ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC vs.
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 259
242#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
268# include <winsock.h> 286# include <winsock.h>
269#endif 287#endif
270 288
271#if EV_USE_EVENTFD 289#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
273int eventfd (unsigned int initval, int flags); 295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
274#endif 299#endif
275 300
276/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
277 308
278/* 309/*
279 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
293# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
294# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
295#else 326#else
296# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
297# define noinline 328# define noinline
298# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
299# define inline 330# define inline
300# endif 331# endif
301#endif 332#endif
302 333
303#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
318 349
319typedef ev_watcher *W; 350typedef ev_watcher *W;
320typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
321typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
322 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
323#if EV_USE_MONOTONIC 357#if EV_USE_MONOTONIC
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */ 359/* giving it a reasonably high chance of working on typical architetcures */
326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
327#endif 361#endif
353 perror (msg); 387 perror (msg);
354 abort (); 388 abort ();
355 } 389 }
356} 390}
357 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
358static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
359 408
360void 409void
361ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
362{ 411{
363 alloc = cb; 412 alloc = cb;
364} 413}
365 414
366inline_speed void * 415inline_speed void *
367ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
368{ 417{
369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
370 419
371 if (!ptr && size) 420 if (!ptr && size)
372 { 421 {
373 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
374 abort (); 423 abort ();
397 W w; 446 W w;
398 int events; 447 int events;
399} ANPENDING; 448} ANPENDING;
400 449
401#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
402typedef struct 452typedef struct
403{ 453{
404 WL head; 454 WL head;
405} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
406#endif 474#endif
407 475
408#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
409 477
410 struct ev_loop 478 struct ev_loop
495 } 563 }
496} 564}
497 565
498/*****************************************************************************/ 566/*****************************************************************************/
499 567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
500int inline_size 570int inline_size
501array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
502{ 572{
503 int ncur = cur + 1; 573 int ncur = cur + 1;
504 574
505 do 575 do
506 ncur <<= 1; 576 ncur <<= 1;
507 while (cnt > ncur); 577 while (cnt > ncur);
508 578
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
511 { 581 {
512 ncur *= elem; 582 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
514 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem; 585 ncur /= elem;
516 } 586 }
517 587
518 return ncur; 588 return ncur;
732 } 802 }
733} 803}
734 804
735/*****************************************************************************/ 805/*****************************************************************************/
736 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
737void inline_speed 827void inline_speed
738upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
739{ 829{
740 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
741 832
742 while (k) 833 for (;;)
743 { 834 {
744 int p = (k - 1) >> 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
745 838
746 if (heap [p]->at <= w->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
747 break; 855 break;
748 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
749 heap [k] = heap [p]; 919 heap [k] = heap [p];
750 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (heap [k])) = k;
751 k = p; 921 k = p;
752 } 922 }
753 923
754 heap [k] = w; 924 heap [k] = he;
755 ((W)heap [k])->active = k + 1; 925 ev_active (ANHE_w (he)) = k;
756}
757
758void inline_speed
759downheap (WT *heap, int N, int k)
760{
761 WT w = heap [k];
762
763 for (;;)
764 {
765 int c = (k << 1) + 1;
766
767 if (c >= N)
768 break;
769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
776 heap [k] = heap [c];
777 ((W)heap [k])->active = k + 1;
778
779 k = c;
780 }
781
782 heap [k] = w;
783 ((W)heap [k])->active = k + 1;
784} 926}
785 927
786void inline_size 928void inline_size
787adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
788{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
789 upheap (heap, k); 932 upheap (heap, k);
933 else
790 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
791} 947}
792 948
793/*****************************************************************************/ 949/*****************************************************************************/
794 950
795typedef struct 951typedef struct
884pipecb (EV_P_ ev_io *iow, int revents) 1040pipecb (EV_P_ ev_io *iow, int revents)
885{ 1041{
886#if EV_USE_EVENTFD 1042#if EV_USE_EVENTFD
887 if (evfd >= 0) 1043 if (evfd >= 0)
888 { 1044 {
889 uint64_t counter = 1; 1045 uint64_t counter;
890 read (evfd, &counter, sizeof (uint64_t)); 1046 read (evfd, &counter, sizeof (uint64_t));
891 } 1047 }
892 else 1048 else
893#endif 1049#endif
894 { 1050 {
1163 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
1164 && !enable_secure () 1320 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
1166 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
1167 1323
1168 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
1169 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
1170 1326
1171#if EV_USE_PORT 1327#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif 1329#endif
1261#endif 1417#endif
1262 1418
1263 backend = 0; 1419 backend = 0;
1264} 1420}
1265 1421
1422#if EV_USE_INOTIFY
1266void inline_size infy_fork (EV_P); 1423void inline_size infy_fork (EV_P);
1424#endif
1267 1425
1268void inline_size 1426void inline_size
1269loop_fork (EV_P) 1427loop_fork (EV_P)
1270{ 1428{
1271#if EV_USE_PORT 1429#if EV_USE_PORT
1311 1469
1312 postfork = 0; 1470 postfork = 0;
1313} 1471}
1314 1472
1315#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1316struct ev_loop * 1475struct ev_loop *
1317ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1318{ 1477{
1319 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1320 1479
1339ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1340{ 1499{
1341 postfork = 1; /* must be in line with ev_default_fork */ 1500 postfork = 1; /* must be in line with ev_default_fork */
1342} 1501}
1343 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1344#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1345 1602
1346#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1347struct ev_loop * 1604struct ev_loop *
1348ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1349#else 1606#else
1425 { 1682 {
1426 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1427 1684
1428 p->w->pending = 0; 1685 p->w->pending = 0;
1429 EV_CB_INVOKE (p->w, p->events); 1686 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK;
1430 } 1688 }
1431 } 1689 }
1432} 1690}
1433
1434void inline_size
1435timers_reify (EV_P)
1436{
1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1438 {
1439 ev_timer *w = (ev_timer *)timers [0];
1440
1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1442
1443 /* first reschedule or stop timer */
1444 if (w->repeat)
1445 {
1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1447
1448 ((WT)w)->at += w->repeat;
1449 if (((WT)w)->at < mn_now)
1450 ((WT)w)->at = mn_now;
1451
1452 downheap (timers, timercnt, 0);
1453 }
1454 else
1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1456
1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1458 }
1459}
1460
1461#if EV_PERIODIC_ENABLE
1462void inline_size
1463periodics_reify (EV_P)
1464{
1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1466 {
1467 ev_periodic *w = (ev_periodic *)periodics [0];
1468
1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1470
1471 /* first reschedule or stop timer */
1472 if (w->reschedule_cb)
1473 {
1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1476 downheap (periodics, periodiccnt, 0);
1477 }
1478 else if (w->interval)
1479 {
1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else
1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1487
1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1489 }
1490}
1491
1492static void noinline
1493periodics_reschedule (EV_P)
1494{
1495 int i;
1496
1497 /* adjust periodics after time jump */
1498 for (i = 0; i < periodiccnt; ++i)
1499 {
1500 ev_periodic *w = (ev_periodic *)periodics [i];
1501
1502 if (w->reschedule_cb)
1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1504 else if (w->interval)
1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1506 }
1507
1508 /* now rebuild the heap */
1509 for (i = periodiccnt >> 1; i--; )
1510 downheap (periodics, periodiccnt, i);
1511}
1512#endif
1513 1691
1514#if EV_IDLE_ENABLE 1692#if EV_IDLE_ENABLE
1515void inline_size 1693void inline_size
1516idle_reify (EV_P) 1694idle_reify (EV_P)
1517{ 1695{
1529 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1707 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1530 break; 1708 break;
1531 } 1709 }
1532 } 1710 }
1533 } 1711 }
1712}
1713#endif
1714
1715void inline_size
1716timers_reify (EV_P)
1717{
1718 EV_FREQUENT_CHECK;
1719
1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1721 {
1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1723
1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1725
1726 /* first reschedule or stop timer */
1727 if (w->repeat)
1728 {
1729 ev_at (w) += w->repeat;
1730 if (ev_at (w) < mn_now)
1731 ev_at (w) = mn_now;
1732
1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1734
1735 ANHE_at_cache (timers [HEAP0]);
1736 downheap (timers, timercnt, HEAP0);
1737 }
1738 else
1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1743 }
1744}
1745
1746#if EV_PERIODIC_ENABLE
1747void inline_size
1748periodics_reify (EV_P)
1749{
1750 EV_FREQUENT_CHECK;
1751
1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1753 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1755
1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1757
1758 /* first reschedule or stop timer */
1759 if (w->reschedule_cb)
1760 {
1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762
1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764
1765 ANHE_at_cache (periodics [HEAP0]);
1766 downheap (periodics, periodiccnt, HEAP0);
1767 }
1768 else if (w->interval)
1769 {
1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1774 {
1775 ev_at (w) += w->interval;
1776
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else
1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1789
1790 EV_FREQUENT_CHECK;
1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1792 }
1793}
1794
1795static void noinline
1796periodics_reschedule (EV_P)
1797{
1798 int i;
1799
1800 /* adjust periodics after time jump */
1801 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1802 {
1803 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1804
1805 if (w->reschedule_cb)
1806 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1807 else if (w->interval)
1808 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1809
1810 ANHE_at_cache (periodics [i]);
1811 }
1812
1813 reheap (periodics, periodiccnt);
1534} 1814}
1535#endif 1815#endif
1536 1816
1537void inline_speed 1817void inline_speed
1538time_update (EV_P_ ev_tstamp max_block) 1818time_update (EV_P_ ev_tstamp max_block)
1567 */ 1847 */
1568 for (i = 4; --i; ) 1848 for (i = 4; --i; )
1569 { 1849 {
1570 rtmn_diff = ev_rt_now - mn_now; 1850 rtmn_diff = ev_rt_now - mn_now;
1571 1851
1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1852 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1573 return; /* all is well */ 1853 return; /* all is well */
1574 1854
1575 ev_rt_now = ev_time (); 1855 ev_rt_now = ev_time ();
1576 mn_now = get_clock (); 1856 mn_now = get_clock ();
1577 now_floor = mn_now; 1857 now_floor = mn_now;
1593#if EV_PERIODIC_ENABLE 1873#if EV_PERIODIC_ENABLE
1594 periodics_reschedule (EV_A); 1874 periodics_reschedule (EV_A);
1595#endif 1875#endif
1596 /* adjust timers. this is easy, as the offset is the same for all of them */ 1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1597 for (i = 0; i < timercnt; ++i) 1877 for (i = 0; i < timercnt; ++i)
1878 {
1879 ANHE *he = timers + i + HEAP0;
1598 ((WT)timers [i])->at += ev_rt_now - mn_now; 1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1881 ANHE_at_cache (*he);
1882 }
1599 } 1883 }
1600 1884
1601 mn_now = ev_rt_now; 1885 mn_now = ev_rt_now;
1602 } 1886 }
1603} 1887}
1623 1907
1624 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1625 1909
1626 do 1910 do
1627 { 1911 {
1912#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A);
1914#endif
1915
1628#ifndef _WIN32 1916#ifndef _WIN32
1629 if (expect_false (curpid)) /* penalise the forking check even more */ 1917 if (expect_false (curpid)) /* penalise the forking check even more */
1630 if (expect_false (getpid () != curpid)) 1918 if (expect_false (getpid () != curpid))
1631 { 1919 {
1632 curpid = getpid (); 1920 curpid = getpid ();
1673 1961
1674 waittime = MAX_BLOCKTIME; 1962 waittime = MAX_BLOCKTIME;
1675 1963
1676 if (timercnt) 1964 if (timercnt)
1677 { 1965 {
1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1966 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1679 if (waittime > to) waittime = to; 1967 if (waittime > to) waittime = to;
1680 } 1968 }
1681 1969
1682#if EV_PERIODIC_ENABLE 1970#if EV_PERIODIC_ENABLE
1683 if (periodiccnt) 1971 if (periodiccnt)
1684 { 1972 {
1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1686 if (waittime > to) waittime = to; 1974 if (waittime > to) waittime = to;
1687 } 1975 }
1688#endif 1976#endif
1689 1977
1690 if (expect_false (waittime < timeout_blocktime)) 1978 if (expect_false (waittime < timeout_blocktime))
1827 if (expect_false (ev_is_active (w))) 2115 if (expect_false (ev_is_active (w)))
1828 return; 2116 return;
1829 2117
1830 assert (("ev_io_start called with negative fd", fd >= 0)); 2118 assert (("ev_io_start called with negative fd", fd >= 0));
1831 2119
2120 EV_FREQUENT_CHECK;
2121
1832 ev_start (EV_A_ (W)w, 1); 2122 ev_start (EV_A_ (W)w, 1);
1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1834 wlist_add (&anfds[fd].head, (WL)w); 2124 wlist_add (&anfds[fd].head, (WL)w);
1835 2125
1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1837 w->events &= ~EV_IOFDSET; 2127 w->events &= ~EV_IOFDSET;
2128
2129 EV_FREQUENT_CHECK;
1838} 2130}
1839 2131
1840void noinline 2132void noinline
1841ev_io_stop (EV_P_ ev_io *w) 2133ev_io_stop (EV_P_ ev_io *w)
1842{ 2134{
1843 clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
1844 if (expect_false (!ev_is_active (w))) 2136 if (expect_false (!ev_is_active (w)))
1845 return; 2137 return;
1846 2138
1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2140
2141 EV_FREQUENT_CHECK;
1848 2142
1849 wlist_del (&anfds[w->fd].head, (WL)w); 2143 wlist_del (&anfds[w->fd].head, (WL)w);
1850 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1851 2145
1852 fd_change (EV_A_ w->fd, 1); 2146 fd_change (EV_A_ w->fd, 1);
2147
2148 EV_FREQUENT_CHECK;
1853} 2149}
1854 2150
1855void noinline 2151void noinline
1856ev_timer_start (EV_P_ ev_timer *w) 2152ev_timer_start (EV_P_ ev_timer *w)
1857{ 2153{
1858 if (expect_false (ev_is_active (w))) 2154 if (expect_false (ev_is_active (w)))
1859 return; 2155 return;
1860 2156
1861 ((WT)w)->at += mn_now; 2157 ev_at (w) += mn_now;
1862 2158
1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1864 2160
2161 EV_FREQUENT_CHECK;
2162
2163 ++timercnt;
1865 ev_start (EV_A_ (W)w, ++timercnt); 2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2165 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1867 timers [timercnt - 1] = (WT)w; 2166 ANHE_w (timers [ev_active (w)]) = (WT)w;
1868 upheap (timers, timercnt - 1); 2167 ANHE_at_cache (timers [ev_active (w)]);
2168 upheap (timers, ev_active (w));
1869 2169
2170 EV_FREQUENT_CHECK;
2171
1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1871} 2173}
1872 2174
1873void noinline 2175void noinline
1874ev_timer_stop (EV_P_ ev_timer *w) 2176ev_timer_stop (EV_P_ ev_timer *w)
1875{ 2177{
1876 clear_pending (EV_A_ (W)w); 2178 clear_pending (EV_A_ (W)w);
1877 if (expect_false (!ev_is_active (w))) 2179 if (expect_false (!ev_is_active (w)))
1878 return; 2180 return;
1879 2181
1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2182 EV_FREQUENT_CHECK;
1881 2183
1882 { 2184 {
1883 int active = ((W)w)->active; 2185 int active = ev_active (w);
1884 2186
2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2188
2189 --timercnt;
2190
1885 if (expect_true (--active < --timercnt)) 2191 if (expect_true (active < timercnt + HEAP0))
1886 { 2192 {
1887 timers [active] = timers [timercnt]; 2193 timers [active] = timers [timercnt + HEAP0];
1888 adjustheap (timers, timercnt, active); 2194 adjustheap (timers, timercnt, active);
1889 } 2195 }
1890 } 2196 }
1891 2197
1892 ((WT)w)->at -= mn_now; 2198 EV_FREQUENT_CHECK;
2199
2200 ev_at (w) -= mn_now;
1893 2201
1894 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1895} 2203}
1896 2204
1897void noinline 2205void noinline
1898ev_timer_again (EV_P_ ev_timer *w) 2206ev_timer_again (EV_P_ ev_timer *w)
1899{ 2207{
2208 EV_FREQUENT_CHECK;
2209
1900 if (ev_is_active (w)) 2210 if (ev_is_active (w))
1901 { 2211 {
1902 if (w->repeat) 2212 if (w->repeat)
1903 { 2213 {
1904 ((WT)w)->at = mn_now + w->repeat; 2214 ev_at (w) = mn_now + w->repeat;
2215 ANHE_at_cache (timers [ev_active (w)]);
1905 adjustheap (timers, timercnt, ((W)w)->active - 1); 2216 adjustheap (timers, timercnt, ev_active (w));
1906 } 2217 }
1907 else 2218 else
1908 ev_timer_stop (EV_A_ w); 2219 ev_timer_stop (EV_A_ w);
1909 } 2220 }
1910 else if (w->repeat) 2221 else if (w->repeat)
1911 { 2222 {
1912 w->at = w->repeat; 2223 ev_at (w) = w->repeat;
1913 ev_timer_start (EV_A_ w); 2224 ev_timer_start (EV_A_ w);
1914 } 2225 }
2226
2227 EV_FREQUENT_CHECK;
1915} 2228}
1916 2229
1917#if EV_PERIODIC_ENABLE 2230#if EV_PERIODIC_ENABLE
1918void noinline 2231void noinline
1919ev_periodic_start (EV_P_ ev_periodic *w) 2232ev_periodic_start (EV_P_ ev_periodic *w)
1920{ 2233{
1921 if (expect_false (ev_is_active (w))) 2234 if (expect_false (ev_is_active (w)))
1922 return; 2235 return;
1923 2236
1924 if (w->reschedule_cb) 2237 if (w->reschedule_cb)
1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2238 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1926 else if (w->interval) 2239 else if (w->interval)
1927 { 2240 {
1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2241 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1929 /* this formula differs from the one in periodic_reify because we do not always round up */ 2242 /* this formula differs from the one in periodic_reify because we do not always round up */
1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1931 } 2244 }
1932 else 2245 else
1933 ((WT)w)->at = w->offset; 2246 ev_at (w) = w->offset;
1934 2247
2248 EV_FREQUENT_CHECK;
2249
2250 ++periodiccnt;
1935 ev_start (EV_A_ (W)w, ++periodiccnt); 2251 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2252 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1937 periodics [periodiccnt - 1] = (WT)w; 2253 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1938 upheap (periodics, periodiccnt - 1); 2254 ANHE_at_cache (periodics [ev_active (w)]);
2255 upheap (periodics, ev_active (w));
1939 2256
2257 EV_FREQUENT_CHECK;
2258
1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1941} 2260}
1942 2261
1943void noinline 2262void noinline
1944ev_periodic_stop (EV_P_ ev_periodic *w) 2263ev_periodic_stop (EV_P_ ev_periodic *w)
1945{ 2264{
1946 clear_pending (EV_A_ (W)w); 2265 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2266 if (expect_false (!ev_is_active (w)))
1948 return; 2267 return;
1949 2268
1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2269 EV_FREQUENT_CHECK;
1951 2270
1952 { 2271 {
1953 int active = ((W)w)->active; 2272 int active = ev_active (w);
1954 2273
2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2275
2276 --periodiccnt;
2277
1955 if (expect_true (--active < --periodiccnt)) 2278 if (expect_true (active < periodiccnt + HEAP0))
1956 { 2279 {
1957 periodics [active] = periodics [periodiccnt]; 2280 periodics [active] = periodics [periodiccnt + HEAP0];
1958 adjustheap (periodics, periodiccnt, active); 2281 adjustheap (periodics, periodiccnt, active);
1959 } 2282 }
1960 } 2283 }
1961 2284
2285 EV_FREQUENT_CHECK;
2286
1962 ev_stop (EV_A_ (W)w); 2287 ev_stop (EV_A_ (W)w);
1963} 2288}
1964 2289
1965void noinline 2290void noinline
1966ev_periodic_again (EV_P_ ev_periodic *w) 2291ev_periodic_again (EV_P_ ev_periodic *w)
1985 return; 2310 return;
1986 2311
1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1988 2313
1989 evpipe_init (EV_A); 2314 evpipe_init (EV_A);
2315
2316 EV_FREQUENT_CHECK;
1990 2317
1991 { 2318 {
1992#ifndef _WIN32 2319#ifndef _WIN32
1993 sigset_t full, prev; 2320 sigset_t full, prev;
1994 sigfillset (&full); 2321 sigfillset (&full);
2015 sigfillset (&sa.sa_mask); 2342 sigfillset (&sa.sa_mask);
2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2017 sigaction (w->signum, &sa, 0); 2344 sigaction (w->signum, &sa, 0);
2018#endif 2345#endif
2019 } 2346 }
2347
2348 EV_FREQUENT_CHECK;
2020} 2349}
2021 2350
2022void noinline 2351void noinline
2023ev_signal_stop (EV_P_ ev_signal *w) 2352ev_signal_stop (EV_P_ ev_signal *w)
2024{ 2353{
2025 clear_pending (EV_A_ (W)w); 2354 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2355 if (expect_false (!ev_is_active (w)))
2027 return; 2356 return;
2028 2357
2358 EV_FREQUENT_CHECK;
2359
2029 wlist_del (&signals [w->signum - 1].head, (WL)w); 2360 wlist_del (&signals [w->signum - 1].head, (WL)w);
2030 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
2031 2362
2032 if (!signals [w->signum - 1].head) 2363 if (!signals [w->signum - 1].head)
2033 signal (w->signum, SIG_DFL); 2364 signal (w->signum, SIG_DFL);
2365
2366 EV_FREQUENT_CHECK;
2034} 2367}
2035 2368
2036void 2369void
2037ev_child_start (EV_P_ ev_child *w) 2370ev_child_start (EV_P_ ev_child *w)
2038{ 2371{
2040 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2041#endif 2374#endif
2042 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
2043 return; 2376 return;
2044 2377
2378 EV_FREQUENT_CHECK;
2379
2045 ev_start (EV_A_ (W)w, 1); 2380 ev_start (EV_A_ (W)w, 1);
2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2382
2383 EV_FREQUENT_CHECK;
2047} 2384}
2048 2385
2049void 2386void
2050ev_child_stop (EV_P_ ev_child *w) 2387ev_child_stop (EV_P_ ev_child *w)
2051{ 2388{
2052 clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
2054 return; 2391 return;
2055 2392
2393 EV_FREQUENT_CHECK;
2394
2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2057 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2397
2398 EV_FREQUENT_CHECK;
2058} 2399}
2059 2400
2060#if EV_STAT_ENABLE 2401#if EV_STAT_ENABLE
2061 2402
2062# ifdef _WIN32 2403# ifdef _WIN32
2080 if (w->wd < 0) 2421 if (w->wd < 0)
2081 { 2422 {
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2423 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2083 2424
2084 /* monitor some parent directory for speedup hints */ 2425 /* monitor some parent directory for speedup hints */
2426 /* note that exceeding the hardcoded limit is not a correctness issue, */
2427 /* but an efficiency issue only */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2428 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 { 2429 {
2087 char path [4096]; 2430 char path [4096];
2088 strcpy (path, w->path); 2431 strcpy (path, w->path);
2089 2432
2288 else 2631 else
2289#endif 2632#endif
2290 ev_timer_start (EV_A_ &w->timer); 2633 ev_timer_start (EV_A_ &w->timer);
2291 2634
2292 ev_start (EV_A_ (W)w, 1); 2635 ev_start (EV_A_ (W)w, 1);
2636
2637 EV_FREQUENT_CHECK;
2293} 2638}
2294 2639
2295void 2640void
2296ev_stat_stop (EV_P_ ev_stat *w) 2641ev_stat_stop (EV_P_ ev_stat *w)
2297{ 2642{
2298 clear_pending (EV_A_ (W)w); 2643 clear_pending (EV_A_ (W)w);
2299 if (expect_false (!ev_is_active (w))) 2644 if (expect_false (!ev_is_active (w)))
2300 return; 2645 return;
2301 2646
2647 EV_FREQUENT_CHECK;
2648
2302#if EV_USE_INOTIFY 2649#if EV_USE_INOTIFY
2303 infy_del (EV_A_ w); 2650 infy_del (EV_A_ w);
2304#endif 2651#endif
2305 ev_timer_stop (EV_A_ &w->timer); 2652 ev_timer_stop (EV_A_ &w->timer);
2306 2653
2307 ev_stop (EV_A_ (W)w); 2654 ev_stop (EV_A_ (W)w);
2655
2656 EV_FREQUENT_CHECK;
2308} 2657}
2309#endif 2658#endif
2310 2659
2311#if EV_IDLE_ENABLE 2660#if EV_IDLE_ENABLE
2312void 2661void
2314{ 2663{
2315 if (expect_false (ev_is_active (w))) 2664 if (expect_false (ev_is_active (w)))
2316 return; 2665 return;
2317 2666
2318 pri_adjust (EV_A_ (W)w); 2667 pri_adjust (EV_A_ (W)w);
2668
2669 EV_FREQUENT_CHECK;
2319 2670
2320 { 2671 {
2321 int active = ++idlecnt [ABSPRI (w)]; 2672 int active = ++idlecnt [ABSPRI (w)];
2322 2673
2323 ++idleall; 2674 ++idleall;
2324 ev_start (EV_A_ (W)w, active); 2675 ev_start (EV_A_ (W)w, active);
2325 2676
2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2677 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2327 idles [ABSPRI (w)][active - 1] = w; 2678 idles [ABSPRI (w)][active - 1] = w;
2328 } 2679 }
2680
2681 EV_FREQUENT_CHECK;
2329} 2682}
2330 2683
2331void 2684void
2332ev_idle_stop (EV_P_ ev_idle *w) 2685ev_idle_stop (EV_P_ ev_idle *w)
2333{ 2686{
2334 clear_pending (EV_A_ (W)w); 2687 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 2688 if (expect_false (!ev_is_active (w)))
2336 return; 2689 return;
2337 2690
2691 EV_FREQUENT_CHECK;
2692
2338 { 2693 {
2339 int active = ((W)w)->active; 2694 int active = ev_active (w);
2340 2695
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2696 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2697 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2343 2698
2344 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
2345 --idleall; 2700 --idleall;
2346 } 2701 }
2702
2703 EV_FREQUENT_CHECK;
2347} 2704}
2348#endif 2705#endif
2349 2706
2350void 2707void
2351ev_prepare_start (EV_P_ ev_prepare *w) 2708ev_prepare_start (EV_P_ ev_prepare *w)
2352{ 2709{
2353 if (expect_false (ev_is_active (w))) 2710 if (expect_false (ev_is_active (w)))
2354 return; 2711 return;
2712
2713 EV_FREQUENT_CHECK;
2355 2714
2356 ev_start (EV_A_ (W)w, ++preparecnt); 2715 ev_start (EV_A_ (W)w, ++preparecnt);
2357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2358 prepares [preparecnt - 1] = w; 2717 prepares [preparecnt - 1] = w;
2718
2719 EV_FREQUENT_CHECK;
2359} 2720}
2360 2721
2361void 2722void
2362ev_prepare_stop (EV_P_ ev_prepare *w) 2723ev_prepare_stop (EV_P_ ev_prepare *w)
2363{ 2724{
2364 clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2366 return; 2727 return;
2367 2728
2729 EV_FREQUENT_CHECK;
2730
2368 { 2731 {
2369 int active = ((W)w)->active; 2732 int active = ev_active (w);
2733
2370 prepares [active - 1] = prepares [--preparecnt]; 2734 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active; 2735 ev_active (prepares [active - 1]) = active;
2372 } 2736 }
2373 2737
2374 ev_stop (EV_A_ (W)w); 2738 ev_stop (EV_A_ (W)w);
2739
2740 EV_FREQUENT_CHECK;
2375} 2741}
2376 2742
2377void 2743void
2378ev_check_start (EV_P_ ev_check *w) 2744ev_check_start (EV_P_ ev_check *w)
2379{ 2745{
2380 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
2381 return; 2747 return;
2748
2749 EV_FREQUENT_CHECK;
2382 2750
2383 ev_start (EV_A_ (W)w, ++checkcnt); 2751 ev_start (EV_A_ (W)w, ++checkcnt);
2384 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2752 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2385 checks [checkcnt - 1] = w; 2753 checks [checkcnt - 1] = w;
2754
2755 EV_FREQUENT_CHECK;
2386} 2756}
2387 2757
2388void 2758void
2389ev_check_stop (EV_P_ ev_check *w) 2759ev_check_stop (EV_P_ ev_check *w)
2390{ 2760{
2391 clear_pending (EV_A_ (W)w); 2761 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w))) 2762 if (expect_false (!ev_is_active (w)))
2393 return; 2763 return;
2394 2764
2765 EV_FREQUENT_CHECK;
2766
2395 { 2767 {
2396 int active = ((W)w)->active; 2768 int active = ev_active (w);
2769
2397 checks [active - 1] = checks [--checkcnt]; 2770 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active; 2771 ev_active (checks [active - 1]) = active;
2399 } 2772 }
2400 2773
2401 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2402} 2777}
2403 2778
2404#if EV_EMBED_ENABLE 2779#if EV_EMBED_ENABLE
2405void noinline 2780void noinline
2406ev_embed_sweep (EV_P_ ev_embed *w) 2781ev_embed_sweep (EV_P_ ev_embed *w)
2453 struct ev_loop *loop = w->other; 2828 struct ev_loop *loop = w->other;
2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2456 } 2831 }
2457 2832
2833 EV_FREQUENT_CHECK;
2834
2458 ev_set_priority (&w->io, ev_priority (w)); 2835 ev_set_priority (&w->io, ev_priority (w));
2459 ev_io_start (EV_A_ &w->io); 2836 ev_io_start (EV_A_ &w->io);
2460 2837
2461 ev_prepare_init (&w->prepare, embed_prepare_cb); 2838 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI); 2839 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare); 2840 ev_prepare_start (EV_A_ &w->prepare);
2464 2841
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466 2843
2467 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2845
2846 EV_FREQUENT_CHECK;
2468} 2847}
2469 2848
2470void 2849void
2471ev_embed_stop (EV_P_ ev_embed *w) 2850ev_embed_stop (EV_P_ ev_embed *w)
2472{ 2851{
2473 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2474 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2475 return; 2854 return;
2476 2855
2856 EV_FREQUENT_CHECK;
2857
2477 ev_io_stop (EV_A_ &w->io); 2858 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare); 2859 ev_prepare_stop (EV_A_ &w->prepare);
2479 2860
2480 ev_stop (EV_A_ (W)w); 2861 ev_stop (EV_A_ (W)w);
2862
2863 EV_FREQUENT_CHECK;
2481} 2864}
2482#endif 2865#endif
2483 2866
2484#if EV_FORK_ENABLE 2867#if EV_FORK_ENABLE
2485void 2868void
2486ev_fork_start (EV_P_ ev_fork *w) 2869ev_fork_start (EV_P_ ev_fork *w)
2487{ 2870{
2488 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
2489 return; 2872 return;
2873
2874 EV_FREQUENT_CHECK;
2490 2875
2491 ev_start (EV_A_ (W)w, ++forkcnt); 2876 ev_start (EV_A_ (W)w, ++forkcnt);
2492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2877 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2493 forks [forkcnt - 1] = w; 2878 forks [forkcnt - 1] = w;
2879
2880 EV_FREQUENT_CHECK;
2494} 2881}
2495 2882
2496void 2883void
2497ev_fork_stop (EV_P_ ev_fork *w) 2884ev_fork_stop (EV_P_ ev_fork *w)
2498{ 2885{
2499 clear_pending (EV_A_ (W)w); 2886 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 2887 if (expect_false (!ev_is_active (w)))
2501 return; 2888 return;
2502 2889
2890 EV_FREQUENT_CHECK;
2891
2503 { 2892 {
2504 int active = ((W)w)->active; 2893 int active = ev_active (w);
2894
2505 forks [active - 1] = forks [--forkcnt]; 2895 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active; 2896 ev_active (forks [active - 1]) = active;
2507 } 2897 }
2508 2898
2509 ev_stop (EV_A_ (W)w); 2899 ev_stop (EV_A_ (W)w);
2900
2901 EV_FREQUENT_CHECK;
2510} 2902}
2511#endif 2903#endif
2512 2904
2513#if EV_ASYNC_ENABLE 2905#if EV_ASYNC_ENABLE
2514void 2906void
2516{ 2908{
2517 if (expect_false (ev_is_active (w))) 2909 if (expect_false (ev_is_active (w)))
2518 return; 2910 return;
2519 2911
2520 evpipe_init (EV_A); 2912 evpipe_init (EV_A);
2913
2914 EV_FREQUENT_CHECK;
2521 2915
2522 ev_start (EV_A_ (W)w, ++asynccnt); 2916 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2917 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w; 2918 asyncs [asynccnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2525} 2921}
2526 2922
2527void 2923void
2528ev_async_stop (EV_P_ ev_async *w) 2924ev_async_stop (EV_P_ ev_async *w)
2529{ 2925{
2530 clear_pending (EV_A_ (W)w); 2926 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w))) 2927 if (expect_false (!ev_is_active (w)))
2532 return; 2928 return;
2533 2929
2930 EV_FREQUENT_CHECK;
2931
2534 { 2932 {
2535 int active = ((W)w)->active; 2933 int active = ev_active (w);
2934
2536 asyncs [active - 1] = asyncs [--asynccnt]; 2935 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active; 2936 ev_active (asyncs [active - 1]) = active;
2538 } 2937 }
2539 2938
2540 ev_stop (EV_A_ (W)w); 2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2541} 2942}
2542 2943
2543void 2944void
2544ev_async_send (EV_P_ ev_async *w) 2945ev_async_send (EV_P_ ev_async *w)
2545{ 2946{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines