ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC vs.
Revision 1.266 by root, Fri Oct 24 08:15:33 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
238#endif 247#endif
239 248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 286# include <sys/select.h>
260# endif 287# endif
261#endif 288#endif
262 289
263#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
264# include <sys/inotify.h> 292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
265#endif 298#endif
266 299
267#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 301# include <winsock.h>
269#endif 302#endif
270 303
271#if EV_USE_EVENTFD 304#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
273int eventfd (unsigned int initval, int flags); 310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
274#endif 314#endif
275 315
276/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
277 323
278/* 324/*
279 * This is used to avoid floating point rounding problems. 325 * This is used to avoid floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics 326 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding 327 * to ensure progress, time-wise, even when rounding
293# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
294# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
295#else 341#else
296# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
297# define noinline 343# define noinline
298# if __STDC_VERSION__ < 199901L 344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
299# define inline 345# define inline
300# endif 346# endif
301#endif 347#endif
302 348
303#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
318 364
319typedef ev_watcher *W; 365typedef ev_watcher *W;
320typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
321typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
322 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
323#if EV_USE_MONOTONIC 372#if EV_USE_MONOTONIC
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */ 374/* giving it a reasonably high chance of working on typical architetcures */
326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
327#endif 376#endif
353 perror (msg); 402 perror (msg);
354 abort (); 403 abort ();
355 } 404 }
356} 405}
357 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
358static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
359 423
360void 424void
361ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
362{ 426{
363 alloc = cb; 427 alloc = cb;
364} 428}
365 429
366inline_speed void * 430inline_speed void *
367ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
368{ 432{
369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
370 434
371 if (!ptr && size) 435 if (!ptr && size)
372 { 436 {
373 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
374 abort (); 438 abort ();
385typedef struct 449typedef struct
386{ 450{
387 WL head; 451 WL head;
388 unsigned char events; 452 unsigned char events;
389 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char unused; /* currently unused padding */
390#if EV_SELECT_IS_WINSOCKET 456#if EV_SELECT_IS_WINSOCKET
391 SOCKET handle; 457 SOCKET handle;
392#endif 458#endif
393} ANFD; 459} ANFD;
394 460
397 W w; 463 W w;
398 int events; 464 int events;
399} ANPENDING; 465} ANPENDING;
400 466
401#if EV_USE_INOTIFY 467#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */
402typedef struct 469typedef struct
403{ 470{
404 WL head; 471 WL head;
405} ANFS; 472} ANFS;
473#endif
474
475/* Heap Entry */
476#if EV_HEAP_CACHE_AT
477 typedef struct {
478 ev_tstamp at;
479 WT w;
480 } ANHE;
481
482 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else
486 typedef WT ANHE;
487
488 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he)
406#endif 491#endif
407 492
408#if EV_MULTIPLICITY 493#if EV_MULTIPLICITY
409 494
410 struct ev_loop 495 struct ev_loop
488 struct timeval tv; 573 struct timeval tv;
489 574
490 tv.tv_sec = (time_t)delay; 575 tv.tv_sec = (time_t)delay;
491 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
492 577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */
493 select (0, 0, 0, 0, &tv); 581 select (0, 0, 0, 0, &tv);
494#endif 582#endif
495 } 583 }
496} 584}
497 585
498/*****************************************************************************/ 586/*****************************************************************************/
587
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
499 589
500int inline_size 590int inline_size
501array_nextsize (int elem, int cur, int cnt) 591array_nextsize (int elem, int cur, int cnt)
502{ 592{
503 int ncur = cur + 1; 593 int ncur = cur + 1;
504 594
505 do 595 do
506 ncur <<= 1; 596 ncur <<= 1;
507 while (cnt > ncur); 597 while (cnt > ncur);
508 598
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096) 600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
511 { 601 {
512 ncur *= elem; 602 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
514 ncur = ncur - sizeof (void *) * 4; 604 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem; 605 ncur /= elem;
516 } 606 }
517 607
518 return ncur; 608 return ncur;
522array_realloc (int elem, void *base, int *cur, int cnt) 612array_realloc (int elem, void *base, int *cur, int cnt)
523{ 613{
524 *cur = array_nextsize (elem, *cur, cnt); 614 *cur = array_nextsize (elem, *cur, cnt);
525 return ev_realloc (base, elem * *cur); 615 return ev_realloc (base, elem * *cur);
526} 616}
617
618#define array_init_zero(base,count) \
619 memset ((void *)(base), 0, sizeof (*(base)) * (count))
527 620
528#define array_needsize(type,base,cur,cnt,init) \ 621#define array_needsize(type,base,cur,cnt,init) \
529 if (expect_false ((cnt) > (cur))) \ 622 if (expect_false ((cnt) > (cur))) \
530 { \ 623 { \
531 int ocur_ = (cur); \ 624 int ocur_ = (cur); \
575 ev_feed_event (EV_A_ events [i], type); 668 ev_feed_event (EV_A_ events [i], type);
576} 669}
577 670
578/*****************************************************************************/ 671/*****************************************************************************/
579 672
580void inline_size
581anfds_init (ANFD *base, int count)
582{
583 while (count--)
584 {
585 base->head = 0;
586 base->events = EV_NONE;
587 base->reify = 0;
588
589 ++base;
590 }
591}
592
593void inline_speed 673void inline_speed
594fd_event (EV_P_ int fd, int revents) 674fd_event (EV_P_ int fd, int revents)
595{ 675{
596 ANFD *anfd = anfds + fd; 676 ANFD *anfd = anfds + fd;
597 ev_io *w; 677 ev_io *w;
629 events |= (unsigned char)w->events; 709 events |= (unsigned char)w->events;
630 710
631#if EV_SELECT_IS_WINSOCKET 711#if EV_SELECT_IS_WINSOCKET
632 if (events) 712 if (events)
633 { 713 {
634 unsigned long argp; 714 unsigned long arg;
635 #ifdef EV_FD_TO_WIN32_HANDLE 715 #ifdef EV_FD_TO_WIN32_HANDLE
636 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
637 #else 717 #else
638 anfd->handle = _get_osfhandle (fd); 718 anfd->handle = _get_osfhandle (fd);
639 #endif 719 #endif
640 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
641 } 721 }
642#endif 722#endif
643 723
644 { 724 {
645 unsigned char o_events = anfd->events; 725 unsigned char o_events = anfd->events;
698{ 778{
699 int fd; 779 int fd;
700 780
701 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
702 if (anfds [fd].events) 782 if (anfds [fd].events)
703 if (!fd_valid (fd) == -1 && errno == EBADF) 783 if (!fd_valid (fd) && errno == EBADF)
704 fd_kill (EV_A_ fd); 784 fd_kill (EV_A_ fd);
705} 785}
706 786
707/* called on ENOMEM in select/poll to kill some fds and retry */ 787/* called on ENOMEM in select/poll to kill some fds and retry */
708static void noinline 788static void noinline
732 } 812 }
733} 813}
734 814
735/*****************************************************************************/ 815/*****************************************************************************/
736 816
817/*
818 * the heap functions want a real array index. array index 0 uis guaranteed to not
819 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
820 * the branching factor of the d-tree.
821 */
822
823/*
824 * at the moment we allow libev the luxury of two heaps,
825 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
826 * which is more cache-efficient.
827 * the difference is about 5% with 50000+ watchers.
828 */
829#if EV_USE_4HEAP
830
831#define DHEAP 4
832#define HEAP0 (DHEAP - 1) /* index of first element in heap */
833#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
834#define UPHEAP_DONE(p,k) ((p) == (k))
835
836/* away from the root */
737void inline_speed 837void inline_speed
738upheap (WT *heap, int k) 838downheap (ANHE *heap, int N, int k)
739{ 839{
740 WT w = heap [k]; 840 ANHE he = heap [k];
841 ANHE *E = heap + N + HEAP0;
741 842
742 while (k) 843 for (;;)
743 { 844 {
744 int p = (k - 1) >> 1; 845 ev_tstamp minat;
846 ANHE *minpos;
847 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
745 848
746 if (heap [p]->at <= w->at) 849 /* find minimum child */
850 if (expect_true (pos + DHEAP - 1 < E))
851 {
852 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
856 }
857 else if (pos < E)
858 {
859 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
860 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
861 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
862 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
863 }
864 else
747 break; 865 break;
748 866
867 if (ANHE_at (he) <= minat)
868 break;
869
870 heap [k] = *minpos;
871 ev_active (ANHE_w (*minpos)) = k;
872
873 k = minpos - heap;
874 }
875
876 heap [k] = he;
877 ev_active (ANHE_w (he)) = k;
878}
879
880#else /* 4HEAP */
881
882#define HEAP0 1
883#define HPARENT(k) ((k) >> 1)
884#define UPHEAP_DONE(p,k) (!(p))
885
886/* away from the root */
887void inline_speed
888downheap (ANHE *heap, int N, int k)
889{
890 ANHE he = heap [k];
891
892 for (;;)
893 {
894 int c = k << 1;
895
896 if (c > N + HEAP0 - 1)
897 break;
898
899 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
900 ? 1 : 0;
901
902 if (ANHE_at (he) <= ANHE_at (heap [c]))
903 break;
904
905 heap [k] = heap [c];
906 ev_active (ANHE_w (heap [k])) = k;
907
908 k = c;
909 }
910
911 heap [k] = he;
912 ev_active (ANHE_w (he)) = k;
913}
914#endif
915
916/* towards the root */
917void inline_speed
918upheap (ANHE *heap, int k)
919{
920 ANHE he = heap [k];
921
922 for (;;)
923 {
924 int p = HPARENT (k);
925
926 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
927 break;
928
749 heap [k] = heap [p]; 929 heap [k] = heap [p];
750 ((W)heap [k])->active = k + 1; 930 ev_active (ANHE_w (heap [k])) = k;
751 k = p; 931 k = p;
752 } 932 }
753 933
754 heap [k] = w; 934 heap [k] = he;
755 ((W)heap [k])->active = k + 1; 935 ev_active (ANHE_w (he)) = k;
756}
757
758void inline_speed
759downheap (WT *heap, int N, int k)
760{
761 WT w = heap [k];
762
763 for (;;)
764 {
765 int c = (k << 1) + 1;
766
767 if (c >= N)
768 break;
769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
776 heap [k] = heap [c];
777 ((W)heap [k])->active = k + 1;
778
779 k = c;
780 }
781
782 heap [k] = w;
783 ((W)heap [k])->active = k + 1;
784} 936}
785 937
786void inline_size 938void inline_size
787adjustheap (WT *heap, int N, int k) 939adjustheap (ANHE *heap, int N, int k)
788{ 940{
941 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
789 upheap (heap, k); 942 upheap (heap, k);
943 else
790 downheap (heap, N, k); 944 downheap (heap, N, k);
945}
946
947/* rebuild the heap: this function is used only once and executed rarely */
948void inline_size
949reheap (ANHE *heap, int N)
950{
951 int i;
952
953 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
954 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
955 for (i = 0; i < N; ++i)
956 upheap (heap, i + HEAP0);
791} 957}
792 958
793/*****************************************************************************/ 959/*****************************************************************************/
794 960
795typedef struct 961typedef struct
801static ANSIG *signals; 967static ANSIG *signals;
802static int signalmax; 968static int signalmax;
803 969
804static EV_ATOMIC_T gotsig; 970static EV_ATOMIC_T gotsig;
805 971
806void inline_size
807signals_init (ANSIG *base, int count)
808{
809 while (count--)
810 {
811 base->head = 0;
812 base->gotsig = 0;
813
814 ++base;
815 }
816}
817
818/*****************************************************************************/ 972/*****************************************************************************/
819 973
820void inline_speed 974void inline_speed
821fd_intern (int fd) 975fd_intern (int fd)
822{ 976{
823#ifdef _WIN32 977#ifdef _WIN32
824 int arg = 1; 978 unsigned long arg = 1;
825 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 979 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
826#else 980#else
827 fcntl (fd, F_SETFD, FD_CLOEXEC); 981 fcntl (fd, F_SETFD, FD_CLOEXEC);
828 fcntl (fd, F_SETFL, O_NONBLOCK); 982 fcntl (fd, F_SETFL, O_NONBLOCK);
829#endif 983#endif
884pipecb (EV_P_ ev_io *iow, int revents) 1038pipecb (EV_P_ ev_io *iow, int revents)
885{ 1039{
886#if EV_USE_EVENTFD 1040#if EV_USE_EVENTFD
887 if (evfd >= 0) 1041 if (evfd >= 0)
888 { 1042 {
889 uint64_t counter = 1; 1043 uint64_t counter;
890 read (evfd, &counter, sizeof (uint64_t)); 1044 read (evfd, &counter, sizeof (uint64_t));
891 } 1045 }
892 else 1046 else
893#endif 1047#endif
894 { 1048 {
1163 if (!(flags & EVFLAG_NOENV) 1317 if (!(flags & EVFLAG_NOENV)
1164 && !enable_secure () 1318 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS")) 1319 && getenv ("LIBEV_FLAGS"))
1166 flags = atoi (getenv ("LIBEV_FLAGS")); 1320 flags = atoi (getenv ("LIBEV_FLAGS"));
1167 1321
1168 if (!(flags & 0x0000ffffUL)) 1322 if (!(flags & 0x0000ffffU))
1169 flags |= ev_recommended_backends (); 1323 flags |= ev_recommended_backends ();
1170 1324
1171#if EV_USE_PORT 1325#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1326 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif 1327#endif
1261#endif 1415#endif
1262 1416
1263 backend = 0; 1417 backend = 0;
1264} 1418}
1265 1419
1420#if EV_USE_INOTIFY
1266void inline_size infy_fork (EV_P); 1421void inline_size infy_fork (EV_P);
1422#endif
1267 1423
1268void inline_size 1424void inline_size
1269loop_fork (EV_P) 1425loop_fork (EV_P)
1270{ 1426{
1271#if EV_USE_PORT 1427#if EV_USE_PORT
1311 1467
1312 postfork = 0; 1468 postfork = 0;
1313} 1469}
1314 1470
1315#if EV_MULTIPLICITY 1471#if EV_MULTIPLICITY
1472
1316struct ev_loop * 1473struct ev_loop *
1317ev_loop_new (unsigned int flags) 1474ev_loop_new (unsigned int flags)
1318{ 1475{
1319 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1476 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1320 1477
1339ev_loop_fork (EV_P) 1496ev_loop_fork (EV_P)
1340{ 1497{
1341 postfork = 1; /* must be in line with ev_default_fork */ 1498 postfork = 1; /* must be in line with ev_default_fork */
1342} 1499}
1343 1500
1501#if EV_VERIFY
1502static void noinline
1503verify_watcher (EV_P_ W w)
1504{
1505 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1506
1507 if (w->pending)
1508 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1509}
1510
1511static void noinline
1512verify_heap (EV_P_ ANHE *heap, int N)
1513{
1514 int i;
1515
1516 for (i = HEAP0; i < N + HEAP0; ++i)
1517 {
1518 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1519 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1520 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1521
1522 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1523 }
1524}
1525
1526static void noinline
1527array_verify (EV_P_ W *ws, int cnt)
1528{
1529 while (cnt--)
1530 {
1531 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1532 verify_watcher (EV_A_ ws [cnt]);
1533 }
1534}
1535#endif
1536
1537void
1538ev_loop_verify (EV_P)
1539{
1540#if EV_VERIFY
1541 int i;
1542 WL w;
1543
1544 assert (activecnt >= -1);
1545
1546 assert (fdchangemax >= fdchangecnt);
1547 for (i = 0; i < fdchangecnt; ++i)
1548 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1549
1550 assert (anfdmax >= 0);
1551 for (i = 0; i < anfdmax; ++i)
1552 for (w = anfds [i].head; w; w = w->next)
1553 {
1554 verify_watcher (EV_A_ (W)w);
1555 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1556 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1557 }
1558
1559 assert (timermax >= timercnt);
1560 verify_heap (EV_A_ timers, timercnt);
1561
1562#if EV_PERIODIC_ENABLE
1563 assert (periodicmax >= periodiccnt);
1564 verify_heap (EV_A_ periodics, periodiccnt);
1565#endif
1566
1567 for (i = NUMPRI; i--; )
1568 {
1569 assert (pendingmax [i] >= pendingcnt [i]);
1570#if EV_IDLE_ENABLE
1571 assert (idleall >= 0);
1572 assert (idlemax [i] >= idlecnt [i]);
1573 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1574#endif
1575 }
1576
1577#if EV_FORK_ENABLE
1578 assert (forkmax >= forkcnt);
1579 array_verify (EV_A_ (W *)forks, forkcnt);
1580#endif
1581
1582#if EV_ASYNC_ENABLE
1583 assert (asyncmax >= asynccnt);
1584 array_verify (EV_A_ (W *)asyncs, asynccnt);
1585#endif
1586
1587 assert (preparemax >= preparecnt);
1588 array_verify (EV_A_ (W *)prepares, preparecnt);
1589
1590 assert (checkmax >= checkcnt);
1591 array_verify (EV_A_ (W *)checks, checkcnt);
1592
1593# if 0
1594 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1595 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1344#endif 1596# endif
1597#endif
1598}
1599
1600#endif /* multiplicity */
1345 1601
1346#if EV_MULTIPLICITY 1602#if EV_MULTIPLICITY
1347struct ev_loop * 1603struct ev_loop *
1348ev_default_loop_init (unsigned int flags) 1604ev_default_loop_init (unsigned int flags)
1349#else 1605#else
1382{ 1638{
1383#if EV_MULTIPLICITY 1639#if EV_MULTIPLICITY
1384 struct ev_loop *loop = ev_default_loop_ptr; 1640 struct ev_loop *loop = ev_default_loop_ptr;
1385#endif 1641#endif
1386 1642
1643 ev_default_loop_ptr = 0;
1644
1387#ifndef _WIN32 1645#ifndef _WIN32
1388 ev_ref (EV_A); /* child watcher */ 1646 ev_ref (EV_A); /* child watcher */
1389 ev_signal_stop (EV_A_ &childev); 1647 ev_signal_stop (EV_A_ &childev);
1390#endif 1648#endif
1391 1649
1425 { 1683 {
1426 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1427 1685
1428 p->w->pending = 0; 1686 p->w->pending = 0;
1429 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1430 } 1689 }
1431 } 1690 }
1432} 1691}
1433
1434void inline_size
1435timers_reify (EV_P)
1436{
1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1438 {
1439 ev_timer *w = (ev_timer *)timers [0];
1440
1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1442
1443 /* first reschedule or stop timer */
1444 if (w->repeat)
1445 {
1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1447
1448 ((WT)w)->at += w->repeat;
1449 if (((WT)w)->at < mn_now)
1450 ((WT)w)->at = mn_now;
1451
1452 downheap (timers, timercnt, 0);
1453 }
1454 else
1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1456
1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1458 }
1459}
1460
1461#if EV_PERIODIC_ENABLE
1462void inline_size
1463periodics_reify (EV_P)
1464{
1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1466 {
1467 ev_periodic *w = (ev_periodic *)periodics [0];
1468
1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1470
1471 /* first reschedule or stop timer */
1472 if (w->reschedule_cb)
1473 {
1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1476 downheap (periodics, periodiccnt, 0);
1477 }
1478 else if (w->interval)
1479 {
1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else
1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1487
1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1489 }
1490}
1491
1492static void noinline
1493periodics_reschedule (EV_P)
1494{
1495 int i;
1496
1497 /* adjust periodics after time jump */
1498 for (i = 0; i < periodiccnt; ++i)
1499 {
1500 ev_periodic *w = (ev_periodic *)periodics [i];
1501
1502 if (w->reschedule_cb)
1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1504 else if (w->interval)
1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1506 }
1507
1508 /* now rebuild the heap */
1509 for (i = periodiccnt >> 1; i--; )
1510 downheap (periodics, periodiccnt, i);
1511}
1512#endif
1513 1692
1514#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1515void inline_size 1694void inline_size
1516idle_reify (EV_P) 1695idle_reify (EV_P)
1517{ 1696{
1529 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1530 break; 1709 break;
1531 } 1710 }
1532 } 1711 }
1533 } 1712 }
1713}
1714#endif
1715
1716void inline_size
1717timers_reify (EV_P)
1718{
1719 EV_FREQUENT_CHECK;
1720
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 {
1730 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now;
1733
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735
1736 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0);
1738 }
1739 else
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1744 }
1745}
1746
1747#if EV_PERIODIC_ENABLE
1748void inline_size
1749periodics_reify (EV_P)
1750{
1751 EV_FREQUENT_CHECK;
1752
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1756
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0);
1768 }
1769 else if (w->interval)
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1793 }
1794}
1795
1796static void noinline
1797periodics_reschedule (EV_P)
1798{
1799 int i;
1800
1801 /* adjust periodics after time jump */
1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1803 {
1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1805
1806 if (w->reschedule_cb)
1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1808 else if (w->interval)
1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1810
1811 ANHE_at_cache (periodics [i]);
1812 }
1813
1814 reheap (periodics, periodiccnt);
1534} 1815}
1535#endif 1816#endif
1536 1817
1537void inline_speed 1818void inline_speed
1538time_update (EV_P_ ev_tstamp max_block) 1819time_update (EV_P_ ev_tstamp max_block)
1567 */ 1848 */
1568 for (i = 4; --i; ) 1849 for (i = 4; --i; )
1569 { 1850 {
1570 rtmn_diff = ev_rt_now - mn_now; 1851 rtmn_diff = ev_rt_now - mn_now;
1571 1852
1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1573 return; /* all is well */ 1854 return; /* all is well */
1574 1855
1575 ev_rt_now = ev_time (); 1856 ev_rt_now = ev_time ();
1576 mn_now = get_clock (); 1857 mn_now = get_clock ();
1577 now_floor = mn_now; 1858 now_floor = mn_now;
1593#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1594 periodics_reschedule (EV_A); 1875 periodics_reschedule (EV_A);
1595#endif 1876#endif
1596 /* adjust timers. this is easy, as the offset is the same for all of them */ 1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1597 for (i = 0; i < timercnt; ++i) 1878 for (i = 0; i < timercnt; ++i)
1879 {
1880 ANHE *he = timers + i + HEAP0;
1598 ((WT)timers [i])->at += ev_rt_now - mn_now; 1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1599 } 1884 }
1600 1885
1601 mn_now = ev_rt_now; 1886 mn_now = ev_rt_now;
1602 } 1887 }
1603} 1888}
1612ev_unref (EV_P) 1897ev_unref (EV_P)
1613{ 1898{
1614 --activecnt; 1899 --activecnt;
1615} 1900}
1616 1901
1902void
1903ev_now_update (EV_P)
1904{
1905 time_update (EV_A_ 1e100);
1906}
1907
1617static int loop_done; 1908static int loop_done;
1618 1909
1619void 1910void
1620ev_loop (EV_P_ int flags) 1911ev_loop (EV_P_ int flags)
1621{ 1912{
1623 1914
1624 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1915 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1625 1916
1626 do 1917 do
1627 { 1918 {
1919#if EV_VERIFY >= 2
1920 ev_loop_verify (EV_A);
1921#endif
1922
1628#ifndef _WIN32 1923#ifndef _WIN32
1629 if (expect_false (curpid)) /* penalise the forking check even more */ 1924 if (expect_false (curpid)) /* penalise the forking check even more */
1630 if (expect_false (getpid () != curpid)) 1925 if (expect_false (getpid () != curpid))
1631 { 1926 {
1632 curpid = getpid (); 1927 curpid = getpid ();
1673 1968
1674 waittime = MAX_BLOCKTIME; 1969 waittime = MAX_BLOCKTIME;
1675 1970
1676 if (timercnt) 1971 if (timercnt)
1677 { 1972 {
1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1973 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1679 if (waittime > to) waittime = to; 1974 if (waittime > to) waittime = to;
1680 } 1975 }
1681 1976
1682#if EV_PERIODIC_ENABLE 1977#if EV_PERIODIC_ENABLE
1683 if (periodiccnt) 1978 if (periodiccnt)
1684 { 1979 {
1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1980 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1686 if (waittime > to) waittime = to; 1981 if (waittime > to) waittime = to;
1687 } 1982 }
1688#endif 1983#endif
1689 1984
1690 if (expect_false (waittime < timeout_blocktime)) 1985 if (expect_false (waittime < timeout_blocktime))
1826 2121
1827 if (expect_false (ev_is_active (w))) 2122 if (expect_false (ev_is_active (w)))
1828 return; 2123 return;
1829 2124
1830 assert (("ev_io_start called with negative fd", fd >= 0)); 2125 assert (("ev_io_start called with negative fd", fd >= 0));
2126 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2127
2128 EV_FREQUENT_CHECK;
1831 2129
1832 ev_start (EV_A_ (W)w, 1); 2130 ev_start (EV_A_ (W)w, 1);
1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2131 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1834 wlist_add (&anfds[fd].head, (WL)w); 2132 wlist_add (&anfds[fd].head, (WL)w);
1835 2133
1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2134 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1837 w->events &= ~EV_IOFDSET; 2135 w->events &= ~EV_IOFDSET;
2136
2137 EV_FREQUENT_CHECK;
1838} 2138}
1839 2139
1840void noinline 2140void noinline
1841ev_io_stop (EV_P_ ev_io *w) 2141ev_io_stop (EV_P_ ev_io *w)
1842{ 2142{
1843 clear_pending (EV_A_ (W)w); 2143 clear_pending (EV_A_ (W)w);
1844 if (expect_false (!ev_is_active (w))) 2144 if (expect_false (!ev_is_active (w)))
1845 return; 2145 return;
1846 2146
1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2147 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2148
2149 EV_FREQUENT_CHECK;
1848 2150
1849 wlist_del (&anfds[w->fd].head, (WL)w); 2151 wlist_del (&anfds[w->fd].head, (WL)w);
1850 ev_stop (EV_A_ (W)w); 2152 ev_stop (EV_A_ (W)w);
1851 2153
1852 fd_change (EV_A_ w->fd, 1); 2154 fd_change (EV_A_ w->fd, 1);
2155
2156 EV_FREQUENT_CHECK;
1853} 2157}
1854 2158
1855void noinline 2159void noinline
1856ev_timer_start (EV_P_ ev_timer *w) 2160ev_timer_start (EV_P_ ev_timer *w)
1857{ 2161{
1858 if (expect_false (ev_is_active (w))) 2162 if (expect_false (ev_is_active (w)))
1859 return; 2163 return;
1860 2164
1861 ((WT)w)->at += mn_now; 2165 ev_at (w) += mn_now;
1862 2166
1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2167 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1864 2168
2169 EV_FREQUENT_CHECK;
2170
2171 ++timercnt;
1865 ev_start (EV_A_ (W)w, ++timercnt); 2172 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2173 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1867 timers [timercnt - 1] = (WT)w; 2174 ANHE_w (timers [ev_active (w)]) = (WT)w;
1868 upheap (timers, timercnt - 1); 2175 ANHE_at_cache (timers [ev_active (w)]);
2176 upheap (timers, ev_active (w));
1869 2177
2178 EV_FREQUENT_CHECK;
2179
1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2180 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1871} 2181}
1872 2182
1873void noinline 2183void noinline
1874ev_timer_stop (EV_P_ ev_timer *w) 2184ev_timer_stop (EV_P_ ev_timer *w)
1875{ 2185{
1876 clear_pending (EV_A_ (W)w); 2186 clear_pending (EV_A_ (W)w);
1877 if (expect_false (!ev_is_active (w))) 2187 if (expect_false (!ev_is_active (w)))
1878 return; 2188 return;
1879 2189
1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2190 EV_FREQUENT_CHECK;
1881 2191
1882 { 2192 {
1883 int active = ((W)w)->active; 2193 int active = ev_active (w);
1884 2194
2195 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2196
2197 --timercnt;
2198
1885 if (expect_true (--active < --timercnt)) 2199 if (expect_true (active < timercnt + HEAP0))
1886 { 2200 {
1887 timers [active] = timers [timercnt]; 2201 timers [active] = timers [timercnt + HEAP0];
1888 adjustheap (timers, timercnt, active); 2202 adjustheap (timers, timercnt, active);
1889 } 2203 }
1890 } 2204 }
1891 2205
1892 ((WT)w)->at -= mn_now; 2206 EV_FREQUENT_CHECK;
2207
2208 ev_at (w) -= mn_now;
1893 2209
1894 ev_stop (EV_A_ (W)w); 2210 ev_stop (EV_A_ (W)w);
1895} 2211}
1896 2212
1897void noinline 2213void noinline
1898ev_timer_again (EV_P_ ev_timer *w) 2214ev_timer_again (EV_P_ ev_timer *w)
1899{ 2215{
2216 EV_FREQUENT_CHECK;
2217
1900 if (ev_is_active (w)) 2218 if (ev_is_active (w))
1901 { 2219 {
1902 if (w->repeat) 2220 if (w->repeat)
1903 { 2221 {
1904 ((WT)w)->at = mn_now + w->repeat; 2222 ev_at (w) = mn_now + w->repeat;
2223 ANHE_at_cache (timers [ev_active (w)]);
1905 adjustheap (timers, timercnt, ((W)w)->active - 1); 2224 adjustheap (timers, timercnt, ev_active (w));
1906 } 2225 }
1907 else 2226 else
1908 ev_timer_stop (EV_A_ w); 2227 ev_timer_stop (EV_A_ w);
1909 } 2228 }
1910 else if (w->repeat) 2229 else if (w->repeat)
1911 { 2230 {
1912 w->at = w->repeat; 2231 ev_at (w) = w->repeat;
1913 ev_timer_start (EV_A_ w); 2232 ev_timer_start (EV_A_ w);
1914 } 2233 }
2234
2235 EV_FREQUENT_CHECK;
1915} 2236}
1916 2237
1917#if EV_PERIODIC_ENABLE 2238#if EV_PERIODIC_ENABLE
1918void noinline 2239void noinline
1919ev_periodic_start (EV_P_ ev_periodic *w) 2240ev_periodic_start (EV_P_ ev_periodic *w)
1920{ 2241{
1921 if (expect_false (ev_is_active (w))) 2242 if (expect_false (ev_is_active (w)))
1922 return; 2243 return;
1923 2244
1924 if (w->reschedule_cb) 2245 if (w->reschedule_cb)
1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2246 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1926 else if (w->interval) 2247 else if (w->interval)
1927 { 2248 {
1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2249 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1929 /* this formula differs from the one in periodic_reify because we do not always round up */ 2250 /* this formula differs from the one in periodic_reify because we do not always round up */
1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2251 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1931 } 2252 }
1932 else 2253 else
1933 ((WT)w)->at = w->offset; 2254 ev_at (w) = w->offset;
1934 2255
2256 EV_FREQUENT_CHECK;
2257
2258 ++periodiccnt;
1935 ev_start (EV_A_ (W)w, ++periodiccnt); 2259 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2260 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1937 periodics [periodiccnt - 1] = (WT)w; 2261 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1938 upheap (periodics, periodiccnt - 1); 2262 ANHE_at_cache (periodics [ev_active (w)]);
2263 upheap (periodics, ev_active (w));
1939 2264
2265 EV_FREQUENT_CHECK;
2266
1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2267 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1941} 2268}
1942 2269
1943void noinline 2270void noinline
1944ev_periodic_stop (EV_P_ ev_periodic *w) 2271ev_periodic_stop (EV_P_ ev_periodic *w)
1945{ 2272{
1946 clear_pending (EV_A_ (W)w); 2273 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2274 if (expect_false (!ev_is_active (w)))
1948 return; 2275 return;
1949 2276
1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2277 EV_FREQUENT_CHECK;
1951 2278
1952 { 2279 {
1953 int active = ((W)w)->active; 2280 int active = ev_active (w);
1954 2281
2282 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2283
2284 --periodiccnt;
2285
1955 if (expect_true (--active < --periodiccnt)) 2286 if (expect_true (active < periodiccnt + HEAP0))
1956 { 2287 {
1957 periodics [active] = periodics [periodiccnt]; 2288 periodics [active] = periodics [periodiccnt + HEAP0];
1958 adjustheap (periodics, periodiccnt, active); 2289 adjustheap (periodics, periodiccnt, active);
1959 } 2290 }
1960 } 2291 }
1961 2292
2293 EV_FREQUENT_CHECK;
2294
1962 ev_stop (EV_A_ (W)w); 2295 ev_stop (EV_A_ (W)w);
1963} 2296}
1964 2297
1965void noinline 2298void noinline
1966ev_periodic_again (EV_P_ ev_periodic *w) 2299ev_periodic_again (EV_P_ ev_periodic *w)
1985 return; 2318 return;
1986 2319
1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2320 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1988 2321
1989 evpipe_init (EV_A); 2322 evpipe_init (EV_A);
2323
2324 EV_FREQUENT_CHECK;
1990 2325
1991 { 2326 {
1992#ifndef _WIN32 2327#ifndef _WIN32
1993 sigset_t full, prev; 2328 sigset_t full, prev;
1994 sigfillset (&full); 2329 sigfillset (&full);
1995 sigprocmask (SIG_SETMASK, &full, &prev); 2330 sigprocmask (SIG_SETMASK, &full, &prev);
1996#endif 2331#endif
1997 2332
1998 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2333 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1999 2334
2000#ifndef _WIN32 2335#ifndef _WIN32
2001 sigprocmask (SIG_SETMASK, &prev, 0); 2336 sigprocmask (SIG_SETMASK, &prev, 0);
2002#endif 2337#endif
2003 } 2338 }
2015 sigfillset (&sa.sa_mask); 2350 sigfillset (&sa.sa_mask);
2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2351 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2017 sigaction (w->signum, &sa, 0); 2352 sigaction (w->signum, &sa, 0);
2018#endif 2353#endif
2019 } 2354 }
2355
2356 EV_FREQUENT_CHECK;
2020} 2357}
2021 2358
2022void noinline 2359void noinline
2023ev_signal_stop (EV_P_ ev_signal *w) 2360ev_signal_stop (EV_P_ ev_signal *w)
2024{ 2361{
2025 clear_pending (EV_A_ (W)w); 2362 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2363 if (expect_false (!ev_is_active (w)))
2027 return; 2364 return;
2028 2365
2366 EV_FREQUENT_CHECK;
2367
2029 wlist_del (&signals [w->signum - 1].head, (WL)w); 2368 wlist_del (&signals [w->signum - 1].head, (WL)w);
2030 ev_stop (EV_A_ (W)w); 2369 ev_stop (EV_A_ (W)w);
2031 2370
2032 if (!signals [w->signum - 1].head) 2371 if (!signals [w->signum - 1].head)
2033 signal (w->signum, SIG_DFL); 2372 signal (w->signum, SIG_DFL);
2373
2374 EV_FREQUENT_CHECK;
2034} 2375}
2035 2376
2036void 2377void
2037ev_child_start (EV_P_ ev_child *w) 2378ev_child_start (EV_P_ ev_child *w)
2038{ 2379{
2040 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2381 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2041#endif 2382#endif
2042 if (expect_false (ev_is_active (w))) 2383 if (expect_false (ev_is_active (w)))
2043 return; 2384 return;
2044 2385
2386 EV_FREQUENT_CHECK;
2387
2045 ev_start (EV_A_ (W)w, 1); 2388 ev_start (EV_A_ (W)w, 1);
2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2389 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2390
2391 EV_FREQUENT_CHECK;
2047} 2392}
2048 2393
2049void 2394void
2050ev_child_stop (EV_P_ ev_child *w) 2395ev_child_stop (EV_P_ ev_child *w)
2051{ 2396{
2052 clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2398 if (expect_false (!ev_is_active (w)))
2054 return; 2399 return;
2055 2400
2401 EV_FREQUENT_CHECK;
2402
2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2403 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2057 ev_stop (EV_A_ (W)w); 2404 ev_stop (EV_A_ (W)w);
2405
2406 EV_FREQUENT_CHECK;
2058} 2407}
2059 2408
2060#if EV_STAT_ENABLE 2409#if EV_STAT_ENABLE
2061 2410
2062# ifdef _WIN32 2411# ifdef _WIN32
2080 if (w->wd < 0) 2429 if (w->wd < 0)
2081 { 2430 {
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2431 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2083 2432
2084 /* monitor some parent directory for speedup hints */ 2433 /* monitor some parent directory for speedup hints */
2434 /* note that exceeding the hardcoded limit is not a correctness issue, */
2435 /* but an efficiency issue only */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2436 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 { 2437 {
2087 char path [4096]; 2438 char path [4096];
2088 strcpy (path, w->path); 2439 strcpy (path, w->path);
2089 2440
2129 2480
2130static void noinline 2481static void noinline
2131infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2482infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2132{ 2483{
2133 if (slot < 0) 2484 if (slot < 0)
2134 /* overflow, need to check for all hahs slots */ 2485 /* overflow, need to check for all hash slots */
2135 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2486 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2136 infy_wd (EV_A_ slot, wd, ev); 2487 infy_wd (EV_A_ slot, wd, ev);
2137 else 2488 else
2138 { 2489 {
2139 WL w_; 2490 WL w_;
2173infy_init (EV_P) 2524infy_init (EV_P)
2174{ 2525{
2175 if (fs_fd != -2) 2526 if (fs_fd != -2)
2176 return; 2527 return;
2177 2528
2529 /* kernels < 2.6.25 are borked
2530 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2531 */
2532 {
2533 struct utsname buf;
2534 int major, minor, micro;
2535
2536 fs_fd = -1;
2537
2538 if (uname (&buf))
2539 return;
2540
2541 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2542 return;
2543
2544 if (major < 2
2545 || (major == 2 && minor < 6)
2546 || (major == 2 && minor == 6 && micro < 25))
2547 return;
2548 }
2549
2178 fs_fd = inotify_init (); 2550 fs_fd = inotify_init ();
2179 2551
2180 if (fs_fd >= 0) 2552 if (fs_fd >= 0)
2181 { 2553 {
2182 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2554 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2211 if (fs_fd >= 0) 2583 if (fs_fd >= 0)
2212 infy_add (EV_A_ w); /* re-add, no matter what */ 2584 infy_add (EV_A_ w); /* re-add, no matter what */
2213 else 2585 else
2214 ev_timer_start (EV_A_ &w->timer); 2586 ev_timer_start (EV_A_ &w->timer);
2215 } 2587 }
2216
2217 } 2588 }
2218} 2589}
2219 2590
2591#endif
2592
2593#ifdef _WIN32
2594# define EV_LSTAT(p,b) _stati64 (p, b)
2595#else
2596# define EV_LSTAT(p,b) lstat (p, b)
2220#endif 2597#endif
2221 2598
2222void 2599void
2223ev_stat_stat (EV_P_ ev_stat *w) 2600ev_stat_stat (EV_P_ ev_stat *w)
2224{ 2601{
2251 || w->prev.st_atime != w->attr.st_atime 2628 || w->prev.st_atime != w->attr.st_atime
2252 || w->prev.st_mtime != w->attr.st_mtime 2629 || w->prev.st_mtime != w->attr.st_mtime
2253 || w->prev.st_ctime != w->attr.st_ctime 2630 || w->prev.st_ctime != w->attr.st_ctime
2254 ) { 2631 ) {
2255 #if EV_USE_INOTIFY 2632 #if EV_USE_INOTIFY
2633 if (fs_fd >= 0)
2634 {
2256 infy_del (EV_A_ w); 2635 infy_del (EV_A_ w);
2257 infy_add (EV_A_ w); 2636 infy_add (EV_A_ w);
2258 ev_stat_stat (EV_A_ w); /* avoid race... */ 2637 ev_stat_stat (EV_A_ w); /* avoid race... */
2638 }
2259 #endif 2639 #endif
2260 2640
2261 ev_feed_event (EV_A_ w, EV_STAT); 2641 ev_feed_event (EV_A_ w, EV_STAT);
2262 } 2642 }
2263} 2643}
2288 else 2668 else
2289#endif 2669#endif
2290 ev_timer_start (EV_A_ &w->timer); 2670 ev_timer_start (EV_A_ &w->timer);
2291 2671
2292 ev_start (EV_A_ (W)w, 1); 2672 ev_start (EV_A_ (W)w, 1);
2673
2674 EV_FREQUENT_CHECK;
2293} 2675}
2294 2676
2295void 2677void
2296ev_stat_stop (EV_P_ ev_stat *w) 2678ev_stat_stop (EV_P_ ev_stat *w)
2297{ 2679{
2298 clear_pending (EV_A_ (W)w); 2680 clear_pending (EV_A_ (W)w);
2299 if (expect_false (!ev_is_active (w))) 2681 if (expect_false (!ev_is_active (w)))
2300 return; 2682 return;
2301 2683
2684 EV_FREQUENT_CHECK;
2685
2302#if EV_USE_INOTIFY 2686#if EV_USE_INOTIFY
2303 infy_del (EV_A_ w); 2687 infy_del (EV_A_ w);
2304#endif 2688#endif
2305 ev_timer_stop (EV_A_ &w->timer); 2689 ev_timer_stop (EV_A_ &w->timer);
2306 2690
2307 ev_stop (EV_A_ (W)w); 2691 ev_stop (EV_A_ (W)w);
2692
2693 EV_FREQUENT_CHECK;
2308} 2694}
2309#endif 2695#endif
2310 2696
2311#if EV_IDLE_ENABLE 2697#if EV_IDLE_ENABLE
2312void 2698void
2314{ 2700{
2315 if (expect_false (ev_is_active (w))) 2701 if (expect_false (ev_is_active (w)))
2316 return; 2702 return;
2317 2703
2318 pri_adjust (EV_A_ (W)w); 2704 pri_adjust (EV_A_ (W)w);
2705
2706 EV_FREQUENT_CHECK;
2319 2707
2320 { 2708 {
2321 int active = ++idlecnt [ABSPRI (w)]; 2709 int active = ++idlecnt [ABSPRI (w)];
2322 2710
2323 ++idleall; 2711 ++idleall;
2324 ev_start (EV_A_ (W)w, active); 2712 ev_start (EV_A_ (W)w, active);
2325 2713
2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2714 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2327 idles [ABSPRI (w)][active - 1] = w; 2715 idles [ABSPRI (w)][active - 1] = w;
2328 } 2716 }
2717
2718 EV_FREQUENT_CHECK;
2329} 2719}
2330 2720
2331void 2721void
2332ev_idle_stop (EV_P_ ev_idle *w) 2722ev_idle_stop (EV_P_ ev_idle *w)
2333{ 2723{
2334 clear_pending (EV_A_ (W)w); 2724 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 2725 if (expect_false (!ev_is_active (w)))
2336 return; 2726 return;
2337 2727
2728 EV_FREQUENT_CHECK;
2729
2338 { 2730 {
2339 int active = ((W)w)->active; 2731 int active = ev_active (w);
2340 2732
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2733 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2734 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2343 2735
2344 ev_stop (EV_A_ (W)w); 2736 ev_stop (EV_A_ (W)w);
2345 --idleall; 2737 --idleall;
2346 } 2738 }
2739
2740 EV_FREQUENT_CHECK;
2347} 2741}
2348#endif 2742#endif
2349 2743
2350void 2744void
2351ev_prepare_start (EV_P_ ev_prepare *w) 2745ev_prepare_start (EV_P_ ev_prepare *w)
2352{ 2746{
2353 if (expect_false (ev_is_active (w))) 2747 if (expect_false (ev_is_active (w)))
2354 return; 2748 return;
2749
2750 EV_FREQUENT_CHECK;
2355 2751
2356 ev_start (EV_A_ (W)w, ++preparecnt); 2752 ev_start (EV_A_ (W)w, ++preparecnt);
2357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2753 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2358 prepares [preparecnt - 1] = w; 2754 prepares [preparecnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2359} 2757}
2360 2758
2361void 2759void
2362ev_prepare_stop (EV_P_ ev_prepare *w) 2760ev_prepare_stop (EV_P_ ev_prepare *w)
2363{ 2761{
2364 clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
2366 return; 2764 return;
2367 2765
2766 EV_FREQUENT_CHECK;
2767
2368 { 2768 {
2369 int active = ((W)w)->active; 2769 int active = ev_active (w);
2770
2370 prepares [active - 1] = prepares [--preparecnt]; 2771 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active; 2772 ev_active (prepares [active - 1]) = active;
2372 } 2773 }
2373 2774
2374 ev_stop (EV_A_ (W)w); 2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2375} 2778}
2376 2779
2377void 2780void
2378ev_check_start (EV_P_ ev_check *w) 2781ev_check_start (EV_P_ ev_check *w)
2379{ 2782{
2380 if (expect_false (ev_is_active (w))) 2783 if (expect_false (ev_is_active (w)))
2381 return; 2784 return;
2785
2786 EV_FREQUENT_CHECK;
2382 2787
2383 ev_start (EV_A_ (W)w, ++checkcnt); 2788 ev_start (EV_A_ (W)w, ++checkcnt);
2384 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2789 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2385 checks [checkcnt - 1] = w; 2790 checks [checkcnt - 1] = w;
2791
2792 EV_FREQUENT_CHECK;
2386} 2793}
2387 2794
2388void 2795void
2389ev_check_stop (EV_P_ ev_check *w) 2796ev_check_stop (EV_P_ ev_check *w)
2390{ 2797{
2391 clear_pending (EV_A_ (W)w); 2798 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w))) 2799 if (expect_false (!ev_is_active (w)))
2393 return; 2800 return;
2394 2801
2802 EV_FREQUENT_CHECK;
2803
2395 { 2804 {
2396 int active = ((W)w)->active; 2805 int active = ev_active (w);
2806
2397 checks [active - 1] = checks [--checkcnt]; 2807 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active; 2808 ev_active (checks [active - 1]) = active;
2399 } 2809 }
2400 2810
2401 ev_stop (EV_A_ (W)w); 2811 ev_stop (EV_A_ (W)w);
2812
2813 EV_FREQUENT_CHECK;
2402} 2814}
2403 2815
2404#if EV_EMBED_ENABLE 2816#if EV_EMBED_ENABLE
2405void noinline 2817void noinline
2406ev_embed_sweep (EV_P_ ev_embed *w) 2818ev_embed_sweep (EV_P_ ev_embed *w)
2433 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2845 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2434 } 2846 }
2435 } 2847 }
2436} 2848}
2437 2849
2850static void
2851embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2852{
2853 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2854
2855 {
2856 struct ev_loop *loop = w->other;
2857
2858 ev_loop_fork (EV_A);
2859 }
2860}
2861
2438#if 0 2862#if 0
2439static void 2863static void
2440embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2864embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2441{ 2865{
2442 ev_idle_stop (EV_A_ idle); 2866 ev_idle_stop (EV_A_ idle);
2453 struct ev_loop *loop = w->other; 2877 struct ev_loop *loop = w->other;
2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2878 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2879 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2456 } 2880 }
2457 2881
2882 EV_FREQUENT_CHECK;
2883
2458 ev_set_priority (&w->io, ev_priority (w)); 2884 ev_set_priority (&w->io, ev_priority (w));
2459 ev_io_start (EV_A_ &w->io); 2885 ev_io_start (EV_A_ &w->io);
2460 2886
2461 ev_prepare_init (&w->prepare, embed_prepare_cb); 2887 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI); 2888 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare); 2889 ev_prepare_start (EV_A_ &w->prepare);
2464 2890
2891 ev_fork_init (&w->fork, embed_fork_cb);
2892 ev_fork_start (EV_A_ &w->fork);
2893
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2894 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466 2895
2467 ev_start (EV_A_ (W)w, 1); 2896 ev_start (EV_A_ (W)w, 1);
2897
2898 EV_FREQUENT_CHECK;
2468} 2899}
2469 2900
2470void 2901void
2471ev_embed_stop (EV_P_ ev_embed *w) 2902ev_embed_stop (EV_P_ ev_embed *w)
2472{ 2903{
2473 clear_pending (EV_A_ (W)w); 2904 clear_pending (EV_A_ (W)w);
2474 if (expect_false (!ev_is_active (w))) 2905 if (expect_false (!ev_is_active (w)))
2475 return; 2906 return;
2476 2907
2908 EV_FREQUENT_CHECK;
2909
2477 ev_io_stop (EV_A_ &w->io); 2910 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare); 2911 ev_prepare_stop (EV_A_ &w->prepare);
2912 ev_fork_stop (EV_A_ &w->fork);
2479 2913
2480 ev_stop (EV_A_ (W)w); 2914 EV_FREQUENT_CHECK;
2481} 2915}
2482#endif 2916#endif
2483 2917
2484#if EV_FORK_ENABLE 2918#if EV_FORK_ENABLE
2485void 2919void
2486ev_fork_start (EV_P_ ev_fork *w) 2920ev_fork_start (EV_P_ ev_fork *w)
2487{ 2921{
2488 if (expect_false (ev_is_active (w))) 2922 if (expect_false (ev_is_active (w)))
2489 return; 2923 return;
2924
2925 EV_FREQUENT_CHECK;
2490 2926
2491 ev_start (EV_A_ (W)w, ++forkcnt); 2927 ev_start (EV_A_ (W)w, ++forkcnt);
2492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2928 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2493 forks [forkcnt - 1] = w; 2929 forks [forkcnt - 1] = w;
2930
2931 EV_FREQUENT_CHECK;
2494} 2932}
2495 2933
2496void 2934void
2497ev_fork_stop (EV_P_ ev_fork *w) 2935ev_fork_stop (EV_P_ ev_fork *w)
2498{ 2936{
2499 clear_pending (EV_A_ (W)w); 2937 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 2938 if (expect_false (!ev_is_active (w)))
2501 return; 2939 return;
2502 2940
2941 EV_FREQUENT_CHECK;
2942
2503 { 2943 {
2504 int active = ((W)w)->active; 2944 int active = ev_active (w);
2945
2505 forks [active - 1] = forks [--forkcnt]; 2946 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active; 2947 ev_active (forks [active - 1]) = active;
2507 } 2948 }
2508 2949
2509 ev_stop (EV_A_ (W)w); 2950 ev_stop (EV_A_ (W)w);
2951
2952 EV_FREQUENT_CHECK;
2510} 2953}
2511#endif 2954#endif
2512 2955
2513#if EV_ASYNC_ENABLE 2956#if EV_ASYNC_ENABLE
2514void 2957void
2516{ 2959{
2517 if (expect_false (ev_is_active (w))) 2960 if (expect_false (ev_is_active (w)))
2518 return; 2961 return;
2519 2962
2520 evpipe_init (EV_A); 2963 evpipe_init (EV_A);
2964
2965 EV_FREQUENT_CHECK;
2521 2966
2522 ev_start (EV_A_ (W)w, ++asynccnt); 2967 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2968 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w; 2969 asyncs [asynccnt - 1] = w;
2970
2971 EV_FREQUENT_CHECK;
2525} 2972}
2526 2973
2527void 2974void
2528ev_async_stop (EV_P_ ev_async *w) 2975ev_async_stop (EV_P_ ev_async *w)
2529{ 2976{
2530 clear_pending (EV_A_ (W)w); 2977 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w))) 2978 if (expect_false (!ev_is_active (w)))
2532 return; 2979 return;
2533 2980
2981 EV_FREQUENT_CHECK;
2982
2534 { 2983 {
2535 int active = ((W)w)->active; 2984 int active = ev_active (w);
2985
2536 asyncs [active - 1] = asyncs [--asynccnt]; 2986 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active; 2987 ev_active (asyncs [active - 1]) = active;
2538 } 2988 }
2539 2989
2540 ev_stop (EV_A_ (W)w); 2990 ev_stop (EV_A_ (W)w);
2991
2992 EV_FREQUENT_CHECK;
2541} 2993}
2542 2994
2543void 2995void
2544ev_async_send (EV_P_ ev_async *w) 2996ev_async_send (EV_P_ ev_async *w)
2545{ 2997{
2562once_cb (EV_P_ struct ev_once *once, int revents) 3014once_cb (EV_P_ struct ev_once *once, int revents)
2563{ 3015{
2564 void (*cb)(int revents, void *arg) = once->cb; 3016 void (*cb)(int revents, void *arg) = once->cb;
2565 void *arg = once->arg; 3017 void *arg = once->arg;
2566 3018
2567 ev_io_stop (EV_A_ &once->io); 3019 ev_io_stop (EV_A_ &once->io);
2568 ev_timer_stop (EV_A_ &once->to); 3020 ev_timer_stop (EV_A_ &once->to);
2569 ev_free (once); 3021 ev_free (once);
2570 3022
2571 cb (revents, arg); 3023 cb (revents, arg);
2572} 3024}
2573 3025
2574static void 3026static void
2575once_cb_io (EV_P_ ev_io *w, int revents) 3027once_cb_io (EV_P_ ev_io *w, int revents)
2576{ 3028{
2577 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3029 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3030
3031 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2578} 3032}
2579 3033
2580static void 3034static void
2581once_cb_to (EV_P_ ev_timer *w, int revents) 3035once_cb_to (EV_P_ ev_timer *w, int revents)
2582{ 3036{
2583 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3037 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3038
3039 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2584} 3040}
2585 3041
2586void 3042void
2587ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3043ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2588{ 3044{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines