ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.22 by root, Wed Oct 31 19:07:43 2007 UTC vs.
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
41#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
42#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
43#include <sys/time.h> 72#include <sys/time.h>
44#include <time.h> 73#include <time.h>
45 74
75/**/
76
46#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
47# ifdef CLOCK_MONOTONIC
48# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
49# endif 102# endif
50#endif 103#endif
51 104
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
62#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
63 122
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 127
68#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 143
70typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
73 147
74static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77
78static int have_monotonic; /* runtime */
79
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 149
84/*****************************************************************************/ 150/*****************************************************************************/
85 151
86ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
87ev_time (void) 186ev_time (void)
88{ 187{
89#if HAVE_REALTIME 188#if EV_USE_REALTIME
90 struct timespec ts; 189 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 191 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 192#else
94 struct timeval tv; 193 struct timeval tv;
95 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 196#endif
98} 197}
99 198
100static ev_tstamp 199inline ev_tstamp
101get_clock (void) 200get_clock (void)
102{ 201{
103#if HAVE_MONOTONIC 202#if EV_USE_MONOTONIC
104 if (have_monotonic) 203 if (expect_true (have_monotonic))
105 { 204 {
106 struct timespec ts; 205 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 208 }
110#endif 209#endif
111 210
112 return ev_time (); 211 return ev_time ();
113} 212}
114 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
220#define array_roundsize(base,n) ((n) | 4 & ~3)
221
115#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
116 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
117 { \ 224 { \
118 int newcnt = cur ? cur << 1 : 16; \ 225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
119 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
120 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
121 cur = newcnt; \ 234 cur = newcnt; \
122 } 235 }
123 236
237#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239
124/*****************************************************************************/ 240/*****************************************************************************/
125 241
126typedef struct
127{
128 struct ev_io *head;
129 unsigned char wev, rev; /* want, received event set */
130} ANFD;
131
132static ANFD *anfds;
133static int anfdmax;
134
135static int *fdchanges;
136static int fdchangemax, fdchangecnt;
137
138static void 242static void
139anfds_init (ANFD *base, int count) 243anfds_init (ANFD *base, int count)
140{ 244{
141 while (count--) 245 while (count--)
142 { 246 {
143 base->head = 0; 247 base->head = 0;
144 base->wev = base->rev = EV_NONE; 248 base->events = EV_NONE;
249 base->reify = 0;
250
145 ++base; 251 ++base;
146 } 252 }
147} 253}
148 254
149typedef struct
150{
151 W w;
152 int events;
153} ANPENDING;
154
155static ANPENDING *pendings;
156static int pendingmax, pendingcnt;
157
158static void 255static void
159event (W w, int events) 256event (EV_P_ W w, int events)
160{ 257{
161 if (w->active) 258 if (w->pending)
162 { 259 {
163 w->pending = ++pendingcnt;
164 array_needsize (pendings, pendingmax, pendingcnt, );
165 pendings [pendingcnt - 1].w = w;
166 pendings [pendingcnt - 1].events = events; 260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
261 return;
167 } 262 }
168}
169 263
264 w->pending = ++pendingcnt [ABSPRI (w)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
266 pendings [ABSPRI (w)][w->pending - 1].w = w;
267 pendings [ABSPRI (w)][w->pending - 1].events = events;
268}
269
170static void 270static void
271queue_events (EV_P_ W *events, int eventcnt, int type)
272{
273 int i;
274
275 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type);
277}
278
279static void
171fd_event (int fd, int events) 280fd_event (EV_P_ int fd, int events)
172{ 281{
173 ANFD *anfd = anfds + fd; 282 ANFD *anfd = anfds + fd;
174 struct ev_io *w; 283 struct ev_io *w;
175 284
176 for (w = anfd->head; w; w = w->next) 285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
177 { 286 {
178 int ev = w->events & events; 287 int ev = w->events & events;
179 288
180 if (ev) 289 if (ev)
181 event ((W)w, ev); 290 event (EV_A_ (W)w, ev);
182 } 291 }
183} 292}
184 293
294/*****************************************************************************/
295
185static void 296static void
186queue_events (W *events, int eventcnt, int type) 297fd_reify (EV_P)
187{ 298{
188 int i; 299 int i;
189 300
190 for (i = 0; i < eventcnt; ++i) 301 for (i = 0; i < fdchangecnt; ++i)
191 event (events [i], type); 302 {
303 int fd = fdchanges [i];
304 ANFD *anfd = anfds + fd;
305 struct ev_io *w;
306
307 int events = 0;
308
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
310 events |= w->events;
311
312 anfd->reify = 0;
313
314 method_modify (EV_A_ fd, anfd->events, events);
315 anfd->events = events;
316 }
317
318 fdchangecnt = 0;
319}
320
321static void
322fd_change (EV_P_ int fd)
323{
324 if (anfds [fd].reify || fdchangecnt < 0)
325 return;
326
327 anfds [fd].reify = 1;
328
329 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
331 fdchanges [fdchangecnt - 1] = fd;
332}
333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
192} 344}
193 345
194/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
195static void 347static void
196fd_recheck () 348fd_ebadf (EV_P)
197{ 349{
198 int fd; 350 int fd;
199 351
200 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
201 if (anfds [fd].wev) 353 if (anfds [fd].events)
202 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
203 while (anfds [fd].head) 355 fd_kill (EV_A_ fd);
204 evio_stop (anfds [fd].head); 356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
366 {
367 close (fd);
368 fd_kill (EV_A_ fd);
369 return;
370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
205} 386}
206 387
207/*****************************************************************************/ 388/*****************************************************************************/
208 389
209static struct ev_timer **timers;
210static int timermax, timercnt;
211
212static struct ev_periodic **periodics;
213static int periodicmax, periodiccnt;
214
215static void 390static void
216upheap (WT *timers, int k) 391upheap (WT *heap, int k)
217{ 392{
218 WT w = timers [k]; 393 WT w = heap [k];
219 394
220 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
221 { 396 {
222 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
223 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
224 k >>= 1; 399 k >>= 1;
225 } 400 }
226 401
227 timers [k] = w; 402 heap [k] = w;
228 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
229 404
230} 405}
231 406
232static void 407static void
233downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
234{ 409{
235 WT w = timers [k]; 410 WT w = heap [k];
236 411
237 while (k < (N >> 1)) 412 while (k < (N >> 1))
238 { 413 {
239 int j = k << 1; 414 int j = k << 1;
240 415
241 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
242 ++j; 417 ++j;
243 418
244 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
245 break; 420 break;
246 421
247 timers [k] = timers [j]; 422 heap [k] = heap [j];
248 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
249 k = j; 424 k = j;
250 } 425 }
251 426
252 timers [k] = w; 427 heap [k] = w;
253 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
254} 429}
255 430
256/*****************************************************************************/ 431/*****************************************************************************/
257 432
258typedef struct 433typedef struct
259{ 434{
260 struct ev_signal *head; 435 struct ev_watcher_list *head;
261 sig_atomic_t gotsig; 436 sig_atomic_t volatile gotsig;
262} ANSIG; 437} ANSIG;
263 438
264static ANSIG *signals; 439static ANSIG *signals;
265static int signalmax; 440static int signalmax;
266 441
267static int sigpipe [2]; 442static int sigpipe [2];
268static sig_atomic_t gotsig; 443static sig_atomic_t volatile gotsig;
269static struct ev_io sigev; 444static struct ev_io sigev;
270 445
271static void 446static void
272signals_init (ANSIG *base, int count) 447signals_init (ANSIG *base, int count)
273{ 448{
274 while (count--) 449 while (count--)
275 { 450 {
276 base->head = 0; 451 base->head = 0;
277 base->gotsig = 0; 452 base->gotsig = 0;
453
278 ++base; 454 ++base;
279 } 455 }
280} 456}
281 457
282static void 458static void
284{ 460{
285 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
286 462
287 if (!gotsig) 463 if (!gotsig)
288 { 464 {
465 int old_errno = errno;
289 gotsig = 1; 466 gotsig = 1;
290 write (sigpipe [1], &gotsig, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
291 } 469 }
292} 470}
293 471
294static void 472static void
295sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
296{ 474{
297 struct ev_signal *w; 475 struct ev_watcher_list *w;
298 int sig; 476 int signum;
299 477
478 read (sigpipe [0], &revents, 1);
300 gotsig = 0; 479 gotsig = 0;
301 read (sigpipe [0], &revents, 1);
302 480
303 for (sig = signalmax; sig--; ) 481 for (signum = signalmax; signum--; )
304 if (signals [sig].gotsig) 482 if (signals [signum].gotsig)
305 { 483 {
306 signals [sig].gotsig = 0; 484 signals [signum].gotsig = 0;
307 485
308 for (w = signals [sig].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
309 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
310 } 488 }
311} 489}
312 490
313static void 491static void
314siginit (void) 492siginit (EV_P)
315{ 493{
494#ifndef WIN32
316 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
317 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
318 497
319 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
320 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
321 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
322 502
323 evio_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
324 evio_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
325} 506}
326 507
327/*****************************************************************************/ 508/*****************************************************************************/
328 509
329static struct ev_idle **idles; 510#ifndef WIN32
330static int idlemax, idlecnt;
331
332static struct ev_prepare **prepares;
333static int preparemax, preparecnt;
334
335static struct ev_check **checks;
336static int checkmax, checkcnt;
337
338/*****************************************************************************/
339 511
340static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
341static struct ev_signal childev; 513static struct ev_signal childev;
342 514
343#ifndef WCONTINUED 515#ifndef WCONTINUED
344# define WCONTINUED 0 516# define WCONTINUED 0
345#endif 517#endif
346 518
347static void 519static void
348childcb (struct ev_signal *sw, int revents) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
349{ 521{
350 struct ev_child *w; 522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
351 int pid, status; 537 int pid, status;
352 538
353 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
354 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 540 {
355 if (w->pid == pid || w->pid == -1) 541 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL);
543
544 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
547}
548
549#endif
550
551/*****************************************************************************/
552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
556#if EV_USE_EPOLL
557# include "ev_epoll.c"
558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
562#if EV_USE_SELECT
563# include "ev_select.c"
564#endif
565
566int
567ev_version_major (void)
568{
569 return EV_VERSION_MAJOR;
570}
571
572int
573ev_version_minor (void)
574{
575 return EV_VERSION_MINOR;
576}
577
578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
599 if (!method)
600 {
601#if EV_USE_MONOTONIC
602 {
603 struct timespec ts;
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1;
606 }
607#endif
608
609 rt_now = ev_time ();
610 mn_now = get_clock ();
611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637}
638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672}
673
674void
675loop_fork (EV_P)
676{
677 /*TODO*/
678#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif
684}
685
686#if EV_MULTIPLICITY
687struct ev_loop *
688ev_loop_new (int methods)
689{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif
714
715#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe))
729 return 0;
730
731 if (!default_loop)
732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1;
737#endif
738
739 loop_init (EV_A_ methods);
740
741 if (ev_method (EV_A))
356 { 742 {
357 w->status = status; 743 ev_watcher_init (&sigev, sigcb);
358 event ((W)w, EV_CHILD); 744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A);
746
747#ifndef WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI);
750 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif
359 } 753 }
360} 754 else
361 755 default_loop = 0;
362/*****************************************************************************/
363
364#if HAVE_EPOLL
365# include "ev_epoll.c"
366#endif
367#if HAVE_SELECT
368# include "ev_select.c"
369#endif
370
371int ev_init (int flags)
372{
373#if HAVE_MONOTONIC
374 {
375 struct timespec ts;
376 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
377 have_monotonic = 1;
378 }
379#endif
380
381 ev_now = ev_time ();
382 now = get_clock ();
383 diff = ev_now - now;
384
385 if (pipe (sigpipe))
386 return 0;
387
388 ev_method = EVMETHOD_NONE;
389#if HAVE_EPOLL
390 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
391#endif
392#if HAVE_SELECT
393 if (ev_method == EVMETHOD_NONE) select_init (flags);
394#endif
395
396 if (ev_method)
397 { 756 }
398 evw_init (&sigev, sigcb);
399 siginit ();
400 757
401 evsignal_init (&childev, childcb, SIGCHLD); 758 return default_loop;
759}
760
761void
762ev_default_destroy (void)
763{
764#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop;
766#endif
767
768 ev_ref (EV_A); /* child watcher */
402 evsignal_start (&childev); 769 ev_signal_stop (EV_A_ &childev);
403 }
404 770
405 return ev_method; 771 ev_ref (EV_A); /* signal watcher */
406}
407
408/*****************************************************************************/
409
410void ev_prefork (void)
411{
412 /* nop */
413}
414
415void ev_postfork_parent (void)
416{
417 /* nop */
418}
419
420void ev_postfork_child (void)
421{
422#if HAVE_EPOLL
423 if (ev_method == EVMETHOD_EPOLL)
424 epoll_postfork_child ();
425#endif
426
427 evio_stop (&sigev); 772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
428 close (sigpipe [0]); 790 close (sigpipe [0]);
429 close (sigpipe [1]); 791 close (sigpipe [1]);
430 pipe (sigpipe); 792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
431 siginit (); 795 siginit (EV_A);
432} 796}
433 797
434/*****************************************************************************/ 798/*****************************************************************************/
435 799
436static void 800static void
437fd_reify (void) 801call_pending (EV_P)
438{ 802{
439 int i; 803 int pri;
440 804
441 for (i = 0; i < fdchangecnt; ++i) 805 for (pri = NUMPRI; pri--; )
442 { 806 while (pendingcnt [pri])
443 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd;
445 struct ev_io *w;
446
447 int wev = 0;
448
449 for (w = anfd->head; w; w = w->next)
450 wev |= w->events;
451
452 if (anfd->wev != wev)
453 { 807 {
454 method_modify (fd, anfd->wev, wev);
455 anfd->wev = wev;
456 }
457 }
458
459 fdchangecnt = 0;
460}
461
462static void
463call_pending ()
464{
465 while (pendingcnt)
466 {
467 ANPENDING *p = pendings + --pendingcnt; 808 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
468 809
469 if (p->w) 810 if (p->w)
470 { 811 {
471 p->w->pending = 0; 812 p->w->pending = 0;
472 p->w->cb (p->w, p->events); 813
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events);
473 } 815 }
474 } 816 }
475} 817}
476 818
477static void 819static void
478timers_reify () 820timers_reify (EV_P)
479{ 821{
480 while (timercnt && timers [0]->at <= now) 822 while (timercnt && ((WT)timers [0])->at <= mn_now)
481 { 823 {
482 struct ev_timer *w = timers [0]; 824 struct ev_timer *w = timers [0];
483 825
484 event ((W)w, EV_TIMEOUT); 826 assert (("inactive timer on timer heap detected", ev_is_active (w)));
485 827
486 /* first reschedule or stop timer */ 828 /* first reschedule or stop timer */
487 if (w->repeat) 829 if (w->repeat)
488 { 830 {
831 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
489 w->at = now + w->repeat; 832 ((WT)w)->at = mn_now + w->repeat;
490 assert (("timer timeout in the past, negative repeat?", w->at > now));
491 downheap ((WT *)timers, timercnt, 0); 833 downheap ((WT *)timers, timercnt, 0);
492 } 834 }
493 else 835 else
494 evtimer_stop (w); /* nonrepeating: stop timer */ 836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
495 }
496}
497 837
838 event (EV_A_ (W)w, EV_TIMEOUT);
839 }
840}
841
498static void 842static void
499periodics_reify () 843periodics_reify (EV_P)
500{ 844{
501 while (periodiccnt && periodics [0]->at <= ev_now) 845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
502 { 846 {
503 struct ev_periodic *w = periodics [0]; 847 struct ev_periodic *w = periodics [0];
848
849 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
504 850
505 /* first reschedule or stop timer */ 851 /* first reschedule or stop timer */
506 if (w->interval) 852 if (w->interval)
507 { 853 {
508 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
509 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
510 downheap ((WT *)periodics, periodiccnt, 0); 856 downheap ((WT *)periodics, periodiccnt, 0);
511 } 857 }
512 else 858 else
513 evperiodic_stop (w); /* nonrepeating: stop timer */ 859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
514 860
515 event ((W)w, EV_TIMEOUT); 861 event (EV_A_ (W)w, EV_PERIODIC);
516 } 862 }
517} 863}
518 864
519static void 865static void
520periodics_reschedule (ev_tstamp diff) 866periodics_reschedule (EV_P)
521{ 867{
522 int i; 868 int i;
523 869
524 /* adjust periodics after time jump */ 870 /* adjust periodics after time jump */
525 for (i = 0; i < periodiccnt; ++i) 871 for (i = 0; i < periodiccnt; ++i)
526 { 872 {
527 struct ev_periodic *w = periodics [i]; 873 struct ev_periodic *w = periodics [i];
528 874
529 if (w->interval) 875 if (w->interval)
530 { 876 {
531 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
532 878
533 if (fabs (diff) >= 1e-4) 879 if (fabs (diff) >= 1e-4)
534 { 880 {
535 evperiodic_stop (w); 881 ev_periodic_stop (EV_A_ w);
536 evperiodic_start (w); 882 ev_periodic_start (EV_A_ w);
537 883
538 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
539 } 885 }
540 } 886 }
541 } 887 }
542} 888}
543 889
890inline int
891time_update_monotonic (EV_P)
892{
893 mn_now = get_clock ();
894
895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
896 {
897 rt_now = rtmn_diff + mn_now;
898 return 0;
899 }
900 else
901 {
902 now_floor = mn_now;
903 rt_now = ev_time ();
904 return 1;
905 }
906}
907
544static void 908static void
545time_update () 909time_update (EV_P)
546{ 910{
547 int i; 911 int i;
548 912
549 ev_now = ev_time (); 913#if EV_USE_MONOTONIC
550
551 if (have_monotonic) 914 if (expect_true (have_monotonic))
552 { 915 {
553 ev_tstamp odiff = diff; 916 if (time_update_monotonic (EV_A))
554
555 for (i = 4; --i; ) /* loop a few times, before making important decisions */
556 { 917 {
557 now = get_clock (); 918 ev_tstamp odiff = rtmn_diff;
919
920 for (i = 4; --i; ) /* loop a few times, before making important decisions */
921 {
558 diff = ev_now - now; 922 rtmn_diff = rt_now - mn_now;
559 923
560 if (fabs (odiff - diff) < MIN_TIMEJUMP) 924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
561 return; /* all is well */ 925 return; /* all is well */
562 926
563 ev_now = ev_time (); 927 rt_now = ev_time ();
928 mn_now = get_clock ();
929 now_floor = mn_now;
930 }
931
932 periodics_reschedule (EV_A);
933 /* no timer adjustment, as the monotonic clock doesn't jump */
934 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
564 } 935 }
565
566 periodics_reschedule (diff - odiff);
567 /* no timer adjustment, as the monotonic clock doesn't jump */
568 } 936 }
569 else 937 else
938#endif
570 { 939 {
571 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 940 rt_now = ev_time ();
941
942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
572 { 943 {
573 periodics_reschedule (ev_now - now); 944 periodics_reschedule (EV_A);
574 945
575 /* adjust timers. this is easy, as the offset is the same for all */ 946 /* adjust timers. this is easy, as the offset is the same for all */
576 for (i = 0; i < timercnt; ++i) 947 for (i = 0; i < timercnt; ++i)
577 timers [i]->at += diff; 948 ((WT)timers [i])->at += rt_now - mn_now;
578 } 949 }
579 950
580 now = ev_now; 951 mn_now = rt_now;
581 } 952 }
582} 953}
583 954
584int ev_loop_done; 955void
956ev_ref (EV_P)
957{
958 ++activecnt;
959}
585 960
961void
962ev_unref (EV_P)
963{
964 --activecnt;
965}
966
967static int loop_done;
968
969void
586void ev_loop (int flags) 970ev_loop (EV_P_ int flags)
587{ 971{
588 double block; 972 double block;
589 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 973 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
590 974
591 do 975 do
592 { 976 {
593 /* queue check watchers (and execute them) */ 977 /* queue check watchers (and execute them) */
594 if (preparecnt) 978 if (expect_false (preparecnt))
595 { 979 {
596 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
597 call_pending (); 981 call_pending (EV_A);
598 } 982 }
599 983
600 /* update fd-related kernel structures */ 984 /* update fd-related kernel structures */
601 fd_reify (); 985 fd_reify (EV_A);
602 986
603 /* calculate blocking time */ 987 /* calculate blocking time */
604 988
605 /* we only need this for !monotonic clockor timers, but as we basically 989 /* we only need this for !monotonic clockor timers, but as we basically
606 always have timers, we just calculate it always */ 990 always have timers, we just calculate it always */
991#if EV_USE_MONOTONIC
992 if (expect_true (have_monotonic))
993 time_update_monotonic (EV_A);
994 else
995#endif
996 {
607 ev_now = ev_time (); 997 rt_now = ev_time ();
998 mn_now = rt_now;
999 }
608 1000
609 if (flags & EVLOOP_NONBLOCK || idlecnt) 1001 if (flags & EVLOOP_NONBLOCK || idlecnt)
610 block = 0.; 1002 block = 0.;
611 else 1003 else
612 { 1004 {
613 block = MAX_BLOCKTIME; 1005 block = MAX_BLOCKTIME;
614 1006
615 if (timercnt) 1007 if (timercnt)
616 { 1008 {
617 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1009 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
618 if (block > to) block = to; 1010 if (block > to) block = to;
619 } 1011 }
620 1012
621 if (periodiccnt) 1013 if (periodiccnt)
622 { 1014 {
623 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
624 if (block > to) block = to; 1016 if (block > to) block = to;
625 } 1017 }
626 1018
627 if (block < 0.) block = 0.; 1019 if (block < 0.) block = 0.;
628 } 1020 }
629 1021
630 method_poll (block); 1022 method_poll (EV_A_ block);
631 1023
632 /* update ev_now, do magic */ 1024 /* update rt_now, do magic */
633 time_update (); 1025 time_update (EV_A);
634 1026
635 /* queue pending timers and reschedule them */ 1027 /* queue pending timers and reschedule them */
636 timers_reify (); /* relative timers called last */ 1028 timers_reify (EV_A); /* relative timers called last */
637 periodics_reify (); /* absolute timers called first */ 1029 periodics_reify (EV_A); /* absolute timers called first */
638 1030
639 /* queue idle watchers unless io or timers are pending */ 1031 /* queue idle watchers unless io or timers are pending */
640 if (!pendingcnt) 1032 if (!pendingcnt)
641 queue_events ((W *)idles, idlecnt, EV_IDLE); 1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
642 1034
643 /* queue check watchers, to be executed first */ 1035 /* queue check watchers, to be executed first */
644 if (checkcnt) 1036 if (checkcnt)
645 queue_events ((W *)checks, checkcnt, EV_CHECK); 1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
646 1038
647 call_pending (); 1039 call_pending (EV_A);
648 } 1040 }
649 while (!ev_loop_done); 1041 while (activecnt && !loop_done);
650 1042
651 if (ev_loop_done != 2) 1043 if (loop_done != 2)
652 ev_loop_done = 0; 1044 loop_done = 0;
1045}
1046
1047void
1048ev_unloop (EV_P_ int how)
1049{
1050 loop_done = how;
653} 1051}
654 1052
655/*****************************************************************************/ 1053/*****************************************************************************/
656 1054
657static void 1055inline void
658wlist_add (WL *head, WL elem) 1056wlist_add (WL *head, WL elem)
659{ 1057{
660 elem->next = *head; 1058 elem->next = *head;
661 *head = elem; 1059 *head = elem;
662} 1060}
663 1061
664static void 1062inline void
665wlist_del (WL *head, WL elem) 1063wlist_del (WL *head, WL elem)
666{ 1064{
667 while (*head) 1065 while (*head)
668 { 1066 {
669 if (*head == elem) 1067 if (*head == elem)
674 1072
675 head = &(*head)->next; 1073 head = &(*head)->next;
676 } 1074 }
677} 1075}
678 1076
679static void 1077inline void
680ev_clear (W w) 1078ev_clear_pending (EV_P_ W w)
681{ 1079{
682 if (w->pending) 1080 if (w->pending)
683 { 1081 {
684 pendings [w->pending - 1].w = 0; 1082 pendings [ABSPRI (w)][w->pending - 1].w = 0;
685 w->pending = 0; 1083 w->pending = 0;
686 } 1084 }
687} 1085}
688 1086
689static void 1087inline void
690ev_start (W w, int active) 1088ev_start (EV_P_ W w, int active)
691{ 1089{
1090 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1091 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1092
692 w->active = active; 1093 w->active = active;
1094 ev_ref (EV_A);
693} 1095}
694 1096
695static void 1097inline void
696ev_stop (W w) 1098ev_stop (EV_P_ W w)
697{ 1099{
1100 ev_unref (EV_A);
698 w->active = 0; 1101 w->active = 0;
699} 1102}
700 1103
701/*****************************************************************************/ 1104/*****************************************************************************/
702 1105
703void 1106void
704evio_start (struct ev_io *w) 1107ev_io_start (EV_P_ struct ev_io *w)
705{ 1108{
1109 int fd = w->fd;
1110
706 if (ev_is_active (w)) 1111 if (ev_is_active (w))
707 return; 1112 return;
708 1113
709 int fd = w->fd; 1114 assert (("ev_io_start called with negative fd", fd >= 0));
710 1115
711 ev_start ((W)w, 1); 1116 ev_start (EV_A_ (W)w, 1);
712 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
713 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1118 wlist_add ((WL *)&anfds[fd].head, (WL)w);
714 1119
715 ++fdchangecnt; 1120 fd_change (EV_A_ fd);
716 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
717 fdchanges [fdchangecnt - 1] = fd;
718} 1121}
719 1122
720void 1123void
721evio_stop (struct ev_io *w) 1124ev_io_stop (EV_P_ struct ev_io *w)
722{ 1125{
723 ev_clear ((W)w); 1126 ev_clear_pending (EV_A_ (W)w);
724 if (!ev_is_active (w)) 1127 if (!ev_is_active (w))
725 return; 1128 return;
726 1129
727 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
728 ev_stop ((W)w); 1131 ev_stop (EV_A_ (W)w);
729 1132
730 ++fdchangecnt; 1133 fd_change (EV_A_ w->fd);
731 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
732 fdchanges [fdchangecnt - 1] = w->fd;
733} 1134}
734 1135
735void 1136void
736evtimer_start (struct ev_timer *w) 1137ev_timer_start (EV_P_ struct ev_timer *w)
737{ 1138{
738 if (ev_is_active (w)) 1139 if (ev_is_active (w))
739 return; 1140 return;
740 1141
741 w->at += now; 1142 ((WT)w)->at += mn_now;
742 1143
743 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
744 1145
745 ev_start ((W)w, ++timercnt); 1146 ev_start (EV_A_ (W)w, ++timercnt);
746 array_needsize (timers, timermax, timercnt, ); 1147 array_needsize (timers, timermax, timercnt, );
747 timers [timercnt - 1] = w; 1148 timers [timercnt - 1] = w;
748 upheap ((WT *)timers, timercnt - 1); 1149 upheap ((WT *)timers, timercnt - 1);
749}
750 1150
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1152}
1153
751void 1154void
752evtimer_stop (struct ev_timer *w) 1155ev_timer_stop (EV_P_ struct ev_timer *w)
753{ 1156{
754 ev_clear ((W)w); 1157 ev_clear_pending (EV_A_ (W)w);
755 if (!ev_is_active (w)) 1158 if (!ev_is_active (w))
756 return; 1159 return;
757 1160
1161 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1162
758 if (w->active < timercnt--) 1163 if (((W)w)->active < timercnt--)
759 { 1164 {
760 timers [w->active - 1] = timers [timercnt]; 1165 timers [((W)w)->active - 1] = timers [timercnt];
761 downheap ((WT *)timers, timercnt, w->active - 1); 1166 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
762 } 1167 }
763 1168
764 w->at = w->repeat; 1169 ((WT)w)->at = w->repeat;
765 1170
766 ev_stop ((W)w); 1171 ev_stop (EV_A_ (W)w);
767} 1172}
768 1173
769void 1174void
770evtimer_again (struct ev_timer *w) 1175ev_timer_again (EV_P_ struct ev_timer *w)
771{ 1176{
772 if (ev_is_active (w)) 1177 if (ev_is_active (w))
773 { 1178 {
774 if (w->repeat) 1179 if (w->repeat)
775 { 1180 {
776 w->at = now + w->repeat; 1181 ((WT)w)->at = mn_now + w->repeat;
777 downheap ((WT *)timers, timercnt, w->active - 1); 1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
778 } 1183 }
779 else 1184 else
780 evtimer_stop (w); 1185 ev_timer_stop (EV_A_ w);
781 } 1186 }
782 else if (w->repeat) 1187 else if (w->repeat)
783 evtimer_start (w); 1188 ev_timer_start (EV_A_ w);
784} 1189}
785 1190
786void 1191void
787evperiodic_start (struct ev_periodic *w) 1192ev_periodic_start (EV_P_ struct ev_periodic *w)
788{ 1193{
789 if (ev_is_active (w)) 1194 if (ev_is_active (w))
790 return; 1195 return;
791 1196
792 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
793 1198
794 /* this formula differs from the one in periodic_reify because we do not always round up */ 1199 /* this formula differs from the one in periodic_reify because we do not always round up */
795 if (w->interval) 1200 if (w->interval)
796 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
797 1202
798 ev_start ((W)w, ++periodiccnt); 1203 ev_start (EV_A_ (W)w, ++periodiccnt);
799 array_needsize (periodics, periodicmax, periodiccnt, ); 1204 array_needsize (periodics, periodicmax, periodiccnt, );
800 periodics [periodiccnt - 1] = w; 1205 periodics [periodiccnt - 1] = w;
801 upheap ((WT *)periodics, periodiccnt - 1); 1206 upheap ((WT *)periodics, periodiccnt - 1);
802}
803 1207
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1209}
1210
804void 1211void
805evperiodic_stop (struct ev_periodic *w) 1212ev_periodic_stop (EV_P_ struct ev_periodic *w)
806{ 1213{
807 ev_clear ((W)w); 1214 ev_clear_pending (EV_A_ (W)w);
808 if (!ev_is_active (w)) 1215 if (!ev_is_active (w))
809 return; 1216 return;
810 1217
1218 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1219
811 if (w->active < periodiccnt--) 1220 if (((W)w)->active < periodiccnt--)
812 { 1221 {
813 periodics [w->active - 1] = periodics [periodiccnt]; 1222 periodics [((W)w)->active - 1] = periodics [periodiccnt];
814 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1223 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
815 } 1224 }
816 1225
817 ev_stop ((W)w); 1226 ev_stop (EV_A_ (W)w);
818} 1227}
819 1228
820void 1229void
821evsignal_start (struct ev_signal *w) 1230ev_idle_start (EV_P_ struct ev_idle *w)
822{ 1231{
823 if (ev_is_active (w)) 1232 if (ev_is_active (w))
824 return; 1233 return;
825 1234
1235 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, );
1237 idles [idlecnt - 1] = w;
1238}
1239
1240void
1241ev_idle_stop (EV_P_ struct ev_idle *w)
1242{
1243 ev_clear_pending (EV_A_ (W)w);
1244 if (ev_is_active (w))
1245 return;
1246
1247 idles [((W)w)->active - 1] = idles [--idlecnt];
1248 ev_stop (EV_A_ (W)w);
1249}
1250
1251void
1252ev_prepare_start (EV_P_ struct ev_prepare *w)
1253{
1254 if (ev_is_active (w))
1255 return;
1256
1257 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, );
1259 prepares [preparecnt - 1] = w;
1260}
1261
1262void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w)
1264{
1265 ev_clear_pending (EV_A_ (W)w);
1266 if (ev_is_active (w))
1267 return;
1268
1269 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1270 ev_stop (EV_A_ (W)w);
1271}
1272
1273void
1274ev_check_start (EV_P_ struct ev_check *w)
1275{
1276 if (ev_is_active (w))
1277 return;
1278
1279 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, );
1281 checks [checkcnt - 1] = w;
1282}
1283
1284void
1285ev_check_stop (EV_P_ struct ev_check *w)
1286{
1287 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w))
1289 return;
1290
1291 checks [((W)w)->active - 1] = checks [--checkcnt];
1292 ev_stop (EV_A_ (W)w);
1293}
1294
1295#ifndef SA_RESTART
1296# define SA_RESTART 0
1297#endif
1298
1299void
1300ev_signal_start (EV_P_ struct ev_signal *w)
1301{
1302#if EV_MULTIPLICITY
1303 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1304#endif
1305 if (ev_is_active (w))
1306 return;
1307
1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1309
826 ev_start ((W)w, 1); 1310 ev_start (EV_A_ (W)w, 1);
827 array_needsize (signals, signalmax, w->signum, signals_init); 1311 array_needsize (signals, signalmax, w->signum, signals_init);
828 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
829 1313
830 if (!w->next) 1314 if (!((WL)w)->next)
831 { 1315 {
832 struct sigaction sa; 1316 struct sigaction sa;
833 sa.sa_handler = sighandler; 1317 sa.sa_handler = sighandler;
834 sigfillset (&sa.sa_mask); 1318 sigfillset (&sa.sa_mask);
835 sa.sa_flags = 0; 1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
836 sigaction (w->signum, &sa, 0); 1320 sigaction (w->signum, &sa, 0);
837 } 1321 }
838} 1322}
839 1323
840void 1324void
841evsignal_stop (struct ev_signal *w) 1325ev_signal_stop (EV_P_ struct ev_signal *w)
842{ 1326{
843 ev_clear ((W)w); 1327 ev_clear_pending (EV_A_ (W)w);
844 if (!ev_is_active (w)) 1328 if (!ev_is_active (w))
845 return; 1329 return;
846 1330
847 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1331 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
848 ev_stop ((W)w); 1332 ev_stop (EV_A_ (W)w);
849 1333
850 if (!signals [w->signum - 1].head) 1334 if (!signals [w->signum - 1].head)
851 signal (w->signum, SIG_DFL); 1335 signal (w->signum, SIG_DFL);
852} 1336}
853 1337
854void evidle_start (struct ev_idle *w) 1338void
1339ev_child_start (EV_P_ struct ev_child *w)
855{ 1340{
1341#if EV_MULTIPLICITY
1342 assert (("child watchers are only supported in the default loop", loop == default_loop));
1343#endif
856 if (ev_is_active (w)) 1344 if (ev_is_active (w))
857 return; 1345 return;
858 1346
859 ev_start ((W)w, ++idlecnt); 1347 ev_start (EV_A_ (W)w, 1);
860 array_needsize (idles, idlemax, idlecnt, ); 1348 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
861 idles [idlecnt - 1] = w;
862} 1349}
863 1350
864void evidle_stop (struct ev_idle *w) 1351void
1352ev_child_stop (EV_P_ struct ev_child *w)
865{ 1353{
866 ev_clear ((W)w); 1354 ev_clear_pending (EV_A_ (W)w);
867 if (ev_is_active (w)) 1355 if (ev_is_active (w))
868 return; 1356 return;
869 1357
870 idles [w->active - 1] = idles [--idlecnt];
871 ev_stop ((W)w);
872}
873
874void evprepare_start (struct ev_prepare *w)
875{
876 if (ev_is_active (w))
877 return;
878
879 ev_start ((W)w, ++preparecnt);
880 array_needsize (prepares, preparemax, preparecnt, );
881 prepares [preparecnt - 1] = w;
882}
883
884void evprepare_stop (struct ev_prepare *w)
885{
886 ev_clear ((W)w);
887 if (ev_is_active (w))
888 return;
889
890 prepares [w->active - 1] = prepares [--preparecnt];
891 ev_stop ((W)w);
892}
893
894void evcheck_start (struct ev_check *w)
895{
896 if (ev_is_active (w))
897 return;
898
899 ev_start ((W)w, ++checkcnt);
900 array_needsize (checks, checkmax, checkcnt, );
901 checks [checkcnt - 1] = w;
902}
903
904void evcheck_stop (struct ev_check *w)
905{
906 ev_clear ((W)w);
907 if (ev_is_active (w))
908 return;
909
910 checks [w->active - 1] = checks [--checkcnt];
911 ev_stop ((W)w);
912}
913
914void evchild_start (struct ev_child *w)
915{
916 if (ev_is_active (w))
917 return;
918
919 ev_start ((W)w, 1);
920 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
921}
922
923void evchild_stop (struct ev_child *w)
924{
925 ev_clear ((W)w);
926 if (ev_is_active (w))
927 return;
928
929 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1358 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
930 ev_stop ((W)w); 1359 ev_stop (EV_A_ (W)w);
931} 1360}
932 1361
933/*****************************************************************************/ 1362/*****************************************************************************/
934 1363
935struct ev_once 1364struct ev_once
939 void (*cb)(int revents, void *arg); 1368 void (*cb)(int revents, void *arg);
940 void *arg; 1369 void *arg;
941}; 1370};
942 1371
943static void 1372static void
944once_cb (struct ev_once *once, int revents) 1373once_cb (EV_P_ struct ev_once *once, int revents)
945{ 1374{
946 void (*cb)(int revents, void *arg) = once->cb; 1375 void (*cb)(int revents, void *arg) = once->cb;
947 void *arg = once->arg; 1376 void *arg = once->arg;
948 1377
949 evio_stop (&once->io); 1378 ev_io_stop (EV_A_ &once->io);
950 evtimer_stop (&once->to); 1379 ev_timer_stop (EV_A_ &once->to);
951 free (once); 1380 free (once);
952 1381
953 cb (revents, arg); 1382 cb (revents, arg);
954} 1383}
955 1384
956static void 1385static void
957once_cb_io (struct ev_io *w, int revents) 1386once_cb_io (EV_P_ struct ev_io *w, int revents)
958{ 1387{
959 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1388 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
960} 1389}
961 1390
962static void 1391static void
963once_cb_to (struct ev_timer *w, int revents) 1392once_cb_to (EV_P_ struct ev_timer *w, int revents)
964{ 1393{
965 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1394 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
966} 1395}
967 1396
968void 1397void
969ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
970{ 1399{
971 struct ev_once *once = malloc (sizeof (struct ev_once)); 1400 struct ev_once *once = malloc (sizeof (struct ev_once));
972 1401
973 if (!once) 1402 if (!once)
974 cb (EV_ERROR, arg); 1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
975 else 1404 else
976 { 1405 {
977 once->cb = cb; 1406 once->cb = cb;
978 once->arg = arg; 1407 once->arg = arg;
979 1408
980 evw_init (&once->io, once_cb_io); 1409 ev_watcher_init (&once->io, once_cb_io);
981
982 if (fd >= 0) 1410 if (fd >= 0)
983 { 1411 {
984 evio_set (&once->io, fd, events); 1412 ev_io_set (&once->io, fd, events);
985 evio_start (&once->io); 1413 ev_io_start (EV_A_ &once->io);
986 } 1414 }
987 1415
988 evw_init (&once->to, once_cb_to); 1416 ev_watcher_init (&once->to, once_cb_to);
989
990 if (timeout >= 0.) 1417 if (timeout >= 0.)
991 { 1418 {
992 evtimer_set (&once->to, timeout, 0.); 1419 ev_timer_set (&once->to, timeout, 0.);
993 evtimer_start (&once->to); 1420 ev_timer_start (EV_A_ &once->to);
994 } 1421 }
995 } 1422 }
996} 1423}
997 1424
998/*****************************************************************************/
999
1000#if 0
1001
1002struct ev_io wio;
1003
1004static void
1005sin_cb (struct ev_io *w, int revents)
1006{
1007 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1008}
1009
1010static void
1011ocb (struct ev_timer *w, int revents)
1012{
1013 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1014 evtimer_stop (w);
1015 evtimer_start (w);
1016}
1017
1018static void
1019scb (struct ev_signal *w, int revents)
1020{
1021 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1022 evio_stop (&wio);
1023 evio_start (&wio);
1024}
1025
1026static void
1027gcb (struct ev_signal *w, int revents)
1028{
1029 fprintf (stderr, "generic %x\n", revents);
1030
1031}
1032
1033int main (void)
1034{
1035 ev_init (0);
1036
1037 evio_init (&wio, sin_cb, 0, EV_READ);
1038 evio_start (&wio);
1039
1040 struct ev_timer t[10000];
1041
1042#if 0
1043 int i;
1044 for (i = 0; i < 10000; ++i)
1045 {
1046 struct ev_timer *w = t + i;
1047 evw_init (w, ocb, i);
1048 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1049 evtimer_start (w);
1050 if (drand48 () < 0.5)
1051 evtimer_stop (w);
1052 }
1053#endif
1054
1055 struct ev_timer t1;
1056 evtimer_init (&t1, ocb, 5, 10);
1057 evtimer_start (&t1);
1058
1059 struct ev_signal sig;
1060 evsignal_init (&sig, scb, SIGQUIT);
1061 evsignal_start (&sig);
1062
1063 struct ev_check cw;
1064 evcheck_init (&cw, gcb);
1065 evcheck_start (&cw);
1066
1067 struct ev_idle iw;
1068 evidle_init (&iw, gcb);
1069 evidle_start (&iw);
1070
1071 ev_loop (0);
1072
1073 return 0;
1074}
1075
1076#endif
1077
1078
1079
1080

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines