ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC vs.
Revision 1.372 by root, Wed Feb 16 08:02:50 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
130# endif 148# endif
131 149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
158#else 189#else
190# include <io.h>
159# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 192# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
163# endif 195# endif
196# undef EV_AVOID_STDIO
164#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
165 206
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
167 208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
168#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
169# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
170#endif 251#endif
171 252
172#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 255#endif
175 256
176#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
177# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
178#endif 263#endif
179 264
180#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 267#endif
183 268
184#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
185# ifdef _WIN32 270# ifdef _WIN32
186# define EV_USE_POLL 0 271# define EV_USE_POLL 0
187# else 272# else
188# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 274# endif
190#endif 275#endif
191 276
192#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 280# else
196# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
197# endif 282# endif
198#endif 283#endif
199 284
205# define EV_USE_PORT 0 290# define EV_USE_PORT 0
206#endif 291#endif
207 292
208#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 296# else
212# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
213# endif 298# endif
214#endif 299#endif
215 300
216#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 303#endif
223 304
224#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 307#endif
231 308
232#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 312# else
236# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
237# endif 314# endif
238#endif 315#endif
239 316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
241 364
242#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
245#endif 368#endif
253# undef EV_USE_INOTIFY 376# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 377# define EV_USE_INOTIFY 0
255#endif 378#endif
256 379
257#if !EV_USE_NANOSLEEP 380#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 381/* hp-ux has it in sys/time.h, which we unconditionally include above */
382# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 383# include <sys/select.h>
260# endif 384# endif
261#endif 385#endif
262 386
263#if EV_USE_INOTIFY 387#if EV_USE_INOTIFY
388# include <sys/statfs.h>
264# include <sys/inotify.h> 389# include <sys/inotify.h>
390/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
391# ifndef IN_DONT_FOLLOW
392# undef EV_USE_INOTIFY
393# define EV_USE_INOTIFY 0
394# endif
265#endif 395#endif
266 396
267#if EV_SELECT_IS_WINSOCKET 397#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 398# include <winsock.h>
269#endif 399#endif
270 400
271#if EV_USE_EVENTFD 401#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
403# include <stdint.h>
404# ifndef EFD_NONBLOCK
405# define EFD_NONBLOCK O_NONBLOCK
406# endif
407# ifndef EFD_CLOEXEC
408# ifdef O_CLOEXEC
409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
413# endif
273int eventfd (unsigned int initval, int flags); 414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
274#endif 437#endif
275 438
276/**/ 439/**/
440
441#if EV_VERIFY >= 3
442# define EV_FREQUENT_CHECK ev_verify (EV_A)
443#else
444# define EV_FREQUENT_CHECK do { } while (0)
445#endif
277 446
278/* 447/*
279 * This is used to avoid floating point rounding problems. 448 * This is used to avoid floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics 449 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding 450 * to ensure progress, time-wise, even when rounding
285 */ 454 */
286#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
287 456
288#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
289#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
290/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 459
460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
291 462
292#if __GNUC__ >= 4 463#if __GNUC__ >= 4
293# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
294# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
295#else 466#else
296# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
297# define noinline 468# define noinline
298# if __STDC_VERSION__ < 199901L 469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
299# define inline 470# define inline
300# endif 471# endif
301#endif 472#endif
302 473
303#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
304#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
305#define inline_size static inline 476#define inline_size static inline
306 477
307#if EV_MINIMAL 478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
308# define inline_speed static noinline 481# define inline_speed static noinline
482#endif
483
484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
309#else 488#else
310# define inline_speed static inline
311#endif
312
313#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
314#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
315 491
316#define EMPTY /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
317#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
318 494
319typedef ev_watcher *W; 495typedef ev_watcher *W;
320typedef ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
321typedef ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
322 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architectures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
323#if EV_USE_MONOTONIC 508#if EV_USE_MONOTONIC
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */
326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
327#endif 520#endif
328 521
329#ifdef _WIN32 522#ifdef _WIN32
330# include "ev_win32.c" 523# include "ev_win32.c"
331#endif 524#endif
332 525
333/*****************************************************************************/ 526/*****************************************************************************/
334 527
528#ifdef __linux
529# include <sys/utsname.h>
530#endif
531
532static unsigned int noinline
533ev_linux_version (void)
534{
535#ifdef __linux
536 unsigned int v = 0;
537 struct utsname buf;
538 int i;
539 char *p = buf.release;
540
541 if (uname (&buf))
542 return 0;
543
544 for (i = 3+1; --i; )
545 {
546 unsigned int c = 0;
547
548 for (;;)
549 {
550 if (*p >= '0' && *p <= '9')
551 c = c * 10 + *p++ - '0';
552 else
553 {
554 p += *p == '.';
555 break;
556 }
557 }
558
559 v = (v << 8) | c;
560 }
561
562 return v;
563#else
564 return 0;
565#endif
566}
567
568/*****************************************************************************/
569
570#if EV_AVOID_STDIO
571static void noinline
572ev_printerr (const char *msg)
573{
574 write (STDERR_FILENO, msg, strlen (msg));
575}
576#endif
577
335static void (*syserr_cb)(const char *msg); 578static void (*syserr_cb)(const char *msg);
336 579
337void 580void
338ev_set_syserr_cb (void (*cb)(const char *msg)) 581ev_set_syserr_cb (void (*cb)(const char *msg))
339{ 582{
340 syserr_cb = cb; 583 syserr_cb = cb;
341} 584}
342 585
343static void noinline 586static void noinline
344syserr (const char *msg) 587ev_syserr (const char *msg)
345{ 588{
346 if (!msg) 589 if (!msg)
347 msg = "(libev) system error"; 590 msg = "(libev) system error";
348 591
349 if (syserr_cb) 592 if (syserr_cb)
350 syserr_cb (msg); 593 syserr_cb (msg);
351 else 594 else
352 { 595 {
596#if EV_AVOID_STDIO
597 ev_printerr (msg);
598 ev_printerr (": ");
599 ev_printerr (strerror (errno));
600 ev_printerr ("\n");
601#else
353 perror (msg); 602 perror (msg);
603#endif
354 abort (); 604 abort ();
355 } 605 }
356} 606}
357 607
608static void *
609ev_realloc_emul (void *ptr, long size)
610{
611#if __GLIBC__
612 return realloc (ptr, size);
613#else
614 /* some systems, notably openbsd and darwin, fail to properly
615 * implement realloc (x, 0) (as required by both ansi c-89 and
616 * the single unix specification, so work around them here.
617 */
618
619 if (size)
620 return realloc (ptr, size);
621
622 free (ptr);
623 return 0;
624#endif
625}
626
358static void *(*alloc)(void *ptr, long size); 627static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
359 628
360void 629void
361ev_set_allocator (void *(*cb)(void *ptr, long size)) 630ev_set_allocator (void *(*cb)(void *ptr, long size))
362{ 631{
363 alloc = cb; 632 alloc = cb;
364} 633}
365 634
366inline_speed void * 635inline_speed void *
367ev_realloc (void *ptr, long size) 636ev_realloc (void *ptr, long size)
368{ 637{
369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 638 ptr = alloc (ptr, size);
370 639
371 if (!ptr && size) 640 if (!ptr && size)
372 { 641 {
642#if EV_AVOID_STDIO
643 ev_printerr ("(libev) memory allocation failed, aborting.\n");
644#else
373 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 645 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
646#endif
374 abort (); 647 abort ();
375 } 648 }
376 649
377 return ptr; 650 return ptr;
378} 651}
380#define ev_malloc(size) ev_realloc (0, (size)) 653#define ev_malloc(size) ev_realloc (0, (size))
381#define ev_free(ptr) ev_realloc ((ptr), 0) 654#define ev_free(ptr) ev_realloc ((ptr), 0)
382 655
383/*****************************************************************************/ 656/*****************************************************************************/
384 657
658/* set in reify when reification needed */
659#define EV_ANFD_REIFY 1
660
661/* file descriptor info structure */
385typedef struct 662typedef struct
386{ 663{
387 WL head; 664 WL head;
388 unsigned char events; 665 unsigned char events; /* the events watched for */
666 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
667 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
389 unsigned char reify; 668 unsigned char unused;
669#if EV_USE_EPOLL
670 unsigned int egen; /* generation counter to counter epoll bugs */
671#endif
390#if EV_SELECT_IS_WINSOCKET 672#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
391 SOCKET handle; 673 SOCKET handle;
392#endif 674#endif
675#if EV_USE_IOCP
676 OVERLAPPED or, ow;
677#endif
393} ANFD; 678} ANFD;
394 679
680/* stores the pending event set for a given watcher */
395typedef struct 681typedef struct
396{ 682{
397 W w; 683 W w;
398 int events; 684 int events; /* the pending event set for the given watcher */
399} ANPENDING; 685} ANPENDING;
400 686
401#if EV_USE_INOTIFY 687#if EV_USE_INOTIFY
688/* hash table entry per inotify-id */
402typedef struct 689typedef struct
403{ 690{
404 WL head; 691 WL head;
405} ANFS; 692} ANFS;
693#endif
694
695/* Heap Entry */
696#if EV_HEAP_CACHE_AT
697 /* a heap element */
698 typedef struct {
699 ev_tstamp at;
700 WT w;
701 } ANHE;
702
703 #define ANHE_w(he) (he).w /* access watcher, read-write */
704 #define ANHE_at(he) (he).at /* access cached at, read-only */
705 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
706#else
707 /* a heap element */
708 typedef WT ANHE;
709
710 #define ANHE_w(he) (he)
711 #define ANHE_at(he) (he)->at
712 #define ANHE_at_cache(he)
406#endif 713#endif
407 714
408#if EV_MULTIPLICITY 715#if EV_MULTIPLICITY
409 716
410 struct ev_loop 717 struct ev_loop
429 736
430 static int ev_default_loop_ptr; 737 static int ev_default_loop_ptr;
431 738
432#endif 739#endif
433 740
741#if EV_FEATURE_API
742# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
743# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
744# define EV_INVOKE_PENDING invoke_cb (EV_A)
745#else
746# define EV_RELEASE_CB (void)0
747# define EV_ACQUIRE_CB (void)0
748# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
749#endif
750
751#define EVBREAK_RECURSE 0x80
752
434/*****************************************************************************/ 753/*****************************************************************************/
435 754
755#ifndef EV_HAVE_EV_TIME
436ev_tstamp 756ev_tstamp
437ev_time (void) 757ev_time (void)
438{ 758{
439#if EV_USE_REALTIME 759#if EV_USE_REALTIME
760 if (expect_true (have_realtime))
761 {
440 struct timespec ts; 762 struct timespec ts;
441 clock_gettime (CLOCK_REALTIME, &ts); 763 clock_gettime (CLOCK_REALTIME, &ts);
442 return ts.tv_sec + ts.tv_nsec * 1e-9; 764 return ts.tv_sec + ts.tv_nsec * 1e-9;
443#else 765 }
766#endif
767
444 struct timeval tv; 768 struct timeval tv;
445 gettimeofday (&tv, 0); 769 gettimeofday (&tv, 0);
446 return tv.tv_sec + tv.tv_usec * 1e-6; 770 return tv.tv_sec + tv.tv_usec * 1e-6;
447#endif
448} 771}
772#endif
449 773
450ev_tstamp inline_size 774inline_size ev_tstamp
451get_clock (void) 775get_clock (void)
452{ 776{
453#if EV_USE_MONOTONIC 777#if EV_USE_MONOTONIC
454 if (expect_true (have_monotonic)) 778 if (expect_true (have_monotonic))
455 { 779 {
476 if (delay > 0.) 800 if (delay > 0.)
477 { 801 {
478#if EV_USE_NANOSLEEP 802#if EV_USE_NANOSLEEP
479 struct timespec ts; 803 struct timespec ts;
480 804
481 ts.tv_sec = (time_t)delay; 805 EV_TS_SET (ts, delay);
482 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
483
484 nanosleep (&ts, 0); 806 nanosleep (&ts, 0);
485#elif defined(_WIN32) 807#elif defined(_WIN32)
486 Sleep ((unsigned long)(delay * 1e3)); 808 Sleep ((unsigned long)(delay * 1e3));
487#else 809#else
488 struct timeval tv; 810 struct timeval tv;
489 811
490 tv.tv_sec = (time_t)delay; 812 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
491 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 813 /* something not guaranteed by newer posix versions, but guaranteed */
492 814 /* by older ones */
815 EV_TV_SET (tv, delay);
493 select (0, 0, 0, 0, &tv); 816 select (0, 0, 0, 0, &tv);
494#endif 817#endif
495 } 818 }
496} 819}
497 820
821inline_speed int
822ev_timeout_to_ms (ev_tstamp timeout)
823{
824 int ms = timeout * 1000. + .999999;
825
826 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
827}
828
498/*****************************************************************************/ 829/*****************************************************************************/
499 830
500int inline_size 831#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
832
833/* find a suitable new size for the given array, */
834/* hopefully by rounding to a nice-to-malloc size */
835inline_size int
501array_nextsize (int elem, int cur, int cnt) 836array_nextsize (int elem, int cur, int cnt)
502{ 837{
503 int ncur = cur + 1; 838 int ncur = cur + 1;
504 839
505 do 840 do
506 ncur <<= 1; 841 ncur <<= 1;
507 while (cnt > ncur); 842 while (cnt > ncur);
508 843
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 844 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096) 845 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
511 { 846 {
512 ncur *= elem; 847 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 848 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
514 ncur = ncur - sizeof (void *) * 4; 849 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem; 850 ncur /= elem;
516 } 851 }
517 852
518 return ncur; 853 return ncur;
522array_realloc (int elem, void *base, int *cur, int cnt) 857array_realloc (int elem, void *base, int *cur, int cnt)
523{ 858{
524 *cur = array_nextsize (elem, *cur, cnt); 859 *cur = array_nextsize (elem, *cur, cnt);
525 return ev_realloc (base, elem * *cur); 860 return ev_realloc (base, elem * *cur);
526} 861}
862
863#define array_init_zero(base,count) \
864 memset ((void *)(base), 0, sizeof (*(base)) * (count))
527 865
528#define array_needsize(type,base,cur,cnt,init) \ 866#define array_needsize(type,base,cur,cnt,init) \
529 if (expect_false ((cnt) > (cur))) \ 867 if (expect_false ((cnt) > (cur))) \
530 { \ 868 { \
531 int ocur_ = (cur); \ 869 int ocur_ = (cur); \
543 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 881 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
544 } 882 }
545#endif 883#endif
546 884
547#define array_free(stem, idx) \ 885#define array_free(stem, idx) \
548 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 886 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
549 887
550/*****************************************************************************/ 888/*****************************************************************************/
889
890/* dummy callback for pending events */
891static void noinline
892pendingcb (EV_P_ ev_prepare *w, int revents)
893{
894}
551 895
552void noinline 896void noinline
553ev_feed_event (EV_P_ void *w, int revents) 897ev_feed_event (EV_P_ void *w, int revents)
554{ 898{
555 W w_ = (W)w; 899 W w_ = (W)w;
564 pendings [pri][w_->pending - 1].w = w_; 908 pendings [pri][w_->pending - 1].w = w_;
565 pendings [pri][w_->pending - 1].events = revents; 909 pendings [pri][w_->pending - 1].events = revents;
566 } 910 }
567} 911}
568 912
569void inline_speed 913inline_speed void
914feed_reverse (EV_P_ W w)
915{
916 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
917 rfeeds [rfeedcnt++] = w;
918}
919
920inline_size void
921feed_reverse_done (EV_P_ int revents)
922{
923 do
924 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
925 while (rfeedcnt);
926}
927
928inline_speed void
570queue_events (EV_P_ W *events, int eventcnt, int type) 929queue_events (EV_P_ W *events, int eventcnt, int type)
571{ 930{
572 int i; 931 int i;
573 932
574 for (i = 0; i < eventcnt; ++i) 933 for (i = 0; i < eventcnt; ++i)
575 ev_feed_event (EV_A_ events [i], type); 934 ev_feed_event (EV_A_ events [i], type);
576} 935}
577 936
578/*****************************************************************************/ 937/*****************************************************************************/
579 938
580void inline_size 939inline_speed void
581anfds_init (ANFD *base, int count)
582{
583 while (count--)
584 {
585 base->head = 0;
586 base->events = EV_NONE;
587 base->reify = 0;
588
589 ++base;
590 }
591}
592
593void inline_speed
594fd_event (EV_P_ int fd, int revents) 940fd_event_nocheck (EV_P_ int fd, int revents)
595{ 941{
596 ANFD *anfd = anfds + fd; 942 ANFD *anfd = anfds + fd;
597 ev_io *w; 943 ev_io *w;
598 944
599 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 945 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
603 if (ev) 949 if (ev)
604 ev_feed_event (EV_A_ (W)w, ev); 950 ev_feed_event (EV_A_ (W)w, ev);
605 } 951 }
606} 952}
607 953
954/* do not submit kernel events for fds that have reify set */
955/* because that means they changed while we were polling for new events */
956inline_speed void
957fd_event (EV_P_ int fd, int revents)
958{
959 ANFD *anfd = anfds + fd;
960
961 if (expect_true (!anfd->reify))
962 fd_event_nocheck (EV_A_ fd, revents);
963}
964
608void 965void
609ev_feed_fd_event (EV_P_ int fd, int revents) 966ev_feed_fd_event (EV_P_ int fd, int revents)
610{ 967{
611 if (fd >= 0 && fd < anfdmax) 968 if (fd >= 0 && fd < anfdmax)
612 fd_event (EV_A_ fd, revents); 969 fd_event_nocheck (EV_A_ fd, revents);
613} 970}
614 971
615void inline_size 972/* make sure the external fd watch events are in-sync */
973/* with the kernel/libev internal state */
974inline_size void
616fd_reify (EV_P) 975fd_reify (EV_P)
617{ 976{
618 int i; 977 int i;
978
979#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
980 for (i = 0; i < fdchangecnt; ++i)
981 {
982 int fd = fdchanges [i];
983 ANFD *anfd = anfds + fd;
984
985 if (anfd->reify & EV__IOFDSET)
986 {
987 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
988
989 if (handle != anfd->handle)
990 {
991 unsigned long arg;
992
993 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
994
995 /* handle changed, but fd didn't - we need to do it in two steps */
996 backend_modify (EV_A_ fd, anfd->events, 0);
997 anfd->events = 0;
998 anfd->handle = handle;
999 }
1000 }
1001 }
1002#endif
619 1003
620 for (i = 0; i < fdchangecnt; ++i) 1004 for (i = 0; i < fdchangecnt; ++i)
621 { 1005 {
622 int fd = fdchanges [i]; 1006 int fd = fdchanges [i];
623 ANFD *anfd = anfds + fd; 1007 ANFD *anfd = anfds + fd;
624 ev_io *w; 1008 ev_io *w;
625 1009
626 unsigned char events = 0; 1010 unsigned char o_events = anfd->events;
1011 unsigned char o_reify = anfd->reify;
627 1012
628 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1013 anfd->reify = 0;
629 events |= (unsigned char)w->events;
630 1014
631#if EV_SELECT_IS_WINSOCKET 1015 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
632 if (events)
633 { 1016 {
634 unsigned long argp; 1017 anfd->events = 0;
635 #ifdef EV_FD_TO_WIN32_HANDLE 1018
636 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1019 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
637 #else 1020 anfd->events |= (unsigned char)w->events;
638 anfd->handle = _get_osfhandle (fd); 1021
639 #endif 1022 if (o_events != anfd->events)
640 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1023 o_reify = EV__IOFDSET; /* actually |= */
641 } 1024 }
642#endif
643 1025
644 { 1026 if (o_reify & EV__IOFDSET)
645 unsigned char o_events = anfd->events;
646 unsigned char o_reify = anfd->reify;
647
648 anfd->reify = 0;
649 anfd->events = events;
650
651 if (o_events != events || o_reify & EV_IOFDSET)
652 backend_modify (EV_A_ fd, o_events, events); 1027 backend_modify (EV_A_ fd, o_events, anfd->events);
653 }
654 } 1028 }
655 1029
656 fdchangecnt = 0; 1030 fdchangecnt = 0;
657} 1031}
658 1032
659void inline_size 1033/* something about the given fd changed */
1034inline_size void
660fd_change (EV_P_ int fd, int flags) 1035fd_change (EV_P_ int fd, int flags)
661{ 1036{
662 unsigned char reify = anfds [fd].reify; 1037 unsigned char reify = anfds [fd].reify;
663 anfds [fd].reify |= flags; 1038 anfds [fd].reify |= flags;
664 1039
668 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1043 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
669 fdchanges [fdchangecnt - 1] = fd; 1044 fdchanges [fdchangecnt - 1] = fd;
670 } 1045 }
671} 1046}
672 1047
673void inline_speed 1048/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1049inline_speed void
674fd_kill (EV_P_ int fd) 1050fd_kill (EV_P_ int fd)
675{ 1051{
676 ev_io *w; 1052 ev_io *w;
677 1053
678 while ((w = (ev_io *)anfds [fd].head)) 1054 while ((w = (ev_io *)anfds [fd].head))
680 ev_io_stop (EV_A_ w); 1056 ev_io_stop (EV_A_ w);
681 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1057 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
682 } 1058 }
683} 1059}
684 1060
685int inline_size 1061/* check whether the given fd is actually valid, for error recovery */
1062inline_size int
686fd_valid (int fd) 1063fd_valid (int fd)
687{ 1064{
688#ifdef _WIN32 1065#ifdef _WIN32
689 return _get_osfhandle (fd) != -1; 1066 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
690#else 1067#else
691 return fcntl (fd, F_GETFD) != -1; 1068 return fcntl (fd, F_GETFD) != -1;
692#endif 1069#endif
693} 1070}
694 1071
698{ 1075{
699 int fd; 1076 int fd;
700 1077
701 for (fd = 0; fd < anfdmax; ++fd) 1078 for (fd = 0; fd < anfdmax; ++fd)
702 if (anfds [fd].events) 1079 if (anfds [fd].events)
703 if (!fd_valid (fd) == -1 && errno == EBADF) 1080 if (!fd_valid (fd) && errno == EBADF)
704 fd_kill (EV_A_ fd); 1081 fd_kill (EV_A_ fd);
705} 1082}
706 1083
707/* called on ENOMEM in select/poll to kill some fds and retry */ 1084/* called on ENOMEM in select/poll to kill some fds and retry */
708static void noinline 1085static void noinline
712 1089
713 for (fd = anfdmax; fd--; ) 1090 for (fd = anfdmax; fd--; )
714 if (anfds [fd].events) 1091 if (anfds [fd].events)
715 { 1092 {
716 fd_kill (EV_A_ fd); 1093 fd_kill (EV_A_ fd);
717 return; 1094 break;
718 } 1095 }
719} 1096}
720 1097
721/* usually called after fork if backend needs to re-arm all fds from scratch */ 1098/* usually called after fork if backend needs to re-arm all fds from scratch */
722static void noinline 1099static void noinline
726 1103
727 for (fd = 0; fd < anfdmax; ++fd) 1104 for (fd = 0; fd < anfdmax; ++fd)
728 if (anfds [fd].events) 1105 if (anfds [fd].events)
729 { 1106 {
730 anfds [fd].events = 0; 1107 anfds [fd].events = 0;
1108 anfds [fd].emask = 0;
731 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1109 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
732 } 1110 }
733} 1111}
734 1112
735/*****************************************************************************/ 1113/* used to prepare libev internal fd's */
736 1114/* this is not fork-safe */
737void inline_speed 1115inline_speed void
738upheap (WT *heap, int k)
739{
740 WT w = heap [k];
741
742 while (k)
743 {
744 int p = (k - 1) >> 1;
745
746 if (heap [p]->at <= w->at)
747 break;
748
749 heap [k] = heap [p];
750 ((W)heap [k])->active = k + 1;
751 k = p;
752 }
753
754 heap [k] = w;
755 ((W)heap [k])->active = k + 1;
756}
757
758void inline_speed
759downheap (WT *heap, int N, int k)
760{
761 WT w = heap [k];
762
763 for (;;)
764 {
765 int c = (k << 1) + 1;
766
767 if (c >= N)
768 break;
769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
776 heap [k] = heap [c];
777 ((W)heap [k])->active = k + 1;
778
779 k = c;
780 }
781
782 heap [k] = w;
783 ((W)heap [k])->active = k + 1;
784}
785
786void inline_size
787adjustheap (WT *heap, int N, int k)
788{
789 upheap (heap, k);
790 downheap (heap, N, k);
791}
792
793/*****************************************************************************/
794
795typedef struct
796{
797 WL head;
798 EV_ATOMIC_T gotsig;
799} ANSIG;
800
801static ANSIG *signals;
802static int signalmax;
803
804static EV_ATOMIC_T gotsig;
805
806void inline_size
807signals_init (ANSIG *base, int count)
808{
809 while (count--)
810 {
811 base->head = 0;
812 base->gotsig = 0;
813
814 ++base;
815 }
816}
817
818/*****************************************************************************/
819
820void inline_speed
821fd_intern (int fd) 1116fd_intern (int fd)
822{ 1117{
823#ifdef _WIN32 1118#ifdef _WIN32
824 int arg = 1; 1119 unsigned long arg = 1;
825 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1120 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
826#else 1121#else
827 fcntl (fd, F_SETFD, FD_CLOEXEC); 1122 fcntl (fd, F_SETFD, FD_CLOEXEC);
828 fcntl (fd, F_SETFL, O_NONBLOCK); 1123 fcntl (fd, F_SETFL, O_NONBLOCK);
829#endif 1124#endif
830} 1125}
831 1126
1127/*****************************************************************************/
1128
1129/*
1130 * the heap functions want a real array index. array index 0 is guaranteed to not
1131 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1132 * the branching factor of the d-tree.
1133 */
1134
1135/*
1136 * at the moment we allow libev the luxury of two heaps,
1137 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1138 * which is more cache-efficient.
1139 * the difference is about 5% with 50000+ watchers.
1140 */
1141#if EV_USE_4HEAP
1142
1143#define DHEAP 4
1144#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1145#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1146#define UPHEAP_DONE(p,k) ((p) == (k))
1147
1148/* away from the root */
1149inline_speed void
1150downheap (ANHE *heap, int N, int k)
1151{
1152 ANHE he = heap [k];
1153 ANHE *E = heap + N + HEAP0;
1154
1155 for (;;)
1156 {
1157 ev_tstamp minat;
1158 ANHE *minpos;
1159 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1160
1161 /* find minimum child */
1162 if (expect_true (pos + DHEAP - 1 < E))
1163 {
1164 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1165 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1166 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1167 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1168 }
1169 else if (pos < E)
1170 {
1171 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1172 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1173 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1174 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1175 }
1176 else
1177 break;
1178
1179 if (ANHE_at (he) <= minat)
1180 break;
1181
1182 heap [k] = *minpos;
1183 ev_active (ANHE_w (*minpos)) = k;
1184
1185 k = minpos - heap;
1186 }
1187
1188 heap [k] = he;
1189 ev_active (ANHE_w (he)) = k;
1190}
1191
1192#else /* 4HEAP */
1193
1194#define HEAP0 1
1195#define HPARENT(k) ((k) >> 1)
1196#define UPHEAP_DONE(p,k) (!(p))
1197
1198/* away from the root */
1199inline_speed void
1200downheap (ANHE *heap, int N, int k)
1201{
1202 ANHE he = heap [k];
1203
1204 for (;;)
1205 {
1206 int c = k << 1;
1207
1208 if (c >= N + HEAP0)
1209 break;
1210
1211 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1212 ? 1 : 0;
1213
1214 if (ANHE_at (he) <= ANHE_at (heap [c]))
1215 break;
1216
1217 heap [k] = heap [c];
1218 ev_active (ANHE_w (heap [k])) = k;
1219
1220 k = c;
1221 }
1222
1223 heap [k] = he;
1224 ev_active (ANHE_w (he)) = k;
1225}
1226#endif
1227
1228/* towards the root */
1229inline_speed void
1230upheap (ANHE *heap, int k)
1231{
1232 ANHE he = heap [k];
1233
1234 for (;;)
1235 {
1236 int p = HPARENT (k);
1237
1238 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1239 break;
1240
1241 heap [k] = heap [p];
1242 ev_active (ANHE_w (heap [k])) = k;
1243 k = p;
1244 }
1245
1246 heap [k] = he;
1247 ev_active (ANHE_w (he)) = k;
1248}
1249
1250/* move an element suitably so it is in a correct place */
1251inline_size void
1252adjustheap (ANHE *heap, int N, int k)
1253{
1254 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1255 upheap (heap, k);
1256 else
1257 downheap (heap, N, k);
1258}
1259
1260/* rebuild the heap: this function is used only once and executed rarely */
1261inline_size void
1262reheap (ANHE *heap, int N)
1263{
1264 int i;
1265
1266 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1267 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1268 for (i = 0; i < N; ++i)
1269 upheap (heap, i + HEAP0);
1270}
1271
1272/*****************************************************************************/
1273
1274/* associate signal watchers to a signal signal */
1275typedef struct
1276{
1277 EV_ATOMIC_T pending;
1278#if EV_MULTIPLICITY
1279 EV_P;
1280#endif
1281 WL head;
1282} ANSIG;
1283
1284static ANSIG signals [EV_NSIG - 1];
1285
1286/*****************************************************************************/
1287
1288#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1289
832static void noinline 1290static void noinline
833evpipe_init (EV_P) 1291evpipe_init (EV_P)
834{ 1292{
835 if (!ev_is_active (&pipeev)) 1293 if (!ev_is_active (&pipe_w))
836 { 1294 {
837#if EV_USE_EVENTFD 1295# if EV_USE_EVENTFD
1296 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1297 if (evfd < 0 && errno == EINVAL)
838 if ((evfd = eventfd (0, 0)) >= 0) 1298 evfd = eventfd (0, 0);
1299
1300 if (evfd >= 0)
839 { 1301 {
840 evpipe [0] = -1; 1302 evpipe [0] = -1;
841 fd_intern (evfd); 1303 fd_intern (evfd); /* doing it twice doesn't hurt */
842 ev_io_set (&pipeev, evfd, EV_READ); 1304 ev_io_set (&pipe_w, evfd, EV_READ);
843 } 1305 }
844 else 1306 else
845#endif 1307# endif
846 { 1308 {
847 while (pipe (evpipe)) 1309 while (pipe (evpipe))
848 syserr ("(libev) error creating signal/async pipe"); 1310 ev_syserr ("(libev) error creating signal/async pipe");
849 1311
850 fd_intern (evpipe [0]); 1312 fd_intern (evpipe [0]);
851 fd_intern (evpipe [1]); 1313 fd_intern (evpipe [1]);
852 ev_io_set (&pipeev, evpipe [0], EV_READ); 1314 ev_io_set (&pipe_w, evpipe [0], EV_READ);
853 } 1315 }
854 1316
855 ev_io_start (EV_A_ &pipeev); 1317 ev_io_start (EV_A_ &pipe_w);
856 ev_unref (EV_A); /* watcher should not keep loop alive */ 1318 ev_unref (EV_A); /* watcher should not keep loop alive */
857 } 1319 }
858} 1320}
859 1321
860void inline_size 1322inline_size void
861evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1323evpipe_write (EV_P_ EV_ATOMIC_T *flag)
862{ 1324{
863 if (!*flag) 1325 if (!*flag)
864 { 1326 {
865 int old_errno = errno; /* save errno because write might clobber it */ 1327 int old_errno = errno; /* save errno because write might clobber it */
1328 char dummy;
866 1329
867 *flag = 1; 1330 *flag = 1;
868 1331
869#if EV_USE_EVENTFD 1332#if EV_USE_EVENTFD
870 if (evfd >= 0) 1333 if (evfd >= 0)
872 uint64_t counter = 1; 1335 uint64_t counter = 1;
873 write (evfd, &counter, sizeof (uint64_t)); 1336 write (evfd, &counter, sizeof (uint64_t));
874 } 1337 }
875 else 1338 else
876#endif 1339#endif
1340 /* win32 people keep sending patches that change this write() to send() */
1341 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1342 /* so when you think this write should be a send instead, please find out */
1343 /* where your send() is from - it's definitely not the microsoft send, and */
1344 /* tell me. thank you. */
877 write (evpipe [1], &old_errno, 1); 1345 write (evpipe [1], &dummy, 1);
878 1346
879 errno = old_errno; 1347 errno = old_errno;
880 } 1348 }
881} 1349}
882 1350
1351/* called whenever the libev signal pipe */
1352/* got some events (signal, async) */
883static void 1353static void
884pipecb (EV_P_ ev_io *iow, int revents) 1354pipecb (EV_P_ ev_io *iow, int revents)
885{ 1355{
1356 int i;
1357
886#if EV_USE_EVENTFD 1358#if EV_USE_EVENTFD
887 if (evfd >= 0) 1359 if (evfd >= 0)
888 { 1360 {
889 uint64_t counter = 1; 1361 uint64_t counter;
890 read (evfd, &counter, sizeof (uint64_t)); 1362 read (evfd, &counter, sizeof (uint64_t));
891 } 1363 }
892 else 1364 else
893#endif 1365#endif
894 { 1366 {
895 char dummy; 1367 char dummy;
1368 /* see discussion in evpipe_write when you think this read should be recv in win32 */
896 read (evpipe [0], &dummy, 1); 1369 read (evpipe [0], &dummy, 1);
897 } 1370 }
898 1371
899 if (gotsig && ev_is_default_loop (EV_A)) 1372#if EV_SIGNAL_ENABLE
900 { 1373 if (sig_pending)
901 int signum; 1374 {
902 gotsig = 0; 1375 sig_pending = 0;
903 1376
904 for (signum = signalmax; signum--; ) 1377 for (i = EV_NSIG - 1; i--; )
905 if (signals [signum].gotsig) 1378 if (expect_false (signals [i].pending))
906 ev_feed_signal_event (EV_A_ signum + 1); 1379 ev_feed_signal_event (EV_A_ i + 1);
907 } 1380 }
1381#endif
908 1382
909#if EV_ASYNC_ENABLE 1383#if EV_ASYNC_ENABLE
910 if (gotasync) 1384 if (async_pending)
911 { 1385 {
912 int i; 1386 async_pending = 0;
913 gotasync = 0;
914 1387
915 for (i = asynccnt; i--; ) 1388 for (i = asynccnt; i--; )
916 if (asyncs [i]->sent) 1389 if (asyncs [i]->sent)
917 { 1390 {
918 asyncs [i]->sent = 0; 1391 asyncs [i]->sent = 0;
922#endif 1395#endif
923} 1396}
924 1397
925/*****************************************************************************/ 1398/*****************************************************************************/
926 1399
1400void
1401ev_feed_signal (int signum)
1402{
1403#if EV_MULTIPLICITY
1404 EV_P = signals [signum - 1].loop;
1405
1406 if (!EV_A)
1407 return;
1408#endif
1409
1410 signals [signum - 1].pending = 1;
1411 evpipe_write (EV_A_ &sig_pending);
1412}
1413
927static void 1414static void
928ev_sighandler (int signum) 1415ev_sighandler (int signum)
929{ 1416{
930#if EV_MULTIPLICITY
931 struct ev_loop *loop = &default_loop_struct;
932#endif
933
934#if _WIN32 1417#ifdef _WIN32
935 signal (signum, ev_sighandler); 1418 signal (signum, ev_sighandler);
936#endif 1419#endif
937 1420
938 signals [signum - 1].gotsig = 1; 1421 ev_feed_signal (signum);
939 evpipe_write (EV_A_ &gotsig);
940} 1422}
941 1423
942void noinline 1424void noinline
943ev_feed_signal_event (EV_P_ int signum) 1425ev_feed_signal_event (EV_P_ int signum)
944{ 1426{
945 WL w; 1427 WL w;
946 1428
1429 if (expect_false (signum <= 0 || signum > EV_NSIG))
1430 return;
1431
1432 --signum;
1433
947#if EV_MULTIPLICITY 1434#if EV_MULTIPLICITY
948 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1435 /* it is permissible to try to feed a signal to the wrong loop */
949#endif 1436 /* or, likely more useful, feeding a signal nobody is waiting for */
950 1437
951 --signum; 1438 if (expect_false (signals [signum].loop != EV_A))
952
953 if (signum < 0 || signum >= signalmax)
954 return; 1439 return;
1440#endif
955 1441
956 signals [signum].gotsig = 0; 1442 signals [signum].pending = 0;
957 1443
958 for (w = signals [signum].head; w; w = w->next) 1444 for (w = signals [signum].head; w; w = w->next)
959 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1445 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
960} 1446}
961 1447
1448#if EV_USE_SIGNALFD
1449static void
1450sigfdcb (EV_P_ ev_io *iow, int revents)
1451{
1452 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1453
1454 for (;;)
1455 {
1456 ssize_t res = read (sigfd, si, sizeof (si));
1457
1458 /* not ISO-C, as res might be -1, but works with SuS */
1459 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1460 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1461
1462 if (res < (ssize_t)sizeof (si))
1463 break;
1464 }
1465}
1466#endif
1467
1468#endif
1469
962/*****************************************************************************/ 1470/*****************************************************************************/
963 1471
1472#if EV_CHILD_ENABLE
964static WL childs [EV_PID_HASHSIZE]; 1473static WL childs [EV_PID_HASHSIZE];
965
966#ifndef _WIN32
967 1474
968static ev_signal childev; 1475static ev_signal childev;
969 1476
970#ifndef WIFCONTINUED 1477#ifndef WIFCONTINUED
971# define WIFCONTINUED(status) 0 1478# define WIFCONTINUED(status) 0
972#endif 1479#endif
973 1480
974void inline_speed 1481/* handle a single child status event */
1482inline_speed void
975child_reap (EV_P_ int chain, int pid, int status) 1483child_reap (EV_P_ int chain, int pid, int status)
976{ 1484{
977 ev_child *w; 1485 ev_child *w;
978 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1486 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
979 1487
980 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1488 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
981 { 1489 {
982 if ((w->pid == pid || !w->pid) 1490 if ((w->pid == pid || !w->pid)
983 && (!traced || (w->flags & 1))) 1491 && (!traced || (w->flags & 1)))
984 { 1492 {
985 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1493 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
992 1500
993#ifndef WCONTINUED 1501#ifndef WCONTINUED
994# define WCONTINUED 0 1502# define WCONTINUED 0
995#endif 1503#endif
996 1504
1505/* called on sigchld etc., calls waitpid */
997static void 1506static void
998childcb (EV_P_ ev_signal *sw, int revents) 1507childcb (EV_P_ ev_signal *sw, int revents)
999{ 1508{
1000 int pid, status; 1509 int pid, status;
1001 1510
1009 /* make sure we are called again until all children have been reaped */ 1518 /* make sure we are called again until all children have been reaped */
1010 /* we need to do it this way so that the callback gets called before we continue */ 1519 /* we need to do it this way so that the callback gets called before we continue */
1011 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1520 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1012 1521
1013 child_reap (EV_A_ pid, pid, status); 1522 child_reap (EV_A_ pid, pid, status);
1014 if (EV_PID_HASHSIZE > 1) 1523 if ((EV_PID_HASHSIZE) > 1)
1015 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1524 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1016} 1525}
1017 1526
1018#endif 1527#endif
1019 1528
1020/*****************************************************************************/ 1529/*****************************************************************************/
1021 1530
1531#if EV_USE_IOCP
1532# include "ev_iocp.c"
1533#endif
1022#if EV_USE_PORT 1534#if EV_USE_PORT
1023# include "ev_port.c" 1535# include "ev_port.c"
1024#endif 1536#endif
1025#if EV_USE_KQUEUE 1537#if EV_USE_KQUEUE
1026# include "ev_kqueue.c" 1538# include "ev_kqueue.c"
1082 /* kqueue is borked on everything but netbsd apparently */ 1594 /* kqueue is borked on everything but netbsd apparently */
1083 /* it usually doesn't work correctly on anything but sockets and pipes */ 1595 /* it usually doesn't work correctly on anything but sockets and pipes */
1084 flags &= ~EVBACKEND_KQUEUE; 1596 flags &= ~EVBACKEND_KQUEUE;
1085#endif 1597#endif
1086#ifdef __APPLE__ 1598#ifdef __APPLE__
1087 // flags &= ~EVBACKEND_KQUEUE; for documentation 1599 /* only select works correctly on that "unix-certified" platform */
1088 flags &= ~EVBACKEND_POLL; 1600 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1601 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1602#endif
1603#ifdef __FreeBSD__
1604 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1089#endif 1605#endif
1090 1606
1091 return flags; 1607 return flags;
1092} 1608}
1093 1609
1095ev_embeddable_backends (void) 1611ev_embeddable_backends (void)
1096{ 1612{
1097 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1613 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1098 1614
1099 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1615 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1100 /* please fix it and tell me how to detect the fix */ 1616 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1101 flags &= ~EVBACKEND_EPOLL; 1617 flags &= ~EVBACKEND_EPOLL;
1102 1618
1103 return flags; 1619 return flags;
1104} 1620}
1105 1621
1106unsigned int 1622unsigned int
1107ev_backend (EV_P) 1623ev_backend (EV_P)
1108{ 1624{
1109 return backend; 1625 return backend;
1110} 1626}
1111 1627
1628#if EV_FEATURE_API
1112unsigned int 1629unsigned int
1113ev_loop_count (EV_P) 1630ev_iteration (EV_P)
1114{ 1631{
1115 return loop_count; 1632 return loop_count;
1116} 1633}
1117 1634
1635unsigned int
1636ev_depth (EV_P)
1637{
1638 return loop_depth;
1639}
1640
1118void 1641void
1119ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1642ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1120{ 1643{
1121 io_blocktime = interval; 1644 io_blocktime = interval;
1122} 1645}
1125ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1648ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1126{ 1649{
1127 timeout_blocktime = interval; 1650 timeout_blocktime = interval;
1128} 1651}
1129 1652
1653void
1654ev_set_userdata (EV_P_ void *data)
1655{
1656 userdata = data;
1657}
1658
1659void *
1660ev_userdata (EV_P)
1661{
1662 return userdata;
1663}
1664
1665void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1666{
1667 invoke_cb = invoke_pending_cb;
1668}
1669
1670void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1671{
1672 release_cb = release;
1673 acquire_cb = acquire;
1674}
1675#endif
1676
1677/* initialise a loop structure, must be zero-initialised */
1130static void noinline 1678static void noinline
1131loop_init (EV_P_ unsigned int flags) 1679loop_init (EV_P_ unsigned int flags)
1132{ 1680{
1133 if (!backend) 1681 if (!backend)
1134 { 1682 {
1683 origflags = flags;
1684
1685#if EV_USE_REALTIME
1686 if (!have_realtime)
1687 {
1688 struct timespec ts;
1689
1690 if (!clock_gettime (CLOCK_REALTIME, &ts))
1691 have_realtime = 1;
1692 }
1693#endif
1694
1135#if EV_USE_MONOTONIC 1695#if EV_USE_MONOTONIC
1696 if (!have_monotonic)
1136 { 1697 {
1137 struct timespec ts; 1698 struct timespec ts;
1699
1138 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1700 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1139 have_monotonic = 1; 1701 have_monotonic = 1;
1140 } 1702 }
1141#endif 1703#endif
1704
1705 /* pid check not overridable via env */
1706#ifndef _WIN32
1707 if (flags & EVFLAG_FORKCHECK)
1708 curpid = getpid ();
1709#endif
1710
1711 if (!(flags & EVFLAG_NOENV)
1712 && !enable_secure ()
1713 && getenv ("LIBEV_FLAGS"))
1714 flags = atoi (getenv ("LIBEV_FLAGS"));
1142 1715
1143 ev_rt_now = ev_time (); 1716 ev_rt_now = ev_time ();
1144 mn_now = get_clock (); 1717 mn_now = get_clock ();
1145 now_floor = mn_now; 1718 now_floor = mn_now;
1146 rtmn_diff = ev_rt_now - mn_now; 1719 rtmn_diff = ev_rt_now - mn_now;
1720#if EV_FEATURE_API
1721 invoke_cb = ev_invoke_pending;
1722#endif
1147 1723
1148 io_blocktime = 0.; 1724 io_blocktime = 0.;
1149 timeout_blocktime = 0.; 1725 timeout_blocktime = 0.;
1150 backend = 0; 1726 backend = 0;
1151 backend_fd = -1; 1727 backend_fd = -1;
1152 gotasync = 0; 1728 sig_pending = 0;
1729#if EV_ASYNC_ENABLE
1730 async_pending = 0;
1731#endif
1153#if EV_USE_INOTIFY 1732#if EV_USE_INOTIFY
1154 fs_fd = -2; 1733 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1155#endif 1734#endif
1156 1735#if EV_USE_SIGNALFD
1157 /* pid check not overridable via env */ 1736 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1158#ifndef _WIN32
1159 if (flags & EVFLAG_FORKCHECK)
1160 curpid = getpid ();
1161#endif 1737#endif
1162 1738
1163 if (!(flags & EVFLAG_NOENV) 1739 if (!(flags & EVBACKEND_MASK))
1164 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS"))
1166 flags = atoi (getenv ("LIBEV_FLAGS"));
1167
1168 if (!(flags & 0x0000ffffUL))
1169 flags |= ev_recommended_backends (); 1740 flags |= ev_recommended_backends ();
1170 1741
1742#if EV_USE_IOCP
1743 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1744#endif
1171#if EV_USE_PORT 1745#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1746 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif 1747#endif
1174#if EV_USE_KQUEUE 1748#if EV_USE_KQUEUE
1175 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1749 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1182#endif 1756#endif
1183#if EV_USE_SELECT 1757#if EV_USE_SELECT
1184 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1758 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1185#endif 1759#endif
1186 1760
1761 ev_prepare_init (&pending_w, pendingcb);
1762
1763#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1187 ev_init (&pipeev, pipecb); 1764 ev_init (&pipe_w, pipecb);
1188 ev_set_priority (&pipeev, EV_MAXPRI); 1765 ev_set_priority (&pipe_w, EV_MAXPRI);
1766#endif
1189 } 1767 }
1190} 1768}
1191 1769
1192static void noinline 1770/* free up a loop structure */
1771void
1193loop_destroy (EV_P) 1772ev_loop_destroy (EV_P)
1194{ 1773{
1195 int i; 1774 int i;
1196 1775
1776#if EV_MULTIPLICITY
1777 /* mimic free (0) */
1778 if (!EV_A)
1779 return;
1780#endif
1781
1782#if EV_CLEANUP_ENABLE
1783 /* queue cleanup watchers (and execute them) */
1784 if (expect_false (cleanupcnt))
1785 {
1786 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1787 EV_INVOKE_PENDING;
1788 }
1789#endif
1790
1791#if EV_CHILD_ENABLE
1792 if (ev_is_active (&childev))
1793 {
1794 ev_ref (EV_A); /* child watcher */
1795 ev_signal_stop (EV_A_ &childev);
1796 }
1797#endif
1798
1197 if (ev_is_active (&pipeev)) 1799 if (ev_is_active (&pipe_w))
1198 { 1800 {
1199 ev_ref (EV_A); /* signal watcher */ 1801 /*ev_ref (EV_A);*/
1200 ev_io_stop (EV_A_ &pipeev); 1802 /*ev_io_stop (EV_A_ &pipe_w);*/
1201 1803
1202#if EV_USE_EVENTFD 1804#if EV_USE_EVENTFD
1203 if (evfd >= 0) 1805 if (evfd >= 0)
1204 close (evfd); 1806 close (evfd);
1205#endif 1807#endif
1206 1808
1207 if (evpipe [0] >= 0) 1809 if (evpipe [0] >= 0)
1208 { 1810 {
1209 close (evpipe [0]); 1811 EV_WIN32_CLOSE_FD (evpipe [0]);
1210 close (evpipe [1]); 1812 EV_WIN32_CLOSE_FD (evpipe [1]);
1211 } 1813 }
1212 } 1814 }
1815
1816#if EV_USE_SIGNALFD
1817 if (ev_is_active (&sigfd_w))
1818 close (sigfd);
1819#endif
1213 1820
1214#if EV_USE_INOTIFY 1821#if EV_USE_INOTIFY
1215 if (fs_fd >= 0) 1822 if (fs_fd >= 0)
1216 close (fs_fd); 1823 close (fs_fd);
1217#endif 1824#endif
1218 1825
1219 if (backend_fd >= 0) 1826 if (backend_fd >= 0)
1220 close (backend_fd); 1827 close (backend_fd);
1221 1828
1829#if EV_USE_IOCP
1830 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1831#endif
1222#if EV_USE_PORT 1832#if EV_USE_PORT
1223 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1833 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1224#endif 1834#endif
1225#if EV_USE_KQUEUE 1835#if EV_USE_KQUEUE
1226 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1836 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1241#if EV_IDLE_ENABLE 1851#if EV_IDLE_ENABLE
1242 array_free (idle, [i]); 1852 array_free (idle, [i]);
1243#endif 1853#endif
1244 } 1854 }
1245 1855
1246 ev_free (anfds); anfdmax = 0; 1856 ev_free (anfds); anfds = 0; anfdmax = 0;
1247 1857
1248 /* have to use the microsoft-never-gets-it-right macro */ 1858 /* have to use the microsoft-never-gets-it-right macro */
1859 array_free (rfeed, EMPTY);
1249 array_free (fdchange, EMPTY); 1860 array_free (fdchange, EMPTY);
1250 array_free (timer, EMPTY); 1861 array_free (timer, EMPTY);
1251#if EV_PERIODIC_ENABLE 1862#if EV_PERIODIC_ENABLE
1252 array_free (periodic, EMPTY); 1863 array_free (periodic, EMPTY);
1253#endif 1864#endif
1254#if EV_FORK_ENABLE 1865#if EV_FORK_ENABLE
1255 array_free (fork, EMPTY); 1866 array_free (fork, EMPTY);
1256#endif 1867#endif
1868#if EV_CLEANUP_ENABLE
1869 array_free (cleanup, EMPTY);
1870#endif
1257 array_free (prepare, EMPTY); 1871 array_free (prepare, EMPTY);
1258 array_free (check, EMPTY); 1872 array_free (check, EMPTY);
1259#if EV_ASYNC_ENABLE 1873#if EV_ASYNC_ENABLE
1260 array_free (async, EMPTY); 1874 array_free (async, EMPTY);
1261#endif 1875#endif
1262 1876
1263 backend = 0; 1877 backend = 0;
1264}
1265 1878
1879#if EV_MULTIPLICITY
1880 if (ev_is_default_loop (EV_A))
1881#endif
1882 ev_default_loop_ptr = 0;
1883#if EV_MULTIPLICITY
1884 else
1885 ev_free (EV_A);
1886#endif
1887}
1888
1889#if EV_USE_INOTIFY
1266void inline_size infy_fork (EV_P); 1890inline_size void infy_fork (EV_P);
1891#endif
1267 1892
1268void inline_size 1893inline_size void
1269loop_fork (EV_P) 1894loop_fork (EV_P)
1270{ 1895{
1271#if EV_USE_PORT 1896#if EV_USE_PORT
1272 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1897 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1273#endif 1898#endif
1279#endif 1904#endif
1280#if EV_USE_INOTIFY 1905#if EV_USE_INOTIFY
1281 infy_fork (EV_A); 1906 infy_fork (EV_A);
1282#endif 1907#endif
1283 1908
1284 if (ev_is_active (&pipeev)) 1909 if (ev_is_active (&pipe_w))
1285 { 1910 {
1286 /* this "locks" the handlers against writing to the pipe */ 1911 /* this "locks" the handlers against writing to the pipe */
1287 /* while we modify the fd vars */ 1912 /* while we modify the fd vars */
1288 gotsig = 1; 1913 sig_pending = 1;
1289#if EV_ASYNC_ENABLE 1914#if EV_ASYNC_ENABLE
1290 gotasync = 1; 1915 async_pending = 1;
1291#endif 1916#endif
1292 1917
1293 ev_ref (EV_A); 1918 ev_ref (EV_A);
1294 ev_io_stop (EV_A_ &pipeev); 1919 ev_io_stop (EV_A_ &pipe_w);
1295 1920
1296#if EV_USE_EVENTFD 1921#if EV_USE_EVENTFD
1297 if (evfd >= 0) 1922 if (evfd >= 0)
1298 close (evfd); 1923 close (evfd);
1299#endif 1924#endif
1300 1925
1301 if (evpipe [0] >= 0) 1926 if (evpipe [0] >= 0)
1302 { 1927 {
1303 close (evpipe [0]); 1928 EV_WIN32_CLOSE_FD (evpipe [0]);
1304 close (evpipe [1]); 1929 EV_WIN32_CLOSE_FD (evpipe [1]);
1305 } 1930 }
1306 1931
1932#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1307 evpipe_init (EV_A); 1933 evpipe_init (EV_A);
1308 /* now iterate over everything, in case we missed something */ 1934 /* now iterate over everything, in case we missed something */
1309 pipecb (EV_A_ &pipeev, EV_READ); 1935 pipecb (EV_A_ &pipe_w, EV_READ);
1936#endif
1310 } 1937 }
1311 1938
1312 postfork = 0; 1939 postfork = 0;
1313} 1940}
1941
1942#if EV_MULTIPLICITY
1943
1944struct ev_loop *
1945ev_loop_new (unsigned int flags)
1946{
1947 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1948
1949 memset (EV_A, 0, sizeof (struct ev_loop));
1950 loop_init (EV_A_ flags);
1951
1952 if (ev_backend (EV_A))
1953 return EV_A;
1954
1955 ev_free (EV_A);
1956 return 0;
1957}
1958
1959#endif /* multiplicity */
1960
1961#if EV_VERIFY
1962static void noinline
1963verify_watcher (EV_P_ W w)
1964{
1965 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1966
1967 if (w->pending)
1968 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1969}
1970
1971static void noinline
1972verify_heap (EV_P_ ANHE *heap, int N)
1973{
1974 int i;
1975
1976 for (i = HEAP0; i < N + HEAP0; ++i)
1977 {
1978 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1979 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1980 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1981
1982 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1983 }
1984}
1985
1986static void noinline
1987array_verify (EV_P_ W *ws, int cnt)
1988{
1989 while (cnt--)
1990 {
1991 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1992 verify_watcher (EV_A_ ws [cnt]);
1993 }
1994}
1995#endif
1996
1997#if EV_FEATURE_API
1998void
1999ev_verify (EV_P)
2000{
2001#if EV_VERIFY
2002 int i;
2003 WL w;
2004
2005 assert (activecnt >= -1);
2006
2007 assert (fdchangemax >= fdchangecnt);
2008 for (i = 0; i < fdchangecnt; ++i)
2009 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2010
2011 assert (anfdmax >= 0);
2012 for (i = 0; i < anfdmax; ++i)
2013 for (w = anfds [i].head; w; w = w->next)
2014 {
2015 verify_watcher (EV_A_ (W)w);
2016 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2017 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2018 }
2019
2020 assert (timermax >= timercnt);
2021 verify_heap (EV_A_ timers, timercnt);
2022
2023#if EV_PERIODIC_ENABLE
2024 assert (periodicmax >= periodiccnt);
2025 verify_heap (EV_A_ periodics, periodiccnt);
2026#endif
2027
2028 for (i = NUMPRI; i--; )
2029 {
2030 assert (pendingmax [i] >= pendingcnt [i]);
2031#if EV_IDLE_ENABLE
2032 assert (idleall >= 0);
2033 assert (idlemax [i] >= idlecnt [i]);
2034 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2035#endif
2036 }
2037
2038#if EV_FORK_ENABLE
2039 assert (forkmax >= forkcnt);
2040 array_verify (EV_A_ (W *)forks, forkcnt);
2041#endif
2042
2043#if EV_CLEANUP_ENABLE
2044 assert (cleanupmax >= cleanupcnt);
2045 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2046#endif
2047
2048#if EV_ASYNC_ENABLE
2049 assert (asyncmax >= asynccnt);
2050 array_verify (EV_A_ (W *)asyncs, asynccnt);
2051#endif
2052
2053#if EV_PREPARE_ENABLE
2054 assert (preparemax >= preparecnt);
2055 array_verify (EV_A_ (W *)prepares, preparecnt);
2056#endif
2057
2058#if EV_CHECK_ENABLE
2059 assert (checkmax >= checkcnt);
2060 array_verify (EV_A_ (W *)checks, checkcnt);
2061#endif
2062
2063# if 0
2064#if EV_CHILD_ENABLE
2065 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2066 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2067#endif
2068# endif
2069#endif
2070}
2071#endif
1314 2072
1315#if EV_MULTIPLICITY 2073#if EV_MULTIPLICITY
1316struct ev_loop * 2074struct ev_loop *
1317ev_loop_new (unsigned int flags)
1318{
1319 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1320
1321 memset (loop, 0, sizeof (struct ev_loop));
1322
1323 loop_init (EV_A_ flags);
1324
1325 if (ev_backend (EV_A))
1326 return loop;
1327
1328 return 0;
1329}
1330
1331void
1332ev_loop_destroy (EV_P)
1333{
1334 loop_destroy (EV_A);
1335 ev_free (loop);
1336}
1337
1338void
1339ev_loop_fork (EV_P)
1340{
1341 postfork = 1; /* must be in line with ev_default_fork */
1342}
1343
1344#endif
1345
1346#if EV_MULTIPLICITY
1347struct ev_loop *
1348ev_default_loop_init (unsigned int flags)
1349#else 2075#else
1350int 2076int
2077#endif
1351ev_default_loop (unsigned int flags) 2078ev_default_loop (unsigned int flags)
1352#endif
1353{ 2079{
1354 if (!ev_default_loop_ptr) 2080 if (!ev_default_loop_ptr)
1355 { 2081 {
1356#if EV_MULTIPLICITY 2082#if EV_MULTIPLICITY
1357 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2083 EV_P = ev_default_loop_ptr = &default_loop_struct;
1358#else 2084#else
1359 ev_default_loop_ptr = 1; 2085 ev_default_loop_ptr = 1;
1360#endif 2086#endif
1361 2087
1362 loop_init (EV_A_ flags); 2088 loop_init (EV_A_ flags);
1363 2089
1364 if (ev_backend (EV_A)) 2090 if (ev_backend (EV_A))
1365 { 2091 {
1366#ifndef _WIN32 2092#if EV_CHILD_ENABLE
1367 ev_signal_init (&childev, childcb, SIGCHLD); 2093 ev_signal_init (&childev, childcb, SIGCHLD);
1368 ev_set_priority (&childev, EV_MAXPRI); 2094 ev_set_priority (&childev, EV_MAXPRI);
1369 ev_signal_start (EV_A_ &childev); 2095 ev_signal_start (EV_A_ &childev);
1370 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2096 ev_unref (EV_A); /* child watcher should not keep loop alive */
1371#endif 2097#endif
1376 2102
1377 return ev_default_loop_ptr; 2103 return ev_default_loop_ptr;
1378} 2104}
1379 2105
1380void 2106void
1381ev_default_destroy (void) 2107ev_loop_fork (EV_P)
1382{ 2108{
1383#if EV_MULTIPLICITY
1384 struct ev_loop *loop = ev_default_loop_ptr;
1385#endif
1386
1387#ifndef _WIN32
1388 ev_ref (EV_A); /* child watcher */
1389 ev_signal_stop (EV_A_ &childev);
1390#endif
1391
1392 loop_destroy (EV_A);
1393}
1394
1395void
1396ev_default_fork (void)
1397{
1398#if EV_MULTIPLICITY
1399 struct ev_loop *loop = ev_default_loop_ptr;
1400#endif
1401
1402 if (backend)
1403 postfork = 1; /* must be in line with ev_loop_fork */ 2109 postfork = 1; /* must be in line with ev_default_fork */
1404} 2110}
1405 2111
1406/*****************************************************************************/ 2112/*****************************************************************************/
1407 2113
1408void 2114void
1409ev_invoke (EV_P_ void *w, int revents) 2115ev_invoke (EV_P_ void *w, int revents)
1410{ 2116{
1411 EV_CB_INVOKE ((W)w, revents); 2117 EV_CB_INVOKE ((W)w, revents);
1412} 2118}
1413 2119
1414void inline_speed 2120unsigned int
1415call_pending (EV_P) 2121ev_pending_count (EV_P)
2122{
2123 int pri;
2124 unsigned int count = 0;
2125
2126 for (pri = NUMPRI; pri--; )
2127 count += pendingcnt [pri];
2128
2129 return count;
2130}
2131
2132void noinline
2133ev_invoke_pending (EV_P)
1416{ 2134{
1417 int pri; 2135 int pri;
1418 2136
1419 for (pri = NUMPRI; pri--; ) 2137 for (pri = NUMPRI; pri--; )
1420 while (pendingcnt [pri]) 2138 while (pendingcnt [pri])
1421 { 2139 {
1422 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2140 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1423 2141
1424 if (expect_true (p->w))
1425 {
1426 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1427
1428 p->w->pending = 0; 2142 p->w->pending = 0;
1429 EV_CB_INVOKE (p->w, p->events); 2143 EV_CB_INVOKE (p->w, p->events);
1430 } 2144 EV_FREQUENT_CHECK;
1431 } 2145 }
1432} 2146}
1433 2147
1434void inline_size
1435timers_reify (EV_P)
1436{
1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1438 {
1439 ev_timer *w = (ev_timer *)timers [0];
1440
1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1442
1443 /* first reschedule or stop timer */
1444 if (w->repeat)
1445 {
1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1447
1448 ((WT)w)->at += w->repeat;
1449 if (((WT)w)->at < mn_now)
1450 ((WT)w)->at = mn_now;
1451
1452 downheap (timers, timercnt, 0);
1453 }
1454 else
1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1456
1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1458 }
1459}
1460
1461#if EV_PERIODIC_ENABLE
1462void inline_size
1463periodics_reify (EV_P)
1464{
1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1466 {
1467 ev_periodic *w = (ev_periodic *)periodics [0];
1468
1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1470
1471 /* first reschedule or stop timer */
1472 if (w->reschedule_cb)
1473 {
1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1476 downheap (periodics, periodiccnt, 0);
1477 }
1478 else if (w->interval)
1479 {
1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else
1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1487
1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1489 }
1490}
1491
1492static void noinline
1493periodics_reschedule (EV_P)
1494{
1495 int i;
1496
1497 /* adjust periodics after time jump */
1498 for (i = 0; i < periodiccnt; ++i)
1499 {
1500 ev_periodic *w = (ev_periodic *)periodics [i];
1501
1502 if (w->reschedule_cb)
1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1504 else if (w->interval)
1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1506 }
1507
1508 /* now rebuild the heap */
1509 for (i = periodiccnt >> 1; i--; )
1510 downheap (periodics, periodiccnt, i);
1511}
1512#endif
1513
1514#if EV_IDLE_ENABLE 2148#if EV_IDLE_ENABLE
1515void inline_size 2149/* make idle watchers pending. this handles the "call-idle */
2150/* only when higher priorities are idle" logic */
2151inline_size void
1516idle_reify (EV_P) 2152idle_reify (EV_P)
1517{ 2153{
1518 if (expect_false (idleall)) 2154 if (expect_false (idleall))
1519 { 2155 {
1520 int pri; 2156 int pri;
1532 } 2168 }
1533 } 2169 }
1534} 2170}
1535#endif 2171#endif
1536 2172
1537void inline_speed 2173/* make timers pending */
2174inline_size void
2175timers_reify (EV_P)
2176{
2177 EV_FREQUENT_CHECK;
2178
2179 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2180 {
2181 do
2182 {
2183 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2184
2185 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2186
2187 /* first reschedule or stop timer */
2188 if (w->repeat)
2189 {
2190 ev_at (w) += w->repeat;
2191 if (ev_at (w) < mn_now)
2192 ev_at (w) = mn_now;
2193
2194 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2195
2196 ANHE_at_cache (timers [HEAP0]);
2197 downheap (timers, timercnt, HEAP0);
2198 }
2199 else
2200 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2201
2202 EV_FREQUENT_CHECK;
2203 feed_reverse (EV_A_ (W)w);
2204 }
2205 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2206
2207 feed_reverse_done (EV_A_ EV_TIMER);
2208 }
2209}
2210
2211#if EV_PERIODIC_ENABLE
2212
2213inline_speed void
2214periodic_recalc (EV_P_ ev_periodic *w)
2215{
2216 /* TODO: use slow but potentially more correct incremental algo, */
2217 /* also do not rely on ceil */
2218 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2219}
2220
2221/* make periodics pending */
2222inline_size void
2223periodics_reify (EV_P)
2224{
2225 EV_FREQUENT_CHECK;
2226
2227 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2228 {
2229 int feed_count = 0;
2230
2231 do
2232 {
2233 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2234
2235 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2236
2237 /* first reschedule or stop timer */
2238 if (w->reschedule_cb)
2239 {
2240 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2241
2242 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2243
2244 ANHE_at_cache (periodics [HEAP0]);
2245 downheap (periodics, periodiccnt, HEAP0);
2246 }
2247 else if (w->interval)
2248 {
2249 periodic_recalc (EV_A_ w);
2250
2251 /* if next trigger time is not sufficiently in the future, put it there */
2252 /* this might happen because of floating point inexactness */
2253 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2254 {
2255 ev_at (w) += w->interval;
2256
2257 /* if interval is unreasonably low we might still have a time in the past */
2258 /* so correct this. this will make the periodic very inexact, but the user */
2259 /* has effectively asked to get triggered more often than possible */
2260 if (ev_at (w) < ev_rt_now)
2261 ev_at (w) = ev_rt_now;
2262 }
2263
2264 ANHE_at_cache (periodics [HEAP0]);
2265 downheap (periodics, periodiccnt, HEAP0);
2266 }
2267 else
2268 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2269
2270 EV_FREQUENT_CHECK;
2271 feed_reverse (EV_A_ (W)w);
2272 }
2273 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2274
2275 feed_reverse_done (EV_A_ EV_PERIODIC);
2276 }
2277}
2278
2279/* simply recalculate all periodics */
2280/* TODO: maybe ensure that at least one event happens when jumping forward? */
2281static void noinline
2282periodics_reschedule (EV_P)
2283{
2284 int i;
2285
2286 /* adjust periodics after time jump */
2287 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2288 {
2289 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2290
2291 if (w->reschedule_cb)
2292 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2293 else if (w->interval)
2294 periodic_recalc (EV_A_ w);
2295
2296 ANHE_at_cache (periodics [i]);
2297 }
2298
2299 reheap (periodics, periodiccnt);
2300}
2301#endif
2302
2303/* adjust all timers by a given offset */
2304static void noinline
2305timers_reschedule (EV_P_ ev_tstamp adjust)
2306{
2307 int i;
2308
2309 for (i = 0; i < timercnt; ++i)
2310 {
2311 ANHE *he = timers + i + HEAP0;
2312 ANHE_w (*he)->at += adjust;
2313 ANHE_at_cache (*he);
2314 }
2315}
2316
2317/* fetch new monotonic and realtime times from the kernel */
2318/* also detect if there was a timejump, and act accordingly */
2319inline_speed void
1538time_update (EV_P_ ev_tstamp max_block) 2320time_update (EV_P_ ev_tstamp max_block)
1539{ 2321{
1540 int i;
1541
1542#if EV_USE_MONOTONIC 2322#if EV_USE_MONOTONIC
1543 if (expect_true (have_monotonic)) 2323 if (expect_true (have_monotonic))
1544 { 2324 {
2325 int i;
1545 ev_tstamp odiff = rtmn_diff; 2326 ev_tstamp odiff = rtmn_diff;
1546 2327
1547 mn_now = get_clock (); 2328 mn_now = get_clock ();
1548 2329
1549 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1567 */ 2348 */
1568 for (i = 4; --i; ) 2349 for (i = 4; --i; )
1569 { 2350 {
1570 rtmn_diff = ev_rt_now - mn_now; 2351 rtmn_diff = ev_rt_now - mn_now;
1571 2352
1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2353 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1573 return; /* all is well */ 2354 return; /* all is well */
1574 2355
1575 ev_rt_now = ev_time (); 2356 ev_rt_now = ev_time ();
1576 mn_now = get_clock (); 2357 mn_now = get_clock ();
1577 now_floor = mn_now; 2358 now_floor = mn_now;
1578 } 2359 }
1579 2360
2361 /* no timer adjustment, as the monotonic clock doesn't jump */
2362 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1580# if EV_PERIODIC_ENABLE 2363# if EV_PERIODIC_ENABLE
1581 periodics_reschedule (EV_A); 2364 periodics_reschedule (EV_A);
1582# endif 2365# endif
1583 /* no timer adjustment, as the monotonic clock doesn't jump */
1584 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1585 } 2366 }
1586 else 2367 else
1587#endif 2368#endif
1588 { 2369 {
1589 ev_rt_now = ev_time (); 2370 ev_rt_now = ev_time ();
1590 2371
1591 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1592 { 2373 {
2374 /* adjust timers. this is easy, as the offset is the same for all of them */
2375 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1593#if EV_PERIODIC_ENABLE 2376#if EV_PERIODIC_ENABLE
1594 periodics_reschedule (EV_A); 2377 periodics_reschedule (EV_A);
1595#endif 2378#endif
1596 /* adjust timers. this is easy, as the offset is the same for all of them */
1597 for (i = 0; i < timercnt; ++i)
1598 ((WT)timers [i])->at += ev_rt_now - mn_now;
1599 } 2379 }
1600 2380
1601 mn_now = ev_rt_now; 2381 mn_now = ev_rt_now;
1602 } 2382 }
1603} 2383}
1604 2384
1605void 2385void
1606ev_ref (EV_P)
1607{
1608 ++activecnt;
1609}
1610
1611void
1612ev_unref (EV_P)
1613{
1614 --activecnt;
1615}
1616
1617static int loop_done;
1618
1619void
1620ev_loop (EV_P_ int flags) 2386ev_run (EV_P_ int flags)
1621{ 2387{
2388#if EV_FEATURE_API
2389 ++loop_depth;
2390#endif
2391
2392 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2393
1622 loop_done = EVUNLOOP_CANCEL; 2394 loop_done = EVBREAK_CANCEL;
1623 2395
1624 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2396 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1625 2397
1626 do 2398 do
1627 { 2399 {
2400#if EV_VERIFY >= 2
2401 ev_verify (EV_A);
2402#endif
2403
1628#ifndef _WIN32 2404#ifndef _WIN32
1629 if (expect_false (curpid)) /* penalise the forking check even more */ 2405 if (expect_false (curpid)) /* penalise the forking check even more */
1630 if (expect_false (getpid () != curpid)) 2406 if (expect_false (getpid () != curpid))
1631 { 2407 {
1632 curpid = getpid (); 2408 curpid = getpid ();
1638 /* we might have forked, so queue fork handlers */ 2414 /* we might have forked, so queue fork handlers */
1639 if (expect_false (postfork)) 2415 if (expect_false (postfork))
1640 if (forkcnt) 2416 if (forkcnt)
1641 { 2417 {
1642 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2418 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1643 call_pending (EV_A); 2419 EV_INVOKE_PENDING;
1644 } 2420 }
1645#endif 2421#endif
1646 2422
2423#if EV_PREPARE_ENABLE
1647 /* queue prepare watchers (and execute them) */ 2424 /* queue prepare watchers (and execute them) */
1648 if (expect_false (preparecnt)) 2425 if (expect_false (preparecnt))
1649 { 2426 {
1650 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2427 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1651 call_pending (EV_A); 2428 EV_INVOKE_PENDING;
1652 } 2429 }
2430#endif
1653 2431
1654 if (expect_false (!activecnt)) 2432 if (expect_false (loop_done))
1655 break; 2433 break;
1656 2434
1657 /* we might have forked, so reify kernel state if necessary */ 2435 /* we might have forked, so reify kernel state if necessary */
1658 if (expect_false (postfork)) 2436 if (expect_false (postfork))
1659 loop_fork (EV_A); 2437 loop_fork (EV_A);
1664 /* calculate blocking time */ 2442 /* calculate blocking time */
1665 { 2443 {
1666 ev_tstamp waittime = 0.; 2444 ev_tstamp waittime = 0.;
1667 ev_tstamp sleeptime = 0.; 2445 ev_tstamp sleeptime = 0.;
1668 2446
2447 /* remember old timestamp for io_blocktime calculation */
2448 ev_tstamp prev_mn_now = mn_now;
2449
2450 /* update time to cancel out callback processing overhead */
2451 time_update (EV_A_ 1e100);
2452
1669 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2453 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1670 { 2454 {
1671 /* update time to cancel out callback processing overhead */
1672 time_update (EV_A_ 1e100);
1673
1674 waittime = MAX_BLOCKTIME; 2455 waittime = MAX_BLOCKTIME;
1675 2456
1676 if (timercnt) 2457 if (timercnt)
1677 { 2458 {
1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2459 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1679 if (waittime > to) waittime = to; 2460 if (waittime > to) waittime = to;
1680 } 2461 }
1681 2462
1682#if EV_PERIODIC_ENABLE 2463#if EV_PERIODIC_ENABLE
1683 if (periodiccnt) 2464 if (periodiccnt)
1684 { 2465 {
1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2466 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1686 if (waittime > to) waittime = to; 2467 if (waittime > to) waittime = to;
1687 } 2468 }
1688#endif 2469#endif
1689 2470
2471 /* don't let timeouts decrease the waittime below timeout_blocktime */
1690 if (expect_false (waittime < timeout_blocktime)) 2472 if (expect_false (waittime < timeout_blocktime))
1691 waittime = timeout_blocktime; 2473 waittime = timeout_blocktime;
1692 2474
1693 sleeptime = waittime - backend_fudge; 2475 /* extra check because io_blocktime is commonly 0 */
1694
1695 if (expect_true (sleeptime > io_blocktime)) 2476 if (expect_false (io_blocktime))
1696 sleeptime = io_blocktime;
1697
1698 if (sleeptime)
1699 { 2477 {
2478 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2479
2480 if (sleeptime > waittime - backend_fudge)
2481 sleeptime = waittime - backend_fudge;
2482
2483 if (expect_true (sleeptime > 0.))
2484 {
1700 ev_sleep (sleeptime); 2485 ev_sleep (sleeptime);
1701 waittime -= sleeptime; 2486 waittime -= sleeptime;
2487 }
1702 } 2488 }
1703 } 2489 }
1704 2490
2491#if EV_FEATURE_API
1705 ++loop_count; 2492 ++loop_count;
2493#endif
2494 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1706 backend_poll (EV_A_ waittime); 2495 backend_poll (EV_A_ waittime);
2496 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1707 2497
1708 /* update ev_rt_now, do magic */ 2498 /* update ev_rt_now, do magic */
1709 time_update (EV_A_ waittime + sleeptime); 2499 time_update (EV_A_ waittime + sleeptime);
1710 } 2500 }
1711 2501
1718#if EV_IDLE_ENABLE 2508#if EV_IDLE_ENABLE
1719 /* queue idle watchers unless other events are pending */ 2509 /* queue idle watchers unless other events are pending */
1720 idle_reify (EV_A); 2510 idle_reify (EV_A);
1721#endif 2511#endif
1722 2512
2513#if EV_CHECK_ENABLE
1723 /* queue check watchers, to be executed first */ 2514 /* queue check watchers, to be executed first */
1724 if (expect_false (checkcnt)) 2515 if (expect_false (checkcnt))
1725 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2516 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2517#endif
1726 2518
1727 call_pending (EV_A); 2519 EV_INVOKE_PENDING;
1728 } 2520 }
1729 while (expect_true ( 2521 while (expect_true (
1730 activecnt 2522 activecnt
1731 && !loop_done 2523 && !loop_done
1732 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2524 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1733 )); 2525 ));
1734 2526
1735 if (loop_done == EVUNLOOP_ONE) 2527 if (loop_done == EVBREAK_ONE)
1736 loop_done = EVUNLOOP_CANCEL; 2528 loop_done = EVBREAK_CANCEL;
1737}
1738 2529
2530#if EV_FEATURE_API
2531 --loop_depth;
2532#endif
2533}
2534
1739void 2535void
1740ev_unloop (EV_P_ int how) 2536ev_break (EV_P_ int how)
1741{ 2537{
1742 loop_done = how; 2538 loop_done = how;
1743} 2539}
1744 2540
2541void
2542ev_ref (EV_P)
2543{
2544 ++activecnt;
2545}
2546
2547void
2548ev_unref (EV_P)
2549{
2550 --activecnt;
2551}
2552
2553void
2554ev_now_update (EV_P)
2555{
2556 time_update (EV_A_ 1e100);
2557}
2558
2559void
2560ev_suspend (EV_P)
2561{
2562 ev_now_update (EV_A);
2563}
2564
2565void
2566ev_resume (EV_P)
2567{
2568 ev_tstamp mn_prev = mn_now;
2569
2570 ev_now_update (EV_A);
2571 timers_reschedule (EV_A_ mn_now - mn_prev);
2572#if EV_PERIODIC_ENABLE
2573 /* TODO: really do this? */
2574 periodics_reschedule (EV_A);
2575#endif
2576}
2577
1745/*****************************************************************************/ 2578/*****************************************************************************/
2579/* singly-linked list management, used when the expected list length is short */
1746 2580
1747void inline_size 2581inline_size void
1748wlist_add (WL *head, WL elem) 2582wlist_add (WL *head, WL elem)
1749{ 2583{
1750 elem->next = *head; 2584 elem->next = *head;
1751 *head = elem; 2585 *head = elem;
1752} 2586}
1753 2587
1754void inline_size 2588inline_size void
1755wlist_del (WL *head, WL elem) 2589wlist_del (WL *head, WL elem)
1756{ 2590{
1757 while (*head) 2591 while (*head)
1758 { 2592 {
1759 if (*head == elem) 2593 if (expect_true (*head == elem))
1760 { 2594 {
1761 *head = elem->next; 2595 *head = elem->next;
1762 return; 2596 break;
1763 } 2597 }
1764 2598
1765 head = &(*head)->next; 2599 head = &(*head)->next;
1766 } 2600 }
1767} 2601}
1768 2602
1769void inline_speed 2603/* internal, faster, version of ev_clear_pending */
2604inline_speed void
1770clear_pending (EV_P_ W w) 2605clear_pending (EV_P_ W w)
1771{ 2606{
1772 if (w->pending) 2607 if (w->pending)
1773 { 2608 {
1774 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2609 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1775 w->pending = 0; 2610 w->pending = 0;
1776 } 2611 }
1777} 2612}
1778 2613
1779int 2614int
1783 int pending = w_->pending; 2618 int pending = w_->pending;
1784 2619
1785 if (expect_true (pending)) 2620 if (expect_true (pending))
1786 { 2621 {
1787 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2622 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2623 p->w = (W)&pending_w;
1788 w_->pending = 0; 2624 w_->pending = 0;
1789 p->w = 0;
1790 return p->events; 2625 return p->events;
1791 } 2626 }
1792 else 2627 else
1793 return 0; 2628 return 0;
1794} 2629}
1795 2630
1796void inline_size 2631inline_size void
1797pri_adjust (EV_P_ W w) 2632pri_adjust (EV_P_ W w)
1798{ 2633{
1799 int pri = w->priority; 2634 int pri = ev_priority (w);
1800 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2635 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1801 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2636 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1802 w->priority = pri; 2637 ev_set_priority (w, pri);
1803} 2638}
1804 2639
1805void inline_speed 2640inline_speed void
1806ev_start (EV_P_ W w, int active) 2641ev_start (EV_P_ W w, int active)
1807{ 2642{
1808 pri_adjust (EV_A_ w); 2643 pri_adjust (EV_A_ w);
1809 w->active = active; 2644 w->active = active;
1810 ev_ref (EV_A); 2645 ev_ref (EV_A);
1811} 2646}
1812 2647
1813void inline_size 2648inline_size void
1814ev_stop (EV_P_ W w) 2649ev_stop (EV_P_ W w)
1815{ 2650{
1816 ev_unref (EV_A); 2651 ev_unref (EV_A);
1817 w->active = 0; 2652 w->active = 0;
1818} 2653}
1825 int fd = w->fd; 2660 int fd = w->fd;
1826 2661
1827 if (expect_false (ev_is_active (w))) 2662 if (expect_false (ev_is_active (w)))
1828 return; 2663 return;
1829 2664
1830 assert (("ev_io_start called with negative fd", fd >= 0)); 2665 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2666 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2667
2668 EV_FREQUENT_CHECK;
1831 2669
1832 ev_start (EV_A_ (W)w, 1); 2670 ev_start (EV_A_ (W)w, 1);
1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2671 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1834 wlist_add (&anfds[fd].head, (WL)w); 2672 wlist_add (&anfds[fd].head, (WL)w);
1835 2673
1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2674 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1837 w->events &= ~EV_IOFDSET; 2675 w->events &= ~EV__IOFDSET;
2676
2677 EV_FREQUENT_CHECK;
1838} 2678}
1839 2679
1840void noinline 2680void noinline
1841ev_io_stop (EV_P_ ev_io *w) 2681ev_io_stop (EV_P_ ev_io *w)
1842{ 2682{
1843 clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
1844 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
1845 return; 2685 return;
1846 2686
1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2687 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2688
2689 EV_FREQUENT_CHECK;
1848 2690
1849 wlist_del (&anfds[w->fd].head, (WL)w); 2691 wlist_del (&anfds[w->fd].head, (WL)w);
1850 ev_stop (EV_A_ (W)w); 2692 ev_stop (EV_A_ (W)w);
1851 2693
1852 fd_change (EV_A_ w->fd, 1); 2694 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2695
2696 EV_FREQUENT_CHECK;
1853} 2697}
1854 2698
1855void noinline 2699void noinline
1856ev_timer_start (EV_P_ ev_timer *w) 2700ev_timer_start (EV_P_ ev_timer *w)
1857{ 2701{
1858 if (expect_false (ev_is_active (w))) 2702 if (expect_false (ev_is_active (w)))
1859 return; 2703 return;
1860 2704
1861 ((WT)w)->at += mn_now; 2705 ev_at (w) += mn_now;
1862 2706
1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2707 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1864 2708
2709 EV_FREQUENT_CHECK;
2710
2711 ++timercnt;
1865 ev_start (EV_A_ (W)w, ++timercnt); 2712 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2713 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1867 timers [timercnt - 1] = (WT)w; 2714 ANHE_w (timers [ev_active (w)]) = (WT)w;
1868 upheap (timers, timercnt - 1); 2715 ANHE_at_cache (timers [ev_active (w)]);
2716 upheap (timers, ev_active (w));
1869 2717
2718 EV_FREQUENT_CHECK;
2719
1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2720 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1871} 2721}
1872 2722
1873void noinline 2723void noinline
1874ev_timer_stop (EV_P_ ev_timer *w) 2724ev_timer_stop (EV_P_ ev_timer *w)
1875{ 2725{
1876 clear_pending (EV_A_ (W)w); 2726 clear_pending (EV_A_ (W)w);
1877 if (expect_false (!ev_is_active (w))) 2727 if (expect_false (!ev_is_active (w)))
1878 return; 2728 return;
1879 2729
1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2730 EV_FREQUENT_CHECK;
1881 2731
1882 { 2732 {
1883 int active = ((W)w)->active; 2733 int active = ev_active (w);
1884 2734
2735 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2736
2737 --timercnt;
2738
1885 if (expect_true (--active < --timercnt)) 2739 if (expect_true (active < timercnt + HEAP0))
1886 { 2740 {
1887 timers [active] = timers [timercnt]; 2741 timers [active] = timers [timercnt + HEAP0];
1888 adjustheap (timers, timercnt, active); 2742 adjustheap (timers, timercnt, active);
1889 } 2743 }
1890 } 2744 }
1891 2745
1892 ((WT)w)->at -= mn_now; 2746 ev_at (w) -= mn_now;
1893 2747
1894 ev_stop (EV_A_ (W)w); 2748 ev_stop (EV_A_ (W)w);
2749
2750 EV_FREQUENT_CHECK;
1895} 2751}
1896 2752
1897void noinline 2753void noinline
1898ev_timer_again (EV_P_ ev_timer *w) 2754ev_timer_again (EV_P_ ev_timer *w)
1899{ 2755{
2756 EV_FREQUENT_CHECK;
2757
1900 if (ev_is_active (w)) 2758 if (ev_is_active (w))
1901 { 2759 {
1902 if (w->repeat) 2760 if (w->repeat)
1903 { 2761 {
1904 ((WT)w)->at = mn_now + w->repeat; 2762 ev_at (w) = mn_now + w->repeat;
2763 ANHE_at_cache (timers [ev_active (w)]);
1905 adjustheap (timers, timercnt, ((W)w)->active - 1); 2764 adjustheap (timers, timercnt, ev_active (w));
1906 } 2765 }
1907 else 2766 else
1908 ev_timer_stop (EV_A_ w); 2767 ev_timer_stop (EV_A_ w);
1909 } 2768 }
1910 else if (w->repeat) 2769 else if (w->repeat)
1911 { 2770 {
1912 w->at = w->repeat; 2771 ev_at (w) = w->repeat;
1913 ev_timer_start (EV_A_ w); 2772 ev_timer_start (EV_A_ w);
1914 } 2773 }
2774
2775 EV_FREQUENT_CHECK;
2776}
2777
2778ev_tstamp
2779ev_timer_remaining (EV_P_ ev_timer *w)
2780{
2781 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1915} 2782}
1916 2783
1917#if EV_PERIODIC_ENABLE 2784#if EV_PERIODIC_ENABLE
1918void noinline 2785void noinline
1919ev_periodic_start (EV_P_ ev_periodic *w) 2786ev_periodic_start (EV_P_ ev_periodic *w)
1920{ 2787{
1921 if (expect_false (ev_is_active (w))) 2788 if (expect_false (ev_is_active (w)))
1922 return; 2789 return;
1923 2790
1924 if (w->reschedule_cb) 2791 if (w->reschedule_cb)
1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2792 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1926 else if (w->interval) 2793 else if (w->interval)
1927 { 2794 {
1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2795 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1929 /* this formula differs from the one in periodic_reify because we do not always round up */ 2796 periodic_recalc (EV_A_ w);
1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1931 } 2797 }
1932 else 2798 else
1933 ((WT)w)->at = w->offset; 2799 ev_at (w) = w->offset;
1934 2800
2801 EV_FREQUENT_CHECK;
2802
2803 ++periodiccnt;
1935 ev_start (EV_A_ (W)w, ++periodiccnt); 2804 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2805 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1937 periodics [periodiccnt - 1] = (WT)w; 2806 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1938 upheap (periodics, periodiccnt - 1); 2807 ANHE_at_cache (periodics [ev_active (w)]);
2808 upheap (periodics, ev_active (w));
1939 2809
2810 EV_FREQUENT_CHECK;
2811
1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2812 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1941} 2813}
1942 2814
1943void noinline 2815void noinline
1944ev_periodic_stop (EV_P_ ev_periodic *w) 2816ev_periodic_stop (EV_P_ ev_periodic *w)
1945{ 2817{
1946 clear_pending (EV_A_ (W)w); 2818 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2819 if (expect_false (!ev_is_active (w)))
1948 return; 2820 return;
1949 2821
1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2822 EV_FREQUENT_CHECK;
1951 2823
1952 { 2824 {
1953 int active = ((W)w)->active; 2825 int active = ev_active (w);
1954 2826
2827 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2828
2829 --periodiccnt;
2830
1955 if (expect_true (--active < --periodiccnt)) 2831 if (expect_true (active < periodiccnt + HEAP0))
1956 { 2832 {
1957 periodics [active] = periodics [periodiccnt]; 2833 periodics [active] = periodics [periodiccnt + HEAP0];
1958 adjustheap (periodics, periodiccnt, active); 2834 adjustheap (periodics, periodiccnt, active);
1959 } 2835 }
1960 } 2836 }
1961 2837
1962 ev_stop (EV_A_ (W)w); 2838 ev_stop (EV_A_ (W)w);
2839
2840 EV_FREQUENT_CHECK;
1963} 2841}
1964 2842
1965void noinline 2843void noinline
1966ev_periodic_again (EV_P_ ev_periodic *w) 2844ev_periodic_again (EV_P_ ev_periodic *w)
1967{ 2845{
1973 2851
1974#ifndef SA_RESTART 2852#ifndef SA_RESTART
1975# define SA_RESTART 0 2853# define SA_RESTART 0
1976#endif 2854#endif
1977 2855
2856#if EV_SIGNAL_ENABLE
2857
1978void noinline 2858void noinline
1979ev_signal_start (EV_P_ ev_signal *w) 2859ev_signal_start (EV_P_ ev_signal *w)
1980{ 2860{
1981#if EV_MULTIPLICITY
1982 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1983#endif
1984 if (expect_false (ev_is_active (w))) 2861 if (expect_false (ev_is_active (w)))
1985 return; 2862 return;
1986 2863
1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2864 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1988 2865
1989 evpipe_init (EV_A); 2866#if EV_MULTIPLICITY
2867 assert (("libev: a signal must not be attached to two different loops",
2868 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1990 2869
2870 signals [w->signum - 1].loop = EV_A;
2871#endif
2872
2873 EV_FREQUENT_CHECK;
2874
2875#if EV_USE_SIGNALFD
2876 if (sigfd == -2)
1991 { 2877 {
1992#ifndef _WIN32 2878 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1993 sigset_t full, prev; 2879 if (sigfd < 0 && errno == EINVAL)
1994 sigfillset (&full); 2880 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1995 sigprocmask (SIG_SETMASK, &full, &prev);
1996#endif
1997 2881
1998 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2882 if (sigfd >= 0)
2883 {
2884 fd_intern (sigfd); /* doing it twice will not hurt */
1999 2885
2000#ifndef _WIN32 2886 sigemptyset (&sigfd_set);
2001 sigprocmask (SIG_SETMASK, &prev, 0); 2887
2002#endif 2888 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2889 ev_set_priority (&sigfd_w, EV_MAXPRI);
2890 ev_io_start (EV_A_ &sigfd_w);
2891 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2892 }
2003 } 2893 }
2894
2895 if (sigfd >= 0)
2896 {
2897 /* TODO: check .head */
2898 sigaddset (&sigfd_set, w->signum);
2899 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2900
2901 signalfd (sigfd, &sigfd_set, 0);
2902 }
2903#endif
2004 2904
2005 ev_start (EV_A_ (W)w, 1); 2905 ev_start (EV_A_ (W)w, 1);
2006 wlist_add (&signals [w->signum - 1].head, (WL)w); 2906 wlist_add (&signals [w->signum - 1].head, (WL)w);
2007 2907
2008 if (!((WL)w)->next) 2908 if (!((WL)w)->next)
2909# if EV_USE_SIGNALFD
2910 if (sigfd < 0) /*TODO*/
2911# endif
2009 { 2912 {
2010#if _WIN32 2913# ifdef _WIN32
2914 evpipe_init (EV_A);
2915
2011 signal (w->signum, ev_sighandler); 2916 signal (w->signum, ev_sighandler);
2012#else 2917# else
2013 struct sigaction sa; 2918 struct sigaction sa;
2919
2920 evpipe_init (EV_A);
2921
2014 sa.sa_handler = ev_sighandler; 2922 sa.sa_handler = ev_sighandler;
2015 sigfillset (&sa.sa_mask); 2923 sigfillset (&sa.sa_mask);
2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2924 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2017 sigaction (w->signum, &sa, 0); 2925 sigaction (w->signum, &sa, 0);
2926
2927 if (origflags & EVFLAG_NOSIGMASK)
2928 {
2929 sigemptyset (&sa.sa_mask);
2930 sigaddset (&sa.sa_mask, w->signum);
2931 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2932 }
2018#endif 2933#endif
2019 } 2934 }
2935
2936 EV_FREQUENT_CHECK;
2020} 2937}
2021 2938
2022void noinline 2939void noinline
2023ev_signal_stop (EV_P_ ev_signal *w) 2940ev_signal_stop (EV_P_ ev_signal *w)
2024{ 2941{
2025 clear_pending (EV_A_ (W)w); 2942 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2943 if (expect_false (!ev_is_active (w)))
2027 return; 2944 return;
2028 2945
2946 EV_FREQUENT_CHECK;
2947
2029 wlist_del (&signals [w->signum - 1].head, (WL)w); 2948 wlist_del (&signals [w->signum - 1].head, (WL)w);
2030 ev_stop (EV_A_ (W)w); 2949 ev_stop (EV_A_ (W)w);
2031 2950
2032 if (!signals [w->signum - 1].head) 2951 if (!signals [w->signum - 1].head)
2952 {
2953#if EV_MULTIPLICITY
2954 signals [w->signum - 1].loop = 0; /* unattach from signal */
2955#endif
2956#if EV_USE_SIGNALFD
2957 if (sigfd >= 0)
2958 {
2959 sigset_t ss;
2960
2961 sigemptyset (&ss);
2962 sigaddset (&ss, w->signum);
2963 sigdelset (&sigfd_set, w->signum);
2964
2965 signalfd (sigfd, &sigfd_set, 0);
2966 sigprocmask (SIG_UNBLOCK, &ss, 0);
2967 }
2968 else
2969#endif
2033 signal (w->signum, SIG_DFL); 2970 signal (w->signum, SIG_DFL);
2971 }
2972
2973 EV_FREQUENT_CHECK;
2034} 2974}
2975
2976#endif
2977
2978#if EV_CHILD_ENABLE
2035 2979
2036void 2980void
2037ev_child_start (EV_P_ ev_child *w) 2981ev_child_start (EV_P_ ev_child *w)
2038{ 2982{
2039#if EV_MULTIPLICITY 2983#if EV_MULTIPLICITY
2040 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2984 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2041#endif 2985#endif
2042 if (expect_false (ev_is_active (w))) 2986 if (expect_false (ev_is_active (w)))
2043 return; 2987 return;
2044 2988
2989 EV_FREQUENT_CHECK;
2990
2045 ev_start (EV_A_ (W)w, 1); 2991 ev_start (EV_A_ (W)w, 1);
2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2992 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2993
2994 EV_FREQUENT_CHECK;
2047} 2995}
2048 2996
2049void 2997void
2050ev_child_stop (EV_P_ ev_child *w) 2998ev_child_stop (EV_P_ ev_child *w)
2051{ 2999{
2052 clear_pending (EV_A_ (W)w); 3000 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 3001 if (expect_false (!ev_is_active (w)))
2054 return; 3002 return;
2055 3003
3004 EV_FREQUENT_CHECK;
3005
2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3006 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2057 ev_stop (EV_A_ (W)w); 3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
2058} 3010}
3011
3012#endif
2059 3013
2060#if EV_STAT_ENABLE 3014#if EV_STAT_ENABLE
2061 3015
2062# ifdef _WIN32 3016# ifdef _WIN32
2063# undef lstat 3017# undef lstat
2064# define lstat(a,b) _stati64 (a,b) 3018# define lstat(a,b) _stati64 (a,b)
2065# endif 3019# endif
2066 3020
2067#define DEF_STAT_INTERVAL 5.0074891 3021#define DEF_STAT_INTERVAL 5.0074891
3022#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2068#define MIN_STAT_INTERVAL 0.1074891 3023#define MIN_STAT_INTERVAL 0.1074891
2069 3024
2070static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3025static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2071 3026
2072#if EV_USE_INOTIFY 3027#if EV_USE_INOTIFY
2073# define EV_INOTIFY_BUFSIZE 8192 3028
3029/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3030# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2074 3031
2075static void noinline 3032static void noinline
2076infy_add (EV_P_ ev_stat *w) 3033infy_add (EV_P_ ev_stat *w)
2077{ 3034{
2078 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3035 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2079 3036
2080 if (w->wd < 0) 3037 if (w->wd >= 0)
3038 {
3039 struct statfs sfs;
3040
3041 /* now local changes will be tracked by inotify, but remote changes won't */
3042 /* unless the filesystem is known to be local, we therefore still poll */
3043 /* also do poll on <2.6.25, but with normal frequency */
3044
3045 if (!fs_2625)
3046 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3047 else if (!statfs (w->path, &sfs)
3048 && (sfs.f_type == 0x1373 /* devfs */
3049 || sfs.f_type == 0xEF53 /* ext2/3 */
3050 || sfs.f_type == 0x3153464a /* jfs */
3051 || sfs.f_type == 0x52654973 /* reiser3 */
3052 || sfs.f_type == 0x01021994 /* tempfs */
3053 || sfs.f_type == 0x58465342 /* xfs */))
3054 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3055 else
3056 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2081 { 3057 }
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3058 else
3059 {
3060 /* can't use inotify, continue to stat */
3061 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2083 3062
2084 /* monitor some parent directory for speedup hints */ 3063 /* if path is not there, monitor some parent directory for speedup hints */
3064 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3065 /* but an efficiency issue only */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3066 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 { 3067 {
2087 char path [4096]; 3068 char path [4096];
2088 strcpy (path, w->path); 3069 strcpy (path, w->path);
2089 3070
2092 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3073 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2093 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3074 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2094 3075
2095 char *pend = strrchr (path, '/'); 3076 char *pend = strrchr (path, '/');
2096 3077
2097 if (!pend) 3078 if (!pend || pend == path)
2098 break; /* whoops, no '/', complain to your admin */ 3079 break;
2099 3080
2100 *pend = 0; 3081 *pend = 0;
2101 w->wd = inotify_add_watch (fs_fd, path, mask); 3082 w->wd = inotify_add_watch (fs_fd, path, mask);
2102 } 3083 }
2103 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3084 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2104 } 3085 }
2105 } 3086 }
2106 else
2107 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2108 3087
2109 if (w->wd >= 0) 3088 if (w->wd >= 0)
2110 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3089 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3090
3091 /* now re-arm timer, if required */
3092 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3093 ev_timer_again (EV_A_ &w->timer);
3094 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2111} 3095}
2112 3096
2113static void noinline 3097static void noinline
2114infy_del (EV_P_ ev_stat *w) 3098infy_del (EV_P_ ev_stat *w)
2115{ 3099{
2118 3102
2119 if (wd < 0) 3103 if (wd < 0)
2120 return; 3104 return;
2121 3105
2122 w->wd = -2; 3106 w->wd = -2;
2123 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3107 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2124 wlist_del (&fs_hash [slot].head, (WL)w); 3108 wlist_del (&fs_hash [slot].head, (WL)w);
2125 3109
2126 /* remove this watcher, if others are watching it, they will rearm */ 3110 /* remove this watcher, if others are watching it, they will rearm */
2127 inotify_rm_watch (fs_fd, wd); 3111 inotify_rm_watch (fs_fd, wd);
2128} 3112}
2129 3113
2130static void noinline 3114static void noinline
2131infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3115infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2132{ 3116{
2133 if (slot < 0) 3117 if (slot < 0)
2134 /* overflow, need to check for all hahs slots */ 3118 /* overflow, need to check for all hash slots */
2135 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3119 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2136 infy_wd (EV_A_ slot, wd, ev); 3120 infy_wd (EV_A_ slot, wd, ev);
2137 else 3121 else
2138 { 3122 {
2139 WL w_; 3123 WL w_;
2140 3124
2141 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3125 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2142 { 3126 {
2143 ev_stat *w = (ev_stat *)w_; 3127 ev_stat *w = (ev_stat *)w_;
2144 w_ = w_->next; /* lets us remove this watcher and all before it */ 3128 w_ = w_->next; /* lets us remove this watcher and all before it */
2145 3129
2146 if (w->wd == wd || wd == -1) 3130 if (w->wd == wd || wd == -1)
2147 { 3131 {
2148 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3132 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2149 { 3133 {
3134 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2150 w->wd = -1; 3135 w->wd = -1;
2151 infy_add (EV_A_ w); /* re-add, no matter what */ 3136 infy_add (EV_A_ w); /* re-add, no matter what */
2152 } 3137 }
2153 3138
2154 stat_timer_cb (EV_A_ &w->timer, 0); 3139 stat_timer_cb (EV_A_ &w->timer, 0);
2159 3144
2160static void 3145static void
2161infy_cb (EV_P_ ev_io *w, int revents) 3146infy_cb (EV_P_ ev_io *w, int revents)
2162{ 3147{
2163 char buf [EV_INOTIFY_BUFSIZE]; 3148 char buf [EV_INOTIFY_BUFSIZE];
2164 struct inotify_event *ev = (struct inotify_event *)buf;
2165 int ofs; 3149 int ofs;
2166 int len = read (fs_fd, buf, sizeof (buf)); 3150 int len = read (fs_fd, buf, sizeof (buf));
2167 3151
2168 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3152 for (ofs = 0; ofs < len; )
3153 {
3154 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2169 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3155 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3156 ofs += sizeof (struct inotify_event) + ev->len;
3157 }
2170} 3158}
2171 3159
2172void inline_size 3160inline_size void
3161ev_check_2625 (EV_P)
3162{
3163 /* kernels < 2.6.25 are borked
3164 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3165 */
3166 if (ev_linux_version () < 0x020619)
3167 return;
3168
3169 fs_2625 = 1;
3170}
3171
3172inline_size int
3173infy_newfd (void)
3174{
3175#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3176 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3177 if (fd >= 0)
3178 return fd;
3179#endif
3180 return inotify_init ();
3181}
3182
3183inline_size void
2173infy_init (EV_P) 3184infy_init (EV_P)
2174{ 3185{
2175 if (fs_fd != -2) 3186 if (fs_fd != -2)
2176 return; 3187 return;
2177 3188
3189 fs_fd = -1;
3190
3191 ev_check_2625 (EV_A);
3192
2178 fs_fd = inotify_init (); 3193 fs_fd = infy_newfd ();
2179 3194
2180 if (fs_fd >= 0) 3195 if (fs_fd >= 0)
2181 { 3196 {
3197 fd_intern (fs_fd);
2182 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3198 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2183 ev_set_priority (&fs_w, EV_MAXPRI); 3199 ev_set_priority (&fs_w, EV_MAXPRI);
2184 ev_io_start (EV_A_ &fs_w); 3200 ev_io_start (EV_A_ &fs_w);
3201 ev_unref (EV_A);
2185 } 3202 }
2186} 3203}
2187 3204
2188void inline_size 3205inline_size void
2189infy_fork (EV_P) 3206infy_fork (EV_P)
2190{ 3207{
2191 int slot; 3208 int slot;
2192 3209
2193 if (fs_fd < 0) 3210 if (fs_fd < 0)
2194 return; 3211 return;
2195 3212
3213 ev_ref (EV_A);
3214 ev_io_stop (EV_A_ &fs_w);
2196 close (fs_fd); 3215 close (fs_fd);
2197 fs_fd = inotify_init (); 3216 fs_fd = infy_newfd ();
2198 3217
3218 if (fs_fd >= 0)
3219 {
3220 fd_intern (fs_fd);
3221 ev_io_set (&fs_w, fs_fd, EV_READ);
3222 ev_io_start (EV_A_ &fs_w);
3223 ev_unref (EV_A);
3224 }
3225
2199 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3226 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2200 { 3227 {
2201 WL w_ = fs_hash [slot].head; 3228 WL w_ = fs_hash [slot].head;
2202 fs_hash [slot].head = 0; 3229 fs_hash [slot].head = 0;
2203 3230
2204 while (w_) 3231 while (w_)
2209 w->wd = -1; 3236 w->wd = -1;
2210 3237
2211 if (fs_fd >= 0) 3238 if (fs_fd >= 0)
2212 infy_add (EV_A_ w); /* re-add, no matter what */ 3239 infy_add (EV_A_ w); /* re-add, no matter what */
2213 else 3240 else
3241 {
3242 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3243 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2214 ev_timer_start (EV_A_ &w->timer); 3244 ev_timer_again (EV_A_ &w->timer);
3245 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3246 }
2215 } 3247 }
2216
2217 } 3248 }
2218} 3249}
2219 3250
3251#endif
3252
3253#ifdef _WIN32
3254# define EV_LSTAT(p,b) _stati64 (p, b)
3255#else
3256# define EV_LSTAT(p,b) lstat (p, b)
2220#endif 3257#endif
2221 3258
2222void 3259void
2223ev_stat_stat (EV_P_ ev_stat *w) 3260ev_stat_stat (EV_P_ ev_stat *w)
2224{ 3261{
2231static void noinline 3268static void noinline
2232stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3269stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2233{ 3270{
2234 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3271 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2235 3272
2236 /* we copy this here each the time so that */ 3273 ev_statdata prev = w->attr;
2237 /* prev has the old value when the callback gets invoked */
2238 w->prev = w->attr;
2239 ev_stat_stat (EV_A_ w); 3274 ev_stat_stat (EV_A_ w);
2240 3275
2241 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3276 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2242 if ( 3277 if (
2243 w->prev.st_dev != w->attr.st_dev 3278 prev.st_dev != w->attr.st_dev
2244 || w->prev.st_ino != w->attr.st_ino 3279 || prev.st_ino != w->attr.st_ino
2245 || w->prev.st_mode != w->attr.st_mode 3280 || prev.st_mode != w->attr.st_mode
2246 || w->prev.st_nlink != w->attr.st_nlink 3281 || prev.st_nlink != w->attr.st_nlink
2247 || w->prev.st_uid != w->attr.st_uid 3282 || prev.st_uid != w->attr.st_uid
2248 || w->prev.st_gid != w->attr.st_gid 3283 || prev.st_gid != w->attr.st_gid
2249 || w->prev.st_rdev != w->attr.st_rdev 3284 || prev.st_rdev != w->attr.st_rdev
2250 || w->prev.st_size != w->attr.st_size 3285 || prev.st_size != w->attr.st_size
2251 || w->prev.st_atime != w->attr.st_atime 3286 || prev.st_atime != w->attr.st_atime
2252 || w->prev.st_mtime != w->attr.st_mtime 3287 || prev.st_mtime != w->attr.st_mtime
2253 || w->prev.st_ctime != w->attr.st_ctime 3288 || prev.st_ctime != w->attr.st_ctime
2254 ) { 3289 ) {
3290 /* we only update w->prev on actual differences */
3291 /* in case we test more often than invoke the callback, */
3292 /* to ensure that prev is always different to attr */
3293 w->prev = prev;
3294
2255 #if EV_USE_INOTIFY 3295 #if EV_USE_INOTIFY
3296 if (fs_fd >= 0)
3297 {
2256 infy_del (EV_A_ w); 3298 infy_del (EV_A_ w);
2257 infy_add (EV_A_ w); 3299 infy_add (EV_A_ w);
2258 ev_stat_stat (EV_A_ w); /* avoid race... */ 3300 ev_stat_stat (EV_A_ w); /* avoid race... */
3301 }
2259 #endif 3302 #endif
2260 3303
2261 ev_feed_event (EV_A_ w, EV_STAT); 3304 ev_feed_event (EV_A_ w, EV_STAT);
2262 } 3305 }
2263} 3306}
2266ev_stat_start (EV_P_ ev_stat *w) 3309ev_stat_start (EV_P_ ev_stat *w)
2267{ 3310{
2268 if (expect_false (ev_is_active (w))) 3311 if (expect_false (ev_is_active (w)))
2269 return; 3312 return;
2270 3313
2271 /* since we use memcmp, we need to clear any padding data etc. */
2272 memset (&w->prev, 0, sizeof (ev_statdata));
2273 memset (&w->attr, 0, sizeof (ev_statdata));
2274
2275 ev_stat_stat (EV_A_ w); 3314 ev_stat_stat (EV_A_ w);
2276 3315
3316 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2277 if (w->interval < MIN_STAT_INTERVAL) 3317 w->interval = MIN_STAT_INTERVAL;
2278 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2279 3318
2280 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3319 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2281 ev_set_priority (&w->timer, ev_priority (w)); 3320 ev_set_priority (&w->timer, ev_priority (w));
2282 3321
2283#if EV_USE_INOTIFY 3322#if EV_USE_INOTIFY
2284 infy_init (EV_A); 3323 infy_init (EV_A);
2285 3324
2286 if (fs_fd >= 0) 3325 if (fs_fd >= 0)
2287 infy_add (EV_A_ w); 3326 infy_add (EV_A_ w);
2288 else 3327 else
2289#endif 3328#endif
3329 {
2290 ev_timer_start (EV_A_ &w->timer); 3330 ev_timer_again (EV_A_ &w->timer);
3331 ev_unref (EV_A);
3332 }
2291 3333
2292 ev_start (EV_A_ (W)w, 1); 3334 ev_start (EV_A_ (W)w, 1);
3335
3336 EV_FREQUENT_CHECK;
2293} 3337}
2294 3338
2295void 3339void
2296ev_stat_stop (EV_P_ ev_stat *w) 3340ev_stat_stop (EV_P_ ev_stat *w)
2297{ 3341{
2298 clear_pending (EV_A_ (W)w); 3342 clear_pending (EV_A_ (W)w);
2299 if (expect_false (!ev_is_active (w))) 3343 if (expect_false (!ev_is_active (w)))
2300 return; 3344 return;
2301 3345
3346 EV_FREQUENT_CHECK;
3347
2302#if EV_USE_INOTIFY 3348#if EV_USE_INOTIFY
2303 infy_del (EV_A_ w); 3349 infy_del (EV_A_ w);
2304#endif 3350#endif
3351
3352 if (ev_is_active (&w->timer))
3353 {
3354 ev_ref (EV_A);
2305 ev_timer_stop (EV_A_ &w->timer); 3355 ev_timer_stop (EV_A_ &w->timer);
3356 }
2306 3357
2307 ev_stop (EV_A_ (W)w); 3358 ev_stop (EV_A_ (W)w);
3359
3360 EV_FREQUENT_CHECK;
2308} 3361}
2309#endif 3362#endif
2310 3363
2311#if EV_IDLE_ENABLE 3364#if EV_IDLE_ENABLE
2312void 3365void
2314{ 3367{
2315 if (expect_false (ev_is_active (w))) 3368 if (expect_false (ev_is_active (w)))
2316 return; 3369 return;
2317 3370
2318 pri_adjust (EV_A_ (W)w); 3371 pri_adjust (EV_A_ (W)w);
3372
3373 EV_FREQUENT_CHECK;
2319 3374
2320 { 3375 {
2321 int active = ++idlecnt [ABSPRI (w)]; 3376 int active = ++idlecnt [ABSPRI (w)];
2322 3377
2323 ++idleall; 3378 ++idleall;
2324 ev_start (EV_A_ (W)w, active); 3379 ev_start (EV_A_ (W)w, active);
2325 3380
2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3381 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2327 idles [ABSPRI (w)][active - 1] = w; 3382 idles [ABSPRI (w)][active - 1] = w;
2328 } 3383 }
3384
3385 EV_FREQUENT_CHECK;
2329} 3386}
2330 3387
2331void 3388void
2332ev_idle_stop (EV_P_ ev_idle *w) 3389ev_idle_stop (EV_P_ ev_idle *w)
2333{ 3390{
2334 clear_pending (EV_A_ (W)w); 3391 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 3392 if (expect_false (!ev_is_active (w)))
2336 return; 3393 return;
2337 3394
3395 EV_FREQUENT_CHECK;
3396
2338 { 3397 {
2339 int active = ((W)w)->active; 3398 int active = ev_active (w);
2340 3399
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3400 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3401 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2343 3402
2344 ev_stop (EV_A_ (W)w); 3403 ev_stop (EV_A_ (W)w);
2345 --idleall; 3404 --idleall;
2346 } 3405 }
2347}
2348#endif
2349 3406
3407 EV_FREQUENT_CHECK;
3408}
3409#endif
3410
3411#if EV_PREPARE_ENABLE
2350void 3412void
2351ev_prepare_start (EV_P_ ev_prepare *w) 3413ev_prepare_start (EV_P_ ev_prepare *w)
2352{ 3414{
2353 if (expect_false (ev_is_active (w))) 3415 if (expect_false (ev_is_active (w)))
2354 return; 3416 return;
3417
3418 EV_FREQUENT_CHECK;
2355 3419
2356 ev_start (EV_A_ (W)w, ++preparecnt); 3420 ev_start (EV_A_ (W)w, ++preparecnt);
2357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3421 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2358 prepares [preparecnt - 1] = w; 3422 prepares [preparecnt - 1] = w;
3423
3424 EV_FREQUENT_CHECK;
2359} 3425}
2360 3426
2361void 3427void
2362ev_prepare_stop (EV_P_ ev_prepare *w) 3428ev_prepare_stop (EV_P_ ev_prepare *w)
2363{ 3429{
2364 clear_pending (EV_A_ (W)w); 3430 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 3431 if (expect_false (!ev_is_active (w)))
2366 return; 3432 return;
2367 3433
3434 EV_FREQUENT_CHECK;
3435
2368 { 3436 {
2369 int active = ((W)w)->active; 3437 int active = ev_active (w);
3438
2370 prepares [active - 1] = prepares [--preparecnt]; 3439 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active; 3440 ev_active (prepares [active - 1]) = active;
2372 } 3441 }
2373 3442
2374 ev_stop (EV_A_ (W)w); 3443 ev_stop (EV_A_ (W)w);
2375}
2376 3444
3445 EV_FREQUENT_CHECK;
3446}
3447#endif
3448
3449#if EV_CHECK_ENABLE
2377void 3450void
2378ev_check_start (EV_P_ ev_check *w) 3451ev_check_start (EV_P_ ev_check *w)
2379{ 3452{
2380 if (expect_false (ev_is_active (w))) 3453 if (expect_false (ev_is_active (w)))
2381 return; 3454 return;
3455
3456 EV_FREQUENT_CHECK;
2382 3457
2383 ev_start (EV_A_ (W)w, ++checkcnt); 3458 ev_start (EV_A_ (W)w, ++checkcnt);
2384 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3459 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2385 checks [checkcnt - 1] = w; 3460 checks [checkcnt - 1] = w;
3461
3462 EV_FREQUENT_CHECK;
2386} 3463}
2387 3464
2388void 3465void
2389ev_check_stop (EV_P_ ev_check *w) 3466ev_check_stop (EV_P_ ev_check *w)
2390{ 3467{
2391 clear_pending (EV_A_ (W)w); 3468 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w))) 3469 if (expect_false (!ev_is_active (w)))
2393 return; 3470 return;
2394 3471
3472 EV_FREQUENT_CHECK;
3473
2395 { 3474 {
2396 int active = ((W)w)->active; 3475 int active = ev_active (w);
3476
2397 checks [active - 1] = checks [--checkcnt]; 3477 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active; 3478 ev_active (checks [active - 1]) = active;
2399 } 3479 }
2400 3480
2401 ev_stop (EV_A_ (W)w); 3481 ev_stop (EV_A_ (W)w);
3482
3483 EV_FREQUENT_CHECK;
2402} 3484}
3485#endif
2403 3486
2404#if EV_EMBED_ENABLE 3487#if EV_EMBED_ENABLE
2405void noinline 3488void noinline
2406ev_embed_sweep (EV_P_ ev_embed *w) 3489ev_embed_sweep (EV_P_ ev_embed *w)
2407{ 3490{
2408 ev_loop (w->other, EVLOOP_NONBLOCK); 3491 ev_run (w->other, EVRUN_NOWAIT);
2409} 3492}
2410 3493
2411static void 3494static void
2412embed_io_cb (EV_P_ ev_io *io, int revents) 3495embed_io_cb (EV_P_ ev_io *io, int revents)
2413{ 3496{
2414 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3497 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2415 3498
2416 if (ev_cb (w)) 3499 if (ev_cb (w))
2417 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3500 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2418 else 3501 else
2419 ev_loop (w->other, EVLOOP_NONBLOCK); 3502 ev_run (w->other, EVRUN_NOWAIT);
2420} 3503}
2421 3504
2422static void 3505static void
2423embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3506embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2424{ 3507{
2425 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3508 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2426 3509
2427 { 3510 {
2428 struct ev_loop *loop = w->other; 3511 EV_P = w->other;
2429 3512
2430 while (fdchangecnt) 3513 while (fdchangecnt)
2431 { 3514 {
2432 fd_reify (EV_A); 3515 fd_reify (EV_A);
2433 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3516 ev_run (EV_A_ EVRUN_NOWAIT);
2434 } 3517 }
2435 } 3518 }
3519}
3520
3521static void
3522embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3523{
3524 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3525
3526 ev_embed_stop (EV_A_ w);
3527
3528 {
3529 EV_P = w->other;
3530
3531 ev_loop_fork (EV_A);
3532 ev_run (EV_A_ EVRUN_NOWAIT);
3533 }
3534
3535 ev_embed_start (EV_A_ w);
2436} 3536}
2437 3537
2438#if 0 3538#if 0
2439static void 3539static void
2440embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3540embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2448{ 3548{
2449 if (expect_false (ev_is_active (w))) 3549 if (expect_false (ev_is_active (w)))
2450 return; 3550 return;
2451 3551
2452 { 3552 {
2453 struct ev_loop *loop = w->other; 3553 EV_P = w->other;
2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3554 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3555 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2456 } 3556 }
3557
3558 EV_FREQUENT_CHECK;
2457 3559
2458 ev_set_priority (&w->io, ev_priority (w)); 3560 ev_set_priority (&w->io, ev_priority (w));
2459 ev_io_start (EV_A_ &w->io); 3561 ev_io_start (EV_A_ &w->io);
2460 3562
2461 ev_prepare_init (&w->prepare, embed_prepare_cb); 3563 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI); 3564 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare); 3565 ev_prepare_start (EV_A_ &w->prepare);
2464 3566
3567 ev_fork_init (&w->fork, embed_fork_cb);
3568 ev_fork_start (EV_A_ &w->fork);
3569
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3570 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466 3571
2467 ev_start (EV_A_ (W)w, 1); 3572 ev_start (EV_A_ (W)w, 1);
3573
3574 EV_FREQUENT_CHECK;
2468} 3575}
2469 3576
2470void 3577void
2471ev_embed_stop (EV_P_ ev_embed *w) 3578ev_embed_stop (EV_P_ ev_embed *w)
2472{ 3579{
2473 clear_pending (EV_A_ (W)w); 3580 clear_pending (EV_A_ (W)w);
2474 if (expect_false (!ev_is_active (w))) 3581 if (expect_false (!ev_is_active (w)))
2475 return; 3582 return;
2476 3583
3584 EV_FREQUENT_CHECK;
3585
2477 ev_io_stop (EV_A_ &w->io); 3586 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare); 3587 ev_prepare_stop (EV_A_ &w->prepare);
3588 ev_fork_stop (EV_A_ &w->fork);
2479 3589
2480 ev_stop (EV_A_ (W)w); 3590 ev_stop (EV_A_ (W)w);
3591
3592 EV_FREQUENT_CHECK;
2481} 3593}
2482#endif 3594#endif
2483 3595
2484#if EV_FORK_ENABLE 3596#if EV_FORK_ENABLE
2485void 3597void
2486ev_fork_start (EV_P_ ev_fork *w) 3598ev_fork_start (EV_P_ ev_fork *w)
2487{ 3599{
2488 if (expect_false (ev_is_active (w))) 3600 if (expect_false (ev_is_active (w)))
2489 return; 3601 return;
3602
3603 EV_FREQUENT_CHECK;
2490 3604
2491 ev_start (EV_A_ (W)w, ++forkcnt); 3605 ev_start (EV_A_ (W)w, ++forkcnt);
2492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3606 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2493 forks [forkcnt - 1] = w; 3607 forks [forkcnt - 1] = w;
3608
3609 EV_FREQUENT_CHECK;
2494} 3610}
2495 3611
2496void 3612void
2497ev_fork_stop (EV_P_ ev_fork *w) 3613ev_fork_stop (EV_P_ ev_fork *w)
2498{ 3614{
2499 clear_pending (EV_A_ (W)w); 3615 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 3616 if (expect_false (!ev_is_active (w)))
2501 return; 3617 return;
2502 3618
3619 EV_FREQUENT_CHECK;
3620
2503 { 3621 {
2504 int active = ((W)w)->active; 3622 int active = ev_active (w);
3623
2505 forks [active - 1] = forks [--forkcnt]; 3624 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active; 3625 ev_active (forks [active - 1]) = active;
2507 } 3626 }
2508 3627
2509 ev_stop (EV_A_ (W)w); 3628 ev_stop (EV_A_ (W)w);
2510}
2511#endif
2512 3629
3630 EV_FREQUENT_CHECK;
3631}
3632#endif
3633
2513#if EV_ASYNC_ENABLE 3634#if EV_CLEANUP_ENABLE
2514void 3635void
2515ev_async_start (EV_P_ ev_async *w) 3636ev_cleanup_start (EV_P_ ev_cleanup *w)
2516{ 3637{
2517 if (expect_false (ev_is_active (w))) 3638 if (expect_false (ev_is_active (w)))
2518 return; 3639 return;
2519 3640
3641 EV_FREQUENT_CHECK;
3642
3643 ev_start (EV_A_ (W)w, ++cleanupcnt);
3644 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3645 cleanups [cleanupcnt - 1] = w;
3646
3647 /* cleanup watchers should never keep a refcount on the loop */
3648 ev_unref (EV_A);
3649 EV_FREQUENT_CHECK;
3650}
3651
3652void
3653ev_cleanup_stop (EV_P_ ev_cleanup *w)
3654{
3655 clear_pending (EV_A_ (W)w);
3656 if (expect_false (!ev_is_active (w)))
3657 return;
3658
3659 EV_FREQUENT_CHECK;
3660 ev_ref (EV_A);
3661
3662 {
3663 int active = ev_active (w);
3664
3665 cleanups [active - 1] = cleanups [--cleanupcnt];
3666 ev_active (cleanups [active - 1]) = active;
3667 }
3668
3669 ev_stop (EV_A_ (W)w);
3670
3671 EV_FREQUENT_CHECK;
3672}
3673#endif
3674
3675#if EV_ASYNC_ENABLE
3676void
3677ev_async_start (EV_P_ ev_async *w)
3678{
3679 if (expect_false (ev_is_active (w)))
3680 return;
3681
3682 w->sent = 0;
3683
2520 evpipe_init (EV_A); 3684 evpipe_init (EV_A);
3685
3686 EV_FREQUENT_CHECK;
2521 3687
2522 ev_start (EV_A_ (W)w, ++asynccnt); 3688 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3689 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w; 3690 asyncs [asynccnt - 1] = w;
3691
3692 EV_FREQUENT_CHECK;
2525} 3693}
2526 3694
2527void 3695void
2528ev_async_stop (EV_P_ ev_async *w) 3696ev_async_stop (EV_P_ ev_async *w)
2529{ 3697{
2530 clear_pending (EV_A_ (W)w); 3698 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w))) 3699 if (expect_false (!ev_is_active (w)))
2532 return; 3700 return;
2533 3701
3702 EV_FREQUENT_CHECK;
3703
2534 { 3704 {
2535 int active = ((W)w)->active; 3705 int active = ev_active (w);
3706
2536 asyncs [active - 1] = asyncs [--asynccnt]; 3707 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active; 3708 ev_active (asyncs [active - 1]) = active;
2538 } 3709 }
2539 3710
2540 ev_stop (EV_A_ (W)w); 3711 ev_stop (EV_A_ (W)w);
3712
3713 EV_FREQUENT_CHECK;
2541} 3714}
2542 3715
2543void 3716void
2544ev_async_send (EV_P_ ev_async *w) 3717ev_async_send (EV_P_ ev_async *w)
2545{ 3718{
2546 w->sent = 1; 3719 w->sent = 1;
2547 evpipe_write (EV_A_ &gotasync); 3720 evpipe_write (EV_A_ &async_pending);
2548} 3721}
2549#endif 3722#endif
2550 3723
2551/*****************************************************************************/ 3724/*****************************************************************************/
2552 3725
2562once_cb (EV_P_ struct ev_once *once, int revents) 3735once_cb (EV_P_ struct ev_once *once, int revents)
2563{ 3736{
2564 void (*cb)(int revents, void *arg) = once->cb; 3737 void (*cb)(int revents, void *arg) = once->cb;
2565 void *arg = once->arg; 3738 void *arg = once->arg;
2566 3739
2567 ev_io_stop (EV_A_ &once->io); 3740 ev_io_stop (EV_A_ &once->io);
2568 ev_timer_stop (EV_A_ &once->to); 3741 ev_timer_stop (EV_A_ &once->to);
2569 ev_free (once); 3742 ev_free (once);
2570 3743
2571 cb (revents, arg); 3744 cb (revents, arg);
2572} 3745}
2573 3746
2574static void 3747static void
2575once_cb_io (EV_P_ ev_io *w, int revents) 3748once_cb_io (EV_P_ ev_io *w, int revents)
2576{ 3749{
2577 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3750 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3751
3752 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2578} 3753}
2579 3754
2580static void 3755static void
2581once_cb_to (EV_P_ ev_timer *w, int revents) 3756once_cb_to (EV_P_ ev_timer *w, int revents)
2582{ 3757{
2583 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3758 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3759
3760 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2584} 3761}
2585 3762
2586void 3763void
2587ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3764ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2588{ 3765{
2589 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3766 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2590 3767
2591 if (expect_false (!once)) 3768 if (expect_false (!once))
2592 { 3769 {
2593 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3770 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2594 return; 3771 return;
2595 } 3772 }
2596 3773
2597 once->cb = cb; 3774 once->cb = cb;
2598 once->arg = arg; 3775 once->arg = arg;
2610 ev_timer_set (&once->to, timeout, 0.); 3787 ev_timer_set (&once->to, timeout, 0.);
2611 ev_timer_start (EV_A_ &once->to); 3788 ev_timer_start (EV_A_ &once->to);
2612 } 3789 }
2613} 3790}
2614 3791
3792/*****************************************************************************/
3793
3794#if EV_WALK_ENABLE
3795void
3796ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3797{
3798 int i, j;
3799 ev_watcher_list *wl, *wn;
3800
3801 if (types & (EV_IO | EV_EMBED))
3802 for (i = 0; i < anfdmax; ++i)
3803 for (wl = anfds [i].head; wl; )
3804 {
3805 wn = wl->next;
3806
3807#if EV_EMBED_ENABLE
3808 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3809 {
3810 if (types & EV_EMBED)
3811 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3812 }
3813 else
3814#endif
3815#if EV_USE_INOTIFY
3816 if (ev_cb ((ev_io *)wl) == infy_cb)
3817 ;
3818 else
3819#endif
3820 if ((ev_io *)wl != &pipe_w)
3821 if (types & EV_IO)
3822 cb (EV_A_ EV_IO, wl);
3823
3824 wl = wn;
3825 }
3826
3827 if (types & (EV_TIMER | EV_STAT))
3828 for (i = timercnt + HEAP0; i-- > HEAP0; )
3829#if EV_STAT_ENABLE
3830 /*TODO: timer is not always active*/
3831 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3832 {
3833 if (types & EV_STAT)
3834 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3835 }
3836 else
3837#endif
3838 if (types & EV_TIMER)
3839 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3840
3841#if EV_PERIODIC_ENABLE
3842 if (types & EV_PERIODIC)
3843 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3844 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3845#endif
3846
3847#if EV_IDLE_ENABLE
3848 if (types & EV_IDLE)
3849 for (j = NUMPRI; i--; )
3850 for (i = idlecnt [j]; i--; )
3851 cb (EV_A_ EV_IDLE, idles [j][i]);
3852#endif
3853
3854#if EV_FORK_ENABLE
3855 if (types & EV_FORK)
3856 for (i = forkcnt; i--; )
3857 if (ev_cb (forks [i]) != embed_fork_cb)
3858 cb (EV_A_ EV_FORK, forks [i]);
3859#endif
3860
3861#if EV_ASYNC_ENABLE
3862 if (types & EV_ASYNC)
3863 for (i = asynccnt; i--; )
3864 cb (EV_A_ EV_ASYNC, asyncs [i]);
3865#endif
3866
3867#if EV_PREPARE_ENABLE
3868 if (types & EV_PREPARE)
3869 for (i = preparecnt; i--; )
3870# if EV_EMBED_ENABLE
3871 if (ev_cb (prepares [i]) != embed_prepare_cb)
3872# endif
3873 cb (EV_A_ EV_PREPARE, prepares [i]);
3874#endif
3875
3876#if EV_CHECK_ENABLE
3877 if (types & EV_CHECK)
3878 for (i = checkcnt; i--; )
3879 cb (EV_A_ EV_CHECK, checks [i]);
3880#endif
3881
3882#if EV_SIGNAL_ENABLE
3883 if (types & EV_SIGNAL)
3884 for (i = 0; i < EV_NSIG - 1; ++i)
3885 for (wl = signals [i].head; wl; )
3886 {
3887 wn = wl->next;
3888 cb (EV_A_ EV_SIGNAL, wl);
3889 wl = wn;
3890 }
3891#endif
3892
3893#if EV_CHILD_ENABLE
3894 if (types & EV_CHILD)
3895 for (i = (EV_PID_HASHSIZE); i--; )
3896 for (wl = childs [i]; wl; )
3897 {
3898 wn = wl->next;
3899 cb (EV_A_ EV_CHILD, wl);
3900 wl = wn;
3901 }
3902#endif
3903/* EV_STAT 0x00001000 /* stat data changed */
3904/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3905}
3906#endif
3907
2615#if EV_MULTIPLICITY 3908#if EV_MULTIPLICITY
2616 #include "ev_wrap.h" 3909 #include "ev_wrap.h"
2617#endif 3910#endif
2618 3911
2619#ifdef __cplusplus 3912EV_CPP(})
2620}
2621#endif
2622 3913

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines