;
4802 }
4803
4804 if (types & (EV_TIMER | EV_STAT))
4805 for (i = timercnt + HEAP0; i-- > HEAP0; )
4806#if EV_STAT_ENABLE
4807 /*TODO: timer is not always active*/
4808 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4809 {
4810 if (types & EV_STAT)
4811 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4812 }
4813 else
4814#endif
4815 if (types & EV_TIMER)
4816 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4817
4818#if EV_PERIODIC_ENABLE
4819 if (types & EV_PERIODIC)
4820 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4821 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4822#endif
4823
4824#if EV_IDLE_ENABLE
4825 if (types & EV_IDLE)
4826 for (j = NUMPRI; j--; )
4827 for (i = idlecnt [j]; i--; )
4828 cb (EV_A_ EV_IDLE, idles [j][i]);
4829#endif
4830
4831#if EV_FORK_ENABLE
4832 if (types & EV_FORK)
4833 for (i = forkcnt; i--; )
4834 if (ev_cb (forks [i]) != embed_fork_cb)
4835 cb (EV_A_ EV_FORK, forks [i]);
4836#endif
4837
4838#if EV_ASYNC_ENABLE
4839 if (types & EV_ASYNC)
4840 for (i = asynccnt; i--; )
4841 cb (EV_A_ EV_ASYNC, asyncs [i]);
4842#endif
4843
4844#if EV_PREPARE_ENABLE
4845 if (types & EV_PREPARE)
4846 for (i = preparecnt; i--; )
4847# if EV_EMBED_ENABLE
4848 if (ev_cb (prepares [i]) != embed_prepare_cb)
4849# endif
4850 cb (EV_A_ EV_PREPARE, prepares [i]);
4851#endif
4852
4853#if EV_CHECK_ENABLE
4854 if (types & EV_CHECK)
4855 for (i = checkcnt; i--; )
4856 cb (EV_A_ EV_CHECK, checks [i]);
4857#endif
4858
4859#if EV_SIGNAL_ENABLE
4860 if (types & EV_SIGNAL)
4861 for (i = 0; i < EV_NSIG - 1; ++i)
4862 for (wl = signals [i].head; wl; )
4863 {
4864 wn = wl->next;
4865 cb (EV_A_ EV_SIGNAL, wl);
4866 wl = wn;
4867 }
4868#endif
4869
4870#if EV_CHILD_ENABLE
4871 if (types & EV_CHILD)
4872 for (i = (EV_PID_HASHSIZE); i--; )
4873 for (wl = childs [i]; wl; )
4874 {
4875 wn = wl->next;
4876 cb (EV_A_ EV_CHILD, wl);
4877 wl = wn;
4878 }
4879#endif
4880/* EV_STAT 0x00001000 /* stat data changed */
4881/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4882}
4883#endif
4884
2540#if EV_MULTIPLICITY 4885#if EV_MULTIPLICITY
2541 #include "ev_wrap.h" 4886 #include "ev_wrap.h"
2542#endif 4887#endif
2543 4888
2544#ifdef __cplusplus
2545}
2546#endif
2547

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines