ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.128 by root, Thu Nov 22 12:28:27 2007 UTC vs.
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
116# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 160# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
120# endif 163# endif
121#endif 164#endif
122 165
123/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
124 167
125#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
126# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
127#endif 170#endif
128 171
129#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
131#endif 178#endif
132 179
133#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
135#endif 182#endif
141# define EV_USE_POLL 1 188# define EV_USE_POLL 1
142# endif 189# endif
143#endif 190#endif
144 191
145#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
146# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
147#endif 198#endif
148 199
149#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
151#endif 202#endif
152 203
153#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 205# define EV_USE_PORT 0
155#endif 206#endif
156 207
157/**/ 208#ifndef EV_USE_INOTIFY
158 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
159/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
160#ifdef __APPLE__ 211# else
161# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
162# undef EV_USE_KQUEUE
163#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
164 241
165#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
168#endif 245#endif
170#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
173#endif 250#endif
174 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
175#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 268# include <winsock.h>
177#endif 269#endif
178 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273int eventfd (unsigned int initval, int flags);
274#endif
275
179/**/ 276/**/
277
278/*
279 * This is used to avoid floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding
282 * errors are against us.
283 * This value is good at least till the year 4000.
284 * Better solutions welcome.
285 */
286#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
180 287
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 288#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 289#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 290/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
185 291
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 292#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 293# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 294# define noinline __attribute__ ((noinline))
195#else 295#else
196# define expect(expr,value) (expr) 296# define expect(expr,value) (expr)
197# define inline static 297# define noinline
298# if __STDC_VERSION__ < 199901L
299# define inline
300# endif
198#endif 301#endif
199 302
200#define expect_false(expr) expect ((expr) != 0, 0) 303#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 304#define expect_true(expr) expect ((expr) != 0, 1)
305#define inline_size static inline
306
307#if EV_MINIMAL
308# define inline_speed static noinline
309#else
310# define inline_speed static inline
311#endif
202 312
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 313#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 314#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
205 315
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 316#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 317#define EMPTY2(a,b) /* used to suppress some warnings */
208 318
209typedef struct ev_watcher *W; 319typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 320typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 321typedef ev_watcher_time *WT;
212 322
323#if EV_USE_MONOTONIC
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
327#endif
214 328
215#ifdef _WIN32 329#ifdef _WIN32
216# include "ev_win32.c" 330# include "ev_win32.c"
217#endif 331#endif
218 332
219/*****************************************************************************/ 333/*****************************************************************************/
220 334
221static void (*syserr_cb)(const char *msg); 335static void (*syserr_cb)(const char *msg);
222 336
337void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 338ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 339{
225 syserr_cb = cb; 340 syserr_cb = cb;
226} 341}
227 342
228static void 343static void noinline
229syserr (const char *msg) 344syserr (const char *msg)
230{ 345{
231 if (!msg) 346 if (!msg)
232 msg = "(libev) system error"; 347 msg = "(libev) system error";
233 348
240 } 355 }
241} 356}
242 357
243static void *(*alloc)(void *ptr, long size); 358static void *(*alloc)(void *ptr, long size);
244 359
360void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 361ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 362{
247 alloc = cb; 363 alloc = cb;
248} 364}
249 365
250static void * 366inline_speed void *
251ev_realloc (void *ptr, long size) 367ev_realloc (void *ptr, long size)
252{ 368{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
254 370
255 if (!ptr && size) 371 if (!ptr && size)
279typedef struct 395typedef struct
280{ 396{
281 W w; 397 W w;
282 int events; 398 int events;
283} ANPENDING; 399} ANPENDING;
400
401#if EV_USE_INOTIFY
402typedef struct
403{
404 WL head;
405} ANFS;
406#endif
284 407
285#if EV_MULTIPLICITY 408#if EV_MULTIPLICITY
286 409
287 struct ev_loop 410 struct ev_loop
288 { 411 {
322 gettimeofday (&tv, 0); 445 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 446 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif 447#endif
325} 448}
326 449
327inline ev_tstamp 450ev_tstamp inline_size
328get_clock (void) 451get_clock (void)
329{ 452{
330#if EV_USE_MONOTONIC 453#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 454 if (expect_true (have_monotonic))
332 { 455 {
345{ 468{
346 return ev_rt_now; 469 return ev_rt_now;
347} 470}
348#endif 471#endif
349 472
350#define array_roundsize(type,n) (((n) | 4) & ~3) 473void
474ev_sleep (ev_tstamp delay)
475{
476 if (delay > 0.)
477 {
478#if EV_USE_NANOSLEEP
479 struct timespec ts;
480
481 ts.tv_sec = (time_t)delay;
482 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
483
484 nanosleep (&ts, 0);
485#elif defined(_WIN32)
486 Sleep ((unsigned long)(delay * 1e3));
487#else
488 struct timeval tv;
489
490 tv.tv_sec = (time_t)delay;
491 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
492
493 select (0, 0, 0, 0, &tv);
494#endif
495 }
496}
497
498/*****************************************************************************/
499
500int inline_size
501array_nextsize (int elem, int cur, int cnt)
502{
503 int ncur = cur + 1;
504
505 do
506 ncur <<= 1;
507 while (cnt > ncur);
508
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096)
511 {
512 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
514 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem;
516 }
517
518 return ncur;
519}
520
521static noinline void *
522array_realloc (int elem, void *base, int *cur, int cnt)
523{
524 *cur = array_nextsize (elem, *cur, cnt);
525 return ev_realloc (base, elem * *cur);
526}
351 527
352#define array_needsize(type,base,cur,cnt,init) \ 528#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 529 if (expect_false ((cnt) > (cur))) \
354 { \ 530 { \
355 int newcnt = cur; \ 531 int ocur_ = (cur); \
356 do \ 532 (base) = (type *)array_realloc \
357 { \ 533 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 534 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 535 }
366 536
537#if 0
367#define array_slim(type,stem) \ 538#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 539 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 540 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 541 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 542 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 543 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 544 }
545#endif
374 546
375#define array_free(stem, idx) \ 547#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 548 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
377 549
378/*****************************************************************************/ 550/*****************************************************************************/
379 551
380static void 552void noinline
553ev_feed_event (EV_P_ void *w, int revents)
554{
555 W w_ = (W)w;
556 int pri = ABSPRI (w_);
557
558 if (expect_false (w_->pending))
559 pendings [pri][w_->pending - 1].events |= revents;
560 else
561 {
562 w_->pending = ++pendingcnt [pri];
563 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
564 pendings [pri][w_->pending - 1].w = w_;
565 pendings [pri][w_->pending - 1].events = revents;
566 }
567}
568
569void inline_speed
570queue_events (EV_P_ W *events, int eventcnt, int type)
571{
572 int i;
573
574 for (i = 0; i < eventcnt; ++i)
575 ev_feed_event (EV_A_ events [i], type);
576}
577
578/*****************************************************************************/
579
580void inline_size
381anfds_init (ANFD *base, int count) 581anfds_init (ANFD *base, int count)
382{ 582{
383 while (count--) 583 while (count--)
384 { 584 {
385 base->head = 0; 585 base->head = 0;
388 588
389 ++base; 589 ++base;
390 } 590 }
391} 591}
392 592
393void 593void inline_speed
394ev_feed_event (EV_P_ void *w, int revents)
395{
396 W w_ = (W)w;
397
398 if (expect_false (w_->pending))
399 {
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
401 return;
402 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408}
409
410static void
411queue_events (EV_P_ W *events, int eventcnt, int type)
412{
413 int i;
414
415 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type);
417}
418
419inline void
420fd_event (EV_P_ int fd, int revents) 594fd_event (EV_P_ int fd, int revents)
421{ 595{
422 ANFD *anfd = anfds + fd; 596 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 597 ev_io *w;
424 598
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 599 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 600 {
427 int ev = w->events & revents; 601 int ev = w->events & revents;
428 602
429 if (ev) 603 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 604 ev_feed_event (EV_A_ (W)w, ev);
432} 606}
433 607
434void 608void
435ev_feed_fd_event (EV_P_ int fd, int revents) 609ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 610{
611 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 612 fd_event (EV_A_ fd, revents);
438} 613}
439 614
440/*****************************************************************************/ 615void inline_size
441
442inline void
443fd_reify (EV_P) 616fd_reify (EV_P)
444{ 617{
445 int i; 618 int i;
446 619
447 for (i = 0; i < fdchangecnt; ++i) 620 for (i = 0; i < fdchangecnt; ++i)
448 { 621 {
449 int fd = fdchanges [i]; 622 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 623 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 624 ev_io *w;
452 625
453 int events = 0; 626 unsigned char events = 0;
454 627
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 628 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 629 events |= (unsigned char)w->events;
457 630
458#if EV_SELECT_IS_WINSOCKET 631#if EV_SELECT_IS_WINSOCKET
459 if (events) 632 if (events)
460 { 633 {
461 unsigned long argp; 634 unsigned long argp;
635 #ifdef EV_FD_TO_WIN32_HANDLE
636 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
637 #else
462 anfd->handle = _get_osfhandle (fd); 638 anfd->handle = _get_osfhandle (fd);
639 #endif
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 640 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
464 } 641 }
465#endif 642#endif
466 643
644 {
645 unsigned char o_events = anfd->events;
646 unsigned char o_reify = anfd->reify;
647
467 anfd->reify = 0; 648 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 649 anfd->events = events;
650
651 if (o_events != events || o_reify & EV_IOFDSET)
652 backend_modify (EV_A_ fd, o_events, events);
653 }
471 } 654 }
472 655
473 fdchangecnt = 0; 656 fdchangecnt = 0;
474} 657}
475 658
476static void 659void inline_size
477fd_change (EV_P_ int fd) 660fd_change (EV_P_ int fd, int flags)
478{ 661{
479 if (expect_false (anfds [fd].reify)) 662 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 663 anfds [fd].reify |= flags;
483 664
665 if (expect_true (!reify))
666 {
484 ++fdchangecnt; 667 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 668 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 669 fdchanges [fdchangecnt - 1] = fd;
670 }
487} 671}
488 672
489static void 673void inline_speed
490fd_kill (EV_P_ int fd) 674fd_kill (EV_P_ int fd)
491{ 675{
492 struct ev_io *w; 676 ev_io *w;
493 677
494 while ((w = (struct ev_io *)anfds [fd].head)) 678 while ((w = (ev_io *)anfds [fd].head))
495 { 679 {
496 ev_io_stop (EV_A_ w); 680 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 681 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 682 }
499} 683}
500 684
501inline int 685int inline_size
502fd_valid (int fd) 686fd_valid (int fd)
503{ 687{
504#ifdef _WIN32 688#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 689 return _get_osfhandle (fd) != -1;
506#else 690#else
507 return fcntl (fd, F_GETFD) != -1; 691 return fcntl (fd, F_GETFD) != -1;
508#endif 692#endif
509} 693}
510 694
511/* called on EBADF to verify fds */ 695/* called on EBADF to verify fds */
512static void 696static void noinline
513fd_ebadf (EV_P) 697fd_ebadf (EV_P)
514{ 698{
515 int fd; 699 int fd;
516 700
517 for (fd = 0; fd < anfdmax; ++fd) 701 for (fd = 0; fd < anfdmax; ++fd)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 703 if (!fd_valid (fd) == -1 && errno == EBADF)
520 fd_kill (EV_A_ fd); 704 fd_kill (EV_A_ fd);
521} 705}
522 706
523/* called on ENOMEM in select/poll to kill some fds and retry */ 707/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 708static void noinline
525fd_enomem (EV_P) 709fd_enomem (EV_P)
526{ 710{
527 int fd; 711 int fd;
528 712
529 for (fd = anfdmax; fd--; ) 713 for (fd = anfdmax; fd--; )
532 fd_kill (EV_A_ fd); 716 fd_kill (EV_A_ fd);
533 return; 717 return;
534 } 718 }
535} 719}
536 720
537/* usually called after fork if method needs to re-arm all fds from scratch */ 721/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 722static void noinline
539fd_rearm_all (EV_P) 723fd_rearm_all (EV_P)
540{ 724{
541 int fd; 725 int fd;
542 726
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 727 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 728 if (anfds [fd].events)
546 { 729 {
547 anfds [fd].events = 0; 730 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 731 fd_change (EV_A_ fd, EV_IOFDSET | 1);
549 } 732 }
550} 733}
551 734
552/*****************************************************************************/ 735/*****************************************************************************/
553 736
554static void 737void inline_speed
555upheap (WT *heap, int k) 738upheap (WT *heap, int k)
556{ 739{
557 WT w = heap [k]; 740 WT w = heap [k];
558 741
559 while (k && heap [k >> 1]->at > w->at) 742 while (k)
560 { 743 {
744 int p = (k - 1) >> 1;
745
746 if (heap [p]->at <= w->at)
747 break;
748
561 heap [k] = heap [k >> 1]; 749 heap [k] = heap [p];
562 ((W)heap [k])->active = k + 1; 750 ((W)heap [k])->active = k + 1;
563 k >>= 1; 751 k = p;
564 } 752 }
565 753
566 heap [k] = w; 754 heap [k] = w;
567 ((W)heap [k])->active = k + 1; 755 ((W)heap [k])->active = k + 1;
568
569} 756}
570 757
571static void 758void inline_speed
572downheap (WT *heap, int N, int k) 759downheap (WT *heap, int N, int k)
573{ 760{
574 WT w = heap [k]; 761 WT w = heap [k];
575 762
576 while (k < (N >> 1)) 763 for (;;)
577 { 764 {
578 int j = k << 1; 765 int c = (k << 1) + 1;
579 766
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 767 if (c >= N)
581 ++j;
582
583 if (w->at <= heap [j]->at)
584 break; 768 break;
585 769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
586 heap [k] = heap [j]; 776 heap [k] = heap [c];
587 ((W)heap [k])->active = k + 1; 777 ((W)heap [k])->active = k + 1;
778
588 k = j; 779 k = c;
589 } 780 }
590 781
591 heap [k] = w; 782 heap [k] = w;
592 ((W)heap [k])->active = k + 1; 783 ((W)heap [k])->active = k + 1;
593} 784}
594 785
595inline void 786void inline_size
596adjustheap (WT *heap, int N, int k) 787adjustheap (WT *heap, int N, int k)
597{ 788{
598 upheap (heap, k); 789 upheap (heap, k);
599 downheap (heap, N, k); 790 downheap (heap, N, k);
600} 791}
602/*****************************************************************************/ 793/*****************************************************************************/
603 794
604typedef struct 795typedef struct
605{ 796{
606 WL head; 797 WL head;
607 sig_atomic_t volatile gotsig; 798 EV_ATOMIC_T gotsig;
608} ANSIG; 799} ANSIG;
609 800
610static ANSIG *signals; 801static ANSIG *signals;
611static int signalmax; 802static int signalmax;
612 803
613static int sigpipe [2]; 804static EV_ATOMIC_T gotsig;
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616 805
617static void 806void inline_size
618signals_init (ANSIG *base, int count) 807signals_init (ANSIG *base, int count)
619{ 808{
620 while (count--) 809 while (count--)
621 { 810 {
622 base->head = 0; 811 base->head = 0;
624 813
625 ++base; 814 ++base;
626 } 815 }
627} 816}
628 817
629static void 818/*****************************************************************************/
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635 819
636 signals [signum - 1].gotsig = 1; 820void inline_speed
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 821fd_intern (int fd)
682{ 822{
683#ifdef _WIN32 823#ifdef _WIN32
684 int arg = 1; 824 int arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 825 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 827 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 828 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 829#endif
690} 830}
691 831
832static void noinline
833evpipe_init (EV_P)
834{
835 if (!ev_is_active (&pipeev))
836 {
837#if EV_USE_EVENTFD
838 if ((evfd = eventfd (0, 0)) >= 0)
839 {
840 evpipe [0] = -1;
841 fd_intern (evfd);
842 ev_io_set (&pipeev, evfd, EV_READ);
843 }
844 else
845#endif
846 {
847 while (pipe (evpipe))
848 syserr ("(libev) error creating signal/async pipe");
849
850 fd_intern (evpipe [0]);
851 fd_intern (evpipe [1]);
852 ev_io_set (&pipeev, evpipe [0], EV_READ);
853 }
854
855 ev_io_start (EV_A_ &pipeev);
856 ev_unref (EV_A); /* watcher should not keep loop alive */
857 }
858}
859
860void inline_size
861evpipe_write (EV_P_ EV_ATOMIC_T *flag)
862{
863 if (!*flag)
864 {
865 int old_errno = errno; /* save errno because write might clobber it */
866
867 *flag = 1;
868
869#if EV_USE_EVENTFD
870 if (evfd >= 0)
871 {
872 uint64_t counter = 1;
873 write (evfd, &counter, sizeof (uint64_t));
874 }
875 else
876#endif
877 write (evpipe [1], &old_errno, 1);
878
879 errno = old_errno;
880 }
881}
882
692static void 883static void
693siginit (EV_P) 884pipecb (EV_P_ ev_io *iow, int revents)
694{ 885{
695 fd_intern (sigpipe [0]); 886#if EV_USE_EVENTFD
696 fd_intern (sigpipe [1]); 887 if (evfd >= 0)
888 {
889 uint64_t counter = 1;
890 read (evfd, &counter, sizeof (uint64_t));
891 }
892 else
893#endif
894 {
895 char dummy;
896 read (evpipe [0], &dummy, 1);
897 }
697 898
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 899 if (gotsig && ev_is_default_loop (EV_A))
699 ev_io_start (EV_A_ &sigev); 900 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 901 int signum;
902 gotsig = 0;
903
904 for (signum = signalmax; signum--; )
905 if (signals [signum].gotsig)
906 ev_feed_signal_event (EV_A_ signum + 1);
907 }
908
909#if EV_ASYNC_ENABLE
910 if (gotasync)
911 {
912 int i;
913 gotasync = 0;
914
915 for (i = asynccnt; i--; )
916 if (asyncs [i]->sent)
917 {
918 asyncs [i]->sent = 0;
919 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
920 }
921 }
922#endif
701} 923}
702 924
703/*****************************************************************************/ 925/*****************************************************************************/
704 926
705static struct ev_child *childs [PID_HASHSIZE]; 927static void
928ev_sighandler (int signum)
929{
930#if EV_MULTIPLICITY
931 struct ev_loop *loop = &default_loop_struct;
932#endif
933
934#if _WIN32
935 signal (signum, ev_sighandler);
936#endif
937
938 signals [signum - 1].gotsig = 1;
939 evpipe_write (EV_A_ &gotsig);
940}
941
942void noinline
943ev_feed_signal_event (EV_P_ int signum)
944{
945 WL w;
946
947#if EV_MULTIPLICITY
948 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
949#endif
950
951 --signum;
952
953 if (signum < 0 || signum >= signalmax)
954 return;
955
956 signals [signum].gotsig = 0;
957
958 for (w = signals [signum].head; w; w = w->next)
959 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
960}
961
962/*****************************************************************************/
963
964static WL childs [EV_PID_HASHSIZE];
706 965
707#ifndef _WIN32 966#ifndef _WIN32
708 967
709static struct ev_signal childev; 968static ev_signal childev;
969
970#ifndef WIFCONTINUED
971# define WIFCONTINUED(status) 0
972#endif
973
974void inline_speed
975child_reap (EV_P_ int chain, int pid, int status)
976{
977 ev_child *w;
978 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
979
980 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
981 {
982 if ((w->pid == pid || !w->pid)
983 && (!traced || (w->flags & 1)))
984 {
985 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
986 w->rpid = pid;
987 w->rstatus = status;
988 ev_feed_event (EV_A_ (W)w, EV_CHILD);
989 }
990 }
991}
710 992
711#ifndef WCONTINUED 993#ifndef WCONTINUED
712# define WCONTINUED 0 994# define WCONTINUED 0
713#endif 995#endif
714 996
715static void 997static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 998childcb (EV_P_ ev_signal *sw, int revents)
732{ 999{
733 int pid, status; 1000 int pid, status;
734 1001
1002 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1003 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1004 if (!WCONTINUED
1005 || errno != EINVAL
1006 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1007 return;
1008
737 /* make sure we are called again until all childs have been reaped */ 1009 /* make sure we are called again until all children have been reaped */
1010 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1011 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1012
740 child_reap (EV_A_ sw, pid, pid, status); 1013 child_reap (EV_A_ pid, pid, status);
1014 if (EV_PID_HASHSIZE > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1015 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1016}
744 1017
745#endif 1018#endif
746 1019
747/*****************************************************************************/ 1020/*****************************************************************************/
773{ 1046{
774 return EV_VERSION_MINOR; 1047 return EV_VERSION_MINOR;
775} 1048}
776 1049
777/* return true if we are running with elevated privileges and should ignore env variables */ 1050/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1051int inline_size
779enable_secure (void) 1052enable_secure (void)
780{ 1053{
781#ifdef _WIN32 1054#ifdef _WIN32
782 return 0; 1055 return 0;
783#else 1056#else
785 || getgid () != getegid (); 1058 || getgid () != getegid ();
786#endif 1059#endif
787} 1060}
788 1061
789unsigned int 1062unsigned int
790ev_method (EV_P) 1063ev_supported_backends (void)
791{ 1064{
792 return method; 1065 unsigned int flags = 0;
793}
794 1066
795static void 1067 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1068 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1069 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1070 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1071 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1072
1073 return flags;
1074}
1075
1076unsigned int
1077ev_recommended_backends (void)
1078{
1079 unsigned int flags = ev_supported_backends ();
1080
1081#ifndef __NetBSD__
1082 /* kqueue is borked on everything but netbsd apparently */
1083 /* it usually doesn't work correctly on anything but sockets and pipes */
1084 flags &= ~EVBACKEND_KQUEUE;
1085#endif
1086#ifdef __APPLE__
1087 // flags &= ~EVBACKEND_KQUEUE; for documentation
1088 flags &= ~EVBACKEND_POLL;
1089#endif
1090
1091 return flags;
1092}
1093
1094unsigned int
1095ev_embeddable_backends (void)
1096{
1097 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1098
1099 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1100 /* please fix it and tell me how to detect the fix */
1101 flags &= ~EVBACKEND_EPOLL;
1102
1103 return flags;
1104}
1105
1106unsigned int
1107ev_backend (EV_P)
1108{
1109 return backend;
1110}
1111
1112unsigned int
1113ev_loop_count (EV_P)
1114{
1115 return loop_count;
1116}
1117
1118void
1119ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1120{
1121 io_blocktime = interval;
1122}
1123
1124void
1125ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1126{
1127 timeout_blocktime = interval;
1128}
1129
1130static void noinline
796loop_init (EV_P_ unsigned int flags) 1131loop_init (EV_P_ unsigned int flags)
797{ 1132{
798 if (!method) 1133 if (!backend)
799 { 1134 {
800#if EV_USE_MONOTONIC 1135#if EV_USE_MONOTONIC
801 { 1136 {
802 struct timespec ts; 1137 struct timespec ts;
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1138 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 1139 have_monotonic = 1;
805 } 1140 }
806#endif 1141#endif
807 1142
808 ev_rt_now = ev_time (); 1143 ev_rt_now = ev_time ();
809 mn_now = get_clock (); 1144 mn_now = get_clock ();
810 now_floor = mn_now; 1145 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now; 1146 rtmn_diff = ev_rt_now - mn_now;
1147
1148 io_blocktime = 0.;
1149 timeout_blocktime = 0.;
1150 backend = 0;
1151 backend_fd = -1;
1152 gotasync = 0;
1153#if EV_USE_INOTIFY
1154 fs_fd = -2;
1155#endif
1156
1157 /* pid check not overridable via env */
1158#ifndef _WIN32
1159 if (flags & EVFLAG_FORKCHECK)
1160 curpid = getpid ();
1161#endif
812 1162
813 if (!(flags & EVFLAG_NOENV) 1163 if (!(flags & EVFLAG_NOENV)
814 && !enable_secure () 1164 && !enable_secure ()
815 && getenv ("LIBEV_FLAGS")) 1165 && getenv ("LIBEV_FLAGS"))
816 flags = atoi (getenv ("LIBEV_FLAGS")); 1166 flags = atoi (getenv ("LIBEV_FLAGS"));
817 1167
818 if (!(flags & EVMETHOD_ALL)) 1168 if (!(flags & 0x0000ffffUL))
1169 flags |= ev_recommended_backends ();
1170
1171#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif
1174#if EV_USE_KQUEUE
1175 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1176#endif
1177#if EV_USE_EPOLL
1178 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1179#endif
1180#if EV_USE_POLL
1181 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1182#endif
1183#if EV_USE_SELECT
1184 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1185#endif
1186
1187 ev_init (&pipeev, pipecb);
1188 ev_set_priority (&pipeev, EV_MAXPRI);
1189 }
1190}
1191
1192static void noinline
1193loop_destroy (EV_P)
1194{
1195 int i;
1196
1197 if (ev_is_active (&pipeev))
1198 {
1199 ev_ref (EV_A); /* signal watcher */
1200 ev_io_stop (EV_A_ &pipeev);
1201
1202#if EV_USE_EVENTFD
1203 if (evfd >= 0)
1204 close (evfd);
1205#endif
1206
1207 if (evpipe [0] >= 0)
819 { 1208 {
820 flags |= EVMETHOD_ALL; 1209 close (evpipe [0]);
821#if EV_USE_KQUEUE && !defined (__NetBSD__) 1210 close (evpipe [1]);
822 /* kqueue is borked on everything but netbsd apparently */
823 /* it usually doesn't work correctly on anything but sockets and pipes */
824 flags &= ~EVMETHOD_KQUEUE;
825#endif
826 } 1211 }
1212 }
827 1213
828 method = 0; 1214#if EV_USE_INOTIFY
1215 if (fs_fd >= 0)
1216 close (fs_fd);
1217#endif
1218
1219 if (backend_fd >= 0)
1220 close (backend_fd);
1221
829#if EV_USE_PORT 1222#if EV_USE_PORT
830 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1223 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
831#endif 1224#endif
832#if EV_USE_KQUEUE 1225#if EV_USE_KQUEUE
833 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1226 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
834#endif 1227#endif
835#if EV_USE_EPOLL 1228#if EV_USE_EPOLL
836 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1229 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
837#endif 1230#endif
838#if EV_USE_POLL 1231#if EV_USE_POLL
839 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1232 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
840#endif 1233#endif
841#if EV_USE_SELECT 1234#if EV_USE_SELECT
842 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1235 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
843#endif 1236#endif
844 1237
845 ev_init (&sigev, sigcb); 1238 for (i = NUMPRI; i--; )
846 ev_set_priority (&sigev, EV_MAXPRI);
847 } 1239 {
848} 1240 array_free (pending, [i]);
1241#if EV_IDLE_ENABLE
1242 array_free (idle, [i]);
1243#endif
1244 }
849 1245
850static void 1246 ev_free (anfds); anfdmax = 0;
851loop_destroy (EV_P)
852{
853 int i;
854 1247
1248 /* have to use the microsoft-never-gets-it-right macro */
1249 array_free (fdchange, EMPTY);
1250 array_free (timer, EMPTY);
1251#if EV_PERIODIC_ENABLE
1252 array_free (periodic, EMPTY);
1253#endif
1254#if EV_FORK_ENABLE
1255 array_free (fork, EMPTY);
1256#endif
1257 array_free (prepare, EMPTY);
1258 array_free (check, EMPTY);
1259#if EV_ASYNC_ENABLE
1260 array_free (async, EMPTY);
1261#endif
1262
1263 backend = 0;
1264}
1265
1266void inline_size infy_fork (EV_P);
1267
1268void inline_size
1269loop_fork (EV_P)
1270{
855#if EV_USE_PORT 1271#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1272 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
857#endif 1273#endif
858#if EV_USE_KQUEUE 1274#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1275 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
860#endif 1276#endif
861#if EV_USE_EPOLL 1277#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
863#endif
864#if EV_USE_POLL
865 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
866#endif
867#if EV_USE_SELECT
868 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
869#endif
870
871 for (i = NUMPRI; i--; )
872 array_free (pending, [i]);
873
874 /* have to use the microsoft-never-gets-it-right macro */
875 array_free (fdchange, EMPTY0);
876 array_free (timer, EMPTY0);
877#if EV_PERIODICS
878 array_free (periodic, EMPTY0);
879#endif
880 array_free (idle, EMPTY0);
881 array_free (prepare, EMPTY0);
882 array_free (check, EMPTY0);
883
884 method = 0;
885}
886
887static void
888loop_fork (EV_P)
889{
890#if EV_USE_PORT
891 if (method == EVMETHOD_PORT ) port_fork (EV_A);
892#endif
893#if EV_USE_KQUEUE
894 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
895#endif
896#if EV_USE_EPOLL
897 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1278 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
898#endif 1279#endif
1280#if EV_USE_INOTIFY
1281 infy_fork (EV_A);
1282#endif
899 1283
900 if (ev_is_active (&sigev)) 1284 if (ev_is_active (&pipeev))
901 { 1285 {
902 /* default loop */ 1286 /* this "locks" the handlers against writing to the pipe */
1287 /* while we modify the fd vars */
1288 gotsig = 1;
1289#if EV_ASYNC_ENABLE
1290 gotasync = 1;
1291#endif
903 1292
904 ev_ref (EV_A); 1293 ev_ref (EV_A);
905 ev_io_stop (EV_A_ &sigev); 1294 ev_io_stop (EV_A_ &pipeev);
1295
1296#if EV_USE_EVENTFD
1297 if (evfd >= 0)
1298 close (evfd);
1299#endif
1300
1301 if (evpipe [0] >= 0)
1302 {
906 close (sigpipe [0]); 1303 close (evpipe [0]);
907 close (sigpipe [1]); 1304 close (evpipe [1]);
1305 }
908 1306
909 while (pipe (sigpipe))
910 syserr ("(libev) error creating pipe");
911
912 siginit (EV_A); 1307 evpipe_init (EV_A);
1308 /* now iterate over everything, in case we missed something */
1309 pipecb (EV_A_ &pipeev, EV_READ);
913 } 1310 }
914 1311
915 postfork = 0; 1312 postfork = 0;
916} 1313}
917 1314
923 1320
924 memset (loop, 0, sizeof (struct ev_loop)); 1321 memset (loop, 0, sizeof (struct ev_loop));
925 1322
926 loop_init (EV_A_ flags); 1323 loop_init (EV_A_ flags);
927 1324
928 if (ev_method (EV_A)) 1325 if (ev_backend (EV_A))
929 return loop; 1326 return loop;
930 1327
931 return 0; 1328 return 0;
932} 1329}
933 1330
939} 1336}
940 1337
941void 1338void
942ev_loop_fork (EV_P) 1339ev_loop_fork (EV_P)
943{ 1340{
944 postfork = 1; 1341 postfork = 1; /* must be in line with ev_default_fork */
945} 1342}
946 1343
947#endif 1344#endif
948 1345
949#if EV_MULTIPLICITY 1346#if EV_MULTIPLICITY
952#else 1349#else
953int 1350int
954ev_default_loop (unsigned int flags) 1351ev_default_loop (unsigned int flags)
955#endif 1352#endif
956{ 1353{
957 if (sigpipe [0] == sigpipe [1])
958 if (pipe (sigpipe))
959 return 0;
960
961 if (!ev_default_loop_ptr) 1354 if (!ev_default_loop_ptr)
962 { 1355 {
963#if EV_MULTIPLICITY 1356#if EV_MULTIPLICITY
964 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1357 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
965#else 1358#else
966 ev_default_loop_ptr = 1; 1359 ev_default_loop_ptr = 1;
967#endif 1360#endif
968 1361
969 loop_init (EV_A_ flags); 1362 loop_init (EV_A_ flags);
970 1363
971 if (ev_method (EV_A)) 1364 if (ev_backend (EV_A))
972 { 1365 {
973 siginit (EV_A);
974
975#ifndef _WIN32 1366#ifndef _WIN32
976 ev_signal_init (&childev, childcb, SIGCHLD); 1367 ev_signal_init (&childev, childcb, SIGCHLD);
977 ev_set_priority (&childev, EV_MAXPRI); 1368 ev_set_priority (&childev, EV_MAXPRI);
978 ev_signal_start (EV_A_ &childev); 1369 ev_signal_start (EV_A_ &childev);
979 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1370 ev_unref (EV_A); /* child watcher should not keep loop alive */
996#ifndef _WIN32 1387#ifndef _WIN32
997 ev_ref (EV_A); /* child watcher */ 1388 ev_ref (EV_A); /* child watcher */
998 ev_signal_stop (EV_A_ &childev); 1389 ev_signal_stop (EV_A_ &childev);
999#endif 1390#endif
1000 1391
1001 ev_ref (EV_A); /* signal watcher */
1002 ev_io_stop (EV_A_ &sigev);
1003
1004 close (sigpipe [0]); sigpipe [0] = 0;
1005 close (sigpipe [1]); sigpipe [1] = 0;
1006
1007 loop_destroy (EV_A); 1392 loop_destroy (EV_A);
1008} 1393}
1009 1394
1010void 1395void
1011ev_default_fork (void) 1396ev_default_fork (void)
1012{ 1397{
1013#if EV_MULTIPLICITY 1398#if EV_MULTIPLICITY
1014 struct ev_loop *loop = ev_default_loop_ptr; 1399 struct ev_loop *loop = ev_default_loop_ptr;
1015#endif 1400#endif
1016 1401
1017 if (method) 1402 if (backend)
1018 postfork = 1; 1403 postfork = 1; /* must be in line with ev_loop_fork */
1019} 1404}
1020 1405
1021/*****************************************************************************/ 1406/*****************************************************************************/
1022 1407
1023static int 1408void
1024any_pending (EV_P) 1409ev_invoke (EV_P_ void *w, int revents)
1025{ 1410{
1026 int pri; 1411 EV_CB_INVOKE ((W)w, revents);
1027
1028 for (pri = NUMPRI; pri--; )
1029 if (pendingcnt [pri])
1030 return 1;
1031
1032 return 0;
1033} 1412}
1034 1413
1035inline void 1414void inline_speed
1036call_pending (EV_P) 1415call_pending (EV_P)
1037{ 1416{
1038 int pri; 1417 int pri;
1039 1418
1040 for (pri = NUMPRI; pri--; ) 1419 for (pri = NUMPRI; pri--; )
1042 { 1421 {
1043 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1422 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1044 1423
1045 if (expect_true (p->w)) 1424 if (expect_true (p->w))
1046 { 1425 {
1426 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1427
1047 p->w->pending = 0; 1428 p->w->pending = 0;
1048 EV_CB_INVOKE (p->w, p->events); 1429 EV_CB_INVOKE (p->w, p->events);
1049 } 1430 }
1050 } 1431 }
1051} 1432}
1052 1433
1053inline void 1434void inline_size
1054timers_reify (EV_P) 1435timers_reify (EV_P)
1055{ 1436{
1056 while (timercnt && ((WT)timers [0])->at <= mn_now) 1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1057 { 1438 {
1058 struct ev_timer *w = timers [0]; 1439 ev_timer *w = (ev_timer *)timers [0];
1059 1440
1060 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1061 1442
1062 /* first reschedule or stop timer */ 1443 /* first reschedule or stop timer */
1063 if (w->repeat) 1444 if (w->repeat)
1064 { 1445 {
1065 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1066 1447
1067 ((WT)w)->at += w->repeat; 1448 ((WT)w)->at += w->repeat;
1068 if (((WT)w)->at < mn_now) 1449 if (((WT)w)->at < mn_now)
1069 ((WT)w)->at = mn_now; 1450 ((WT)w)->at = mn_now;
1070 1451
1071 downheap ((WT *)timers, timercnt, 0); 1452 downheap (timers, timercnt, 0);
1072 } 1453 }
1073 else 1454 else
1074 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1075 1456
1076 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1077 } 1458 }
1078} 1459}
1079 1460
1080#if EV_PERIODICS 1461#if EV_PERIODIC_ENABLE
1081inline void 1462void inline_size
1082periodics_reify (EV_P) 1463periodics_reify (EV_P)
1083{ 1464{
1084 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1085 { 1466 {
1086 struct ev_periodic *w = periodics [0]; 1467 ev_periodic *w = (ev_periodic *)periodics [0];
1087 1468
1088 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1089 1470
1090 /* first reschedule or stop timer */ 1471 /* first reschedule or stop timer */
1091 if (w->reschedule_cb) 1472 if (w->reschedule_cb)
1092 { 1473 {
1093 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1094 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1095 downheap ((WT *)periodics, periodiccnt, 0); 1476 downheap (periodics, periodiccnt, 0);
1096 } 1477 }
1097 else if (w->interval) 1478 else if (w->interval)
1098 { 1479 {
1099 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1100 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1101 downheap ((WT *)periodics, periodiccnt, 0); 1483 downheap (periodics, periodiccnt, 0);
1102 } 1484 }
1103 else 1485 else
1104 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1105 1487
1106 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1107 } 1489 }
1108} 1490}
1109 1491
1110static void 1492static void noinline
1111periodics_reschedule (EV_P) 1493periodics_reschedule (EV_P)
1112{ 1494{
1113 int i; 1495 int i;
1114 1496
1115 /* adjust periodics after time jump */ 1497 /* adjust periodics after time jump */
1116 for (i = 0; i < periodiccnt; ++i) 1498 for (i = 0; i < periodiccnt; ++i)
1117 { 1499 {
1118 struct ev_periodic *w = periodics [i]; 1500 ev_periodic *w = (ev_periodic *)periodics [i];
1119 1501
1120 if (w->reschedule_cb) 1502 if (w->reschedule_cb)
1121 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1122 else if (w->interval) 1504 else if (w->interval)
1123 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1124 } 1506 }
1125 1507
1126 /* now rebuild the heap */ 1508 /* now rebuild the heap */
1127 for (i = periodiccnt >> 1; i--; ) 1509 for (i = periodiccnt >> 1; i--; )
1128 downheap ((WT *)periodics, periodiccnt, i); 1510 downheap (periodics, periodiccnt, i);
1129} 1511}
1130#endif 1512#endif
1131 1513
1132inline int 1514#if EV_IDLE_ENABLE
1133time_update_monotonic (EV_P) 1515void inline_size
1516idle_reify (EV_P)
1134{ 1517{
1518 if (expect_false (idleall))
1519 {
1520 int pri;
1521
1522 for (pri = NUMPRI; pri--; )
1523 {
1524 if (pendingcnt [pri])
1525 break;
1526
1527 if (idlecnt [pri])
1528 {
1529 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1530 break;
1531 }
1532 }
1533 }
1534}
1535#endif
1536
1537void inline_speed
1538time_update (EV_P_ ev_tstamp max_block)
1539{
1540 int i;
1541
1542#if EV_USE_MONOTONIC
1543 if (expect_true (have_monotonic))
1544 {
1545 ev_tstamp odiff = rtmn_diff;
1546
1135 mn_now = get_clock (); 1547 mn_now = get_clock ();
1136 1548
1549 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1550 /* interpolate in the meantime */
1137 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1551 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1138 { 1552 {
1139 ev_rt_now = rtmn_diff + mn_now; 1553 ev_rt_now = rtmn_diff + mn_now;
1140 return 0; 1554 return;
1141 } 1555 }
1142 else 1556
1143 {
1144 now_floor = mn_now; 1557 now_floor = mn_now;
1145 ev_rt_now = ev_time (); 1558 ev_rt_now = ev_time ();
1146 return 1;
1147 }
1148}
1149 1559
1150inline void 1560 /* loop a few times, before making important decisions.
1151time_update (EV_P) 1561 * on the choice of "4": one iteration isn't enough,
1152{ 1562 * in case we get preempted during the calls to
1153 int i; 1563 * ev_time and get_clock. a second call is almost guaranteed
1154 1564 * to succeed in that case, though. and looping a few more times
1155#if EV_USE_MONOTONIC 1565 * doesn't hurt either as we only do this on time-jumps or
1156 if (expect_true (have_monotonic)) 1566 * in the unlikely event of having been preempted here.
1157 { 1567 */
1158 if (time_update_monotonic (EV_A)) 1568 for (i = 4; --i; )
1159 { 1569 {
1160 ev_tstamp odiff = rtmn_diff;
1161
1162 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1163 {
1164 rtmn_diff = ev_rt_now - mn_now; 1570 rtmn_diff = ev_rt_now - mn_now;
1165 1571
1166 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1167 return; /* all is well */ 1573 return; /* all is well */
1168 1574
1169 ev_rt_now = ev_time (); 1575 ev_rt_now = ev_time ();
1170 mn_now = get_clock (); 1576 mn_now = get_clock ();
1171 now_floor = mn_now; 1577 now_floor = mn_now;
1172 } 1578 }
1173 1579
1174# if EV_PERIODICS 1580# if EV_PERIODIC_ENABLE
1581 periodics_reschedule (EV_A);
1582# endif
1583 /* no timer adjustment, as the monotonic clock doesn't jump */
1584 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1585 }
1586 else
1587#endif
1588 {
1589 ev_rt_now = ev_time ();
1590
1591 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1592 {
1593#if EV_PERIODIC_ENABLE
1175 periodics_reschedule (EV_A); 1594 periodics_reschedule (EV_A);
1176# endif 1595#endif
1177 /* no timer adjustment, as the monotonic clock doesn't jump */
1178 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1179 }
1180 }
1181 else
1182#endif
1183 {
1184 ev_rt_now = ev_time ();
1185
1186 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1187 {
1188#if EV_PERIODICS
1189 periodics_reschedule (EV_A);
1190#endif
1191
1192 /* adjust timers. this is easy, as the offset is the same for all */ 1596 /* adjust timers. this is easy, as the offset is the same for all of them */
1193 for (i = 0; i < timercnt; ++i) 1597 for (i = 0; i < timercnt; ++i)
1194 ((WT)timers [i])->at += ev_rt_now - mn_now; 1598 ((WT)timers [i])->at += ev_rt_now - mn_now;
1195 } 1599 }
1196 1600
1197 mn_now = ev_rt_now; 1601 mn_now = ev_rt_now;
1213static int loop_done; 1617static int loop_done;
1214 1618
1215void 1619void
1216ev_loop (EV_P_ int flags) 1620ev_loop (EV_P_ int flags)
1217{ 1621{
1218 double block; 1622 loop_done = EVUNLOOP_CANCEL;
1219 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1220 1623
1221 while (activecnt) 1624 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1625
1626 do
1222 { 1627 {
1628#ifndef _WIN32
1629 if (expect_false (curpid)) /* penalise the forking check even more */
1630 if (expect_false (getpid () != curpid))
1631 {
1632 curpid = getpid ();
1633 postfork = 1;
1634 }
1635#endif
1636
1637#if EV_FORK_ENABLE
1638 /* we might have forked, so queue fork handlers */
1639 if (expect_false (postfork))
1640 if (forkcnt)
1641 {
1642 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1643 call_pending (EV_A);
1644 }
1645#endif
1646
1223 /* queue check watchers (and execute them) */ 1647 /* queue prepare watchers (and execute them) */
1224 if (expect_false (preparecnt)) 1648 if (expect_false (preparecnt))
1225 { 1649 {
1226 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1650 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1227 call_pending (EV_A); 1651 call_pending (EV_A);
1228 } 1652 }
1229 1653
1654 if (expect_false (!activecnt))
1655 break;
1656
1230 /* we might have forked, so reify kernel state if necessary */ 1657 /* we might have forked, so reify kernel state if necessary */
1231 if (expect_false (postfork)) 1658 if (expect_false (postfork))
1232 loop_fork (EV_A); 1659 loop_fork (EV_A);
1233 1660
1234 /* update fd-related kernel structures */ 1661 /* update fd-related kernel structures */
1235 fd_reify (EV_A); 1662 fd_reify (EV_A);
1236 1663
1237 /* calculate blocking time */ 1664 /* calculate blocking time */
1665 {
1666 ev_tstamp waittime = 0.;
1667 ev_tstamp sleeptime = 0.;
1238 1668
1239 /* we only need this for !monotonic clock or timers, but as we basically 1669 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1240 always have timers, we just calculate it always */
1241#if EV_USE_MONOTONIC
1242 if (expect_true (have_monotonic))
1243 time_update_monotonic (EV_A);
1244 else
1245#endif
1246 { 1670 {
1247 ev_rt_now = ev_time (); 1671 /* update time to cancel out callback processing overhead */
1248 mn_now = ev_rt_now; 1672 time_update (EV_A_ 1e100);
1249 }
1250 1673
1251 if (flags & EVLOOP_NONBLOCK || idlecnt)
1252 block = 0.;
1253 else
1254 {
1255 block = MAX_BLOCKTIME; 1674 waittime = MAX_BLOCKTIME;
1256 1675
1257 if (timercnt) 1676 if (timercnt)
1258 { 1677 {
1259 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1260 if (block > to) block = to; 1679 if (waittime > to) waittime = to;
1261 } 1680 }
1262 1681
1263#if EV_PERIODICS 1682#if EV_PERIODIC_ENABLE
1264 if (periodiccnt) 1683 if (periodiccnt)
1265 { 1684 {
1266 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1267 if (block > to) block = to; 1686 if (waittime > to) waittime = to;
1268 } 1687 }
1269#endif 1688#endif
1270 1689
1271 if (expect_false (block < 0.)) block = 0.; 1690 if (expect_false (waittime < timeout_blocktime))
1691 waittime = timeout_blocktime;
1692
1693 sleeptime = waittime - backend_fudge;
1694
1695 if (expect_true (sleeptime > io_blocktime))
1696 sleeptime = io_blocktime;
1697
1698 if (sleeptime)
1699 {
1700 ev_sleep (sleeptime);
1701 waittime -= sleeptime;
1702 }
1272 } 1703 }
1273 1704
1274 method_poll (EV_A_ block); 1705 ++loop_count;
1706 backend_poll (EV_A_ waittime);
1275 1707
1276 /* update ev_rt_now, do magic */ 1708 /* update ev_rt_now, do magic */
1277 time_update (EV_A); 1709 time_update (EV_A_ waittime + sleeptime);
1710 }
1278 1711
1279 /* queue pending timers and reschedule them */ 1712 /* queue pending timers and reschedule them */
1280 timers_reify (EV_A); /* relative timers called last */ 1713 timers_reify (EV_A); /* relative timers called last */
1281#if EV_PERIODICS 1714#if EV_PERIODIC_ENABLE
1282 periodics_reify (EV_A); /* absolute timers called first */ 1715 periodics_reify (EV_A); /* absolute timers called first */
1283#endif 1716#endif
1284 1717
1718#if EV_IDLE_ENABLE
1285 /* queue idle watchers unless io or timers are pending */ 1719 /* queue idle watchers unless other events are pending */
1286 if (idlecnt && !any_pending (EV_A)) 1720 idle_reify (EV_A);
1287 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1721#endif
1288 1722
1289 /* queue check watchers, to be executed first */ 1723 /* queue check watchers, to be executed first */
1290 if (expect_false (checkcnt)) 1724 if (expect_false (checkcnt))
1291 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1725 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1292 1726
1293 call_pending (EV_A); 1727 call_pending (EV_A);
1294
1295 if (expect_false (loop_done))
1296 break;
1297 } 1728 }
1729 while (expect_true (
1730 activecnt
1731 && !loop_done
1732 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1733 ));
1298 1734
1299 if (loop_done != 2) 1735 if (loop_done == EVUNLOOP_ONE)
1300 loop_done = 0; 1736 loop_done = EVUNLOOP_CANCEL;
1301} 1737}
1302 1738
1303void 1739void
1304ev_unloop (EV_P_ int how) 1740ev_unloop (EV_P_ int how)
1305{ 1741{
1306 loop_done = how; 1742 loop_done = how;
1307} 1743}
1308 1744
1309/*****************************************************************************/ 1745/*****************************************************************************/
1310 1746
1311inline void 1747void inline_size
1312wlist_add (WL *head, WL elem) 1748wlist_add (WL *head, WL elem)
1313{ 1749{
1314 elem->next = *head; 1750 elem->next = *head;
1315 *head = elem; 1751 *head = elem;
1316} 1752}
1317 1753
1318inline void 1754void inline_size
1319wlist_del (WL *head, WL elem) 1755wlist_del (WL *head, WL elem)
1320{ 1756{
1321 while (*head) 1757 while (*head)
1322 { 1758 {
1323 if (*head == elem) 1759 if (*head == elem)
1328 1764
1329 head = &(*head)->next; 1765 head = &(*head)->next;
1330 } 1766 }
1331} 1767}
1332 1768
1333inline void 1769void inline_speed
1334ev_clear_pending (EV_P_ W w) 1770clear_pending (EV_P_ W w)
1335{ 1771{
1336 if (w->pending) 1772 if (w->pending)
1337 { 1773 {
1338 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1774 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1339 w->pending = 0; 1775 w->pending = 0;
1340 } 1776 }
1341} 1777}
1342 1778
1343inline void 1779int
1780ev_clear_pending (EV_P_ void *w)
1781{
1782 W w_ = (W)w;
1783 int pending = w_->pending;
1784
1785 if (expect_true (pending))
1786 {
1787 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1788 w_->pending = 0;
1789 p->w = 0;
1790 return p->events;
1791 }
1792 else
1793 return 0;
1794}
1795
1796void inline_size
1797pri_adjust (EV_P_ W w)
1798{
1799 int pri = w->priority;
1800 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1801 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1802 w->priority = pri;
1803}
1804
1805void inline_speed
1344ev_start (EV_P_ W w, int active) 1806ev_start (EV_P_ W w, int active)
1345{ 1807{
1346 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1808 pri_adjust (EV_A_ w);
1347 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1348
1349 w->active = active; 1809 w->active = active;
1350 ev_ref (EV_A); 1810 ev_ref (EV_A);
1351} 1811}
1352 1812
1353inline void 1813void inline_size
1354ev_stop (EV_P_ W w) 1814ev_stop (EV_P_ W w)
1355{ 1815{
1356 ev_unref (EV_A); 1816 ev_unref (EV_A);
1357 w->active = 0; 1817 w->active = 0;
1358} 1818}
1359 1819
1360/*****************************************************************************/ 1820/*****************************************************************************/
1361 1821
1362void 1822void noinline
1363ev_io_start (EV_P_ struct ev_io *w) 1823ev_io_start (EV_P_ ev_io *w)
1364{ 1824{
1365 int fd = w->fd; 1825 int fd = w->fd;
1366 1826
1367 if (expect_false (ev_is_active (w))) 1827 if (expect_false (ev_is_active (w)))
1368 return; 1828 return;
1369 1829
1370 assert (("ev_io_start called with negative fd", fd >= 0)); 1830 assert (("ev_io_start called with negative fd", fd >= 0));
1371 1831
1372 ev_start (EV_A_ (W)w, 1); 1832 ev_start (EV_A_ (W)w, 1);
1373 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1374 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1834 wlist_add (&anfds[fd].head, (WL)w);
1375 1835
1376 fd_change (EV_A_ fd); 1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1837 w->events &= ~EV_IOFDSET;
1377} 1838}
1378 1839
1379void 1840void noinline
1380ev_io_stop (EV_P_ struct ev_io *w) 1841ev_io_stop (EV_P_ ev_io *w)
1381{ 1842{
1382 ev_clear_pending (EV_A_ (W)w); 1843 clear_pending (EV_A_ (W)w);
1383 if (expect_false (!ev_is_active (w))) 1844 if (expect_false (!ev_is_active (w)))
1384 return; 1845 return;
1385 1846
1386 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1387 1848
1388 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1849 wlist_del (&anfds[w->fd].head, (WL)w);
1389 ev_stop (EV_A_ (W)w); 1850 ev_stop (EV_A_ (W)w);
1390 1851
1391 fd_change (EV_A_ w->fd); 1852 fd_change (EV_A_ w->fd, 1);
1392} 1853}
1393 1854
1394void 1855void noinline
1395ev_timer_start (EV_P_ struct ev_timer *w) 1856ev_timer_start (EV_P_ ev_timer *w)
1396{ 1857{
1397 if (expect_false (ev_is_active (w))) 1858 if (expect_false (ev_is_active (w)))
1398 return; 1859 return;
1399 1860
1400 ((WT)w)->at += mn_now; 1861 ((WT)w)->at += mn_now;
1401 1862
1402 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1403 1864
1404 ev_start (EV_A_ (W)w, ++timercnt); 1865 ev_start (EV_A_ (W)w, ++timercnt);
1405 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1406 timers [timercnt - 1] = w; 1867 timers [timercnt - 1] = (WT)w;
1407 upheap ((WT *)timers, timercnt - 1); 1868 upheap (timers, timercnt - 1);
1408 1869
1409 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1410} 1871}
1411 1872
1412void 1873void noinline
1413ev_timer_stop (EV_P_ struct ev_timer *w) 1874ev_timer_stop (EV_P_ ev_timer *w)
1414{ 1875{
1415 ev_clear_pending (EV_A_ (W)w); 1876 clear_pending (EV_A_ (W)w);
1416 if (expect_false (!ev_is_active (w))) 1877 if (expect_false (!ev_is_active (w)))
1417 return; 1878 return;
1418 1879
1419 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1420 1881
1882 {
1883 int active = ((W)w)->active;
1884
1421 if (expect_true (((W)w)->active < timercnt--)) 1885 if (expect_true (--active < --timercnt))
1422 { 1886 {
1423 timers [((W)w)->active - 1] = timers [timercnt]; 1887 timers [active] = timers [timercnt];
1424 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1888 adjustheap (timers, timercnt, active);
1425 } 1889 }
1890 }
1426 1891
1427 ((WT)w)->at -= mn_now; 1892 ((WT)w)->at -= mn_now;
1428 1893
1429 ev_stop (EV_A_ (W)w); 1894 ev_stop (EV_A_ (W)w);
1430} 1895}
1431 1896
1432void 1897void noinline
1433ev_timer_again (EV_P_ struct ev_timer *w) 1898ev_timer_again (EV_P_ ev_timer *w)
1434{ 1899{
1435 if (ev_is_active (w)) 1900 if (ev_is_active (w))
1436 { 1901 {
1437 if (w->repeat) 1902 if (w->repeat)
1438 { 1903 {
1439 ((WT)w)->at = mn_now + w->repeat; 1904 ((WT)w)->at = mn_now + w->repeat;
1440 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1905 adjustheap (timers, timercnt, ((W)w)->active - 1);
1441 } 1906 }
1442 else 1907 else
1443 ev_timer_stop (EV_A_ w); 1908 ev_timer_stop (EV_A_ w);
1444 } 1909 }
1445 else if (w->repeat) 1910 else if (w->repeat)
1447 w->at = w->repeat; 1912 w->at = w->repeat;
1448 ev_timer_start (EV_A_ w); 1913 ev_timer_start (EV_A_ w);
1449 } 1914 }
1450} 1915}
1451 1916
1452#if EV_PERIODICS 1917#if EV_PERIODIC_ENABLE
1453void 1918void noinline
1454ev_periodic_start (EV_P_ struct ev_periodic *w) 1919ev_periodic_start (EV_P_ ev_periodic *w)
1455{ 1920{
1456 if (expect_false (ev_is_active (w))) 1921 if (expect_false (ev_is_active (w)))
1457 return; 1922 return;
1458 1923
1459 if (w->reschedule_cb) 1924 if (w->reschedule_cb)
1460 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1461 else if (w->interval) 1926 else if (w->interval)
1462 { 1927 {
1463 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1464 /* this formula differs from the one in periodic_reify because we do not always round up */ 1929 /* this formula differs from the one in periodic_reify because we do not always round up */
1465 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1466 } 1931 }
1932 else
1933 ((WT)w)->at = w->offset;
1467 1934
1468 ev_start (EV_A_ (W)w, ++periodiccnt); 1935 ev_start (EV_A_ (W)w, ++periodiccnt);
1469 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1470 periodics [periodiccnt - 1] = w; 1937 periodics [periodiccnt - 1] = (WT)w;
1471 upheap ((WT *)periodics, periodiccnt - 1); 1938 upheap (periodics, periodiccnt - 1);
1472 1939
1473 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1474} 1941}
1475 1942
1476void 1943void noinline
1477ev_periodic_stop (EV_P_ struct ev_periodic *w) 1944ev_periodic_stop (EV_P_ ev_periodic *w)
1478{ 1945{
1479 ev_clear_pending (EV_A_ (W)w); 1946 clear_pending (EV_A_ (W)w);
1480 if (expect_false (!ev_is_active (w))) 1947 if (expect_false (!ev_is_active (w)))
1481 return; 1948 return;
1482 1949
1483 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1484 1951
1952 {
1953 int active = ((W)w)->active;
1954
1485 if (expect_true (((W)w)->active < periodiccnt--)) 1955 if (expect_true (--active < --periodiccnt))
1486 { 1956 {
1487 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1957 periodics [active] = periodics [periodiccnt];
1488 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1958 adjustheap (periodics, periodiccnt, active);
1489 } 1959 }
1960 }
1490 1961
1491 ev_stop (EV_A_ (W)w); 1962 ev_stop (EV_A_ (W)w);
1492} 1963}
1493 1964
1494void 1965void noinline
1495ev_periodic_again (EV_P_ struct ev_periodic *w) 1966ev_periodic_again (EV_P_ ev_periodic *w)
1496{ 1967{
1497 /* TODO: use adjustheap and recalculation */ 1968 /* TODO: use adjustheap and recalculation */
1498 ev_periodic_stop (EV_A_ w); 1969 ev_periodic_stop (EV_A_ w);
1499 ev_periodic_start (EV_A_ w); 1970 ev_periodic_start (EV_A_ w);
1500} 1971}
1501#endif 1972#endif
1502 1973
1503void
1504ev_idle_start (EV_P_ struct ev_idle *w)
1505{
1506 if (expect_false (ev_is_active (w)))
1507 return;
1508
1509 ev_start (EV_A_ (W)w, ++idlecnt);
1510 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1511 idles [idlecnt - 1] = w;
1512}
1513
1514void
1515ev_idle_stop (EV_P_ struct ev_idle *w)
1516{
1517 ev_clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w)))
1519 return;
1520
1521 idles [((W)w)->active - 1] = idles [--idlecnt];
1522 ev_stop (EV_A_ (W)w);
1523}
1524
1525void
1526ev_prepare_start (EV_P_ struct ev_prepare *w)
1527{
1528 if (expect_false (ev_is_active (w)))
1529 return;
1530
1531 ev_start (EV_A_ (W)w, ++preparecnt);
1532 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1533 prepares [preparecnt - 1] = w;
1534}
1535
1536void
1537ev_prepare_stop (EV_P_ struct ev_prepare *w)
1538{
1539 ev_clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w)))
1541 return;
1542
1543 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1544 ev_stop (EV_A_ (W)w);
1545}
1546
1547void
1548ev_check_start (EV_P_ struct ev_check *w)
1549{
1550 if (expect_false (ev_is_active (w)))
1551 return;
1552
1553 ev_start (EV_A_ (W)w, ++checkcnt);
1554 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1555 checks [checkcnt - 1] = w;
1556}
1557
1558void
1559ev_check_stop (EV_P_ struct ev_check *w)
1560{
1561 ev_clear_pending (EV_A_ (W)w);
1562 if (expect_false (!ev_is_active (w)))
1563 return;
1564
1565 checks [((W)w)->active - 1] = checks [--checkcnt];
1566 ev_stop (EV_A_ (W)w);
1567}
1568
1569#ifndef SA_RESTART 1974#ifndef SA_RESTART
1570# define SA_RESTART 0 1975# define SA_RESTART 0
1571#endif 1976#endif
1572 1977
1573void 1978void noinline
1574ev_signal_start (EV_P_ struct ev_signal *w) 1979ev_signal_start (EV_P_ ev_signal *w)
1575{ 1980{
1576#if EV_MULTIPLICITY 1981#if EV_MULTIPLICITY
1577 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1982 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1578#endif 1983#endif
1579 if (expect_false (ev_is_active (w))) 1984 if (expect_false (ev_is_active (w)))
1580 return; 1985 return;
1581 1986
1582 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1583 1988
1989 evpipe_init (EV_A);
1990
1991 {
1992#ifndef _WIN32
1993 sigset_t full, prev;
1994 sigfillset (&full);
1995 sigprocmask (SIG_SETMASK, &full, &prev);
1996#endif
1997
1998 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1999
2000#ifndef _WIN32
2001 sigprocmask (SIG_SETMASK, &prev, 0);
2002#endif
2003 }
2004
1584 ev_start (EV_A_ (W)w, 1); 2005 ev_start (EV_A_ (W)w, 1);
1585 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1586 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2006 wlist_add (&signals [w->signum - 1].head, (WL)w);
1587 2007
1588 if (!((WL)w)->next) 2008 if (!((WL)w)->next)
1589 { 2009 {
1590#if _WIN32 2010#if _WIN32
1591 signal (w->signum, sighandler); 2011 signal (w->signum, ev_sighandler);
1592#else 2012#else
1593 struct sigaction sa; 2013 struct sigaction sa;
1594 sa.sa_handler = sighandler; 2014 sa.sa_handler = ev_sighandler;
1595 sigfillset (&sa.sa_mask); 2015 sigfillset (&sa.sa_mask);
1596 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1597 sigaction (w->signum, &sa, 0); 2017 sigaction (w->signum, &sa, 0);
1598#endif 2018#endif
1599 } 2019 }
1600} 2020}
1601 2021
1602void 2022void noinline
1603ev_signal_stop (EV_P_ struct ev_signal *w) 2023ev_signal_stop (EV_P_ ev_signal *w)
1604{ 2024{
1605 ev_clear_pending (EV_A_ (W)w); 2025 clear_pending (EV_A_ (W)w);
1606 if (expect_false (!ev_is_active (w))) 2026 if (expect_false (!ev_is_active (w)))
1607 return; 2027 return;
1608 2028
1609 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2029 wlist_del (&signals [w->signum - 1].head, (WL)w);
1610 ev_stop (EV_A_ (W)w); 2030 ev_stop (EV_A_ (W)w);
1611 2031
1612 if (!signals [w->signum - 1].head) 2032 if (!signals [w->signum - 1].head)
1613 signal (w->signum, SIG_DFL); 2033 signal (w->signum, SIG_DFL);
1614} 2034}
1615 2035
1616void 2036void
1617ev_child_start (EV_P_ struct ev_child *w) 2037ev_child_start (EV_P_ ev_child *w)
1618{ 2038{
1619#if EV_MULTIPLICITY 2039#if EV_MULTIPLICITY
1620 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2040 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1621#endif 2041#endif
1622 if (expect_false (ev_is_active (w))) 2042 if (expect_false (ev_is_active (w)))
1623 return; 2043 return;
1624 2044
1625 ev_start (EV_A_ (W)w, 1); 2045 ev_start (EV_A_ (W)w, 1);
1626 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1627} 2047}
1628 2048
1629void 2049void
1630ev_child_stop (EV_P_ struct ev_child *w) 2050ev_child_stop (EV_P_ ev_child *w)
1631{ 2051{
1632 ev_clear_pending (EV_A_ (W)w); 2052 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 2053 if (expect_false (!ev_is_active (w)))
1634 return; 2054 return;
1635 2055
1636 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1637 ev_stop (EV_A_ (W)w); 2057 ev_stop (EV_A_ (W)w);
1638} 2058}
1639 2059
2060#if EV_STAT_ENABLE
2061
2062# ifdef _WIN32
2063# undef lstat
2064# define lstat(a,b) _stati64 (a,b)
2065# endif
2066
2067#define DEF_STAT_INTERVAL 5.0074891
2068#define MIN_STAT_INTERVAL 0.1074891
2069
2070static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2071
2072#if EV_USE_INOTIFY
2073# define EV_INOTIFY_BUFSIZE 8192
2074
2075static void noinline
2076infy_add (EV_P_ ev_stat *w)
2077{
2078 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2079
2080 if (w->wd < 0)
2081 {
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2083
2084 /* monitor some parent directory for speedup hints */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 {
2087 char path [4096];
2088 strcpy (path, w->path);
2089
2090 do
2091 {
2092 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2093 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2094
2095 char *pend = strrchr (path, '/');
2096
2097 if (!pend)
2098 break; /* whoops, no '/', complain to your admin */
2099
2100 *pend = 0;
2101 w->wd = inotify_add_watch (fs_fd, path, mask);
2102 }
2103 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2104 }
2105 }
2106 else
2107 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2108
2109 if (w->wd >= 0)
2110 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2111}
2112
2113static void noinline
2114infy_del (EV_P_ ev_stat *w)
2115{
2116 int slot;
2117 int wd = w->wd;
2118
2119 if (wd < 0)
2120 return;
2121
2122 w->wd = -2;
2123 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2124 wlist_del (&fs_hash [slot].head, (WL)w);
2125
2126 /* remove this watcher, if others are watching it, they will rearm */
2127 inotify_rm_watch (fs_fd, wd);
2128}
2129
2130static void noinline
2131infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2132{
2133 if (slot < 0)
2134 /* overflow, need to check for all hahs slots */
2135 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2136 infy_wd (EV_A_ slot, wd, ev);
2137 else
2138 {
2139 WL w_;
2140
2141 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2142 {
2143 ev_stat *w = (ev_stat *)w_;
2144 w_ = w_->next; /* lets us remove this watcher and all before it */
2145
2146 if (w->wd == wd || wd == -1)
2147 {
2148 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2149 {
2150 w->wd = -1;
2151 infy_add (EV_A_ w); /* re-add, no matter what */
2152 }
2153
2154 stat_timer_cb (EV_A_ &w->timer, 0);
2155 }
2156 }
2157 }
2158}
2159
2160static void
2161infy_cb (EV_P_ ev_io *w, int revents)
2162{
2163 char buf [EV_INOTIFY_BUFSIZE];
2164 struct inotify_event *ev = (struct inotify_event *)buf;
2165 int ofs;
2166 int len = read (fs_fd, buf, sizeof (buf));
2167
2168 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2169 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2170}
2171
2172void inline_size
2173infy_init (EV_P)
2174{
2175 if (fs_fd != -2)
2176 return;
2177
2178 fs_fd = inotify_init ();
2179
2180 if (fs_fd >= 0)
2181 {
2182 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2183 ev_set_priority (&fs_w, EV_MAXPRI);
2184 ev_io_start (EV_A_ &fs_w);
2185 }
2186}
2187
2188void inline_size
2189infy_fork (EV_P)
2190{
2191 int slot;
2192
2193 if (fs_fd < 0)
2194 return;
2195
2196 close (fs_fd);
2197 fs_fd = inotify_init ();
2198
2199 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2200 {
2201 WL w_ = fs_hash [slot].head;
2202 fs_hash [slot].head = 0;
2203
2204 while (w_)
2205 {
2206 ev_stat *w = (ev_stat *)w_;
2207 w_ = w_->next; /* lets us add this watcher */
2208
2209 w->wd = -1;
2210
2211 if (fs_fd >= 0)
2212 infy_add (EV_A_ w); /* re-add, no matter what */
2213 else
2214 ev_timer_start (EV_A_ &w->timer);
2215 }
2216
2217 }
2218}
2219
2220#endif
2221
2222void
2223ev_stat_stat (EV_P_ ev_stat *w)
2224{
2225 if (lstat (w->path, &w->attr) < 0)
2226 w->attr.st_nlink = 0;
2227 else if (!w->attr.st_nlink)
2228 w->attr.st_nlink = 1;
2229}
2230
2231static void noinline
2232stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2233{
2234 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2235
2236 /* we copy this here each the time so that */
2237 /* prev has the old value when the callback gets invoked */
2238 w->prev = w->attr;
2239 ev_stat_stat (EV_A_ w);
2240
2241 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2242 if (
2243 w->prev.st_dev != w->attr.st_dev
2244 || w->prev.st_ino != w->attr.st_ino
2245 || w->prev.st_mode != w->attr.st_mode
2246 || w->prev.st_nlink != w->attr.st_nlink
2247 || w->prev.st_uid != w->attr.st_uid
2248 || w->prev.st_gid != w->attr.st_gid
2249 || w->prev.st_rdev != w->attr.st_rdev
2250 || w->prev.st_size != w->attr.st_size
2251 || w->prev.st_atime != w->attr.st_atime
2252 || w->prev.st_mtime != w->attr.st_mtime
2253 || w->prev.st_ctime != w->attr.st_ctime
2254 ) {
2255 #if EV_USE_INOTIFY
2256 infy_del (EV_A_ w);
2257 infy_add (EV_A_ w);
2258 ev_stat_stat (EV_A_ w); /* avoid race... */
2259 #endif
2260
2261 ev_feed_event (EV_A_ w, EV_STAT);
2262 }
2263}
2264
2265void
2266ev_stat_start (EV_P_ ev_stat *w)
2267{
2268 if (expect_false (ev_is_active (w)))
2269 return;
2270
2271 /* since we use memcmp, we need to clear any padding data etc. */
2272 memset (&w->prev, 0, sizeof (ev_statdata));
2273 memset (&w->attr, 0, sizeof (ev_statdata));
2274
2275 ev_stat_stat (EV_A_ w);
2276
2277 if (w->interval < MIN_STAT_INTERVAL)
2278 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2279
2280 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2281 ev_set_priority (&w->timer, ev_priority (w));
2282
2283#if EV_USE_INOTIFY
2284 infy_init (EV_A);
2285
2286 if (fs_fd >= 0)
2287 infy_add (EV_A_ w);
2288 else
2289#endif
2290 ev_timer_start (EV_A_ &w->timer);
2291
2292 ev_start (EV_A_ (W)w, 1);
2293}
2294
2295void
2296ev_stat_stop (EV_P_ ev_stat *w)
2297{
2298 clear_pending (EV_A_ (W)w);
2299 if (expect_false (!ev_is_active (w)))
2300 return;
2301
2302#if EV_USE_INOTIFY
2303 infy_del (EV_A_ w);
2304#endif
2305 ev_timer_stop (EV_A_ &w->timer);
2306
2307 ev_stop (EV_A_ (W)w);
2308}
2309#endif
2310
2311#if EV_IDLE_ENABLE
2312void
2313ev_idle_start (EV_P_ ev_idle *w)
2314{
2315 if (expect_false (ev_is_active (w)))
2316 return;
2317
2318 pri_adjust (EV_A_ (W)w);
2319
2320 {
2321 int active = ++idlecnt [ABSPRI (w)];
2322
2323 ++idleall;
2324 ev_start (EV_A_ (W)w, active);
2325
2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2327 idles [ABSPRI (w)][active - 1] = w;
2328 }
2329}
2330
2331void
2332ev_idle_stop (EV_P_ ev_idle *w)
2333{
2334 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w)))
2336 return;
2337
2338 {
2339 int active = ((W)w)->active;
2340
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2343
2344 ev_stop (EV_A_ (W)w);
2345 --idleall;
2346 }
2347}
2348#endif
2349
2350void
2351ev_prepare_start (EV_P_ ev_prepare *w)
2352{
2353 if (expect_false (ev_is_active (w)))
2354 return;
2355
2356 ev_start (EV_A_ (W)w, ++preparecnt);
2357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2358 prepares [preparecnt - 1] = w;
2359}
2360
2361void
2362ev_prepare_stop (EV_P_ ev_prepare *w)
2363{
2364 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w)))
2366 return;
2367
2368 {
2369 int active = ((W)w)->active;
2370 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active;
2372 }
2373
2374 ev_stop (EV_A_ (W)w);
2375}
2376
2377void
2378ev_check_start (EV_P_ ev_check *w)
2379{
2380 if (expect_false (ev_is_active (w)))
2381 return;
2382
2383 ev_start (EV_A_ (W)w, ++checkcnt);
2384 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2385 checks [checkcnt - 1] = w;
2386}
2387
2388void
2389ev_check_stop (EV_P_ ev_check *w)
2390{
2391 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w)))
2393 return;
2394
2395 {
2396 int active = ((W)w)->active;
2397 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active;
2399 }
2400
2401 ev_stop (EV_A_ (W)w);
2402}
2403
2404#if EV_EMBED_ENABLE
2405void noinline
2406ev_embed_sweep (EV_P_ ev_embed *w)
2407{
2408 ev_loop (w->other, EVLOOP_NONBLOCK);
2409}
2410
2411static void
2412embed_io_cb (EV_P_ ev_io *io, int revents)
2413{
2414 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2415
2416 if (ev_cb (w))
2417 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2418 else
2419 ev_loop (w->other, EVLOOP_NONBLOCK);
2420}
2421
2422static void
2423embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2424{
2425 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2426
2427 {
2428 struct ev_loop *loop = w->other;
2429
2430 while (fdchangecnt)
2431 {
2432 fd_reify (EV_A);
2433 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2434 }
2435 }
2436}
2437
2438#if 0
2439static void
2440embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2441{
2442 ev_idle_stop (EV_A_ idle);
2443}
2444#endif
2445
2446void
2447ev_embed_start (EV_P_ ev_embed *w)
2448{
2449 if (expect_false (ev_is_active (w)))
2450 return;
2451
2452 {
2453 struct ev_loop *loop = w->other;
2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2456 }
2457
2458 ev_set_priority (&w->io, ev_priority (w));
2459 ev_io_start (EV_A_ &w->io);
2460
2461 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare);
2464
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466
2467 ev_start (EV_A_ (W)w, 1);
2468}
2469
2470void
2471ev_embed_stop (EV_P_ ev_embed *w)
2472{
2473 clear_pending (EV_A_ (W)w);
2474 if (expect_false (!ev_is_active (w)))
2475 return;
2476
2477 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare);
2479
2480 ev_stop (EV_A_ (W)w);
2481}
2482#endif
2483
2484#if EV_FORK_ENABLE
2485void
2486ev_fork_start (EV_P_ ev_fork *w)
2487{
2488 if (expect_false (ev_is_active (w)))
2489 return;
2490
2491 ev_start (EV_A_ (W)w, ++forkcnt);
2492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2493 forks [forkcnt - 1] = w;
2494}
2495
2496void
2497ev_fork_stop (EV_P_ ev_fork *w)
2498{
2499 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w)))
2501 return;
2502
2503 {
2504 int active = ((W)w)->active;
2505 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active;
2507 }
2508
2509 ev_stop (EV_A_ (W)w);
2510}
2511#endif
2512
2513#if EV_ASYNC_ENABLE
2514void
2515ev_async_start (EV_P_ ev_async *w)
2516{
2517 if (expect_false (ev_is_active (w)))
2518 return;
2519
2520 evpipe_init (EV_A);
2521
2522 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w;
2525}
2526
2527void
2528ev_async_stop (EV_P_ ev_async *w)
2529{
2530 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w)))
2532 return;
2533
2534 {
2535 int active = ((W)w)->active;
2536 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active;
2538 }
2539
2540 ev_stop (EV_A_ (W)w);
2541}
2542
2543void
2544ev_async_send (EV_P_ ev_async *w)
2545{
2546 w->sent = 1;
2547 evpipe_write (EV_A_ &gotasync);
2548}
2549#endif
2550
1640/*****************************************************************************/ 2551/*****************************************************************************/
1641 2552
1642struct ev_once 2553struct ev_once
1643{ 2554{
1644 struct ev_io io; 2555 ev_io io;
1645 struct ev_timer to; 2556 ev_timer to;
1646 void (*cb)(int revents, void *arg); 2557 void (*cb)(int revents, void *arg);
1647 void *arg; 2558 void *arg;
1648}; 2559};
1649 2560
1650static void 2561static void
1659 2570
1660 cb (revents, arg); 2571 cb (revents, arg);
1661} 2572}
1662 2573
1663static void 2574static void
1664once_cb_io (EV_P_ struct ev_io *w, int revents) 2575once_cb_io (EV_P_ ev_io *w, int revents)
1665{ 2576{
1666 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2577 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1667} 2578}
1668 2579
1669static void 2580static void
1670once_cb_to (EV_P_ struct ev_timer *w, int revents) 2581once_cb_to (EV_P_ ev_timer *w, int revents)
1671{ 2582{
1672 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2583 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1673} 2584}
1674 2585
1675void 2586void
1699 ev_timer_set (&once->to, timeout, 0.); 2610 ev_timer_set (&once->to, timeout, 0.);
1700 ev_timer_start (EV_A_ &once->to); 2611 ev_timer_start (EV_A_ &once->to);
1701 } 2612 }
1702} 2613}
1703 2614
2615#if EV_MULTIPLICITY
2616 #include "ev_wrap.h"
2617#endif
2618
1704#ifdef __cplusplus 2619#ifdef __cplusplus
1705} 2620}
1706#endif 2621#endif
1707 2622

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines