ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC vs.
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
268# include <winsock.h> 276# include <winsock.h>
269#endif 277#endif
270 278
271#if EV_USE_EVENTFD 279#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
273int eventfd (unsigned int initval, int flags); 285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
274#endif 289#endif
275 290
276/**/ 291/**/
277 292
278/* 293/*
293# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
294# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
295#else 310#else
296# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
297# define noinline 312# define noinline
298# if __STDC_VERSION__ < 199901L 313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
299# define inline 314# define inline
300# endif 315# endif
301#endif 316#endif
302 317
303#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
318 333
319typedef ev_watcher *W; 334typedef ev_watcher *W;
320typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
321typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
322 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
323#if EV_USE_MONOTONIC 341#if EV_USE_MONOTONIC
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */ 343/* giving it a reasonably high chance of working on typical architetcures */
326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
327#endif 345#endif
353 perror (msg); 371 perror (msg);
354 abort (); 372 abort ();
355 } 373 }
356} 374}
357 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
358static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
359 392
360void 393void
361ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
362{ 395{
363 alloc = cb; 396 alloc = cb;
364} 397}
365 398
366inline_speed void * 399inline_speed void *
367ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
368{ 401{
369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
370 403
371 if (!ptr && size) 404 if (!ptr && size)
372 { 405 {
373 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
374 abort (); 407 abort ();
397 W w; 430 W w;
398 int events; 431 int events;
399} ANPENDING; 432} ANPENDING;
400 433
401#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
402typedef struct 436typedef struct
403{ 437{
404 WL head; 438 WL head;
405} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
406#endif 458#endif
407 459
408#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
409 461
410 struct ev_loop 462 struct ev_loop
495 } 547 }
496} 548}
497 549
498/*****************************************************************************/ 550/*****************************************************************************/
499 551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
500int inline_size 554int inline_size
501array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
502{ 556{
503 int ncur = cur + 1; 557 int ncur = cur + 1;
504 558
505 do 559 do
506 ncur <<= 1; 560 ncur <<= 1;
507 while (cnt > ncur); 561 while (cnt > ncur);
508 562
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
511 { 565 {
512 ncur *= elem; 566 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
514 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem; 569 ncur /= elem;
516 } 570 }
517 571
518 return ncur; 572 return ncur;
732 } 786 }
733} 787}
734 788
735/*****************************************************************************/ 789/*****************************************************************************/
736 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808
809/* towards the root */
737void inline_speed 810void inline_speed
738upheap (WT *heap, int k) 811upheap (ANHE *heap, int k)
739{ 812{
740 WT w = heap [k]; 813 ANHE he = heap [k];
741 814
742 while (k) 815 for (;;)
743 { 816 {
744 int p = (k - 1) >> 1; 817 int p = HPARENT (k);
745 818
746 if (heap [p]->at <= w->at) 819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
747 break; 820 break;
748 821
749 heap [k] = heap [p]; 822 heap [k] = heap [p];
750 ((W)heap [k])->active = k + 1; 823 ev_active (ANHE_w (heap [k])) = k;
751 k = p; 824 k = p;
752 } 825 }
753 826
754 heap [k] = w; 827 heap [k] = he;
755 ((W)heap [k])->active = k + 1; 828 ev_active (ANHE_w (he)) = k;
756} 829}
757 830
831/* away from the root */
758void inline_speed 832void inline_speed
759downheap (WT *heap, int N, int k) 833downheap (ANHE *heap, int N, int k)
760{ 834{
761 WT w = heap [k]; 835 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0;
762 837
763 for (;;) 838 for (;;)
764 { 839 {
765 int c = (k << 1) + 1; 840 ev_tstamp minat;
841 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
766 843
767 if (c >= N) 844 // find minimum child
845 if (expect_true (pos + DHEAP - 1 < E))
846 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else if (pos < E)
853 {
854 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else
768 break; 860 break;
769 861
862 if (ANHE_at (he) <= minat)
863 break;
864
865 heap [k] = *minpos;
866 ev_active (ANHE_w (*minpos)) = k;
867
868 k = minpos - heap;
869 }
870
871 heap [k] = he;
872 ev_active (ANHE_w (he)) = k;
873}
874
875#else // 4HEAP
876
877#define HEAP0 1
878#define HPARENT(k) ((k) >> 1)
879
880/* towards the root */
881void inline_speed
882upheap (ANHE *heap, int k)
883{
884 ANHE he = heap [k];
885
886 for (;;)
887 {
888 int p = HPARENT (k);
889
890 /* maybe we could use a dummy element at heap [0]? */
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break;
893
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
771 ? 1 : 0; 917 ? 1 : 0;
772 918
773 if (w->at <= heap [c]->at) 919 if (ANHE_at (he) <= ANHE_at (heap [c]))
774 break; 920 break;
775 921
776 heap [k] = heap [c]; 922 heap [k] = heap [c];
777 ((W)heap [k])->active = k + 1; 923 ev_active (ANHE_w (heap [k])) = k;
778 924
779 k = c; 925 k = c;
780 } 926 }
781 927
782 heap [k] = w; 928 heap [k] = he;
783 ((W)heap [k])->active = k + 1; 929 ev_active (ANHE_w (he)) = k;
784} 930}
931#endif
785 932
786void inline_size 933void inline_size
787adjustheap (WT *heap, int N, int k) 934adjustheap (ANHE *heap, int N, int k)
788{ 935{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
789 upheap (heap, k); 937 upheap (heap, k);
938 else
790 downheap (heap, N, k); 939 downheap (heap, N, k);
791} 940}
792 941
793/*****************************************************************************/ 942/*****************************************************************************/
794 943
795typedef struct 944typedef struct
884pipecb (EV_P_ ev_io *iow, int revents) 1033pipecb (EV_P_ ev_io *iow, int revents)
885{ 1034{
886#if EV_USE_EVENTFD 1035#if EV_USE_EVENTFD
887 if (evfd >= 0) 1036 if (evfd >= 0)
888 { 1037 {
889 uint64_t counter = 1; 1038 uint64_t counter;
890 read (evfd, &counter, sizeof (uint64_t)); 1039 read (evfd, &counter, sizeof (uint64_t));
891 } 1040 }
892 else 1041 else
893#endif 1042#endif
894 { 1043 {
1163 if (!(flags & EVFLAG_NOENV) 1312 if (!(flags & EVFLAG_NOENV)
1164 && !enable_secure () 1313 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS")) 1314 && getenv ("LIBEV_FLAGS"))
1166 flags = atoi (getenv ("LIBEV_FLAGS")); 1315 flags = atoi (getenv ("LIBEV_FLAGS"));
1167 1316
1168 if (!(flags & 0x0000ffffUL)) 1317 if (!(flags & 0x0000ffffU))
1169 flags |= ev_recommended_backends (); 1318 flags |= ev_recommended_backends ();
1170 1319
1171#if EV_USE_PORT 1320#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif 1322#endif
1261#endif 1410#endif
1262 1411
1263 backend = 0; 1412 backend = 0;
1264} 1413}
1265 1414
1415#if EV_USE_INOTIFY
1266void inline_size infy_fork (EV_P); 1416void inline_size infy_fork (EV_P);
1417#endif
1267 1418
1268void inline_size 1419void inline_size
1269loop_fork (EV_P) 1420loop_fork (EV_P)
1270{ 1421{
1271#if EV_USE_PORT 1422#if EV_USE_PORT
1338void 1489void
1339ev_loop_fork (EV_P) 1490ev_loop_fork (EV_P)
1340{ 1491{
1341 postfork = 1; /* must be in line with ev_default_fork */ 1492 postfork = 1; /* must be in line with ev_default_fork */
1342} 1493}
1343
1344#endif 1494#endif
1345 1495
1346#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1347struct ev_loop * 1497struct ev_loop *
1348ev_default_loop_init (unsigned int flags) 1498ev_default_loop_init (unsigned int flags)
1429 EV_CB_INVOKE (p->w, p->events); 1579 EV_CB_INVOKE (p->w, p->events);
1430 } 1580 }
1431 } 1581 }
1432} 1582}
1433 1583
1434void inline_size
1435timers_reify (EV_P)
1436{
1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1438 {
1439 ev_timer *w = (ev_timer *)timers [0];
1440
1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1442
1443 /* first reschedule or stop timer */
1444 if (w->repeat)
1445 {
1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1447
1448 ((WT)w)->at += w->repeat;
1449 if (((WT)w)->at < mn_now)
1450 ((WT)w)->at = mn_now;
1451
1452 downheap (timers, timercnt, 0);
1453 }
1454 else
1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1456
1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1458 }
1459}
1460
1461#if EV_PERIODIC_ENABLE
1462void inline_size
1463periodics_reify (EV_P)
1464{
1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1466 {
1467 ev_periodic *w = (ev_periodic *)periodics [0];
1468
1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1470
1471 /* first reschedule or stop timer */
1472 if (w->reschedule_cb)
1473 {
1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1476 downheap (periodics, periodiccnt, 0);
1477 }
1478 else if (w->interval)
1479 {
1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else
1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1487
1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1489 }
1490}
1491
1492static void noinline
1493periodics_reschedule (EV_P)
1494{
1495 int i;
1496
1497 /* adjust periodics after time jump */
1498 for (i = 0; i < periodiccnt; ++i)
1499 {
1500 ev_periodic *w = (ev_periodic *)periodics [i];
1501
1502 if (w->reschedule_cb)
1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1504 else if (w->interval)
1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1506 }
1507
1508 /* now rebuild the heap */
1509 for (i = periodiccnt >> 1; i--; )
1510 downheap (periodics, periodiccnt, i);
1511}
1512#endif
1513
1514#if EV_IDLE_ENABLE 1584#if EV_IDLE_ENABLE
1515void inline_size 1585void inline_size
1516idle_reify (EV_P) 1586idle_reify (EV_P)
1517{ 1587{
1518 if (expect_false (idleall)) 1588 if (expect_false (idleall))
1529 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1599 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1530 break; 1600 break;
1531 } 1601 }
1532 } 1602 }
1533 } 1603 }
1604}
1605#endif
1606
1607void inline_size
1608timers_reify (EV_P)
1609{
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 {
1619 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now;
1622
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624
1625 ANHE_at_set (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0);
1627 }
1628 else
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1632 }
1633}
1634
1635#if EV_PERIODIC_ENABLE
1636void inline_size
1637periodics_reify (EV_P)
1638{
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1642
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651
1652 ANHE_at_set (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0);
1654 }
1655 else if (w->interval)
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1678 }
1679}
1680
1681static void noinline
1682periodics_reschedule (EV_P)
1683{
1684 int i;
1685
1686 /* adjust periodics after time jump */
1687 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1688 {
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690
1691 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695
1696 ANHE_at_set (periodics [i]);
1697 }
1698
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1701 for (i = 0; i < periodiccnt; ++i)
1702 upheap (periodics, i + HEAP0);
1534} 1703}
1535#endif 1704#endif
1536 1705
1537void inline_speed 1706void inline_speed
1538time_update (EV_P_ ev_tstamp max_block) 1707time_update (EV_P_ ev_tstamp max_block)
1567 */ 1736 */
1568 for (i = 4; --i; ) 1737 for (i = 4; --i; )
1569 { 1738 {
1570 rtmn_diff = ev_rt_now - mn_now; 1739 rtmn_diff = ev_rt_now - mn_now;
1571 1740
1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1573 return; /* all is well */ 1742 return; /* all is well */
1574 1743
1575 ev_rt_now = ev_time (); 1744 ev_rt_now = ev_time ();
1576 mn_now = get_clock (); 1745 mn_now = get_clock ();
1577 now_floor = mn_now; 1746 now_floor = mn_now;
1593#if EV_PERIODIC_ENABLE 1762#if EV_PERIODIC_ENABLE
1594 periodics_reschedule (EV_A); 1763 periodics_reschedule (EV_A);
1595#endif 1764#endif
1596 /* adjust timers. this is easy, as the offset is the same for all of them */ 1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1597 for (i = 0; i < timercnt; ++i) 1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1598 ((WT)timers [i])->at += ev_rt_now - mn_now; 1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1599 } 1772 }
1600 1773
1601 mn_now = ev_rt_now; 1774 mn_now = ev_rt_now;
1602 } 1775 }
1603} 1776}
1673 1846
1674 waittime = MAX_BLOCKTIME; 1847 waittime = MAX_BLOCKTIME;
1675 1848
1676 if (timercnt) 1849 if (timercnt)
1677 { 1850 {
1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1679 if (waittime > to) waittime = to; 1852 if (waittime > to) waittime = to;
1680 } 1853 }
1681 1854
1682#if EV_PERIODIC_ENABLE 1855#if EV_PERIODIC_ENABLE
1683 if (periodiccnt) 1856 if (periodiccnt)
1684 { 1857 {
1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1686 if (waittime > to) waittime = to; 1859 if (waittime > to) waittime = to;
1687 } 1860 }
1688#endif 1861#endif
1689 1862
1690 if (expect_false (waittime < timeout_blocktime)) 1863 if (expect_false (waittime < timeout_blocktime))
1842{ 2015{
1843 clear_pending (EV_A_ (W)w); 2016 clear_pending (EV_A_ (W)w);
1844 if (expect_false (!ev_is_active (w))) 2017 if (expect_false (!ev_is_active (w)))
1845 return; 2018 return;
1846 2019
1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1848 2021
1849 wlist_del (&anfds[w->fd].head, (WL)w); 2022 wlist_del (&anfds[w->fd].head, (WL)w);
1850 ev_stop (EV_A_ (W)w); 2023 ev_stop (EV_A_ (W)w);
1851 2024
1852 fd_change (EV_A_ w->fd, 1); 2025 fd_change (EV_A_ w->fd, 1);
1856ev_timer_start (EV_P_ ev_timer *w) 2029ev_timer_start (EV_P_ ev_timer *w)
1857{ 2030{
1858 if (expect_false (ev_is_active (w))) 2031 if (expect_false (ev_is_active (w)))
1859 return; 2032 return;
1860 2033
1861 ((WT)w)->at += mn_now; 2034 ev_at (w) += mn_now;
1862 2035
1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1864 2037
1865 ev_start (EV_A_ (W)w, ++timercnt); 2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1867 timers [timercnt - 1] = (WT)w; 2040 ANHE_w (timers [ev_active (w)]) = (WT)w;
1868 upheap (timers, timercnt - 1); 2041 ANHE_at_set (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w));
1869 2043
1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1871} 2045}
1872 2046
1873void noinline 2047void noinline
1874ev_timer_stop (EV_P_ ev_timer *w) 2048ev_timer_stop (EV_P_ ev_timer *w)
1875{ 2049{
1876 clear_pending (EV_A_ (W)w); 2050 clear_pending (EV_A_ (W)w);
1877 if (expect_false (!ev_is_active (w))) 2051 if (expect_false (!ev_is_active (w)))
1878 return; 2052 return;
1879 2053
1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1881
1882 { 2054 {
1883 int active = ((W)w)->active; 2055 int active = ev_active (w);
1884 2056
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058
1885 if (expect_true (--active < --timercnt)) 2059 if (expect_true (active < timercnt + HEAP0 - 1))
1886 { 2060 {
1887 timers [active] = timers [timercnt]; 2061 timers [active] = timers [timercnt + HEAP0 - 1];
1888 adjustheap (timers, timercnt, active); 2062 adjustheap (timers, timercnt, active);
1889 } 2063 }
2064
2065 --timercnt;
1890 } 2066 }
1891 2067
1892 ((WT)w)->at -= mn_now; 2068 ev_at (w) -= mn_now;
1893 2069
1894 ev_stop (EV_A_ (W)w); 2070 ev_stop (EV_A_ (W)w);
1895} 2071}
1896 2072
1897void noinline 2073void noinline
1899{ 2075{
1900 if (ev_is_active (w)) 2076 if (ev_is_active (w))
1901 { 2077 {
1902 if (w->repeat) 2078 if (w->repeat)
1903 { 2079 {
1904 ((WT)w)->at = mn_now + w->repeat; 2080 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]);
1905 adjustheap (timers, timercnt, ((W)w)->active - 1); 2082 adjustheap (timers, timercnt, ev_active (w));
1906 } 2083 }
1907 else 2084 else
1908 ev_timer_stop (EV_A_ w); 2085 ev_timer_stop (EV_A_ w);
1909 } 2086 }
1910 else if (w->repeat) 2087 else if (w->repeat)
1911 { 2088 {
1912 w->at = w->repeat; 2089 ev_at (w) = w->repeat;
1913 ev_timer_start (EV_A_ w); 2090 ev_timer_start (EV_A_ w);
1914 } 2091 }
1915} 2092}
1916 2093
1917#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1920{ 2097{
1921 if (expect_false (ev_is_active (w))) 2098 if (expect_false (ev_is_active (w)))
1922 return; 2099 return;
1923 2100
1924 if (w->reschedule_cb) 2101 if (w->reschedule_cb)
1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1926 else if (w->interval) 2103 else if (w->interval)
1927 { 2104 {
1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1929 /* this formula differs from the one in periodic_reify because we do not always round up */ 2106 /* this formula differs from the one in periodic_reify because we do not always round up */
1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1931 } 2108 }
1932 else 2109 else
1933 ((WT)w)->at = w->offset; 2110 ev_at (w) = w->offset;
1934 2111
1935 ev_start (EV_A_ (W)w, ++periodiccnt); 2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1937 periodics [periodiccnt - 1] = (WT)w; 2114 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1938 upheap (periodics, periodiccnt - 1); 2115 ANHE_at_set (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w));
1939 2117
1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1941} 2119}
1942 2120
1943void noinline 2121void noinline
1944ev_periodic_stop (EV_P_ ev_periodic *w) 2122ev_periodic_stop (EV_P_ ev_periodic *w)
1945{ 2123{
1946 clear_pending (EV_A_ (W)w); 2124 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2125 if (expect_false (!ev_is_active (w)))
1948 return; 2126 return;
1949 2127
1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1951
1952 { 2128 {
1953 int active = ((W)w)->active; 2129 int active = ev_active (w);
1954 2130
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132
1955 if (expect_true (--active < --periodiccnt)) 2133 if (expect_true (active < periodiccnt + HEAP0 - 1))
1956 { 2134 {
1957 periodics [active] = periodics [periodiccnt]; 2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1958 adjustheap (periodics, periodiccnt, active); 2136 adjustheap (periodics, periodiccnt, active);
1959 } 2137 }
2138
2139 --periodiccnt;
1960 } 2140 }
1961 2141
1962 ev_stop (EV_A_ (W)w); 2142 ev_stop (EV_A_ (W)w);
1963} 2143}
1964 2144
2080 if (w->wd < 0) 2260 if (w->wd < 0)
2081 { 2261 {
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2083 2263
2084 /* monitor some parent directory for speedup hints */ 2264 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */
2266 /* but an efficiency issue only */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 { 2268 {
2087 char path [4096]; 2269 char path [4096];
2088 strcpy (path, w->path); 2270 strcpy (path, w->path);
2089 2271
2334 clear_pending (EV_A_ (W)w); 2516 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 2517 if (expect_false (!ev_is_active (w)))
2336 return; 2518 return;
2337 2519
2338 { 2520 {
2339 int active = ((W)w)->active; 2521 int active = ev_active (w);
2340 2522
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2524 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2343 2525
2344 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
2345 --idleall; 2527 --idleall;
2346 } 2528 }
2347} 2529}
2364 clear_pending (EV_A_ (W)w); 2546 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 2547 if (expect_false (!ev_is_active (w)))
2366 return; 2548 return;
2367 2549
2368 { 2550 {
2369 int active = ((W)w)->active; 2551 int active = ev_active (w);
2552
2370 prepares [active - 1] = prepares [--preparecnt]; 2553 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active; 2554 ev_active (prepares [active - 1]) = active;
2372 } 2555 }
2373 2556
2374 ev_stop (EV_A_ (W)w); 2557 ev_stop (EV_A_ (W)w);
2375} 2558}
2376 2559
2391 clear_pending (EV_A_ (W)w); 2574 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w))) 2575 if (expect_false (!ev_is_active (w)))
2393 return; 2576 return;
2394 2577
2395 { 2578 {
2396 int active = ((W)w)->active; 2579 int active = ev_active (w);
2580
2397 checks [active - 1] = checks [--checkcnt]; 2581 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active; 2582 ev_active (checks [active - 1]) = active;
2399 } 2583 }
2400 2584
2401 ev_stop (EV_A_ (W)w); 2585 ev_stop (EV_A_ (W)w);
2402} 2586}
2403 2587
2499 clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
2501 return; 2685 return;
2502 2686
2503 { 2687 {
2504 int active = ((W)w)->active; 2688 int active = ev_active (w);
2689
2505 forks [active - 1] = forks [--forkcnt]; 2690 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active; 2691 ev_active (forks [active - 1]) = active;
2507 } 2692 }
2508 2693
2509 ev_stop (EV_A_ (W)w); 2694 ev_stop (EV_A_ (W)w);
2510} 2695}
2511#endif 2696#endif
2530 clear_pending (EV_A_ (W)w); 2715 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w))) 2716 if (expect_false (!ev_is_active (w)))
2532 return; 2717 return;
2533 2718
2534 { 2719 {
2535 int active = ((W)w)->active; 2720 int active = ev_active (w);
2721
2536 asyncs [active - 1] = asyncs [--asynccnt]; 2722 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active; 2723 ev_active (asyncs [active - 1]) = active;
2538 } 2724 }
2539 2725
2540 ev_stop (EV_A_ (W)w); 2726 ev_stop (EV_A_ (W)w);
2541} 2727}
2542 2728

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines