ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC vs.
Revision 1.255 by root, Mon Jun 9 14:11:30 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
164#endif 164#endif
165 165
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
167 167
168#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
169# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
170#endif 174#endif
171 175
172#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
174#endif 178#endif
175 179
176#ifndef EV_USE_NANOSLEEP 180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
177# define EV_USE_NANOSLEEP 0 184# define EV_USE_NANOSLEEP 0
185# endif
178#endif 186#endif
179 187
180#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
182#endif 190#endif
235# else 243# else
236# define EV_USE_EVENTFD 0 244# define EV_USE_EVENTFD 0
237# endif 245# endif
238#endif 246#endif
239 247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
264#endif
265
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 267
242#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 269# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 270# define EV_USE_MONOTONIC 0
268# include <winsock.h> 294# include <winsock.h>
269#endif 295#endif
270 296
271#if EV_USE_EVENTFD 297#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h>
300# ifdef __cplusplus
301extern "C" {
302# endif
273int eventfd (unsigned int initval, int flags); 303int eventfd (unsigned int initval, int flags);
304# ifdef __cplusplus
305}
306# endif
274#endif 307#endif
275 308
276/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
277 316
278/* 317/*
279 * This is used to avoid floating point rounding problems. 318 * This is used to avoid floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics 319 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding 320 * to ensure progress, time-wise, even when rounding
293# define expect(expr,value) __builtin_expect ((expr),(value)) 332# define expect(expr,value) __builtin_expect ((expr),(value))
294# define noinline __attribute__ ((noinline)) 333# define noinline __attribute__ ((noinline))
295#else 334#else
296# define expect(expr,value) (expr) 335# define expect(expr,value) (expr)
297# define noinline 336# define noinline
298# if __STDC_VERSION__ < 199901L 337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
299# define inline 338# define inline
300# endif 339# endif
301#endif 340#endif
302 341
303#define expect_false(expr) expect ((expr) != 0, 0) 342#define expect_false(expr) expect ((expr) != 0, 0)
318 357
319typedef ev_watcher *W; 358typedef ev_watcher *W;
320typedef ev_watcher_list *WL; 359typedef ev_watcher_list *WL;
321typedef ev_watcher_time *WT; 360typedef ev_watcher_time *WT;
322 361
362#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at
364
323#if EV_USE_MONOTONIC 365#if EV_USE_MONOTONIC
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */ 367/* giving it a reasonably high chance of working on typical architetcures */
326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
327#endif 369#endif
353 perror (msg); 395 perror (msg);
354 abort (); 396 abort ();
355 } 397 }
356} 398}
357 399
400static void *
401ev_realloc_emul (void *ptr, long size)
402{
403 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and
405 * the single unix specification, so work around them here.
406 */
407
408 if (size)
409 return realloc (ptr, size);
410
411 free (ptr);
412 return 0;
413}
414
358static void *(*alloc)(void *ptr, long size); 415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
359 416
360void 417void
361ev_set_allocator (void *(*cb)(void *ptr, long size)) 418ev_set_allocator (void *(*cb)(void *ptr, long size))
362{ 419{
363 alloc = cb; 420 alloc = cb;
364} 421}
365 422
366inline_speed void * 423inline_speed void *
367ev_realloc (void *ptr, long size) 424ev_realloc (void *ptr, long size)
368{ 425{
369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 426 ptr = alloc (ptr, size);
370 427
371 if (!ptr && size) 428 if (!ptr && size)
372 { 429 {
373 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
374 abort (); 431 abort ();
397 W w; 454 W w;
398 int events; 455 int events;
399} ANPENDING; 456} ANPENDING;
400 457
401#if EV_USE_INOTIFY 458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
402typedef struct 460typedef struct
403{ 461{
404 WL head; 462 WL head;
405} ANFS; 463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
406#endif 482#endif
407 483
408#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
409 485
410 struct ev_loop 486 struct ev_loop
495 } 571 }
496} 572}
497 573
498/*****************************************************************************/ 574/*****************************************************************************/
499 575
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577
500int inline_size 578int inline_size
501array_nextsize (int elem, int cur, int cnt) 579array_nextsize (int elem, int cur, int cnt)
502{ 580{
503 int ncur = cur + 1; 581 int ncur = cur + 1;
504 582
505 do 583 do
506 ncur <<= 1; 584 ncur <<= 1;
507 while (cnt > ncur); 585 while (cnt > ncur);
508 586
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096) 588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
511 { 589 {
512 ncur *= elem; 590 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
514 ncur = ncur - sizeof (void *) * 4; 592 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem; 593 ncur /= elem;
516 } 594 }
517 595
518 return ncur; 596 return ncur;
629 events |= (unsigned char)w->events; 707 events |= (unsigned char)w->events;
630 708
631#if EV_SELECT_IS_WINSOCKET 709#if EV_SELECT_IS_WINSOCKET
632 if (events) 710 if (events)
633 { 711 {
634 unsigned long argp; 712 unsigned long arg;
635 #ifdef EV_FD_TO_WIN32_HANDLE 713 #ifdef EV_FD_TO_WIN32_HANDLE
636 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
637 #else 715 #else
638 anfd->handle = _get_osfhandle (fd); 716 anfd->handle = _get_osfhandle (fd);
639 #endif 717 #endif
640 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
641 } 719 }
642#endif 720#endif
643 721
644 { 722 {
645 unsigned char o_events = anfd->events; 723 unsigned char o_events = anfd->events;
698{ 776{
699 int fd; 777 int fd;
700 778
701 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
702 if (anfds [fd].events) 780 if (anfds [fd].events)
703 if (!fd_valid (fd) == -1 && errno == EBADF) 781 if (!fd_valid (fd) && errno == EBADF)
704 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
705} 783}
706 784
707/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
708static void noinline 786static void noinline
732 } 810 }
733} 811}
734 812
735/*****************************************************************************/ 813/*****************************************************************************/
736 814
815/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree.
819 */
820
821/*
822 * at the moment we allow libev the luxury of two heaps,
823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
824 * which is more cache-efficient.
825 * the difference is about 5% with 50000+ watchers.
826 */
827#if EV_USE_4HEAP
828
829#define DHEAP 4
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
833
834/* away from the root */
737void inline_speed 835void inline_speed
738upheap (WT *heap, int k) 836downheap (ANHE *heap, int N, int k)
739{ 837{
740 WT w = heap [k]; 838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
741 840
742 while (k) 841 for (;;)
743 { 842 {
744 int p = (k - 1) >> 1; 843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
745 846
746 if (heap [p]->at <= w->at) 847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
849 {
850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
747 break; 863 break;
748 864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
903 heap [k] = heap [c];
904 ev_active (ANHE_w (heap [k])) = k;
905
906 k = c;
907 }
908
909 heap [k] = he;
910 ev_active (ANHE_w (he)) = k;
911}
912#endif
913
914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
749 heap [k] = heap [p]; 927 heap [k] = heap [p];
750 ((W)heap [k])->active = k + 1; 928 ev_active (ANHE_w (heap [k])) = k;
751 k = p; 929 k = p;
752 } 930 }
753 931
754 heap [k] = w; 932 heap [k] = he;
755 ((W)heap [k])->active = k + 1; 933 ev_active (ANHE_w (he)) = k;
756}
757
758void inline_speed
759downheap (WT *heap, int N, int k)
760{
761 WT w = heap [k];
762
763 for (;;)
764 {
765 int c = (k << 1) + 1;
766
767 if (c >= N)
768 break;
769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
776 heap [k] = heap [c];
777 ((W)heap [k])->active = k + 1;
778
779 k = c;
780 }
781
782 heap [k] = w;
783 ((W)heap [k])->active = k + 1;
784} 934}
785 935
786void inline_size 936void inline_size
787adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
788{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
789 upheap (heap, k); 940 upheap (heap, k);
941 else
790 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
791} 955}
792 956
793/*****************************************************************************/ 957/*****************************************************************************/
794 958
795typedef struct 959typedef struct
819 983
820void inline_speed 984void inline_speed
821fd_intern (int fd) 985fd_intern (int fd)
822{ 986{
823#ifdef _WIN32 987#ifdef _WIN32
824 int arg = 1; 988 unsigned long arg = 1;
825 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
826#else 990#else
827 fcntl (fd, F_SETFD, FD_CLOEXEC); 991 fcntl (fd, F_SETFD, FD_CLOEXEC);
828 fcntl (fd, F_SETFL, O_NONBLOCK); 992 fcntl (fd, F_SETFL, O_NONBLOCK);
829#endif 993#endif
884pipecb (EV_P_ ev_io *iow, int revents) 1048pipecb (EV_P_ ev_io *iow, int revents)
885{ 1049{
886#if EV_USE_EVENTFD 1050#if EV_USE_EVENTFD
887 if (evfd >= 0) 1051 if (evfd >= 0)
888 { 1052 {
889 uint64_t counter = 1; 1053 uint64_t counter;
890 read (evfd, &counter, sizeof (uint64_t)); 1054 read (evfd, &counter, sizeof (uint64_t));
891 } 1055 }
892 else 1056 else
893#endif 1057#endif
894 { 1058 {
1163 if (!(flags & EVFLAG_NOENV) 1327 if (!(flags & EVFLAG_NOENV)
1164 && !enable_secure () 1328 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS")) 1329 && getenv ("LIBEV_FLAGS"))
1166 flags = atoi (getenv ("LIBEV_FLAGS")); 1330 flags = atoi (getenv ("LIBEV_FLAGS"));
1167 1331
1168 if (!(flags & 0x0000ffffUL)) 1332 if (!(flags & 0x0000ffffU))
1169 flags |= ev_recommended_backends (); 1333 flags |= ev_recommended_backends ();
1170 1334
1171#if EV_USE_PORT 1335#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif 1337#endif
1261#endif 1425#endif
1262 1426
1263 backend = 0; 1427 backend = 0;
1264} 1428}
1265 1429
1430#if EV_USE_INOTIFY
1266void inline_size infy_fork (EV_P); 1431void inline_size infy_fork (EV_P);
1432#endif
1267 1433
1268void inline_size 1434void inline_size
1269loop_fork (EV_P) 1435loop_fork (EV_P)
1270{ 1436{
1271#if EV_USE_PORT 1437#if EV_USE_PORT
1311 1477
1312 postfork = 0; 1478 postfork = 0;
1313} 1479}
1314 1480
1315#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1316struct ev_loop * 1483struct ev_loop *
1317ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1318{ 1485{
1319 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1320 1487
1339ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1340{ 1507{
1341 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1342} 1509}
1343 1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1344#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1345 1611
1346#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1347struct ev_loop * 1613struct ev_loop *
1348ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1349#else 1615#else
1425 { 1691 {
1426 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1427 1693
1428 p->w->pending = 0; 1694 p->w->pending = 0;
1429 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1430 } 1697 }
1431 } 1698 }
1432} 1699}
1433
1434void inline_size
1435timers_reify (EV_P)
1436{
1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1438 {
1439 ev_timer *w = (ev_timer *)timers [0];
1440
1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1442
1443 /* first reschedule or stop timer */
1444 if (w->repeat)
1445 {
1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1447
1448 ((WT)w)->at += w->repeat;
1449 if (((WT)w)->at < mn_now)
1450 ((WT)w)->at = mn_now;
1451
1452 downheap (timers, timercnt, 0);
1453 }
1454 else
1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1456
1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1458 }
1459}
1460
1461#if EV_PERIODIC_ENABLE
1462void inline_size
1463periodics_reify (EV_P)
1464{
1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1466 {
1467 ev_periodic *w = (ev_periodic *)periodics [0];
1468
1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1470
1471 /* first reschedule or stop timer */
1472 if (w->reschedule_cb)
1473 {
1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1476 downheap (periodics, periodiccnt, 0);
1477 }
1478 else if (w->interval)
1479 {
1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else
1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1487
1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1489 }
1490}
1491
1492static void noinline
1493periodics_reschedule (EV_P)
1494{
1495 int i;
1496
1497 /* adjust periodics after time jump */
1498 for (i = 0; i < periodiccnt; ++i)
1499 {
1500 ev_periodic *w = (ev_periodic *)periodics [i];
1501
1502 if (w->reschedule_cb)
1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1504 else if (w->interval)
1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1506 }
1507
1508 /* now rebuild the heap */
1509 for (i = periodiccnt >> 1; i--; )
1510 downheap (periodics, periodiccnt, i);
1511}
1512#endif
1513 1700
1514#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1515void inline_size 1702void inline_size
1516idle_reify (EV_P) 1703idle_reify (EV_P)
1517{ 1704{
1529 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1716 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1530 break; 1717 break;
1531 } 1718 }
1532 } 1719 }
1533 } 1720 }
1721}
1722#endif
1723
1724void inline_size
1725timers_reify (EV_P)
1726{
1727 EV_FREQUENT_CHECK;
1728
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743
1744 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0);
1746 }
1747 else
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749
1750 EV_FREQUENT_CHECK;
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 }
1753}
1754
1755#if EV_PERIODIC_ENABLE
1756void inline_size
1757periodics_reify (EV_P)
1758{
1759 EV_FREQUENT_CHECK;
1760
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0);
1776 }
1777 else if (w->interval)
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1801 }
1802}
1803
1804static void noinline
1805periodics_reschedule (EV_P)
1806{
1807 int i;
1808
1809 /* adjust periodics after time jump */
1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1811 {
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813
1814 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1818
1819 ANHE_at_cache (periodics [i]);
1820 }
1821
1822 reheap (periodics, periodiccnt);
1534} 1823}
1535#endif 1824#endif
1536 1825
1537void inline_speed 1826void inline_speed
1538time_update (EV_P_ ev_tstamp max_block) 1827time_update (EV_P_ ev_tstamp max_block)
1567 */ 1856 */
1568 for (i = 4; --i; ) 1857 for (i = 4; --i; )
1569 { 1858 {
1570 rtmn_diff = ev_rt_now - mn_now; 1859 rtmn_diff = ev_rt_now - mn_now;
1571 1860
1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1573 return; /* all is well */ 1862 return; /* all is well */
1574 1863
1575 ev_rt_now = ev_time (); 1864 ev_rt_now = ev_time ();
1576 mn_now = get_clock (); 1865 mn_now = get_clock ();
1577 now_floor = mn_now; 1866 now_floor = mn_now;
1593#if EV_PERIODIC_ENABLE 1882#if EV_PERIODIC_ENABLE
1594 periodics_reschedule (EV_A); 1883 periodics_reschedule (EV_A);
1595#endif 1884#endif
1596 /* adjust timers. this is easy, as the offset is the same for all of them */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1597 for (i = 0; i < timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1598 ((WT)timers [i])->at += ev_rt_now - mn_now; 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1599 } 1892 }
1600 1893
1601 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1602 } 1895 }
1603} 1896}
1623 1916
1624 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1625 1918
1626 do 1919 do
1627 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1628#ifndef _WIN32 1925#ifndef _WIN32
1629 if (expect_false (curpid)) /* penalise the forking check even more */ 1926 if (expect_false (curpid)) /* penalise the forking check even more */
1630 if (expect_false (getpid () != curpid)) 1927 if (expect_false (getpid () != curpid))
1631 { 1928 {
1632 curpid = getpid (); 1929 curpid = getpid ();
1673 1970
1674 waittime = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1675 1972
1676 if (timercnt) 1973 if (timercnt)
1677 { 1974 {
1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1679 if (waittime > to) waittime = to; 1976 if (waittime > to) waittime = to;
1680 } 1977 }
1681 1978
1682#if EV_PERIODIC_ENABLE 1979#if EV_PERIODIC_ENABLE
1683 if (periodiccnt) 1980 if (periodiccnt)
1684 { 1981 {
1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1686 if (waittime > to) waittime = to; 1983 if (waittime > to) waittime = to;
1687 } 1984 }
1688#endif 1985#endif
1689 1986
1690 if (expect_false (waittime < timeout_blocktime)) 1987 if (expect_false (waittime < timeout_blocktime))
1827 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1828 return; 2125 return;
1829 2126
1830 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1831 2128
2129 EV_FREQUENT_CHECK;
2130
1832 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1834 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1835 2134
1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1837 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1838} 2139}
1839 2140
1840void noinline 2141void noinline
1841ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1842{ 2143{
1843 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1844 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1845 return; 2146 return;
1846 2147
1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
1848 2151
1849 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1850 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1851 2154
1852 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1853} 2158}
1854 2159
1855void noinline 2160void noinline
1856ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1857{ 2162{
1858 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1859 return; 2164 return;
1860 2165
1861 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1862 2167
1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1864 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1865 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1867 timers [timercnt - 1] = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1868 upheap (timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1869 2178
2179 EV_FREQUENT_CHECK;
2180
1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1871} 2182}
1872 2183
1873void noinline 2184void noinline
1874ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1875{ 2186{
1876 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1877 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1878 return; 2189 return;
1879 2190
1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2191 EV_FREQUENT_CHECK;
1881 2192
1882 { 2193 {
1883 int active = ((W)w)->active; 2194 int active = ev_active (w);
1884 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1885 if (expect_true (--active < --timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1886 { 2201 {
1887 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1888 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1889 } 2204 }
1890 } 2205 }
1891 2206
1892 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1893 2210
1894 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1895} 2212}
1896 2213
1897void noinline 2214void noinline
1898ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1899{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1900 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1901 { 2220 {
1902 if (w->repeat) 2221 if (w->repeat)
1903 { 2222 {
1904 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1905 adjustheap (timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1906 } 2226 }
1907 else 2227 else
1908 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1909 } 2229 }
1910 else if (w->repeat) 2230 else if (w->repeat)
1911 { 2231 {
1912 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1913 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1914 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1915} 2237}
1916 2238
1917#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1918void noinline 2240void noinline
1919ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1920{ 2242{
1921 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1922 return; 2244 return;
1923 2245
1924 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1926 else if (w->interval) 2248 else if (w->interval)
1927 { 2249 {
1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1929 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1931 } 2253 }
1932 else 2254 else
1933 ((WT)w)->at = w->offset; 2255 ev_at (w) = w->offset;
1934 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1935 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1937 periodics [periodiccnt - 1] = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1938 upheap (periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1939 2265
2266 EV_FREQUENT_CHECK;
2267
1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1941} 2269}
1942 2270
1943void noinline 2271void noinline
1944ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1945{ 2273{
1946 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1948 return; 2276 return;
1949 2277
1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2278 EV_FREQUENT_CHECK;
1951 2279
1952 { 2280 {
1953 int active = ((W)w)->active; 2281 int active = ev_active (w);
1954 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1955 if (expect_true (--active < --periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1956 { 2288 {
1957 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1958 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1959 } 2291 }
1960 } 2292 }
1961 2293
2294 EV_FREQUENT_CHECK;
2295
1962 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1963} 2297}
1964 2298
1965void noinline 2299void noinline
1966ev_periodic_again (EV_P_ ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1985 return; 2319 return;
1986 2320
1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1988 2322
1989 evpipe_init (EV_A); 2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
1990 2326
1991 { 2327 {
1992#ifndef _WIN32 2328#ifndef _WIN32
1993 sigset_t full, prev; 2329 sigset_t full, prev;
1994 sigfillset (&full); 2330 sigfillset (&full);
2015 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2017 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
2018#endif 2354#endif
2019 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
2020} 2358}
2021 2359
2022void noinline 2360void noinline
2023ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
2024{ 2362{
2025 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
2027 return; 2365 return;
2028 2366
2367 EV_FREQUENT_CHECK;
2368
2029 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
2030 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
2031 2371
2032 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
2033 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
2034} 2376}
2035 2377
2036void 2378void
2037ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
2038{ 2380{
2040 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2041#endif 2383#endif
2042 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
2043 return; 2385 return;
2044 2386
2387 EV_FREQUENT_CHECK;
2388
2045 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
2047} 2393}
2048 2394
2049void 2395void
2050ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
2051{ 2397{
2052 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2054 return; 2400 return;
2055 2401
2402 EV_FREQUENT_CHECK;
2403
2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2057 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
2058} 2408}
2059 2409
2060#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
2061 2411
2062# ifdef _WIN32 2412# ifdef _WIN32
2080 if (w->wd < 0) 2430 if (w->wd < 0)
2081 { 2431 {
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2083 2433
2084 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 { 2438 {
2087 char path [4096]; 2439 char path [4096];
2088 strcpy (path, w->path); 2440 strcpy (path, w->path);
2089 2441
2215 } 2567 }
2216 2568
2217 } 2569 }
2218} 2570}
2219 2571
2572#endif
2573
2574#ifdef _WIN32
2575# define EV_LSTAT(p,b) _stati64 (p, b)
2576#else
2577# define EV_LSTAT(p,b) lstat (p, b)
2220#endif 2578#endif
2221 2579
2222void 2580void
2223ev_stat_stat (EV_P_ ev_stat *w) 2581ev_stat_stat (EV_P_ ev_stat *w)
2224{ 2582{
2288 else 2646 else
2289#endif 2647#endif
2290 ev_timer_start (EV_A_ &w->timer); 2648 ev_timer_start (EV_A_ &w->timer);
2291 2649
2292 ev_start (EV_A_ (W)w, 1); 2650 ev_start (EV_A_ (W)w, 1);
2651
2652 EV_FREQUENT_CHECK;
2293} 2653}
2294 2654
2295void 2655void
2296ev_stat_stop (EV_P_ ev_stat *w) 2656ev_stat_stop (EV_P_ ev_stat *w)
2297{ 2657{
2298 clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
2299 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
2300 return; 2660 return;
2301 2661
2662 EV_FREQUENT_CHECK;
2663
2302#if EV_USE_INOTIFY 2664#if EV_USE_INOTIFY
2303 infy_del (EV_A_ w); 2665 infy_del (EV_A_ w);
2304#endif 2666#endif
2305 ev_timer_stop (EV_A_ &w->timer); 2667 ev_timer_stop (EV_A_ &w->timer);
2306 2668
2307 ev_stop (EV_A_ (W)w); 2669 ev_stop (EV_A_ (W)w);
2670
2671 EV_FREQUENT_CHECK;
2308} 2672}
2309#endif 2673#endif
2310 2674
2311#if EV_IDLE_ENABLE 2675#if EV_IDLE_ENABLE
2312void 2676void
2314{ 2678{
2315 if (expect_false (ev_is_active (w))) 2679 if (expect_false (ev_is_active (w)))
2316 return; 2680 return;
2317 2681
2318 pri_adjust (EV_A_ (W)w); 2682 pri_adjust (EV_A_ (W)w);
2683
2684 EV_FREQUENT_CHECK;
2319 2685
2320 { 2686 {
2321 int active = ++idlecnt [ABSPRI (w)]; 2687 int active = ++idlecnt [ABSPRI (w)];
2322 2688
2323 ++idleall; 2689 ++idleall;
2324 ev_start (EV_A_ (W)w, active); 2690 ev_start (EV_A_ (W)w, active);
2325 2691
2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2692 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2327 idles [ABSPRI (w)][active - 1] = w; 2693 idles [ABSPRI (w)][active - 1] = w;
2328 } 2694 }
2695
2696 EV_FREQUENT_CHECK;
2329} 2697}
2330 2698
2331void 2699void
2332ev_idle_stop (EV_P_ ev_idle *w) 2700ev_idle_stop (EV_P_ ev_idle *w)
2333{ 2701{
2334 clear_pending (EV_A_ (W)w); 2702 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 2703 if (expect_false (!ev_is_active (w)))
2336 return; 2704 return;
2337 2705
2706 EV_FREQUENT_CHECK;
2707
2338 { 2708 {
2339 int active = ((W)w)->active; 2709 int active = ev_active (w);
2340 2710
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2711 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2712 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2343 2713
2344 ev_stop (EV_A_ (W)w); 2714 ev_stop (EV_A_ (W)w);
2345 --idleall; 2715 --idleall;
2346 } 2716 }
2717
2718 EV_FREQUENT_CHECK;
2347} 2719}
2348#endif 2720#endif
2349 2721
2350void 2722void
2351ev_prepare_start (EV_P_ ev_prepare *w) 2723ev_prepare_start (EV_P_ ev_prepare *w)
2352{ 2724{
2353 if (expect_false (ev_is_active (w))) 2725 if (expect_false (ev_is_active (w)))
2354 return; 2726 return;
2727
2728 EV_FREQUENT_CHECK;
2355 2729
2356 ev_start (EV_A_ (W)w, ++preparecnt); 2730 ev_start (EV_A_ (W)w, ++preparecnt);
2357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2731 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2358 prepares [preparecnt - 1] = w; 2732 prepares [preparecnt - 1] = w;
2733
2734 EV_FREQUENT_CHECK;
2359} 2735}
2360 2736
2361void 2737void
2362ev_prepare_stop (EV_P_ ev_prepare *w) 2738ev_prepare_stop (EV_P_ ev_prepare *w)
2363{ 2739{
2364 clear_pending (EV_A_ (W)w); 2740 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 2741 if (expect_false (!ev_is_active (w)))
2366 return; 2742 return;
2367 2743
2744 EV_FREQUENT_CHECK;
2745
2368 { 2746 {
2369 int active = ((W)w)->active; 2747 int active = ev_active (w);
2748
2370 prepares [active - 1] = prepares [--preparecnt]; 2749 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active; 2750 ev_active (prepares [active - 1]) = active;
2372 } 2751 }
2373 2752
2374 ev_stop (EV_A_ (W)w); 2753 ev_stop (EV_A_ (W)w);
2754
2755 EV_FREQUENT_CHECK;
2375} 2756}
2376 2757
2377void 2758void
2378ev_check_start (EV_P_ ev_check *w) 2759ev_check_start (EV_P_ ev_check *w)
2379{ 2760{
2380 if (expect_false (ev_is_active (w))) 2761 if (expect_false (ev_is_active (w)))
2381 return; 2762 return;
2763
2764 EV_FREQUENT_CHECK;
2382 2765
2383 ev_start (EV_A_ (W)w, ++checkcnt); 2766 ev_start (EV_A_ (W)w, ++checkcnt);
2384 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2767 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2385 checks [checkcnt - 1] = w; 2768 checks [checkcnt - 1] = w;
2769
2770 EV_FREQUENT_CHECK;
2386} 2771}
2387 2772
2388void 2773void
2389ev_check_stop (EV_P_ ev_check *w) 2774ev_check_stop (EV_P_ ev_check *w)
2390{ 2775{
2391 clear_pending (EV_A_ (W)w); 2776 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w))) 2777 if (expect_false (!ev_is_active (w)))
2393 return; 2778 return;
2394 2779
2780 EV_FREQUENT_CHECK;
2781
2395 { 2782 {
2396 int active = ((W)w)->active; 2783 int active = ev_active (w);
2784
2397 checks [active - 1] = checks [--checkcnt]; 2785 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active; 2786 ev_active (checks [active - 1]) = active;
2399 } 2787 }
2400 2788
2401 ev_stop (EV_A_ (W)w); 2789 ev_stop (EV_A_ (W)w);
2790
2791 EV_FREQUENT_CHECK;
2402} 2792}
2403 2793
2404#if EV_EMBED_ENABLE 2794#if EV_EMBED_ENABLE
2405void noinline 2795void noinline
2406ev_embed_sweep (EV_P_ ev_embed *w) 2796ev_embed_sweep (EV_P_ ev_embed *w)
2453 struct ev_loop *loop = w->other; 2843 struct ev_loop *loop = w->other;
2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2844 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2845 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2456 } 2846 }
2457 2847
2848 EV_FREQUENT_CHECK;
2849
2458 ev_set_priority (&w->io, ev_priority (w)); 2850 ev_set_priority (&w->io, ev_priority (w));
2459 ev_io_start (EV_A_ &w->io); 2851 ev_io_start (EV_A_ &w->io);
2460 2852
2461 ev_prepare_init (&w->prepare, embed_prepare_cb); 2853 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI); 2854 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare); 2855 ev_prepare_start (EV_A_ &w->prepare);
2464 2856
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2857 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466 2858
2467 ev_start (EV_A_ (W)w, 1); 2859 ev_start (EV_A_ (W)w, 1);
2860
2861 EV_FREQUENT_CHECK;
2468} 2862}
2469 2863
2470void 2864void
2471ev_embed_stop (EV_P_ ev_embed *w) 2865ev_embed_stop (EV_P_ ev_embed *w)
2472{ 2866{
2473 clear_pending (EV_A_ (W)w); 2867 clear_pending (EV_A_ (W)w);
2474 if (expect_false (!ev_is_active (w))) 2868 if (expect_false (!ev_is_active (w)))
2475 return; 2869 return;
2476 2870
2871 EV_FREQUENT_CHECK;
2872
2477 ev_io_stop (EV_A_ &w->io); 2873 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare); 2874 ev_prepare_stop (EV_A_ &w->prepare);
2479 2875
2480 ev_stop (EV_A_ (W)w); 2876 ev_stop (EV_A_ (W)w);
2877
2878 EV_FREQUENT_CHECK;
2481} 2879}
2482#endif 2880#endif
2483 2881
2484#if EV_FORK_ENABLE 2882#if EV_FORK_ENABLE
2485void 2883void
2486ev_fork_start (EV_P_ ev_fork *w) 2884ev_fork_start (EV_P_ ev_fork *w)
2487{ 2885{
2488 if (expect_false (ev_is_active (w))) 2886 if (expect_false (ev_is_active (w)))
2489 return; 2887 return;
2888
2889 EV_FREQUENT_CHECK;
2490 2890
2491 ev_start (EV_A_ (W)w, ++forkcnt); 2891 ev_start (EV_A_ (W)w, ++forkcnt);
2492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2892 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2493 forks [forkcnt - 1] = w; 2893 forks [forkcnt - 1] = w;
2894
2895 EV_FREQUENT_CHECK;
2494} 2896}
2495 2897
2496void 2898void
2497ev_fork_stop (EV_P_ ev_fork *w) 2899ev_fork_stop (EV_P_ ev_fork *w)
2498{ 2900{
2499 clear_pending (EV_A_ (W)w); 2901 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 2902 if (expect_false (!ev_is_active (w)))
2501 return; 2903 return;
2502 2904
2905 EV_FREQUENT_CHECK;
2906
2503 { 2907 {
2504 int active = ((W)w)->active; 2908 int active = ev_active (w);
2909
2505 forks [active - 1] = forks [--forkcnt]; 2910 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active; 2911 ev_active (forks [active - 1]) = active;
2507 } 2912 }
2508 2913
2509 ev_stop (EV_A_ (W)w); 2914 ev_stop (EV_A_ (W)w);
2915
2916 EV_FREQUENT_CHECK;
2510} 2917}
2511#endif 2918#endif
2512 2919
2513#if EV_ASYNC_ENABLE 2920#if EV_ASYNC_ENABLE
2514void 2921void
2516{ 2923{
2517 if (expect_false (ev_is_active (w))) 2924 if (expect_false (ev_is_active (w)))
2518 return; 2925 return;
2519 2926
2520 evpipe_init (EV_A); 2927 evpipe_init (EV_A);
2928
2929 EV_FREQUENT_CHECK;
2521 2930
2522 ev_start (EV_A_ (W)w, ++asynccnt); 2931 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2932 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w; 2933 asyncs [asynccnt - 1] = w;
2934
2935 EV_FREQUENT_CHECK;
2525} 2936}
2526 2937
2527void 2938void
2528ev_async_stop (EV_P_ ev_async *w) 2939ev_async_stop (EV_P_ ev_async *w)
2529{ 2940{
2530 clear_pending (EV_A_ (W)w); 2941 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w))) 2942 if (expect_false (!ev_is_active (w)))
2532 return; 2943 return;
2533 2944
2945 EV_FREQUENT_CHECK;
2946
2534 { 2947 {
2535 int active = ((W)w)->active; 2948 int active = ev_active (w);
2949
2536 asyncs [active - 1] = asyncs [--asynccnt]; 2950 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active; 2951 ev_active (asyncs [active - 1]) = active;
2538 } 2952 }
2539 2953
2540 ev_stop (EV_A_ (W)w); 2954 ev_stop (EV_A_ (W)w);
2955
2956 EV_FREQUENT_CHECK;
2541} 2957}
2542 2958
2543void 2959void
2544ev_async_send (EV_P_ ev_async *w) 2960ev_async_send (EV_P_ ev_async *w)
2545{ 2961{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines