ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC vs.
Revision 1.325 by root, Sun Jan 24 12:31:55 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
154#ifndef _WIN32 177#ifndef _WIN32
155# include <sys/time.h> 178# include <sys/time.h>
156# include <sys/wait.h> 179# include <sys/wait.h>
157# include <unistd.h> 180# include <unistd.h>
158#else 181#else
182# include <io.h>
159# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 184# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
163# endif 187# endif
164#endif 188#endif
165 189
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
167 191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
226
168#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
169# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
170#endif 233#endif
171 234
172#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 237#endif
175 238
176#ifndef EV_USE_NANOSLEEP 239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
177# define EV_USE_NANOSLEEP 0 243# define EV_USE_NANOSLEEP 0
244# endif
178#endif 245#endif
179 246
180#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
182#endif 249#endif
235# else 302# else
236# define EV_USE_EVENTFD 0 303# define EV_USE_EVENTFD 0
237# endif 304# endif
238#endif 305#endif
239 306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
348
349#ifdef _AIX
350/* AIX has a completely broken poll.h header */
351# undef EV_USE_POLL
352# define EV_USE_POLL 0
353#endif
241 354
242#ifndef CLOCK_MONOTONIC 355#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 356# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 357# define EV_USE_MONOTONIC 0
245#endif 358#endif
259# include <sys/select.h> 372# include <sys/select.h>
260# endif 373# endif
261#endif 374#endif
262 375
263#if EV_USE_INOTIFY 376#if EV_USE_INOTIFY
377# include <sys/utsname.h>
378# include <sys/statfs.h>
264# include <sys/inotify.h> 379# include <sys/inotify.h>
380/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
381# ifndef IN_DONT_FOLLOW
382# undef EV_USE_INOTIFY
383# define EV_USE_INOTIFY 0
384# endif
265#endif 385#endif
266 386
267#if EV_SELECT_IS_WINSOCKET 387#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 388# include <winsock.h>
269#endif 389#endif
270 390
271#if EV_USE_EVENTFD 391#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 392/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
393# include <stdint.h>
394# ifndef EFD_NONBLOCK
395# define EFD_NONBLOCK O_NONBLOCK
396# endif
397# ifndef EFD_CLOEXEC
398# ifdef O_CLOEXEC
399# define EFD_CLOEXEC O_CLOEXEC
400# else
401# define EFD_CLOEXEC 02000000
402# endif
403# endif
404# ifdef __cplusplus
405extern "C" {
406# endif
273int eventfd (unsigned int initval, int flags); 407int eventfd (unsigned int initval, int flags);
408# ifdef __cplusplus
409}
274#endif 410# endif
411#endif
412
413#if EV_USE_SIGNALFD
414/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
415# include <stdint.h>
416# ifndef SFD_NONBLOCK
417# define SFD_NONBLOCK O_NONBLOCK
418# endif
419# ifndef SFD_CLOEXEC
420# ifdef O_CLOEXEC
421# define SFD_CLOEXEC O_CLOEXEC
422# else
423# define SFD_CLOEXEC 02000000
424# endif
425# endif
426# ifdef __cplusplus
427extern "C" {
428# endif
429int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436# ifdef __cplusplus
437}
438# endif
439#endif
440
275 441
276/**/ 442/**/
443
444#if EV_VERIFY >= 3
445# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
446#else
447# define EV_FREQUENT_CHECK do { } while (0)
448#endif
277 449
278/* 450/*
279 * This is used to avoid floating point rounding problems. 451 * This is used to avoid floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics 452 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding 453 * to ensure progress, time-wise, even when rounding
285 */ 457 */
286#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 458#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
287 459
288#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 460#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
289#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 461#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
290/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
291 462
292#if __GNUC__ >= 4 463#if __GNUC__ >= 4
293# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
294# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
295#else 466#else
296# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
297# define noinline 468# define noinline
298# if __STDC_VERSION__ < 199901L 469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
299# define inline 470# define inline
300# endif 471# endif
301#endif 472#endif
302 473
303#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
308# define inline_speed static noinline 479# define inline_speed static noinline
309#else 480#else
310# define inline_speed static inline 481# define inline_speed static inline
311#endif 482#endif
312 483
313#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
488#else
314#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
315 491
316#define EMPTY /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
317#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
318 494
319typedef ev_watcher *W; 495typedef ev_watcher *W;
320typedef ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
321typedef ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
322 498
323#if EV_USE_MONOTONIC 499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */ 504/* giving it a reasonably high chance of working on typical architetcures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
327#endif 520#endif
328 521
329#ifdef _WIN32 522#ifdef _WIN32
330# include "ev_win32.c" 523# include "ev_win32.c"
331#endif 524#endif
339{ 532{
340 syserr_cb = cb; 533 syserr_cb = cb;
341} 534}
342 535
343static void noinline 536static void noinline
344syserr (const char *msg) 537ev_syserr (const char *msg)
345{ 538{
346 if (!msg) 539 if (!msg)
347 msg = "(libev) system error"; 540 msg = "(libev) system error";
348 541
349 if (syserr_cb) 542 if (syserr_cb)
353 perror (msg); 546 perror (msg);
354 abort (); 547 abort ();
355 } 548 }
356} 549}
357 550
551static void *
552ev_realloc_emul (void *ptr, long size)
553{
554 /* some systems, notably openbsd and darwin, fail to properly
555 * implement realloc (x, 0) (as required by both ansi c-98 and
556 * the single unix specification, so work around them here.
557 */
558
559 if (size)
560 return realloc (ptr, size);
561
562 free (ptr);
563 return 0;
564}
565
358static void *(*alloc)(void *ptr, long size); 566static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
359 567
360void 568void
361ev_set_allocator (void *(*cb)(void *ptr, long size)) 569ev_set_allocator (void *(*cb)(void *ptr, long size))
362{ 570{
363 alloc = cb; 571 alloc = cb;
364} 572}
365 573
366inline_speed void * 574inline_speed void *
367ev_realloc (void *ptr, long size) 575ev_realloc (void *ptr, long size)
368{ 576{
369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 577 ptr = alloc (ptr, size);
370 578
371 if (!ptr && size) 579 if (!ptr && size)
372 { 580 {
373 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 581 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
374 abort (); 582 abort ();
380#define ev_malloc(size) ev_realloc (0, (size)) 588#define ev_malloc(size) ev_realloc (0, (size))
381#define ev_free(ptr) ev_realloc ((ptr), 0) 589#define ev_free(ptr) ev_realloc ((ptr), 0)
382 590
383/*****************************************************************************/ 591/*****************************************************************************/
384 592
593/* set in reify when reification needed */
594#define EV_ANFD_REIFY 1
595
596/* file descriptor info structure */
385typedef struct 597typedef struct
386{ 598{
387 WL head; 599 WL head;
388 unsigned char events; 600 unsigned char events; /* the events watched for */
601 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
602 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
389 unsigned char reify; 603 unsigned char unused;
604#if EV_USE_EPOLL
605 unsigned int egen; /* generation counter to counter epoll bugs */
606#endif
390#if EV_SELECT_IS_WINSOCKET 607#if EV_SELECT_IS_WINSOCKET
391 SOCKET handle; 608 SOCKET handle;
392#endif 609#endif
393} ANFD; 610} ANFD;
394 611
612/* stores the pending event set for a given watcher */
395typedef struct 613typedef struct
396{ 614{
397 W w; 615 W w;
398 int events; 616 int events; /* the pending event set for the given watcher */
399} ANPENDING; 617} ANPENDING;
400 618
401#if EV_USE_INOTIFY 619#if EV_USE_INOTIFY
620/* hash table entry per inotify-id */
402typedef struct 621typedef struct
403{ 622{
404 WL head; 623 WL head;
405} ANFS; 624} ANFS;
625#endif
626
627/* Heap Entry */
628#if EV_HEAP_CACHE_AT
629 /* a heap element */
630 typedef struct {
631 ev_tstamp at;
632 WT w;
633 } ANHE;
634
635 #define ANHE_w(he) (he).w /* access watcher, read-write */
636 #define ANHE_at(he) (he).at /* access cached at, read-only */
637 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
638#else
639 /* a heap element */
640 typedef WT ANHE;
641
642 #define ANHE_w(he) (he)
643 #define ANHE_at(he) (he)->at
644 #define ANHE_at_cache(he)
406#endif 645#endif
407 646
408#if EV_MULTIPLICITY 647#if EV_MULTIPLICITY
409 648
410 struct ev_loop 649 struct ev_loop
429 668
430 static int ev_default_loop_ptr; 669 static int ev_default_loop_ptr;
431 670
432#endif 671#endif
433 672
673#if EV_MINIMAL < 2
674# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
675# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
676# define EV_INVOKE_PENDING invoke_cb (EV_A)
677#else
678# define EV_RELEASE_CB (void)0
679# define EV_ACQUIRE_CB (void)0
680# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
681#endif
682
683#define EVUNLOOP_RECURSE 0x80
684
434/*****************************************************************************/ 685/*****************************************************************************/
435 686
687#ifndef EV_HAVE_EV_TIME
436ev_tstamp 688ev_tstamp
437ev_time (void) 689ev_time (void)
438{ 690{
439#if EV_USE_REALTIME 691#if EV_USE_REALTIME
692 if (expect_true (have_realtime))
693 {
440 struct timespec ts; 694 struct timespec ts;
441 clock_gettime (CLOCK_REALTIME, &ts); 695 clock_gettime (CLOCK_REALTIME, &ts);
442 return ts.tv_sec + ts.tv_nsec * 1e-9; 696 return ts.tv_sec + ts.tv_nsec * 1e-9;
443#else 697 }
698#endif
699
444 struct timeval tv; 700 struct timeval tv;
445 gettimeofday (&tv, 0); 701 gettimeofday (&tv, 0);
446 return tv.tv_sec + tv.tv_usec * 1e-6; 702 return tv.tv_sec + tv.tv_usec * 1e-6;
447#endif
448} 703}
704#endif
449 705
450ev_tstamp inline_size 706inline_size ev_tstamp
451get_clock (void) 707get_clock (void)
452{ 708{
453#if EV_USE_MONOTONIC 709#if EV_USE_MONOTONIC
454 if (expect_true (have_monotonic)) 710 if (expect_true (have_monotonic))
455 { 711 {
488 struct timeval tv; 744 struct timeval tv;
489 745
490 tv.tv_sec = (time_t)delay; 746 tv.tv_sec = (time_t)delay;
491 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 747 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
492 748
749 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
750 /* something not guaranteed by newer posix versions, but guaranteed */
751 /* by older ones */
493 select (0, 0, 0, 0, &tv); 752 select (0, 0, 0, 0, &tv);
494#endif 753#endif
495 } 754 }
496} 755}
497 756
498/*****************************************************************************/ 757/*****************************************************************************/
499 758
500int inline_size 759#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
760
761/* find a suitable new size for the given array, */
762/* hopefully by rounding to a ncie-to-malloc size */
763inline_size int
501array_nextsize (int elem, int cur, int cnt) 764array_nextsize (int elem, int cur, int cnt)
502{ 765{
503 int ncur = cur + 1; 766 int ncur = cur + 1;
504 767
505 do 768 do
506 ncur <<= 1; 769 ncur <<= 1;
507 while (cnt > ncur); 770 while (cnt > ncur);
508 771
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 772 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096) 773 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
511 { 774 {
512 ncur *= elem; 775 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 776 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
514 ncur = ncur - sizeof (void *) * 4; 777 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem; 778 ncur /= elem;
516 } 779 }
517 780
518 return ncur; 781 return ncur;
522array_realloc (int elem, void *base, int *cur, int cnt) 785array_realloc (int elem, void *base, int *cur, int cnt)
523{ 786{
524 *cur = array_nextsize (elem, *cur, cnt); 787 *cur = array_nextsize (elem, *cur, cnt);
525 return ev_realloc (base, elem * *cur); 788 return ev_realloc (base, elem * *cur);
526} 789}
790
791#define array_init_zero(base,count) \
792 memset ((void *)(base), 0, sizeof (*(base)) * (count))
527 793
528#define array_needsize(type,base,cur,cnt,init) \ 794#define array_needsize(type,base,cur,cnt,init) \
529 if (expect_false ((cnt) > (cur))) \ 795 if (expect_false ((cnt) > (cur))) \
530 { \ 796 { \
531 int ocur_ = (cur); \ 797 int ocur_ = (cur); \
543 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 809 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
544 } 810 }
545#endif 811#endif
546 812
547#define array_free(stem, idx) \ 813#define array_free(stem, idx) \
548 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 814 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
549 815
550/*****************************************************************************/ 816/*****************************************************************************/
817
818/* dummy callback for pending events */
819static void noinline
820pendingcb (EV_P_ ev_prepare *w, int revents)
821{
822}
551 823
552void noinline 824void noinline
553ev_feed_event (EV_P_ void *w, int revents) 825ev_feed_event (EV_P_ void *w, int revents)
554{ 826{
555 W w_ = (W)w; 827 W w_ = (W)w;
564 pendings [pri][w_->pending - 1].w = w_; 836 pendings [pri][w_->pending - 1].w = w_;
565 pendings [pri][w_->pending - 1].events = revents; 837 pendings [pri][w_->pending - 1].events = revents;
566 } 838 }
567} 839}
568 840
569void inline_speed 841inline_speed void
842feed_reverse (EV_P_ W w)
843{
844 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
845 rfeeds [rfeedcnt++] = w;
846}
847
848inline_size void
849feed_reverse_done (EV_P_ int revents)
850{
851 do
852 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
853 while (rfeedcnt);
854}
855
856inline_speed void
570queue_events (EV_P_ W *events, int eventcnt, int type) 857queue_events (EV_P_ W *events, int eventcnt, int type)
571{ 858{
572 int i; 859 int i;
573 860
574 for (i = 0; i < eventcnt; ++i) 861 for (i = 0; i < eventcnt; ++i)
575 ev_feed_event (EV_A_ events [i], type); 862 ev_feed_event (EV_A_ events [i], type);
576} 863}
577 864
578/*****************************************************************************/ 865/*****************************************************************************/
579 866
580void inline_size 867inline_speed void
581anfds_init (ANFD *base, int count)
582{
583 while (count--)
584 {
585 base->head = 0;
586 base->events = EV_NONE;
587 base->reify = 0;
588
589 ++base;
590 }
591}
592
593void inline_speed
594fd_event (EV_P_ int fd, int revents) 868fd_event_nc (EV_P_ int fd, int revents)
595{ 869{
596 ANFD *anfd = anfds + fd; 870 ANFD *anfd = anfds + fd;
597 ev_io *w; 871 ev_io *w;
598 872
599 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 873 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
603 if (ev) 877 if (ev)
604 ev_feed_event (EV_A_ (W)w, ev); 878 ev_feed_event (EV_A_ (W)w, ev);
605 } 879 }
606} 880}
607 881
882/* do not submit kernel events for fds that have reify set */
883/* because that means they changed while we were polling for new events */
884inline_speed void
885fd_event (EV_P_ int fd, int revents)
886{
887 ANFD *anfd = anfds + fd;
888
889 if (expect_true (!anfd->reify))
890 fd_event_nc (EV_A_ fd, revents);
891}
892
608void 893void
609ev_feed_fd_event (EV_P_ int fd, int revents) 894ev_feed_fd_event (EV_P_ int fd, int revents)
610{ 895{
611 if (fd >= 0 && fd < anfdmax) 896 if (fd >= 0 && fd < anfdmax)
612 fd_event (EV_A_ fd, revents); 897 fd_event_nc (EV_A_ fd, revents);
613} 898}
614 899
615void inline_size 900/* make sure the external fd watch events are in-sync */
901/* with the kernel/libev internal state */
902inline_size void
616fd_reify (EV_P) 903fd_reify (EV_P)
617{ 904{
618 int i; 905 int i;
619 906
620 for (i = 0; i < fdchangecnt; ++i) 907 for (i = 0; i < fdchangecnt; ++i)
629 events |= (unsigned char)w->events; 916 events |= (unsigned char)w->events;
630 917
631#if EV_SELECT_IS_WINSOCKET 918#if EV_SELECT_IS_WINSOCKET
632 if (events) 919 if (events)
633 { 920 {
634 unsigned long argp; 921 unsigned long arg;
635 #ifdef EV_FD_TO_WIN32_HANDLE
636 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 922 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
637 #else
638 anfd->handle = _get_osfhandle (fd);
639 #endif
640 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 923 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
641 } 924 }
642#endif 925#endif
643 926
644 { 927 {
645 unsigned char o_events = anfd->events; 928 unsigned char o_events = anfd->events;
646 unsigned char o_reify = anfd->reify; 929 unsigned char o_reify = anfd->reify;
647 930
648 anfd->reify = 0; 931 anfd->reify = 0;
649 anfd->events = events; 932 anfd->events = events;
650 933
651 if (o_events != events || o_reify & EV_IOFDSET) 934 if (o_events != events || o_reify & EV__IOFDSET)
652 backend_modify (EV_A_ fd, o_events, events); 935 backend_modify (EV_A_ fd, o_events, events);
653 } 936 }
654 } 937 }
655 938
656 fdchangecnt = 0; 939 fdchangecnt = 0;
657} 940}
658 941
659void inline_size 942/* something about the given fd changed */
943inline_size void
660fd_change (EV_P_ int fd, int flags) 944fd_change (EV_P_ int fd, int flags)
661{ 945{
662 unsigned char reify = anfds [fd].reify; 946 unsigned char reify = anfds [fd].reify;
663 anfds [fd].reify |= flags; 947 anfds [fd].reify |= flags;
664 948
668 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 952 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
669 fdchanges [fdchangecnt - 1] = fd; 953 fdchanges [fdchangecnt - 1] = fd;
670 } 954 }
671} 955}
672 956
673void inline_speed 957/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
958inline_speed void
674fd_kill (EV_P_ int fd) 959fd_kill (EV_P_ int fd)
675{ 960{
676 ev_io *w; 961 ev_io *w;
677 962
678 while ((w = (ev_io *)anfds [fd].head)) 963 while ((w = (ev_io *)anfds [fd].head))
680 ev_io_stop (EV_A_ w); 965 ev_io_stop (EV_A_ w);
681 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 966 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
682 } 967 }
683} 968}
684 969
685int inline_size 970/* check whether the given fd is atcually valid, for error recovery */
971inline_size int
686fd_valid (int fd) 972fd_valid (int fd)
687{ 973{
688#ifdef _WIN32 974#ifdef _WIN32
689 return _get_osfhandle (fd) != -1; 975 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
690#else 976#else
691 return fcntl (fd, F_GETFD) != -1; 977 return fcntl (fd, F_GETFD) != -1;
692#endif 978#endif
693} 979}
694 980
698{ 984{
699 int fd; 985 int fd;
700 986
701 for (fd = 0; fd < anfdmax; ++fd) 987 for (fd = 0; fd < anfdmax; ++fd)
702 if (anfds [fd].events) 988 if (anfds [fd].events)
703 if (!fd_valid (fd) == -1 && errno == EBADF) 989 if (!fd_valid (fd) && errno == EBADF)
704 fd_kill (EV_A_ fd); 990 fd_kill (EV_A_ fd);
705} 991}
706 992
707/* called on ENOMEM in select/poll to kill some fds and retry */ 993/* called on ENOMEM in select/poll to kill some fds and retry */
708static void noinline 994static void noinline
712 998
713 for (fd = anfdmax; fd--; ) 999 for (fd = anfdmax; fd--; )
714 if (anfds [fd].events) 1000 if (anfds [fd].events)
715 { 1001 {
716 fd_kill (EV_A_ fd); 1002 fd_kill (EV_A_ fd);
717 return; 1003 break;
718 } 1004 }
719} 1005}
720 1006
721/* usually called after fork if backend needs to re-arm all fds from scratch */ 1007/* usually called after fork if backend needs to re-arm all fds from scratch */
722static void noinline 1008static void noinline
726 1012
727 for (fd = 0; fd < anfdmax; ++fd) 1013 for (fd = 0; fd < anfdmax; ++fd)
728 if (anfds [fd].events) 1014 if (anfds [fd].events)
729 { 1015 {
730 anfds [fd].events = 0; 1016 anfds [fd].events = 0;
1017 anfds [fd].emask = 0;
731 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1018 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
732 } 1019 }
733} 1020}
734 1021
735/*****************************************************************************/ 1022/*****************************************************************************/
736 1023
737void inline_speed 1024/*
738upheap (WT *heap, int k) 1025 * the heap functions want a real array index. array index 0 uis guaranteed to not
739{ 1026 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
740 WT w = heap [k]; 1027 * the branching factor of the d-tree.
1028 */
741 1029
742 while (k) 1030/*
743 { 1031 * at the moment we allow libev the luxury of two heaps,
744 int p = (k - 1) >> 1; 1032 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1033 * which is more cache-efficient.
1034 * the difference is about 5% with 50000+ watchers.
1035 */
1036#if EV_USE_4HEAP
745 1037
746 if (heap [p]->at <= w->at) 1038#define DHEAP 4
1039#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1040#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1041#define UPHEAP_DONE(p,k) ((p) == (k))
1042
1043/* away from the root */
1044inline_speed void
1045downheap (ANHE *heap, int N, int k)
1046{
1047 ANHE he = heap [k];
1048 ANHE *E = heap + N + HEAP0;
1049
1050 for (;;)
1051 {
1052 ev_tstamp minat;
1053 ANHE *minpos;
1054 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1055
1056 /* find minimum child */
1057 if (expect_true (pos + DHEAP - 1 < E))
1058 {
1059 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else if (pos < E)
1065 {
1066 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1067 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1068 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1069 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1070 }
1071 else
747 break; 1072 break;
748 1073
1074 if (ANHE_at (he) <= minat)
1075 break;
1076
1077 heap [k] = *minpos;
1078 ev_active (ANHE_w (*minpos)) = k;
1079
1080 k = minpos - heap;
1081 }
1082
1083 heap [k] = he;
1084 ev_active (ANHE_w (he)) = k;
1085}
1086
1087#else /* 4HEAP */
1088
1089#define HEAP0 1
1090#define HPARENT(k) ((k) >> 1)
1091#define UPHEAP_DONE(p,k) (!(p))
1092
1093/* away from the root */
1094inline_speed void
1095downheap (ANHE *heap, int N, int k)
1096{
1097 ANHE he = heap [k];
1098
1099 for (;;)
1100 {
1101 int c = k << 1;
1102
1103 if (c >= N + HEAP0)
1104 break;
1105
1106 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1107 ? 1 : 0;
1108
1109 if (ANHE_at (he) <= ANHE_at (heap [c]))
1110 break;
1111
1112 heap [k] = heap [c];
1113 ev_active (ANHE_w (heap [k])) = k;
1114
1115 k = c;
1116 }
1117
1118 heap [k] = he;
1119 ev_active (ANHE_w (he)) = k;
1120}
1121#endif
1122
1123/* towards the root */
1124inline_speed void
1125upheap (ANHE *heap, int k)
1126{
1127 ANHE he = heap [k];
1128
1129 for (;;)
1130 {
1131 int p = HPARENT (k);
1132
1133 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1134 break;
1135
749 heap [k] = heap [p]; 1136 heap [k] = heap [p];
750 ((W)heap [k])->active = k + 1; 1137 ev_active (ANHE_w (heap [k])) = k;
751 k = p; 1138 k = p;
752 } 1139 }
753 1140
754 heap [k] = w; 1141 heap [k] = he;
755 ((W)heap [k])->active = k + 1; 1142 ev_active (ANHE_w (he)) = k;
756} 1143}
757 1144
758void inline_speed 1145/* move an element suitably so it is in a correct place */
759downheap (WT *heap, int N, int k) 1146inline_size void
760{
761 WT w = heap [k];
762
763 for (;;)
764 {
765 int c = (k << 1) + 1;
766
767 if (c >= N)
768 break;
769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
776 heap [k] = heap [c];
777 ((W)heap [k])->active = k + 1;
778
779 k = c;
780 }
781
782 heap [k] = w;
783 ((W)heap [k])->active = k + 1;
784}
785
786void inline_size
787adjustheap (WT *heap, int N, int k) 1147adjustheap (ANHE *heap, int N, int k)
788{ 1148{
1149 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
789 upheap (heap, k); 1150 upheap (heap, k);
1151 else
790 downheap (heap, N, k); 1152 downheap (heap, N, k);
1153}
1154
1155/* rebuild the heap: this function is used only once and executed rarely */
1156inline_size void
1157reheap (ANHE *heap, int N)
1158{
1159 int i;
1160
1161 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1162 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1163 for (i = 0; i < N; ++i)
1164 upheap (heap, i + HEAP0);
791} 1165}
792 1166
793/*****************************************************************************/ 1167/*****************************************************************************/
794 1168
1169/* associate signal watchers to a signal signal */
795typedef struct 1170typedef struct
796{ 1171{
1172 EV_ATOMIC_T pending;
1173#if EV_MULTIPLICITY
1174 EV_P;
1175#endif
797 WL head; 1176 WL head;
798 EV_ATOMIC_T gotsig;
799} ANSIG; 1177} ANSIG;
800 1178
801static ANSIG *signals; 1179static ANSIG signals [EV_NSIG - 1];
802static int signalmax;
803
804static EV_ATOMIC_T gotsig;
805
806void inline_size
807signals_init (ANSIG *base, int count)
808{
809 while (count--)
810 {
811 base->head = 0;
812 base->gotsig = 0;
813
814 ++base;
815 }
816}
817 1180
818/*****************************************************************************/ 1181/*****************************************************************************/
819 1182
820void inline_speed 1183/* used to prepare libev internal fd's */
1184/* this is not fork-safe */
1185inline_speed void
821fd_intern (int fd) 1186fd_intern (int fd)
822{ 1187{
823#ifdef _WIN32 1188#ifdef _WIN32
824 int arg = 1; 1189 unsigned long arg = 1;
825 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1190 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
826#else 1191#else
827 fcntl (fd, F_SETFD, FD_CLOEXEC); 1192 fcntl (fd, F_SETFD, FD_CLOEXEC);
828 fcntl (fd, F_SETFL, O_NONBLOCK); 1193 fcntl (fd, F_SETFL, O_NONBLOCK);
829#endif 1194#endif
830} 1195}
831 1196
832static void noinline 1197static void noinline
833evpipe_init (EV_P) 1198evpipe_init (EV_P)
834{ 1199{
835 if (!ev_is_active (&pipeev)) 1200 if (!ev_is_active (&pipe_w))
836 { 1201 {
837#if EV_USE_EVENTFD 1202#if EV_USE_EVENTFD
1203 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1204 if (evfd < 0 && errno == EINVAL)
838 if ((evfd = eventfd (0, 0)) >= 0) 1205 evfd = eventfd (0, 0);
1206
1207 if (evfd >= 0)
839 { 1208 {
840 evpipe [0] = -1; 1209 evpipe [0] = -1;
841 fd_intern (evfd); 1210 fd_intern (evfd); /* doing it twice doesn't hurt */
842 ev_io_set (&pipeev, evfd, EV_READ); 1211 ev_io_set (&pipe_w, evfd, EV_READ);
843 } 1212 }
844 else 1213 else
845#endif 1214#endif
846 { 1215 {
847 while (pipe (evpipe)) 1216 while (pipe (evpipe))
848 syserr ("(libev) error creating signal/async pipe"); 1217 ev_syserr ("(libev) error creating signal/async pipe");
849 1218
850 fd_intern (evpipe [0]); 1219 fd_intern (evpipe [0]);
851 fd_intern (evpipe [1]); 1220 fd_intern (evpipe [1]);
852 ev_io_set (&pipeev, evpipe [0], EV_READ); 1221 ev_io_set (&pipe_w, evpipe [0], EV_READ);
853 } 1222 }
854 1223
855 ev_io_start (EV_A_ &pipeev); 1224 ev_io_start (EV_A_ &pipe_w);
856 ev_unref (EV_A); /* watcher should not keep loop alive */ 1225 ev_unref (EV_A); /* watcher should not keep loop alive */
857 } 1226 }
858} 1227}
859 1228
860void inline_size 1229inline_size void
861evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1230evpipe_write (EV_P_ EV_ATOMIC_T *flag)
862{ 1231{
863 if (!*flag) 1232 if (!*flag)
864 { 1233 {
865 int old_errno = errno; /* save errno because write might clobber it */ 1234 int old_errno = errno; /* save errno because write might clobber it */
878 1247
879 errno = old_errno; 1248 errno = old_errno;
880 } 1249 }
881} 1250}
882 1251
1252/* called whenever the libev signal pipe */
1253/* got some events (signal, async) */
883static void 1254static void
884pipecb (EV_P_ ev_io *iow, int revents) 1255pipecb (EV_P_ ev_io *iow, int revents)
885{ 1256{
1257 int i;
1258
886#if EV_USE_EVENTFD 1259#if EV_USE_EVENTFD
887 if (evfd >= 0) 1260 if (evfd >= 0)
888 { 1261 {
889 uint64_t counter = 1; 1262 uint64_t counter;
890 read (evfd, &counter, sizeof (uint64_t)); 1263 read (evfd, &counter, sizeof (uint64_t));
891 } 1264 }
892 else 1265 else
893#endif 1266#endif
894 { 1267 {
895 char dummy; 1268 char dummy;
896 read (evpipe [0], &dummy, 1); 1269 read (evpipe [0], &dummy, 1);
897 } 1270 }
898 1271
899 if (gotsig && ev_is_default_loop (EV_A)) 1272 if (sig_pending)
900 { 1273 {
901 int signum; 1274 sig_pending = 0;
902 gotsig = 0;
903 1275
904 for (signum = signalmax; signum--; ) 1276 for (i = EV_NSIG - 1; i--; )
905 if (signals [signum].gotsig) 1277 if (expect_false (signals [i].pending))
906 ev_feed_signal_event (EV_A_ signum + 1); 1278 ev_feed_signal_event (EV_A_ i + 1);
907 } 1279 }
908 1280
909#if EV_ASYNC_ENABLE 1281#if EV_ASYNC_ENABLE
910 if (gotasync) 1282 if (async_pending)
911 { 1283 {
912 int i; 1284 async_pending = 0;
913 gotasync = 0;
914 1285
915 for (i = asynccnt; i--; ) 1286 for (i = asynccnt; i--; )
916 if (asyncs [i]->sent) 1287 if (asyncs [i]->sent)
917 { 1288 {
918 asyncs [i]->sent = 0; 1289 asyncs [i]->sent = 0;
926 1297
927static void 1298static void
928ev_sighandler (int signum) 1299ev_sighandler (int signum)
929{ 1300{
930#if EV_MULTIPLICITY 1301#if EV_MULTIPLICITY
931 struct ev_loop *loop = &default_loop_struct; 1302 EV_P = signals [signum - 1].loop;
932#endif 1303#endif
933 1304
934#if _WIN32 1305#ifdef _WIN32
935 signal (signum, ev_sighandler); 1306 signal (signum, ev_sighandler);
936#endif 1307#endif
937 1308
938 signals [signum - 1].gotsig = 1; 1309 signals [signum - 1].pending = 1;
939 evpipe_write (EV_A_ &gotsig); 1310 evpipe_write (EV_A_ &sig_pending);
940} 1311}
941 1312
942void noinline 1313void noinline
943ev_feed_signal_event (EV_P_ int signum) 1314ev_feed_signal_event (EV_P_ int signum)
944{ 1315{
945 WL w; 1316 WL w;
946 1317
1318 if (expect_false (signum <= 0 || signum > EV_NSIG))
1319 return;
1320
1321 --signum;
1322
947#if EV_MULTIPLICITY 1323#if EV_MULTIPLICITY
948 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1324 /* it is permissible to try to feed a signal to the wrong loop */
949#endif 1325 /* or, likely more useful, feeding a signal nobody is waiting for */
950 1326
951 --signum; 1327 if (expect_false (signals [signum].loop != EV_A))
952
953 if (signum < 0 || signum >= signalmax)
954 return; 1328 return;
1329#endif
955 1330
956 signals [signum].gotsig = 0; 1331 signals [signum].pending = 0;
957 1332
958 for (w = signals [signum].head; w; w = w->next) 1333 for (w = signals [signum].head; w; w = w->next)
959 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1334 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
960} 1335}
961 1336
1337#if EV_USE_SIGNALFD
1338static void
1339sigfdcb (EV_P_ ev_io *iow, int revents)
1340{
1341 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1342
1343 for (;;)
1344 {
1345 ssize_t res = read (sigfd, si, sizeof (si));
1346
1347 /* not ISO-C, as res might be -1, but works with SuS */
1348 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1349 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1350
1351 if (res < (ssize_t)sizeof (si))
1352 break;
1353 }
1354}
1355#endif
1356
962/*****************************************************************************/ 1357/*****************************************************************************/
963 1358
964static WL childs [EV_PID_HASHSIZE]; 1359static WL childs [EV_PID_HASHSIZE];
965 1360
966#ifndef _WIN32 1361#ifndef _WIN32
969 1364
970#ifndef WIFCONTINUED 1365#ifndef WIFCONTINUED
971# define WIFCONTINUED(status) 0 1366# define WIFCONTINUED(status) 0
972#endif 1367#endif
973 1368
974void inline_speed 1369/* handle a single child status event */
1370inline_speed void
975child_reap (EV_P_ int chain, int pid, int status) 1371child_reap (EV_P_ int chain, int pid, int status)
976{ 1372{
977 ev_child *w; 1373 ev_child *w;
978 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1374 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
979 1375
992 1388
993#ifndef WCONTINUED 1389#ifndef WCONTINUED
994# define WCONTINUED 0 1390# define WCONTINUED 0
995#endif 1391#endif
996 1392
1393/* called on sigchld etc., calls waitpid */
997static void 1394static void
998childcb (EV_P_ ev_signal *sw, int revents) 1395childcb (EV_P_ ev_signal *sw, int revents)
999{ 1396{
1000 int pid, status; 1397 int pid, status;
1001 1398
1082 /* kqueue is borked on everything but netbsd apparently */ 1479 /* kqueue is borked on everything but netbsd apparently */
1083 /* it usually doesn't work correctly on anything but sockets and pipes */ 1480 /* it usually doesn't work correctly on anything but sockets and pipes */
1084 flags &= ~EVBACKEND_KQUEUE; 1481 flags &= ~EVBACKEND_KQUEUE;
1085#endif 1482#endif
1086#ifdef __APPLE__ 1483#ifdef __APPLE__
1087 // flags &= ~EVBACKEND_KQUEUE; for documentation 1484 /* only select works correctly on that "unix-certified" platform */
1088 flags &= ~EVBACKEND_POLL; 1485 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1486 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1089#endif 1487#endif
1090 1488
1091 return flags; 1489 return flags;
1092} 1490}
1093 1491
1107ev_backend (EV_P) 1505ev_backend (EV_P)
1108{ 1506{
1109 return backend; 1507 return backend;
1110} 1508}
1111 1509
1510#if EV_MINIMAL < 2
1112unsigned int 1511unsigned int
1113ev_loop_count (EV_P) 1512ev_loop_count (EV_P)
1114{ 1513{
1115 return loop_count; 1514 return loop_count;
1116} 1515}
1117 1516
1517unsigned int
1518ev_loop_depth (EV_P)
1519{
1520 return loop_depth;
1521}
1522
1118void 1523void
1119ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1524ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1120{ 1525{
1121 io_blocktime = interval; 1526 io_blocktime = interval;
1122} 1527}
1125ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1530ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1126{ 1531{
1127 timeout_blocktime = interval; 1532 timeout_blocktime = interval;
1128} 1533}
1129 1534
1535void
1536ev_set_userdata (EV_P_ void *data)
1537{
1538 userdata = data;
1539}
1540
1541void *
1542ev_userdata (EV_P)
1543{
1544 return userdata;
1545}
1546
1547void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1548{
1549 invoke_cb = invoke_pending_cb;
1550}
1551
1552void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1553{
1554 release_cb = release;
1555 acquire_cb = acquire;
1556}
1557#endif
1558
1559/* initialise a loop structure, must be zero-initialised */
1130static void noinline 1560static void noinline
1131loop_init (EV_P_ unsigned int flags) 1561loop_init (EV_P_ unsigned int flags)
1132{ 1562{
1133 if (!backend) 1563 if (!backend)
1134 { 1564 {
1565#if EV_USE_REALTIME
1566 if (!have_realtime)
1567 {
1568 struct timespec ts;
1569
1570 if (!clock_gettime (CLOCK_REALTIME, &ts))
1571 have_realtime = 1;
1572 }
1573#endif
1574
1135#if EV_USE_MONOTONIC 1575#if EV_USE_MONOTONIC
1576 if (!have_monotonic)
1136 { 1577 {
1137 struct timespec ts; 1578 struct timespec ts;
1579
1138 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1580 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1139 have_monotonic = 1; 1581 have_monotonic = 1;
1140 } 1582 }
1141#endif 1583#endif
1584
1585 /* pid check not overridable via env */
1586#ifndef _WIN32
1587 if (flags & EVFLAG_FORKCHECK)
1588 curpid = getpid ();
1589#endif
1590
1591 if (!(flags & EVFLAG_NOENV)
1592 && !enable_secure ()
1593 && getenv ("LIBEV_FLAGS"))
1594 flags = atoi (getenv ("LIBEV_FLAGS"));
1142 1595
1143 ev_rt_now = ev_time (); 1596 ev_rt_now = ev_time ();
1144 mn_now = get_clock (); 1597 mn_now = get_clock ();
1145 now_floor = mn_now; 1598 now_floor = mn_now;
1146 rtmn_diff = ev_rt_now - mn_now; 1599 rtmn_diff = ev_rt_now - mn_now;
1600#if EV_MINIMAL < 2
1601 invoke_cb = ev_invoke_pending;
1602#endif
1147 1603
1148 io_blocktime = 0.; 1604 io_blocktime = 0.;
1149 timeout_blocktime = 0.; 1605 timeout_blocktime = 0.;
1150 backend = 0; 1606 backend = 0;
1151 backend_fd = -1; 1607 backend_fd = -1;
1152 gotasync = 0; 1608 sig_pending = 0;
1609#if EV_ASYNC_ENABLE
1610 async_pending = 0;
1611#endif
1153#if EV_USE_INOTIFY 1612#if EV_USE_INOTIFY
1154 fs_fd = -2; 1613 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1155#endif 1614#endif
1156 1615#if EV_USE_SIGNALFD
1157 /* pid check not overridable via env */ 1616 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1158#ifndef _WIN32
1159 if (flags & EVFLAG_FORKCHECK)
1160 curpid = getpid ();
1161#endif 1617#endif
1162 1618
1163 if (!(flags & EVFLAG_NOENV)
1164 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS"))
1166 flags = atoi (getenv ("LIBEV_FLAGS"));
1167
1168 if (!(flags & 0x0000ffffUL)) 1619 if (!(flags & 0x0000ffffU))
1169 flags |= ev_recommended_backends (); 1620 flags |= ev_recommended_backends ();
1170 1621
1171#if EV_USE_PORT 1622#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1623 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif 1624#endif
1182#endif 1633#endif
1183#if EV_USE_SELECT 1634#if EV_USE_SELECT
1184 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1635 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1185#endif 1636#endif
1186 1637
1638 ev_prepare_init (&pending_w, pendingcb);
1639
1187 ev_init (&pipeev, pipecb); 1640 ev_init (&pipe_w, pipecb);
1188 ev_set_priority (&pipeev, EV_MAXPRI); 1641 ev_set_priority (&pipe_w, EV_MAXPRI);
1189 } 1642 }
1190} 1643}
1191 1644
1645/* free up a loop structure */
1192static void noinline 1646static void noinline
1193loop_destroy (EV_P) 1647loop_destroy (EV_P)
1194{ 1648{
1195 int i; 1649 int i;
1196 1650
1197 if (ev_is_active (&pipeev)) 1651 if (ev_is_active (&pipe_w))
1198 { 1652 {
1199 ev_ref (EV_A); /* signal watcher */ 1653 /*ev_ref (EV_A);*/
1200 ev_io_stop (EV_A_ &pipeev); 1654 /*ev_io_stop (EV_A_ &pipe_w);*/
1201 1655
1202#if EV_USE_EVENTFD 1656#if EV_USE_EVENTFD
1203 if (evfd >= 0) 1657 if (evfd >= 0)
1204 close (evfd); 1658 close (evfd);
1205#endif 1659#endif
1206 1660
1207 if (evpipe [0] >= 0) 1661 if (evpipe [0] >= 0)
1208 { 1662 {
1209 close (evpipe [0]); 1663 EV_WIN32_CLOSE_FD (evpipe [0]);
1210 close (evpipe [1]); 1664 EV_WIN32_CLOSE_FD (evpipe [1]);
1211 } 1665 }
1212 } 1666 }
1667
1668#if EV_USE_SIGNALFD
1669 if (ev_is_active (&sigfd_w))
1670 close (sigfd);
1671#endif
1213 1672
1214#if EV_USE_INOTIFY 1673#if EV_USE_INOTIFY
1215 if (fs_fd >= 0) 1674 if (fs_fd >= 0)
1216 close (fs_fd); 1675 close (fs_fd);
1217#endif 1676#endif
1241#if EV_IDLE_ENABLE 1700#if EV_IDLE_ENABLE
1242 array_free (idle, [i]); 1701 array_free (idle, [i]);
1243#endif 1702#endif
1244 } 1703 }
1245 1704
1246 ev_free (anfds); anfdmax = 0; 1705 ev_free (anfds); anfds = 0; anfdmax = 0;
1247 1706
1248 /* have to use the microsoft-never-gets-it-right macro */ 1707 /* have to use the microsoft-never-gets-it-right macro */
1708 array_free (rfeed, EMPTY);
1249 array_free (fdchange, EMPTY); 1709 array_free (fdchange, EMPTY);
1250 array_free (timer, EMPTY); 1710 array_free (timer, EMPTY);
1251#if EV_PERIODIC_ENABLE 1711#if EV_PERIODIC_ENABLE
1252 array_free (periodic, EMPTY); 1712 array_free (periodic, EMPTY);
1253#endif 1713#endif
1261#endif 1721#endif
1262 1722
1263 backend = 0; 1723 backend = 0;
1264} 1724}
1265 1725
1726#if EV_USE_INOTIFY
1266void inline_size infy_fork (EV_P); 1727inline_size void infy_fork (EV_P);
1728#endif
1267 1729
1268void inline_size 1730inline_size void
1269loop_fork (EV_P) 1731loop_fork (EV_P)
1270{ 1732{
1271#if EV_USE_PORT 1733#if EV_USE_PORT
1272 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1734 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1273#endif 1735#endif
1279#endif 1741#endif
1280#if EV_USE_INOTIFY 1742#if EV_USE_INOTIFY
1281 infy_fork (EV_A); 1743 infy_fork (EV_A);
1282#endif 1744#endif
1283 1745
1284 if (ev_is_active (&pipeev)) 1746 if (ev_is_active (&pipe_w))
1285 { 1747 {
1286 /* this "locks" the handlers against writing to the pipe */ 1748 /* this "locks" the handlers against writing to the pipe */
1287 /* while we modify the fd vars */ 1749 /* while we modify the fd vars */
1288 gotsig = 1; 1750 sig_pending = 1;
1289#if EV_ASYNC_ENABLE 1751#if EV_ASYNC_ENABLE
1290 gotasync = 1; 1752 async_pending = 1;
1291#endif 1753#endif
1292 1754
1293 ev_ref (EV_A); 1755 ev_ref (EV_A);
1294 ev_io_stop (EV_A_ &pipeev); 1756 ev_io_stop (EV_A_ &pipe_w);
1295 1757
1296#if EV_USE_EVENTFD 1758#if EV_USE_EVENTFD
1297 if (evfd >= 0) 1759 if (evfd >= 0)
1298 close (evfd); 1760 close (evfd);
1299#endif 1761#endif
1300 1762
1301 if (evpipe [0] >= 0) 1763 if (evpipe [0] >= 0)
1302 { 1764 {
1303 close (evpipe [0]); 1765 EV_WIN32_CLOSE_FD (evpipe [0]);
1304 close (evpipe [1]); 1766 EV_WIN32_CLOSE_FD (evpipe [1]);
1305 } 1767 }
1306 1768
1307 evpipe_init (EV_A); 1769 evpipe_init (EV_A);
1308 /* now iterate over everything, in case we missed something */ 1770 /* now iterate over everything, in case we missed something */
1309 pipecb (EV_A_ &pipeev, EV_READ); 1771 pipecb (EV_A_ &pipe_w, EV_READ);
1310 } 1772 }
1311 1773
1312 postfork = 0; 1774 postfork = 0;
1313} 1775}
1314 1776
1315#if EV_MULTIPLICITY 1777#if EV_MULTIPLICITY
1778
1316struct ev_loop * 1779struct ev_loop *
1317ev_loop_new (unsigned int flags) 1780ev_loop_new (unsigned int flags)
1318{ 1781{
1319 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1782 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1320 1783
1321 memset (loop, 0, sizeof (struct ev_loop)); 1784 memset (EV_A, 0, sizeof (struct ev_loop));
1322
1323 loop_init (EV_A_ flags); 1785 loop_init (EV_A_ flags);
1324 1786
1325 if (ev_backend (EV_A)) 1787 if (ev_backend (EV_A))
1326 return loop; 1788 return EV_A;
1327 1789
1328 return 0; 1790 return 0;
1329} 1791}
1330 1792
1331void 1793void
1338void 1800void
1339ev_loop_fork (EV_P) 1801ev_loop_fork (EV_P)
1340{ 1802{
1341 postfork = 1; /* must be in line with ev_default_fork */ 1803 postfork = 1; /* must be in line with ev_default_fork */
1342} 1804}
1805#endif /* multiplicity */
1343 1806
1807#if EV_VERIFY
1808static void noinline
1809verify_watcher (EV_P_ W w)
1810{
1811 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1812
1813 if (w->pending)
1814 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1815}
1816
1817static void noinline
1818verify_heap (EV_P_ ANHE *heap, int N)
1819{
1820 int i;
1821
1822 for (i = HEAP0; i < N + HEAP0; ++i)
1823 {
1824 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1825 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1826 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1827
1828 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1829 }
1830}
1831
1832static void noinline
1833array_verify (EV_P_ W *ws, int cnt)
1834{
1835 while (cnt--)
1836 {
1837 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1838 verify_watcher (EV_A_ ws [cnt]);
1839 }
1840}
1841#endif
1842
1843#if EV_MINIMAL < 2
1844void
1845ev_loop_verify (EV_P)
1846{
1847#if EV_VERIFY
1848 int i;
1849 WL w;
1850
1851 assert (activecnt >= -1);
1852
1853 assert (fdchangemax >= fdchangecnt);
1854 for (i = 0; i < fdchangecnt; ++i)
1855 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1856
1857 assert (anfdmax >= 0);
1858 for (i = 0; i < anfdmax; ++i)
1859 for (w = anfds [i].head; w; w = w->next)
1860 {
1861 verify_watcher (EV_A_ (W)w);
1862 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1863 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1864 }
1865
1866 assert (timermax >= timercnt);
1867 verify_heap (EV_A_ timers, timercnt);
1868
1869#if EV_PERIODIC_ENABLE
1870 assert (periodicmax >= periodiccnt);
1871 verify_heap (EV_A_ periodics, periodiccnt);
1872#endif
1873
1874 for (i = NUMPRI; i--; )
1875 {
1876 assert (pendingmax [i] >= pendingcnt [i]);
1877#if EV_IDLE_ENABLE
1878 assert (idleall >= 0);
1879 assert (idlemax [i] >= idlecnt [i]);
1880 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1881#endif
1882 }
1883
1884#if EV_FORK_ENABLE
1885 assert (forkmax >= forkcnt);
1886 array_verify (EV_A_ (W *)forks, forkcnt);
1887#endif
1888
1889#if EV_ASYNC_ENABLE
1890 assert (asyncmax >= asynccnt);
1891 array_verify (EV_A_ (W *)asyncs, asynccnt);
1892#endif
1893
1894 assert (preparemax >= preparecnt);
1895 array_verify (EV_A_ (W *)prepares, preparecnt);
1896
1897 assert (checkmax >= checkcnt);
1898 array_verify (EV_A_ (W *)checks, checkcnt);
1899
1900# if 0
1901 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1902 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1903# endif
1904#endif
1905}
1344#endif 1906#endif
1345 1907
1346#if EV_MULTIPLICITY 1908#if EV_MULTIPLICITY
1347struct ev_loop * 1909struct ev_loop *
1348ev_default_loop_init (unsigned int flags) 1910ev_default_loop_init (unsigned int flags)
1352#endif 1914#endif
1353{ 1915{
1354 if (!ev_default_loop_ptr) 1916 if (!ev_default_loop_ptr)
1355 { 1917 {
1356#if EV_MULTIPLICITY 1918#if EV_MULTIPLICITY
1357 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1919 EV_P = ev_default_loop_ptr = &default_loop_struct;
1358#else 1920#else
1359 ev_default_loop_ptr = 1; 1921 ev_default_loop_ptr = 1;
1360#endif 1922#endif
1361 1923
1362 loop_init (EV_A_ flags); 1924 loop_init (EV_A_ flags);
1379 1941
1380void 1942void
1381ev_default_destroy (void) 1943ev_default_destroy (void)
1382{ 1944{
1383#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
1384 struct ev_loop *loop = ev_default_loop_ptr; 1946 EV_P = ev_default_loop_ptr;
1385#endif 1947#endif
1948
1949 ev_default_loop_ptr = 0;
1386 1950
1387#ifndef _WIN32 1951#ifndef _WIN32
1388 ev_ref (EV_A); /* child watcher */ 1952 ev_ref (EV_A); /* child watcher */
1389 ev_signal_stop (EV_A_ &childev); 1953 ev_signal_stop (EV_A_ &childev);
1390#endif 1954#endif
1394 1958
1395void 1959void
1396ev_default_fork (void) 1960ev_default_fork (void)
1397{ 1961{
1398#if EV_MULTIPLICITY 1962#if EV_MULTIPLICITY
1399 struct ev_loop *loop = ev_default_loop_ptr; 1963 EV_P = ev_default_loop_ptr;
1400#endif 1964#endif
1401 1965
1402 if (backend)
1403 postfork = 1; /* must be in line with ev_loop_fork */ 1966 postfork = 1; /* must be in line with ev_loop_fork */
1404} 1967}
1405 1968
1406/*****************************************************************************/ 1969/*****************************************************************************/
1407 1970
1408void 1971void
1409ev_invoke (EV_P_ void *w, int revents) 1972ev_invoke (EV_P_ void *w, int revents)
1410{ 1973{
1411 EV_CB_INVOKE ((W)w, revents); 1974 EV_CB_INVOKE ((W)w, revents);
1412} 1975}
1413 1976
1414void inline_speed 1977unsigned int
1415call_pending (EV_P) 1978ev_pending_count (EV_P)
1979{
1980 int pri;
1981 unsigned int count = 0;
1982
1983 for (pri = NUMPRI; pri--; )
1984 count += pendingcnt [pri];
1985
1986 return count;
1987}
1988
1989void noinline
1990ev_invoke_pending (EV_P)
1416{ 1991{
1417 int pri; 1992 int pri;
1418 1993
1419 for (pri = NUMPRI; pri--; ) 1994 for (pri = NUMPRI; pri--; )
1420 while (pendingcnt [pri]) 1995 while (pendingcnt [pri])
1421 { 1996 {
1422 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1997 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1423 1998
1424 if (expect_true (p->w))
1425 {
1426 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1999 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2000 /* ^ this is no longer true, as pending_w could be here */
1427 2001
1428 p->w->pending = 0; 2002 p->w->pending = 0;
1429 EV_CB_INVOKE (p->w, p->events); 2003 EV_CB_INVOKE (p->w, p->events);
1430 } 2004 EV_FREQUENT_CHECK;
1431 } 2005 }
1432} 2006}
1433 2007
1434void inline_size
1435timers_reify (EV_P)
1436{
1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1438 {
1439 ev_timer *w = (ev_timer *)timers [0];
1440
1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1442
1443 /* first reschedule or stop timer */
1444 if (w->repeat)
1445 {
1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1447
1448 ((WT)w)->at += w->repeat;
1449 if (((WT)w)->at < mn_now)
1450 ((WT)w)->at = mn_now;
1451
1452 downheap (timers, timercnt, 0);
1453 }
1454 else
1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1456
1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1458 }
1459}
1460
1461#if EV_PERIODIC_ENABLE
1462void inline_size
1463periodics_reify (EV_P)
1464{
1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1466 {
1467 ev_periodic *w = (ev_periodic *)periodics [0];
1468
1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1470
1471 /* first reschedule or stop timer */
1472 if (w->reschedule_cb)
1473 {
1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1476 downheap (periodics, periodiccnt, 0);
1477 }
1478 else if (w->interval)
1479 {
1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else
1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1487
1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1489 }
1490}
1491
1492static void noinline
1493periodics_reschedule (EV_P)
1494{
1495 int i;
1496
1497 /* adjust periodics after time jump */
1498 for (i = 0; i < periodiccnt; ++i)
1499 {
1500 ev_periodic *w = (ev_periodic *)periodics [i];
1501
1502 if (w->reschedule_cb)
1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1504 else if (w->interval)
1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1506 }
1507
1508 /* now rebuild the heap */
1509 for (i = periodiccnt >> 1; i--; )
1510 downheap (periodics, periodiccnt, i);
1511}
1512#endif
1513
1514#if EV_IDLE_ENABLE 2008#if EV_IDLE_ENABLE
1515void inline_size 2009/* make idle watchers pending. this handles the "call-idle */
2010/* only when higher priorities are idle" logic */
2011inline_size void
1516idle_reify (EV_P) 2012idle_reify (EV_P)
1517{ 2013{
1518 if (expect_false (idleall)) 2014 if (expect_false (idleall))
1519 { 2015 {
1520 int pri; 2016 int pri;
1532 } 2028 }
1533 } 2029 }
1534} 2030}
1535#endif 2031#endif
1536 2032
1537void inline_speed 2033/* make timers pending */
2034inline_size void
2035timers_reify (EV_P)
2036{
2037 EV_FREQUENT_CHECK;
2038
2039 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2040 {
2041 do
2042 {
2043 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2044
2045 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2046
2047 /* first reschedule or stop timer */
2048 if (w->repeat)
2049 {
2050 ev_at (w) += w->repeat;
2051 if (ev_at (w) < mn_now)
2052 ev_at (w) = mn_now;
2053
2054 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2055
2056 ANHE_at_cache (timers [HEAP0]);
2057 downheap (timers, timercnt, HEAP0);
2058 }
2059 else
2060 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2061
2062 EV_FREQUENT_CHECK;
2063 feed_reverse (EV_A_ (W)w);
2064 }
2065 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2066
2067 feed_reverse_done (EV_A_ EV_TIMEOUT);
2068 }
2069}
2070
2071#if EV_PERIODIC_ENABLE
2072/* make periodics pending */
2073inline_size void
2074periodics_reify (EV_P)
2075{
2076 EV_FREQUENT_CHECK;
2077
2078 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2079 {
2080 int feed_count = 0;
2081
2082 do
2083 {
2084 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2085
2086 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2087
2088 /* first reschedule or stop timer */
2089 if (w->reschedule_cb)
2090 {
2091 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2092
2093 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2094
2095 ANHE_at_cache (periodics [HEAP0]);
2096 downheap (periodics, periodiccnt, HEAP0);
2097 }
2098 else if (w->interval)
2099 {
2100 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2101 /* if next trigger time is not sufficiently in the future, put it there */
2102 /* this might happen because of floating point inexactness */
2103 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2104 {
2105 ev_at (w) += w->interval;
2106
2107 /* if interval is unreasonably low we might still have a time in the past */
2108 /* so correct this. this will make the periodic very inexact, but the user */
2109 /* has effectively asked to get triggered more often than possible */
2110 if (ev_at (w) < ev_rt_now)
2111 ev_at (w) = ev_rt_now;
2112 }
2113
2114 ANHE_at_cache (periodics [HEAP0]);
2115 downheap (periodics, periodiccnt, HEAP0);
2116 }
2117 else
2118 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2119
2120 EV_FREQUENT_CHECK;
2121 feed_reverse (EV_A_ (W)w);
2122 }
2123 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2124
2125 feed_reverse_done (EV_A_ EV_PERIODIC);
2126 }
2127}
2128
2129/* simply recalculate all periodics */
2130/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2131static void noinline
2132periodics_reschedule (EV_P)
2133{
2134 int i;
2135
2136 /* adjust periodics after time jump */
2137 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2138 {
2139 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2140
2141 if (w->reschedule_cb)
2142 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2143 else if (w->interval)
2144 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2145
2146 ANHE_at_cache (periodics [i]);
2147 }
2148
2149 reheap (periodics, periodiccnt);
2150}
2151#endif
2152
2153/* adjust all timers by a given offset */
2154static void noinline
2155timers_reschedule (EV_P_ ev_tstamp adjust)
2156{
2157 int i;
2158
2159 for (i = 0; i < timercnt; ++i)
2160 {
2161 ANHE *he = timers + i + HEAP0;
2162 ANHE_w (*he)->at += adjust;
2163 ANHE_at_cache (*he);
2164 }
2165}
2166
2167/* fetch new monotonic and realtime times from the kernel */
2168/* also detect if there was a timejump, and act accordingly */
2169inline_speed void
1538time_update (EV_P_ ev_tstamp max_block) 2170time_update (EV_P_ ev_tstamp max_block)
1539{ 2171{
1540 int i;
1541
1542#if EV_USE_MONOTONIC 2172#if EV_USE_MONOTONIC
1543 if (expect_true (have_monotonic)) 2173 if (expect_true (have_monotonic))
1544 { 2174 {
2175 int i;
1545 ev_tstamp odiff = rtmn_diff; 2176 ev_tstamp odiff = rtmn_diff;
1546 2177
1547 mn_now = get_clock (); 2178 mn_now = get_clock ();
1548 2179
1549 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2180 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1567 */ 2198 */
1568 for (i = 4; --i; ) 2199 for (i = 4; --i; )
1569 { 2200 {
1570 rtmn_diff = ev_rt_now - mn_now; 2201 rtmn_diff = ev_rt_now - mn_now;
1571 2202
1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2203 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1573 return; /* all is well */ 2204 return; /* all is well */
1574 2205
1575 ev_rt_now = ev_time (); 2206 ev_rt_now = ev_time ();
1576 mn_now = get_clock (); 2207 mn_now = get_clock ();
1577 now_floor = mn_now; 2208 now_floor = mn_now;
1578 } 2209 }
1579 2210
2211 /* no timer adjustment, as the monotonic clock doesn't jump */
2212 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1580# if EV_PERIODIC_ENABLE 2213# if EV_PERIODIC_ENABLE
1581 periodics_reschedule (EV_A); 2214 periodics_reschedule (EV_A);
1582# endif 2215# endif
1583 /* no timer adjustment, as the monotonic clock doesn't jump */
1584 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1585 } 2216 }
1586 else 2217 else
1587#endif 2218#endif
1588 { 2219 {
1589 ev_rt_now = ev_time (); 2220 ev_rt_now = ev_time ();
1590 2221
1591 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2222 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1592 { 2223 {
2224 /* adjust timers. this is easy, as the offset is the same for all of them */
2225 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1593#if EV_PERIODIC_ENABLE 2226#if EV_PERIODIC_ENABLE
1594 periodics_reschedule (EV_A); 2227 periodics_reschedule (EV_A);
1595#endif 2228#endif
1596 /* adjust timers. this is easy, as the offset is the same for all of them */
1597 for (i = 0; i < timercnt; ++i)
1598 ((WT)timers [i])->at += ev_rt_now - mn_now;
1599 } 2229 }
1600 2230
1601 mn_now = ev_rt_now; 2231 mn_now = ev_rt_now;
1602 } 2232 }
1603} 2233}
1604 2234
1605void 2235void
1606ev_ref (EV_P)
1607{
1608 ++activecnt;
1609}
1610
1611void
1612ev_unref (EV_P)
1613{
1614 --activecnt;
1615}
1616
1617static int loop_done;
1618
1619void
1620ev_loop (EV_P_ int flags) 2236ev_loop (EV_P_ int flags)
1621{ 2237{
2238#if EV_MINIMAL < 2
2239 ++loop_depth;
2240#endif
2241
2242 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2243
1622 loop_done = EVUNLOOP_CANCEL; 2244 loop_done = EVUNLOOP_CANCEL;
1623 2245
1624 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2246 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1625 2247
1626 do 2248 do
1627 { 2249 {
2250#if EV_VERIFY >= 2
2251 ev_loop_verify (EV_A);
2252#endif
2253
1628#ifndef _WIN32 2254#ifndef _WIN32
1629 if (expect_false (curpid)) /* penalise the forking check even more */ 2255 if (expect_false (curpid)) /* penalise the forking check even more */
1630 if (expect_false (getpid () != curpid)) 2256 if (expect_false (getpid () != curpid))
1631 { 2257 {
1632 curpid = getpid (); 2258 curpid = getpid ();
1638 /* we might have forked, so queue fork handlers */ 2264 /* we might have forked, so queue fork handlers */
1639 if (expect_false (postfork)) 2265 if (expect_false (postfork))
1640 if (forkcnt) 2266 if (forkcnt)
1641 { 2267 {
1642 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2268 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1643 call_pending (EV_A); 2269 EV_INVOKE_PENDING;
1644 } 2270 }
1645#endif 2271#endif
1646 2272
1647 /* queue prepare watchers (and execute them) */ 2273 /* queue prepare watchers (and execute them) */
1648 if (expect_false (preparecnt)) 2274 if (expect_false (preparecnt))
1649 { 2275 {
1650 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2276 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1651 call_pending (EV_A); 2277 EV_INVOKE_PENDING;
1652 } 2278 }
1653 2279
1654 if (expect_false (!activecnt)) 2280 if (expect_false (loop_done))
1655 break; 2281 break;
1656 2282
1657 /* we might have forked, so reify kernel state if necessary */ 2283 /* we might have forked, so reify kernel state if necessary */
1658 if (expect_false (postfork)) 2284 if (expect_false (postfork))
1659 loop_fork (EV_A); 2285 loop_fork (EV_A);
1666 ev_tstamp waittime = 0.; 2292 ev_tstamp waittime = 0.;
1667 ev_tstamp sleeptime = 0.; 2293 ev_tstamp sleeptime = 0.;
1668 2294
1669 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2295 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1670 { 2296 {
2297 /* remember old timestamp for io_blocktime calculation */
2298 ev_tstamp prev_mn_now = mn_now;
2299
1671 /* update time to cancel out callback processing overhead */ 2300 /* update time to cancel out callback processing overhead */
1672 time_update (EV_A_ 1e100); 2301 time_update (EV_A_ 1e100);
1673 2302
1674 waittime = MAX_BLOCKTIME; 2303 waittime = MAX_BLOCKTIME;
1675 2304
1676 if (timercnt) 2305 if (timercnt)
1677 { 2306 {
1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2307 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1679 if (waittime > to) waittime = to; 2308 if (waittime > to) waittime = to;
1680 } 2309 }
1681 2310
1682#if EV_PERIODIC_ENABLE 2311#if EV_PERIODIC_ENABLE
1683 if (periodiccnt) 2312 if (periodiccnt)
1684 { 2313 {
1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2314 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1686 if (waittime > to) waittime = to; 2315 if (waittime > to) waittime = to;
1687 } 2316 }
1688#endif 2317#endif
1689 2318
2319 /* don't let timeouts decrease the waittime below timeout_blocktime */
1690 if (expect_false (waittime < timeout_blocktime)) 2320 if (expect_false (waittime < timeout_blocktime))
1691 waittime = timeout_blocktime; 2321 waittime = timeout_blocktime;
1692 2322
1693 sleeptime = waittime - backend_fudge; 2323 /* extra check because io_blocktime is commonly 0 */
1694
1695 if (expect_true (sleeptime > io_blocktime)) 2324 if (expect_false (io_blocktime))
1696 sleeptime = io_blocktime;
1697
1698 if (sleeptime)
1699 { 2325 {
2326 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2327
2328 if (sleeptime > waittime - backend_fudge)
2329 sleeptime = waittime - backend_fudge;
2330
2331 if (expect_true (sleeptime > 0.))
2332 {
1700 ev_sleep (sleeptime); 2333 ev_sleep (sleeptime);
1701 waittime -= sleeptime; 2334 waittime -= sleeptime;
2335 }
1702 } 2336 }
1703 } 2337 }
1704 2338
2339#if EV_MINIMAL < 2
1705 ++loop_count; 2340 ++loop_count;
2341#endif
2342 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1706 backend_poll (EV_A_ waittime); 2343 backend_poll (EV_A_ waittime);
2344 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1707 2345
1708 /* update ev_rt_now, do magic */ 2346 /* update ev_rt_now, do magic */
1709 time_update (EV_A_ waittime + sleeptime); 2347 time_update (EV_A_ waittime + sleeptime);
1710 } 2348 }
1711 2349
1722 2360
1723 /* queue check watchers, to be executed first */ 2361 /* queue check watchers, to be executed first */
1724 if (expect_false (checkcnt)) 2362 if (expect_false (checkcnt))
1725 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2363 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1726 2364
1727 call_pending (EV_A); 2365 EV_INVOKE_PENDING;
1728 } 2366 }
1729 while (expect_true ( 2367 while (expect_true (
1730 activecnt 2368 activecnt
1731 && !loop_done 2369 && !loop_done
1732 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2370 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1733 )); 2371 ));
1734 2372
1735 if (loop_done == EVUNLOOP_ONE) 2373 if (loop_done == EVUNLOOP_ONE)
1736 loop_done = EVUNLOOP_CANCEL; 2374 loop_done = EVUNLOOP_CANCEL;
2375
2376#if EV_MINIMAL < 2
2377 --loop_depth;
2378#endif
1737} 2379}
1738 2380
1739void 2381void
1740ev_unloop (EV_P_ int how) 2382ev_unloop (EV_P_ int how)
1741{ 2383{
1742 loop_done = how; 2384 loop_done = how;
1743} 2385}
1744 2386
2387void
2388ev_ref (EV_P)
2389{
2390 ++activecnt;
2391}
2392
2393void
2394ev_unref (EV_P)
2395{
2396 --activecnt;
2397}
2398
2399void
2400ev_now_update (EV_P)
2401{
2402 time_update (EV_A_ 1e100);
2403}
2404
2405void
2406ev_suspend (EV_P)
2407{
2408 ev_now_update (EV_A);
2409}
2410
2411void
2412ev_resume (EV_P)
2413{
2414 ev_tstamp mn_prev = mn_now;
2415
2416 ev_now_update (EV_A);
2417 timers_reschedule (EV_A_ mn_now - mn_prev);
2418#if EV_PERIODIC_ENABLE
2419 /* TODO: really do this? */
2420 periodics_reschedule (EV_A);
2421#endif
2422}
2423
1745/*****************************************************************************/ 2424/*****************************************************************************/
2425/* singly-linked list management, used when the expected list length is short */
1746 2426
1747void inline_size 2427inline_size void
1748wlist_add (WL *head, WL elem) 2428wlist_add (WL *head, WL elem)
1749{ 2429{
1750 elem->next = *head; 2430 elem->next = *head;
1751 *head = elem; 2431 *head = elem;
1752} 2432}
1753 2433
1754void inline_size 2434inline_size void
1755wlist_del (WL *head, WL elem) 2435wlist_del (WL *head, WL elem)
1756{ 2436{
1757 while (*head) 2437 while (*head)
1758 { 2438 {
1759 if (*head == elem) 2439 if (expect_true (*head == elem))
1760 { 2440 {
1761 *head = elem->next; 2441 *head = elem->next;
1762 return; 2442 break;
1763 } 2443 }
1764 2444
1765 head = &(*head)->next; 2445 head = &(*head)->next;
1766 } 2446 }
1767} 2447}
1768 2448
1769void inline_speed 2449/* internal, faster, version of ev_clear_pending */
2450inline_speed void
1770clear_pending (EV_P_ W w) 2451clear_pending (EV_P_ W w)
1771{ 2452{
1772 if (w->pending) 2453 if (w->pending)
1773 { 2454 {
1774 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2455 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1775 w->pending = 0; 2456 w->pending = 0;
1776 } 2457 }
1777} 2458}
1778 2459
1779int 2460int
1783 int pending = w_->pending; 2464 int pending = w_->pending;
1784 2465
1785 if (expect_true (pending)) 2466 if (expect_true (pending))
1786 { 2467 {
1787 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2468 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2469 p->w = (W)&pending_w;
1788 w_->pending = 0; 2470 w_->pending = 0;
1789 p->w = 0;
1790 return p->events; 2471 return p->events;
1791 } 2472 }
1792 else 2473 else
1793 return 0; 2474 return 0;
1794} 2475}
1795 2476
1796void inline_size 2477inline_size void
1797pri_adjust (EV_P_ W w) 2478pri_adjust (EV_P_ W w)
1798{ 2479{
1799 int pri = w->priority; 2480 int pri = ev_priority (w);
1800 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2481 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1801 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2482 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1802 w->priority = pri; 2483 ev_set_priority (w, pri);
1803} 2484}
1804 2485
1805void inline_speed 2486inline_speed void
1806ev_start (EV_P_ W w, int active) 2487ev_start (EV_P_ W w, int active)
1807{ 2488{
1808 pri_adjust (EV_A_ w); 2489 pri_adjust (EV_A_ w);
1809 w->active = active; 2490 w->active = active;
1810 ev_ref (EV_A); 2491 ev_ref (EV_A);
1811} 2492}
1812 2493
1813void inline_size 2494inline_size void
1814ev_stop (EV_P_ W w) 2495ev_stop (EV_P_ W w)
1815{ 2496{
1816 ev_unref (EV_A); 2497 ev_unref (EV_A);
1817 w->active = 0; 2498 w->active = 0;
1818} 2499}
1825 int fd = w->fd; 2506 int fd = w->fd;
1826 2507
1827 if (expect_false (ev_is_active (w))) 2508 if (expect_false (ev_is_active (w)))
1828 return; 2509 return;
1829 2510
1830 assert (("ev_io_start called with negative fd", fd >= 0)); 2511 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2512 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2513
2514 EV_FREQUENT_CHECK;
1831 2515
1832 ev_start (EV_A_ (W)w, 1); 2516 ev_start (EV_A_ (W)w, 1);
1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2517 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1834 wlist_add (&anfds[fd].head, (WL)w); 2518 wlist_add (&anfds[fd].head, (WL)w);
1835 2519
1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2520 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1837 w->events &= ~EV_IOFDSET; 2521 w->events &= ~EV__IOFDSET;
2522
2523 EV_FREQUENT_CHECK;
1838} 2524}
1839 2525
1840void noinline 2526void noinline
1841ev_io_stop (EV_P_ ev_io *w) 2527ev_io_stop (EV_P_ ev_io *w)
1842{ 2528{
1843 clear_pending (EV_A_ (W)w); 2529 clear_pending (EV_A_ (W)w);
1844 if (expect_false (!ev_is_active (w))) 2530 if (expect_false (!ev_is_active (w)))
1845 return; 2531 return;
1846 2532
1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2533 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2534
2535 EV_FREQUENT_CHECK;
1848 2536
1849 wlist_del (&anfds[w->fd].head, (WL)w); 2537 wlist_del (&anfds[w->fd].head, (WL)w);
1850 ev_stop (EV_A_ (W)w); 2538 ev_stop (EV_A_ (W)w);
1851 2539
1852 fd_change (EV_A_ w->fd, 1); 2540 fd_change (EV_A_ w->fd, 1);
2541
2542 EV_FREQUENT_CHECK;
1853} 2543}
1854 2544
1855void noinline 2545void noinline
1856ev_timer_start (EV_P_ ev_timer *w) 2546ev_timer_start (EV_P_ ev_timer *w)
1857{ 2547{
1858 if (expect_false (ev_is_active (w))) 2548 if (expect_false (ev_is_active (w)))
1859 return; 2549 return;
1860 2550
1861 ((WT)w)->at += mn_now; 2551 ev_at (w) += mn_now;
1862 2552
1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2553 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1864 2554
2555 EV_FREQUENT_CHECK;
2556
2557 ++timercnt;
1865 ev_start (EV_A_ (W)w, ++timercnt); 2558 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2559 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1867 timers [timercnt - 1] = (WT)w; 2560 ANHE_w (timers [ev_active (w)]) = (WT)w;
1868 upheap (timers, timercnt - 1); 2561 ANHE_at_cache (timers [ev_active (w)]);
2562 upheap (timers, ev_active (w));
1869 2563
2564 EV_FREQUENT_CHECK;
2565
1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2566 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1871} 2567}
1872 2568
1873void noinline 2569void noinline
1874ev_timer_stop (EV_P_ ev_timer *w) 2570ev_timer_stop (EV_P_ ev_timer *w)
1875{ 2571{
1876 clear_pending (EV_A_ (W)w); 2572 clear_pending (EV_A_ (W)w);
1877 if (expect_false (!ev_is_active (w))) 2573 if (expect_false (!ev_is_active (w)))
1878 return; 2574 return;
1879 2575
1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2576 EV_FREQUENT_CHECK;
1881 2577
1882 { 2578 {
1883 int active = ((W)w)->active; 2579 int active = ev_active (w);
1884 2580
2581 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2582
2583 --timercnt;
2584
1885 if (expect_true (--active < --timercnt)) 2585 if (expect_true (active < timercnt + HEAP0))
1886 { 2586 {
1887 timers [active] = timers [timercnt]; 2587 timers [active] = timers [timercnt + HEAP0];
1888 adjustheap (timers, timercnt, active); 2588 adjustheap (timers, timercnt, active);
1889 } 2589 }
1890 } 2590 }
1891 2591
1892 ((WT)w)->at -= mn_now; 2592 EV_FREQUENT_CHECK;
2593
2594 ev_at (w) -= mn_now;
1893 2595
1894 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
1895} 2597}
1896 2598
1897void noinline 2599void noinline
1898ev_timer_again (EV_P_ ev_timer *w) 2600ev_timer_again (EV_P_ ev_timer *w)
1899{ 2601{
2602 EV_FREQUENT_CHECK;
2603
1900 if (ev_is_active (w)) 2604 if (ev_is_active (w))
1901 { 2605 {
1902 if (w->repeat) 2606 if (w->repeat)
1903 { 2607 {
1904 ((WT)w)->at = mn_now + w->repeat; 2608 ev_at (w) = mn_now + w->repeat;
2609 ANHE_at_cache (timers [ev_active (w)]);
1905 adjustheap (timers, timercnt, ((W)w)->active - 1); 2610 adjustheap (timers, timercnt, ev_active (w));
1906 } 2611 }
1907 else 2612 else
1908 ev_timer_stop (EV_A_ w); 2613 ev_timer_stop (EV_A_ w);
1909 } 2614 }
1910 else if (w->repeat) 2615 else if (w->repeat)
1911 { 2616 {
1912 w->at = w->repeat; 2617 ev_at (w) = w->repeat;
1913 ev_timer_start (EV_A_ w); 2618 ev_timer_start (EV_A_ w);
1914 } 2619 }
2620
2621 EV_FREQUENT_CHECK;
2622}
2623
2624ev_tstamp
2625ev_timer_remaining (EV_P_ ev_timer *w)
2626{
2627 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1915} 2628}
1916 2629
1917#if EV_PERIODIC_ENABLE 2630#if EV_PERIODIC_ENABLE
1918void noinline 2631void noinline
1919ev_periodic_start (EV_P_ ev_periodic *w) 2632ev_periodic_start (EV_P_ ev_periodic *w)
1920{ 2633{
1921 if (expect_false (ev_is_active (w))) 2634 if (expect_false (ev_is_active (w)))
1922 return; 2635 return;
1923 2636
1924 if (w->reschedule_cb) 2637 if (w->reschedule_cb)
1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2638 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1926 else if (w->interval) 2639 else if (w->interval)
1927 { 2640 {
1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2641 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1929 /* this formula differs from the one in periodic_reify because we do not always round up */ 2642 /* this formula differs from the one in periodic_reify because we do not always round up */
1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1931 } 2644 }
1932 else 2645 else
1933 ((WT)w)->at = w->offset; 2646 ev_at (w) = w->offset;
1934 2647
2648 EV_FREQUENT_CHECK;
2649
2650 ++periodiccnt;
1935 ev_start (EV_A_ (W)w, ++periodiccnt); 2651 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2652 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1937 periodics [periodiccnt - 1] = (WT)w; 2653 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1938 upheap (periodics, periodiccnt - 1); 2654 ANHE_at_cache (periodics [ev_active (w)]);
2655 upheap (periodics, ev_active (w));
1939 2656
2657 EV_FREQUENT_CHECK;
2658
1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2659 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1941} 2660}
1942 2661
1943void noinline 2662void noinline
1944ev_periodic_stop (EV_P_ ev_periodic *w) 2663ev_periodic_stop (EV_P_ ev_periodic *w)
1945{ 2664{
1946 clear_pending (EV_A_ (W)w); 2665 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2666 if (expect_false (!ev_is_active (w)))
1948 return; 2667 return;
1949 2668
1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2669 EV_FREQUENT_CHECK;
1951 2670
1952 { 2671 {
1953 int active = ((W)w)->active; 2672 int active = ev_active (w);
1954 2673
2674 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2675
2676 --periodiccnt;
2677
1955 if (expect_true (--active < --periodiccnt)) 2678 if (expect_true (active < periodiccnt + HEAP0))
1956 { 2679 {
1957 periodics [active] = periodics [periodiccnt]; 2680 periodics [active] = periodics [periodiccnt + HEAP0];
1958 adjustheap (periodics, periodiccnt, active); 2681 adjustheap (periodics, periodiccnt, active);
1959 } 2682 }
1960 } 2683 }
1961 2684
2685 EV_FREQUENT_CHECK;
2686
1962 ev_stop (EV_A_ (W)w); 2687 ev_stop (EV_A_ (W)w);
1963} 2688}
1964 2689
1965void noinline 2690void noinline
1966ev_periodic_again (EV_P_ ev_periodic *w) 2691ev_periodic_again (EV_P_ ev_periodic *w)
1976#endif 2701#endif
1977 2702
1978void noinline 2703void noinline
1979ev_signal_start (EV_P_ ev_signal *w) 2704ev_signal_start (EV_P_ ev_signal *w)
1980{ 2705{
1981#if EV_MULTIPLICITY
1982 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1983#endif
1984 if (expect_false (ev_is_active (w))) 2706 if (expect_false (ev_is_active (w)))
1985 return; 2707 return;
1986 2708
1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2709 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1988 2710
1989 evpipe_init (EV_A); 2711#if EV_MULTIPLICITY
2712 assert (("libev: a signal must not be attached to two different loops",
2713 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1990 2714
2715 signals [w->signum - 1].loop = EV_A;
2716#endif
2717
2718 EV_FREQUENT_CHECK;
2719
2720#if EV_USE_SIGNALFD
2721 if (sigfd == -2)
1991 { 2722 {
1992#ifndef _WIN32 2723 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1993 sigset_t full, prev; 2724 if (sigfd < 0 && errno == EINVAL)
1994 sigfillset (&full); 2725 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1995 sigprocmask (SIG_SETMASK, &full, &prev);
1996#endif
1997 2726
1998 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2727 if (sigfd >= 0)
2728 {
2729 fd_intern (sigfd); /* doing it twice will not hurt */
1999 2730
2000#ifndef _WIN32 2731 sigemptyset (&sigfd_set);
2001 sigprocmask (SIG_SETMASK, &prev, 0); 2732
2002#endif 2733 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2734 ev_set_priority (&sigfd_w, EV_MAXPRI);
2735 ev_io_start (EV_A_ &sigfd_w);
2736 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2737 }
2003 } 2738 }
2739
2740 if (sigfd >= 0)
2741 {
2742 /* TODO: check .head */
2743 sigaddset (&sigfd_set, w->signum);
2744 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2745
2746 signalfd (sigfd, &sigfd_set, 0);
2747 }
2748#endif
2004 2749
2005 ev_start (EV_A_ (W)w, 1); 2750 ev_start (EV_A_ (W)w, 1);
2006 wlist_add (&signals [w->signum - 1].head, (WL)w); 2751 wlist_add (&signals [w->signum - 1].head, (WL)w);
2007 2752
2008 if (!((WL)w)->next) 2753 if (!((WL)w)->next)
2754# if EV_USE_SIGNALFD
2755 if (sigfd < 0) /*TODO*/
2756# endif
2009 { 2757 {
2010#if _WIN32 2758# ifdef _WIN32
2759 evpipe_init (EV_A);
2760
2011 signal (w->signum, ev_sighandler); 2761 signal (w->signum, ev_sighandler);
2012#else 2762# else
2013 struct sigaction sa; 2763 struct sigaction sa;
2764
2765 evpipe_init (EV_A);
2766
2014 sa.sa_handler = ev_sighandler; 2767 sa.sa_handler = ev_sighandler;
2015 sigfillset (&sa.sa_mask); 2768 sigfillset (&sa.sa_mask);
2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2769 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2017 sigaction (w->signum, &sa, 0); 2770 sigaction (w->signum, &sa, 0);
2771
2772 sigemptyset (&sa.sa_mask);
2773 sigaddset (&sa.sa_mask, w->signum);
2774 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2018#endif 2775#endif
2019 } 2776 }
2777
2778 EV_FREQUENT_CHECK;
2020} 2779}
2021 2780
2022void noinline 2781void noinline
2023ev_signal_stop (EV_P_ ev_signal *w) 2782ev_signal_stop (EV_P_ ev_signal *w)
2024{ 2783{
2025 clear_pending (EV_A_ (W)w); 2784 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2785 if (expect_false (!ev_is_active (w)))
2027 return; 2786 return;
2028 2787
2788 EV_FREQUENT_CHECK;
2789
2029 wlist_del (&signals [w->signum - 1].head, (WL)w); 2790 wlist_del (&signals [w->signum - 1].head, (WL)w);
2030 ev_stop (EV_A_ (W)w); 2791 ev_stop (EV_A_ (W)w);
2031 2792
2032 if (!signals [w->signum - 1].head) 2793 if (!signals [w->signum - 1].head)
2794 {
2795#if EV_MULTIPLICITY
2796 signals [w->signum - 1].loop = 0; /* unattach from signal */
2797#endif
2798#if EV_USE_SIGNALFD
2799 if (sigfd >= 0)
2800 {
2801 sigset_t ss;
2802
2803 sigemptyset (&ss);
2804 sigaddset (&ss, w->signum);
2805 sigdelset (&sigfd_set, w->signum);
2806
2807 signalfd (sigfd, &sigfd_set, 0);
2808 sigprocmask (SIG_UNBLOCK, &ss, 0);
2809 }
2810 else
2811#endif
2033 signal (w->signum, SIG_DFL); 2812 signal (w->signum, SIG_DFL);
2813 }
2814
2815 EV_FREQUENT_CHECK;
2034} 2816}
2035 2817
2036void 2818void
2037ev_child_start (EV_P_ ev_child *w) 2819ev_child_start (EV_P_ ev_child *w)
2038{ 2820{
2039#if EV_MULTIPLICITY 2821#if EV_MULTIPLICITY
2040 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2822 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2041#endif 2823#endif
2042 if (expect_false (ev_is_active (w))) 2824 if (expect_false (ev_is_active (w)))
2043 return; 2825 return;
2044 2826
2827 EV_FREQUENT_CHECK;
2828
2045 ev_start (EV_A_ (W)w, 1); 2829 ev_start (EV_A_ (W)w, 1);
2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2830 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2831
2832 EV_FREQUENT_CHECK;
2047} 2833}
2048 2834
2049void 2835void
2050ev_child_stop (EV_P_ ev_child *w) 2836ev_child_stop (EV_P_ ev_child *w)
2051{ 2837{
2052 clear_pending (EV_A_ (W)w); 2838 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2839 if (expect_false (!ev_is_active (w)))
2054 return; 2840 return;
2055 2841
2842 EV_FREQUENT_CHECK;
2843
2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2844 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2057 ev_stop (EV_A_ (W)w); 2845 ev_stop (EV_A_ (W)w);
2846
2847 EV_FREQUENT_CHECK;
2058} 2848}
2059 2849
2060#if EV_STAT_ENABLE 2850#if EV_STAT_ENABLE
2061 2851
2062# ifdef _WIN32 2852# ifdef _WIN32
2063# undef lstat 2853# undef lstat
2064# define lstat(a,b) _stati64 (a,b) 2854# define lstat(a,b) _stati64 (a,b)
2065# endif 2855# endif
2066 2856
2067#define DEF_STAT_INTERVAL 5.0074891 2857#define DEF_STAT_INTERVAL 5.0074891
2858#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2068#define MIN_STAT_INTERVAL 0.1074891 2859#define MIN_STAT_INTERVAL 0.1074891
2069 2860
2070static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2861static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2071 2862
2072#if EV_USE_INOTIFY 2863#if EV_USE_INOTIFY
2073# define EV_INOTIFY_BUFSIZE 8192 2864# define EV_INOTIFY_BUFSIZE 8192
2075static void noinline 2866static void noinline
2076infy_add (EV_P_ ev_stat *w) 2867infy_add (EV_P_ ev_stat *w)
2077{ 2868{
2078 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2869 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2079 2870
2080 if (w->wd < 0) 2871 if (w->wd >= 0)
2872 {
2873 struct statfs sfs;
2874
2875 /* now local changes will be tracked by inotify, but remote changes won't */
2876 /* unless the filesystem is known to be local, we therefore still poll */
2877 /* also do poll on <2.6.25, but with normal frequency */
2878
2879 if (!fs_2625)
2880 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2881 else if (!statfs (w->path, &sfs)
2882 && (sfs.f_type == 0x1373 /* devfs */
2883 || sfs.f_type == 0xEF53 /* ext2/3 */
2884 || sfs.f_type == 0x3153464a /* jfs */
2885 || sfs.f_type == 0x52654973 /* reiser3 */
2886 || sfs.f_type == 0x01021994 /* tempfs */
2887 || sfs.f_type == 0x58465342 /* xfs */))
2888 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2889 else
2890 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2081 { 2891 }
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2892 else
2893 {
2894 /* can't use inotify, continue to stat */
2895 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2083 2896
2084 /* monitor some parent directory for speedup hints */ 2897 /* if path is not there, monitor some parent directory for speedup hints */
2898 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2899 /* but an efficiency issue only */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2900 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 { 2901 {
2087 char path [4096]; 2902 char path [4096];
2088 strcpy (path, w->path); 2903 strcpy (path, w->path);
2089 2904
2092 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2907 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2093 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2908 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2094 2909
2095 char *pend = strrchr (path, '/'); 2910 char *pend = strrchr (path, '/');
2096 2911
2097 if (!pend) 2912 if (!pend || pend == path)
2098 break; /* whoops, no '/', complain to your admin */ 2913 break;
2099 2914
2100 *pend = 0; 2915 *pend = 0;
2101 w->wd = inotify_add_watch (fs_fd, path, mask); 2916 w->wd = inotify_add_watch (fs_fd, path, mask);
2102 } 2917 }
2103 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2918 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2104 } 2919 }
2105 } 2920 }
2106 else
2107 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2108 2921
2109 if (w->wd >= 0) 2922 if (w->wd >= 0)
2110 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2923 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2924
2925 /* now re-arm timer, if required */
2926 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2927 ev_timer_again (EV_A_ &w->timer);
2928 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2111} 2929}
2112 2930
2113static void noinline 2931static void noinline
2114infy_del (EV_P_ ev_stat *w) 2932infy_del (EV_P_ ev_stat *w)
2115{ 2933{
2129 2947
2130static void noinline 2948static void noinline
2131infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2949infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2132{ 2950{
2133 if (slot < 0) 2951 if (slot < 0)
2134 /* overflow, need to check for all hahs slots */ 2952 /* overflow, need to check for all hash slots */
2135 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2953 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2136 infy_wd (EV_A_ slot, wd, ev); 2954 infy_wd (EV_A_ slot, wd, ev);
2137 else 2955 else
2138 { 2956 {
2139 WL w_; 2957 WL w_;
2145 2963
2146 if (w->wd == wd || wd == -1) 2964 if (w->wd == wd || wd == -1)
2147 { 2965 {
2148 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2966 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2149 { 2967 {
2968 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2150 w->wd = -1; 2969 w->wd = -1;
2151 infy_add (EV_A_ w); /* re-add, no matter what */ 2970 infy_add (EV_A_ w); /* re-add, no matter what */
2152 } 2971 }
2153 2972
2154 stat_timer_cb (EV_A_ &w->timer, 0); 2973 stat_timer_cb (EV_A_ &w->timer, 0);
2167 2986
2168 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2987 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2169 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2988 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2170} 2989}
2171 2990
2172void inline_size 2991inline_size void
2992check_2625 (EV_P)
2993{
2994 /* kernels < 2.6.25 are borked
2995 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2996 */
2997 struct utsname buf;
2998 int major, minor, micro;
2999
3000 if (uname (&buf))
3001 return;
3002
3003 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
3004 return;
3005
3006 if (major < 2
3007 || (major == 2 && minor < 6)
3008 || (major == 2 && minor == 6 && micro < 25))
3009 return;
3010
3011 fs_2625 = 1;
3012}
3013
3014inline_size int
3015infy_newfd (void)
3016{
3017#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3018 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3019 if (fd >= 0)
3020 return fd;
3021#endif
3022 return inotify_init ();
3023}
3024
3025inline_size void
2173infy_init (EV_P) 3026infy_init (EV_P)
2174{ 3027{
2175 if (fs_fd != -2) 3028 if (fs_fd != -2)
2176 return; 3029 return;
2177 3030
3031 fs_fd = -1;
3032
3033 check_2625 (EV_A);
3034
2178 fs_fd = inotify_init (); 3035 fs_fd = infy_newfd ();
2179 3036
2180 if (fs_fd >= 0) 3037 if (fs_fd >= 0)
2181 { 3038 {
3039 fd_intern (fs_fd);
2182 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3040 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2183 ev_set_priority (&fs_w, EV_MAXPRI); 3041 ev_set_priority (&fs_w, EV_MAXPRI);
2184 ev_io_start (EV_A_ &fs_w); 3042 ev_io_start (EV_A_ &fs_w);
3043 ev_unref (EV_A);
2185 } 3044 }
2186} 3045}
2187 3046
2188void inline_size 3047inline_size void
2189infy_fork (EV_P) 3048infy_fork (EV_P)
2190{ 3049{
2191 int slot; 3050 int slot;
2192 3051
2193 if (fs_fd < 0) 3052 if (fs_fd < 0)
2194 return; 3053 return;
2195 3054
3055 ev_ref (EV_A);
3056 ev_io_stop (EV_A_ &fs_w);
2196 close (fs_fd); 3057 close (fs_fd);
2197 fs_fd = inotify_init (); 3058 fs_fd = infy_newfd ();
3059
3060 if (fs_fd >= 0)
3061 {
3062 fd_intern (fs_fd);
3063 ev_io_set (&fs_w, fs_fd, EV_READ);
3064 ev_io_start (EV_A_ &fs_w);
3065 ev_unref (EV_A);
3066 }
2198 3067
2199 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3068 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2200 { 3069 {
2201 WL w_ = fs_hash [slot].head; 3070 WL w_ = fs_hash [slot].head;
2202 fs_hash [slot].head = 0; 3071 fs_hash [slot].head = 0;
2209 w->wd = -1; 3078 w->wd = -1;
2210 3079
2211 if (fs_fd >= 0) 3080 if (fs_fd >= 0)
2212 infy_add (EV_A_ w); /* re-add, no matter what */ 3081 infy_add (EV_A_ w); /* re-add, no matter what */
2213 else 3082 else
3083 {
3084 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3085 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2214 ev_timer_start (EV_A_ &w->timer); 3086 ev_timer_again (EV_A_ &w->timer);
3087 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3088 }
2215 } 3089 }
2216
2217 } 3090 }
2218} 3091}
2219 3092
3093#endif
3094
3095#ifdef _WIN32
3096# define EV_LSTAT(p,b) _stati64 (p, b)
3097#else
3098# define EV_LSTAT(p,b) lstat (p, b)
2220#endif 3099#endif
2221 3100
2222void 3101void
2223ev_stat_stat (EV_P_ ev_stat *w) 3102ev_stat_stat (EV_P_ ev_stat *w)
2224{ 3103{
2231static void noinline 3110static void noinline
2232stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3111stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2233{ 3112{
2234 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3113 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2235 3114
2236 /* we copy this here each the time so that */ 3115 ev_statdata prev = w->attr;
2237 /* prev has the old value when the callback gets invoked */
2238 w->prev = w->attr;
2239 ev_stat_stat (EV_A_ w); 3116 ev_stat_stat (EV_A_ w);
2240 3117
2241 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3118 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2242 if ( 3119 if (
2243 w->prev.st_dev != w->attr.st_dev 3120 prev.st_dev != w->attr.st_dev
2244 || w->prev.st_ino != w->attr.st_ino 3121 || prev.st_ino != w->attr.st_ino
2245 || w->prev.st_mode != w->attr.st_mode 3122 || prev.st_mode != w->attr.st_mode
2246 || w->prev.st_nlink != w->attr.st_nlink 3123 || prev.st_nlink != w->attr.st_nlink
2247 || w->prev.st_uid != w->attr.st_uid 3124 || prev.st_uid != w->attr.st_uid
2248 || w->prev.st_gid != w->attr.st_gid 3125 || prev.st_gid != w->attr.st_gid
2249 || w->prev.st_rdev != w->attr.st_rdev 3126 || prev.st_rdev != w->attr.st_rdev
2250 || w->prev.st_size != w->attr.st_size 3127 || prev.st_size != w->attr.st_size
2251 || w->prev.st_atime != w->attr.st_atime 3128 || prev.st_atime != w->attr.st_atime
2252 || w->prev.st_mtime != w->attr.st_mtime 3129 || prev.st_mtime != w->attr.st_mtime
2253 || w->prev.st_ctime != w->attr.st_ctime 3130 || prev.st_ctime != w->attr.st_ctime
2254 ) { 3131 ) {
3132 /* we only update w->prev on actual differences */
3133 /* in case we test more often than invoke the callback, */
3134 /* to ensure that prev is always different to attr */
3135 w->prev = prev;
3136
2255 #if EV_USE_INOTIFY 3137 #if EV_USE_INOTIFY
3138 if (fs_fd >= 0)
3139 {
2256 infy_del (EV_A_ w); 3140 infy_del (EV_A_ w);
2257 infy_add (EV_A_ w); 3141 infy_add (EV_A_ w);
2258 ev_stat_stat (EV_A_ w); /* avoid race... */ 3142 ev_stat_stat (EV_A_ w); /* avoid race... */
3143 }
2259 #endif 3144 #endif
2260 3145
2261 ev_feed_event (EV_A_ w, EV_STAT); 3146 ev_feed_event (EV_A_ w, EV_STAT);
2262 } 3147 }
2263} 3148}
2266ev_stat_start (EV_P_ ev_stat *w) 3151ev_stat_start (EV_P_ ev_stat *w)
2267{ 3152{
2268 if (expect_false (ev_is_active (w))) 3153 if (expect_false (ev_is_active (w)))
2269 return; 3154 return;
2270 3155
2271 /* since we use memcmp, we need to clear any padding data etc. */
2272 memset (&w->prev, 0, sizeof (ev_statdata));
2273 memset (&w->attr, 0, sizeof (ev_statdata));
2274
2275 ev_stat_stat (EV_A_ w); 3156 ev_stat_stat (EV_A_ w);
2276 3157
3158 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2277 if (w->interval < MIN_STAT_INTERVAL) 3159 w->interval = MIN_STAT_INTERVAL;
2278 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2279 3160
2280 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3161 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2281 ev_set_priority (&w->timer, ev_priority (w)); 3162 ev_set_priority (&w->timer, ev_priority (w));
2282 3163
2283#if EV_USE_INOTIFY 3164#if EV_USE_INOTIFY
2284 infy_init (EV_A); 3165 infy_init (EV_A);
2285 3166
2286 if (fs_fd >= 0) 3167 if (fs_fd >= 0)
2287 infy_add (EV_A_ w); 3168 infy_add (EV_A_ w);
2288 else 3169 else
2289#endif 3170#endif
3171 {
2290 ev_timer_start (EV_A_ &w->timer); 3172 ev_timer_again (EV_A_ &w->timer);
3173 ev_unref (EV_A);
3174 }
2291 3175
2292 ev_start (EV_A_ (W)w, 1); 3176 ev_start (EV_A_ (W)w, 1);
3177
3178 EV_FREQUENT_CHECK;
2293} 3179}
2294 3180
2295void 3181void
2296ev_stat_stop (EV_P_ ev_stat *w) 3182ev_stat_stop (EV_P_ ev_stat *w)
2297{ 3183{
2298 clear_pending (EV_A_ (W)w); 3184 clear_pending (EV_A_ (W)w);
2299 if (expect_false (!ev_is_active (w))) 3185 if (expect_false (!ev_is_active (w)))
2300 return; 3186 return;
2301 3187
3188 EV_FREQUENT_CHECK;
3189
2302#if EV_USE_INOTIFY 3190#if EV_USE_INOTIFY
2303 infy_del (EV_A_ w); 3191 infy_del (EV_A_ w);
2304#endif 3192#endif
3193
3194 if (ev_is_active (&w->timer))
3195 {
3196 ev_ref (EV_A);
2305 ev_timer_stop (EV_A_ &w->timer); 3197 ev_timer_stop (EV_A_ &w->timer);
3198 }
2306 3199
2307 ev_stop (EV_A_ (W)w); 3200 ev_stop (EV_A_ (W)w);
3201
3202 EV_FREQUENT_CHECK;
2308} 3203}
2309#endif 3204#endif
2310 3205
2311#if EV_IDLE_ENABLE 3206#if EV_IDLE_ENABLE
2312void 3207void
2314{ 3209{
2315 if (expect_false (ev_is_active (w))) 3210 if (expect_false (ev_is_active (w)))
2316 return; 3211 return;
2317 3212
2318 pri_adjust (EV_A_ (W)w); 3213 pri_adjust (EV_A_ (W)w);
3214
3215 EV_FREQUENT_CHECK;
2319 3216
2320 { 3217 {
2321 int active = ++idlecnt [ABSPRI (w)]; 3218 int active = ++idlecnt [ABSPRI (w)];
2322 3219
2323 ++idleall; 3220 ++idleall;
2324 ev_start (EV_A_ (W)w, active); 3221 ev_start (EV_A_ (W)w, active);
2325 3222
2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3223 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2327 idles [ABSPRI (w)][active - 1] = w; 3224 idles [ABSPRI (w)][active - 1] = w;
2328 } 3225 }
3226
3227 EV_FREQUENT_CHECK;
2329} 3228}
2330 3229
2331void 3230void
2332ev_idle_stop (EV_P_ ev_idle *w) 3231ev_idle_stop (EV_P_ ev_idle *w)
2333{ 3232{
2334 clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
2336 return; 3235 return;
2337 3236
3237 EV_FREQUENT_CHECK;
3238
2338 { 3239 {
2339 int active = ((W)w)->active; 3240 int active = ev_active (w);
2340 3241
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3242 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3243 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2343 3244
2344 ev_stop (EV_A_ (W)w); 3245 ev_stop (EV_A_ (W)w);
2345 --idleall; 3246 --idleall;
2346 } 3247 }
3248
3249 EV_FREQUENT_CHECK;
2347} 3250}
2348#endif 3251#endif
2349 3252
2350void 3253void
2351ev_prepare_start (EV_P_ ev_prepare *w) 3254ev_prepare_start (EV_P_ ev_prepare *w)
2352{ 3255{
2353 if (expect_false (ev_is_active (w))) 3256 if (expect_false (ev_is_active (w)))
2354 return; 3257 return;
3258
3259 EV_FREQUENT_CHECK;
2355 3260
2356 ev_start (EV_A_ (W)w, ++preparecnt); 3261 ev_start (EV_A_ (W)w, ++preparecnt);
2357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3262 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2358 prepares [preparecnt - 1] = w; 3263 prepares [preparecnt - 1] = w;
3264
3265 EV_FREQUENT_CHECK;
2359} 3266}
2360 3267
2361void 3268void
2362ev_prepare_stop (EV_P_ ev_prepare *w) 3269ev_prepare_stop (EV_P_ ev_prepare *w)
2363{ 3270{
2364 clear_pending (EV_A_ (W)w); 3271 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 3272 if (expect_false (!ev_is_active (w)))
2366 return; 3273 return;
2367 3274
3275 EV_FREQUENT_CHECK;
3276
2368 { 3277 {
2369 int active = ((W)w)->active; 3278 int active = ev_active (w);
3279
2370 prepares [active - 1] = prepares [--preparecnt]; 3280 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active; 3281 ev_active (prepares [active - 1]) = active;
2372 } 3282 }
2373 3283
2374 ev_stop (EV_A_ (W)w); 3284 ev_stop (EV_A_ (W)w);
3285
3286 EV_FREQUENT_CHECK;
2375} 3287}
2376 3288
2377void 3289void
2378ev_check_start (EV_P_ ev_check *w) 3290ev_check_start (EV_P_ ev_check *w)
2379{ 3291{
2380 if (expect_false (ev_is_active (w))) 3292 if (expect_false (ev_is_active (w)))
2381 return; 3293 return;
3294
3295 EV_FREQUENT_CHECK;
2382 3296
2383 ev_start (EV_A_ (W)w, ++checkcnt); 3297 ev_start (EV_A_ (W)w, ++checkcnt);
2384 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3298 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2385 checks [checkcnt - 1] = w; 3299 checks [checkcnt - 1] = w;
3300
3301 EV_FREQUENT_CHECK;
2386} 3302}
2387 3303
2388void 3304void
2389ev_check_stop (EV_P_ ev_check *w) 3305ev_check_stop (EV_P_ ev_check *w)
2390{ 3306{
2391 clear_pending (EV_A_ (W)w); 3307 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w))) 3308 if (expect_false (!ev_is_active (w)))
2393 return; 3309 return;
2394 3310
3311 EV_FREQUENT_CHECK;
3312
2395 { 3313 {
2396 int active = ((W)w)->active; 3314 int active = ev_active (w);
3315
2397 checks [active - 1] = checks [--checkcnt]; 3316 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active; 3317 ev_active (checks [active - 1]) = active;
2399 } 3318 }
2400 3319
2401 ev_stop (EV_A_ (W)w); 3320 ev_stop (EV_A_ (W)w);
3321
3322 EV_FREQUENT_CHECK;
2402} 3323}
2403 3324
2404#if EV_EMBED_ENABLE 3325#if EV_EMBED_ENABLE
2405void noinline 3326void noinline
2406ev_embed_sweep (EV_P_ ev_embed *w) 3327ev_embed_sweep (EV_P_ ev_embed *w)
2423embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3344embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2424{ 3345{
2425 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3346 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2426 3347
2427 { 3348 {
2428 struct ev_loop *loop = w->other; 3349 EV_P = w->other;
2429 3350
2430 while (fdchangecnt) 3351 while (fdchangecnt)
2431 { 3352 {
2432 fd_reify (EV_A); 3353 fd_reify (EV_A);
2433 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3354 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2434 } 3355 }
2435 } 3356 }
2436} 3357}
2437 3358
3359static void
3360embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3361{
3362 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3363
3364 ev_embed_stop (EV_A_ w);
3365
3366 {
3367 EV_P = w->other;
3368
3369 ev_loop_fork (EV_A);
3370 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3371 }
3372
3373 ev_embed_start (EV_A_ w);
3374}
3375
2438#if 0 3376#if 0
2439static void 3377static void
2440embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3378embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2441{ 3379{
2442 ev_idle_stop (EV_A_ idle); 3380 ev_idle_stop (EV_A_ idle);
2448{ 3386{
2449 if (expect_false (ev_is_active (w))) 3387 if (expect_false (ev_is_active (w)))
2450 return; 3388 return;
2451 3389
2452 { 3390 {
2453 struct ev_loop *loop = w->other; 3391 EV_P = w->other;
2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3392 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3393 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2456 } 3394 }
3395
3396 EV_FREQUENT_CHECK;
2457 3397
2458 ev_set_priority (&w->io, ev_priority (w)); 3398 ev_set_priority (&w->io, ev_priority (w));
2459 ev_io_start (EV_A_ &w->io); 3399 ev_io_start (EV_A_ &w->io);
2460 3400
2461 ev_prepare_init (&w->prepare, embed_prepare_cb); 3401 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI); 3402 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare); 3403 ev_prepare_start (EV_A_ &w->prepare);
2464 3404
3405 ev_fork_init (&w->fork, embed_fork_cb);
3406 ev_fork_start (EV_A_ &w->fork);
3407
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3408 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466 3409
2467 ev_start (EV_A_ (W)w, 1); 3410 ev_start (EV_A_ (W)w, 1);
3411
3412 EV_FREQUENT_CHECK;
2468} 3413}
2469 3414
2470void 3415void
2471ev_embed_stop (EV_P_ ev_embed *w) 3416ev_embed_stop (EV_P_ ev_embed *w)
2472{ 3417{
2473 clear_pending (EV_A_ (W)w); 3418 clear_pending (EV_A_ (W)w);
2474 if (expect_false (!ev_is_active (w))) 3419 if (expect_false (!ev_is_active (w)))
2475 return; 3420 return;
2476 3421
3422 EV_FREQUENT_CHECK;
3423
2477 ev_io_stop (EV_A_ &w->io); 3424 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare); 3425 ev_prepare_stop (EV_A_ &w->prepare);
3426 ev_fork_stop (EV_A_ &w->fork);
2479 3427
2480 ev_stop (EV_A_ (W)w); 3428 EV_FREQUENT_CHECK;
2481} 3429}
2482#endif 3430#endif
2483 3431
2484#if EV_FORK_ENABLE 3432#if EV_FORK_ENABLE
2485void 3433void
2486ev_fork_start (EV_P_ ev_fork *w) 3434ev_fork_start (EV_P_ ev_fork *w)
2487{ 3435{
2488 if (expect_false (ev_is_active (w))) 3436 if (expect_false (ev_is_active (w)))
2489 return; 3437 return;
3438
3439 EV_FREQUENT_CHECK;
2490 3440
2491 ev_start (EV_A_ (W)w, ++forkcnt); 3441 ev_start (EV_A_ (W)w, ++forkcnt);
2492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3442 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2493 forks [forkcnt - 1] = w; 3443 forks [forkcnt - 1] = w;
3444
3445 EV_FREQUENT_CHECK;
2494} 3446}
2495 3447
2496void 3448void
2497ev_fork_stop (EV_P_ ev_fork *w) 3449ev_fork_stop (EV_P_ ev_fork *w)
2498{ 3450{
2499 clear_pending (EV_A_ (W)w); 3451 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 3452 if (expect_false (!ev_is_active (w)))
2501 return; 3453 return;
2502 3454
3455 EV_FREQUENT_CHECK;
3456
2503 { 3457 {
2504 int active = ((W)w)->active; 3458 int active = ev_active (w);
3459
2505 forks [active - 1] = forks [--forkcnt]; 3460 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active; 3461 ev_active (forks [active - 1]) = active;
2507 } 3462 }
2508 3463
2509 ev_stop (EV_A_ (W)w); 3464 ev_stop (EV_A_ (W)w);
3465
3466 EV_FREQUENT_CHECK;
2510} 3467}
2511#endif 3468#endif
2512 3469
2513#if EV_ASYNC_ENABLE 3470#if EV_ASYNC_ENABLE
2514void 3471void
2516{ 3473{
2517 if (expect_false (ev_is_active (w))) 3474 if (expect_false (ev_is_active (w)))
2518 return; 3475 return;
2519 3476
2520 evpipe_init (EV_A); 3477 evpipe_init (EV_A);
3478
3479 EV_FREQUENT_CHECK;
2521 3480
2522 ev_start (EV_A_ (W)w, ++asynccnt); 3481 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3482 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w; 3483 asyncs [asynccnt - 1] = w;
3484
3485 EV_FREQUENT_CHECK;
2525} 3486}
2526 3487
2527void 3488void
2528ev_async_stop (EV_P_ ev_async *w) 3489ev_async_stop (EV_P_ ev_async *w)
2529{ 3490{
2530 clear_pending (EV_A_ (W)w); 3491 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w))) 3492 if (expect_false (!ev_is_active (w)))
2532 return; 3493 return;
2533 3494
3495 EV_FREQUENT_CHECK;
3496
2534 { 3497 {
2535 int active = ((W)w)->active; 3498 int active = ev_active (w);
3499
2536 asyncs [active - 1] = asyncs [--asynccnt]; 3500 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active; 3501 ev_active (asyncs [active - 1]) = active;
2538 } 3502 }
2539 3503
2540 ev_stop (EV_A_ (W)w); 3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
2541} 3507}
2542 3508
2543void 3509void
2544ev_async_send (EV_P_ ev_async *w) 3510ev_async_send (EV_P_ ev_async *w)
2545{ 3511{
2546 w->sent = 1; 3512 w->sent = 1;
2547 evpipe_write (EV_A_ &gotasync); 3513 evpipe_write (EV_A_ &async_pending);
2548} 3514}
2549#endif 3515#endif
2550 3516
2551/*****************************************************************************/ 3517/*****************************************************************************/
2552 3518
2562once_cb (EV_P_ struct ev_once *once, int revents) 3528once_cb (EV_P_ struct ev_once *once, int revents)
2563{ 3529{
2564 void (*cb)(int revents, void *arg) = once->cb; 3530 void (*cb)(int revents, void *arg) = once->cb;
2565 void *arg = once->arg; 3531 void *arg = once->arg;
2566 3532
2567 ev_io_stop (EV_A_ &once->io); 3533 ev_io_stop (EV_A_ &once->io);
2568 ev_timer_stop (EV_A_ &once->to); 3534 ev_timer_stop (EV_A_ &once->to);
2569 ev_free (once); 3535 ev_free (once);
2570 3536
2571 cb (revents, arg); 3537 cb (revents, arg);
2572} 3538}
2573 3539
2574static void 3540static void
2575once_cb_io (EV_P_ ev_io *w, int revents) 3541once_cb_io (EV_P_ ev_io *w, int revents)
2576{ 3542{
2577 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3543 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3544
3545 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2578} 3546}
2579 3547
2580static void 3548static void
2581once_cb_to (EV_P_ ev_timer *w, int revents) 3549once_cb_to (EV_P_ ev_timer *w, int revents)
2582{ 3550{
2583 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3551 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3552
3553 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2584} 3554}
2585 3555
2586void 3556void
2587ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3557ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2588{ 3558{
2610 ev_timer_set (&once->to, timeout, 0.); 3580 ev_timer_set (&once->to, timeout, 0.);
2611 ev_timer_start (EV_A_ &once->to); 3581 ev_timer_start (EV_A_ &once->to);
2612 } 3582 }
2613} 3583}
2614 3584
3585/*****************************************************************************/
3586
3587#if EV_WALK_ENABLE
3588void
3589ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3590{
3591 int i, j;
3592 ev_watcher_list *wl, *wn;
3593
3594 if (types & (EV_IO | EV_EMBED))
3595 for (i = 0; i < anfdmax; ++i)
3596 for (wl = anfds [i].head; wl; )
3597 {
3598 wn = wl->next;
3599
3600#if EV_EMBED_ENABLE
3601 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3602 {
3603 if (types & EV_EMBED)
3604 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3605 }
3606 else
3607#endif
3608#if EV_USE_INOTIFY
3609 if (ev_cb ((ev_io *)wl) == infy_cb)
3610 ;
3611 else
3612#endif
3613 if ((ev_io *)wl != &pipe_w)
3614 if (types & EV_IO)
3615 cb (EV_A_ EV_IO, wl);
3616
3617 wl = wn;
3618 }
3619
3620 if (types & (EV_TIMER | EV_STAT))
3621 for (i = timercnt + HEAP0; i-- > HEAP0; )
3622#if EV_STAT_ENABLE
3623 /*TODO: timer is not always active*/
3624 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3625 {
3626 if (types & EV_STAT)
3627 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3628 }
3629 else
3630#endif
3631 if (types & EV_TIMER)
3632 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3633
3634#if EV_PERIODIC_ENABLE
3635 if (types & EV_PERIODIC)
3636 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3637 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3638#endif
3639
3640#if EV_IDLE_ENABLE
3641 if (types & EV_IDLE)
3642 for (j = NUMPRI; i--; )
3643 for (i = idlecnt [j]; i--; )
3644 cb (EV_A_ EV_IDLE, idles [j][i]);
3645#endif
3646
3647#if EV_FORK_ENABLE
3648 if (types & EV_FORK)
3649 for (i = forkcnt; i--; )
3650 if (ev_cb (forks [i]) != embed_fork_cb)
3651 cb (EV_A_ EV_FORK, forks [i]);
3652#endif
3653
3654#if EV_ASYNC_ENABLE
3655 if (types & EV_ASYNC)
3656 for (i = asynccnt; i--; )
3657 cb (EV_A_ EV_ASYNC, asyncs [i]);
3658#endif
3659
3660 if (types & EV_PREPARE)
3661 for (i = preparecnt; i--; )
3662#if EV_EMBED_ENABLE
3663 if (ev_cb (prepares [i]) != embed_prepare_cb)
3664#endif
3665 cb (EV_A_ EV_PREPARE, prepares [i]);
3666
3667 if (types & EV_CHECK)
3668 for (i = checkcnt; i--; )
3669 cb (EV_A_ EV_CHECK, checks [i]);
3670
3671 if (types & EV_SIGNAL)
3672 for (i = 0; i < EV_NSIG - 1; ++i)
3673 for (wl = signals [i].head; wl; )
3674 {
3675 wn = wl->next;
3676 cb (EV_A_ EV_SIGNAL, wl);
3677 wl = wn;
3678 }
3679
3680 if (types & EV_CHILD)
3681 for (i = EV_PID_HASHSIZE; i--; )
3682 for (wl = childs [i]; wl; )
3683 {
3684 wn = wl->next;
3685 cb (EV_A_ EV_CHILD, wl);
3686 wl = wn;
3687 }
3688/* EV_STAT 0x00001000 /* stat data changed */
3689/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3690}
3691#endif
3692
2615#if EV_MULTIPLICITY 3693#if EV_MULTIPLICITY
2616 #include "ev_wrap.h" 3694 #include "ev_wrap.h"
2617#endif 3695#endif
2618 3696
2619#ifdef __cplusplus 3697#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines