ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC vs.
Revision 1.377 by root, Wed Jun 8 13:11:55 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
152#endif 186#endif
187
188EV_CPP(extern "C" {)
153 189
154#ifndef _WIN32 190#ifndef _WIN32
155# include <sys/time.h> 191# include <sys/time.h>
156# include <sys/wait.h> 192# include <sys/wait.h>
157# include <unistd.h> 193# include <unistd.h>
158#else 194#else
195# include <io.h>
159# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 197# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
163# endif 200# endif
201# undef EV_AVOID_STDIO
164#endif 202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
165 211
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 212/* this block tries to deduce configuration from header-defined symbols and defaults */
167 213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
253
168#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
169# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
170#endif 260#endif
171 261
172#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 264#endif
175 265
176#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
177# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
178#endif 272#endif
179 273
180#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 276#endif
183 277
184#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
185# ifdef _WIN32 279# ifdef _WIN32
186# define EV_USE_POLL 0 280# define EV_USE_POLL 0
187# else 281# else
188# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 283# endif
190#endif 284#endif
191 285
192#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 289# else
196# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
197# endif 291# endif
198#endif 292#endif
199 293
205# define EV_USE_PORT 0 299# define EV_USE_PORT 0
206#endif 300#endif
207 301
208#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 305# else
212# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
213# endif 307# endif
214#endif 308#endif
215 309
216#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 312#endif
223 313
224#ifndef EV_INOTIFY_HASHSIZE 314#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 316#endif
231 317
232#ifndef EV_USE_EVENTFD 318#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 320# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 321# else
236# define EV_USE_EVENTFD 0 322# define EV_USE_EVENTFD 0
237# endif 323# endif
238#endif 324#endif
239 325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
241 373
242#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
245#endif 377#endif
253# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
255#endif 387#endif
256 388
257#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 392# include <sys/select.h>
260# endif 393# endif
261#endif 394#endif
262 395
263#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
264# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
265#endif 404#endif
266 405
267#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 407# include <winsock.h>
269#endif 408#endif
270 409
271#if EV_USE_EVENTFD 410#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
273int eventfd (unsigned int initval, int flags); 423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
274#endif 446#endif
275 447
276/**/ 448/**/
277 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
278/* 456/*
279 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding
282 * errors are against us.
283 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
284 * Better solutions welcome.
285 */ 459 */
286#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
287 462
288#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
289#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
290/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
291 468
292#if __GNUC__ >= 4 469#if __GNUC__ >= 4
293# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
294# define noinline __attribute__ ((noinline)) 471# define noinline __attribute__ ((noinline))
295#else 472#else
296# define expect(expr,value) (expr) 473# define expect(expr,value) (expr)
297# define noinline 474# define noinline
298# if __STDC_VERSION__ < 199901L 475# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
299# define inline 476# define inline
300# endif 477# endif
301#endif 478#endif
302 479
303#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
304#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
305#define inline_size static inline 482#define inline_size static inline
306 483
307#if EV_MINIMAL 484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
308# define inline_speed static noinline 487# define inline_speed static noinline
488#endif
489
490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
309#else 494#else
310# define inline_speed static inline
311#endif
312
313#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
314#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
315 497
316#define EMPTY /* required for microsofts broken pseudo-c compiler */ 498#define EMPTY /* required for microsofts broken pseudo-c compiler */
317#define EMPTY2(a,b) /* used to suppress some warnings */ 499#define EMPTY2(a,b) /* used to suppress some warnings */
318 500
319typedef ev_watcher *W; 501typedef ev_watcher *W;
320typedef ev_watcher_list *WL; 502typedef ev_watcher_list *WL;
321typedef ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
322 504
505#define ev_active(w) ((W)(w))->active
506#define ev_at(w) ((WT)(w))->at
507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
323#if EV_USE_MONOTONIC 514#if EV_USE_MONOTONIC
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */
326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
327#endif 526#endif
328 527
329#ifdef _WIN32 528#ifdef _WIN32
330# include "ev_win32.c" 529# include "ev_win32.c"
331#endif 530#endif
332 531
333/*****************************************************************************/ 532/*****************************************************************************/
334 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
335static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
336 633
337void 634void
338ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
339{ 636{
340 syserr_cb = cb; 637 syserr_cb = cb;
341} 638}
342 639
343static void noinline 640static void noinline
344syserr (const char *msg) 641ev_syserr (const char *msg)
345{ 642{
346 if (!msg) 643 if (!msg)
347 msg = "(libev) system error"; 644 msg = "(libev) system error";
348 645
349 if (syserr_cb) 646 if (syserr_cb)
350 syserr_cb (msg); 647 syserr_cb (msg);
351 else 648 else
352 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
353 perror (msg); 656 perror (msg);
657#endif
354 abort (); 658 abort ();
355 } 659 }
356} 660}
357 661
662static void *
663ev_realloc_emul (void *ptr, long size)
664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
668 /* some systems, notably openbsd and darwin, fail to properly
669 * implement realloc (x, 0) (as required by both ansi c-89 and
670 * the single unix specification, so work around them here.
671 */
672
673 if (size)
674 return realloc (ptr, size);
675
676 free (ptr);
677 return 0;
678#endif
679}
680
358static void *(*alloc)(void *ptr, long size); 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
359 682
360void 683void
361ev_set_allocator (void *(*cb)(void *ptr, long size)) 684ev_set_allocator (void *(*cb)(void *ptr, long size))
362{ 685{
363 alloc = cb; 686 alloc = cb;
364} 687}
365 688
366inline_speed void * 689inline_speed void *
367ev_realloc (void *ptr, long size) 690ev_realloc (void *ptr, long size)
368{ 691{
369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 692 ptr = alloc (ptr, size);
370 693
371 if (!ptr && size) 694 if (!ptr && size)
372 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
373 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
374 abort (); 701 abort ();
375 } 702 }
376 703
377 return ptr; 704 return ptr;
378} 705}
380#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
381#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
382 709
383/*****************************************************************************/ 710/*****************************************************************************/
384 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
385typedef struct 716typedef struct
386{ 717{
387 WL head; 718 WL head;
388 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
389 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
390#if EV_SELECT_IS_WINSOCKET 726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
391 SOCKET handle; 727 SOCKET handle;
392#endif 728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
393} ANFD; 732} ANFD;
394 733
734/* stores the pending event set for a given watcher */
395typedef struct 735typedef struct
396{ 736{
397 W w; 737 W w;
398 int events; 738 int events; /* the pending event set for the given watcher */
399} ANPENDING; 739} ANPENDING;
400 740
401#if EV_USE_INOTIFY 741#if EV_USE_INOTIFY
742/* hash table entry per inotify-id */
402typedef struct 743typedef struct
403{ 744{
404 WL head; 745 WL head;
405} ANFS; 746} ANFS;
747#endif
748
749/* Heap Entry */
750#if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760#else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
406#endif 767#endif
407 768
408#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
409 770
410 struct ev_loop 771 struct ev_loop
429 790
430 static int ev_default_loop_ptr; 791 static int ev_default_loop_ptr;
431 792
432#endif 793#endif
433 794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
806
434/*****************************************************************************/ 807/*****************************************************************************/
435 808
809#ifndef EV_HAVE_EV_TIME
436ev_tstamp 810ev_tstamp
437ev_time (void) 811ev_time (void)
438{ 812{
439#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
440 struct timespec ts; 816 struct timespec ts;
441 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
442 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
443#else 819 }
820#endif
821
444 struct timeval tv; 822 struct timeval tv;
445 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
446 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
447#endif
448} 825}
826#endif
449 827
450ev_tstamp inline_size 828inline_size ev_tstamp
451get_clock (void) 829get_clock (void)
452{ 830{
453#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
454 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
455 { 833 {
476 if (delay > 0.) 854 if (delay > 0.)
477 { 855 {
478#if EV_USE_NANOSLEEP 856#if EV_USE_NANOSLEEP
479 struct timespec ts; 857 struct timespec ts;
480 858
481 ts.tv_sec = (time_t)delay; 859 EV_TS_SET (ts, delay);
482 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
483
484 nanosleep (&ts, 0); 860 nanosleep (&ts, 0);
485#elif defined(_WIN32) 861#elif defined(_WIN32)
486 Sleep ((unsigned long)(delay * 1e3)); 862 Sleep ((unsigned long)(delay * 1e3));
487#else 863#else
488 struct timeval tv; 864 struct timeval tv;
489 865
490 tv.tv_sec = (time_t)delay; 866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
491 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 867 /* something not guaranteed by newer posix versions, but guaranteed */
492 868 /* by older ones */
869 EV_TV_SET (tv, delay);
493 select (0, 0, 0, 0, &tv); 870 select (0, 0, 0, 0, &tv);
494#endif 871#endif
495 } 872 }
496} 873}
497 874
498/*****************************************************************************/ 875/*****************************************************************************/
499 876
500int inline_size 877#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
878
879/* find a suitable new size for the given array, */
880/* hopefully by rounding to a nice-to-malloc size */
881inline_size int
501array_nextsize (int elem, int cur, int cnt) 882array_nextsize (int elem, int cur, int cnt)
502{ 883{
503 int ncur = cur + 1; 884 int ncur = cur + 1;
504 885
505 do 886 do
506 ncur <<= 1; 887 ncur <<= 1;
507 while (cnt > ncur); 888 while (cnt > ncur);
508 889
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 890 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096) 891 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
511 { 892 {
512 ncur *= elem; 893 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 894 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
514 ncur = ncur - sizeof (void *) * 4; 895 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem; 896 ncur /= elem;
516 } 897 }
517 898
518 return ncur; 899 return ncur;
522array_realloc (int elem, void *base, int *cur, int cnt) 903array_realloc (int elem, void *base, int *cur, int cnt)
523{ 904{
524 *cur = array_nextsize (elem, *cur, cnt); 905 *cur = array_nextsize (elem, *cur, cnt);
525 return ev_realloc (base, elem * *cur); 906 return ev_realloc (base, elem * *cur);
526} 907}
908
909#define array_init_zero(base,count) \
910 memset ((void *)(base), 0, sizeof (*(base)) * (count))
527 911
528#define array_needsize(type,base,cur,cnt,init) \ 912#define array_needsize(type,base,cur,cnt,init) \
529 if (expect_false ((cnt) > (cur))) \ 913 if (expect_false ((cnt) > (cur))) \
530 { \ 914 { \
531 int ocur_ = (cur); \ 915 int ocur_ = (cur); \
543 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 927 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
544 } 928 }
545#endif 929#endif
546 930
547#define array_free(stem, idx) \ 931#define array_free(stem, idx) \
548 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 932 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
549 933
550/*****************************************************************************/ 934/*****************************************************************************/
935
936/* dummy callback for pending events */
937static void noinline
938pendingcb (EV_P_ ev_prepare *w, int revents)
939{
940}
551 941
552void noinline 942void noinline
553ev_feed_event (EV_P_ void *w, int revents) 943ev_feed_event (EV_P_ void *w, int revents)
554{ 944{
555 W w_ = (W)w; 945 W w_ = (W)w;
564 pendings [pri][w_->pending - 1].w = w_; 954 pendings [pri][w_->pending - 1].w = w_;
565 pendings [pri][w_->pending - 1].events = revents; 955 pendings [pri][w_->pending - 1].events = revents;
566 } 956 }
567} 957}
568 958
569void inline_speed 959inline_speed void
960feed_reverse (EV_P_ W w)
961{
962 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963 rfeeds [rfeedcnt++] = w;
964}
965
966inline_size void
967feed_reverse_done (EV_P_ int revents)
968{
969 do
970 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971 while (rfeedcnt);
972}
973
974inline_speed void
570queue_events (EV_P_ W *events, int eventcnt, int type) 975queue_events (EV_P_ W *events, int eventcnt, int type)
571{ 976{
572 int i; 977 int i;
573 978
574 for (i = 0; i < eventcnt; ++i) 979 for (i = 0; i < eventcnt; ++i)
575 ev_feed_event (EV_A_ events [i], type); 980 ev_feed_event (EV_A_ events [i], type);
576} 981}
577 982
578/*****************************************************************************/ 983/*****************************************************************************/
579 984
580void inline_size 985inline_speed void
581anfds_init (ANFD *base, int count)
582{
583 while (count--)
584 {
585 base->head = 0;
586 base->events = EV_NONE;
587 base->reify = 0;
588
589 ++base;
590 }
591}
592
593void inline_speed
594fd_event (EV_P_ int fd, int revents) 986fd_event_nocheck (EV_P_ int fd, int revents)
595{ 987{
596 ANFD *anfd = anfds + fd; 988 ANFD *anfd = anfds + fd;
597 ev_io *w; 989 ev_io *w;
598 990
599 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 991 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
603 if (ev) 995 if (ev)
604 ev_feed_event (EV_A_ (W)w, ev); 996 ev_feed_event (EV_A_ (W)w, ev);
605 } 997 }
606} 998}
607 999
1000/* do not submit kernel events for fds that have reify set */
1001/* because that means they changed while we were polling for new events */
1002inline_speed void
1003fd_event (EV_P_ int fd, int revents)
1004{
1005 ANFD *anfd = anfds + fd;
1006
1007 if (expect_true (!anfd->reify))
1008 fd_event_nocheck (EV_A_ fd, revents);
1009}
1010
608void 1011void
609ev_feed_fd_event (EV_P_ int fd, int revents) 1012ev_feed_fd_event (EV_P_ int fd, int revents)
610{ 1013{
611 if (fd >= 0 && fd < anfdmax) 1014 if (fd >= 0 && fd < anfdmax)
612 fd_event (EV_A_ fd, revents); 1015 fd_event_nocheck (EV_A_ fd, revents);
613} 1016}
614 1017
615void inline_size 1018/* make sure the external fd watch events are in-sync */
1019/* with the kernel/libev internal state */
1020inline_size void
616fd_reify (EV_P) 1021fd_reify (EV_P)
617{ 1022{
618 int i; 1023 int i;
1024
1025#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1026 for (i = 0; i < fdchangecnt; ++i)
1027 {
1028 int fd = fdchanges [i];
1029 ANFD *anfd = anfds + fd;
1030
1031 if (anfd->reify & EV__IOFDSET && anfd->head)
1032 {
1033 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034
1035 if (handle != anfd->handle)
1036 {
1037 unsigned long arg;
1038
1039 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040
1041 /* handle changed, but fd didn't - we need to do it in two steps */
1042 backend_modify (EV_A_ fd, anfd->events, 0);
1043 anfd->events = 0;
1044 anfd->handle = handle;
1045 }
1046 }
1047 }
1048#endif
619 1049
620 for (i = 0; i < fdchangecnt; ++i) 1050 for (i = 0; i < fdchangecnt; ++i)
621 { 1051 {
622 int fd = fdchanges [i]; 1052 int fd = fdchanges [i];
623 ANFD *anfd = anfds + fd; 1053 ANFD *anfd = anfds + fd;
624 ev_io *w; 1054 ev_io *w;
625 1055
626 unsigned char events = 0; 1056 unsigned char o_events = anfd->events;
1057 unsigned char o_reify = anfd->reify;
627 1058
628 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1059 anfd->reify = 0;
629 events |= (unsigned char)w->events;
630 1060
631#if EV_SELECT_IS_WINSOCKET 1061 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
632 if (events)
633 { 1062 {
634 unsigned long argp; 1063 anfd->events = 0;
635 #ifdef EV_FD_TO_WIN32_HANDLE 1064
636 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1065 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
637 #else 1066 anfd->events |= (unsigned char)w->events;
638 anfd->handle = _get_osfhandle (fd); 1067
639 #endif 1068 if (o_events != anfd->events)
640 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1069 o_reify = EV__IOFDSET; /* actually |= */
641 } 1070 }
642#endif
643 1071
644 { 1072 if (o_reify & EV__IOFDSET)
645 unsigned char o_events = anfd->events;
646 unsigned char o_reify = anfd->reify;
647
648 anfd->reify = 0;
649 anfd->events = events;
650
651 if (o_events != events || o_reify & EV_IOFDSET)
652 backend_modify (EV_A_ fd, o_events, events); 1073 backend_modify (EV_A_ fd, o_events, anfd->events);
653 }
654 } 1074 }
655 1075
656 fdchangecnt = 0; 1076 fdchangecnt = 0;
657} 1077}
658 1078
659void inline_size 1079/* something about the given fd changed */
1080inline_size void
660fd_change (EV_P_ int fd, int flags) 1081fd_change (EV_P_ int fd, int flags)
661{ 1082{
662 unsigned char reify = anfds [fd].reify; 1083 unsigned char reify = anfds [fd].reify;
663 anfds [fd].reify |= flags; 1084 anfds [fd].reify |= flags;
664 1085
668 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1089 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
669 fdchanges [fdchangecnt - 1] = fd; 1090 fdchanges [fdchangecnt - 1] = fd;
670 } 1091 }
671} 1092}
672 1093
673void inline_speed 1094/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095inline_speed void
674fd_kill (EV_P_ int fd) 1096fd_kill (EV_P_ int fd)
675{ 1097{
676 ev_io *w; 1098 ev_io *w;
677 1099
678 while ((w = (ev_io *)anfds [fd].head)) 1100 while ((w = (ev_io *)anfds [fd].head))
680 ev_io_stop (EV_A_ w); 1102 ev_io_stop (EV_A_ w);
681 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1103 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
682 } 1104 }
683} 1105}
684 1106
685int inline_size 1107/* check whether the given fd is actually valid, for error recovery */
1108inline_size int
686fd_valid (int fd) 1109fd_valid (int fd)
687{ 1110{
688#ifdef _WIN32 1111#ifdef _WIN32
689 return _get_osfhandle (fd) != -1; 1112 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
690#else 1113#else
691 return fcntl (fd, F_GETFD) != -1; 1114 return fcntl (fd, F_GETFD) != -1;
692#endif 1115#endif
693} 1116}
694 1117
698{ 1121{
699 int fd; 1122 int fd;
700 1123
701 for (fd = 0; fd < anfdmax; ++fd) 1124 for (fd = 0; fd < anfdmax; ++fd)
702 if (anfds [fd].events) 1125 if (anfds [fd].events)
703 if (!fd_valid (fd) == -1 && errno == EBADF) 1126 if (!fd_valid (fd) && errno == EBADF)
704 fd_kill (EV_A_ fd); 1127 fd_kill (EV_A_ fd);
705} 1128}
706 1129
707/* called on ENOMEM in select/poll to kill some fds and retry */ 1130/* called on ENOMEM in select/poll to kill some fds and retry */
708static void noinline 1131static void noinline
712 1135
713 for (fd = anfdmax; fd--; ) 1136 for (fd = anfdmax; fd--; )
714 if (anfds [fd].events) 1137 if (anfds [fd].events)
715 { 1138 {
716 fd_kill (EV_A_ fd); 1139 fd_kill (EV_A_ fd);
717 return; 1140 break;
718 } 1141 }
719} 1142}
720 1143
721/* usually called after fork if backend needs to re-arm all fds from scratch */ 1144/* usually called after fork if backend needs to re-arm all fds from scratch */
722static void noinline 1145static void noinline
726 1149
727 for (fd = 0; fd < anfdmax; ++fd) 1150 for (fd = 0; fd < anfdmax; ++fd)
728 if (anfds [fd].events) 1151 if (anfds [fd].events)
729 { 1152 {
730 anfds [fd].events = 0; 1153 anfds [fd].events = 0;
1154 anfds [fd].emask = 0;
731 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1155 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
732 } 1156 }
733} 1157}
734 1158
735/*****************************************************************************/ 1159/* used to prepare libev internal fd's */
736 1160/* this is not fork-safe */
737void inline_speed 1161inline_speed void
738upheap (WT *heap, int k)
739{
740 WT w = heap [k];
741
742 while (k)
743 {
744 int p = (k - 1) >> 1;
745
746 if (heap [p]->at <= w->at)
747 break;
748
749 heap [k] = heap [p];
750 ((W)heap [k])->active = k + 1;
751 k = p;
752 }
753
754 heap [k] = w;
755 ((W)heap [k])->active = k + 1;
756}
757
758void inline_speed
759downheap (WT *heap, int N, int k)
760{
761 WT w = heap [k];
762
763 for (;;)
764 {
765 int c = (k << 1) + 1;
766
767 if (c >= N)
768 break;
769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
776 heap [k] = heap [c];
777 ((W)heap [k])->active = k + 1;
778
779 k = c;
780 }
781
782 heap [k] = w;
783 ((W)heap [k])->active = k + 1;
784}
785
786void inline_size
787adjustheap (WT *heap, int N, int k)
788{
789 upheap (heap, k);
790 downheap (heap, N, k);
791}
792
793/*****************************************************************************/
794
795typedef struct
796{
797 WL head;
798 EV_ATOMIC_T gotsig;
799} ANSIG;
800
801static ANSIG *signals;
802static int signalmax;
803
804static EV_ATOMIC_T gotsig;
805
806void inline_size
807signals_init (ANSIG *base, int count)
808{
809 while (count--)
810 {
811 base->head = 0;
812 base->gotsig = 0;
813
814 ++base;
815 }
816}
817
818/*****************************************************************************/
819
820void inline_speed
821fd_intern (int fd) 1162fd_intern (int fd)
822{ 1163{
823#ifdef _WIN32 1164#ifdef _WIN32
824 int arg = 1; 1165 unsigned long arg = 1;
825 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1166 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
826#else 1167#else
827 fcntl (fd, F_SETFD, FD_CLOEXEC); 1168 fcntl (fd, F_SETFD, FD_CLOEXEC);
828 fcntl (fd, F_SETFL, O_NONBLOCK); 1169 fcntl (fd, F_SETFL, O_NONBLOCK);
829#endif 1170#endif
830} 1171}
831 1172
1173/*****************************************************************************/
1174
1175/*
1176 * the heap functions want a real array index. array index 0 is guaranteed to not
1177 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1178 * the branching factor of the d-tree.
1179 */
1180
1181/*
1182 * at the moment we allow libev the luxury of two heaps,
1183 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1184 * which is more cache-efficient.
1185 * the difference is about 5% with 50000+ watchers.
1186 */
1187#if EV_USE_4HEAP
1188
1189#define DHEAP 4
1190#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1191#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1192#define UPHEAP_DONE(p,k) ((p) == (k))
1193
1194/* away from the root */
1195inline_speed void
1196downheap (ANHE *heap, int N, int k)
1197{
1198 ANHE he = heap [k];
1199 ANHE *E = heap + N + HEAP0;
1200
1201 for (;;)
1202 {
1203 ev_tstamp minat;
1204 ANHE *minpos;
1205 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1206
1207 /* find minimum child */
1208 if (expect_true (pos + DHEAP - 1 < E))
1209 {
1210 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1211 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1212 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1213 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1214 }
1215 else if (pos < E)
1216 {
1217 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1218 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1219 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1220 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1221 }
1222 else
1223 break;
1224
1225 if (ANHE_at (he) <= minat)
1226 break;
1227
1228 heap [k] = *minpos;
1229 ev_active (ANHE_w (*minpos)) = k;
1230
1231 k = minpos - heap;
1232 }
1233
1234 heap [k] = he;
1235 ev_active (ANHE_w (he)) = k;
1236}
1237
1238#else /* 4HEAP */
1239
1240#define HEAP0 1
1241#define HPARENT(k) ((k) >> 1)
1242#define UPHEAP_DONE(p,k) (!(p))
1243
1244/* away from the root */
1245inline_speed void
1246downheap (ANHE *heap, int N, int k)
1247{
1248 ANHE he = heap [k];
1249
1250 for (;;)
1251 {
1252 int c = k << 1;
1253
1254 if (c >= N + HEAP0)
1255 break;
1256
1257 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1258 ? 1 : 0;
1259
1260 if (ANHE_at (he) <= ANHE_at (heap [c]))
1261 break;
1262
1263 heap [k] = heap [c];
1264 ev_active (ANHE_w (heap [k])) = k;
1265
1266 k = c;
1267 }
1268
1269 heap [k] = he;
1270 ev_active (ANHE_w (he)) = k;
1271}
1272#endif
1273
1274/* towards the root */
1275inline_speed void
1276upheap (ANHE *heap, int k)
1277{
1278 ANHE he = heap [k];
1279
1280 for (;;)
1281 {
1282 int p = HPARENT (k);
1283
1284 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1285 break;
1286
1287 heap [k] = heap [p];
1288 ev_active (ANHE_w (heap [k])) = k;
1289 k = p;
1290 }
1291
1292 heap [k] = he;
1293 ev_active (ANHE_w (he)) = k;
1294}
1295
1296/* move an element suitably so it is in a correct place */
1297inline_size void
1298adjustheap (ANHE *heap, int N, int k)
1299{
1300 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1301 upheap (heap, k);
1302 else
1303 downheap (heap, N, k);
1304}
1305
1306/* rebuild the heap: this function is used only once and executed rarely */
1307inline_size void
1308reheap (ANHE *heap, int N)
1309{
1310 int i;
1311
1312 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1313 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1314 for (i = 0; i < N; ++i)
1315 upheap (heap, i + HEAP0);
1316}
1317
1318/*****************************************************************************/
1319
1320/* associate signal watchers to a signal signal */
1321typedef struct
1322{
1323 EV_ATOMIC_T pending;
1324#if EV_MULTIPLICITY
1325 EV_P;
1326#endif
1327 WL head;
1328} ANSIG;
1329
1330static ANSIG signals [EV_NSIG - 1];
1331
1332/*****************************************************************************/
1333
1334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1335
832static void noinline 1336static void noinline
833evpipe_init (EV_P) 1337evpipe_init (EV_P)
834{ 1338{
835 if (!ev_is_active (&pipeev)) 1339 if (!ev_is_active (&pipe_w))
836 { 1340 {
837#if EV_USE_EVENTFD 1341# if EV_USE_EVENTFD
1342 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343 if (evfd < 0 && errno == EINVAL)
838 if ((evfd = eventfd (0, 0)) >= 0) 1344 evfd = eventfd (0, 0);
1345
1346 if (evfd >= 0)
839 { 1347 {
840 evpipe [0] = -1; 1348 evpipe [0] = -1;
841 fd_intern (evfd); 1349 fd_intern (evfd); /* doing it twice doesn't hurt */
842 ev_io_set (&pipeev, evfd, EV_READ); 1350 ev_io_set (&pipe_w, evfd, EV_READ);
843 } 1351 }
844 else 1352 else
845#endif 1353# endif
846 { 1354 {
847 while (pipe (evpipe)) 1355 while (pipe (evpipe))
848 syserr ("(libev) error creating signal/async pipe"); 1356 ev_syserr ("(libev) error creating signal/async pipe");
849 1357
850 fd_intern (evpipe [0]); 1358 fd_intern (evpipe [0]);
851 fd_intern (evpipe [1]); 1359 fd_intern (evpipe [1]);
852 ev_io_set (&pipeev, evpipe [0], EV_READ); 1360 ev_io_set (&pipe_w, evpipe [0], EV_READ);
853 } 1361 }
854 1362
855 ev_io_start (EV_A_ &pipeev); 1363 ev_io_start (EV_A_ &pipe_w);
856 ev_unref (EV_A); /* watcher should not keep loop alive */ 1364 ev_unref (EV_A); /* watcher should not keep loop alive */
857 } 1365 }
858} 1366}
859 1367
860void inline_size 1368inline_size void
861evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1369evpipe_write (EV_P_ EV_ATOMIC_T *flag)
862{ 1370{
863 if (!*flag) 1371 if (!*flag)
864 { 1372 {
865 int old_errno = errno; /* save errno because write might clobber it */ 1373 int old_errno = errno; /* save errno because write might clobber it */
1374 char dummy;
866 1375
867 *flag = 1; 1376 *flag = 1;
868 1377
869#if EV_USE_EVENTFD 1378#if EV_USE_EVENTFD
870 if (evfd >= 0) 1379 if (evfd >= 0)
872 uint64_t counter = 1; 1381 uint64_t counter = 1;
873 write (evfd, &counter, sizeof (uint64_t)); 1382 write (evfd, &counter, sizeof (uint64_t));
874 } 1383 }
875 else 1384 else
876#endif 1385#endif
1386 /* win32 people keep sending patches that change this write() to send() */
1387 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1388 /* so when you think this write should be a send instead, please find out */
1389 /* where your send() is from - it's definitely not the microsoft send, and */
1390 /* tell me. thank you. */
877 write (evpipe [1], &old_errno, 1); 1391 write (evpipe [1], &dummy, 1);
878 1392
879 errno = old_errno; 1393 errno = old_errno;
880 } 1394 }
881} 1395}
882 1396
1397/* called whenever the libev signal pipe */
1398/* got some events (signal, async) */
883static void 1399static void
884pipecb (EV_P_ ev_io *iow, int revents) 1400pipecb (EV_P_ ev_io *iow, int revents)
885{ 1401{
1402 int i;
1403
886#if EV_USE_EVENTFD 1404#if EV_USE_EVENTFD
887 if (evfd >= 0) 1405 if (evfd >= 0)
888 { 1406 {
889 uint64_t counter = 1; 1407 uint64_t counter;
890 read (evfd, &counter, sizeof (uint64_t)); 1408 read (evfd, &counter, sizeof (uint64_t));
891 } 1409 }
892 else 1410 else
893#endif 1411#endif
894 { 1412 {
895 char dummy; 1413 char dummy;
1414 /* see discussion in evpipe_write when you think this read should be recv in win32 */
896 read (evpipe [0], &dummy, 1); 1415 read (evpipe [0], &dummy, 1);
897 } 1416 }
898 1417
899 if (gotsig && ev_is_default_loop (EV_A)) 1418#if EV_SIGNAL_ENABLE
900 { 1419 if (sig_pending)
901 int signum; 1420 {
902 gotsig = 0; 1421 sig_pending = 0;
903 1422
904 for (signum = signalmax; signum--; ) 1423 for (i = EV_NSIG - 1; i--; )
905 if (signals [signum].gotsig) 1424 if (expect_false (signals [i].pending))
906 ev_feed_signal_event (EV_A_ signum + 1); 1425 ev_feed_signal_event (EV_A_ i + 1);
907 } 1426 }
1427#endif
908 1428
909#if EV_ASYNC_ENABLE 1429#if EV_ASYNC_ENABLE
910 if (gotasync) 1430 if (async_pending)
911 { 1431 {
912 int i; 1432 async_pending = 0;
913 gotasync = 0;
914 1433
915 for (i = asynccnt; i--; ) 1434 for (i = asynccnt; i--; )
916 if (asyncs [i]->sent) 1435 if (asyncs [i]->sent)
917 { 1436 {
918 asyncs [i]->sent = 0; 1437 asyncs [i]->sent = 0;
922#endif 1441#endif
923} 1442}
924 1443
925/*****************************************************************************/ 1444/*****************************************************************************/
926 1445
1446void
1447ev_feed_signal (int signum)
1448{
1449#if EV_MULTIPLICITY
1450 EV_P = signals [signum - 1].loop;
1451
1452 if (!EV_A)
1453 return;
1454#endif
1455
1456 signals [signum - 1].pending = 1;
1457 evpipe_write (EV_A_ &sig_pending);
1458}
1459
927static void 1460static void
928ev_sighandler (int signum) 1461ev_sighandler (int signum)
929{ 1462{
930#if EV_MULTIPLICITY
931 struct ev_loop *loop = &default_loop_struct;
932#endif
933
934#if _WIN32 1463#ifdef _WIN32
935 signal (signum, ev_sighandler); 1464 signal (signum, ev_sighandler);
936#endif 1465#endif
937 1466
938 signals [signum - 1].gotsig = 1; 1467 ev_feed_signal (signum);
939 evpipe_write (EV_A_ &gotsig);
940} 1468}
941 1469
942void noinline 1470void noinline
943ev_feed_signal_event (EV_P_ int signum) 1471ev_feed_signal_event (EV_P_ int signum)
944{ 1472{
945 WL w; 1473 WL w;
946 1474
1475 if (expect_false (signum <= 0 || signum > EV_NSIG))
1476 return;
1477
1478 --signum;
1479
947#if EV_MULTIPLICITY 1480#if EV_MULTIPLICITY
948 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1481 /* it is permissible to try to feed a signal to the wrong loop */
949#endif 1482 /* or, likely more useful, feeding a signal nobody is waiting for */
950 1483
951 --signum; 1484 if (expect_false (signals [signum].loop != EV_A))
952
953 if (signum < 0 || signum >= signalmax)
954 return; 1485 return;
1486#endif
955 1487
956 signals [signum].gotsig = 0; 1488 signals [signum].pending = 0;
957 1489
958 for (w = signals [signum].head; w; w = w->next) 1490 for (w = signals [signum].head; w; w = w->next)
959 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1491 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
960} 1492}
961 1493
1494#if EV_USE_SIGNALFD
1495static void
1496sigfdcb (EV_P_ ev_io *iow, int revents)
1497{
1498 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1499
1500 for (;;)
1501 {
1502 ssize_t res = read (sigfd, si, sizeof (si));
1503
1504 /* not ISO-C, as res might be -1, but works with SuS */
1505 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1506 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1507
1508 if (res < (ssize_t)sizeof (si))
1509 break;
1510 }
1511}
1512#endif
1513
1514#endif
1515
962/*****************************************************************************/ 1516/*****************************************************************************/
963 1517
1518#if EV_CHILD_ENABLE
964static WL childs [EV_PID_HASHSIZE]; 1519static WL childs [EV_PID_HASHSIZE];
965
966#ifndef _WIN32
967 1520
968static ev_signal childev; 1521static ev_signal childev;
969 1522
970#ifndef WIFCONTINUED 1523#ifndef WIFCONTINUED
971# define WIFCONTINUED(status) 0 1524# define WIFCONTINUED(status) 0
972#endif 1525#endif
973 1526
974void inline_speed 1527/* handle a single child status event */
1528inline_speed void
975child_reap (EV_P_ int chain, int pid, int status) 1529child_reap (EV_P_ int chain, int pid, int status)
976{ 1530{
977 ev_child *w; 1531 ev_child *w;
978 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1532 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
979 1533
980 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1534 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
981 { 1535 {
982 if ((w->pid == pid || !w->pid) 1536 if ((w->pid == pid || !w->pid)
983 && (!traced || (w->flags & 1))) 1537 && (!traced || (w->flags & 1)))
984 { 1538 {
985 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1539 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
992 1546
993#ifndef WCONTINUED 1547#ifndef WCONTINUED
994# define WCONTINUED 0 1548# define WCONTINUED 0
995#endif 1549#endif
996 1550
1551/* called on sigchld etc., calls waitpid */
997static void 1552static void
998childcb (EV_P_ ev_signal *sw, int revents) 1553childcb (EV_P_ ev_signal *sw, int revents)
999{ 1554{
1000 int pid, status; 1555 int pid, status;
1001 1556
1009 /* make sure we are called again until all children have been reaped */ 1564 /* make sure we are called again until all children have been reaped */
1010 /* we need to do it this way so that the callback gets called before we continue */ 1565 /* we need to do it this way so that the callback gets called before we continue */
1011 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1566 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1012 1567
1013 child_reap (EV_A_ pid, pid, status); 1568 child_reap (EV_A_ pid, pid, status);
1014 if (EV_PID_HASHSIZE > 1) 1569 if ((EV_PID_HASHSIZE) > 1)
1015 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1570 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1016} 1571}
1017 1572
1018#endif 1573#endif
1019 1574
1020/*****************************************************************************/ 1575/*****************************************************************************/
1021 1576
1577#if EV_USE_IOCP
1578# include "ev_iocp.c"
1579#endif
1022#if EV_USE_PORT 1580#if EV_USE_PORT
1023# include "ev_port.c" 1581# include "ev_port.c"
1024#endif 1582#endif
1025#if EV_USE_KQUEUE 1583#if EV_USE_KQUEUE
1026# include "ev_kqueue.c" 1584# include "ev_kqueue.c"
1082 /* kqueue is borked on everything but netbsd apparently */ 1640 /* kqueue is borked on everything but netbsd apparently */
1083 /* it usually doesn't work correctly on anything but sockets and pipes */ 1641 /* it usually doesn't work correctly on anything but sockets and pipes */
1084 flags &= ~EVBACKEND_KQUEUE; 1642 flags &= ~EVBACKEND_KQUEUE;
1085#endif 1643#endif
1086#ifdef __APPLE__ 1644#ifdef __APPLE__
1087 // flags &= ~EVBACKEND_KQUEUE; for documentation 1645 /* only select works correctly on that "unix-certified" platform */
1088 flags &= ~EVBACKEND_POLL; 1646 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1647 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1648#endif
1649#ifdef __FreeBSD__
1650 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1089#endif 1651#endif
1090 1652
1091 return flags; 1653 return flags;
1092} 1654}
1093 1655
1095ev_embeddable_backends (void) 1657ev_embeddable_backends (void)
1096{ 1658{
1097 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1659 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1098 1660
1099 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1661 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1100 /* please fix it and tell me how to detect the fix */ 1662 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1101 flags &= ~EVBACKEND_EPOLL; 1663 flags &= ~EVBACKEND_EPOLL;
1102 1664
1103 return flags; 1665 return flags;
1104} 1666}
1105 1667
1106unsigned int 1668unsigned int
1107ev_backend (EV_P) 1669ev_backend (EV_P)
1108{ 1670{
1109 return backend; 1671 return backend;
1110} 1672}
1111 1673
1674#if EV_FEATURE_API
1112unsigned int 1675unsigned int
1113ev_loop_count (EV_P) 1676ev_iteration (EV_P)
1114{ 1677{
1115 return loop_count; 1678 return loop_count;
1116} 1679}
1117 1680
1681unsigned int
1682ev_depth (EV_P)
1683{
1684 return loop_depth;
1685}
1686
1118void 1687void
1119ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1688ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1120{ 1689{
1121 io_blocktime = interval; 1690 io_blocktime = interval;
1122} 1691}
1125ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1694ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1126{ 1695{
1127 timeout_blocktime = interval; 1696 timeout_blocktime = interval;
1128} 1697}
1129 1698
1699void
1700ev_set_userdata (EV_P_ void *data)
1701{
1702 userdata = data;
1703}
1704
1705void *
1706ev_userdata (EV_P)
1707{
1708 return userdata;
1709}
1710
1711void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1712{
1713 invoke_cb = invoke_pending_cb;
1714}
1715
1716void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1717{
1718 release_cb = release;
1719 acquire_cb = acquire;
1720}
1721#endif
1722
1723/* initialise a loop structure, must be zero-initialised */
1130static void noinline 1724static void noinline
1131loop_init (EV_P_ unsigned int flags) 1725loop_init (EV_P_ unsigned int flags)
1132{ 1726{
1133 if (!backend) 1727 if (!backend)
1134 { 1728 {
1729 origflags = flags;
1730
1731#if EV_USE_REALTIME
1732 if (!have_realtime)
1733 {
1734 struct timespec ts;
1735
1736 if (!clock_gettime (CLOCK_REALTIME, &ts))
1737 have_realtime = 1;
1738 }
1739#endif
1740
1135#if EV_USE_MONOTONIC 1741#if EV_USE_MONOTONIC
1742 if (!have_monotonic)
1136 { 1743 {
1137 struct timespec ts; 1744 struct timespec ts;
1745
1138 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1139 have_monotonic = 1; 1747 have_monotonic = 1;
1140 } 1748 }
1141#endif 1749#endif
1750
1751 /* pid check not overridable via env */
1752#ifndef _WIN32
1753 if (flags & EVFLAG_FORKCHECK)
1754 curpid = getpid ();
1755#endif
1756
1757 if (!(flags & EVFLAG_NOENV)
1758 && !enable_secure ()
1759 && getenv ("LIBEV_FLAGS"))
1760 flags = atoi (getenv ("LIBEV_FLAGS"));
1142 1761
1143 ev_rt_now = ev_time (); 1762 ev_rt_now = ev_time ();
1144 mn_now = get_clock (); 1763 mn_now = get_clock ();
1145 now_floor = mn_now; 1764 now_floor = mn_now;
1146 rtmn_diff = ev_rt_now - mn_now; 1765 rtmn_diff = ev_rt_now - mn_now;
1766#if EV_FEATURE_API
1767 invoke_cb = ev_invoke_pending;
1768#endif
1147 1769
1148 io_blocktime = 0.; 1770 io_blocktime = 0.;
1149 timeout_blocktime = 0.; 1771 timeout_blocktime = 0.;
1150 backend = 0; 1772 backend = 0;
1151 backend_fd = -1; 1773 backend_fd = -1;
1152 gotasync = 0; 1774 sig_pending = 0;
1775#if EV_ASYNC_ENABLE
1776 async_pending = 0;
1777#endif
1153#if EV_USE_INOTIFY 1778#if EV_USE_INOTIFY
1154 fs_fd = -2; 1779 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1155#endif 1780#endif
1156 1781#if EV_USE_SIGNALFD
1157 /* pid check not overridable via env */ 1782 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1158#ifndef _WIN32
1159 if (flags & EVFLAG_FORKCHECK)
1160 curpid = getpid ();
1161#endif 1783#endif
1162 1784
1163 if (!(flags & EVFLAG_NOENV) 1785 if (!(flags & EVBACKEND_MASK))
1164 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS"))
1166 flags = atoi (getenv ("LIBEV_FLAGS"));
1167
1168 if (!(flags & 0x0000ffffUL))
1169 flags |= ev_recommended_backends (); 1786 flags |= ev_recommended_backends ();
1170 1787
1788#if EV_USE_IOCP
1789 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1790#endif
1171#if EV_USE_PORT 1791#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1792 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif 1793#endif
1174#if EV_USE_KQUEUE 1794#if EV_USE_KQUEUE
1175 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1795 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1182#endif 1802#endif
1183#if EV_USE_SELECT 1803#if EV_USE_SELECT
1184 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1804 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1185#endif 1805#endif
1186 1806
1807 ev_prepare_init (&pending_w, pendingcb);
1808
1809#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1187 ev_init (&pipeev, pipecb); 1810 ev_init (&pipe_w, pipecb);
1188 ev_set_priority (&pipeev, EV_MAXPRI); 1811 ev_set_priority (&pipe_w, EV_MAXPRI);
1812#endif
1189 } 1813 }
1190} 1814}
1191 1815
1192static void noinline 1816/* free up a loop structure */
1817void
1193loop_destroy (EV_P) 1818ev_loop_destroy (EV_P)
1194{ 1819{
1195 int i; 1820 int i;
1196 1821
1822#if EV_MULTIPLICITY
1823 /* mimic free (0) */
1824 if (!EV_A)
1825 return;
1826#endif
1827
1828#if EV_CLEANUP_ENABLE
1829 /* queue cleanup watchers (and execute them) */
1830 if (expect_false (cleanupcnt))
1831 {
1832 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1833 EV_INVOKE_PENDING;
1834 }
1835#endif
1836
1837#if EV_CHILD_ENABLE
1838 if (ev_is_active (&childev))
1839 {
1840 ev_ref (EV_A); /* child watcher */
1841 ev_signal_stop (EV_A_ &childev);
1842 }
1843#endif
1844
1197 if (ev_is_active (&pipeev)) 1845 if (ev_is_active (&pipe_w))
1198 { 1846 {
1199 ev_ref (EV_A); /* signal watcher */ 1847 /*ev_ref (EV_A);*/
1200 ev_io_stop (EV_A_ &pipeev); 1848 /*ev_io_stop (EV_A_ &pipe_w);*/
1201 1849
1202#if EV_USE_EVENTFD 1850#if EV_USE_EVENTFD
1203 if (evfd >= 0) 1851 if (evfd >= 0)
1204 close (evfd); 1852 close (evfd);
1205#endif 1853#endif
1206 1854
1207 if (evpipe [0] >= 0) 1855 if (evpipe [0] >= 0)
1208 { 1856 {
1209 close (evpipe [0]); 1857 EV_WIN32_CLOSE_FD (evpipe [0]);
1210 close (evpipe [1]); 1858 EV_WIN32_CLOSE_FD (evpipe [1]);
1211 } 1859 }
1212 } 1860 }
1861
1862#if EV_USE_SIGNALFD
1863 if (ev_is_active (&sigfd_w))
1864 close (sigfd);
1865#endif
1213 1866
1214#if EV_USE_INOTIFY 1867#if EV_USE_INOTIFY
1215 if (fs_fd >= 0) 1868 if (fs_fd >= 0)
1216 close (fs_fd); 1869 close (fs_fd);
1217#endif 1870#endif
1218 1871
1219 if (backend_fd >= 0) 1872 if (backend_fd >= 0)
1220 close (backend_fd); 1873 close (backend_fd);
1221 1874
1875#if EV_USE_IOCP
1876 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1877#endif
1222#if EV_USE_PORT 1878#if EV_USE_PORT
1223 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1879 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1224#endif 1880#endif
1225#if EV_USE_KQUEUE 1881#if EV_USE_KQUEUE
1226 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1882 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1241#if EV_IDLE_ENABLE 1897#if EV_IDLE_ENABLE
1242 array_free (idle, [i]); 1898 array_free (idle, [i]);
1243#endif 1899#endif
1244 } 1900 }
1245 1901
1246 ev_free (anfds); anfdmax = 0; 1902 ev_free (anfds); anfds = 0; anfdmax = 0;
1247 1903
1248 /* have to use the microsoft-never-gets-it-right macro */ 1904 /* have to use the microsoft-never-gets-it-right macro */
1905 array_free (rfeed, EMPTY);
1249 array_free (fdchange, EMPTY); 1906 array_free (fdchange, EMPTY);
1250 array_free (timer, EMPTY); 1907 array_free (timer, EMPTY);
1251#if EV_PERIODIC_ENABLE 1908#if EV_PERIODIC_ENABLE
1252 array_free (periodic, EMPTY); 1909 array_free (periodic, EMPTY);
1253#endif 1910#endif
1254#if EV_FORK_ENABLE 1911#if EV_FORK_ENABLE
1255 array_free (fork, EMPTY); 1912 array_free (fork, EMPTY);
1256#endif 1913#endif
1914#if EV_CLEANUP_ENABLE
1915 array_free (cleanup, EMPTY);
1916#endif
1257 array_free (prepare, EMPTY); 1917 array_free (prepare, EMPTY);
1258 array_free (check, EMPTY); 1918 array_free (check, EMPTY);
1259#if EV_ASYNC_ENABLE 1919#if EV_ASYNC_ENABLE
1260 array_free (async, EMPTY); 1920 array_free (async, EMPTY);
1261#endif 1921#endif
1262 1922
1263 backend = 0; 1923 backend = 0;
1264}
1265 1924
1925#if EV_MULTIPLICITY
1926 if (ev_is_default_loop (EV_A))
1927#endif
1928 ev_default_loop_ptr = 0;
1929#if EV_MULTIPLICITY
1930 else
1931 ev_free (EV_A);
1932#endif
1933}
1934
1935#if EV_USE_INOTIFY
1266void inline_size infy_fork (EV_P); 1936inline_size void infy_fork (EV_P);
1937#endif
1267 1938
1268void inline_size 1939inline_size void
1269loop_fork (EV_P) 1940loop_fork (EV_P)
1270{ 1941{
1271#if EV_USE_PORT 1942#if EV_USE_PORT
1272 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1943 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1273#endif 1944#endif
1279#endif 1950#endif
1280#if EV_USE_INOTIFY 1951#if EV_USE_INOTIFY
1281 infy_fork (EV_A); 1952 infy_fork (EV_A);
1282#endif 1953#endif
1283 1954
1284 if (ev_is_active (&pipeev)) 1955 if (ev_is_active (&pipe_w))
1285 { 1956 {
1286 /* this "locks" the handlers against writing to the pipe */ 1957 /* this "locks" the handlers against writing to the pipe */
1287 /* while we modify the fd vars */ 1958 /* while we modify the fd vars */
1288 gotsig = 1; 1959 sig_pending = 1;
1289#if EV_ASYNC_ENABLE 1960#if EV_ASYNC_ENABLE
1290 gotasync = 1; 1961 async_pending = 1;
1291#endif 1962#endif
1292 1963
1293 ev_ref (EV_A); 1964 ev_ref (EV_A);
1294 ev_io_stop (EV_A_ &pipeev); 1965 ev_io_stop (EV_A_ &pipe_w);
1295 1966
1296#if EV_USE_EVENTFD 1967#if EV_USE_EVENTFD
1297 if (evfd >= 0) 1968 if (evfd >= 0)
1298 close (evfd); 1969 close (evfd);
1299#endif 1970#endif
1300 1971
1301 if (evpipe [0] >= 0) 1972 if (evpipe [0] >= 0)
1302 { 1973 {
1303 close (evpipe [0]); 1974 EV_WIN32_CLOSE_FD (evpipe [0]);
1304 close (evpipe [1]); 1975 EV_WIN32_CLOSE_FD (evpipe [1]);
1305 } 1976 }
1306 1977
1978#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1307 evpipe_init (EV_A); 1979 evpipe_init (EV_A);
1308 /* now iterate over everything, in case we missed something */ 1980 /* now iterate over everything, in case we missed something */
1309 pipecb (EV_A_ &pipeev, EV_READ); 1981 pipecb (EV_A_ &pipe_w, EV_READ);
1982#endif
1310 } 1983 }
1311 1984
1312 postfork = 0; 1985 postfork = 0;
1313} 1986}
1987
1988#if EV_MULTIPLICITY
1989
1990struct ev_loop *
1991ev_loop_new (unsigned int flags)
1992{
1993 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1994
1995 memset (EV_A, 0, sizeof (struct ev_loop));
1996 loop_init (EV_A_ flags);
1997
1998 if (ev_backend (EV_A))
1999 return EV_A;
2000
2001 ev_free (EV_A);
2002 return 0;
2003}
2004
2005#endif /* multiplicity */
2006
2007#if EV_VERIFY
2008static void noinline
2009verify_watcher (EV_P_ W w)
2010{
2011 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2012
2013 if (w->pending)
2014 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2015}
2016
2017static void noinline
2018verify_heap (EV_P_ ANHE *heap, int N)
2019{
2020 int i;
2021
2022 for (i = HEAP0; i < N + HEAP0; ++i)
2023 {
2024 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2025 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2026 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2027
2028 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2029 }
2030}
2031
2032static void noinline
2033array_verify (EV_P_ W *ws, int cnt)
2034{
2035 while (cnt--)
2036 {
2037 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2038 verify_watcher (EV_A_ ws [cnt]);
2039 }
2040}
2041#endif
2042
2043#if EV_FEATURE_API
2044void
2045ev_verify (EV_P)
2046{
2047#if EV_VERIFY
2048 int i;
2049 WL w;
2050
2051 assert (activecnt >= -1);
2052
2053 assert (fdchangemax >= fdchangecnt);
2054 for (i = 0; i < fdchangecnt; ++i)
2055 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2056
2057 assert (anfdmax >= 0);
2058 for (i = 0; i < anfdmax; ++i)
2059 for (w = anfds [i].head; w; w = w->next)
2060 {
2061 verify_watcher (EV_A_ (W)w);
2062 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2063 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2064 }
2065
2066 assert (timermax >= timercnt);
2067 verify_heap (EV_A_ timers, timercnt);
2068
2069#if EV_PERIODIC_ENABLE
2070 assert (periodicmax >= periodiccnt);
2071 verify_heap (EV_A_ periodics, periodiccnt);
2072#endif
2073
2074 for (i = NUMPRI; i--; )
2075 {
2076 assert (pendingmax [i] >= pendingcnt [i]);
2077#if EV_IDLE_ENABLE
2078 assert (idleall >= 0);
2079 assert (idlemax [i] >= idlecnt [i]);
2080 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2081#endif
2082 }
2083
2084#if EV_FORK_ENABLE
2085 assert (forkmax >= forkcnt);
2086 array_verify (EV_A_ (W *)forks, forkcnt);
2087#endif
2088
2089#if EV_CLEANUP_ENABLE
2090 assert (cleanupmax >= cleanupcnt);
2091 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2092#endif
2093
2094#if EV_ASYNC_ENABLE
2095 assert (asyncmax >= asynccnt);
2096 array_verify (EV_A_ (W *)asyncs, asynccnt);
2097#endif
2098
2099#if EV_PREPARE_ENABLE
2100 assert (preparemax >= preparecnt);
2101 array_verify (EV_A_ (W *)prepares, preparecnt);
2102#endif
2103
2104#if EV_CHECK_ENABLE
2105 assert (checkmax >= checkcnt);
2106 array_verify (EV_A_ (W *)checks, checkcnt);
2107#endif
2108
2109# if 0
2110#if EV_CHILD_ENABLE
2111 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2112 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2113#endif
2114# endif
2115#endif
2116}
2117#endif
1314 2118
1315#if EV_MULTIPLICITY 2119#if EV_MULTIPLICITY
1316struct ev_loop * 2120struct ev_loop *
1317ev_loop_new (unsigned int flags)
1318{
1319 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1320
1321 memset (loop, 0, sizeof (struct ev_loop));
1322
1323 loop_init (EV_A_ flags);
1324
1325 if (ev_backend (EV_A))
1326 return loop;
1327
1328 return 0;
1329}
1330
1331void
1332ev_loop_destroy (EV_P)
1333{
1334 loop_destroy (EV_A);
1335 ev_free (loop);
1336}
1337
1338void
1339ev_loop_fork (EV_P)
1340{
1341 postfork = 1; /* must be in line with ev_default_fork */
1342}
1343
1344#endif
1345
1346#if EV_MULTIPLICITY
1347struct ev_loop *
1348ev_default_loop_init (unsigned int flags)
1349#else 2121#else
1350int 2122int
2123#endif
1351ev_default_loop (unsigned int flags) 2124ev_default_loop (unsigned int flags)
1352#endif
1353{ 2125{
1354 if (!ev_default_loop_ptr) 2126 if (!ev_default_loop_ptr)
1355 { 2127 {
1356#if EV_MULTIPLICITY 2128#if EV_MULTIPLICITY
1357 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2129 EV_P = ev_default_loop_ptr = &default_loop_struct;
1358#else 2130#else
1359 ev_default_loop_ptr = 1; 2131 ev_default_loop_ptr = 1;
1360#endif 2132#endif
1361 2133
1362 loop_init (EV_A_ flags); 2134 loop_init (EV_A_ flags);
1363 2135
1364 if (ev_backend (EV_A)) 2136 if (ev_backend (EV_A))
1365 { 2137 {
1366#ifndef _WIN32 2138#if EV_CHILD_ENABLE
1367 ev_signal_init (&childev, childcb, SIGCHLD); 2139 ev_signal_init (&childev, childcb, SIGCHLD);
1368 ev_set_priority (&childev, EV_MAXPRI); 2140 ev_set_priority (&childev, EV_MAXPRI);
1369 ev_signal_start (EV_A_ &childev); 2141 ev_signal_start (EV_A_ &childev);
1370 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2142 ev_unref (EV_A); /* child watcher should not keep loop alive */
1371#endif 2143#endif
1376 2148
1377 return ev_default_loop_ptr; 2149 return ev_default_loop_ptr;
1378} 2150}
1379 2151
1380void 2152void
1381ev_default_destroy (void) 2153ev_loop_fork (EV_P)
1382{ 2154{
1383#if EV_MULTIPLICITY
1384 struct ev_loop *loop = ev_default_loop_ptr;
1385#endif
1386
1387#ifndef _WIN32
1388 ev_ref (EV_A); /* child watcher */
1389 ev_signal_stop (EV_A_ &childev);
1390#endif
1391
1392 loop_destroy (EV_A);
1393}
1394
1395void
1396ev_default_fork (void)
1397{
1398#if EV_MULTIPLICITY
1399 struct ev_loop *loop = ev_default_loop_ptr;
1400#endif
1401
1402 if (backend)
1403 postfork = 1; /* must be in line with ev_loop_fork */ 2155 postfork = 1; /* must be in line with ev_default_fork */
1404} 2156}
1405 2157
1406/*****************************************************************************/ 2158/*****************************************************************************/
1407 2159
1408void 2160void
1409ev_invoke (EV_P_ void *w, int revents) 2161ev_invoke (EV_P_ void *w, int revents)
1410{ 2162{
1411 EV_CB_INVOKE ((W)w, revents); 2163 EV_CB_INVOKE ((W)w, revents);
1412} 2164}
1413 2165
1414void inline_speed 2166unsigned int
1415call_pending (EV_P) 2167ev_pending_count (EV_P)
2168{
2169 int pri;
2170 unsigned int count = 0;
2171
2172 for (pri = NUMPRI; pri--; )
2173 count += pendingcnt [pri];
2174
2175 return count;
2176}
2177
2178void noinline
2179ev_invoke_pending (EV_P)
1416{ 2180{
1417 int pri; 2181 int pri;
1418 2182
1419 for (pri = NUMPRI; pri--; ) 2183 for (pri = NUMPRI; pri--; )
1420 while (pendingcnt [pri]) 2184 while (pendingcnt [pri])
1421 { 2185 {
1422 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2186 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1423 2187
1424 if (expect_true (p->w))
1425 {
1426 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1427
1428 p->w->pending = 0; 2188 p->w->pending = 0;
1429 EV_CB_INVOKE (p->w, p->events); 2189 EV_CB_INVOKE (p->w, p->events);
1430 } 2190 EV_FREQUENT_CHECK;
1431 } 2191 }
1432} 2192}
1433 2193
1434void inline_size
1435timers_reify (EV_P)
1436{
1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1438 {
1439 ev_timer *w = (ev_timer *)timers [0];
1440
1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1442
1443 /* first reschedule or stop timer */
1444 if (w->repeat)
1445 {
1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1447
1448 ((WT)w)->at += w->repeat;
1449 if (((WT)w)->at < mn_now)
1450 ((WT)w)->at = mn_now;
1451
1452 downheap (timers, timercnt, 0);
1453 }
1454 else
1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1456
1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1458 }
1459}
1460
1461#if EV_PERIODIC_ENABLE
1462void inline_size
1463periodics_reify (EV_P)
1464{
1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1466 {
1467 ev_periodic *w = (ev_periodic *)periodics [0];
1468
1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1470
1471 /* first reschedule or stop timer */
1472 if (w->reschedule_cb)
1473 {
1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1476 downheap (periodics, periodiccnt, 0);
1477 }
1478 else if (w->interval)
1479 {
1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else
1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1487
1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1489 }
1490}
1491
1492static void noinline
1493periodics_reschedule (EV_P)
1494{
1495 int i;
1496
1497 /* adjust periodics after time jump */
1498 for (i = 0; i < periodiccnt; ++i)
1499 {
1500 ev_periodic *w = (ev_periodic *)periodics [i];
1501
1502 if (w->reschedule_cb)
1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1504 else if (w->interval)
1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1506 }
1507
1508 /* now rebuild the heap */
1509 for (i = periodiccnt >> 1; i--; )
1510 downheap (periodics, periodiccnt, i);
1511}
1512#endif
1513
1514#if EV_IDLE_ENABLE 2194#if EV_IDLE_ENABLE
1515void inline_size 2195/* make idle watchers pending. this handles the "call-idle */
2196/* only when higher priorities are idle" logic */
2197inline_size void
1516idle_reify (EV_P) 2198idle_reify (EV_P)
1517{ 2199{
1518 if (expect_false (idleall)) 2200 if (expect_false (idleall))
1519 { 2201 {
1520 int pri; 2202 int pri;
1532 } 2214 }
1533 } 2215 }
1534} 2216}
1535#endif 2217#endif
1536 2218
1537void inline_speed 2219/* make timers pending */
2220inline_size void
2221timers_reify (EV_P)
2222{
2223 EV_FREQUENT_CHECK;
2224
2225 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2226 {
2227 do
2228 {
2229 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2230
2231 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2232
2233 /* first reschedule or stop timer */
2234 if (w->repeat)
2235 {
2236 ev_at (w) += w->repeat;
2237 if (ev_at (w) < mn_now)
2238 ev_at (w) = mn_now;
2239
2240 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2241
2242 ANHE_at_cache (timers [HEAP0]);
2243 downheap (timers, timercnt, HEAP0);
2244 }
2245 else
2246 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2247
2248 EV_FREQUENT_CHECK;
2249 feed_reverse (EV_A_ (W)w);
2250 }
2251 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2252
2253 feed_reverse_done (EV_A_ EV_TIMER);
2254 }
2255}
2256
2257#if EV_PERIODIC_ENABLE
2258
2259static void noinline
2260periodic_recalc (EV_P_ ev_periodic *w)
2261{
2262 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2263 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2264
2265 /* the above almost always errs on the low side */
2266 while (at <= ev_rt_now)
2267 {
2268 ev_tstamp nat = at + w->interval;
2269
2270 /* when resolution fails us, we use ev_rt_now */
2271 if (expect_false (nat == at))
2272 {
2273 at = ev_rt_now;
2274 break;
2275 }
2276
2277 at = nat;
2278 }
2279
2280 ev_at (w) = at;
2281}
2282
2283/* make periodics pending */
2284inline_size void
2285periodics_reify (EV_P)
2286{
2287 EV_FREQUENT_CHECK;
2288
2289 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2290 {
2291 int feed_count = 0;
2292
2293 do
2294 {
2295 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2296
2297 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2298
2299 /* first reschedule or stop timer */
2300 if (w->reschedule_cb)
2301 {
2302 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2303
2304 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2305
2306 ANHE_at_cache (periodics [HEAP0]);
2307 downheap (periodics, periodiccnt, HEAP0);
2308 }
2309 else if (w->interval)
2310 {
2311 periodic_recalc (EV_A_ w);
2312 ANHE_at_cache (periodics [HEAP0]);
2313 downheap (periodics, periodiccnt, HEAP0);
2314 }
2315 else
2316 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2317
2318 EV_FREQUENT_CHECK;
2319 feed_reverse (EV_A_ (W)w);
2320 }
2321 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2322
2323 feed_reverse_done (EV_A_ EV_PERIODIC);
2324 }
2325}
2326
2327/* simply recalculate all periodics */
2328/* TODO: maybe ensure that at least one event happens when jumping forward? */
2329static void noinline
2330periodics_reschedule (EV_P)
2331{
2332 int i;
2333
2334 /* adjust periodics after time jump */
2335 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2336 {
2337 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2338
2339 if (w->reschedule_cb)
2340 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2341 else if (w->interval)
2342 periodic_recalc (EV_A_ w);
2343
2344 ANHE_at_cache (periodics [i]);
2345 }
2346
2347 reheap (periodics, periodiccnt);
2348}
2349#endif
2350
2351/* adjust all timers by a given offset */
2352static void noinline
2353timers_reschedule (EV_P_ ev_tstamp adjust)
2354{
2355 int i;
2356
2357 for (i = 0; i < timercnt; ++i)
2358 {
2359 ANHE *he = timers + i + HEAP0;
2360 ANHE_w (*he)->at += adjust;
2361 ANHE_at_cache (*he);
2362 }
2363}
2364
2365/* fetch new monotonic and realtime times from the kernel */
2366/* also detect if there was a timejump, and act accordingly */
2367inline_speed void
1538time_update (EV_P_ ev_tstamp max_block) 2368time_update (EV_P_ ev_tstamp max_block)
1539{ 2369{
1540 int i;
1541
1542#if EV_USE_MONOTONIC 2370#if EV_USE_MONOTONIC
1543 if (expect_true (have_monotonic)) 2371 if (expect_true (have_monotonic))
1544 { 2372 {
2373 int i;
1545 ev_tstamp odiff = rtmn_diff; 2374 ev_tstamp odiff = rtmn_diff;
1546 2375
1547 mn_now = get_clock (); 2376 mn_now = get_clock ();
1548 2377
1549 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2378 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1565 * doesn't hurt either as we only do this on time-jumps or 2394 * doesn't hurt either as we only do this on time-jumps or
1566 * in the unlikely event of having been preempted here. 2395 * in the unlikely event of having been preempted here.
1567 */ 2396 */
1568 for (i = 4; --i; ) 2397 for (i = 4; --i; )
1569 { 2398 {
2399 ev_tstamp diff;
1570 rtmn_diff = ev_rt_now - mn_now; 2400 rtmn_diff = ev_rt_now - mn_now;
1571 2401
1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2402 diff = odiff - rtmn_diff;
2403
2404 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1573 return; /* all is well */ 2405 return; /* all is well */
1574 2406
1575 ev_rt_now = ev_time (); 2407 ev_rt_now = ev_time ();
1576 mn_now = get_clock (); 2408 mn_now = get_clock ();
1577 now_floor = mn_now; 2409 now_floor = mn_now;
1578 } 2410 }
1579 2411
2412 /* no timer adjustment, as the monotonic clock doesn't jump */
2413 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1580# if EV_PERIODIC_ENABLE 2414# if EV_PERIODIC_ENABLE
1581 periodics_reschedule (EV_A); 2415 periodics_reschedule (EV_A);
1582# endif 2416# endif
1583 /* no timer adjustment, as the monotonic clock doesn't jump */
1584 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1585 } 2417 }
1586 else 2418 else
1587#endif 2419#endif
1588 { 2420 {
1589 ev_rt_now = ev_time (); 2421 ev_rt_now = ev_time ();
1590 2422
1591 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2423 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1592 { 2424 {
2425 /* adjust timers. this is easy, as the offset is the same for all of them */
2426 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1593#if EV_PERIODIC_ENABLE 2427#if EV_PERIODIC_ENABLE
1594 periodics_reschedule (EV_A); 2428 periodics_reschedule (EV_A);
1595#endif 2429#endif
1596 /* adjust timers. this is easy, as the offset is the same for all of them */
1597 for (i = 0; i < timercnt; ++i)
1598 ((WT)timers [i])->at += ev_rt_now - mn_now;
1599 } 2430 }
1600 2431
1601 mn_now = ev_rt_now; 2432 mn_now = ev_rt_now;
1602 } 2433 }
1603} 2434}
1604 2435
1605void 2436void
1606ev_ref (EV_P)
1607{
1608 ++activecnt;
1609}
1610
1611void
1612ev_unref (EV_P)
1613{
1614 --activecnt;
1615}
1616
1617static int loop_done;
1618
1619void
1620ev_loop (EV_P_ int flags) 2437ev_run (EV_P_ int flags)
1621{ 2438{
2439#if EV_FEATURE_API
2440 ++loop_depth;
2441#endif
2442
2443 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2444
1622 loop_done = EVUNLOOP_CANCEL; 2445 loop_done = EVBREAK_CANCEL;
1623 2446
1624 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2447 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1625 2448
1626 do 2449 do
1627 { 2450 {
2451#if EV_VERIFY >= 2
2452 ev_verify (EV_A);
2453#endif
2454
1628#ifndef _WIN32 2455#ifndef _WIN32
1629 if (expect_false (curpid)) /* penalise the forking check even more */ 2456 if (expect_false (curpid)) /* penalise the forking check even more */
1630 if (expect_false (getpid () != curpid)) 2457 if (expect_false (getpid () != curpid))
1631 { 2458 {
1632 curpid = getpid (); 2459 curpid = getpid ();
1638 /* we might have forked, so queue fork handlers */ 2465 /* we might have forked, so queue fork handlers */
1639 if (expect_false (postfork)) 2466 if (expect_false (postfork))
1640 if (forkcnt) 2467 if (forkcnt)
1641 { 2468 {
1642 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2469 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1643 call_pending (EV_A); 2470 EV_INVOKE_PENDING;
1644 } 2471 }
1645#endif 2472#endif
1646 2473
2474#if EV_PREPARE_ENABLE
1647 /* queue prepare watchers (and execute them) */ 2475 /* queue prepare watchers (and execute them) */
1648 if (expect_false (preparecnt)) 2476 if (expect_false (preparecnt))
1649 { 2477 {
1650 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2478 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1651 call_pending (EV_A); 2479 EV_INVOKE_PENDING;
1652 } 2480 }
2481#endif
1653 2482
1654 if (expect_false (!activecnt)) 2483 if (expect_false (loop_done))
1655 break; 2484 break;
1656 2485
1657 /* we might have forked, so reify kernel state if necessary */ 2486 /* we might have forked, so reify kernel state if necessary */
1658 if (expect_false (postfork)) 2487 if (expect_false (postfork))
1659 loop_fork (EV_A); 2488 loop_fork (EV_A);
1664 /* calculate blocking time */ 2493 /* calculate blocking time */
1665 { 2494 {
1666 ev_tstamp waittime = 0.; 2495 ev_tstamp waittime = 0.;
1667 ev_tstamp sleeptime = 0.; 2496 ev_tstamp sleeptime = 0.;
1668 2497
2498 /* remember old timestamp for io_blocktime calculation */
2499 ev_tstamp prev_mn_now = mn_now;
2500
2501 /* update time to cancel out callback processing overhead */
2502 time_update (EV_A_ 1e100);
2503
1669 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2504 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1670 { 2505 {
1671 /* update time to cancel out callback processing overhead */
1672 time_update (EV_A_ 1e100);
1673
1674 waittime = MAX_BLOCKTIME; 2506 waittime = MAX_BLOCKTIME;
1675 2507
1676 if (timercnt) 2508 if (timercnt)
1677 { 2509 {
1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2510 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1679 if (waittime > to) waittime = to; 2511 if (waittime > to) waittime = to;
1680 } 2512 }
1681 2513
1682#if EV_PERIODIC_ENABLE 2514#if EV_PERIODIC_ENABLE
1683 if (periodiccnt) 2515 if (periodiccnt)
1684 { 2516 {
1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2517 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1686 if (waittime > to) waittime = to; 2518 if (waittime > to) waittime = to;
1687 } 2519 }
1688#endif 2520#endif
1689 2521
2522 /* don't let timeouts decrease the waittime below timeout_blocktime */
1690 if (expect_false (waittime < timeout_blocktime)) 2523 if (expect_false (waittime < timeout_blocktime))
1691 waittime = timeout_blocktime; 2524 waittime = timeout_blocktime;
1692 2525
1693 sleeptime = waittime - backend_fudge; 2526 /* at this point, we NEED to wait, so we have to ensure */
2527 /* to pass a minimum nonzero value to the backend */
2528 if (expect_false (waittime < backend_mintime))
2529 waittime = backend_mintime;
1694 2530
2531 /* extra check because io_blocktime is commonly 0 */
1695 if (expect_true (sleeptime > io_blocktime)) 2532 if (expect_false (io_blocktime))
1696 sleeptime = io_blocktime;
1697
1698 if (sleeptime)
1699 { 2533 {
2534 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2535
2536 if (sleeptime > waittime - backend_mintime)
2537 sleeptime = waittime - backend_mintime;
2538
2539 if (expect_true (sleeptime > 0.))
2540 {
1700 ev_sleep (sleeptime); 2541 ev_sleep (sleeptime);
1701 waittime -= sleeptime; 2542 waittime -= sleeptime;
2543 }
1702 } 2544 }
1703 } 2545 }
1704 2546
2547#if EV_FEATURE_API
1705 ++loop_count; 2548 ++loop_count;
2549#endif
2550 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1706 backend_poll (EV_A_ waittime); 2551 backend_poll (EV_A_ waittime);
2552 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1707 2553
1708 /* update ev_rt_now, do magic */ 2554 /* update ev_rt_now, do magic */
1709 time_update (EV_A_ waittime + sleeptime); 2555 time_update (EV_A_ waittime + sleeptime);
1710 } 2556 }
1711 2557
1718#if EV_IDLE_ENABLE 2564#if EV_IDLE_ENABLE
1719 /* queue idle watchers unless other events are pending */ 2565 /* queue idle watchers unless other events are pending */
1720 idle_reify (EV_A); 2566 idle_reify (EV_A);
1721#endif 2567#endif
1722 2568
2569#if EV_CHECK_ENABLE
1723 /* queue check watchers, to be executed first */ 2570 /* queue check watchers, to be executed first */
1724 if (expect_false (checkcnt)) 2571 if (expect_false (checkcnt))
1725 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2572 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2573#endif
1726 2574
1727 call_pending (EV_A); 2575 EV_INVOKE_PENDING;
1728 } 2576 }
1729 while (expect_true ( 2577 while (expect_true (
1730 activecnt 2578 activecnt
1731 && !loop_done 2579 && !loop_done
1732 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2580 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1733 )); 2581 ));
1734 2582
1735 if (loop_done == EVUNLOOP_ONE) 2583 if (loop_done == EVBREAK_ONE)
1736 loop_done = EVUNLOOP_CANCEL; 2584 loop_done = EVBREAK_CANCEL;
1737}
1738 2585
2586#if EV_FEATURE_API
2587 --loop_depth;
2588#endif
2589}
2590
1739void 2591void
1740ev_unloop (EV_P_ int how) 2592ev_break (EV_P_ int how)
1741{ 2593{
1742 loop_done = how; 2594 loop_done = how;
1743} 2595}
1744 2596
2597void
2598ev_ref (EV_P)
2599{
2600 ++activecnt;
2601}
2602
2603void
2604ev_unref (EV_P)
2605{
2606 --activecnt;
2607}
2608
2609void
2610ev_now_update (EV_P)
2611{
2612 time_update (EV_A_ 1e100);
2613}
2614
2615void
2616ev_suspend (EV_P)
2617{
2618 ev_now_update (EV_A);
2619}
2620
2621void
2622ev_resume (EV_P)
2623{
2624 ev_tstamp mn_prev = mn_now;
2625
2626 ev_now_update (EV_A);
2627 timers_reschedule (EV_A_ mn_now - mn_prev);
2628#if EV_PERIODIC_ENABLE
2629 /* TODO: really do this? */
2630 periodics_reschedule (EV_A);
2631#endif
2632}
2633
1745/*****************************************************************************/ 2634/*****************************************************************************/
2635/* singly-linked list management, used when the expected list length is short */
1746 2636
1747void inline_size 2637inline_size void
1748wlist_add (WL *head, WL elem) 2638wlist_add (WL *head, WL elem)
1749{ 2639{
1750 elem->next = *head; 2640 elem->next = *head;
1751 *head = elem; 2641 *head = elem;
1752} 2642}
1753 2643
1754void inline_size 2644inline_size void
1755wlist_del (WL *head, WL elem) 2645wlist_del (WL *head, WL elem)
1756{ 2646{
1757 while (*head) 2647 while (*head)
1758 { 2648 {
1759 if (*head == elem) 2649 if (expect_true (*head == elem))
1760 { 2650 {
1761 *head = elem->next; 2651 *head = elem->next;
1762 return; 2652 break;
1763 } 2653 }
1764 2654
1765 head = &(*head)->next; 2655 head = &(*head)->next;
1766 } 2656 }
1767} 2657}
1768 2658
1769void inline_speed 2659/* internal, faster, version of ev_clear_pending */
2660inline_speed void
1770clear_pending (EV_P_ W w) 2661clear_pending (EV_P_ W w)
1771{ 2662{
1772 if (w->pending) 2663 if (w->pending)
1773 { 2664 {
1774 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2665 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1775 w->pending = 0; 2666 w->pending = 0;
1776 } 2667 }
1777} 2668}
1778 2669
1779int 2670int
1783 int pending = w_->pending; 2674 int pending = w_->pending;
1784 2675
1785 if (expect_true (pending)) 2676 if (expect_true (pending))
1786 { 2677 {
1787 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2678 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2679 p->w = (W)&pending_w;
1788 w_->pending = 0; 2680 w_->pending = 0;
1789 p->w = 0;
1790 return p->events; 2681 return p->events;
1791 } 2682 }
1792 else 2683 else
1793 return 0; 2684 return 0;
1794} 2685}
1795 2686
1796void inline_size 2687inline_size void
1797pri_adjust (EV_P_ W w) 2688pri_adjust (EV_P_ W w)
1798{ 2689{
1799 int pri = w->priority; 2690 int pri = ev_priority (w);
1800 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2691 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1801 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2692 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1802 w->priority = pri; 2693 ev_set_priority (w, pri);
1803} 2694}
1804 2695
1805void inline_speed 2696inline_speed void
1806ev_start (EV_P_ W w, int active) 2697ev_start (EV_P_ W w, int active)
1807{ 2698{
1808 pri_adjust (EV_A_ w); 2699 pri_adjust (EV_A_ w);
1809 w->active = active; 2700 w->active = active;
1810 ev_ref (EV_A); 2701 ev_ref (EV_A);
1811} 2702}
1812 2703
1813void inline_size 2704inline_size void
1814ev_stop (EV_P_ W w) 2705ev_stop (EV_P_ W w)
1815{ 2706{
1816 ev_unref (EV_A); 2707 ev_unref (EV_A);
1817 w->active = 0; 2708 w->active = 0;
1818} 2709}
1825 int fd = w->fd; 2716 int fd = w->fd;
1826 2717
1827 if (expect_false (ev_is_active (w))) 2718 if (expect_false (ev_is_active (w)))
1828 return; 2719 return;
1829 2720
1830 assert (("ev_io_start called with negative fd", fd >= 0)); 2721 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2722 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2723
2724 EV_FREQUENT_CHECK;
1831 2725
1832 ev_start (EV_A_ (W)w, 1); 2726 ev_start (EV_A_ (W)w, 1);
1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2727 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1834 wlist_add (&anfds[fd].head, (WL)w); 2728 wlist_add (&anfds[fd].head, (WL)w);
1835 2729
1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2730 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1837 w->events &= ~EV_IOFDSET; 2731 w->events &= ~EV__IOFDSET;
2732
2733 EV_FREQUENT_CHECK;
1838} 2734}
1839 2735
1840void noinline 2736void noinline
1841ev_io_stop (EV_P_ ev_io *w) 2737ev_io_stop (EV_P_ ev_io *w)
1842{ 2738{
1843 clear_pending (EV_A_ (W)w); 2739 clear_pending (EV_A_ (W)w);
1844 if (expect_false (!ev_is_active (w))) 2740 if (expect_false (!ev_is_active (w)))
1845 return; 2741 return;
1846 2742
1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2743 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2744
2745 EV_FREQUENT_CHECK;
1848 2746
1849 wlist_del (&anfds[w->fd].head, (WL)w); 2747 wlist_del (&anfds[w->fd].head, (WL)w);
1850 ev_stop (EV_A_ (W)w); 2748 ev_stop (EV_A_ (W)w);
1851 2749
1852 fd_change (EV_A_ w->fd, 1); 2750 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2751
2752 EV_FREQUENT_CHECK;
1853} 2753}
1854 2754
1855void noinline 2755void noinline
1856ev_timer_start (EV_P_ ev_timer *w) 2756ev_timer_start (EV_P_ ev_timer *w)
1857{ 2757{
1858 if (expect_false (ev_is_active (w))) 2758 if (expect_false (ev_is_active (w)))
1859 return; 2759 return;
1860 2760
1861 ((WT)w)->at += mn_now; 2761 ev_at (w) += mn_now;
1862 2762
1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2763 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1864 2764
2765 EV_FREQUENT_CHECK;
2766
2767 ++timercnt;
1865 ev_start (EV_A_ (W)w, ++timercnt); 2768 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2769 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1867 timers [timercnt - 1] = (WT)w; 2770 ANHE_w (timers [ev_active (w)]) = (WT)w;
1868 upheap (timers, timercnt - 1); 2771 ANHE_at_cache (timers [ev_active (w)]);
2772 upheap (timers, ev_active (w));
1869 2773
2774 EV_FREQUENT_CHECK;
2775
1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2776 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1871} 2777}
1872 2778
1873void noinline 2779void noinline
1874ev_timer_stop (EV_P_ ev_timer *w) 2780ev_timer_stop (EV_P_ ev_timer *w)
1875{ 2781{
1876 clear_pending (EV_A_ (W)w); 2782 clear_pending (EV_A_ (W)w);
1877 if (expect_false (!ev_is_active (w))) 2783 if (expect_false (!ev_is_active (w)))
1878 return; 2784 return;
1879 2785
1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2786 EV_FREQUENT_CHECK;
1881 2787
1882 { 2788 {
1883 int active = ((W)w)->active; 2789 int active = ev_active (w);
1884 2790
2791 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2792
2793 --timercnt;
2794
1885 if (expect_true (--active < --timercnt)) 2795 if (expect_true (active < timercnt + HEAP0))
1886 { 2796 {
1887 timers [active] = timers [timercnt]; 2797 timers [active] = timers [timercnt + HEAP0];
1888 adjustheap (timers, timercnt, active); 2798 adjustheap (timers, timercnt, active);
1889 } 2799 }
1890 } 2800 }
1891 2801
1892 ((WT)w)->at -= mn_now; 2802 ev_at (w) -= mn_now;
1893 2803
1894 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
1895} 2807}
1896 2808
1897void noinline 2809void noinline
1898ev_timer_again (EV_P_ ev_timer *w) 2810ev_timer_again (EV_P_ ev_timer *w)
1899{ 2811{
2812 EV_FREQUENT_CHECK;
2813
1900 if (ev_is_active (w)) 2814 if (ev_is_active (w))
1901 { 2815 {
1902 if (w->repeat) 2816 if (w->repeat)
1903 { 2817 {
1904 ((WT)w)->at = mn_now + w->repeat; 2818 ev_at (w) = mn_now + w->repeat;
2819 ANHE_at_cache (timers [ev_active (w)]);
1905 adjustheap (timers, timercnt, ((W)w)->active - 1); 2820 adjustheap (timers, timercnt, ev_active (w));
1906 } 2821 }
1907 else 2822 else
1908 ev_timer_stop (EV_A_ w); 2823 ev_timer_stop (EV_A_ w);
1909 } 2824 }
1910 else if (w->repeat) 2825 else if (w->repeat)
1911 { 2826 {
1912 w->at = w->repeat; 2827 ev_at (w) = w->repeat;
1913 ev_timer_start (EV_A_ w); 2828 ev_timer_start (EV_A_ w);
1914 } 2829 }
2830
2831 EV_FREQUENT_CHECK;
2832}
2833
2834ev_tstamp
2835ev_timer_remaining (EV_P_ ev_timer *w)
2836{
2837 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1915} 2838}
1916 2839
1917#if EV_PERIODIC_ENABLE 2840#if EV_PERIODIC_ENABLE
1918void noinline 2841void noinline
1919ev_periodic_start (EV_P_ ev_periodic *w) 2842ev_periodic_start (EV_P_ ev_periodic *w)
1920{ 2843{
1921 if (expect_false (ev_is_active (w))) 2844 if (expect_false (ev_is_active (w)))
1922 return; 2845 return;
1923 2846
1924 if (w->reschedule_cb) 2847 if (w->reschedule_cb)
1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2848 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1926 else if (w->interval) 2849 else if (w->interval)
1927 { 2850 {
1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2851 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1929 /* this formula differs from the one in periodic_reify because we do not always round up */ 2852 periodic_recalc (EV_A_ w);
1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1931 } 2853 }
1932 else 2854 else
1933 ((WT)w)->at = w->offset; 2855 ev_at (w) = w->offset;
1934 2856
2857 EV_FREQUENT_CHECK;
2858
2859 ++periodiccnt;
1935 ev_start (EV_A_ (W)w, ++periodiccnt); 2860 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2861 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1937 periodics [periodiccnt - 1] = (WT)w; 2862 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1938 upheap (periodics, periodiccnt - 1); 2863 ANHE_at_cache (periodics [ev_active (w)]);
2864 upheap (periodics, ev_active (w));
1939 2865
2866 EV_FREQUENT_CHECK;
2867
1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2868 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1941} 2869}
1942 2870
1943void noinline 2871void noinline
1944ev_periodic_stop (EV_P_ ev_periodic *w) 2872ev_periodic_stop (EV_P_ ev_periodic *w)
1945{ 2873{
1946 clear_pending (EV_A_ (W)w); 2874 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2875 if (expect_false (!ev_is_active (w)))
1948 return; 2876 return;
1949 2877
1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2878 EV_FREQUENT_CHECK;
1951 2879
1952 { 2880 {
1953 int active = ((W)w)->active; 2881 int active = ev_active (w);
1954 2882
2883 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2884
2885 --periodiccnt;
2886
1955 if (expect_true (--active < --periodiccnt)) 2887 if (expect_true (active < periodiccnt + HEAP0))
1956 { 2888 {
1957 periodics [active] = periodics [periodiccnt]; 2889 periodics [active] = periodics [periodiccnt + HEAP0];
1958 adjustheap (periodics, periodiccnt, active); 2890 adjustheap (periodics, periodiccnt, active);
1959 } 2891 }
1960 } 2892 }
1961 2893
1962 ev_stop (EV_A_ (W)w); 2894 ev_stop (EV_A_ (W)w);
2895
2896 EV_FREQUENT_CHECK;
1963} 2897}
1964 2898
1965void noinline 2899void noinline
1966ev_periodic_again (EV_P_ ev_periodic *w) 2900ev_periodic_again (EV_P_ ev_periodic *w)
1967{ 2901{
1973 2907
1974#ifndef SA_RESTART 2908#ifndef SA_RESTART
1975# define SA_RESTART 0 2909# define SA_RESTART 0
1976#endif 2910#endif
1977 2911
2912#if EV_SIGNAL_ENABLE
2913
1978void noinline 2914void noinline
1979ev_signal_start (EV_P_ ev_signal *w) 2915ev_signal_start (EV_P_ ev_signal *w)
1980{ 2916{
1981#if EV_MULTIPLICITY
1982 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1983#endif
1984 if (expect_false (ev_is_active (w))) 2917 if (expect_false (ev_is_active (w)))
1985 return; 2918 return;
1986 2919
1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2920 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1988 2921
1989 evpipe_init (EV_A); 2922#if EV_MULTIPLICITY
2923 assert (("libev: a signal must not be attached to two different loops",
2924 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1990 2925
2926 signals [w->signum - 1].loop = EV_A;
2927#endif
2928
2929 EV_FREQUENT_CHECK;
2930
2931#if EV_USE_SIGNALFD
2932 if (sigfd == -2)
1991 { 2933 {
1992#ifndef _WIN32 2934 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1993 sigset_t full, prev; 2935 if (sigfd < 0 && errno == EINVAL)
1994 sigfillset (&full); 2936 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1995 sigprocmask (SIG_SETMASK, &full, &prev);
1996#endif
1997 2937
1998 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2938 if (sigfd >= 0)
2939 {
2940 fd_intern (sigfd); /* doing it twice will not hurt */
1999 2941
2000#ifndef _WIN32 2942 sigemptyset (&sigfd_set);
2001 sigprocmask (SIG_SETMASK, &prev, 0); 2943
2002#endif 2944 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2945 ev_set_priority (&sigfd_w, EV_MAXPRI);
2946 ev_io_start (EV_A_ &sigfd_w);
2947 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2948 }
2003 } 2949 }
2950
2951 if (sigfd >= 0)
2952 {
2953 /* TODO: check .head */
2954 sigaddset (&sigfd_set, w->signum);
2955 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2956
2957 signalfd (sigfd, &sigfd_set, 0);
2958 }
2959#endif
2004 2960
2005 ev_start (EV_A_ (W)w, 1); 2961 ev_start (EV_A_ (W)w, 1);
2006 wlist_add (&signals [w->signum - 1].head, (WL)w); 2962 wlist_add (&signals [w->signum - 1].head, (WL)w);
2007 2963
2008 if (!((WL)w)->next) 2964 if (!((WL)w)->next)
2965# if EV_USE_SIGNALFD
2966 if (sigfd < 0) /*TODO*/
2967# endif
2009 { 2968 {
2010#if _WIN32 2969# ifdef _WIN32
2970 evpipe_init (EV_A);
2971
2011 signal (w->signum, ev_sighandler); 2972 signal (w->signum, ev_sighandler);
2012#else 2973# else
2013 struct sigaction sa; 2974 struct sigaction sa;
2975
2976 evpipe_init (EV_A);
2977
2014 sa.sa_handler = ev_sighandler; 2978 sa.sa_handler = ev_sighandler;
2015 sigfillset (&sa.sa_mask); 2979 sigfillset (&sa.sa_mask);
2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2980 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2017 sigaction (w->signum, &sa, 0); 2981 sigaction (w->signum, &sa, 0);
2982
2983 if (origflags & EVFLAG_NOSIGMASK)
2984 {
2985 sigemptyset (&sa.sa_mask);
2986 sigaddset (&sa.sa_mask, w->signum);
2987 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2988 }
2018#endif 2989#endif
2019 } 2990 }
2991
2992 EV_FREQUENT_CHECK;
2020} 2993}
2021 2994
2022void noinline 2995void noinline
2023ev_signal_stop (EV_P_ ev_signal *w) 2996ev_signal_stop (EV_P_ ev_signal *w)
2024{ 2997{
2025 clear_pending (EV_A_ (W)w); 2998 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2999 if (expect_false (!ev_is_active (w)))
2027 return; 3000 return;
2028 3001
3002 EV_FREQUENT_CHECK;
3003
2029 wlist_del (&signals [w->signum - 1].head, (WL)w); 3004 wlist_del (&signals [w->signum - 1].head, (WL)w);
2030 ev_stop (EV_A_ (W)w); 3005 ev_stop (EV_A_ (W)w);
2031 3006
2032 if (!signals [w->signum - 1].head) 3007 if (!signals [w->signum - 1].head)
3008 {
3009#if EV_MULTIPLICITY
3010 signals [w->signum - 1].loop = 0; /* unattach from signal */
3011#endif
3012#if EV_USE_SIGNALFD
3013 if (sigfd >= 0)
3014 {
3015 sigset_t ss;
3016
3017 sigemptyset (&ss);
3018 sigaddset (&ss, w->signum);
3019 sigdelset (&sigfd_set, w->signum);
3020
3021 signalfd (sigfd, &sigfd_set, 0);
3022 sigprocmask (SIG_UNBLOCK, &ss, 0);
3023 }
3024 else
3025#endif
2033 signal (w->signum, SIG_DFL); 3026 signal (w->signum, SIG_DFL);
3027 }
3028
3029 EV_FREQUENT_CHECK;
2034} 3030}
3031
3032#endif
3033
3034#if EV_CHILD_ENABLE
2035 3035
2036void 3036void
2037ev_child_start (EV_P_ ev_child *w) 3037ev_child_start (EV_P_ ev_child *w)
2038{ 3038{
2039#if EV_MULTIPLICITY 3039#if EV_MULTIPLICITY
2040 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3040 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2041#endif 3041#endif
2042 if (expect_false (ev_is_active (w))) 3042 if (expect_false (ev_is_active (w)))
2043 return; 3043 return;
2044 3044
3045 EV_FREQUENT_CHECK;
3046
2045 ev_start (EV_A_ (W)w, 1); 3047 ev_start (EV_A_ (W)w, 1);
2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3048 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3049
3050 EV_FREQUENT_CHECK;
2047} 3051}
2048 3052
2049void 3053void
2050ev_child_stop (EV_P_ ev_child *w) 3054ev_child_stop (EV_P_ ev_child *w)
2051{ 3055{
2052 clear_pending (EV_A_ (W)w); 3056 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 3057 if (expect_false (!ev_is_active (w)))
2054 return; 3058 return;
2055 3059
3060 EV_FREQUENT_CHECK;
3061
2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3062 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2057 ev_stop (EV_A_ (W)w); 3063 ev_stop (EV_A_ (W)w);
3064
3065 EV_FREQUENT_CHECK;
2058} 3066}
3067
3068#endif
2059 3069
2060#if EV_STAT_ENABLE 3070#if EV_STAT_ENABLE
2061 3071
2062# ifdef _WIN32 3072# ifdef _WIN32
2063# undef lstat 3073# undef lstat
2064# define lstat(a,b) _stati64 (a,b) 3074# define lstat(a,b) _stati64 (a,b)
2065# endif 3075# endif
2066 3076
2067#define DEF_STAT_INTERVAL 5.0074891 3077#define DEF_STAT_INTERVAL 5.0074891
3078#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2068#define MIN_STAT_INTERVAL 0.1074891 3079#define MIN_STAT_INTERVAL 0.1074891
2069 3080
2070static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3081static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2071 3082
2072#if EV_USE_INOTIFY 3083#if EV_USE_INOTIFY
2073# define EV_INOTIFY_BUFSIZE 8192 3084
3085/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3086# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2074 3087
2075static void noinline 3088static void noinline
2076infy_add (EV_P_ ev_stat *w) 3089infy_add (EV_P_ ev_stat *w)
2077{ 3090{
2078 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3091 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2079 3092
2080 if (w->wd < 0) 3093 if (w->wd >= 0)
3094 {
3095 struct statfs sfs;
3096
3097 /* now local changes will be tracked by inotify, but remote changes won't */
3098 /* unless the filesystem is known to be local, we therefore still poll */
3099 /* also do poll on <2.6.25, but with normal frequency */
3100
3101 if (!fs_2625)
3102 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3103 else if (!statfs (w->path, &sfs)
3104 && (sfs.f_type == 0x1373 /* devfs */
3105 || sfs.f_type == 0xEF53 /* ext2/3 */
3106 || sfs.f_type == 0x3153464a /* jfs */
3107 || sfs.f_type == 0x52654973 /* reiser3 */
3108 || sfs.f_type == 0x01021994 /* tempfs */
3109 || sfs.f_type == 0x58465342 /* xfs */))
3110 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3111 else
3112 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2081 { 3113 }
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3114 else
3115 {
3116 /* can't use inotify, continue to stat */
3117 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2083 3118
2084 /* monitor some parent directory for speedup hints */ 3119 /* if path is not there, monitor some parent directory for speedup hints */
3120 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3121 /* but an efficiency issue only */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3122 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 { 3123 {
2087 char path [4096]; 3124 char path [4096];
2088 strcpy (path, w->path); 3125 strcpy (path, w->path);
2089 3126
2092 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3129 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2093 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3130 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2094 3131
2095 char *pend = strrchr (path, '/'); 3132 char *pend = strrchr (path, '/');
2096 3133
2097 if (!pend) 3134 if (!pend || pend == path)
2098 break; /* whoops, no '/', complain to your admin */ 3135 break;
2099 3136
2100 *pend = 0; 3137 *pend = 0;
2101 w->wd = inotify_add_watch (fs_fd, path, mask); 3138 w->wd = inotify_add_watch (fs_fd, path, mask);
2102 } 3139 }
2103 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3140 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2104 } 3141 }
2105 } 3142 }
2106 else
2107 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2108 3143
2109 if (w->wd >= 0) 3144 if (w->wd >= 0)
2110 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3145 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3146
3147 /* now re-arm timer, if required */
3148 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3149 ev_timer_again (EV_A_ &w->timer);
3150 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2111} 3151}
2112 3152
2113static void noinline 3153static void noinline
2114infy_del (EV_P_ ev_stat *w) 3154infy_del (EV_P_ ev_stat *w)
2115{ 3155{
2118 3158
2119 if (wd < 0) 3159 if (wd < 0)
2120 return; 3160 return;
2121 3161
2122 w->wd = -2; 3162 w->wd = -2;
2123 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3163 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2124 wlist_del (&fs_hash [slot].head, (WL)w); 3164 wlist_del (&fs_hash [slot].head, (WL)w);
2125 3165
2126 /* remove this watcher, if others are watching it, they will rearm */ 3166 /* remove this watcher, if others are watching it, they will rearm */
2127 inotify_rm_watch (fs_fd, wd); 3167 inotify_rm_watch (fs_fd, wd);
2128} 3168}
2129 3169
2130static void noinline 3170static void noinline
2131infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3171infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2132{ 3172{
2133 if (slot < 0) 3173 if (slot < 0)
2134 /* overflow, need to check for all hahs slots */ 3174 /* overflow, need to check for all hash slots */
2135 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3175 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2136 infy_wd (EV_A_ slot, wd, ev); 3176 infy_wd (EV_A_ slot, wd, ev);
2137 else 3177 else
2138 { 3178 {
2139 WL w_; 3179 WL w_;
2140 3180
2141 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3181 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2142 { 3182 {
2143 ev_stat *w = (ev_stat *)w_; 3183 ev_stat *w = (ev_stat *)w_;
2144 w_ = w_->next; /* lets us remove this watcher and all before it */ 3184 w_ = w_->next; /* lets us remove this watcher and all before it */
2145 3185
2146 if (w->wd == wd || wd == -1) 3186 if (w->wd == wd || wd == -1)
2147 { 3187 {
2148 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3188 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2149 { 3189 {
3190 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2150 w->wd = -1; 3191 w->wd = -1;
2151 infy_add (EV_A_ w); /* re-add, no matter what */ 3192 infy_add (EV_A_ w); /* re-add, no matter what */
2152 } 3193 }
2153 3194
2154 stat_timer_cb (EV_A_ &w->timer, 0); 3195 stat_timer_cb (EV_A_ &w->timer, 0);
2159 3200
2160static void 3201static void
2161infy_cb (EV_P_ ev_io *w, int revents) 3202infy_cb (EV_P_ ev_io *w, int revents)
2162{ 3203{
2163 char buf [EV_INOTIFY_BUFSIZE]; 3204 char buf [EV_INOTIFY_BUFSIZE];
2164 struct inotify_event *ev = (struct inotify_event *)buf;
2165 int ofs; 3205 int ofs;
2166 int len = read (fs_fd, buf, sizeof (buf)); 3206 int len = read (fs_fd, buf, sizeof (buf));
2167 3207
2168 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3208 for (ofs = 0; ofs < len; )
3209 {
3210 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2169 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3211 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3212 ofs += sizeof (struct inotify_event) + ev->len;
3213 }
2170} 3214}
2171 3215
2172void inline_size 3216inline_size void
3217ev_check_2625 (EV_P)
3218{
3219 /* kernels < 2.6.25 are borked
3220 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3221 */
3222 if (ev_linux_version () < 0x020619)
3223 return;
3224
3225 fs_2625 = 1;
3226}
3227
3228inline_size int
3229infy_newfd (void)
3230{
3231#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3232 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3233 if (fd >= 0)
3234 return fd;
3235#endif
3236 return inotify_init ();
3237}
3238
3239inline_size void
2173infy_init (EV_P) 3240infy_init (EV_P)
2174{ 3241{
2175 if (fs_fd != -2) 3242 if (fs_fd != -2)
2176 return; 3243 return;
2177 3244
3245 fs_fd = -1;
3246
3247 ev_check_2625 (EV_A);
3248
2178 fs_fd = inotify_init (); 3249 fs_fd = infy_newfd ();
2179 3250
2180 if (fs_fd >= 0) 3251 if (fs_fd >= 0)
2181 { 3252 {
3253 fd_intern (fs_fd);
2182 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3254 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2183 ev_set_priority (&fs_w, EV_MAXPRI); 3255 ev_set_priority (&fs_w, EV_MAXPRI);
2184 ev_io_start (EV_A_ &fs_w); 3256 ev_io_start (EV_A_ &fs_w);
3257 ev_unref (EV_A);
2185 } 3258 }
2186} 3259}
2187 3260
2188void inline_size 3261inline_size void
2189infy_fork (EV_P) 3262infy_fork (EV_P)
2190{ 3263{
2191 int slot; 3264 int slot;
2192 3265
2193 if (fs_fd < 0) 3266 if (fs_fd < 0)
2194 return; 3267 return;
2195 3268
3269 ev_ref (EV_A);
3270 ev_io_stop (EV_A_ &fs_w);
2196 close (fs_fd); 3271 close (fs_fd);
2197 fs_fd = inotify_init (); 3272 fs_fd = infy_newfd ();
2198 3273
3274 if (fs_fd >= 0)
3275 {
3276 fd_intern (fs_fd);
3277 ev_io_set (&fs_w, fs_fd, EV_READ);
3278 ev_io_start (EV_A_ &fs_w);
3279 ev_unref (EV_A);
3280 }
3281
2199 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3282 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2200 { 3283 {
2201 WL w_ = fs_hash [slot].head; 3284 WL w_ = fs_hash [slot].head;
2202 fs_hash [slot].head = 0; 3285 fs_hash [slot].head = 0;
2203 3286
2204 while (w_) 3287 while (w_)
2209 w->wd = -1; 3292 w->wd = -1;
2210 3293
2211 if (fs_fd >= 0) 3294 if (fs_fd >= 0)
2212 infy_add (EV_A_ w); /* re-add, no matter what */ 3295 infy_add (EV_A_ w); /* re-add, no matter what */
2213 else 3296 else
3297 {
3298 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3299 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2214 ev_timer_start (EV_A_ &w->timer); 3300 ev_timer_again (EV_A_ &w->timer);
3301 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3302 }
2215 } 3303 }
2216
2217 } 3304 }
2218} 3305}
2219 3306
3307#endif
3308
3309#ifdef _WIN32
3310# define EV_LSTAT(p,b) _stati64 (p, b)
3311#else
3312# define EV_LSTAT(p,b) lstat (p, b)
2220#endif 3313#endif
2221 3314
2222void 3315void
2223ev_stat_stat (EV_P_ ev_stat *w) 3316ev_stat_stat (EV_P_ ev_stat *w)
2224{ 3317{
2231static void noinline 3324static void noinline
2232stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3325stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2233{ 3326{
2234 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3327 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2235 3328
2236 /* we copy this here each the time so that */ 3329 ev_statdata prev = w->attr;
2237 /* prev has the old value when the callback gets invoked */
2238 w->prev = w->attr;
2239 ev_stat_stat (EV_A_ w); 3330 ev_stat_stat (EV_A_ w);
2240 3331
2241 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3332 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2242 if ( 3333 if (
2243 w->prev.st_dev != w->attr.st_dev 3334 prev.st_dev != w->attr.st_dev
2244 || w->prev.st_ino != w->attr.st_ino 3335 || prev.st_ino != w->attr.st_ino
2245 || w->prev.st_mode != w->attr.st_mode 3336 || prev.st_mode != w->attr.st_mode
2246 || w->prev.st_nlink != w->attr.st_nlink 3337 || prev.st_nlink != w->attr.st_nlink
2247 || w->prev.st_uid != w->attr.st_uid 3338 || prev.st_uid != w->attr.st_uid
2248 || w->prev.st_gid != w->attr.st_gid 3339 || prev.st_gid != w->attr.st_gid
2249 || w->prev.st_rdev != w->attr.st_rdev 3340 || prev.st_rdev != w->attr.st_rdev
2250 || w->prev.st_size != w->attr.st_size 3341 || prev.st_size != w->attr.st_size
2251 || w->prev.st_atime != w->attr.st_atime 3342 || prev.st_atime != w->attr.st_atime
2252 || w->prev.st_mtime != w->attr.st_mtime 3343 || prev.st_mtime != w->attr.st_mtime
2253 || w->prev.st_ctime != w->attr.st_ctime 3344 || prev.st_ctime != w->attr.st_ctime
2254 ) { 3345 ) {
3346 /* we only update w->prev on actual differences */
3347 /* in case we test more often than invoke the callback, */
3348 /* to ensure that prev is always different to attr */
3349 w->prev = prev;
3350
2255 #if EV_USE_INOTIFY 3351 #if EV_USE_INOTIFY
3352 if (fs_fd >= 0)
3353 {
2256 infy_del (EV_A_ w); 3354 infy_del (EV_A_ w);
2257 infy_add (EV_A_ w); 3355 infy_add (EV_A_ w);
2258 ev_stat_stat (EV_A_ w); /* avoid race... */ 3356 ev_stat_stat (EV_A_ w); /* avoid race... */
3357 }
2259 #endif 3358 #endif
2260 3359
2261 ev_feed_event (EV_A_ w, EV_STAT); 3360 ev_feed_event (EV_A_ w, EV_STAT);
2262 } 3361 }
2263} 3362}
2266ev_stat_start (EV_P_ ev_stat *w) 3365ev_stat_start (EV_P_ ev_stat *w)
2267{ 3366{
2268 if (expect_false (ev_is_active (w))) 3367 if (expect_false (ev_is_active (w)))
2269 return; 3368 return;
2270 3369
2271 /* since we use memcmp, we need to clear any padding data etc. */
2272 memset (&w->prev, 0, sizeof (ev_statdata));
2273 memset (&w->attr, 0, sizeof (ev_statdata));
2274
2275 ev_stat_stat (EV_A_ w); 3370 ev_stat_stat (EV_A_ w);
2276 3371
3372 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2277 if (w->interval < MIN_STAT_INTERVAL) 3373 w->interval = MIN_STAT_INTERVAL;
2278 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2279 3374
2280 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3375 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2281 ev_set_priority (&w->timer, ev_priority (w)); 3376 ev_set_priority (&w->timer, ev_priority (w));
2282 3377
2283#if EV_USE_INOTIFY 3378#if EV_USE_INOTIFY
2284 infy_init (EV_A); 3379 infy_init (EV_A);
2285 3380
2286 if (fs_fd >= 0) 3381 if (fs_fd >= 0)
2287 infy_add (EV_A_ w); 3382 infy_add (EV_A_ w);
2288 else 3383 else
2289#endif 3384#endif
3385 {
2290 ev_timer_start (EV_A_ &w->timer); 3386 ev_timer_again (EV_A_ &w->timer);
3387 ev_unref (EV_A);
3388 }
2291 3389
2292 ev_start (EV_A_ (W)w, 1); 3390 ev_start (EV_A_ (W)w, 1);
3391
3392 EV_FREQUENT_CHECK;
2293} 3393}
2294 3394
2295void 3395void
2296ev_stat_stop (EV_P_ ev_stat *w) 3396ev_stat_stop (EV_P_ ev_stat *w)
2297{ 3397{
2298 clear_pending (EV_A_ (W)w); 3398 clear_pending (EV_A_ (W)w);
2299 if (expect_false (!ev_is_active (w))) 3399 if (expect_false (!ev_is_active (w)))
2300 return; 3400 return;
2301 3401
3402 EV_FREQUENT_CHECK;
3403
2302#if EV_USE_INOTIFY 3404#if EV_USE_INOTIFY
2303 infy_del (EV_A_ w); 3405 infy_del (EV_A_ w);
2304#endif 3406#endif
3407
3408 if (ev_is_active (&w->timer))
3409 {
3410 ev_ref (EV_A);
2305 ev_timer_stop (EV_A_ &w->timer); 3411 ev_timer_stop (EV_A_ &w->timer);
3412 }
2306 3413
2307 ev_stop (EV_A_ (W)w); 3414 ev_stop (EV_A_ (W)w);
3415
3416 EV_FREQUENT_CHECK;
2308} 3417}
2309#endif 3418#endif
2310 3419
2311#if EV_IDLE_ENABLE 3420#if EV_IDLE_ENABLE
2312void 3421void
2314{ 3423{
2315 if (expect_false (ev_is_active (w))) 3424 if (expect_false (ev_is_active (w)))
2316 return; 3425 return;
2317 3426
2318 pri_adjust (EV_A_ (W)w); 3427 pri_adjust (EV_A_ (W)w);
3428
3429 EV_FREQUENT_CHECK;
2319 3430
2320 { 3431 {
2321 int active = ++idlecnt [ABSPRI (w)]; 3432 int active = ++idlecnt [ABSPRI (w)];
2322 3433
2323 ++idleall; 3434 ++idleall;
2324 ev_start (EV_A_ (W)w, active); 3435 ev_start (EV_A_ (W)w, active);
2325 3436
2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3437 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2327 idles [ABSPRI (w)][active - 1] = w; 3438 idles [ABSPRI (w)][active - 1] = w;
2328 } 3439 }
3440
3441 EV_FREQUENT_CHECK;
2329} 3442}
2330 3443
2331void 3444void
2332ev_idle_stop (EV_P_ ev_idle *w) 3445ev_idle_stop (EV_P_ ev_idle *w)
2333{ 3446{
2334 clear_pending (EV_A_ (W)w); 3447 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 3448 if (expect_false (!ev_is_active (w)))
2336 return; 3449 return;
2337 3450
3451 EV_FREQUENT_CHECK;
3452
2338 { 3453 {
2339 int active = ((W)w)->active; 3454 int active = ev_active (w);
2340 3455
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3456 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3457 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2343 3458
2344 ev_stop (EV_A_ (W)w); 3459 ev_stop (EV_A_ (W)w);
2345 --idleall; 3460 --idleall;
2346 } 3461 }
2347}
2348#endif
2349 3462
3463 EV_FREQUENT_CHECK;
3464}
3465#endif
3466
3467#if EV_PREPARE_ENABLE
2350void 3468void
2351ev_prepare_start (EV_P_ ev_prepare *w) 3469ev_prepare_start (EV_P_ ev_prepare *w)
2352{ 3470{
2353 if (expect_false (ev_is_active (w))) 3471 if (expect_false (ev_is_active (w)))
2354 return; 3472 return;
3473
3474 EV_FREQUENT_CHECK;
2355 3475
2356 ev_start (EV_A_ (W)w, ++preparecnt); 3476 ev_start (EV_A_ (W)w, ++preparecnt);
2357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2358 prepares [preparecnt - 1] = w; 3478 prepares [preparecnt - 1] = w;
3479
3480 EV_FREQUENT_CHECK;
2359} 3481}
2360 3482
2361void 3483void
2362ev_prepare_stop (EV_P_ ev_prepare *w) 3484ev_prepare_stop (EV_P_ ev_prepare *w)
2363{ 3485{
2364 clear_pending (EV_A_ (W)w); 3486 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 3487 if (expect_false (!ev_is_active (w)))
2366 return; 3488 return;
2367 3489
3490 EV_FREQUENT_CHECK;
3491
2368 { 3492 {
2369 int active = ((W)w)->active; 3493 int active = ev_active (w);
3494
2370 prepares [active - 1] = prepares [--preparecnt]; 3495 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active; 3496 ev_active (prepares [active - 1]) = active;
2372 } 3497 }
2373 3498
2374 ev_stop (EV_A_ (W)w); 3499 ev_stop (EV_A_ (W)w);
2375}
2376 3500
3501 EV_FREQUENT_CHECK;
3502}
3503#endif
3504
3505#if EV_CHECK_ENABLE
2377void 3506void
2378ev_check_start (EV_P_ ev_check *w) 3507ev_check_start (EV_P_ ev_check *w)
2379{ 3508{
2380 if (expect_false (ev_is_active (w))) 3509 if (expect_false (ev_is_active (w)))
2381 return; 3510 return;
3511
3512 EV_FREQUENT_CHECK;
2382 3513
2383 ev_start (EV_A_ (W)w, ++checkcnt); 3514 ev_start (EV_A_ (W)w, ++checkcnt);
2384 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3515 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2385 checks [checkcnt - 1] = w; 3516 checks [checkcnt - 1] = w;
3517
3518 EV_FREQUENT_CHECK;
2386} 3519}
2387 3520
2388void 3521void
2389ev_check_stop (EV_P_ ev_check *w) 3522ev_check_stop (EV_P_ ev_check *w)
2390{ 3523{
2391 clear_pending (EV_A_ (W)w); 3524 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w))) 3525 if (expect_false (!ev_is_active (w)))
2393 return; 3526 return;
2394 3527
3528 EV_FREQUENT_CHECK;
3529
2395 { 3530 {
2396 int active = ((W)w)->active; 3531 int active = ev_active (w);
3532
2397 checks [active - 1] = checks [--checkcnt]; 3533 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active; 3534 ev_active (checks [active - 1]) = active;
2399 } 3535 }
2400 3536
2401 ev_stop (EV_A_ (W)w); 3537 ev_stop (EV_A_ (W)w);
3538
3539 EV_FREQUENT_CHECK;
2402} 3540}
3541#endif
2403 3542
2404#if EV_EMBED_ENABLE 3543#if EV_EMBED_ENABLE
2405void noinline 3544void noinline
2406ev_embed_sweep (EV_P_ ev_embed *w) 3545ev_embed_sweep (EV_P_ ev_embed *w)
2407{ 3546{
2408 ev_loop (w->other, EVLOOP_NONBLOCK); 3547 ev_run (w->other, EVRUN_NOWAIT);
2409} 3548}
2410 3549
2411static void 3550static void
2412embed_io_cb (EV_P_ ev_io *io, int revents) 3551embed_io_cb (EV_P_ ev_io *io, int revents)
2413{ 3552{
2414 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3553 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2415 3554
2416 if (ev_cb (w)) 3555 if (ev_cb (w))
2417 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3556 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2418 else 3557 else
2419 ev_loop (w->other, EVLOOP_NONBLOCK); 3558 ev_run (w->other, EVRUN_NOWAIT);
2420} 3559}
2421 3560
2422static void 3561static void
2423embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3562embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2424{ 3563{
2425 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3564 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2426 3565
2427 { 3566 {
2428 struct ev_loop *loop = w->other; 3567 EV_P = w->other;
2429 3568
2430 while (fdchangecnt) 3569 while (fdchangecnt)
2431 { 3570 {
2432 fd_reify (EV_A); 3571 fd_reify (EV_A);
2433 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3572 ev_run (EV_A_ EVRUN_NOWAIT);
2434 } 3573 }
2435 } 3574 }
3575}
3576
3577static void
3578embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3579{
3580 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3581
3582 ev_embed_stop (EV_A_ w);
3583
3584 {
3585 EV_P = w->other;
3586
3587 ev_loop_fork (EV_A);
3588 ev_run (EV_A_ EVRUN_NOWAIT);
3589 }
3590
3591 ev_embed_start (EV_A_ w);
2436} 3592}
2437 3593
2438#if 0 3594#if 0
2439static void 3595static void
2440embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3596embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2448{ 3604{
2449 if (expect_false (ev_is_active (w))) 3605 if (expect_false (ev_is_active (w)))
2450 return; 3606 return;
2451 3607
2452 { 3608 {
2453 struct ev_loop *loop = w->other; 3609 EV_P = w->other;
2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3610 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3611 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2456 } 3612 }
3613
3614 EV_FREQUENT_CHECK;
2457 3615
2458 ev_set_priority (&w->io, ev_priority (w)); 3616 ev_set_priority (&w->io, ev_priority (w));
2459 ev_io_start (EV_A_ &w->io); 3617 ev_io_start (EV_A_ &w->io);
2460 3618
2461 ev_prepare_init (&w->prepare, embed_prepare_cb); 3619 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI); 3620 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare); 3621 ev_prepare_start (EV_A_ &w->prepare);
2464 3622
3623 ev_fork_init (&w->fork, embed_fork_cb);
3624 ev_fork_start (EV_A_ &w->fork);
3625
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3626 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466 3627
2467 ev_start (EV_A_ (W)w, 1); 3628 ev_start (EV_A_ (W)w, 1);
3629
3630 EV_FREQUENT_CHECK;
2468} 3631}
2469 3632
2470void 3633void
2471ev_embed_stop (EV_P_ ev_embed *w) 3634ev_embed_stop (EV_P_ ev_embed *w)
2472{ 3635{
2473 clear_pending (EV_A_ (W)w); 3636 clear_pending (EV_A_ (W)w);
2474 if (expect_false (!ev_is_active (w))) 3637 if (expect_false (!ev_is_active (w)))
2475 return; 3638 return;
2476 3639
3640 EV_FREQUENT_CHECK;
3641
2477 ev_io_stop (EV_A_ &w->io); 3642 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare); 3643 ev_prepare_stop (EV_A_ &w->prepare);
3644 ev_fork_stop (EV_A_ &w->fork);
2479 3645
2480 ev_stop (EV_A_ (W)w); 3646 ev_stop (EV_A_ (W)w);
3647
3648 EV_FREQUENT_CHECK;
2481} 3649}
2482#endif 3650#endif
2483 3651
2484#if EV_FORK_ENABLE 3652#if EV_FORK_ENABLE
2485void 3653void
2486ev_fork_start (EV_P_ ev_fork *w) 3654ev_fork_start (EV_P_ ev_fork *w)
2487{ 3655{
2488 if (expect_false (ev_is_active (w))) 3656 if (expect_false (ev_is_active (w)))
2489 return; 3657 return;
3658
3659 EV_FREQUENT_CHECK;
2490 3660
2491 ev_start (EV_A_ (W)w, ++forkcnt); 3661 ev_start (EV_A_ (W)w, ++forkcnt);
2492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3662 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2493 forks [forkcnt - 1] = w; 3663 forks [forkcnt - 1] = w;
3664
3665 EV_FREQUENT_CHECK;
2494} 3666}
2495 3667
2496void 3668void
2497ev_fork_stop (EV_P_ ev_fork *w) 3669ev_fork_stop (EV_P_ ev_fork *w)
2498{ 3670{
2499 clear_pending (EV_A_ (W)w); 3671 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 3672 if (expect_false (!ev_is_active (w)))
2501 return; 3673 return;
2502 3674
3675 EV_FREQUENT_CHECK;
3676
2503 { 3677 {
2504 int active = ((W)w)->active; 3678 int active = ev_active (w);
3679
2505 forks [active - 1] = forks [--forkcnt]; 3680 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active; 3681 ev_active (forks [active - 1]) = active;
2507 } 3682 }
2508 3683
2509 ev_stop (EV_A_ (W)w); 3684 ev_stop (EV_A_ (W)w);
2510}
2511#endif
2512 3685
3686 EV_FREQUENT_CHECK;
3687}
3688#endif
3689
2513#if EV_ASYNC_ENABLE 3690#if EV_CLEANUP_ENABLE
2514void 3691void
2515ev_async_start (EV_P_ ev_async *w) 3692ev_cleanup_start (EV_P_ ev_cleanup *w)
2516{ 3693{
2517 if (expect_false (ev_is_active (w))) 3694 if (expect_false (ev_is_active (w)))
2518 return; 3695 return;
2519 3696
3697 EV_FREQUENT_CHECK;
3698
3699 ev_start (EV_A_ (W)w, ++cleanupcnt);
3700 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3701 cleanups [cleanupcnt - 1] = w;
3702
3703 /* cleanup watchers should never keep a refcount on the loop */
3704 ev_unref (EV_A);
3705 EV_FREQUENT_CHECK;
3706}
3707
3708void
3709ev_cleanup_stop (EV_P_ ev_cleanup *w)
3710{
3711 clear_pending (EV_A_ (W)w);
3712 if (expect_false (!ev_is_active (w)))
3713 return;
3714
3715 EV_FREQUENT_CHECK;
3716 ev_ref (EV_A);
3717
3718 {
3719 int active = ev_active (w);
3720
3721 cleanups [active - 1] = cleanups [--cleanupcnt];
3722 ev_active (cleanups [active - 1]) = active;
3723 }
3724
3725 ev_stop (EV_A_ (W)w);
3726
3727 EV_FREQUENT_CHECK;
3728}
3729#endif
3730
3731#if EV_ASYNC_ENABLE
3732void
3733ev_async_start (EV_P_ ev_async *w)
3734{
3735 if (expect_false (ev_is_active (w)))
3736 return;
3737
3738 w->sent = 0;
3739
2520 evpipe_init (EV_A); 3740 evpipe_init (EV_A);
3741
3742 EV_FREQUENT_CHECK;
2521 3743
2522 ev_start (EV_A_ (W)w, ++asynccnt); 3744 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3745 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w; 3746 asyncs [asynccnt - 1] = w;
3747
3748 EV_FREQUENT_CHECK;
2525} 3749}
2526 3750
2527void 3751void
2528ev_async_stop (EV_P_ ev_async *w) 3752ev_async_stop (EV_P_ ev_async *w)
2529{ 3753{
2530 clear_pending (EV_A_ (W)w); 3754 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w))) 3755 if (expect_false (!ev_is_active (w)))
2532 return; 3756 return;
2533 3757
3758 EV_FREQUENT_CHECK;
3759
2534 { 3760 {
2535 int active = ((W)w)->active; 3761 int active = ev_active (w);
3762
2536 asyncs [active - 1] = asyncs [--asynccnt]; 3763 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active; 3764 ev_active (asyncs [active - 1]) = active;
2538 } 3765 }
2539 3766
2540 ev_stop (EV_A_ (W)w); 3767 ev_stop (EV_A_ (W)w);
3768
3769 EV_FREQUENT_CHECK;
2541} 3770}
2542 3771
2543void 3772void
2544ev_async_send (EV_P_ ev_async *w) 3773ev_async_send (EV_P_ ev_async *w)
2545{ 3774{
2546 w->sent = 1; 3775 w->sent = 1;
2547 evpipe_write (EV_A_ &gotasync); 3776 evpipe_write (EV_A_ &async_pending);
2548} 3777}
2549#endif 3778#endif
2550 3779
2551/*****************************************************************************/ 3780/*****************************************************************************/
2552 3781
2562once_cb (EV_P_ struct ev_once *once, int revents) 3791once_cb (EV_P_ struct ev_once *once, int revents)
2563{ 3792{
2564 void (*cb)(int revents, void *arg) = once->cb; 3793 void (*cb)(int revents, void *arg) = once->cb;
2565 void *arg = once->arg; 3794 void *arg = once->arg;
2566 3795
2567 ev_io_stop (EV_A_ &once->io); 3796 ev_io_stop (EV_A_ &once->io);
2568 ev_timer_stop (EV_A_ &once->to); 3797 ev_timer_stop (EV_A_ &once->to);
2569 ev_free (once); 3798 ev_free (once);
2570 3799
2571 cb (revents, arg); 3800 cb (revents, arg);
2572} 3801}
2573 3802
2574static void 3803static void
2575once_cb_io (EV_P_ ev_io *w, int revents) 3804once_cb_io (EV_P_ ev_io *w, int revents)
2576{ 3805{
2577 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3806 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3807
3808 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2578} 3809}
2579 3810
2580static void 3811static void
2581once_cb_to (EV_P_ ev_timer *w, int revents) 3812once_cb_to (EV_P_ ev_timer *w, int revents)
2582{ 3813{
2583 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3814 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3815
3816 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2584} 3817}
2585 3818
2586void 3819void
2587ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3820ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2588{ 3821{
2589 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3822 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2590 3823
2591 if (expect_false (!once)) 3824 if (expect_false (!once))
2592 { 3825 {
2593 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3826 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2594 return; 3827 return;
2595 } 3828 }
2596 3829
2597 once->cb = cb; 3830 once->cb = cb;
2598 once->arg = arg; 3831 once->arg = arg;
2610 ev_timer_set (&once->to, timeout, 0.); 3843 ev_timer_set (&once->to, timeout, 0.);
2611 ev_timer_start (EV_A_ &once->to); 3844 ev_timer_start (EV_A_ &once->to);
2612 } 3845 }
2613} 3846}
2614 3847
3848/*****************************************************************************/
3849
3850#if EV_WALK_ENABLE
3851void
3852ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3853{
3854 int i, j;
3855 ev_watcher_list *wl, *wn;
3856
3857 if (types & (EV_IO | EV_EMBED))
3858 for (i = 0; i < anfdmax; ++i)
3859 for (wl = anfds [i].head; wl; )
3860 {
3861 wn = wl->next;
3862
3863#if EV_EMBED_ENABLE
3864 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3865 {
3866 if (types & EV_EMBED)
3867 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3868 }
3869 else
3870#endif
3871#if EV_USE_INOTIFY
3872 if (ev_cb ((ev_io *)wl) == infy_cb)
3873 ;
3874 else
3875#endif
3876 if ((ev_io *)wl != &pipe_w)
3877 if (types & EV_IO)
3878 cb (EV_A_ EV_IO, wl);
3879
3880 wl = wn;
3881 }
3882
3883 if (types & (EV_TIMER | EV_STAT))
3884 for (i = timercnt + HEAP0; i-- > HEAP0; )
3885#if EV_STAT_ENABLE
3886 /*TODO: timer is not always active*/
3887 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3888 {
3889 if (types & EV_STAT)
3890 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3891 }
3892 else
3893#endif
3894 if (types & EV_TIMER)
3895 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3896
3897#if EV_PERIODIC_ENABLE
3898 if (types & EV_PERIODIC)
3899 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3900 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3901#endif
3902
3903#if EV_IDLE_ENABLE
3904 if (types & EV_IDLE)
3905 for (j = NUMPRI; i--; )
3906 for (i = idlecnt [j]; i--; )
3907 cb (EV_A_ EV_IDLE, idles [j][i]);
3908#endif
3909
3910#if EV_FORK_ENABLE
3911 if (types & EV_FORK)
3912 for (i = forkcnt; i--; )
3913 if (ev_cb (forks [i]) != embed_fork_cb)
3914 cb (EV_A_ EV_FORK, forks [i]);
3915#endif
3916
3917#if EV_ASYNC_ENABLE
3918 if (types & EV_ASYNC)
3919 for (i = asynccnt; i--; )
3920 cb (EV_A_ EV_ASYNC, asyncs [i]);
3921#endif
3922
3923#if EV_PREPARE_ENABLE
3924 if (types & EV_PREPARE)
3925 for (i = preparecnt; i--; )
3926# if EV_EMBED_ENABLE
3927 if (ev_cb (prepares [i]) != embed_prepare_cb)
3928# endif
3929 cb (EV_A_ EV_PREPARE, prepares [i]);
3930#endif
3931
3932#if EV_CHECK_ENABLE
3933 if (types & EV_CHECK)
3934 for (i = checkcnt; i--; )
3935 cb (EV_A_ EV_CHECK, checks [i]);
3936#endif
3937
3938#if EV_SIGNAL_ENABLE
3939 if (types & EV_SIGNAL)
3940 for (i = 0; i < EV_NSIG - 1; ++i)
3941 for (wl = signals [i].head; wl; )
3942 {
3943 wn = wl->next;
3944 cb (EV_A_ EV_SIGNAL, wl);
3945 wl = wn;
3946 }
3947#endif
3948
3949#if EV_CHILD_ENABLE
3950 if (types & EV_CHILD)
3951 for (i = (EV_PID_HASHSIZE); i--; )
3952 for (wl = childs [i]; wl; )
3953 {
3954 wn = wl->next;
3955 cb (EV_A_ EV_CHILD, wl);
3956 wl = wn;
3957 }
3958#endif
3959/* EV_STAT 0x00001000 /* stat data changed */
3960/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3961}
3962#endif
3963
2615#if EV_MULTIPLICITY 3964#if EV_MULTIPLICITY
2616 #include "ev_wrap.h" 3965 #include "ev_wrap.h"
2617#endif 3966#endif
2618 3967
2619#ifdef __cplusplus 3968EV_CPP(})
2620}
2621#endif
2622 3969

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines