ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.74 by root, Tue Nov 6 16:51:20 2007 UTC vs.
Revision 1.219 by root, Wed Apr 2 10:55:39 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
31#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
32# include "config.h" 48# include "config.h"
49# endif
33 50
34# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
54# endif
55# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 56# define EV_USE_REALTIME 1
57# endif
58# else
59# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0
61# endif
62# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0
64# endif
37# endif 65# endif
38 66
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
72# endif
41# endif 73# endif
42 74
43# if HAVE_POLL && HAVE_POLL_H 75# ifndef EV_USE_SELECT
76# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif
45# endif 81# endif
46 82
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 85# define EV_USE_POLL 1
86# else
87# define EV_USE_POLL 0
88# endif
49# endif 89# endif
50 90
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1
94# else
95# define EV_USE_EPOLL 0
96# endif
97# endif
98
99# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif
105# endif
106
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif
113# endif
114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
53# endif 121# endif
54 122
55#endif 123#endif
56 124
57#include <math.h> 125#include <math.h>
66#include <sys/types.h> 134#include <sys/types.h>
67#include <time.h> 135#include <time.h>
68 136
69#include <signal.h> 137#include <signal.h>
70 138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
71#ifndef WIN32 145#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 146# include <sys/time.h>
74# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
149#else
150# define WIN32_LEAN_AND_MEAN
151# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1
75#endif 154# endif
155#endif
156
76/**/ 157/**/
77 158
78#ifndef EV_USE_MONOTONIC 159#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 160# define EV_USE_MONOTONIC 0
161#endif
162
163#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0
165#endif
166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
80#endif 169#endif
81 170
82#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
84#endif 173#endif
85 174
86#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 176# ifdef _WIN32
177# define EV_USE_POLL 0
178# else
179# define EV_USE_POLL 1
180# endif
88#endif 181#endif
89 182
90#ifndef EV_USE_EPOLL 183#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 184# define EV_USE_EPOLL 0
92#endif 185#endif
93 186
94#ifndef EV_USE_KQUEUE 187#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 188# define EV_USE_KQUEUE 0
96#endif 189#endif
97 190
191#ifndef EV_USE_PORT
192# define EV_USE_PORT 0
193#endif
194
98#ifndef EV_USE_WIN32 195#ifndef EV_USE_INOTIFY
99# ifdef WIN32 196# define EV_USE_INOTIFY 0
100# define EV_USE_WIN32 0 /* it does not exist, use select */ 197#endif
101# undef EV_USE_SELECT 198
102# define EV_USE_SELECT 1 199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
103# else 202# else
104# define EV_USE_WIN32 0 203# define EV_PID_HASHSIZE 16
105# endif 204# endif
106#endif 205#endif
107 206
108#ifndef EV_USE_REALTIME 207#ifndef EV_INOTIFY_HASHSIZE
109# define EV_USE_REALTIME 1 208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
110#endif 213#endif
111 214
112/**/ 215/**/
113 216
114#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
119#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
122#endif 225#endif
123 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
242#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h>
244#endif
245
124/**/ 246/**/
125 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 261
131#include "ev.h"
132
133#if __GNUC__ >= 3 262#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 264# define noinline __attribute__ ((noinline))
136#else 265#else
137# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
138# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
139#endif 271#endif
140 272
141#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
143 282
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 285
286#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */
288
147typedef struct ev_watcher *W; 289typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
150 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
152 298
299#ifdef _WIN32
153#include "ev_win32.c" 300# include "ev_win32.c"
301#endif
154 302
155/*****************************************************************************/ 303/*****************************************************************************/
156 304
157static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
158 306
307void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 309{
161 syserr_cb = cb; 310 syserr_cb = cb;
162} 311}
163 312
164static void 313static void noinline
165syserr (const char *msg) 314syserr (const char *msg)
166{ 315{
167 if (!msg) 316 if (!msg)
168 msg = "(libev) system error"; 317 msg = "(libev) system error";
169 318
176 } 325 }
177} 326}
178 327
179static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
180 329
330void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 332{
183 alloc = cb; 333 alloc = cb;
184} 334}
185 335
186static void * 336inline_speed void *
187ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
188{ 338{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190 340
191 if (!ptr && size) 341 if (!ptr && size)
205typedef struct 355typedef struct
206{ 356{
207 WL head; 357 WL head;
208 unsigned char events; 358 unsigned char events;
209 unsigned char reify; 359 unsigned char reify;
360#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle;
362#endif
210} ANFD; 363} ANFD;
211 364
212typedef struct 365typedef struct
213{ 366{
214 W w; 367 W w;
215 int events; 368 int events;
216} ANPENDING; 369} ANPENDING;
217 370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
377
218#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
219 379
220struct ev_loop 380 struct ev_loop
221{ 381 {
382 ev_tstamp ev_rt_now;
383 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 384 #define VAR(name,decl) decl;
223# include "ev_vars.h" 385 #include "ev_vars.h"
224};
225# undef VAR 386 #undef VAR
387 };
226# include "ev_wrap.h" 388 #include "ev_wrap.h"
389
390 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr;
227 392
228#else 393#else
229 394
395 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 396 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 397 #include "ev_vars.h"
232# undef VAR 398 #undef VAR
399
400 static int ev_default_loop_ptr;
233 401
234#endif 402#endif
235 403
236/*****************************************************************************/ 404/*****************************************************************************/
237 405
238inline ev_tstamp 406ev_tstamp
239ev_time (void) 407ev_time (void)
240{ 408{
241#if EV_USE_REALTIME 409#if EV_USE_REALTIME
242 struct timespec ts; 410 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 411 clock_gettime (CLOCK_REALTIME, &ts);
247 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif 417#endif
250} 418}
251 419
252inline ev_tstamp 420ev_tstamp inline_size
253get_clock (void) 421get_clock (void)
254{ 422{
255#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
257 { 425 {
262#endif 430#endif
263 431
264 return ev_time (); 432 return ev_time ();
265} 433}
266 434
435#if EV_MULTIPLICITY
267ev_tstamp 436ev_tstamp
268ev_now (EV_P) 437ev_now (EV_P)
269{ 438{
270 return rt_now; 439 return ev_rt_now;
271} 440}
441#endif
272 442
273#define array_roundsize(type,n) ((n) | 4 & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep ((unsigned long)(delay * 1e3));
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
274 497
275#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
277 { \ 500 { \
278 int newcnt = cur; \ 501 int ocur_ = (cur); \
279 do \ 502 (base) = (type *)array_realloc \
280 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 505 }
289 506
507#if 0
290#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 510 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 514 }
297 515#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 516
303#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 519
306/*****************************************************************************/ 520/*****************************************************************************/
307 521
308static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
309anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
310{ 552{
311 while (count--) 553 while (count--)
312 { 554 {
313 base->head = 0; 555 base->head = 0;
316 558
317 ++base; 559 ++base;
318 } 560 }
319} 561}
320 562
321static void 563void inline_speed
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events;
327 return;
328 }
329
330 w->pending = ++pendingcnt [ABSPRI (w)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334}
335
336static void
337queue_events (EV_P_ W *events, int eventcnt, int type)
338{
339 int i;
340
341 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type);
343}
344
345static void
346fd_event (EV_P_ int fd, int events) 564fd_event (EV_P_ int fd, int revents)
347{ 565{
348 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 567 ev_io *w;
350 568
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 570 {
353 int ev = w->events & events; 571 int ev = w->events & revents;
354 572
355 if (ev) 573 if (ev)
356 event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
357 } 575 }
358} 576}
359 577
360/*****************************************************************************/ 578void
579ev_feed_fd_event (EV_P_ int fd, int revents)
580{
581 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents);
583}
361 584
362static void 585void inline_size
363fd_reify (EV_P) 586fd_reify (EV_P)
364{ 587{
365 int i; 588 int i;
366 589
367 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
368 { 591 {
369 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 594 ev_io *w;
372 595
373 int events = 0; 596 unsigned char events = 0;
374 597
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
376 events |= w->events; 599 events |= (unsigned char)w->events;
377 600
601#if EV_SELECT_IS_WINSOCKET
602 if (events)
603 {
604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
611 }
612#endif
613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
378 anfd->reify = 0; 618 anfd->reify = 0;
379
380 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
382 } 624 }
383 625
384 fdchangecnt = 0; 626 fdchangecnt = 0;
385} 627}
386 628
387static void 629void inline_size
388fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
389{ 631{
390 if (anfds [fd].reify) 632 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
394 634
635 if (expect_true (!reify))
636 {
395 ++fdchangecnt; 637 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
398} 641}
399 642
400static void 643void inline_speed
401fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
402{ 645{
403 struct ev_io *w; 646 ev_io *w;
404 647
405 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
406 { 649 {
407 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 652 }
410} 653}
411 654
412static int 655int inline_size
413fd_valid (int fd) 656fd_valid (int fd)
414{ 657{
415#ifdef WIN32 658#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 659 return _get_osfhandle (fd) != -1;
417#else 660#else
418 return fcntl (fd, F_GETFD) != -1; 661 return fcntl (fd, F_GETFD) != -1;
419#endif 662#endif
420} 663}
421 664
422/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
423static void 666static void noinline
424fd_ebadf (EV_P) 667fd_ebadf (EV_P)
425{ 668{
426 int fd; 669 int fd;
427 670
428 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
431 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
432} 675}
433 676
434/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 678static void noinline
436fd_enomem (EV_P) 679fd_enomem (EV_P)
437{ 680{
438 int fd; 681 int fd;
439 682
440 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
443 fd_kill (EV_A_ fd); 686 fd_kill (EV_A_ fd);
444 return; 687 return;
445 } 688 }
446} 689}
447 690
448/* usually called after fork if method needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 692static void noinline
450fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
451{ 694{
452 int fd; 695 int fd;
453 696
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 698 if (anfds [fd].events)
457 { 699 {
458 anfds [fd].events = 0; 700 anfds [fd].events = 0;
459 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
460 } 702 }
461} 703}
462 704
463/*****************************************************************************/ 705/*****************************************************************************/
464 706
465static void 707void inline_speed
466upheap (WT *heap, int k) 708upheap (WT *heap, int k)
467{ 709{
468 WT w = heap [k]; 710 WT w = heap [k];
469 711
470 while (k && heap [k >> 1]->at > w->at) 712 while (k)
471 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
472 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
473 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
474 k >>= 1; 721 k = p;
475 } 722 }
476 723
477 heap [k] = w; 724 heap [k] = w;
478 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
479
480} 726}
481 727
482static void 728void inline_speed
483downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
484{ 730{
485 WT w = heap [k]; 731 WT w = heap [k];
486 732
487 while (k < (N >> 1)) 733 for (;;)
488 { 734 {
489 int j = k << 1; 735 int c = (k << 1) + 1;
490 736
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
492 ++j;
493
494 if (w->at <= heap [j]->at)
495 break; 738 break;
496 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
497 heap [k] = heap [j]; 746 heap [k] = heap [c];
498 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
499 k = j; 749 k = c;
500 } 750 }
501 751
502 heap [k] = w; 752 heap [k] = w;
503 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
504} 754}
505 755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
506/*****************************************************************************/ 763/*****************************************************************************/
507 764
508typedef struct 765typedef struct
509{ 766{
510 WL head; 767 WL head;
511 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
512} ANSIG; 769} ANSIG;
513 770
514static ANSIG *signals; 771static ANSIG *signals;
515static int signalmax; 772static int signalmax;
516 773
517static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
518static sig_atomic_t volatile gotsig;
519static struct ev_io sigev;
520 775
521static void 776void inline_size
522signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
523{ 778{
524 while (count--) 779 while (count--)
525 { 780 {
526 base->head = 0; 781 base->head = 0;
528 783
529 ++base; 784 ++base;
530 } 785 }
531} 786}
532 787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd)
792{
793#ifdef _WIN32
794 int arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif
800}
801
802static void noinline
803evpipe_init (EV_P)
804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
810 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ);
814 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{
822 if (!*flag)
823 {
824 int old_errno = errno; /* save errno because write might clobber it */
825
826 *flag = 1;
827 write (evpipe [1], &old_errno, 1);
828
829 errno = old_errno;
830 }
831}
832
533static void 833static void
834pipecb (EV_P_ ev_io *iow, int revents)
835{
836 {
837 int dummy;
838 read (evpipe [0], &dummy, 1);
839 }
840
841 if (gotsig && ev_is_default_loop (EV_A))
842 {
843 int signum;
844 gotsig = 0;
845
846 for (signum = signalmax; signum--; )
847 if (signals [signum].gotsig)
848 ev_feed_signal_event (EV_A_ signum + 1);
849 }
850
851#if EV_ASYNC_ENABLE
852 if (gotasync)
853 {
854 int i;
855 gotasync = 0;
856
857 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent)
859 {
860 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 }
863 }
864#endif
865}
866
867/*****************************************************************************/
868
869static void
534sighandler (int signum) 870ev_sighandler (int signum)
535{ 871{
872#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct;
874#endif
875
536#if WIN32 876#if _WIN32
537 signal (signum, sighandler); 877 signal (signum, ev_sighandler);
538#endif 878#endif
539 879
540 signals [signum - 1].gotsig = 1; 880 signals [signum - 1].gotsig = 1;
541 881 evpipe_write (EV_A_ &gotsig);
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546 write (sigpipe [1], &signum, 1);
547 errno = old_errno;
548 }
549} 882}
550 883
551static void 884void noinline
552sigcb (EV_P_ struct ev_io *iow, int revents) 885ev_feed_signal_event (EV_P_ int signum)
553{ 886{
554 WL w; 887 WL w;
888
889#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif
892
555 int signum; 893 --signum;
556 894
557 read (sigpipe [0], &revents, 1); 895 if (signum < 0 || signum >= signalmax)
558 gotsig = 0; 896 return;
559 897
560 for (signum = signalmax; signum--; )
561 if (signals [signum].gotsig)
562 {
563 signals [signum].gotsig = 0; 898 signals [signum].gotsig = 0;
564 899
565 for (w = signals [signum].head; w; w = w->next) 900 for (w = signals [signum].head; w; w = w->next)
566 event (EV_A_ (W)w, EV_SIGNAL); 901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
567 }
568}
569
570static void
571siginit (EV_P)
572{
573#ifndef WIN32
574 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
575 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
576
577 /* rather than sort out wether we really need nb, set it */
578 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
579 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
580#endif
581
582 ev_io_set (&sigev, sigpipe [0], EV_READ);
583 ev_io_start (EV_A_ &sigev);
584 ev_unref (EV_A); /* child watcher should not keep loop alive */
585} 902}
586 903
587/*****************************************************************************/ 904/*****************************************************************************/
588 905
589static struct ev_child *childs [PID_HASHSIZE]; 906static WL childs [EV_PID_HASHSIZE];
590 907
591#ifndef WIN32 908#ifndef _WIN32
592 909
593static struct ev_signal childev; 910static ev_signal childev;
911
912#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0
914#endif
915
916void inline_speed
917child_reap (EV_P_ int chain, int pid, int status)
918{
919 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
923 {
924 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1)))
926 {
927 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
928 w->rpid = pid;
929 w->rstatus = status;
930 ev_feed_event (EV_A_ (W)w, EV_CHILD);
931 }
932 }
933}
594 934
595#ifndef WCONTINUED 935#ifndef WCONTINUED
596# define WCONTINUED 0 936# define WCONTINUED 0
597#endif 937#endif
598 938
599static void 939static void
600child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
601{
602 struct ev_child *w;
603
604 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
605 if (w->pid == pid || !w->pid)
606 {
607 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
608 w->rpid = pid;
609 w->rstatus = status;
610 event (EV_A_ (W)w, EV_CHILD);
611 }
612}
613
614static void
615childcb (EV_P_ struct ev_signal *sw, int revents) 940childcb (EV_P_ ev_signal *sw, int revents)
616{ 941{
617 int pid, status; 942 int pid, status;
618 943
944 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
619 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 945 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
620 { 946 if (!WCONTINUED
947 || errno != EINVAL
948 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
949 return;
950
621 /* make sure we are called again until all childs have been reaped */ 951 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */
622 event (EV_A_ (W)sw, EV_SIGNAL); 953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
623 954
624 child_reap (EV_A_ sw, pid, pid, status); 955 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1)
625 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 957 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
626 }
627} 958}
628 959
629#endif 960#endif
630 961
631/*****************************************************************************/ 962/*****************************************************************************/
632 963
964#if EV_USE_PORT
965# include "ev_port.c"
966#endif
633#if EV_USE_KQUEUE 967#if EV_USE_KQUEUE
634# include "ev_kqueue.c" 968# include "ev_kqueue.c"
635#endif 969#endif
636#if EV_USE_EPOLL 970#if EV_USE_EPOLL
637# include "ev_epoll.c" 971# include "ev_epoll.c"
654{ 988{
655 return EV_VERSION_MINOR; 989 return EV_VERSION_MINOR;
656} 990}
657 991
658/* return true if we are running with elevated privileges and should ignore env variables */ 992/* return true if we are running with elevated privileges and should ignore env variables */
659static int 993int inline_size
660enable_secure (void) 994enable_secure (void)
661{ 995{
662#ifdef WIN32 996#ifdef _WIN32
663 return 0; 997 return 0;
664#else 998#else
665 return getuid () != geteuid () 999 return getuid () != geteuid ()
666 || getgid () != getegid (); 1000 || getgid () != getegid ();
667#endif 1001#endif
668} 1002}
669 1003
670int 1004unsigned int
671ev_method (EV_P) 1005ev_supported_backends (void)
672{ 1006{
673 return method; 1007 unsigned int flags = 0;
674}
675 1008
676static void 1009 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
677loop_init (EV_P_ int methods) 1010 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1011 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1012 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1013 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1014
1015 return flags;
1016}
1017
1018unsigned int
1019ev_recommended_backends (void)
678{ 1020{
679 if (!method) 1021 unsigned int flags = ev_supported_backends ();
1022
1023#ifndef __NetBSD__
1024 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE;
1027#endif
1028#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation
1030 flags &= ~EVBACKEND_POLL;
1031#endif
1032
1033 return flags;
1034}
1035
1036unsigned int
1037ev_embeddable_backends (void)
1038{
1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1040
1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */
1043 flags &= ~EVBACKEND_EPOLL;
1044
1045 return flags;
1046}
1047
1048unsigned int
1049ev_backend (EV_P)
1050{
1051 return backend;
1052}
1053
1054unsigned int
1055ev_loop_count (EV_P)
1056{
1057 return loop_count;
1058}
1059
1060void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1062{
1063 io_blocktime = interval;
1064}
1065
1066void
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1068{
1069 timeout_blocktime = interval;
1070}
1071
1072static void noinline
1073loop_init (EV_P_ unsigned int flags)
1074{
1075 if (!backend)
680 { 1076 {
681#if EV_USE_MONOTONIC 1077#if EV_USE_MONOTONIC
682 { 1078 {
683 struct timespec ts; 1079 struct timespec ts;
684 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
685 have_monotonic = 1; 1081 have_monotonic = 1;
686 } 1082 }
687#endif 1083#endif
688 1084
689 rt_now = ev_time (); 1085 ev_rt_now = ev_time ();
690 mn_now = get_clock (); 1086 mn_now = get_clock ();
691 now_floor = mn_now; 1087 now_floor = mn_now;
692 rtmn_diff = rt_now - mn_now; 1088 rtmn_diff = ev_rt_now - mn_now;
693 1089
694 if (methods == EVMETHOD_AUTO) 1090 io_blocktime = 0.;
695 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif
1098
1099 /* pid check not overridable via env */
1100#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK)
1102 curpid = getpid ();
1103#endif
1104
1105 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS"))
696 methods = atoi (getenv ("LIBEV_METHODS")); 1108 flags = atoi (getenv ("LIBEV_FLAGS"));
697 else
698 methods = EVMETHOD_ANY;
699 1109
700 method = 0; 1110 if (!(flags & 0x0000ffffUL))
701#if EV_USE_WIN32 1111 flags |= ev_recommended_backends ();
702 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1112
1113#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
703#endif 1115#endif
704#if EV_USE_KQUEUE 1116#if EV_USE_KQUEUE
705 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
706#endif 1118#endif
707#if EV_USE_EPOLL 1119#if EV_USE_EPOLL
708 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1120 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
709#endif 1121#endif
710#if EV_USE_POLL 1122#if EV_USE_POLL
711 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1123 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
712#endif 1124#endif
713#if EV_USE_SELECT 1125#if EV_USE_SELECT
714 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
715#endif 1127#endif
716 1128
717 ev_watcher_init (&sigev, sigcb); 1129 ev_init (&pipeev, pipecb);
718 ev_set_priority (&sigev, EV_MAXPRI); 1130 ev_set_priority (&pipeev, EV_MAXPRI);
719 } 1131 }
720} 1132}
721 1133
722void 1134static void noinline
723loop_destroy (EV_P) 1135loop_destroy (EV_P)
724{ 1136{
725 int i; 1137 int i;
726 1138
1139 if (ev_is_active (&pipeev))
1140 {
1141 ev_ref (EV_A); /* signal watcher */
1142 ev_io_stop (EV_A_ &pipeev);
1143
1144 close (evpipe [0]); evpipe [0] = 0;
1145 close (evpipe [1]); evpipe [1] = 0;
1146 }
1147
727#if EV_USE_WIN32 1148#if EV_USE_INOTIFY
728 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1149 if (fs_fd >= 0)
1150 close (fs_fd);
1151#endif
1152
1153 if (backend_fd >= 0)
1154 close (backend_fd);
1155
1156#if EV_USE_PORT
1157 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
729#endif 1158#endif
730#if EV_USE_KQUEUE 1159#if EV_USE_KQUEUE
731 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1160 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
732#endif 1161#endif
733#if EV_USE_EPOLL 1162#if EV_USE_EPOLL
734 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1163 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
735#endif 1164#endif
736#if EV_USE_POLL 1165#if EV_USE_POLL
737 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1166 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
738#endif 1167#endif
739#if EV_USE_SELECT 1168#if EV_USE_SELECT
740 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1169 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
741#endif 1170#endif
742 1171
743 for (i = NUMPRI; i--; ) 1172 for (i = NUMPRI; i--; )
1173 {
744 array_free (pending, [i]); 1174 array_free (pending, [i]);
1175#if EV_IDLE_ENABLE
1176 array_free (idle, [i]);
1177#endif
1178 }
1179
1180 ev_free (anfds); anfdmax = 0;
745 1181
746 /* have to use the microsoft-never-gets-it-right macro */ 1182 /* have to use the microsoft-never-gets-it-right macro */
747 array_free_microshit (fdchange); 1183 array_free (fdchange, EMPTY);
748 array_free_microshit (timer); 1184 array_free (timer, EMPTY);
749 array_free_microshit (periodic); 1185#if EV_PERIODIC_ENABLE
750 array_free_microshit (idle); 1186 array_free (periodic, EMPTY);
751 array_free_microshit (prepare); 1187#endif
752 array_free_microshit (check); 1188#if EV_FORK_ENABLE
1189 array_free (fork, EMPTY);
1190#endif
1191 array_free (prepare, EMPTY);
1192 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY);
1195#endif
753 1196
754 method = 0; 1197 backend = 0;
755} 1198}
756 1199
757static void 1200void inline_size infy_fork (EV_P);
1201
1202void inline_size
758loop_fork (EV_P) 1203loop_fork (EV_P)
759{ 1204{
1205#if EV_USE_PORT
1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1207#endif
1208#if EV_USE_KQUEUE
1209 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1210#endif
760#if EV_USE_EPOLL 1211#if EV_USE_EPOLL
761 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1212 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
762#endif 1213#endif
763#if EV_USE_KQUEUE 1214#if EV_USE_INOTIFY
764 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1215 infy_fork (EV_A);
765#endif 1216#endif
766 1217
767 if (ev_is_active (&sigev)) 1218 if (ev_is_active (&pipeev))
768 { 1219 {
769 /* default loop */ 1220 /* this "locks" the handlers against writing to the pipe */
1221 /* while we modify the fd vars */
1222 gotsig = 1;
1223#if EV_ASYNC_ENABLE
1224 gotasync = 1;
1225#endif
770 1226
771 ev_ref (EV_A); 1227 ev_ref (EV_A);
772 ev_io_stop (EV_A_ &sigev); 1228 ev_io_stop (EV_A_ &pipeev);
773 close (sigpipe [0]); 1229 close (evpipe [0]);
774 close (sigpipe [1]); 1230 close (evpipe [1]);
775 1231
776 while (pipe (sigpipe))
777 syserr ("(libev) error creating pipe");
778
779 siginit (EV_A); 1232 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ);
780 } 1235 }
781 1236
782 postfork = 0; 1237 postfork = 0;
783} 1238}
784 1239
785#if EV_MULTIPLICITY 1240#if EV_MULTIPLICITY
786struct ev_loop * 1241struct ev_loop *
787ev_loop_new (int methods) 1242ev_loop_new (unsigned int flags)
788{ 1243{
789 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
790 1245
791 memset (loop, 0, sizeof (struct ev_loop)); 1246 memset (loop, 0, sizeof (struct ev_loop));
792 1247
793 loop_init (EV_A_ methods); 1248 loop_init (EV_A_ flags);
794 1249
795 if (ev_method (EV_A)) 1250 if (ev_backend (EV_A))
796 return loop; 1251 return loop;
797 1252
798 return 0; 1253 return 0;
799} 1254}
800 1255
806} 1261}
807 1262
808void 1263void
809ev_loop_fork (EV_P) 1264ev_loop_fork (EV_P)
810{ 1265{
811 postfork = 1; 1266 postfork = 1; /* must be in line with ev_default_fork */
812} 1267}
813 1268
814#endif 1269#endif
815 1270
816#if EV_MULTIPLICITY 1271#if EV_MULTIPLICITY
817struct ev_loop default_loop_struct;
818static struct ev_loop *default_loop;
819
820struct ev_loop * 1272struct ev_loop *
1273ev_default_loop_init (unsigned int flags)
821#else 1274#else
822static int default_loop;
823
824int 1275int
1276ev_default_loop (unsigned int flags)
825#endif 1277#endif
826ev_default_loop (int methods)
827{ 1278{
828 if (sigpipe [0] == sigpipe [1])
829 if (pipe (sigpipe))
830 return 0;
831
832 if (!default_loop) 1279 if (!ev_default_loop_ptr)
833 { 1280 {
834#if EV_MULTIPLICITY 1281#if EV_MULTIPLICITY
835 struct ev_loop *loop = default_loop = &default_loop_struct; 1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
836#else 1283#else
837 default_loop = 1; 1284 ev_default_loop_ptr = 1;
838#endif 1285#endif
839 1286
840 loop_init (EV_A_ methods); 1287 loop_init (EV_A_ flags);
841 1288
842 if (ev_method (EV_A)) 1289 if (ev_backend (EV_A))
843 { 1290 {
844 siginit (EV_A);
845
846#ifndef WIN32 1291#ifndef _WIN32
847 ev_signal_init (&childev, childcb, SIGCHLD); 1292 ev_signal_init (&childev, childcb, SIGCHLD);
848 ev_set_priority (&childev, EV_MAXPRI); 1293 ev_set_priority (&childev, EV_MAXPRI);
849 ev_signal_start (EV_A_ &childev); 1294 ev_signal_start (EV_A_ &childev);
850 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1295 ev_unref (EV_A); /* child watcher should not keep loop alive */
851#endif 1296#endif
852 } 1297 }
853 else 1298 else
854 default_loop = 0; 1299 ev_default_loop_ptr = 0;
855 } 1300 }
856 1301
857 return default_loop; 1302 return ev_default_loop_ptr;
858} 1303}
859 1304
860void 1305void
861ev_default_destroy (void) 1306ev_default_destroy (void)
862{ 1307{
863#if EV_MULTIPLICITY 1308#if EV_MULTIPLICITY
864 struct ev_loop *loop = default_loop; 1309 struct ev_loop *loop = ev_default_loop_ptr;
865#endif 1310#endif
866 1311
867#ifndef WIN32 1312#ifndef _WIN32
868 ev_ref (EV_A); /* child watcher */ 1313 ev_ref (EV_A); /* child watcher */
869 ev_signal_stop (EV_A_ &childev); 1314 ev_signal_stop (EV_A_ &childev);
870#endif 1315#endif
871 1316
872 ev_ref (EV_A); /* signal watcher */
873 ev_io_stop (EV_A_ &sigev);
874
875 close (sigpipe [0]); sigpipe [0] = 0;
876 close (sigpipe [1]); sigpipe [1] = 0;
877
878 loop_destroy (EV_A); 1317 loop_destroy (EV_A);
879} 1318}
880 1319
881void 1320void
882ev_default_fork (void) 1321ev_default_fork (void)
883{ 1322{
884#if EV_MULTIPLICITY 1323#if EV_MULTIPLICITY
885 struct ev_loop *loop = default_loop; 1324 struct ev_loop *loop = ev_default_loop_ptr;
886#endif 1325#endif
887 1326
888 if (method) 1327 if (backend)
889 postfork = 1; 1328 postfork = 1; /* must be in line with ev_loop_fork */
890} 1329}
891 1330
892/*****************************************************************************/ 1331/*****************************************************************************/
893 1332
894static void 1333void
1334ev_invoke (EV_P_ void *w, int revents)
1335{
1336 EV_CB_INVOKE ((W)w, revents);
1337}
1338
1339void inline_speed
895call_pending (EV_P) 1340call_pending (EV_P)
896{ 1341{
897 int pri; 1342 int pri;
898 1343
899 for (pri = NUMPRI; pri--; ) 1344 for (pri = NUMPRI; pri--; )
900 while (pendingcnt [pri]) 1345 while (pendingcnt [pri])
901 { 1346 {
902 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
903 1348
904 if (p->w) 1349 if (expect_true (p->w))
905 { 1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352
906 p->w->pending = 0; 1353 p->w->pending = 0;
907 p->w->cb (EV_A_ p->w, p->events); 1354 EV_CB_INVOKE (p->w, p->events);
908 } 1355 }
909 } 1356 }
910} 1357}
911 1358
912static void 1359void inline_size
913timers_reify (EV_P) 1360timers_reify (EV_P)
914{ 1361{
915 while (timercnt && ((WT)timers [0])->at <= mn_now) 1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
916 { 1363 {
917 struct ev_timer *w = timers [0]; 1364 ev_timer *w = (ev_timer *)timers [0];
918 1365
919 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
920 1367
921 /* first reschedule or stop timer */ 1368 /* first reschedule or stop timer */
922 if (w->repeat) 1369 if (w->repeat)
923 { 1370 {
924 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
925 ((WT)w)->at = mn_now + w->repeat; 1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
926 downheap ((WT *)timers, timercnt, 0); 1377 downheap (timers, timercnt, 0);
927 } 1378 }
928 else 1379 else
929 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
930 1381
931 event (EV_A_ (W)w, EV_TIMEOUT); 1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
932 } 1383 }
933} 1384}
934 1385
935static void 1386#if EV_PERIODIC_ENABLE
1387void inline_size
936periodics_reify (EV_P) 1388periodics_reify (EV_P)
937{ 1389{
938 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
939 { 1391 {
940 struct ev_periodic *w = periodics [0]; 1392 ev_periodic *w = (ev_periodic *)periodics [0];
941 1393
942 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
943 1395
944 /* first reschedule or stop timer */ 1396 /* first reschedule or stop timer */
945 if (w->interval) 1397 if (w->reschedule_cb)
946 { 1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
947 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
948 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
949 downheap ((WT *)periodics, periodiccnt, 0); 1408 downheap (periodics, periodiccnt, 0);
950 } 1409 }
951 else 1410 else
952 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
953 1412
954 event (EV_A_ (W)w, EV_PERIODIC); 1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
955 } 1414 }
956} 1415}
957 1416
958static void 1417static void noinline
959periodics_reschedule (EV_P) 1418periodics_reschedule (EV_P)
960{ 1419{
961 int i; 1420 int i;
962 1421
963 /* adjust periodics after time jump */ 1422 /* adjust periodics after time jump */
964 for (i = 0; i < periodiccnt; ++i) 1423 for (i = 0; i < periodiccnt; ++i)
965 { 1424 {
966 struct ev_periodic *w = periodics [i]; 1425 ev_periodic *w = (ev_periodic *)periodics [i];
967 1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
968 if (w->interval) 1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438
1439#if EV_IDLE_ENABLE
1440void inline_size
1441idle_reify (EV_P)
1442{
1443 if (expect_false (idleall))
1444 {
1445 int pri;
1446
1447 for (pri = NUMPRI; pri--; )
969 { 1448 {
970 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1449 if (pendingcnt [pri])
1450 break;
971 1451
972 if (fabs (diff) >= 1e-4) 1452 if (idlecnt [pri])
973 { 1453 {
974 ev_periodic_stop (EV_A_ w); 1454 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
975 ev_periodic_start (EV_A_ w); 1455 break;
976
977 i = 0; /* restart loop, inefficient, but time jumps should be rare */
978 } 1456 }
979 } 1457 }
980 } 1458 }
981} 1459}
1460#endif
982 1461
983inline int 1462void inline_speed
984time_update_monotonic (EV_P) 1463time_update (EV_P_ ev_tstamp max_block)
985{
986 mn_now = get_clock ();
987
988 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
989 {
990 rt_now = rtmn_diff + mn_now;
991 return 0;
992 }
993 else
994 {
995 now_floor = mn_now;
996 rt_now = ev_time ();
997 return 1;
998 }
999}
1000
1001static void
1002time_update (EV_P)
1003{ 1464{
1004 int i; 1465 int i;
1005 1466
1006#if EV_USE_MONOTONIC 1467#if EV_USE_MONOTONIC
1007 if (expect_true (have_monotonic)) 1468 if (expect_true (have_monotonic))
1008 { 1469 {
1009 if (time_update_monotonic (EV_A)) 1470 ev_tstamp odiff = rtmn_diff;
1471
1472 mn_now = get_clock ();
1473
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1475 /* interpolate in the meantime */
1476 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1010 { 1477 {
1011 ev_tstamp odiff = rtmn_diff; 1478 ev_rt_now = rtmn_diff + mn_now;
1479 return;
1480 }
1012 1481
1482 now_floor = mn_now;
1483 ev_rt_now = ev_time ();
1484
1013 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1485 /* loop a few times, before making important decisions.
1486 * on the choice of "4": one iteration isn't enough,
1487 * in case we get preempted during the calls to
1488 * ev_time and get_clock. a second call is almost guaranteed
1489 * to succeed in that case, though. and looping a few more times
1490 * doesn't hurt either as we only do this on time-jumps or
1491 * in the unlikely event of having been preempted here.
1492 */
1493 for (i = 4; --i; )
1014 { 1494 {
1015 rtmn_diff = rt_now - mn_now; 1495 rtmn_diff = ev_rt_now - mn_now;
1016 1496
1017 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1018 return; /* all is well */ 1498 return; /* all is well */
1019 1499
1020 rt_now = ev_time (); 1500 ev_rt_now = ev_time ();
1021 mn_now = get_clock (); 1501 mn_now = get_clock ();
1022 now_floor = mn_now; 1502 now_floor = mn_now;
1023 } 1503 }
1024 1504
1505# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A);
1507# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 }
1511 else
1512#endif
1513 {
1514 ev_rt_now = ev_time ();
1515
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1517 {
1518#if EV_PERIODIC_ENABLE
1025 periodics_reschedule (EV_A); 1519 periodics_reschedule (EV_A);
1026 /* no timer adjustment, as the monotonic clock doesn't jump */ 1520#endif
1027 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1028 } 1524 }
1029 }
1030 else
1031#endif
1032 {
1033 rt_now = ev_time ();
1034 1525
1035 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1036 {
1037 periodics_reschedule (EV_A);
1038
1039 /* adjust timers. this is easy, as the offset is the same for all */
1040 for (i = 0; i < timercnt; ++i)
1041 ((WT)timers [i])->at += rt_now - mn_now;
1042 }
1043
1044 mn_now = rt_now; 1526 mn_now = ev_rt_now;
1045 } 1527 }
1046} 1528}
1047 1529
1048void 1530void
1049ev_ref (EV_P) 1531ev_ref (EV_P)
1060static int loop_done; 1542static int loop_done;
1061 1543
1062void 1544void
1063ev_loop (EV_P_ int flags) 1545ev_loop (EV_P_ int flags)
1064{ 1546{
1065 double block; 1547 loop_done = EVUNLOOP_CANCEL;
1066 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1548
1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1067 1550
1068 do 1551 do
1069 { 1552 {
1553#ifndef _WIN32
1554 if (expect_false (curpid)) /* penalise the forking check even more */
1555 if (expect_false (getpid () != curpid))
1556 {
1557 curpid = getpid ();
1558 postfork = 1;
1559 }
1560#endif
1561
1562#if EV_FORK_ENABLE
1563 /* we might have forked, so queue fork handlers */
1564 if (expect_false (postfork))
1565 if (forkcnt)
1566 {
1567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1568 call_pending (EV_A);
1569 }
1570#endif
1571
1070 /* queue check watchers (and execute them) */ 1572 /* queue prepare watchers (and execute them) */
1071 if (expect_false (preparecnt)) 1573 if (expect_false (preparecnt))
1072 { 1574 {
1073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1575 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1074 call_pending (EV_A); 1576 call_pending (EV_A);
1075 } 1577 }
1076 1578
1579 if (expect_false (!activecnt))
1580 break;
1581
1077 /* we might have forked, so reify kernel state if necessary */ 1582 /* we might have forked, so reify kernel state if necessary */
1078 if (expect_false (postfork)) 1583 if (expect_false (postfork))
1079 loop_fork (EV_A); 1584 loop_fork (EV_A);
1080 1585
1081 /* update fd-related kernel structures */ 1586 /* update fd-related kernel structures */
1082 fd_reify (EV_A); 1587 fd_reify (EV_A);
1083 1588
1084 /* calculate blocking time */ 1589 /* calculate blocking time */
1590 {
1591 ev_tstamp waittime = 0.;
1592 ev_tstamp sleeptime = 0.;
1085 1593
1086 /* we only need this for !monotonic clockor timers, but as we basically 1594 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1087 always have timers, we just calculate it always */
1088#if EV_USE_MONOTONIC
1089 if (expect_true (have_monotonic))
1090 time_update_monotonic (EV_A);
1091 else
1092#endif
1093 { 1595 {
1094 rt_now = ev_time (); 1596 /* update time to cancel out callback processing overhead */
1095 mn_now = rt_now; 1597 time_update (EV_A_ 1e100);
1096 }
1097 1598
1098 if (flags & EVLOOP_NONBLOCK || idlecnt)
1099 block = 0.;
1100 else
1101 {
1102 block = MAX_BLOCKTIME; 1599 waittime = MAX_BLOCKTIME;
1103 1600
1104 if (timercnt) 1601 if (timercnt)
1105 { 1602 {
1106 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1107 if (block > to) block = to; 1604 if (waittime > to) waittime = to;
1108 } 1605 }
1109 1606
1607#if EV_PERIODIC_ENABLE
1110 if (periodiccnt) 1608 if (periodiccnt)
1111 { 1609 {
1112 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1113 if (block > to) block = to; 1611 if (waittime > to) waittime = to;
1114 } 1612 }
1613#endif
1115 1614
1116 if (block < 0.) block = 0.; 1615 if (expect_false (waittime < timeout_blocktime))
1616 waittime = timeout_blocktime;
1617
1618 sleeptime = waittime - backend_fudge;
1619
1620 if (expect_true (sleeptime > io_blocktime))
1621 sleeptime = io_blocktime;
1622
1623 if (sleeptime)
1624 {
1625 ev_sleep (sleeptime);
1626 waittime -= sleeptime;
1627 }
1117 } 1628 }
1118 1629
1119 method_poll (EV_A_ block); 1630 ++loop_count;
1631 backend_poll (EV_A_ waittime);
1120 1632
1121 /* update rt_now, do magic */ 1633 /* update ev_rt_now, do magic */
1122 time_update (EV_A); 1634 time_update (EV_A_ waittime + sleeptime);
1635 }
1123 1636
1124 /* queue pending timers and reschedule them */ 1637 /* queue pending timers and reschedule them */
1125 timers_reify (EV_A); /* relative timers called last */ 1638 timers_reify (EV_A); /* relative timers called last */
1639#if EV_PERIODIC_ENABLE
1126 periodics_reify (EV_A); /* absolute timers called first */ 1640 periodics_reify (EV_A); /* absolute timers called first */
1641#endif
1127 1642
1643#if EV_IDLE_ENABLE
1128 /* queue idle watchers unless io or timers are pending */ 1644 /* queue idle watchers unless other events are pending */
1129 if (!pendingcnt) 1645 idle_reify (EV_A);
1130 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1646#endif
1131 1647
1132 /* queue check watchers, to be executed first */ 1648 /* queue check watchers, to be executed first */
1133 if (checkcnt) 1649 if (expect_false (checkcnt))
1134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1135 1651
1136 call_pending (EV_A); 1652 call_pending (EV_A);
1137 } 1653 }
1138 while (activecnt && !loop_done); 1654 while (expect_true (
1655 activecnt
1656 && !loop_done
1657 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1658 ));
1139 1659
1140 if (loop_done != 2) 1660 if (loop_done == EVUNLOOP_ONE)
1141 loop_done = 0; 1661 loop_done = EVUNLOOP_CANCEL;
1142} 1662}
1143 1663
1144void 1664void
1145ev_unloop (EV_P_ int how) 1665ev_unloop (EV_P_ int how)
1146{ 1666{
1147 loop_done = how; 1667 loop_done = how;
1148} 1668}
1149 1669
1150/*****************************************************************************/ 1670/*****************************************************************************/
1151 1671
1152inline void 1672void inline_size
1153wlist_add (WL *head, WL elem) 1673wlist_add (WL *head, WL elem)
1154{ 1674{
1155 elem->next = *head; 1675 elem->next = *head;
1156 *head = elem; 1676 *head = elem;
1157} 1677}
1158 1678
1159inline void 1679void inline_size
1160wlist_del (WL *head, WL elem) 1680wlist_del (WL *head, WL elem)
1161{ 1681{
1162 while (*head) 1682 while (*head)
1163 { 1683 {
1164 if (*head == elem) 1684 if (*head == elem)
1169 1689
1170 head = &(*head)->next; 1690 head = &(*head)->next;
1171 } 1691 }
1172} 1692}
1173 1693
1174inline void 1694void inline_speed
1175ev_clear_pending (EV_P_ W w) 1695clear_pending (EV_P_ W w)
1176{ 1696{
1177 if (w->pending) 1697 if (w->pending)
1178 { 1698 {
1179 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1699 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1180 w->pending = 0; 1700 w->pending = 0;
1181 } 1701 }
1182} 1702}
1183 1703
1184inline void 1704int
1705ev_clear_pending (EV_P_ void *w)
1706{
1707 W w_ = (W)w;
1708 int pending = w_->pending;
1709
1710 if (expect_true (pending))
1711 {
1712 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1713 w_->pending = 0;
1714 p->w = 0;
1715 return p->events;
1716 }
1717 else
1718 return 0;
1719}
1720
1721void inline_size
1722pri_adjust (EV_P_ W w)
1723{
1724 int pri = w->priority;
1725 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1726 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1727 w->priority = pri;
1728}
1729
1730void inline_speed
1185ev_start (EV_P_ W w, int active) 1731ev_start (EV_P_ W w, int active)
1186{ 1732{
1187 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1733 pri_adjust (EV_A_ w);
1188 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1189
1190 w->active = active; 1734 w->active = active;
1191 ev_ref (EV_A); 1735 ev_ref (EV_A);
1192} 1736}
1193 1737
1194inline void 1738void inline_size
1195ev_stop (EV_P_ W w) 1739ev_stop (EV_P_ W w)
1196{ 1740{
1197 ev_unref (EV_A); 1741 ev_unref (EV_A);
1198 w->active = 0; 1742 w->active = 0;
1199} 1743}
1200 1744
1201/*****************************************************************************/ 1745/*****************************************************************************/
1202 1746
1203void 1747void noinline
1204ev_io_start (EV_P_ struct ev_io *w) 1748ev_io_start (EV_P_ ev_io *w)
1205{ 1749{
1206 int fd = w->fd; 1750 int fd = w->fd;
1207 1751
1208 if (ev_is_active (w)) 1752 if (expect_false (ev_is_active (w)))
1209 return; 1753 return;
1210 1754
1211 assert (("ev_io_start called with negative fd", fd >= 0)); 1755 assert (("ev_io_start called with negative fd", fd >= 0));
1212 1756
1213 ev_start (EV_A_ (W)w, 1); 1757 ev_start (EV_A_ (W)w, 1);
1214 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1758 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1215 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1759 wlist_add (&anfds[fd].head, (WL)w);
1216 1760
1217 fd_change (EV_A_ fd); 1761 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1762 w->events &= ~EV_IOFDSET;
1218} 1763}
1219 1764
1220void 1765void noinline
1221ev_io_stop (EV_P_ struct ev_io *w) 1766ev_io_stop (EV_P_ ev_io *w)
1222{ 1767{
1223 ev_clear_pending (EV_A_ (W)w); 1768 clear_pending (EV_A_ (W)w);
1224 if (!ev_is_active (w)) 1769 if (expect_false (!ev_is_active (w)))
1225 return; 1770 return;
1226 1771
1772 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1773
1227 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1774 wlist_del (&anfds[w->fd].head, (WL)w);
1228 ev_stop (EV_A_ (W)w); 1775 ev_stop (EV_A_ (W)w);
1229 1776
1230 fd_change (EV_A_ w->fd); 1777 fd_change (EV_A_ w->fd, 1);
1231} 1778}
1232 1779
1233void 1780void noinline
1234ev_timer_start (EV_P_ struct ev_timer *w) 1781ev_timer_start (EV_P_ ev_timer *w)
1235{ 1782{
1236 if (ev_is_active (w)) 1783 if (expect_false (ev_is_active (w)))
1237 return; 1784 return;
1238 1785
1239 ((WT)w)->at += mn_now; 1786 ((WT)w)->at += mn_now;
1240 1787
1241 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1788 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1242 1789
1243 ev_start (EV_A_ (W)w, ++timercnt); 1790 ev_start (EV_A_ (W)w, ++timercnt);
1244 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1791 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1245 timers [timercnt - 1] = w; 1792 timers [timercnt - 1] = (WT)w;
1246 upheap ((WT *)timers, timercnt - 1); 1793 upheap (timers, timercnt - 1);
1247 1794
1248 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1795 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1249} 1796}
1250 1797
1251void 1798void noinline
1252ev_timer_stop (EV_P_ struct ev_timer *w) 1799ev_timer_stop (EV_P_ ev_timer *w)
1253{ 1800{
1254 ev_clear_pending (EV_A_ (W)w); 1801 clear_pending (EV_A_ (W)w);
1255 if (!ev_is_active (w)) 1802 if (expect_false (!ev_is_active (w)))
1256 return; 1803 return;
1257 1804
1258 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1805 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1259 1806
1260 if (((W)w)->active < timercnt--) 1807 {
1808 int active = ((W)w)->active;
1809
1810 if (expect_true (--active < --timercnt))
1261 { 1811 {
1262 timers [((W)w)->active - 1] = timers [timercnt]; 1812 timers [active] = timers [timercnt];
1263 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1813 adjustheap (timers, timercnt, active);
1264 } 1814 }
1815 }
1265 1816
1266 ((WT)w)->at = w->repeat; 1817 ((WT)w)->at -= mn_now;
1267 1818
1268 ev_stop (EV_A_ (W)w); 1819 ev_stop (EV_A_ (W)w);
1269} 1820}
1270 1821
1271void 1822void noinline
1272ev_timer_again (EV_P_ struct ev_timer *w) 1823ev_timer_again (EV_P_ ev_timer *w)
1273{ 1824{
1274 if (ev_is_active (w)) 1825 if (ev_is_active (w))
1275 { 1826 {
1276 if (w->repeat) 1827 if (w->repeat)
1277 { 1828 {
1278 ((WT)w)->at = mn_now + w->repeat; 1829 ((WT)w)->at = mn_now + w->repeat;
1279 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1830 adjustheap (timers, timercnt, ((W)w)->active - 1);
1280 } 1831 }
1281 else 1832 else
1282 ev_timer_stop (EV_A_ w); 1833 ev_timer_stop (EV_A_ w);
1283 } 1834 }
1284 else if (w->repeat) 1835 else if (w->repeat)
1836 {
1837 w->at = w->repeat;
1285 ev_timer_start (EV_A_ w); 1838 ev_timer_start (EV_A_ w);
1839 }
1286} 1840}
1287 1841
1288void 1842#if EV_PERIODIC_ENABLE
1843void noinline
1289ev_periodic_start (EV_P_ struct ev_periodic *w) 1844ev_periodic_start (EV_P_ ev_periodic *w)
1290{ 1845{
1291 if (ev_is_active (w)) 1846 if (expect_false (ev_is_active (w)))
1292 return; 1847 return;
1293 1848
1849 if (w->reschedule_cb)
1850 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1851 else if (w->interval)
1852 {
1294 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1853 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1295
1296 /* this formula differs from the one in periodic_reify because we do not always round up */ 1854 /* this formula differs from the one in periodic_reify because we do not always round up */
1297 if (w->interval)
1298 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1855 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1856 }
1857 else
1858 ((WT)w)->at = w->offset;
1299 1859
1300 ev_start (EV_A_ (W)w, ++periodiccnt); 1860 ev_start (EV_A_ (W)w, ++periodiccnt);
1301 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1861 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1302 periodics [periodiccnt - 1] = w; 1862 periodics [periodiccnt - 1] = (WT)w;
1303 upheap ((WT *)periodics, periodiccnt - 1); 1863 upheap (periodics, periodiccnt - 1);
1304 1864
1305 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1865 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1306} 1866}
1307 1867
1308void 1868void noinline
1309ev_periodic_stop (EV_P_ struct ev_periodic *w) 1869ev_periodic_stop (EV_P_ ev_periodic *w)
1310{ 1870{
1311 ev_clear_pending (EV_A_ (W)w); 1871 clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 1872 if (expect_false (!ev_is_active (w)))
1313 return; 1873 return;
1314 1874
1315 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1875 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1316 1876
1317 if (((W)w)->active < periodiccnt--) 1877 {
1878 int active = ((W)w)->active;
1879
1880 if (expect_true (--active < --periodiccnt))
1318 { 1881 {
1319 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1882 periodics [active] = periodics [periodiccnt];
1320 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1883 adjustheap (periodics, periodiccnt, active);
1321 } 1884 }
1885 }
1322 1886
1323 ev_stop (EV_A_ (W)w); 1887 ev_stop (EV_A_ (W)w);
1324} 1888}
1325 1889
1326void 1890void noinline
1327ev_idle_start (EV_P_ struct ev_idle *w) 1891ev_periodic_again (EV_P_ ev_periodic *w)
1328{ 1892{
1329 if (ev_is_active (w)) 1893 /* TODO: use adjustheap and recalculation */
1330 return;
1331
1332 ev_start (EV_A_ (W)w, ++idlecnt);
1333 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1334 idles [idlecnt - 1] = w;
1335}
1336
1337void
1338ev_idle_stop (EV_P_ struct ev_idle *w)
1339{
1340 ev_clear_pending (EV_A_ (W)w);
1341 if (ev_is_active (w))
1342 return;
1343
1344 idles [((W)w)->active - 1] = idles [--idlecnt];
1345 ev_stop (EV_A_ (W)w); 1894 ev_periodic_stop (EV_A_ w);
1895 ev_periodic_start (EV_A_ w);
1346} 1896}
1347 1897#endif
1348void
1349ev_prepare_start (EV_P_ struct ev_prepare *w)
1350{
1351 if (ev_is_active (w))
1352 return;
1353
1354 ev_start (EV_A_ (W)w, ++preparecnt);
1355 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1356 prepares [preparecnt - 1] = w;
1357}
1358
1359void
1360ev_prepare_stop (EV_P_ struct ev_prepare *w)
1361{
1362 ev_clear_pending (EV_A_ (W)w);
1363 if (ev_is_active (w))
1364 return;
1365
1366 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1367 ev_stop (EV_A_ (W)w);
1368}
1369
1370void
1371ev_check_start (EV_P_ struct ev_check *w)
1372{
1373 if (ev_is_active (w))
1374 return;
1375
1376 ev_start (EV_A_ (W)w, ++checkcnt);
1377 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1378 checks [checkcnt - 1] = w;
1379}
1380
1381void
1382ev_check_stop (EV_P_ struct ev_check *w)
1383{
1384 ev_clear_pending (EV_A_ (W)w);
1385 if (ev_is_active (w))
1386 return;
1387
1388 checks [((W)w)->active - 1] = checks [--checkcnt];
1389 ev_stop (EV_A_ (W)w);
1390}
1391 1898
1392#ifndef SA_RESTART 1899#ifndef SA_RESTART
1393# define SA_RESTART 0 1900# define SA_RESTART 0
1394#endif 1901#endif
1395 1902
1396void 1903void noinline
1397ev_signal_start (EV_P_ struct ev_signal *w) 1904ev_signal_start (EV_P_ ev_signal *w)
1398{ 1905{
1399#if EV_MULTIPLICITY 1906#if EV_MULTIPLICITY
1400 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1907 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1401#endif 1908#endif
1402 if (ev_is_active (w)) 1909 if (expect_false (ev_is_active (w)))
1403 return; 1910 return;
1404 1911
1405 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1912 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1406 1913
1914 evpipe_init (EV_A);
1915
1916 {
1917#ifndef _WIN32
1918 sigset_t full, prev;
1919 sigfillset (&full);
1920 sigprocmask (SIG_SETMASK, &full, &prev);
1921#endif
1922
1923 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1924
1925#ifndef _WIN32
1926 sigprocmask (SIG_SETMASK, &prev, 0);
1927#endif
1928 }
1929
1407 ev_start (EV_A_ (W)w, 1); 1930 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1409 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1931 wlist_add (&signals [w->signum - 1].head, (WL)w);
1410 1932
1411 if (!((WL)w)->next) 1933 if (!((WL)w)->next)
1412 { 1934 {
1413#if WIN32 1935#if _WIN32
1414 signal (w->signum, sighandler); 1936 signal (w->signum, ev_sighandler);
1415#else 1937#else
1416 struct sigaction sa; 1938 struct sigaction sa;
1417 sa.sa_handler = sighandler; 1939 sa.sa_handler = ev_sighandler;
1418 sigfillset (&sa.sa_mask); 1940 sigfillset (&sa.sa_mask);
1419 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1941 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1420 sigaction (w->signum, &sa, 0); 1942 sigaction (w->signum, &sa, 0);
1421#endif 1943#endif
1422 } 1944 }
1423} 1945}
1424 1946
1425void 1947void noinline
1426ev_signal_stop (EV_P_ struct ev_signal *w) 1948ev_signal_stop (EV_P_ ev_signal *w)
1427{ 1949{
1428 ev_clear_pending (EV_A_ (W)w); 1950 clear_pending (EV_A_ (W)w);
1429 if (!ev_is_active (w)) 1951 if (expect_false (!ev_is_active (w)))
1430 return; 1952 return;
1431 1953
1432 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1954 wlist_del (&signals [w->signum - 1].head, (WL)w);
1433 ev_stop (EV_A_ (W)w); 1955 ev_stop (EV_A_ (W)w);
1434 1956
1435 if (!signals [w->signum - 1].head) 1957 if (!signals [w->signum - 1].head)
1436 signal (w->signum, SIG_DFL); 1958 signal (w->signum, SIG_DFL);
1437} 1959}
1438 1960
1439void 1961void
1440ev_child_start (EV_P_ struct ev_child *w) 1962ev_child_start (EV_P_ ev_child *w)
1441{ 1963{
1442#if EV_MULTIPLICITY 1964#if EV_MULTIPLICITY
1443 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1965 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1444#endif 1966#endif
1445 if (ev_is_active (w)) 1967 if (expect_false (ev_is_active (w)))
1446 return; 1968 return;
1447 1969
1448 ev_start (EV_A_ (W)w, 1); 1970 ev_start (EV_A_ (W)w, 1);
1449 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1971 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1450} 1972}
1451 1973
1452void 1974void
1453ev_child_stop (EV_P_ struct ev_child *w) 1975ev_child_stop (EV_P_ ev_child *w)
1454{ 1976{
1455 ev_clear_pending (EV_A_ (W)w); 1977 clear_pending (EV_A_ (W)w);
1456 if (ev_is_active (w)) 1978 if (expect_false (!ev_is_active (w)))
1457 return; 1979 return;
1458 1980
1459 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1981 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1460 ev_stop (EV_A_ (W)w); 1982 ev_stop (EV_A_ (W)w);
1461} 1983}
1462 1984
1985#if EV_STAT_ENABLE
1986
1987# ifdef _WIN32
1988# undef lstat
1989# define lstat(a,b) _stati64 (a,b)
1990# endif
1991
1992#define DEF_STAT_INTERVAL 5.0074891
1993#define MIN_STAT_INTERVAL 0.1074891
1994
1995static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1996
1997#if EV_USE_INOTIFY
1998# define EV_INOTIFY_BUFSIZE 8192
1999
2000static void noinline
2001infy_add (EV_P_ ev_stat *w)
2002{
2003 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2004
2005 if (w->wd < 0)
2006 {
2007 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2008
2009 /* monitor some parent directory for speedup hints */
2010 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2011 {
2012 char path [4096];
2013 strcpy (path, w->path);
2014
2015 do
2016 {
2017 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2018 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2019
2020 char *pend = strrchr (path, '/');
2021
2022 if (!pend)
2023 break; /* whoops, no '/', complain to your admin */
2024
2025 *pend = 0;
2026 w->wd = inotify_add_watch (fs_fd, path, mask);
2027 }
2028 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2029 }
2030 }
2031 else
2032 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2033
2034 if (w->wd >= 0)
2035 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2036}
2037
2038static void noinline
2039infy_del (EV_P_ ev_stat *w)
2040{
2041 int slot;
2042 int wd = w->wd;
2043
2044 if (wd < 0)
2045 return;
2046
2047 w->wd = -2;
2048 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2049 wlist_del (&fs_hash [slot].head, (WL)w);
2050
2051 /* remove this watcher, if others are watching it, they will rearm */
2052 inotify_rm_watch (fs_fd, wd);
2053}
2054
2055static void noinline
2056infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2057{
2058 if (slot < 0)
2059 /* overflow, need to check for all hahs slots */
2060 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2061 infy_wd (EV_A_ slot, wd, ev);
2062 else
2063 {
2064 WL w_;
2065
2066 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2067 {
2068 ev_stat *w = (ev_stat *)w_;
2069 w_ = w_->next; /* lets us remove this watcher and all before it */
2070
2071 if (w->wd == wd || wd == -1)
2072 {
2073 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2074 {
2075 w->wd = -1;
2076 infy_add (EV_A_ w); /* re-add, no matter what */
2077 }
2078
2079 stat_timer_cb (EV_A_ &w->timer, 0);
2080 }
2081 }
2082 }
2083}
2084
2085static void
2086infy_cb (EV_P_ ev_io *w, int revents)
2087{
2088 char buf [EV_INOTIFY_BUFSIZE];
2089 struct inotify_event *ev = (struct inotify_event *)buf;
2090 int ofs;
2091 int len = read (fs_fd, buf, sizeof (buf));
2092
2093 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2094 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2095}
2096
2097void inline_size
2098infy_init (EV_P)
2099{
2100 if (fs_fd != -2)
2101 return;
2102
2103 fs_fd = inotify_init ();
2104
2105 if (fs_fd >= 0)
2106 {
2107 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2108 ev_set_priority (&fs_w, EV_MAXPRI);
2109 ev_io_start (EV_A_ &fs_w);
2110 }
2111}
2112
2113void inline_size
2114infy_fork (EV_P)
2115{
2116 int slot;
2117
2118 if (fs_fd < 0)
2119 return;
2120
2121 close (fs_fd);
2122 fs_fd = inotify_init ();
2123
2124 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2125 {
2126 WL w_ = fs_hash [slot].head;
2127 fs_hash [slot].head = 0;
2128
2129 while (w_)
2130 {
2131 ev_stat *w = (ev_stat *)w_;
2132 w_ = w_->next; /* lets us add this watcher */
2133
2134 w->wd = -1;
2135
2136 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); /* re-add, no matter what */
2138 else
2139 ev_timer_start (EV_A_ &w->timer);
2140 }
2141
2142 }
2143}
2144
2145#endif
2146
2147void
2148ev_stat_stat (EV_P_ ev_stat *w)
2149{
2150 if (lstat (w->path, &w->attr) < 0)
2151 w->attr.st_nlink = 0;
2152 else if (!w->attr.st_nlink)
2153 w->attr.st_nlink = 1;
2154}
2155
2156static void noinline
2157stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2158{
2159 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2160
2161 /* we copy this here each the time so that */
2162 /* prev has the old value when the callback gets invoked */
2163 w->prev = w->attr;
2164 ev_stat_stat (EV_A_ w);
2165
2166 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2167 if (
2168 w->prev.st_dev != w->attr.st_dev
2169 || w->prev.st_ino != w->attr.st_ino
2170 || w->prev.st_mode != w->attr.st_mode
2171 || w->prev.st_nlink != w->attr.st_nlink
2172 || w->prev.st_uid != w->attr.st_uid
2173 || w->prev.st_gid != w->attr.st_gid
2174 || w->prev.st_rdev != w->attr.st_rdev
2175 || w->prev.st_size != w->attr.st_size
2176 || w->prev.st_atime != w->attr.st_atime
2177 || w->prev.st_mtime != w->attr.st_mtime
2178 || w->prev.st_ctime != w->attr.st_ctime
2179 ) {
2180 #if EV_USE_INOTIFY
2181 infy_del (EV_A_ w);
2182 infy_add (EV_A_ w);
2183 ev_stat_stat (EV_A_ w); /* avoid race... */
2184 #endif
2185
2186 ev_feed_event (EV_A_ w, EV_STAT);
2187 }
2188}
2189
2190void
2191ev_stat_start (EV_P_ ev_stat *w)
2192{
2193 if (expect_false (ev_is_active (w)))
2194 return;
2195
2196 /* since we use memcmp, we need to clear any padding data etc. */
2197 memset (&w->prev, 0, sizeof (ev_statdata));
2198 memset (&w->attr, 0, sizeof (ev_statdata));
2199
2200 ev_stat_stat (EV_A_ w);
2201
2202 if (w->interval < MIN_STAT_INTERVAL)
2203 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2204
2205 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2206 ev_set_priority (&w->timer, ev_priority (w));
2207
2208#if EV_USE_INOTIFY
2209 infy_init (EV_A);
2210
2211 if (fs_fd >= 0)
2212 infy_add (EV_A_ w);
2213 else
2214#endif
2215 ev_timer_start (EV_A_ &w->timer);
2216
2217 ev_start (EV_A_ (W)w, 1);
2218}
2219
2220void
2221ev_stat_stop (EV_P_ ev_stat *w)
2222{
2223 clear_pending (EV_A_ (W)w);
2224 if (expect_false (!ev_is_active (w)))
2225 return;
2226
2227#if EV_USE_INOTIFY
2228 infy_del (EV_A_ w);
2229#endif
2230 ev_timer_stop (EV_A_ &w->timer);
2231
2232 ev_stop (EV_A_ (W)w);
2233}
2234#endif
2235
2236#if EV_IDLE_ENABLE
2237void
2238ev_idle_start (EV_P_ ev_idle *w)
2239{
2240 if (expect_false (ev_is_active (w)))
2241 return;
2242
2243 pri_adjust (EV_A_ (W)w);
2244
2245 {
2246 int active = ++idlecnt [ABSPRI (w)];
2247
2248 ++idleall;
2249 ev_start (EV_A_ (W)w, active);
2250
2251 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2252 idles [ABSPRI (w)][active - 1] = w;
2253 }
2254}
2255
2256void
2257ev_idle_stop (EV_P_ ev_idle *w)
2258{
2259 clear_pending (EV_A_ (W)w);
2260 if (expect_false (!ev_is_active (w)))
2261 return;
2262
2263 {
2264 int active = ((W)w)->active;
2265
2266 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2267 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2268
2269 ev_stop (EV_A_ (W)w);
2270 --idleall;
2271 }
2272}
2273#endif
2274
2275void
2276ev_prepare_start (EV_P_ ev_prepare *w)
2277{
2278 if (expect_false (ev_is_active (w)))
2279 return;
2280
2281 ev_start (EV_A_ (W)w, ++preparecnt);
2282 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2283 prepares [preparecnt - 1] = w;
2284}
2285
2286void
2287ev_prepare_stop (EV_P_ ev_prepare *w)
2288{
2289 clear_pending (EV_A_ (W)w);
2290 if (expect_false (!ev_is_active (w)))
2291 return;
2292
2293 {
2294 int active = ((W)w)->active;
2295 prepares [active - 1] = prepares [--preparecnt];
2296 ((W)prepares [active - 1])->active = active;
2297 }
2298
2299 ev_stop (EV_A_ (W)w);
2300}
2301
2302void
2303ev_check_start (EV_P_ ev_check *w)
2304{
2305 if (expect_false (ev_is_active (w)))
2306 return;
2307
2308 ev_start (EV_A_ (W)w, ++checkcnt);
2309 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2310 checks [checkcnt - 1] = w;
2311}
2312
2313void
2314ev_check_stop (EV_P_ ev_check *w)
2315{
2316 clear_pending (EV_A_ (W)w);
2317 if (expect_false (!ev_is_active (w)))
2318 return;
2319
2320 {
2321 int active = ((W)w)->active;
2322 checks [active - 1] = checks [--checkcnt];
2323 ((W)checks [active - 1])->active = active;
2324 }
2325
2326 ev_stop (EV_A_ (W)w);
2327}
2328
2329#if EV_EMBED_ENABLE
2330void noinline
2331ev_embed_sweep (EV_P_ ev_embed *w)
2332{
2333 ev_loop (w->other, EVLOOP_NONBLOCK);
2334}
2335
2336static void
2337embed_io_cb (EV_P_ ev_io *io, int revents)
2338{
2339 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2340
2341 if (ev_cb (w))
2342 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2343 else
2344 ev_loop (w->other, EVLOOP_NONBLOCK);
2345}
2346
2347static void
2348embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2349{
2350 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2351
2352 {
2353 struct ev_loop *loop = w->other;
2354
2355 while (fdchangecnt)
2356 {
2357 fd_reify (EV_A);
2358 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2359 }
2360 }
2361}
2362
2363#if 0
2364static void
2365embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2366{
2367 ev_idle_stop (EV_A_ idle);
2368}
2369#endif
2370
2371void
2372ev_embed_start (EV_P_ ev_embed *w)
2373{
2374 if (expect_false (ev_is_active (w)))
2375 return;
2376
2377 {
2378 struct ev_loop *loop = w->other;
2379 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2380 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2381 }
2382
2383 ev_set_priority (&w->io, ev_priority (w));
2384 ev_io_start (EV_A_ &w->io);
2385
2386 ev_prepare_init (&w->prepare, embed_prepare_cb);
2387 ev_set_priority (&w->prepare, EV_MINPRI);
2388 ev_prepare_start (EV_A_ &w->prepare);
2389
2390 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2391
2392 ev_start (EV_A_ (W)w, 1);
2393}
2394
2395void
2396ev_embed_stop (EV_P_ ev_embed *w)
2397{
2398 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w)))
2400 return;
2401
2402 ev_io_stop (EV_A_ &w->io);
2403 ev_prepare_stop (EV_A_ &w->prepare);
2404
2405 ev_stop (EV_A_ (W)w);
2406}
2407#endif
2408
2409#if EV_FORK_ENABLE
2410void
2411ev_fork_start (EV_P_ ev_fork *w)
2412{
2413 if (expect_false (ev_is_active (w)))
2414 return;
2415
2416 ev_start (EV_A_ (W)w, ++forkcnt);
2417 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2418 forks [forkcnt - 1] = w;
2419}
2420
2421void
2422ev_fork_stop (EV_P_ ev_fork *w)
2423{
2424 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w)))
2426 return;
2427
2428 {
2429 int active = ((W)w)->active;
2430 forks [active - 1] = forks [--forkcnt];
2431 ((W)forks [active - 1])->active = active;
2432 }
2433
2434 ev_stop (EV_A_ (W)w);
2435}
2436#endif
2437
2438#if EV_ASYNC_ENABLE
2439void
2440ev_async_start (EV_P_ ev_async *w)
2441{
2442 if (expect_false (ev_is_active (w)))
2443 return;
2444
2445 evpipe_init (EV_A);
2446
2447 ev_start (EV_A_ (W)w, ++asynccnt);
2448 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2449 asyncs [asynccnt - 1] = w;
2450}
2451
2452void
2453ev_async_stop (EV_P_ ev_async *w)
2454{
2455 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w)))
2457 return;
2458
2459 {
2460 int active = ((W)w)->active;
2461 asyncs [active - 1] = asyncs [--asynccnt];
2462 ((W)asyncs [active - 1])->active = active;
2463 }
2464
2465 ev_stop (EV_A_ (W)w);
2466}
2467
2468void
2469ev_async_send (EV_P_ ev_async *w)
2470{
2471 w->sent = 1;
2472 evpipe_write (EV_A_ &gotasync);
2473}
2474#endif
2475
1463/*****************************************************************************/ 2476/*****************************************************************************/
1464 2477
1465struct ev_once 2478struct ev_once
1466{ 2479{
1467 struct ev_io io; 2480 ev_io io;
1468 struct ev_timer to; 2481 ev_timer to;
1469 void (*cb)(int revents, void *arg); 2482 void (*cb)(int revents, void *arg);
1470 void *arg; 2483 void *arg;
1471}; 2484};
1472 2485
1473static void 2486static void
1482 2495
1483 cb (revents, arg); 2496 cb (revents, arg);
1484} 2497}
1485 2498
1486static void 2499static void
1487once_cb_io (EV_P_ struct ev_io *w, int revents) 2500once_cb_io (EV_P_ ev_io *w, int revents)
1488{ 2501{
1489 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2502 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1490} 2503}
1491 2504
1492static void 2505static void
1493once_cb_to (EV_P_ struct ev_timer *w, int revents) 2506once_cb_to (EV_P_ ev_timer *w, int revents)
1494{ 2507{
1495 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2508 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1496} 2509}
1497 2510
1498void 2511void
1499ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2512ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1500{ 2513{
1501 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2514 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1502 2515
1503 if (!once) 2516 if (expect_false (!once))
2517 {
1504 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2518 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1505 else 2519 return;
1506 { 2520 }
2521
1507 once->cb = cb; 2522 once->cb = cb;
1508 once->arg = arg; 2523 once->arg = arg;
1509 2524
1510 ev_watcher_init (&once->io, once_cb_io); 2525 ev_init (&once->io, once_cb_io);
1511 if (fd >= 0) 2526 if (fd >= 0)
1512 { 2527 {
1513 ev_io_set (&once->io, fd, events); 2528 ev_io_set (&once->io, fd, events);
1514 ev_io_start (EV_A_ &once->io); 2529 ev_io_start (EV_A_ &once->io);
1515 } 2530 }
1516 2531
1517 ev_watcher_init (&once->to, once_cb_to); 2532 ev_init (&once->to, once_cb_to);
1518 if (timeout >= 0.) 2533 if (timeout >= 0.)
1519 { 2534 {
1520 ev_timer_set (&once->to, timeout, 0.); 2535 ev_timer_set (&once->to, timeout, 0.);
1521 ev_timer_start (EV_A_ &once->to); 2536 ev_timer_start (EV_A_ &once->to);
1522 }
1523 } 2537 }
1524} 2538}
1525 2539
2540#if EV_MULTIPLICITY
2541 #include "ev_wrap.h"
2542#endif
2543
2544#ifdef __cplusplus
2545}
2546#endif
2547

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines