ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC vs.
Revision 1.303 by root, Sun Jul 19 01:36:34 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
136#include <fcntl.h> 158#include <fcntl.h>
154#ifndef _WIN32 176#ifndef _WIN32
155# include <sys/time.h> 177# include <sys/time.h>
156# include <sys/wait.h> 178# include <sys/wait.h>
157# include <unistd.h> 179# include <unistd.h>
158#else 180#else
181# include <io.h>
159# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 183# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
163# endif 186# endif
164#endif 187#endif
165 188
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
167 190
191#ifndef EV_USE_CLOCK_SYSCALL
192# if __linux && __GLIBC__ >= 2
193# define EV_USE_CLOCK_SYSCALL 1
194# else
195# define EV_USE_CLOCK_SYSCALL 0
196# endif
197#endif
198
168#ifndef EV_USE_MONOTONIC 199#ifndef EV_USE_MONOTONIC
200# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
201# define EV_USE_MONOTONIC 1
202# else
169# define EV_USE_MONOTONIC 0 203# define EV_USE_MONOTONIC 0
204# endif
170#endif 205#endif
171 206
172#ifndef EV_USE_REALTIME 207#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 208# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 209#endif
175 210
176#ifndef EV_USE_NANOSLEEP 211#ifndef EV_USE_NANOSLEEP
212# if _POSIX_C_SOURCE >= 199309L
213# define EV_USE_NANOSLEEP 1
214# else
177# define EV_USE_NANOSLEEP 0 215# define EV_USE_NANOSLEEP 0
216# endif
178#endif 217#endif
179 218
180#ifndef EV_USE_SELECT 219#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 220# define EV_USE_SELECT 1
182#endif 221#endif
235# else 274# else
236# define EV_USE_EVENTFD 0 275# define EV_USE_EVENTFD 0
237# endif 276# endif
238#endif 277#endif
239 278
279#ifndef EV_USE_SIGNALFD
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
281# define EV_USE_SIGNALFD 1
282# else
283# define EV_USE_SIGNALFD 0
284# endif
285#endif
286
287#if 0 /* debugging */
288# define EV_VERIFY 3
289# define EV_USE_4HEAP 1
290# define EV_HEAP_CACHE_AT 1
291#endif
292
293#ifndef EV_VERIFY
294# define EV_VERIFY !EV_MINIMAL
295#endif
296
297#ifndef EV_USE_4HEAP
298# define EV_USE_4HEAP !EV_MINIMAL
299#endif
300
301#ifndef EV_HEAP_CACHE_AT
302# define EV_HEAP_CACHE_AT !EV_MINIMAL
303#endif
304
305/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306/* which makes programs even slower. might work on other unices, too. */
307#if EV_USE_CLOCK_SYSCALL
308# include <syscall.h>
309# ifdef SYS_clock_gettime
310# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311# undef EV_USE_MONOTONIC
312# define EV_USE_MONOTONIC 1
313# else
314# undef EV_USE_CLOCK_SYSCALL
315# define EV_USE_CLOCK_SYSCALL 0
316# endif
317#endif
318
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 319/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 320
242#ifndef CLOCK_MONOTONIC 321#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 322# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 323# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 338# include <sys/select.h>
260# endif 339# endif
261#endif 340#endif
262 341
263#if EV_USE_INOTIFY 342#if EV_USE_INOTIFY
343# include <sys/utsname.h>
344# include <sys/statfs.h>
264# include <sys/inotify.h> 345# include <sys/inotify.h>
346/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
347# ifndef IN_DONT_FOLLOW
348# undef EV_USE_INOTIFY
349# define EV_USE_INOTIFY 0
350# endif
265#endif 351#endif
266 352
267#if EV_SELECT_IS_WINSOCKET 353#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 354# include <winsock.h>
269#endif 355#endif
270 356
271#if EV_USE_EVENTFD 357#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 358/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
359# include <stdint.h>
360# ifndef EFD_NONBLOCK
361# define EFD_NONBLOCK O_NONBLOCK
362# endif
363# ifndef EFD_CLOEXEC
364# define EFD_CLOEXEC O_CLOEXEC
365# endif
366# ifdef __cplusplus
367extern "C" {
368# endif
273int eventfd (unsigned int initval, int flags); 369int eventfd (unsigned int initval, int flags);
370# ifdef __cplusplus
371}
372# endif
373#endif
374
375#if EV_USE_SIGNALFD
376# include <sys/signalfd.h>
274#endif 377#endif
275 378
276/**/ 379/**/
380
381#if EV_VERIFY >= 3
382# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
383#else
384# define EV_FREQUENT_CHECK do { } while (0)
385#endif
277 386
278/* 387/*
279 * This is used to avoid floating point rounding problems. 388 * This is used to avoid floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics 389 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding 390 * to ensure progress, time-wise, even when rounding
293# define expect(expr,value) __builtin_expect ((expr),(value)) 402# define expect(expr,value) __builtin_expect ((expr),(value))
294# define noinline __attribute__ ((noinline)) 403# define noinline __attribute__ ((noinline))
295#else 404#else
296# define expect(expr,value) (expr) 405# define expect(expr,value) (expr)
297# define noinline 406# define noinline
298# if __STDC_VERSION__ < 199901L 407# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
299# define inline 408# define inline
300# endif 409# endif
301#endif 410#endif
302 411
303#define expect_false(expr) expect ((expr) != 0, 0) 412#define expect_false(expr) expect ((expr) != 0, 0)
308# define inline_speed static noinline 417# define inline_speed static noinline
309#else 418#else
310# define inline_speed static inline 419# define inline_speed static inline
311#endif 420#endif
312 421
313#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 422#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423
424#if EV_MINPRI == EV_MAXPRI
425# define ABSPRI(w) (((W)w), 0)
426#else
314#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 427# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428#endif
315 429
316#define EMPTY /* required for microsofts broken pseudo-c compiler */ 430#define EMPTY /* required for microsofts broken pseudo-c compiler */
317#define EMPTY2(a,b) /* used to suppress some warnings */ 431#define EMPTY2(a,b) /* used to suppress some warnings */
318 432
319typedef ev_watcher *W; 433typedef ev_watcher *W;
320typedef ev_watcher_list *WL; 434typedef ev_watcher_list *WL;
321typedef ev_watcher_time *WT; 435typedef ev_watcher_time *WT;
322 436
323#if EV_USE_MONOTONIC 437#define ev_active(w) ((W)(w))->active
438#define ev_at(w) ((WT)(w))->at
439
440#if EV_USE_REALTIME
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 441/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */ 442/* giving it a reasonably high chance of working on typical architetcures */
443static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
444#endif
445
446#if EV_USE_MONOTONIC
326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 447static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
327#endif 448#endif
328 449
329#ifdef _WIN32 450#ifdef _WIN32
330# include "ev_win32.c" 451# include "ev_win32.c"
339{ 460{
340 syserr_cb = cb; 461 syserr_cb = cb;
341} 462}
342 463
343static void noinline 464static void noinline
344syserr (const char *msg) 465ev_syserr (const char *msg)
345{ 466{
346 if (!msg) 467 if (!msg)
347 msg = "(libev) system error"; 468 msg = "(libev) system error";
348 469
349 if (syserr_cb) 470 if (syserr_cb)
353 perror (msg); 474 perror (msg);
354 abort (); 475 abort ();
355 } 476 }
356} 477}
357 478
479static void *
480ev_realloc_emul (void *ptr, long size)
481{
482 /* some systems, notably openbsd and darwin, fail to properly
483 * implement realloc (x, 0) (as required by both ansi c-98 and
484 * the single unix specification, so work around them here.
485 */
486
487 if (size)
488 return realloc (ptr, size);
489
490 free (ptr);
491 return 0;
492}
493
358static void *(*alloc)(void *ptr, long size); 494static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
359 495
360void 496void
361ev_set_allocator (void *(*cb)(void *ptr, long size)) 497ev_set_allocator (void *(*cb)(void *ptr, long size))
362{ 498{
363 alloc = cb; 499 alloc = cb;
364} 500}
365 501
366inline_speed void * 502inline_speed void *
367ev_realloc (void *ptr, long size) 503ev_realloc (void *ptr, long size)
368{ 504{
369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 505 ptr = alloc (ptr, size);
370 506
371 if (!ptr && size) 507 if (!ptr && size)
372 { 508 {
373 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 509 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
374 abort (); 510 abort ();
380#define ev_malloc(size) ev_realloc (0, (size)) 516#define ev_malloc(size) ev_realloc (0, (size))
381#define ev_free(ptr) ev_realloc ((ptr), 0) 517#define ev_free(ptr) ev_realloc ((ptr), 0)
382 518
383/*****************************************************************************/ 519/*****************************************************************************/
384 520
521/* set in reify when reification needed */
522#define EV_ANFD_REIFY 1
523
524/* file descriptor info structure */
385typedef struct 525typedef struct
386{ 526{
387 WL head; 527 WL head;
388 unsigned char events; 528 unsigned char events; /* the events watched for */
529 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
530 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
389 unsigned char reify; 531 unsigned char unused;
532#if EV_USE_EPOLL
533 unsigned int egen; /* generation counter to counter epoll bugs */
534#endif
390#if EV_SELECT_IS_WINSOCKET 535#if EV_SELECT_IS_WINSOCKET
391 SOCKET handle; 536 SOCKET handle;
392#endif 537#endif
393} ANFD; 538} ANFD;
394 539
540/* stores the pending event set for a given watcher */
395typedef struct 541typedef struct
396{ 542{
397 W w; 543 W w;
398 int events; 544 int events; /* the pending event set for the given watcher */
399} ANPENDING; 545} ANPENDING;
400 546
401#if EV_USE_INOTIFY 547#if EV_USE_INOTIFY
548/* hash table entry per inotify-id */
402typedef struct 549typedef struct
403{ 550{
404 WL head; 551 WL head;
405} ANFS; 552} ANFS;
553#endif
554
555/* Heap Entry */
556#if EV_HEAP_CACHE_AT
557 /* a heap element */
558 typedef struct {
559 ev_tstamp at;
560 WT w;
561 } ANHE;
562
563 #define ANHE_w(he) (he).w /* access watcher, read-write */
564 #define ANHE_at(he) (he).at /* access cached at, read-only */
565 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
566#else
567 /* a heap element */
568 typedef WT ANHE;
569
570 #define ANHE_w(he) (he)
571 #define ANHE_at(he) (he)->at
572 #define ANHE_at_cache(he)
406#endif 573#endif
407 574
408#if EV_MULTIPLICITY 575#if EV_MULTIPLICITY
409 576
410 struct ev_loop 577 struct ev_loop
429 596
430 static int ev_default_loop_ptr; 597 static int ev_default_loop_ptr;
431 598
432#endif 599#endif
433 600
601#if EV_MINIMAL < 2
602# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
603# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
604# define EV_INVOKE_PENDING invoke_cb (EV_A)
605#else
606# define EV_RELEASE_CB (void)0
607# define EV_ACQUIRE_CB (void)0
608# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609#endif
610
611#define EVUNLOOP_RECURSE 0x80
612
434/*****************************************************************************/ 613/*****************************************************************************/
435 614
615#ifndef EV_HAVE_EV_TIME
436ev_tstamp 616ev_tstamp
437ev_time (void) 617ev_time (void)
438{ 618{
439#if EV_USE_REALTIME 619#if EV_USE_REALTIME
620 if (expect_true (have_realtime))
621 {
440 struct timespec ts; 622 struct timespec ts;
441 clock_gettime (CLOCK_REALTIME, &ts); 623 clock_gettime (CLOCK_REALTIME, &ts);
442 return ts.tv_sec + ts.tv_nsec * 1e-9; 624 return ts.tv_sec + ts.tv_nsec * 1e-9;
443#else 625 }
626#endif
627
444 struct timeval tv; 628 struct timeval tv;
445 gettimeofday (&tv, 0); 629 gettimeofday (&tv, 0);
446 return tv.tv_sec + tv.tv_usec * 1e-6; 630 return tv.tv_sec + tv.tv_usec * 1e-6;
447#endif
448} 631}
632#endif
449 633
450ev_tstamp inline_size 634inline_size ev_tstamp
451get_clock (void) 635get_clock (void)
452{ 636{
453#if EV_USE_MONOTONIC 637#if EV_USE_MONOTONIC
454 if (expect_true (have_monotonic)) 638 if (expect_true (have_monotonic))
455 { 639 {
488 struct timeval tv; 672 struct timeval tv;
489 673
490 tv.tv_sec = (time_t)delay; 674 tv.tv_sec = (time_t)delay;
491 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 675 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
492 676
677 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
678 /* something not guaranteed by newer posix versions, but guaranteed */
679 /* by older ones */
493 select (0, 0, 0, 0, &tv); 680 select (0, 0, 0, 0, &tv);
494#endif 681#endif
495 } 682 }
496} 683}
497 684
498/*****************************************************************************/ 685/*****************************************************************************/
499 686
500int inline_size 687#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
688
689/* find a suitable new size for the given array, */
690/* hopefully by rounding to a ncie-to-malloc size */
691inline_size int
501array_nextsize (int elem, int cur, int cnt) 692array_nextsize (int elem, int cur, int cnt)
502{ 693{
503 int ncur = cur + 1; 694 int ncur = cur + 1;
504 695
505 do 696 do
506 ncur <<= 1; 697 ncur <<= 1;
507 while (cnt > ncur); 698 while (cnt > ncur);
508 699
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 700 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096) 701 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
511 { 702 {
512 ncur *= elem; 703 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 704 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
514 ncur = ncur - sizeof (void *) * 4; 705 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem; 706 ncur /= elem;
516 } 707 }
517 708
518 return ncur; 709 return ncur;
522array_realloc (int elem, void *base, int *cur, int cnt) 713array_realloc (int elem, void *base, int *cur, int cnt)
523{ 714{
524 *cur = array_nextsize (elem, *cur, cnt); 715 *cur = array_nextsize (elem, *cur, cnt);
525 return ev_realloc (base, elem * *cur); 716 return ev_realloc (base, elem * *cur);
526} 717}
718
719#define array_init_zero(base,count) \
720 memset ((void *)(base), 0, sizeof (*(base)) * (count))
527 721
528#define array_needsize(type,base,cur,cnt,init) \ 722#define array_needsize(type,base,cur,cnt,init) \
529 if (expect_false ((cnt) > (cur))) \ 723 if (expect_false ((cnt) > (cur))) \
530 { \ 724 { \
531 int ocur_ = (cur); \ 725 int ocur_ = (cur); \
543 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 737 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
544 } 738 }
545#endif 739#endif
546 740
547#define array_free(stem, idx) \ 741#define array_free(stem, idx) \
548 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 742 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
549 743
550/*****************************************************************************/ 744/*****************************************************************************/
745
746/* dummy callback for pending events */
747static void noinline
748pendingcb (EV_P_ ev_prepare *w, int revents)
749{
750}
551 751
552void noinline 752void noinline
553ev_feed_event (EV_P_ void *w, int revents) 753ev_feed_event (EV_P_ void *w, int revents)
554{ 754{
555 W w_ = (W)w; 755 W w_ = (W)w;
564 pendings [pri][w_->pending - 1].w = w_; 764 pendings [pri][w_->pending - 1].w = w_;
565 pendings [pri][w_->pending - 1].events = revents; 765 pendings [pri][w_->pending - 1].events = revents;
566 } 766 }
567} 767}
568 768
569void inline_speed 769inline_speed void
770feed_reverse (EV_P_ W w)
771{
772 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
773 rfeeds [rfeedcnt++] = w;
774}
775
776inline_size void
777feed_reverse_done (EV_P_ int revents)
778{
779 do
780 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
781 while (rfeedcnt);
782}
783
784inline_speed void
570queue_events (EV_P_ W *events, int eventcnt, int type) 785queue_events (EV_P_ W *events, int eventcnt, int type)
571{ 786{
572 int i; 787 int i;
573 788
574 for (i = 0; i < eventcnt; ++i) 789 for (i = 0; i < eventcnt; ++i)
575 ev_feed_event (EV_A_ events [i], type); 790 ev_feed_event (EV_A_ events [i], type);
576} 791}
577 792
578/*****************************************************************************/ 793/*****************************************************************************/
579 794
580void inline_size 795inline_speed void
581anfds_init (ANFD *base, int count)
582{
583 while (count--)
584 {
585 base->head = 0;
586 base->events = EV_NONE;
587 base->reify = 0;
588
589 ++base;
590 }
591}
592
593void inline_speed
594fd_event (EV_P_ int fd, int revents) 796fd_event_nc (EV_P_ int fd, int revents)
595{ 797{
596 ANFD *anfd = anfds + fd; 798 ANFD *anfd = anfds + fd;
597 ev_io *w; 799 ev_io *w;
598 800
599 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
603 if (ev) 805 if (ev)
604 ev_feed_event (EV_A_ (W)w, ev); 806 ev_feed_event (EV_A_ (W)w, ev);
605 } 807 }
606} 808}
607 809
810/* do not submit kernel events for fds that have reify set */
811/* because that means they changed while we were polling for new events */
812inline_speed void
813fd_event (EV_P_ int fd, int revents)
814{
815 ANFD *anfd = anfds + fd;
816
817 if (expect_true (!anfd->reify))
818 fd_event_nc (EV_A_ fd, revents);
819}
820
608void 821void
609ev_feed_fd_event (EV_P_ int fd, int revents) 822ev_feed_fd_event (EV_P_ int fd, int revents)
610{ 823{
611 if (fd >= 0 && fd < anfdmax) 824 if (fd >= 0 && fd < anfdmax)
612 fd_event (EV_A_ fd, revents); 825 fd_event_nc (EV_A_ fd, revents);
613} 826}
614 827
615void inline_size 828/* make sure the external fd watch events are in-sync */
829/* with the kernel/libev internal state */
830inline_size void
616fd_reify (EV_P) 831fd_reify (EV_P)
617{ 832{
618 int i; 833 int i;
619 834
620 for (i = 0; i < fdchangecnt; ++i) 835 for (i = 0; i < fdchangecnt; ++i)
629 events |= (unsigned char)w->events; 844 events |= (unsigned char)w->events;
630 845
631#if EV_SELECT_IS_WINSOCKET 846#if EV_SELECT_IS_WINSOCKET
632 if (events) 847 if (events)
633 { 848 {
634 unsigned long argp; 849 unsigned long arg;
635 #ifdef EV_FD_TO_WIN32_HANDLE 850 #ifdef EV_FD_TO_WIN32_HANDLE
636 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 851 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
637 #else 852 #else
638 anfd->handle = _get_osfhandle (fd); 853 anfd->handle = _get_osfhandle (fd);
639 #endif 854 #endif
640 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 855 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
641 } 856 }
642#endif 857#endif
643 858
644 { 859 {
645 unsigned char o_events = anfd->events; 860 unsigned char o_events = anfd->events;
646 unsigned char o_reify = anfd->reify; 861 unsigned char o_reify = anfd->reify;
647 862
648 anfd->reify = 0; 863 anfd->reify = 0;
649 anfd->events = events; 864 anfd->events = events;
650 865
651 if (o_events != events || o_reify & EV_IOFDSET) 866 if (o_events != events || o_reify & EV__IOFDSET)
652 backend_modify (EV_A_ fd, o_events, events); 867 backend_modify (EV_A_ fd, o_events, events);
653 } 868 }
654 } 869 }
655 870
656 fdchangecnt = 0; 871 fdchangecnt = 0;
657} 872}
658 873
659void inline_size 874/* something about the given fd changed */
875inline_size void
660fd_change (EV_P_ int fd, int flags) 876fd_change (EV_P_ int fd, int flags)
661{ 877{
662 unsigned char reify = anfds [fd].reify; 878 unsigned char reify = anfds [fd].reify;
663 anfds [fd].reify |= flags; 879 anfds [fd].reify |= flags;
664 880
668 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 884 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
669 fdchanges [fdchangecnt - 1] = fd; 885 fdchanges [fdchangecnt - 1] = fd;
670 } 886 }
671} 887}
672 888
673void inline_speed 889/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890inline_speed void
674fd_kill (EV_P_ int fd) 891fd_kill (EV_P_ int fd)
675{ 892{
676 ev_io *w; 893 ev_io *w;
677 894
678 while ((w = (ev_io *)anfds [fd].head)) 895 while ((w = (ev_io *)anfds [fd].head))
680 ev_io_stop (EV_A_ w); 897 ev_io_stop (EV_A_ w);
681 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 898 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
682 } 899 }
683} 900}
684 901
685int inline_size 902/* check whether the given fd is atcually valid, for error recovery */
903inline_size int
686fd_valid (int fd) 904fd_valid (int fd)
687{ 905{
688#ifdef _WIN32 906#ifdef _WIN32
689 return _get_osfhandle (fd) != -1; 907 return _get_osfhandle (fd) != -1;
690#else 908#else
698{ 916{
699 int fd; 917 int fd;
700 918
701 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
702 if (anfds [fd].events) 920 if (anfds [fd].events)
703 if (!fd_valid (fd) == -1 && errno == EBADF) 921 if (!fd_valid (fd) && errno == EBADF)
704 fd_kill (EV_A_ fd); 922 fd_kill (EV_A_ fd);
705} 923}
706 924
707/* called on ENOMEM in select/poll to kill some fds and retry */ 925/* called on ENOMEM in select/poll to kill some fds and retry */
708static void noinline 926static void noinline
726 944
727 for (fd = 0; fd < anfdmax; ++fd) 945 for (fd = 0; fd < anfdmax; ++fd)
728 if (anfds [fd].events) 946 if (anfds [fd].events)
729 { 947 {
730 anfds [fd].events = 0; 948 anfds [fd].events = 0;
949 anfds [fd].emask = 0;
731 fd_change (EV_A_ fd, EV_IOFDSET | 1); 950 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
732 } 951 }
733} 952}
734 953
735/*****************************************************************************/ 954/*****************************************************************************/
736 955
737void inline_speed 956/*
738upheap (WT *heap, int k) 957 * the heap functions want a real array index. array index 0 uis guaranteed to not
739{ 958 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
740 WT w = heap [k]; 959 * the branching factor of the d-tree.
960 */
741 961
742 while (k) 962/*
743 { 963 * at the moment we allow libev the luxury of two heaps,
744 int p = (k - 1) >> 1; 964 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
965 * which is more cache-efficient.
966 * the difference is about 5% with 50000+ watchers.
967 */
968#if EV_USE_4HEAP
745 969
746 if (heap [p]->at <= w->at) 970#define DHEAP 4
971#define HEAP0 (DHEAP - 1) /* index of first element in heap */
972#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
973#define UPHEAP_DONE(p,k) ((p) == (k))
974
975/* away from the root */
976inline_speed void
977downheap (ANHE *heap, int N, int k)
978{
979 ANHE he = heap [k];
980 ANHE *E = heap + N + HEAP0;
981
982 for (;;)
983 {
984 ev_tstamp minat;
985 ANHE *minpos;
986 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
987
988 /* find minimum child */
989 if (expect_true (pos + DHEAP - 1 < E))
990 {
991 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
992 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
993 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
994 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
995 }
996 else if (pos < E)
997 {
998 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
999 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1000 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1001 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1002 }
1003 else
747 break; 1004 break;
748 1005
1006 if (ANHE_at (he) <= minat)
1007 break;
1008
1009 heap [k] = *minpos;
1010 ev_active (ANHE_w (*minpos)) = k;
1011
1012 k = minpos - heap;
1013 }
1014
1015 heap [k] = he;
1016 ev_active (ANHE_w (he)) = k;
1017}
1018
1019#else /* 4HEAP */
1020
1021#define HEAP0 1
1022#define HPARENT(k) ((k) >> 1)
1023#define UPHEAP_DONE(p,k) (!(p))
1024
1025/* away from the root */
1026inline_speed void
1027downheap (ANHE *heap, int N, int k)
1028{
1029 ANHE he = heap [k];
1030
1031 for (;;)
1032 {
1033 int c = k << 1;
1034
1035 if (c > N + HEAP0 - 1)
1036 break;
1037
1038 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1039 ? 1 : 0;
1040
1041 if (ANHE_at (he) <= ANHE_at (heap [c]))
1042 break;
1043
1044 heap [k] = heap [c];
1045 ev_active (ANHE_w (heap [k])) = k;
1046
1047 k = c;
1048 }
1049
1050 heap [k] = he;
1051 ev_active (ANHE_w (he)) = k;
1052}
1053#endif
1054
1055/* towards the root */
1056inline_speed void
1057upheap (ANHE *heap, int k)
1058{
1059 ANHE he = heap [k];
1060
1061 for (;;)
1062 {
1063 int p = HPARENT (k);
1064
1065 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1066 break;
1067
749 heap [k] = heap [p]; 1068 heap [k] = heap [p];
750 ((W)heap [k])->active = k + 1; 1069 ev_active (ANHE_w (heap [k])) = k;
751 k = p; 1070 k = p;
752 } 1071 }
753 1072
754 heap [k] = w; 1073 heap [k] = he;
755 ((W)heap [k])->active = k + 1; 1074 ev_active (ANHE_w (he)) = k;
756} 1075}
757 1076
758void inline_speed 1077/* move an element suitably so it is in a correct place */
759downheap (WT *heap, int N, int k) 1078inline_size void
760{
761 WT w = heap [k];
762
763 for (;;)
764 {
765 int c = (k << 1) + 1;
766
767 if (c >= N)
768 break;
769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
776 heap [k] = heap [c];
777 ((W)heap [k])->active = k + 1;
778
779 k = c;
780 }
781
782 heap [k] = w;
783 ((W)heap [k])->active = k + 1;
784}
785
786void inline_size
787adjustheap (WT *heap, int N, int k) 1079adjustheap (ANHE *heap, int N, int k)
788{ 1080{
1081 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
789 upheap (heap, k); 1082 upheap (heap, k);
1083 else
790 downheap (heap, N, k); 1084 downheap (heap, N, k);
1085}
1086
1087/* rebuild the heap: this function is used only once and executed rarely */
1088inline_size void
1089reheap (ANHE *heap, int N)
1090{
1091 int i;
1092
1093 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1094 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1095 for (i = 0; i < N; ++i)
1096 upheap (heap, i + HEAP0);
791} 1097}
792 1098
793/*****************************************************************************/ 1099/*****************************************************************************/
794 1100
1101/* associate signal watchers to a signal signal */
795typedef struct 1102typedef struct
796{ 1103{
797 WL head; 1104 WL head;
798 EV_ATOMIC_T gotsig; 1105 EV_ATOMIC_T gotsig;
799} ANSIG; 1106} ANSIG;
801static ANSIG *signals; 1108static ANSIG *signals;
802static int signalmax; 1109static int signalmax;
803 1110
804static EV_ATOMIC_T gotsig; 1111static EV_ATOMIC_T gotsig;
805 1112
806void inline_size
807signals_init (ANSIG *base, int count)
808{
809 while (count--)
810 {
811 base->head = 0;
812 base->gotsig = 0;
813
814 ++base;
815 }
816}
817
818/*****************************************************************************/ 1113/*****************************************************************************/
819 1114
820void inline_speed 1115/* used to prepare libev internal fd's */
1116/* this is not fork-safe */
1117inline_speed void
821fd_intern (int fd) 1118fd_intern (int fd)
822{ 1119{
823#ifdef _WIN32 1120#ifdef _WIN32
824 int arg = 1; 1121 unsigned long arg = 1;
825 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1122 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
826#else 1123#else
827 fcntl (fd, F_SETFD, FD_CLOEXEC); 1124 fcntl (fd, F_SETFD, FD_CLOEXEC);
828 fcntl (fd, F_SETFL, O_NONBLOCK); 1125 fcntl (fd, F_SETFL, O_NONBLOCK);
829#endif 1126#endif
830} 1127}
831 1128
832static void noinline 1129static void noinline
833evpipe_init (EV_P) 1130evpipe_init (EV_P)
834{ 1131{
835 if (!ev_is_active (&pipeev)) 1132 if (!ev_is_active (&pipe_w))
836 { 1133 {
837#if EV_USE_EVENTFD 1134#if EV_USE_EVENTFD
1135 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1136 if (evfd < 0 && errno == EINVAL)
838 if ((evfd = eventfd (0, 0)) >= 0) 1137 evfd = eventfd (0, 0);
1138
1139 if (evfd >= 0)
839 { 1140 {
840 evpipe [0] = -1; 1141 evpipe [0] = -1;
841 fd_intern (evfd); 1142 fd_intern (evfd); /* doing it twice doesn't hurt */
842 ev_io_set (&pipeev, evfd, EV_READ); 1143 ev_io_set (&pipe_w, evfd, EV_READ);
843 } 1144 }
844 else 1145 else
845#endif 1146#endif
846 { 1147 {
847 while (pipe (evpipe)) 1148 while (pipe (evpipe))
848 syserr ("(libev) error creating signal/async pipe"); 1149 ev_syserr ("(libev) error creating signal/async pipe");
849 1150
850 fd_intern (evpipe [0]); 1151 fd_intern (evpipe [0]);
851 fd_intern (evpipe [1]); 1152 fd_intern (evpipe [1]);
852 ev_io_set (&pipeev, evpipe [0], EV_READ); 1153 ev_io_set (&pipe_w, evpipe [0], EV_READ);
853 } 1154 }
854 1155
855 ev_io_start (EV_A_ &pipeev); 1156 ev_io_start (EV_A_ &pipe_w);
856 ev_unref (EV_A); /* watcher should not keep loop alive */ 1157 ev_unref (EV_A); /* watcher should not keep loop alive */
857 } 1158 }
858} 1159}
859 1160
860void inline_size 1161inline_size void
861evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1162evpipe_write (EV_P_ EV_ATOMIC_T *flag)
862{ 1163{
863 if (!*flag) 1164 if (!*flag)
864 { 1165 {
865 int old_errno = errno; /* save errno because write might clobber it */ 1166 int old_errno = errno; /* save errno because write might clobber it */
878 1179
879 errno = old_errno; 1180 errno = old_errno;
880 } 1181 }
881} 1182}
882 1183
1184/* called whenever the libev signal pipe */
1185/* got some events (signal, async) */
883static void 1186static void
884pipecb (EV_P_ ev_io *iow, int revents) 1187pipecb (EV_P_ ev_io *iow, int revents)
885{ 1188{
886#if EV_USE_EVENTFD 1189#if EV_USE_EVENTFD
887 if (evfd >= 0) 1190 if (evfd >= 0)
888 { 1191 {
889 uint64_t counter = 1; 1192 uint64_t counter;
890 read (evfd, &counter, sizeof (uint64_t)); 1193 read (evfd, &counter, sizeof (uint64_t));
891 } 1194 }
892 else 1195 else
893#endif 1196#endif
894 { 1197 {
943ev_feed_signal_event (EV_P_ int signum) 1246ev_feed_signal_event (EV_P_ int signum)
944{ 1247{
945 WL w; 1248 WL w;
946 1249
947#if EV_MULTIPLICITY 1250#if EV_MULTIPLICITY
948 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1251 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
949#endif 1252#endif
950 1253
951 --signum; 1254 --signum;
952 1255
953 if (signum < 0 || signum >= signalmax) 1256 if (signum < 0 || signum >= signalmax)
957 1260
958 for (w = signals [signum].head; w; w = w->next) 1261 for (w = signals [signum].head; w; w = w->next)
959 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1262 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
960} 1263}
961 1264
1265#if EV_USE_SIGNALFD
1266static void
1267sigfdcb (EV_P_ ev_io *iow, int revents)
1268{
1269 struct signalfd_siginfo si[4], *sip;
1270
1271 for (;;)
1272 {
1273 ssize_t res = read (sigfd, si, sizeof (si));
1274
1275 /* not ISO-C, as res might be -1, but works with SuS */
1276 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1277 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1278
1279 if (res < (ssize_t)sizeof (si))
1280 break;
1281 }
1282}
1283#endif
1284
962/*****************************************************************************/ 1285/*****************************************************************************/
963 1286
964static WL childs [EV_PID_HASHSIZE]; 1287static WL childs [EV_PID_HASHSIZE];
965 1288
966#ifndef _WIN32 1289#ifndef _WIN32
969 1292
970#ifndef WIFCONTINUED 1293#ifndef WIFCONTINUED
971# define WIFCONTINUED(status) 0 1294# define WIFCONTINUED(status) 0
972#endif 1295#endif
973 1296
974void inline_speed 1297/* handle a single child status event */
1298inline_speed void
975child_reap (EV_P_ int chain, int pid, int status) 1299child_reap (EV_P_ int chain, int pid, int status)
976{ 1300{
977 ev_child *w; 1301 ev_child *w;
978 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1302 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
979 1303
992 1316
993#ifndef WCONTINUED 1317#ifndef WCONTINUED
994# define WCONTINUED 0 1318# define WCONTINUED 0
995#endif 1319#endif
996 1320
1321/* called on sigchld etc., calls waitpid */
997static void 1322static void
998childcb (EV_P_ ev_signal *sw, int revents) 1323childcb (EV_P_ ev_signal *sw, int revents)
999{ 1324{
1000 int pid, status; 1325 int pid, status;
1001 1326
1082 /* kqueue is borked on everything but netbsd apparently */ 1407 /* kqueue is borked on everything but netbsd apparently */
1083 /* it usually doesn't work correctly on anything but sockets and pipes */ 1408 /* it usually doesn't work correctly on anything but sockets and pipes */
1084 flags &= ~EVBACKEND_KQUEUE; 1409 flags &= ~EVBACKEND_KQUEUE;
1085#endif 1410#endif
1086#ifdef __APPLE__ 1411#ifdef __APPLE__
1087 // flags &= ~EVBACKEND_KQUEUE; for documentation 1412 /* only select works correctly on that "unix-certified" platform */
1088 flags &= ~EVBACKEND_POLL; 1413 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1414 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1089#endif 1415#endif
1090 1416
1091 return flags; 1417 return flags;
1092} 1418}
1093 1419
1107ev_backend (EV_P) 1433ev_backend (EV_P)
1108{ 1434{
1109 return backend; 1435 return backend;
1110} 1436}
1111 1437
1438#if EV_MINIMAL < 2
1112unsigned int 1439unsigned int
1113ev_loop_count (EV_P) 1440ev_loop_count (EV_P)
1114{ 1441{
1115 return loop_count; 1442 return loop_count;
1116} 1443}
1117 1444
1445unsigned int
1446ev_loop_depth (EV_P)
1447{
1448 return loop_depth;
1449}
1450
1118void 1451void
1119ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1452ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1120{ 1453{
1121 io_blocktime = interval; 1454 io_blocktime = interval;
1122} 1455}
1125ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1458ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1126{ 1459{
1127 timeout_blocktime = interval; 1460 timeout_blocktime = interval;
1128} 1461}
1129 1462
1463void
1464ev_set_userdata (EV_P_ void *data)
1465{
1466 userdata = data;
1467}
1468
1469void *
1470ev_userdata (EV_P)
1471{
1472 return userdata;
1473}
1474
1475void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1476{
1477 invoke_cb = invoke_pending_cb;
1478}
1479
1480void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1481{
1482 release_cb = release;
1483 acquire_cb = acquire;
1484}
1485#endif
1486
1487/* initialise a loop structure, must be zero-initialised */
1130static void noinline 1488static void noinline
1131loop_init (EV_P_ unsigned int flags) 1489loop_init (EV_P_ unsigned int flags)
1132{ 1490{
1133 if (!backend) 1491 if (!backend)
1134 { 1492 {
1493#if EV_USE_REALTIME
1494 if (!have_realtime)
1495 {
1496 struct timespec ts;
1497
1498 if (!clock_gettime (CLOCK_REALTIME, &ts))
1499 have_realtime = 1;
1500 }
1501#endif
1502
1135#if EV_USE_MONOTONIC 1503#if EV_USE_MONOTONIC
1504 if (!have_monotonic)
1136 { 1505 {
1137 struct timespec ts; 1506 struct timespec ts;
1507
1138 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1508 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1139 have_monotonic = 1; 1509 have_monotonic = 1;
1140 } 1510 }
1141#endif 1511#endif
1142 1512
1143 ev_rt_now = ev_time (); 1513 ev_rt_now = ev_time ();
1144 mn_now = get_clock (); 1514 mn_now = get_clock ();
1145 now_floor = mn_now; 1515 now_floor = mn_now;
1146 rtmn_diff = ev_rt_now - mn_now; 1516 rtmn_diff = ev_rt_now - mn_now;
1517#if EV_MINIMAL < 2
1518 invoke_cb = ev_invoke_pending;
1519#endif
1147 1520
1148 io_blocktime = 0.; 1521 io_blocktime = 0.;
1149 timeout_blocktime = 0.; 1522 timeout_blocktime = 0.;
1150 backend = 0; 1523 backend = 0;
1151 backend_fd = -1; 1524 backend_fd = -1;
1152 gotasync = 0; 1525 gotasync = 0;
1153#if EV_USE_INOTIFY 1526#if EV_USE_INOTIFY
1154 fs_fd = -2; 1527 fs_fd = -2;
1155#endif 1528#endif
1529#if EV_USE_SIGNALFD
1530 sigfd = -2;
1531#endif
1156 1532
1157 /* pid check not overridable via env */ 1533 /* pid check not overridable via env */
1158#ifndef _WIN32 1534#ifndef _WIN32
1159 if (flags & EVFLAG_FORKCHECK) 1535 if (flags & EVFLAG_FORKCHECK)
1160 curpid = getpid (); 1536 curpid = getpid ();
1163 if (!(flags & EVFLAG_NOENV) 1539 if (!(flags & EVFLAG_NOENV)
1164 && !enable_secure () 1540 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS")) 1541 && getenv ("LIBEV_FLAGS"))
1166 flags = atoi (getenv ("LIBEV_FLAGS")); 1542 flags = atoi (getenv ("LIBEV_FLAGS"));
1167 1543
1168 if (!(flags & 0x0000ffffUL)) 1544 if (!(flags & 0x0000ffffU))
1169 flags |= ev_recommended_backends (); 1545 flags |= ev_recommended_backends ();
1170 1546
1171#if EV_USE_PORT 1547#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1548 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif 1549#endif
1182#endif 1558#endif
1183#if EV_USE_SELECT 1559#if EV_USE_SELECT
1184 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1560 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1185#endif 1561#endif
1186 1562
1563 ev_prepare_init (&pending_w, pendingcb);
1564
1187 ev_init (&pipeev, pipecb); 1565 ev_init (&pipe_w, pipecb);
1188 ev_set_priority (&pipeev, EV_MAXPRI); 1566 ev_set_priority (&pipe_w, EV_MAXPRI);
1189 } 1567 }
1190} 1568}
1191 1569
1570/* free up a loop structure */
1192static void noinline 1571static void noinline
1193loop_destroy (EV_P) 1572loop_destroy (EV_P)
1194{ 1573{
1195 int i; 1574 int i;
1196 1575
1197 if (ev_is_active (&pipeev)) 1576 if (ev_is_active (&pipe_w))
1198 { 1577 {
1199 ev_ref (EV_A); /* signal watcher */ 1578 /*ev_ref (EV_A);*/
1200 ev_io_stop (EV_A_ &pipeev); 1579 /*ev_io_stop (EV_A_ &pipe_w);*/
1201 1580
1202#if EV_USE_EVENTFD 1581#if EV_USE_EVENTFD
1203 if (evfd >= 0) 1582 if (evfd >= 0)
1204 close (evfd); 1583 close (evfd);
1205#endif 1584#endif
1209 close (evpipe [0]); 1588 close (evpipe [0]);
1210 close (evpipe [1]); 1589 close (evpipe [1]);
1211 } 1590 }
1212 } 1591 }
1213 1592
1593#if EV_USE_SIGNALFD
1594 if (ev_is_active (&sigfd_w))
1595 {
1596 /*ev_ref (EV_A);*/
1597 /*ev_io_stop (EV_A_ &sigfd_w);*/
1598
1599 close (sigfd);
1600 }
1601#endif
1602
1214#if EV_USE_INOTIFY 1603#if EV_USE_INOTIFY
1215 if (fs_fd >= 0) 1604 if (fs_fd >= 0)
1216 close (fs_fd); 1605 close (fs_fd);
1217#endif 1606#endif
1218 1607
1244 } 1633 }
1245 1634
1246 ev_free (anfds); anfdmax = 0; 1635 ev_free (anfds); anfdmax = 0;
1247 1636
1248 /* have to use the microsoft-never-gets-it-right macro */ 1637 /* have to use the microsoft-never-gets-it-right macro */
1638 array_free (rfeed, EMPTY);
1249 array_free (fdchange, EMPTY); 1639 array_free (fdchange, EMPTY);
1250 array_free (timer, EMPTY); 1640 array_free (timer, EMPTY);
1251#if EV_PERIODIC_ENABLE 1641#if EV_PERIODIC_ENABLE
1252 array_free (periodic, EMPTY); 1642 array_free (periodic, EMPTY);
1253#endif 1643#endif
1261#endif 1651#endif
1262 1652
1263 backend = 0; 1653 backend = 0;
1264} 1654}
1265 1655
1656#if EV_USE_INOTIFY
1266void inline_size infy_fork (EV_P); 1657inline_size void infy_fork (EV_P);
1658#endif
1267 1659
1268void inline_size 1660inline_size void
1269loop_fork (EV_P) 1661loop_fork (EV_P)
1270{ 1662{
1271#if EV_USE_PORT 1663#if EV_USE_PORT
1272 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1664 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1273#endif 1665#endif
1279#endif 1671#endif
1280#if EV_USE_INOTIFY 1672#if EV_USE_INOTIFY
1281 infy_fork (EV_A); 1673 infy_fork (EV_A);
1282#endif 1674#endif
1283 1675
1284 if (ev_is_active (&pipeev)) 1676 if (ev_is_active (&pipe_w))
1285 { 1677 {
1286 /* this "locks" the handlers against writing to the pipe */ 1678 /* this "locks" the handlers against writing to the pipe */
1287 /* while we modify the fd vars */ 1679 /* while we modify the fd vars */
1288 gotsig = 1; 1680 gotsig = 1;
1289#if EV_ASYNC_ENABLE 1681#if EV_ASYNC_ENABLE
1290 gotasync = 1; 1682 gotasync = 1;
1291#endif 1683#endif
1292 1684
1293 ev_ref (EV_A); 1685 ev_ref (EV_A);
1294 ev_io_stop (EV_A_ &pipeev); 1686 ev_io_stop (EV_A_ &pipe_w);
1295 1687
1296#if EV_USE_EVENTFD 1688#if EV_USE_EVENTFD
1297 if (evfd >= 0) 1689 if (evfd >= 0)
1298 close (evfd); 1690 close (evfd);
1299#endif 1691#endif
1304 close (evpipe [1]); 1696 close (evpipe [1]);
1305 } 1697 }
1306 1698
1307 evpipe_init (EV_A); 1699 evpipe_init (EV_A);
1308 /* now iterate over everything, in case we missed something */ 1700 /* now iterate over everything, in case we missed something */
1309 pipecb (EV_A_ &pipeev, EV_READ); 1701 pipecb (EV_A_ &pipe_w, EV_READ);
1310 } 1702 }
1311 1703
1312 postfork = 0; 1704 postfork = 0;
1313} 1705}
1314 1706
1315#if EV_MULTIPLICITY 1707#if EV_MULTIPLICITY
1708
1316struct ev_loop * 1709struct ev_loop *
1317ev_loop_new (unsigned int flags) 1710ev_loop_new (unsigned int flags)
1318{ 1711{
1319 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1712 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1320 1713
1321 memset (loop, 0, sizeof (struct ev_loop)); 1714 memset (loop, 0, sizeof (struct ev_loop));
1322
1323 loop_init (EV_A_ flags); 1715 loop_init (EV_A_ flags);
1324 1716
1325 if (ev_backend (EV_A)) 1717 if (ev_backend (EV_A))
1326 return loop; 1718 return loop;
1327 1719
1338void 1730void
1339ev_loop_fork (EV_P) 1731ev_loop_fork (EV_P)
1340{ 1732{
1341 postfork = 1; /* must be in line with ev_default_fork */ 1733 postfork = 1; /* must be in line with ev_default_fork */
1342} 1734}
1735#endif /* multiplicity */
1343 1736
1737#if EV_VERIFY
1738static void noinline
1739verify_watcher (EV_P_ W w)
1740{
1741 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1742
1743 if (w->pending)
1744 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1745}
1746
1747static void noinline
1748verify_heap (EV_P_ ANHE *heap, int N)
1749{
1750 int i;
1751
1752 for (i = HEAP0; i < N + HEAP0; ++i)
1753 {
1754 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1755 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1756 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1757
1758 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1759 }
1760}
1761
1762static void noinline
1763array_verify (EV_P_ W *ws, int cnt)
1764{
1765 while (cnt--)
1766 {
1767 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1768 verify_watcher (EV_A_ ws [cnt]);
1769 }
1770}
1771#endif
1772
1773#if EV_MINIMAL < 2
1774void
1775ev_loop_verify (EV_P)
1776{
1777#if EV_VERIFY
1778 int i;
1779 WL w;
1780
1781 assert (activecnt >= -1);
1782
1783 assert (fdchangemax >= fdchangecnt);
1784 for (i = 0; i < fdchangecnt; ++i)
1785 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1786
1787 assert (anfdmax >= 0);
1788 for (i = 0; i < anfdmax; ++i)
1789 for (w = anfds [i].head; w; w = w->next)
1790 {
1791 verify_watcher (EV_A_ (W)w);
1792 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1793 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1794 }
1795
1796 assert (timermax >= timercnt);
1797 verify_heap (EV_A_ timers, timercnt);
1798
1799#if EV_PERIODIC_ENABLE
1800 assert (periodicmax >= periodiccnt);
1801 verify_heap (EV_A_ periodics, periodiccnt);
1802#endif
1803
1804 for (i = NUMPRI; i--; )
1805 {
1806 assert (pendingmax [i] >= pendingcnt [i]);
1807#if EV_IDLE_ENABLE
1808 assert (idleall >= 0);
1809 assert (idlemax [i] >= idlecnt [i]);
1810 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1811#endif
1812 }
1813
1814#if EV_FORK_ENABLE
1815 assert (forkmax >= forkcnt);
1816 array_verify (EV_A_ (W *)forks, forkcnt);
1817#endif
1818
1819#if EV_ASYNC_ENABLE
1820 assert (asyncmax >= asynccnt);
1821 array_verify (EV_A_ (W *)asyncs, asynccnt);
1822#endif
1823
1824 assert (preparemax >= preparecnt);
1825 array_verify (EV_A_ (W *)prepares, preparecnt);
1826
1827 assert (checkmax >= checkcnt);
1828 array_verify (EV_A_ (W *)checks, checkcnt);
1829
1830# if 0
1831 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1832 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1833# endif
1834#endif
1835}
1344#endif 1836#endif
1345 1837
1346#if EV_MULTIPLICITY 1838#if EV_MULTIPLICITY
1347struct ev_loop * 1839struct ev_loop *
1348ev_default_loop_init (unsigned int flags) 1840ev_default_loop_init (unsigned int flags)
1382{ 1874{
1383#if EV_MULTIPLICITY 1875#if EV_MULTIPLICITY
1384 struct ev_loop *loop = ev_default_loop_ptr; 1876 struct ev_loop *loop = ev_default_loop_ptr;
1385#endif 1877#endif
1386 1878
1879 ev_default_loop_ptr = 0;
1880
1387#ifndef _WIN32 1881#ifndef _WIN32
1388 ev_ref (EV_A); /* child watcher */ 1882 ev_ref (EV_A); /* child watcher */
1389 ev_signal_stop (EV_A_ &childev); 1883 ev_signal_stop (EV_A_ &childev);
1390#endif 1884#endif
1391 1885
1397{ 1891{
1398#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
1399 struct ev_loop *loop = ev_default_loop_ptr; 1893 struct ev_loop *loop = ev_default_loop_ptr;
1400#endif 1894#endif
1401 1895
1402 if (backend)
1403 postfork = 1; /* must be in line with ev_loop_fork */ 1896 postfork = 1; /* must be in line with ev_loop_fork */
1404} 1897}
1405 1898
1406/*****************************************************************************/ 1899/*****************************************************************************/
1407 1900
1408void 1901void
1409ev_invoke (EV_P_ void *w, int revents) 1902ev_invoke (EV_P_ void *w, int revents)
1410{ 1903{
1411 EV_CB_INVOKE ((W)w, revents); 1904 EV_CB_INVOKE ((W)w, revents);
1412} 1905}
1413 1906
1414void inline_speed 1907unsigned int
1415call_pending (EV_P) 1908ev_pending_count (EV_P)
1909{
1910 int pri;
1911 unsigned int count = 0;
1912
1913 for (pri = NUMPRI; pri--; )
1914 count += pendingcnt [pri];
1915
1916 return count;
1917}
1918
1919void noinline
1920ev_invoke_pending (EV_P)
1416{ 1921{
1417 int pri; 1922 int pri;
1418 1923
1419 for (pri = NUMPRI; pri--; ) 1924 for (pri = NUMPRI; pri--; )
1420 while (pendingcnt [pri]) 1925 while (pendingcnt [pri])
1421 { 1926 {
1422 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1927 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1423 1928
1424 if (expect_true (p->w))
1425 {
1426 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1929 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1930 /* ^ this is no longer true, as pending_w could be here */
1427 1931
1428 p->w->pending = 0; 1932 p->w->pending = 0;
1429 EV_CB_INVOKE (p->w, p->events); 1933 EV_CB_INVOKE (p->w, p->events);
1430 } 1934 EV_FREQUENT_CHECK;
1431 } 1935 }
1432} 1936}
1433 1937
1434void inline_size
1435timers_reify (EV_P)
1436{
1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1438 {
1439 ev_timer *w = (ev_timer *)timers [0];
1440
1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1442
1443 /* first reschedule or stop timer */
1444 if (w->repeat)
1445 {
1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1447
1448 ((WT)w)->at += w->repeat;
1449 if (((WT)w)->at < mn_now)
1450 ((WT)w)->at = mn_now;
1451
1452 downheap (timers, timercnt, 0);
1453 }
1454 else
1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1456
1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1458 }
1459}
1460
1461#if EV_PERIODIC_ENABLE
1462void inline_size
1463periodics_reify (EV_P)
1464{
1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1466 {
1467 ev_periodic *w = (ev_periodic *)periodics [0];
1468
1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1470
1471 /* first reschedule or stop timer */
1472 if (w->reschedule_cb)
1473 {
1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1476 downheap (periodics, periodiccnt, 0);
1477 }
1478 else if (w->interval)
1479 {
1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else
1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1487
1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1489 }
1490}
1491
1492static void noinline
1493periodics_reschedule (EV_P)
1494{
1495 int i;
1496
1497 /* adjust periodics after time jump */
1498 for (i = 0; i < periodiccnt; ++i)
1499 {
1500 ev_periodic *w = (ev_periodic *)periodics [i];
1501
1502 if (w->reschedule_cb)
1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1504 else if (w->interval)
1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1506 }
1507
1508 /* now rebuild the heap */
1509 for (i = periodiccnt >> 1; i--; )
1510 downheap (periodics, periodiccnt, i);
1511}
1512#endif
1513
1514#if EV_IDLE_ENABLE 1938#if EV_IDLE_ENABLE
1515void inline_size 1939/* make idle watchers pending. this handles the "call-idle */
1940/* only when higher priorities are idle" logic */
1941inline_size void
1516idle_reify (EV_P) 1942idle_reify (EV_P)
1517{ 1943{
1518 if (expect_false (idleall)) 1944 if (expect_false (idleall))
1519 { 1945 {
1520 int pri; 1946 int pri;
1532 } 1958 }
1533 } 1959 }
1534} 1960}
1535#endif 1961#endif
1536 1962
1537void inline_speed 1963/* make timers pending */
1964inline_size void
1965timers_reify (EV_P)
1966{
1967 EV_FREQUENT_CHECK;
1968
1969 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1970 {
1971 do
1972 {
1973 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1974
1975 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1976
1977 /* first reschedule or stop timer */
1978 if (w->repeat)
1979 {
1980 ev_at (w) += w->repeat;
1981 if (ev_at (w) < mn_now)
1982 ev_at (w) = mn_now;
1983
1984 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1985
1986 ANHE_at_cache (timers [HEAP0]);
1987 downheap (timers, timercnt, HEAP0);
1988 }
1989 else
1990 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1991
1992 EV_FREQUENT_CHECK;
1993 feed_reverse (EV_A_ (W)w);
1994 }
1995 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1996
1997 feed_reverse_done (EV_A_ EV_TIMEOUT);
1998 }
1999}
2000
2001#if EV_PERIODIC_ENABLE
2002/* make periodics pending */
2003inline_size void
2004periodics_reify (EV_P)
2005{
2006 EV_FREQUENT_CHECK;
2007
2008 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2009 {
2010 int feed_count = 0;
2011
2012 do
2013 {
2014 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015
2016 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2017
2018 /* first reschedule or stop timer */
2019 if (w->reschedule_cb)
2020 {
2021 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2022
2023 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2024
2025 ANHE_at_cache (periodics [HEAP0]);
2026 downheap (periodics, periodiccnt, HEAP0);
2027 }
2028 else if (w->interval)
2029 {
2030 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2031 /* if next trigger time is not sufficiently in the future, put it there */
2032 /* this might happen because of floating point inexactness */
2033 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034 {
2035 ev_at (w) += w->interval;
2036
2037 /* if interval is unreasonably low we might still have a time in the past */
2038 /* so correct this. this will make the periodic very inexact, but the user */
2039 /* has effectively asked to get triggered more often than possible */
2040 if (ev_at (w) < ev_rt_now)
2041 ev_at (w) = ev_rt_now;
2042 }
2043
2044 ANHE_at_cache (periodics [HEAP0]);
2045 downheap (periodics, periodiccnt, HEAP0);
2046 }
2047 else
2048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2049
2050 EV_FREQUENT_CHECK;
2051 feed_reverse (EV_A_ (W)w);
2052 }
2053 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2054
2055 feed_reverse_done (EV_A_ EV_PERIODIC);
2056 }
2057}
2058
2059/* simply recalculate all periodics */
2060/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2061static void noinline
2062periodics_reschedule (EV_P)
2063{
2064 int i;
2065
2066 /* adjust periodics after time jump */
2067 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2068 {
2069 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2070
2071 if (w->reschedule_cb)
2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2073 else if (w->interval)
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075
2076 ANHE_at_cache (periodics [i]);
2077 }
2078
2079 reheap (periodics, periodiccnt);
2080}
2081#endif
2082
2083/* adjust all timers by a given offset */
2084static void noinline
2085timers_reschedule (EV_P_ ev_tstamp adjust)
2086{
2087 int i;
2088
2089 for (i = 0; i < timercnt; ++i)
2090 {
2091 ANHE *he = timers + i + HEAP0;
2092 ANHE_w (*he)->at += adjust;
2093 ANHE_at_cache (*he);
2094 }
2095}
2096
2097/* fetch new monotonic and realtime times from the kernel */
2098/* also detetc if there was a timejump, and act accordingly */
2099inline_speed void
1538time_update (EV_P_ ev_tstamp max_block) 2100time_update (EV_P_ ev_tstamp max_block)
1539{ 2101{
1540 int i;
1541
1542#if EV_USE_MONOTONIC 2102#if EV_USE_MONOTONIC
1543 if (expect_true (have_monotonic)) 2103 if (expect_true (have_monotonic))
1544 { 2104 {
2105 int i;
1545 ev_tstamp odiff = rtmn_diff; 2106 ev_tstamp odiff = rtmn_diff;
1546 2107
1547 mn_now = get_clock (); 2108 mn_now = get_clock ();
1548 2109
1549 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2110 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1567 */ 2128 */
1568 for (i = 4; --i; ) 2129 for (i = 4; --i; )
1569 { 2130 {
1570 rtmn_diff = ev_rt_now - mn_now; 2131 rtmn_diff = ev_rt_now - mn_now;
1571 2132
1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2133 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1573 return; /* all is well */ 2134 return; /* all is well */
1574 2135
1575 ev_rt_now = ev_time (); 2136 ev_rt_now = ev_time ();
1576 mn_now = get_clock (); 2137 mn_now = get_clock ();
1577 now_floor = mn_now; 2138 now_floor = mn_now;
1578 } 2139 }
1579 2140
2141 /* no timer adjustment, as the monotonic clock doesn't jump */
2142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1580# if EV_PERIODIC_ENABLE 2143# if EV_PERIODIC_ENABLE
1581 periodics_reschedule (EV_A); 2144 periodics_reschedule (EV_A);
1582# endif 2145# endif
1583 /* no timer adjustment, as the monotonic clock doesn't jump */
1584 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1585 } 2146 }
1586 else 2147 else
1587#endif 2148#endif
1588 { 2149 {
1589 ev_rt_now = ev_time (); 2150 ev_rt_now = ev_time ();
1590 2151
1591 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2152 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1592 { 2153 {
2154 /* adjust timers. this is easy, as the offset is the same for all of them */
2155 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1593#if EV_PERIODIC_ENABLE 2156#if EV_PERIODIC_ENABLE
1594 periodics_reschedule (EV_A); 2157 periodics_reschedule (EV_A);
1595#endif 2158#endif
1596 /* adjust timers. this is easy, as the offset is the same for all of them */
1597 for (i = 0; i < timercnt; ++i)
1598 ((WT)timers [i])->at += ev_rt_now - mn_now;
1599 } 2159 }
1600 2160
1601 mn_now = ev_rt_now; 2161 mn_now = ev_rt_now;
1602 } 2162 }
1603} 2163}
1604 2164
1605void 2165void
1606ev_ref (EV_P)
1607{
1608 ++activecnt;
1609}
1610
1611void
1612ev_unref (EV_P)
1613{
1614 --activecnt;
1615}
1616
1617static int loop_done;
1618
1619void
1620ev_loop (EV_P_ int flags) 2166ev_loop (EV_P_ int flags)
1621{ 2167{
2168#if EV_MINIMAL < 2
2169 ++loop_depth;
2170#endif
2171
2172 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2173
1622 loop_done = EVUNLOOP_CANCEL; 2174 loop_done = EVUNLOOP_CANCEL;
1623 2175
1624 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2176 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1625 2177
1626 do 2178 do
1627 { 2179 {
2180#if EV_VERIFY >= 2
2181 ev_loop_verify (EV_A);
2182#endif
2183
1628#ifndef _WIN32 2184#ifndef _WIN32
1629 if (expect_false (curpid)) /* penalise the forking check even more */ 2185 if (expect_false (curpid)) /* penalise the forking check even more */
1630 if (expect_false (getpid () != curpid)) 2186 if (expect_false (getpid () != curpid))
1631 { 2187 {
1632 curpid = getpid (); 2188 curpid = getpid ();
1638 /* we might have forked, so queue fork handlers */ 2194 /* we might have forked, so queue fork handlers */
1639 if (expect_false (postfork)) 2195 if (expect_false (postfork))
1640 if (forkcnt) 2196 if (forkcnt)
1641 { 2197 {
1642 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2198 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1643 call_pending (EV_A); 2199 EV_INVOKE_PENDING;
1644 } 2200 }
1645#endif 2201#endif
1646 2202
1647 /* queue prepare watchers (and execute them) */ 2203 /* queue prepare watchers (and execute them) */
1648 if (expect_false (preparecnt)) 2204 if (expect_false (preparecnt))
1649 { 2205 {
1650 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2206 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1651 call_pending (EV_A); 2207 EV_INVOKE_PENDING;
1652 } 2208 }
1653 2209
1654 if (expect_false (!activecnt)) 2210 if (expect_false (loop_done))
1655 break; 2211 break;
1656 2212
1657 /* we might have forked, so reify kernel state if necessary */ 2213 /* we might have forked, so reify kernel state if necessary */
1658 if (expect_false (postfork)) 2214 if (expect_false (postfork))
1659 loop_fork (EV_A); 2215 loop_fork (EV_A);
1666 ev_tstamp waittime = 0.; 2222 ev_tstamp waittime = 0.;
1667 ev_tstamp sleeptime = 0.; 2223 ev_tstamp sleeptime = 0.;
1668 2224
1669 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2225 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1670 { 2226 {
2227 /* remember old timestamp for io_blocktime calculation */
2228 ev_tstamp prev_mn_now = mn_now;
2229
1671 /* update time to cancel out callback processing overhead */ 2230 /* update time to cancel out callback processing overhead */
1672 time_update (EV_A_ 1e100); 2231 time_update (EV_A_ 1e100);
1673 2232
1674 waittime = MAX_BLOCKTIME; 2233 waittime = MAX_BLOCKTIME;
1675 2234
1676 if (timercnt) 2235 if (timercnt)
1677 { 2236 {
1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2237 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1679 if (waittime > to) waittime = to; 2238 if (waittime > to) waittime = to;
1680 } 2239 }
1681 2240
1682#if EV_PERIODIC_ENABLE 2241#if EV_PERIODIC_ENABLE
1683 if (periodiccnt) 2242 if (periodiccnt)
1684 { 2243 {
1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2244 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1686 if (waittime > to) waittime = to; 2245 if (waittime > to) waittime = to;
1687 } 2246 }
1688#endif 2247#endif
1689 2248
2249 /* don't let timeouts decrease the waittime below timeout_blocktime */
1690 if (expect_false (waittime < timeout_blocktime)) 2250 if (expect_false (waittime < timeout_blocktime))
1691 waittime = timeout_blocktime; 2251 waittime = timeout_blocktime;
1692 2252
1693 sleeptime = waittime - backend_fudge; 2253 /* extra check because io_blocktime is commonly 0 */
1694
1695 if (expect_true (sleeptime > io_blocktime)) 2254 if (expect_false (io_blocktime))
1696 sleeptime = io_blocktime;
1697
1698 if (sleeptime)
1699 { 2255 {
2256 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257
2258 if (sleeptime > waittime - backend_fudge)
2259 sleeptime = waittime - backend_fudge;
2260
2261 if (expect_true (sleeptime > 0.))
2262 {
1700 ev_sleep (sleeptime); 2263 ev_sleep (sleeptime);
1701 waittime -= sleeptime; 2264 waittime -= sleeptime;
2265 }
1702 } 2266 }
1703 } 2267 }
1704 2268
2269#if EV_MINIMAL < 2
1705 ++loop_count; 2270 ++loop_count;
2271#endif
2272 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1706 backend_poll (EV_A_ waittime); 2273 backend_poll (EV_A_ waittime);
2274 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1707 2275
1708 /* update ev_rt_now, do magic */ 2276 /* update ev_rt_now, do magic */
1709 time_update (EV_A_ waittime + sleeptime); 2277 time_update (EV_A_ waittime + sleeptime);
1710 } 2278 }
1711 2279
1722 2290
1723 /* queue check watchers, to be executed first */ 2291 /* queue check watchers, to be executed first */
1724 if (expect_false (checkcnt)) 2292 if (expect_false (checkcnt))
1725 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2293 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1726 2294
1727 call_pending (EV_A); 2295 EV_INVOKE_PENDING;
1728 } 2296 }
1729 while (expect_true ( 2297 while (expect_true (
1730 activecnt 2298 activecnt
1731 && !loop_done 2299 && !loop_done
1732 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2300 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1733 )); 2301 ));
1734 2302
1735 if (loop_done == EVUNLOOP_ONE) 2303 if (loop_done == EVUNLOOP_ONE)
1736 loop_done = EVUNLOOP_CANCEL; 2304 loop_done = EVUNLOOP_CANCEL;
2305
2306#if EV_MINIMAL < 2
2307 --loop_depth;
2308#endif
1737} 2309}
1738 2310
1739void 2311void
1740ev_unloop (EV_P_ int how) 2312ev_unloop (EV_P_ int how)
1741{ 2313{
1742 loop_done = how; 2314 loop_done = how;
1743} 2315}
1744 2316
2317void
2318ev_ref (EV_P)
2319{
2320 ++activecnt;
2321}
2322
2323void
2324ev_unref (EV_P)
2325{
2326 --activecnt;
2327}
2328
2329void
2330ev_now_update (EV_P)
2331{
2332 time_update (EV_A_ 1e100);
2333}
2334
2335void
2336ev_suspend (EV_P)
2337{
2338 ev_now_update (EV_A);
2339}
2340
2341void
2342ev_resume (EV_P)
2343{
2344 ev_tstamp mn_prev = mn_now;
2345
2346 ev_now_update (EV_A);
2347 timers_reschedule (EV_A_ mn_now - mn_prev);
2348#if EV_PERIODIC_ENABLE
2349 /* TODO: really do this? */
2350 periodics_reschedule (EV_A);
2351#endif
2352}
2353
1745/*****************************************************************************/ 2354/*****************************************************************************/
2355/* singly-linked list management, used when the expected list length is short */
1746 2356
1747void inline_size 2357inline_size void
1748wlist_add (WL *head, WL elem) 2358wlist_add (WL *head, WL elem)
1749{ 2359{
1750 elem->next = *head; 2360 elem->next = *head;
1751 *head = elem; 2361 *head = elem;
1752} 2362}
1753 2363
1754void inline_size 2364inline_size void
1755wlist_del (WL *head, WL elem) 2365wlist_del (WL *head, WL elem)
1756{ 2366{
1757 while (*head) 2367 while (*head)
1758 { 2368 {
1759 if (*head == elem) 2369 if (*head == elem)
1764 2374
1765 head = &(*head)->next; 2375 head = &(*head)->next;
1766 } 2376 }
1767} 2377}
1768 2378
1769void inline_speed 2379/* internal, faster, version of ev_clear_pending */
2380inline_speed void
1770clear_pending (EV_P_ W w) 2381clear_pending (EV_P_ W w)
1771{ 2382{
1772 if (w->pending) 2383 if (w->pending)
1773 { 2384 {
1774 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2385 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1775 w->pending = 0; 2386 w->pending = 0;
1776 } 2387 }
1777} 2388}
1778 2389
1779int 2390int
1783 int pending = w_->pending; 2394 int pending = w_->pending;
1784 2395
1785 if (expect_true (pending)) 2396 if (expect_true (pending))
1786 { 2397 {
1787 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2398 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 p->w = (W)&pending_w;
1788 w_->pending = 0; 2400 w_->pending = 0;
1789 p->w = 0;
1790 return p->events; 2401 return p->events;
1791 } 2402 }
1792 else 2403 else
1793 return 0; 2404 return 0;
1794} 2405}
1795 2406
1796void inline_size 2407inline_size void
1797pri_adjust (EV_P_ W w) 2408pri_adjust (EV_P_ W w)
1798{ 2409{
1799 int pri = w->priority; 2410 int pri = ev_priority (w);
1800 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2411 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1801 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2412 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1802 w->priority = pri; 2413 ev_set_priority (w, pri);
1803} 2414}
1804 2415
1805void inline_speed 2416inline_speed void
1806ev_start (EV_P_ W w, int active) 2417ev_start (EV_P_ W w, int active)
1807{ 2418{
1808 pri_adjust (EV_A_ w); 2419 pri_adjust (EV_A_ w);
1809 w->active = active; 2420 w->active = active;
1810 ev_ref (EV_A); 2421 ev_ref (EV_A);
1811} 2422}
1812 2423
1813void inline_size 2424inline_size void
1814ev_stop (EV_P_ W w) 2425ev_stop (EV_P_ W w)
1815{ 2426{
1816 ev_unref (EV_A); 2427 ev_unref (EV_A);
1817 w->active = 0; 2428 w->active = 0;
1818} 2429}
1825 int fd = w->fd; 2436 int fd = w->fd;
1826 2437
1827 if (expect_false (ev_is_active (w))) 2438 if (expect_false (ev_is_active (w)))
1828 return; 2439 return;
1829 2440
1830 assert (("ev_io_start called with negative fd", fd >= 0)); 2441 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2442 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2443
2444 EV_FREQUENT_CHECK;
1831 2445
1832 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2447 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1834 wlist_add (&anfds[fd].head, (WL)w); 2448 wlist_add (&anfds[fd].head, (WL)w);
1835 2449
1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2450 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1837 w->events &= ~EV_IOFDSET; 2451 w->events &= ~EV__IOFDSET;
2452
2453 EV_FREQUENT_CHECK;
1838} 2454}
1839 2455
1840void noinline 2456void noinline
1841ev_io_stop (EV_P_ ev_io *w) 2457ev_io_stop (EV_P_ ev_io *w)
1842{ 2458{
1843 clear_pending (EV_A_ (W)w); 2459 clear_pending (EV_A_ (W)w);
1844 if (expect_false (!ev_is_active (w))) 2460 if (expect_false (!ev_is_active (w)))
1845 return; 2461 return;
1846 2462
1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2463 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2464
2465 EV_FREQUENT_CHECK;
1848 2466
1849 wlist_del (&anfds[w->fd].head, (WL)w); 2467 wlist_del (&anfds[w->fd].head, (WL)w);
1850 ev_stop (EV_A_ (W)w); 2468 ev_stop (EV_A_ (W)w);
1851 2469
1852 fd_change (EV_A_ w->fd, 1); 2470 fd_change (EV_A_ w->fd, 1);
2471
2472 EV_FREQUENT_CHECK;
1853} 2473}
1854 2474
1855void noinline 2475void noinline
1856ev_timer_start (EV_P_ ev_timer *w) 2476ev_timer_start (EV_P_ ev_timer *w)
1857{ 2477{
1858 if (expect_false (ev_is_active (w))) 2478 if (expect_false (ev_is_active (w)))
1859 return; 2479 return;
1860 2480
1861 ((WT)w)->at += mn_now; 2481 ev_at (w) += mn_now;
1862 2482
1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2483 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1864 2484
2485 EV_FREQUENT_CHECK;
2486
2487 ++timercnt;
1865 ev_start (EV_A_ (W)w, ++timercnt); 2488 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2489 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1867 timers [timercnt - 1] = (WT)w; 2490 ANHE_w (timers [ev_active (w)]) = (WT)w;
1868 upheap (timers, timercnt - 1); 2491 ANHE_at_cache (timers [ev_active (w)]);
2492 upheap (timers, ev_active (w));
1869 2493
2494 EV_FREQUENT_CHECK;
2495
1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2496 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1871} 2497}
1872 2498
1873void noinline 2499void noinline
1874ev_timer_stop (EV_P_ ev_timer *w) 2500ev_timer_stop (EV_P_ ev_timer *w)
1875{ 2501{
1876 clear_pending (EV_A_ (W)w); 2502 clear_pending (EV_A_ (W)w);
1877 if (expect_false (!ev_is_active (w))) 2503 if (expect_false (!ev_is_active (w)))
1878 return; 2504 return;
1879 2505
1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2506 EV_FREQUENT_CHECK;
1881 2507
1882 { 2508 {
1883 int active = ((W)w)->active; 2509 int active = ev_active (w);
1884 2510
2511 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2512
2513 --timercnt;
2514
1885 if (expect_true (--active < --timercnt)) 2515 if (expect_true (active < timercnt + HEAP0))
1886 { 2516 {
1887 timers [active] = timers [timercnt]; 2517 timers [active] = timers [timercnt + HEAP0];
1888 adjustheap (timers, timercnt, active); 2518 adjustheap (timers, timercnt, active);
1889 } 2519 }
1890 } 2520 }
1891 2521
1892 ((WT)w)->at -= mn_now; 2522 EV_FREQUENT_CHECK;
2523
2524 ev_at (w) -= mn_now;
1893 2525
1894 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
1895} 2527}
1896 2528
1897void noinline 2529void noinline
1898ev_timer_again (EV_P_ ev_timer *w) 2530ev_timer_again (EV_P_ ev_timer *w)
1899{ 2531{
2532 EV_FREQUENT_CHECK;
2533
1900 if (ev_is_active (w)) 2534 if (ev_is_active (w))
1901 { 2535 {
1902 if (w->repeat) 2536 if (w->repeat)
1903 { 2537 {
1904 ((WT)w)->at = mn_now + w->repeat; 2538 ev_at (w) = mn_now + w->repeat;
2539 ANHE_at_cache (timers [ev_active (w)]);
1905 adjustheap (timers, timercnt, ((W)w)->active - 1); 2540 adjustheap (timers, timercnt, ev_active (w));
1906 } 2541 }
1907 else 2542 else
1908 ev_timer_stop (EV_A_ w); 2543 ev_timer_stop (EV_A_ w);
1909 } 2544 }
1910 else if (w->repeat) 2545 else if (w->repeat)
1911 { 2546 {
1912 w->at = w->repeat; 2547 ev_at (w) = w->repeat;
1913 ev_timer_start (EV_A_ w); 2548 ev_timer_start (EV_A_ w);
1914 } 2549 }
2550
2551 EV_FREQUENT_CHECK;
2552}
2553
2554ev_tstamp
2555ev_timer_remaining (EV_P_ ev_timer *w)
2556{
2557 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1915} 2558}
1916 2559
1917#if EV_PERIODIC_ENABLE 2560#if EV_PERIODIC_ENABLE
1918void noinline 2561void noinline
1919ev_periodic_start (EV_P_ ev_periodic *w) 2562ev_periodic_start (EV_P_ ev_periodic *w)
1920{ 2563{
1921 if (expect_false (ev_is_active (w))) 2564 if (expect_false (ev_is_active (w)))
1922 return; 2565 return;
1923 2566
1924 if (w->reschedule_cb) 2567 if (w->reschedule_cb)
1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2568 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1926 else if (w->interval) 2569 else if (w->interval)
1927 { 2570 {
1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2571 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1929 /* this formula differs from the one in periodic_reify because we do not always round up */ 2572 /* this formula differs from the one in periodic_reify because we do not always round up */
1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2573 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1931 } 2574 }
1932 else 2575 else
1933 ((WT)w)->at = w->offset; 2576 ev_at (w) = w->offset;
1934 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++periodiccnt;
1935 ev_start (EV_A_ (W)w, ++periodiccnt); 2581 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2582 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1937 periodics [periodiccnt - 1] = (WT)w; 2583 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1938 upheap (periodics, periodiccnt - 1); 2584 ANHE_at_cache (periodics [ev_active (w)]);
2585 upheap (periodics, ev_active (w));
1939 2586
2587 EV_FREQUENT_CHECK;
2588
1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2589 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1941} 2590}
1942 2591
1943void noinline 2592void noinline
1944ev_periodic_stop (EV_P_ ev_periodic *w) 2593ev_periodic_stop (EV_P_ ev_periodic *w)
1945{ 2594{
1946 clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
1948 return; 2597 return;
1949 2598
1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2599 EV_FREQUENT_CHECK;
1951 2600
1952 { 2601 {
1953 int active = ((W)w)->active; 2602 int active = ev_active (w);
1954 2603
2604 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2605
2606 --periodiccnt;
2607
1955 if (expect_true (--active < --periodiccnt)) 2608 if (expect_true (active < periodiccnt + HEAP0))
1956 { 2609 {
1957 periodics [active] = periodics [periodiccnt]; 2610 periodics [active] = periodics [periodiccnt + HEAP0];
1958 adjustheap (periodics, periodiccnt, active); 2611 adjustheap (periodics, periodiccnt, active);
1959 } 2612 }
1960 } 2613 }
1961 2614
2615 EV_FREQUENT_CHECK;
2616
1962 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
1963} 2618}
1964 2619
1965void noinline 2620void noinline
1966ev_periodic_again (EV_P_ ev_periodic *w) 2621ev_periodic_again (EV_P_ ev_periodic *w)
1977 2632
1978void noinline 2633void noinline
1979ev_signal_start (EV_P_ ev_signal *w) 2634ev_signal_start (EV_P_ ev_signal *w)
1980{ 2635{
1981#if EV_MULTIPLICITY 2636#if EV_MULTIPLICITY
1982 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2637 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1983#endif 2638#endif
1984 if (expect_false (ev_is_active (w))) 2639 if (expect_false (ev_is_active (w)))
1985 return; 2640 return;
1986 2641
1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2642 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
1988 2643
2644 EV_FREQUENT_CHECK;
2645
2646#if EV_USE_SIGNALFD
2647 if (sigfd == -2)
2648 {
2649 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2650 if (sigfd < 0 && errno == EINVAL)
2651 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2652
2653 if (sigfd >= 0)
2654 {
2655 fd_intern (sigfd); /* doing it twice will not hurt */
2656
2657 sigemptyset (&sigfd_set);
2658
2659 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2660 ev_set_priority (&sigfd_w, EV_MAXPRI);
2661 ev_io_start (EV_A_ &sigfd_w);
2662 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2663 }
2664 }
2665
2666 if (sigfd >= 0)
2667 {
2668 /* TODO: check .head */
2669 sigaddset (&sigfd_set, w->signum);
2670 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671
2672 signalfd (sigfd, &sigfd_set, 0);
2673 }
2674 else
2675#endif
1989 evpipe_init (EV_A); 2676 evpipe_init (EV_A);
1990 2677
1991 { 2678 {
1992#ifndef _WIN32 2679#ifndef _WIN32
1993 sigset_t full, prev; 2680 sigset_t full, prev;
1994 sigfillset (&full); 2681 sigfillset (&full);
1995 sigprocmask (SIG_SETMASK, &full, &prev); 2682 sigprocmask (SIG_SETMASK, &full, &prev);
1996#endif 2683#endif
1997 2684
1998 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2685 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1999 2686
2000#ifndef _WIN32 2687#ifndef _WIN32
2688 if (sigfd < 0)/*TODO*/
2689 sigdelset (&prev, w->signum);
2001 sigprocmask (SIG_SETMASK, &prev, 0); 2690 sigprocmask (SIG_SETMASK, &prev, 0);
2002#endif 2691#endif
2003 } 2692 }
2004 2693
2005 ev_start (EV_A_ (W)w, 1); 2694 ev_start (EV_A_ (W)w, 1);
2008 if (!((WL)w)->next) 2697 if (!((WL)w)->next)
2009 { 2698 {
2010#if _WIN32 2699#if _WIN32
2011 signal (w->signum, ev_sighandler); 2700 signal (w->signum, ev_sighandler);
2012#else 2701#else
2702 if (sigfd < 0) /*TODO*/
2703 {
2013 struct sigaction sa; 2704 struct sigaction sa = { };
2014 sa.sa_handler = ev_sighandler; 2705 sa.sa_handler = ev_sighandler;
2015 sigfillset (&sa.sa_mask); 2706 sigfillset (&sa.sa_mask);
2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2707 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2017 sigaction (w->signum, &sa, 0); 2708 sigaction (w->signum, &sa, 0);
2709 }
2018#endif 2710#endif
2019 } 2711 }
2712
2713 EV_FREQUENT_CHECK;
2020} 2714}
2021 2715
2022void noinline 2716void noinline
2023ev_signal_stop (EV_P_ ev_signal *w) 2717ev_signal_stop (EV_P_ ev_signal *w)
2024{ 2718{
2025 clear_pending (EV_A_ (W)w); 2719 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2720 if (expect_false (!ev_is_active (w)))
2027 return; 2721 return;
2028 2722
2723 EV_FREQUENT_CHECK;
2724
2029 wlist_del (&signals [w->signum - 1].head, (WL)w); 2725 wlist_del (&signals [w->signum - 1].head, (WL)w);
2030 ev_stop (EV_A_ (W)w); 2726 ev_stop (EV_A_ (W)w);
2031 2727
2032 if (!signals [w->signum - 1].head) 2728 if (!signals [w->signum - 1].head)
2729#if EV_USE_SIGNALFD
2730 if (sigfd >= 0)
2731 {
2732 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2733 sigdelset (&sigfd_set, w->signum);
2734 signalfd (sigfd, &sigfd_set, 0);
2735 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2736 /*TODO: maybe unblock signal? */
2737 }
2738 else
2739#endif
2033 signal (w->signum, SIG_DFL); 2740 signal (w->signum, SIG_DFL);
2741
2742 EV_FREQUENT_CHECK;
2034} 2743}
2035 2744
2036void 2745void
2037ev_child_start (EV_P_ ev_child *w) 2746ev_child_start (EV_P_ ev_child *w)
2038{ 2747{
2039#if EV_MULTIPLICITY 2748#if EV_MULTIPLICITY
2040 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2749 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2041#endif 2750#endif
2042 if (expect_false (ev_is_active (w))) 2751 if (expect_false (ev_is_active (w)))
2043 return; 2752 return;
2044 2753
2754 EV_FREQUENT_CHECK;
2755
2045 ev_start (EV_A_ (W)w, 1); 2756 ev_start (EV_A_ (W)w, 1);
2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2757 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2758
2759 EV_FREQUENT_CHECK;
2047} 2760}
2048 2761
2049void 2762void
2050ev_child_stop (EV_P_ ev_child *w) 2763ev_child_stop (EV_P_ ev_child *w)
2051{ 2764{
2052 clear_pending (EV_A_ (W)w); 2765 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2766 if (expect_false (!ev_is_active (w)))
2054 return; 2767 return;
2055 2768
2769 EV_FREQUENT_CHECK;
2770
2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2771 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2057 ev_stop (EV_A_ (W)w); 2772 ev_stop (EV_A_ (W)w);
2773
2774 EV_FREQUENT_CHECK;
2058} 2775}
2059 2776
2060#if EV_STAT_ENABLE 2777#if EV_STAT_ENABLE
2061 2778
2062# ifdef _WIN32 2779# ifdef _WIN32
2063# undef lstat 2780# undef lstat
2064# define lstat(a,b) _stati64 (a,b) 2781# define lstat(a,b) _stati64 (a,b)
2065# endif 2782# endif
2066 2783
2067#define DEF_STAT_INTERVAL 5.0074891 2784#define DEF_STAT_INTERVAL 5.0074891
2785#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2068#define MIN_STAT_INTERVAL 0.1074891 2786#define MIN_STAT_INTERVAL 0.1074891
2069 2787
2070static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2788static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2071 2789
2072#if EV_USE_INOTIFY 2790#if EV_USE_INOTIFY
2073# define EV_INOTIFY_BUFSIZE 8192 2791# define EV_INOTIFY_BUFSIZE 8192
2077{ 2795{
2078 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2796 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2079 2797
2080 if (w->wd < 0) 2798 if (w->wd < 0)
2081 { 2799 {
2800 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2801 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2083 2802
2084 /* monitor some parent directory for speedup hints */ 2803 /* monitor some parent directory for speedup hints */
2804 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2805 /* but an efficiency issue only */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2806 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 { 2807 {
2087 char path [4096]; 2808 char path [4096];
2088 strcpy (path, w->path); 2809 strcpy (path, w->path);
2089 2810
2092 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2813 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2093 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2814 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2094 2815
2095 char *pend = strrchr (path, '/'); 2816 char *pend = strrchr (path, '/');
2096 2817
2097 if (!pend) 2818 if (!pend || pend == path)
2098 break; /* whoops, no '/', complain to your admin */ 2819 break;
2099 2820
2100 *pend = 0; 2821 *pend = 0;
2101 w->wd = inotify_add_watch (fs_fd, path, mask); 2822 w->wd = inotify_add_watch (fs_fd, path, mask);
2102 } 2823 }
2103 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2824 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2104 } 2825 }
2105 } 2826 }
2106 else
2107 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2108 2827
2109 if (w->wd >= 0) 2828 if (w->wd >= 0)
2829 {
2110 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2830 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2831
2832 /* now local changes will be tracked by inotify, but remote changes won't */
2833 /* unless the filesystem it known to be local, we therefore still poll */
2834 /* also do poll on <2.6.25, but with normal frequency */
2835 struct statfs sfs;
2836
2837 if (fs_2625 && !statfs (w->path, &sfs))
2838 if (sfs.f_type == 0x1373 /* devfs */
2839 || sfs.f_type == 0xEF53 /* ext2/3 */
2840 || sfs.f_type == 0x3153464a /* jfs */
2841 || sfs.f_type == 0x52654973 /* reiser3 */
2842 || sfs.f_type == 0x01021994 /* tempfs */
2843 || sfs.f_type == 0x58465342 /* xfs */)
2844 return;
2845
2846 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2847 ev_timer_again (EV_A_ &w->timer);
2848 }
2111} 2849}
2112 2850
2113static void noinline 2851static void noinline
2114infy_del (EV_P_ ev_stat *w) 2852infy_del (EV_P_ ev_stat *w)
2115{ 2853{
2129 2867
2130static void noinline 2868static void noinline
2131infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2869infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2132{ 2870{
2133 if (slot < 0) 2871 if (slot < 0)
2134 /* overflow, need to check for all hahs slots */ 2872 /* overflow, need to check for all hash slots */
2135 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2873 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2136 infy_wd (EV_A_ slot, wd, ev); 2874 infy_wd (EV_A_ slot, wd, ev);
2137 else 2875 else
2138 { 2876 {
2139 WL w_; 2877 WL w_;
2145 2883
2146 if (w->wd == wd || wd == -1) 2884 if (w->wd == wd || wd == -1)
2147 { 2885 {
2148 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2886 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2149 { 2887 {
2888 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2150 w->wd = -1; 2889 w->wd = -1;
2151 infy_add (EV_A_ w); /* re-add, no matter what */ 2890 infy_add (EV_A_ w); /* re-add, no matter what */
2152 } 2891 }
2153 2892
2154 stat_timer_cb (EV_A_ &w->timer, 0); 2893 stat_timer_cb (EV_A_ &w->timer, 0);
2167 2906
2168 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2907 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2169 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2908 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2170} 2909}
2171 2910
2172void inline_size 2911inline_size void
2912check_2625 (EV_P)
2913{
2914 /* kernels < 2.6.25 are borked
2915 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2916 */
2917 struct utsname buf;
2918 int major, minor, micro;
2919
2920 if (uname (&buf))
2921 return;
2922
2923 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2924 return;
2925
2926 if (major < 2
2927 || (major == 2 && minor < 6)
2928 || (major == 2 && minor == 6 && micro < 25))
2929 return;
2930
2931 fs_2625 = 1;
2932}
2933
2934inline_size void
2173infy_init (EV_P) 2935infy_init (EV_P)
2174{ 2936{
2175 if (fs_fd != -2) 2937 if (fs_fd != -2)
2176 return; 2938 return;
2939
2940 fs_fd = -1;
2941
2942 check_2625 (EV_A);
2177 2943
2178 fs_fd = inotify_init (); 2944 fs_fd = inotify_init ();
2179 2945
2180 if (fs_fd >= 0) 2946 if (fs_fd >= 0)
2181 { 2947 {
2183 ev_set_priority (&fs_w, EV_MAXPRI); 2949 ev_set_priority (&fs_w, EV_MAXPRI);
2184 ev_io_start (EV_A_ &fs_w); 2950 ev_io_start (EV_A_ &fs_w);
2185 } 2951 }
2186} 2952}
2187 2953
2188void inline_size 2954inline_size void
2189infy_fork (EV_P) 2955infy_fork (EV_P)
2190{ 2956{
2191 int slot; 2957 int slot;
2192 2958
2193 if (fs_fd < 0) 2959 if (fs_fd < 0)
2209 w->wd = -1; 2975 w->wd = -1;
2210 2976
2211 if (fs_fd >= 0) 2977 if (fs_fd >= 0)
2212 infy_add (EV_A_ w); /* re-add, no matter what */ 2978 infy_add (EV_A_ w); /* re-add, no matter what */
2213 else 2979 else
2214 ev_timer_start (EV_A_ &w->timer); 2980 ev_timer_again (EV_A_ &w->timer);
2215 } 2981 }
2216
2217 } 2982 }
2218} 2983}
2219 2984
2985#endif
2986
2987#ifdef _WIN32
2988# define EV_LSTAT(p,b) _stati64 (p, b)
2989#else
2990# define EV_LSTAT(p,b) lstat (p, b)
2220#endif 2991#endif
2221 2992
2222void 2993void
2223ev_stat_stat (EV_P_ ev_stat *w) 2994ev_stat_stat (EV_P_ ev_stat *w)
2224{ 2995{
2251 || w->prev.st_atime != w->attr.st_atime 3022 || w->prev.st_atime != w->attr.st_atime
2252 || w->prev.st_mtime != w->attr.st_mtime 3023 || w->prev.st_mtime != w->attr.st_mtime
2253 || w->prev.st_ctime != w->attr.st_ctime 3024 || w->prev.st_ctime != w->attr.st_ctime
2254 ) { 3025 ) {
2255 #if EV_USE_INOTIFY 3026 #if EV_USE_INOTIFY
3027 if (fs_fd >= 0)
3028 {
2256 infy_del (EV_A_ w); 3029 infy_del (EV_A_ w);
2257 infy_add (EV_A_ w); 3030 infy_add (EV_A_ w);
2258 ev_stat_stat (EV_A_ w); /* avoid race... */ 3031 ev_stat_stat (EV_A_ w); /* avoid race... */
3032 }
2259 #endif 3033 #endif
2260 3034
2261 ev_feed_event (EV_A_ w, EV_STAT); 3035 ev_feed_event (EV_A_ w, EV_STAT);
2262 } 3036 }
2263} 3037}
2266ev_stat_start (EV_P_ ev_stat *w) 3040ev_stat_start (EV_P_ ev_stat *w)
2267{ 3041{
2268 if (expect_false (ev_is_active (w))) 3042 if (expect_false (ev_is_active (w)))
2269 return; 3043 return;
2270 3044
2271 /* since we use memcmp, we need to clear any padding data etc. */
2272 memset (&w->prev, 0, sizeof (ev_statdata));
2273 memset (&w->attr, 0, sizeof (ev_statdata));
2274
2275 ev_stat_stat (EV_A_ w); 3045 ev_stat_stat (EV_A_ w);
2276 3046
3047 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2277 if (w->interval < MIN_STAT_INTERVAL) 3048 w->interval = MIN_STAT_INTERVAL;
2278 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2279 3049
2280 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3050 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2281 ev_set_priority (&w->timer, ev_priority (w)); 3051 ev_set_priority (&w->timer, ev_priority (w));
2282 3052
2283#if EV_USE_INOTIFY 3053#if EV_USE_INOTIFY
2284 infy_init (EV_A); 3054 infy_init (EV_A);
2285 3055
2286 if (fs_fd >= 0) 3056 if (fs_fd >= 0)
2287 infy_add (EV_A_ w); 3057 infy_add (EV_A_ w);
2288 else 3058 else
2289#endif 3059#endif
2290 ev_timer_start (EV_A_ &w->timer); 3060 ev_timer_again (EV_A_ &w->timer);
2291 3061
2292 ev_start (EV_A_ (W)w, 1); 3062 ev_start (EV_A_ (W)w, 1);
3063
3064 EV_FREQUENT_CHECK;
2293} 3065}
2294 3066
2295void 3067void
2296ev_stat_stop (EV_P_ ev_stat *w) 3068ev_stat_stop (EV_P_ ev_stat *w)
2297{ 3069{
2298 clear_pending (EV_A_ (W)w); 3070 clear_pending (EV_A_ (W)w);
2299 if (expect_false (!ev_is_active (w))) 3071 if (expect_false (!ev_is_active (w)))
2300 return; 3072 return;
2301 3073
3074 EV_FREQUENT_CHECK;
3075
2302#if EV_USE_INOTIFY 3076#if EV_USE_INOTIFY
2303 infy_del (EV_A_ w); 3077 infy_del (EV_A_ w);
2304#endif 3078#endif
2305 ev_timer_stop (EV_A_ &w->timer); 3079 ev_timer_stop (EV_A_ &w->timer);
2306 3080
2307 ev_stop (EV_A_ (W)w); 3081 ev_stop (EV_A_ (W)w);
3082
3083 EV_FREQUENT_CHECK;
2308} 3084}
2309#endif 3085#endif
2310 3086
2311#if EV_IDLE_ENABLE 3087#if EV_IDLE_ENABLE
2312void 3088void
2314{ 3090{
2315 if (expect_false (ev_is_active (w))) 3091 if (expect_false (ev_is_active (w)))
2316 return; 3092 return;
2317 3093
2318 pri_adjust (EV_A_ (W)w); 3094 pri_adjust (EV_A_ (W)w);
3095
3096 EV_FREQUENT_CHECK;
2319 3097
2320 { 3098 {
2321 int active = ++idlecnt [ABSPRI (w)]; 3099 int active = ++idlecnt [ABSPRI (w)];
2322 3100
2323 ++idleall; 3101 ++idleall;
2324 ev_start (EV_A_ (W)w, active); 3102 ev_start (EV_A_ (W)w, active);
2325 3103
2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3104 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2327 idles [ABSPRI (w)][active - 1] = w; 3105 idles [ABSPRI (w)][active - 1] = w;
2328 } 3106 }
3107
3108 EV_FREQUENT_CHECK;
2329} 3109}
2330 3110
2331void 3111void
2332ev_idle_stop (EV_P_ ev_idle *w) 3112ev_idle_stop (EV_P_ ev_idle *w)
2333{ 3113{
2334 clear_pending (EV_A_ (W)w); 3114 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 3115 if (expect_false (!ev_is_active (w)))
2336 return; 3116 return;
2337 3117
3118 EV_FREQUENT_CHECK;
3119
2338 { 3120 {
2339 int active = ((W)w)->active; 3121 int active = ev_active (w);
2340 3122
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3123 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3124 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2343 3125
2344 ev_stop (EV_A_ (W)w); 3126 ev_stop (EV_A_ (W)w);
2345 --idleall; 3127 --idleall;
2346 } 3128 }
3129
3130 EV_FREQUENT_CHECK;
2347} 3131}
2348#endif 3132#endif
2349 3133
2350void 3134void
2351ev_prepare_start (EV_P_ ev_prepare *w) 3135ev_prepare_start (EV_P_ ev_prepare *w)
2352{ 3136{
2353 if (expect_false (ev_is_active (w))) 3137 if (expect_false (ev_is_active (w)))
2354 return; 3138 return;
3139
3140 EV_FREQUENT_CHECK;
2355 3141
2356 ev_start (EV_A_ (W)w, ++preparecnt); 3142 ev_start (EV_A_ (W)w, ++preparecnt);
2357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3143 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2358 prepares [preparecnt - 1] = w; 3144 prepares [preparecnt - 1] = w;
3145
3146 EV_FREQUENT_CHECK;
2359} 3147}
2360 3148
2361void 3149void
2362ev_prepare_stop (EV_P_ ev_prepare *w) 3150ev_prepare_stop (EV_P_ ev_prepare *w)
2363{ 3151{
2364 clear_pending (EV_A_ (W)w); 3152 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 3153 if (expect_false (!ev_is_active (w)))
2366 return; 3154 return;
2367 3155
3156 EV_FREQUENT_CHECK;
3157
2368 { 3158 {
2369 int active = ((W)w)->active; 3159 int active = ev_active (w);
3160
2370 prepares [active - 1] = prepares [--preparecnt]; 3161 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active; 3162 ev_active (prepares [active - 1]) = active;
2372 } 3163 }
2373 3164
2374 ev_stop (EV_A_ (W)w); 3165 ev_stop (EV_A_ (W)w);
3166
3167 EV_FREQUENT_CHECK;
2375} 3168}
2376 3169
2377void 3170void
2378ev_check_start (EV_P_ ev_check *w) 3171ev_check_start (EV_P_ ev_check *w)
2379{ 3172{
2380 if (expect_false (ev_is_active (w))) 3173 if (expect_false (ev_is_active (w)))
2381 return; 3174 return;
3175
3176 EV_FREQUENT_CHECK;
2382 3177
2383 ev_start (EV_A_ (W)w, ++checkcnt); 3178 ev_start (EV_A_ (W)w, ++checkcnt);
2384 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3179 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2385 checks [checkcnt - 1] = w; 3180 checks [checkcnt - 1] = w;
3181
3182 EV_FREQUENT_CHECK;
2386} 3183}
2387 3184
2388void 3185void
2389ev_check_stop (EV_P_ ev_check *w) 3186ev_check_stop (EV_P_ ev_check *w)
2390{ 3187{
2391 clear_pending (EV_A_ (W)w); 3188 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w))) 3189 if (expect_false (!ev_is_active (w)))
2393 return; 3190 return;
2394 3191
3192 EV_FREQUENT_CHECK;
3193
2395 { 3194 {
2396 int active = ((W)w)->active; 3195 int active = ev_active (w);
3196
2397 checks [active - 1] = checks [--checkcnt]; 3197 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active; 3198 ev_active (checks [active - 1]) = active;
2399 } 3199 }
2400 3200
2401 ev_stop (EV_A_ (W)w); 3201 ev_stop (EV_A_ (W)w);
3202
3203 EV_FREQUENT_CHECK;
2402} 3204}
2403 3205
2404#if EV_EMBED_ENABLE 3206#if EV_EMBED_ENABLE
2405void noinline 3207void noinline
2406ev_embed_sweep (EV_P_ ev_embed *w) 3208ev_embed_sweep (EV_P_ ev_embed *w)
2433 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3235 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2434 } 3236 }
2435 } 3237 }
2436} 3238}
2437 3239
3240static void
3241embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3242{
3243 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3244
3245 ev_embed_stop (EV_A_ w);
3246
3247 {
3248 struct ev_loop *loop = w->other;
3249
3250 ev_loop_fork (EV_A);
3251 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3252 }
3253
3254 ev_embed_start (EV_A_ w);
3255}
3256
2438#if 0 3257#if 0
2439static void 3258static void
2440embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3259embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2441{ 3260{
2442 ev_idle_stop (EV_A_ idle); 3261 ev_idle_stop (EV_A_ idle);
2449 if (expect_false (ev_is_active (w))) 3268 if (expect_false (ev_is_active (w)))
2450 return; 3269 return;
2451 3270
2452 { 3271 {
2453 struct ev_loop *loop = w->other; 3272 struct ev_loop *loop = w->other;
2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3273 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3274 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2456 } 3275 }
3276
3277 EV_FREQUENT_CHECK;
2457 3278
2458 ev_set_priority (&w->io, ev_priority (w)); 3279 ev_set_priority (&w->io, ev_priority (w));
2459 ev_io_start (EV_A_ &w->io); 3280 ev_io_start (EV_A_ &w->io);
2460 3281
2461 ev_prepare_init (&w->prepare, embed_prepare_cb); 3282 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI); 3283 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare); 3284 ev_prepare_start (EV_A_ &w->prepare);
2464 3285
3286 ev_fork_init (&w->fork, embed_fork_cb);
3287 ev_fork_start (EV_A_ &w->fork);
3288
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3289 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466 3290
2467 ev_start (EV_A_ (W)w, 1); 3291 ev_start (EV_A_ (W)w, 1);
3292
3293 EV_FREQUENT_CHECK;
2468} 3294}
2469 3295
2470void 3296void
2471ev_embed_stop (EV_P_ ev_embed *w) 3297ev_embed_stop (EV_P_ ev_embed *w)
2472{ 3298{
2473 clear_pending (EV_A_ (W)w); 3299 clear_pending (EV_A_ (W)w);
2474 if (expect_false (!ev_is_active (w))) 3300 if (expect_false (!ev_is_active (w)))
2475 return; 3301 return;
2476 3302
3303 EV_FREQUENT_CHECK;
3304
2477 ev_io_stop (EV_A_ &w->io); 3305 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare); 3306 ev_prepare_stop (EV_A_ &w->prepare);
3307 ev_fork_stop (EV_A_ &w->fork);
2479 3308
2480 ev_stop (EV_A_ (W)w); 3309 EV_FREQUENT_CHECK;
2481} 3310}
2482#endif 3311#endif
2483 3312
2484#if EV_FORK_ENABLE 3313#if EV_FORK_ENABLE
2485void 3314void
2486ev_fork_start (EV_P_ ev_fork *w) 3315ev_fork_start (EV_P_ ev_fork *w)
2487{ 3316{
2488 if (expect_false (ev_is_active (w))) 3317 if (expect_false (ev_is_active (w)))
2489 return; 3318 return;
3319
3320 EV_FREQUENT_CHECK;
2490 3321
2491 ev_start (EV_A_ (W)w, ++forkcnt); 3322 ev_start (EV_A_ (W)w, ++forkcnt);
2492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3323 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2493 forks [forkcnt - 1] = w; 3324 forks [forkcnt - 1] = w;
3325
3326 EV_FREQUENT_CHECK;
2494} 3327}
2495 3328
2496void 3329void
2497ev_fork_stop (EV_P_ ev_fork *w) 3330ev_fork_stop (EV_P_ ev_fork *w)
2498{ 3331{
2499 clear_pending (EV_A_ (W)w); 3332 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 3333 if (expect_false (!ev_is_active (w)))
2501 return; 3334 return;
2502 3335
3336 EV_FREQUENT_CHECK;
3337
2503 { 3338 {
2504 int active = ((W)w)->active; 3339 int active = ev_active (w);
3340
2505 forks [active - 1] = forks [--forkcnt]; 3341 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active; 3342 ev_active (forks [active - 1]) = active;
2507 } 3343 }
2508 3344
2509 ev_stop (EV_A_ (W)w); 3345 ev_stop (EV_A_ (W)w);
3346
3347 EV_FREQUENT_CHECK;
2510} 3348}
2511#endif 3349#endif
2512 3350
2513#if EV_ASYNC_ENABLE 3351#if EV_ASYNC_ENABLE
2514void 3352void
2516{ 3354{
2517 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2518 return; 3356 return;
2519 3357
2520 evpipe_init (EV_A); 3358 evpipe_init (EV_A);
3359
3360 EV_FREQUENT_CHECK;
2521 3361
2522 ev_start (EV_A_ (W)w, ++asynccnt); 3362 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3363 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w; 3364 asyncs [asynccnt - 1] = w;
3365
3366 EV_FREQUENT_CHECK;
2525} 3367}
2526 3368
2527void 3369void
2528ev_async_stop (EV_P_ ev_async *w) 3370ev_async_stop (EV_P_ ev_async *w)
2529{ 3371{
2530 clear_pending (EV_A_ (W)w); 3372 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w))) 3373 if (expect_false (!ev_is_active (w)))
2532 return; 3374 return;
2533 3375
3376 EV_FREQUENT_CHECK;
3377
2534 { 3378 {
2535 int active = ((W)w)->active; 3379 int active = ev_active (w);
3380
2536 asyncs [active - 1] = asyncs [--asynccnt]; 3381 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active; 3382 ev_active (asyncs [active - 1]) = active;
2538 } 3383 }
2539 3384
2540 ev_stop (EV_A_ (W)w); 3385 ev_stop (EV_A_ (W)w);
3386
3387 EV_FREQUENT_CHECK;
2541} 3388}
2542 3389
2543void 3390void
2544ev_async_send (EV_P_ ev_async *w) 3391ev_async_send (EV_P_ ev_async *w)
2545{ 3392{
2562once_cb (EV_P_ struct ev_once *once, int revents) 3409once_cb (EV_P_ struct ev_once *once, int revents)
2563{ 3410{
2564 void (*cb)(int revents, void *arg) = once->cb; 3411 void (*cb)(int revents, void *arg) = once->cb;
2565 void *arg = once->arg; 3412 void *arg = once->arg;
2566 3413
2567 ev_io_stop (EV_A_ &once->io); 3414 ev_io_stop (EV_A_ &once->io);
2568 ev_timer_stop (EV_A_ &once->to); 3415 ev_timer_stop (EV_A_ &once->to);
2569 ev_free (once); 3416 ev_free (once);
2570 3417
2571 cb (revents, arg); 3418 cb (revents, arg);
2572} 3419}
2573 3420
2574static void 3421static void
2575once_cb_io (EV_P_ ev_io *w, int revents) 3422once_cb_io (EV_P_ ev_io *w, int revents)
2576{ 3423{
2577 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3424 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3425
3426 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2578} 3427}
2579 3428
2580static void 3429static void
2581once_cb_to (EV_P_ ev_timer *w, int revents) 3430once_cb_to (EV_P_ ev_timer *w, int revents)
2582{ 3431{
2583 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3432 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3433
3434 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2584} 3435}
2585 3436
2586void 3437void
2587ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3438ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2588{ 3439{
2610 ev_timer_set (&once->to, timeout, 0.); 3461 ev_timer_set (&once->to, timeout, 0.);
2611 ev_timer_start (EV_A_ &once->to); 3462 ev_timer_start (EV_A_ &once->to);
2612 } 3463 }
2613} 3464}
2614 3465
3466/*****************************************************************************/
3467
3468#if EV_WALK_ENABLE
3469void
3470ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3471{
3472 int i, j;
3473 ev_watcher_list *wl, *wn;
3474
3475 if (types & (EV_IO | EV_EMBED))
3476 for (i = 0; i < anfdmax; ++i)
3477 for (wl = anfds [i].head; wl; )
3478 {
3479 wn = wl->next;
3480
3481#if EV_EMBED_ENABLE
3482 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3483 {
3484 if (types & EV_EMBED)
3485 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3486 }
3487 else
3488#endif
3489#if EV_USE_INOTIFY
3490 if (ev_cb ((ev_io *)wl) == infy_cb)
3491 ;
3492 else
3493#endif
3494 if ((ev_io *)wl != &pipe_w)
3495 if (types & EV_IO)
3496 cb (EV_A_ EV_IO, wl);
3497
3498 wl = wn;
3499 }
3500
3501 if (types & (EV_TIMER | EV_STAT))
3502 for (i = timercnt + HEAP0; i-- > HEAP0; )
3503#if EV_STAT_ENABLE
3504 /*TODO: timer is not always active*/
3505 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3506 {
3507 if (types & EV_STAT)
3508 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3509 }
3510 else
3511#endif
3512 if (types & EV_TIMER)
3513 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3514
3515#if EV_PERIODIC_ENABLE
3516 if (types & EV_PERIODIC)
3517 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3518 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3519#endif
3520
3521#if EV_IDLE_ENABLE
3522 if (types & EV_IDLE)
3523 for (j = NUMPRI; i--; )
3524 for (i = idlecnt [j]; i--; )
3525 cb (EV_A_ EV_IDLE, idles [j][i]);
3526#endif
3527
3528#if EV_FORK_ENABLE
3529 if (types & EV_FORK)
3530 for (i = forkcnt; i--; )
3531 if (ev_cb (forks [i]) != embed_fork_cb)
3532 cb (EV_A_ EV_FORK, forks [i]);
3533#endif
3534
3535#if EV_ASYNC_ENABLE
3536 if (types & EV_ASYNC)
3537 for (i = asynccnt; i--; )
3538 cb (EV_A_ EV_ASYNC, asyncs [i]);
3539#endif
3540
3541 if (types & EV_PREPARE)
3542 for (i = preparecnt; i--; )
3543#if EV_EMBED_ENABLE
3544 if (ev_cb (prepares [i]) != embed_prepare_cb)
3545#endif
3546 cb (EV_A_ EV_PREPARE, prepares [i]);
3547
3548 if (types & EV_CHECK)
3549 for (i = checkcnt; i--; )
3550 cb (EV_A_ EV_CHECK, checks [i]);
3551
3552 if (types & EV_SIGNAL)
3553 for (i = 0; i < signalmax; ++i)
3554 for (wl = signals [i].head; wl; )
3555 {
3556 wn = wl->next;
3557 cb (EV_A_ EV_SIGNAL, wl);
3558 wl = wn;
3559 }
3560
3561 if (types & EV_CHILD)
3562 for (i = EV_PID_HASHSIZE; i--; )
3563 for (wl = childs [i]; wl; )
3564 {
3565 wn = wl->next;
3566 cb (EV_A_ EV_CHILD, wl);
3567 wl = wn;
3568 }
3569/* EV_STAT 0x00001000 /* stat data changed */
3570/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3571}
3572#endif
3573
2615#if EV_MULTIPLICITY 3574#if EV_MULTIPLICITY
2616 #include "ev_wrap.h" 3575 #include "ev_wrap.h"
2617#endif 3576#endif
2618 3577
2619#ifdef __cplusplus 3578#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines