ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.129 by root, Fri Nov 23 05:00:44 2007 UTC vs.
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
116# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 160# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
120# endif 163# endif
121#endif 164#endif
122 165
123/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
124 167
125#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
126# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
127#endif 170#endif
128 171
129#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
131#endif 178#endif
132 179
133#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
135#endif 182#endif
141# define EV_USE_POLL 1 188# define EV_USE_POLL 1
142# endif 189# endif
143#endif 190#endif
144 191
145#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
146# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
147#endif 198#endif
148 199
149#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
151#endif 202#endif
152 203
153#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 205# define EV_USE_PORT 0
155#endif 206#endif
156 207
157/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
158 241
159#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
162#endif 245#endif
164#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
167#endif 250#endif
168 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
169#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 268# include <winsock.h>
171#endif 269#endif
172 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274int eventfd (unsigned int initval, int flags);
275#endif
276
173/**/ 277/**/
278
279/*
280 * This is used to avoid floating point rounding problems.
281 * It is added to ev_rt_now when scheduling periodics
282 * to ensure progress, time-wise, even when rounding
283 * errors are against us.
284 * This value is good at least till the year 4000.
285 * Better solutions welcome.
286 */
287#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 288
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 289#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 290#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 291/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 292
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 293#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 294# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 295# define noinline __attribute__ ((noinline))
189#else 296#else
190# define expect(expr,value) (expr) 297# define expect(expr,value) (expr)
191# define inline static 298# define noinline
299# if __STDC_VERSION__ < 199901L
300# define inline
301# endif
192#endif 302#endif
193 303
194#define expect_false(expr) expect ((expr) != 0, 0) 304#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 305#define expect_true(expr) expect ((expr) != 0, 1)
306#define inline_size static inline
307
308#if EV_MINIMAL
309# define inline_speed static noinline
310#else
311# define inline_speed static inline
312#endif
196 313
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 314#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 315#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 316
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 317#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 318#define EMPTY2(a,b) /* used to suppress some warnings */
202 319
203typedef struct ev_watcher *W; 320typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 321typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 322typedef ev_watcher_time *WT;
206 323
324#if EV_USE_MONOTONIC
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
328#endif
208 329
209#ifdef _WIN32 330#ifdef _WIN32
210# include "ev_win32.c" 331# include "ev_win32.c"
211#endif 332#endif
212 333
213/*****************************************************************************/ 334/*****************************************************************************/
214 335
215static void (*syserr_cb)(const char *msg); 336static void (*syserr_cb)(const char *msg);
216 337
338void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 339ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 340{
219 syserr_cb = cb; 341 syserr_cb = cb;
220} 342}
221 343
222static void 344static void noinline
223syserr (const char *msg) 345syserr (const char *msg)
224{ 346{
225 if (!msg) 347 if (!msg)
226 msg = "(libev) system error"; 348 msg = "(libev) system error";
227 349
234 } 356 }
235} 357}
236 358
237static void *(*alloc)(void *ptr, long size); 359static void *(*alloc)(void *ptr, long size);
238 360
361void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 362ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 363{
241 alloc = cb; 364 alloc = cb;
242} 365}
243 366
244static void * 367inline_speed void *
245ev_realloc (void *ptr, long size) 368ev_realloc (void *ptr, long size)
246{ 369{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 370 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 371
249 if (!ptr && size) 372 if (!ptr && size)
273typedef struct 396typedef struct
274{ 397{
275 W w; 398 W w;
276 int events; 399 int events;
277} ANPENDING; 400} ANPENDING;
401
402#if EV_USE_INOTIFY
403typedef struct
404{
405 WL head;
406} ANFS;
407#endif
278 408
279#if EV_MULTIPLICITY 409#if EV_MULTIPLICITY
280 410
281 struct ev_loop 411 struct ev_loop
282 { 412 {
316 gettimeofday (&tv, 0); 446 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 447 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 448#endif
319} 449}
320 450
321inline ev_tstamp 451ev_tstamp inline_size
322get_clock (void) 452get_clock (void)
323{ 453{
324#if EV_USE_MONOTONIC 454#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 455 if (expect_true (have_monotonic))
326 { 456 {
339{ 469{
340 return ev_rt_now; 470 return ev_rt_now;
341} 471}
342#endif 472#endif
343 473
344#define array_roundsize(type,n) (((n) | 4) & ~3) 474void
475ev_sleep (ev_tstamp delay)
476{
477 if (delay > 0.)
478 {
479#if EV_USE_NANOSLEEP
480 struct timespec ts;
481
482 ts.tv_sec = (time_t)delay;
483 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
484
485 nanosleep (&ts, 0);
486#elif defined(_WIN32)
487 Sleep ((unsigned long)(delay * 1e3));
488#else
489 struct timeval tv;
490
491 tv.tv_sec = (time_t)delay;
492 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
493
494 select (0, 0, 0, 0, &tv);
495#endif
496 }
497}
498
499/*****************************************************************************/
500
501int inline_size
502array_nextsize (int elem, int cur, int cnt)
503{
504 int ncur = cur + 1;
505
506 do
507 ncur <<= 1;
508 while (cnt > ncur);
509
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
511 if (elem * ncur > 4096)
512 {
513 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
515 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem;
517 }
518
519 return ncur;
520}
521
522static noinline void *
523array_realloc (int elem, void *base, int *cur, int cnt)
524{
525 *cur = array_nextsize (elem, *cur, cnt);
526 return ev_realloc (base, elem * *cur);
527}
345 528
346#define array_needsize(type,base,cur,cnt,init) \ 529#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 530 if (expect_false ((cnt) > (cur))) \
348 { \ 531 { \
349 int newcnt = cur; \ 532 int ocur_ = (cur); \
350 do \ 533 (base) = (type *)array_realloc \
351 { \ 534 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 535 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 536 }
360 537
538#if 0
361#define array_slim(type,stem) \ 539#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 540 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 541 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 542 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 543 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 544 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 545 }
546#endif
368 547
369#define array_free(stem, idx) \ 548#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 549 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 550
372/*****************************************************************************/ 551/*****************************************************************************/
373 552
374static void 553void noinline
554ev_feed_event (EV_P_ void *w, int revents)
555{
556 W w_ = (W)w;
557 int pri = ABSPRI (w_);
558
559 if (expect_false (w_->pending))
560 pendings [pri][w_->pending - 1].events |= revents;
561 else
562 {
563 w_->pending = ++pendingcnt [pri];
564 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
565 pendings [pri][w_->pending - 1].w = w_;
566 pendings [pri][w_->pending - 1].events = revents;
567 }
568}
569
570void inline_speed
571queue_events (EV_P_ W *events, int eventcnt, int type)
572{
573 int i;
574
575 for (i = 0; i < eventcnt; ++i)
576 ev_feed_event (EV_A_ events [i], type);
577}
578
579/*****************************************************************************/
580
581void inline_size
375anfds_init (ANFD *base, int count) 582anfds_init (ANFD *base, int count)
376{ 583{
377 while (count--) 584 while (count--)
378 { 585 {
379 base->head = 0; 586 base->head = 0;
382 589
383 ++base; 590 ++base;
384 } 591 }
385} 592}
386 593
387void 594void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 595fd_event (EV_P_ int fd, int revents)
415{ 596{
416 ANFD *anfd = anfds + fd; 597 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 598 ev_io *w;
418 599
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 600 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 601 {
421 int ev = w->events & revents; 602 int ev = w->events & revents;
422 603
423 if (ev) 604 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 605 ev_feed_event (EV_A_ (W)w, ev);
426} 607}
427 608
428void 609void
429ev_feed_fd_event (EV_P_ int fd, int revents) 610ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 611{
612 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 613 fd_event (EV_A_ fd, revents);
432} 614}
433 615
434/*****************************************************************************/ 616void inline_size
435
436inline void
437fd_reify (EV_P) 617fd_reify (EV_P)
438{ 618{
439 int i; 619 int i;
440 620
441 for (i = 0; i < fdchangecnt; ++i) 621 for (i = 0; i < fdchangecnt; ++i)
442 { 622 {
443 int fd = fdchanges [i]; 623 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 624 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 625 ev_io *w;
446 626
447 int events = 0; 627 unsigned char events = 0;
448 628
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 629 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 630 events |= (unsigned char)w->events;
451 631
452#if EV_SELECT_IS_WINSOCKET 632#if EV_SELECT_IS_WINSOCKET
453 if (events) 633 if (events)
454 { 634 {
455 unsigned long argp; 635 unsigned long argp;
636 #ifdef EV_FD_TO_WIN32_HANDLE
637 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
638 #else
456 anfd->handle = _get_osfhandle (fd); 639 anfd->handle = _get_osfhandle (fd);
640 #endif
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 641 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 642 }
459#endif 643#endif
460 644
645 {
646 unsigned char o_events = anfd->events;
647 unsigned char o_reify = anfd->reify;
648
461 anfd->reify = 0; 649 anfd->reify = 0;
462
463 method_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 650 anfd->events = events;
651
652 if (o_events != events || o_reify & EV_IOFDSET)
653 backend_modify (EV_A_ fd, o_events, events);
654 }
465 } 655 }
466 656
467 fdchangecnt = 0; 657 fdchangecnt = 0;
468} 658}
469 659
470static void 660void inline_size
471fd_change (EV_P_ int fd) 661fd_change (EV_P_ int fd, int flags)
472{ 662{
473 if (expect_false (anfds [fd].reify)) 663 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 664 anfds [fd].reify |= flags;
477 665
666 if (expect_true (!reify))
667 {
478 ++fdchangecnt; 668 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 669 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 670 fdchanges [fdchangecnt - 1] = fd;
671 }
481} 672}
482 673
483static void 674void inline_speed
484fd_kill (EV_P_ int fd) 675fd_kill (EV_P_ int fd)
485{ 676{
486 struct ev_io *w; 677 ev_io *w;
487 678
488 while ((w = (struct ev_io *)anfds [fd].head)) 679 while ((w = (ev_io *)anfds [fd].head))
489 { 680 {
490 ev_io_stop (EV_A_ w); 681 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 682 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 683 }
493} 684}
494 685
495inline int 686int inline_size
496fd_valid (int fd) 687fd_valid (int fd)
497{ 688{
498#ifdef _WIN32 689#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 690 return _get_osfhandle (fd) != -1;
500#else 691#else
501 return fcntl (fd, F_GETFD) != -1; 692 return fcntl (fd, F_GETFD) != -1;
502#endif 693#endif
503} 694}
504 695
505/* called on EBADF to verify fds */ 696/* called on EBADF to verify fds */
506static void 697static void noinline
507fd_ebadf (EV_P) 698fd_ebadf (EV_P)
508{ 699{
509 int fd; 700 int fd;
510 701
511 for (fd = 0; fd < anfdmax; ++fd) 702 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 704 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 705 fd_kill (EV_A_ fd);
515} 706}
516 707
517/* called on ENOMEM in select/poll to kill some fds and retry */ 708/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 709static void noinline
519fd_enomem (EV_P) 710fd_enomem (EV_P)
520{ 711{
521 int fd; 712 int fd;
522 713
523 for (fd = anfdmax; fd--; ) 714 for (fd = anfdmax; fd--; )
526 fd_kill (EV_A_ fd); 717 fd_kill (EV_A_ fd);
527 return; 718 return;
528 } 719 }
529} 720}
530 721
531/* usually called after fork if method needs to re-arm all fds from scratch */ 722/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 723static void noinline
533fd_rearm_all (EV_P) 724fd_rearm_all (EV_P)
534{ 725{
535 int fd; 726 int fd;
536 727
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 729 if (anfds [fd].events)
540 { 730 {
541 anfds [fd].events = 0; 731 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 732 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 733 }
544} 734}
545 735
546/*****************************************************************************/ 736/*****************************************************************************/
547 737
548static void 738void inline_speed
549upheap (WT *heap, int k) 739upheap (WT *heap, int k)
550{ 740{
551 WT w = heap [k]; 741 WT w = heap [k];
552 742
553 while (k && heap [k >> 1]->at > w->at) 743 while (k)
554 { 744 {
745 int p = (k - 1) >> 1;
746
747 if (heap [p]->at <= w->at)
748 break;
749
555 heap [k] = heap [k >> 1]; 750 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 751 ((W)heap [k])->active = k + 1;
557 k >>= 1; 752 k = p;
558 } 753 }
559 754
560 heap [k] = w; 755 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 756 ((W)heap [k])->active = k + 1;
562
563} 757}
564 758
565static void 759void inline_speed
566downheap (WT *heap, int N, int k) 760downheap (WT *heap, int N, int k)
567{ 761{
568 WT w = heap [k]; 762 WT w = heap [k];
569 763
570 while (k < (N >> 1)) 764 for (;;)
571 { 765 {
572 int j = k << 1; 766 int c = (k << 1) + 1;
573 767
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 768 if (c >= N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 769 break;
579 770
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
772 ? 1 : 0;
773
774 if (w->at <= heap [c]->at)
775 break;
776
580 heap [k] = heap [j]; 777 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 778 ((W)heap [k])->active = k + 1;
779
582 k = j; 780 k = c;
583 } 781 }
584 782
585 heap [k] = w; 783 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 784 ((W)heap [k])->active = k + 1;
587} 785}
588 786
589inline void 787void inline_size
590adjustheap (WT *heap, int N, int k) 788adjustheap (WT *heap, int N, int k)
591{ 789{
592 upheap (heap, k); 790 upheap (heap, k);
593 downheap (heap, N, k); 791 downheap (heap, N, k);
594} 792}
596/*****************************************************************************/ 794/*****************************************************************************/
597 795
598typedef struct 796typedef struct
599{ 797{
600 WL head; 798 WL head;
601 sig_atomic_t volatile gotsig; 799 EV_ATOMIC_T gotsig;
602} ANSIG; 800} ANSIG;
603 801
604static ANSIG *signals; 802static ANSIG *signals;
605static int signalmax; 803static int signalmax;
606 804
607static int sigpipe [2]; 805static EV_ATOMIC_T gotsig;
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610 806
611static void 807void inline_size
612signals_init (ANSIG *base, int count) 808signals_init (ANSIG *base, int count)
613{ 809{
614 while (count--) 810 while (count--)
615 { 811 {
616 base->head = 0; 812 base->head = 0;
618 814
619 ++base; 815 ++base;
620 } 816 }
621} 817}
622 818
623static void 819/*****************************************************************************/
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629 820
630 signals [signum - 1].gotsig = 1; 821void inline_speed
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 822fd_intern (int fd)
676{ 823{
677#ifdef _WIN32 824#ifdef _WIN32
678 int arg = 1; 825 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 826 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 828 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 829 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 830#endif
684} 831}
685 832
833static void noinline
834evpipe_init (EV_P)
835{
836 if (!ev_is_active (&pipeev))
837 {
838#if EV_USE_EVENTFD
839 if ((evfd = eventfd (0, 0)) >= 0)
840 {
841 evpipe [0] = -1;
842 fd_intern (evfd);
843 ev_io_set (&pipeev, evfd, EV_READ);
844 }
845 else
846#endif
847 {
848 while (pipe (evpipe))
849 syserr ("(libev) error creating signal/async pipe");
850
851 fd_intern (evpipe [0]);
852 fd_intern (evpipe [1]);
853 ev_io_set (&pipeev, evpipe [0], EV_READ);
854 }
855
856 ev_io_start (EV_A_ &pipeev);
857 ev_unref (EV_A); /* watcher should not keep loop alive */
858 }
859}
860
861void inline_size
862evpipe_write (EV_P_ EV_ATOMIC_T *flag)
863{
864 if (!*flag)
865 {
866 int old_errno = errno; /* save errno because write might clobber it */
867
868 *flag = 1;
869
870#if EV_USE_EVENTFD
871 if (evfd >= 0)
872 {
873 uint64_t counter = 1;
874 write (evfd, &counter, sizeof (uint64_t));
875 }
876 else
877#endif
878 write (evpipe [1], &old_errno, 1);
879
880 errno = old_errno;
881 }
882}
883
686static void 884static void
687siginit (EV_P) 885pipecb (EV_P_ ev_io *iow, int revents)
688{ 886{
689 fd_intern (sigpipe [0]); 887#if EV_USE_EVENTFD
690 fd_intern (sigpipe [1]); 888 if (evfd >= 0)
889 {
890 uint64_t counter = 1;
891 read (evfd, &counter, sizeof (uint64_t));
892 }
893 else
894#endif
895 {
896 char dummy;
897 read (evpipe [0], &dummy, 1);
898 }
691 899
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 900 if (gotsig && ev_is_default_loop (EV_A))
693 ev_io_start (EV_A_ &sigev); 901 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 902 int signum;
903 gotsig = 0;
904
905 for (signum = signalmax; signum--; )
906 if (signals [signum].gotsig)
907 ev_feed_signal_event (EV_A_ signum + 1);
908 }
909
910#if EV_ASYNC_ENABLE
911 if (gotasync)
912 {
913 int i;
914 gotasync = 0;
915
916 for (i = asynccnt; i--; )
917 if (asyncs [i]->sent)
918 {
919 asyncs [i]->sent = 0;
920 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
921 }
922 }
923#endif
695} 924}
696 925
697/*****************************************************************************/ 926/*****************************************************************************/
698 927
699static struct ev_child *childs [PID_HASHSIZE]; 928static void
929ev_sighandler (int signum)
930{
931#if EV_MULTIPLICITY
932 struct ev_loop *loop = &default_loop_struct;
933#endif
934
935#if _WIN32
936 signal (signum, ev_sighandler);
937#endif
938
939 signals [signum - 1].gotsig = 1;
940 evpipe_write (EV_A_ &gotsig);
941}
942
943void noinline
944ev_feed_signal_event (EV_P_ int signum)
945{
946 WL w;
947
948#if EV_MULTIPLICITY
949 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
950#endif
951
952 --signum;
953
954 if (signum < 0 || signum >= signalmax)
955 return;
956
957 signals [signum].gotsig = 0;
958
959 for (w = signals [signum].head; w; w = w->next)
960 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
961}
962
963/*****************************************************************************/
964
965static WL childs [EV_PID_HASHSIZE];
700 966
701#ifndef _WIN32 967#ifndef _WIN32
702 968
703static struct ev_signal childev; 969static ev_signal childev;
970
971#ifndef WIFCONTINUED
972# define WIFCONTINUED(status) 0
973#endif
974
975void inline_speed
976child_reap (EV_P_ int chain, int pid, int status)
977{
978 ev_child *w;
979 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
980
981 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
982 {
983 if ((w->pid == pid || !w->pid)
984 && (!traced || (w->flags & 1)))
985 {
986 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
987 w->rpid = pid;
988 w->rstatus = status;
989 ev_feed_event (EV_A_ (W)w, EV_CHILD);
990 }
991 }
992}
704 993
705#ifndef WCONTINUED 994#ifndef WCONTINUED
706# define WCONTINUED 0 995# define WCONTINUED 0
707#endif 996#endif
708 997
709static void 998static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 999childcb (EV_P_ ev_signal *sw, int revents)
726{ 1000{
727 int pid, status; 1001 int pid, status;
728 1002
1003 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1004 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 1005 if (!WCONTINUED
1006 || errno != EINVAL
1007 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1008 return;
1009
731 /* make sure we are called again until all childs have been reaped */ 1010 /* make sure we are called again until all children have been reaped */
1011 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1012 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 1013
734 child_reap (EV_A_ sw, pid, pid, status); 1014 child_reap (EV_A_ pid, pid, status);
1015 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1016 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 1017}
738 1018
739#endif 1019#endif
740 1020
741/*****************************************************************************/ 1021/*****************************************************************************/
767{ 1047{
768 return EV_VERSION_MINOR; 1048 return EV_VERSION_MINOR;
769} 1049}
770 1050
771/* return true if we are running with elevated privileges and should ignore env variables */ 1051/* return true if we are running with elevated privileges and should ignore env variables */
772static int 1052int inline_size
773enable_secure (void) 1053enable_secure (void)
774{ 1054{
775#ifdef _WIN32 1055#ifdef _WIN32
776 return 0; 1056 return 0;
777#else 1057#else
781} 1061}
782 1062
783unsigned int 1063unsigned int
784ev_supported_backends (void) 1064ev_supported_backends (void)
785{ 1065{
786}
787
788unsigned int
789ev_recommended_backends (void)
790{
791 unsigned int flags; 1066 unsigned int flags = 0;
792 1067
793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 1068 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 1069 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 1070 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 1071 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
798 1073
799 return flags; 1074 return flags;
800} 1075}
801 1076
802unsigned int 1077unsigned int
803ev_backend (EV_P) 1078ev_recommended_backends (void)
804{ 1079{
805 unsigned int flags = ev_recommended_backends (); 1080 unsigned int flags = ev_supported_backends ();
806 1081
807#ifndef __NetBSD__ 1082#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */ 1083 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 1084 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 1085 flags &= ~EVBACKEND_KQUEUE;
815#endif 1090#endif
816 1091
817 return flags; 1092 return flags;
818} 1093}
819 1094
820static void 1095unsigned int
1096ev_embeddable_backends (void)
1097{
1098 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1099
1100 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1101 /* please fix it and tell me how to detect the fix */
1102 flags &= ~EVBACKEND_EPOLL;
1103
1104 return flags;
1105}
1106
1107unsigned int
1108ev_backend (EV_P)
1109{
1110 return backend;
1111}
1112
1113unsigned int
1114ev_loop_count (EV_P)
1115{
1116 return loop_count;
1117}
1118
1119void
1120ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1121{
1122 io_blocktime = interval;
1123}
1124
1125void
1126ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1127{
1128 timeout_blocktime = interval;
1129}
1130
1131static void noinline
821loop_init (EV_P_ unsigned int flags) 1132loop_init (EV_P_ unsigned int flags)
822{ 1133{
823 if (!method) 1134 if (!backend)
824 { 1135 {
825#if EV_USE_MONOTONIC 1136#if EV_USE_MONOTONIC
826 { 1137 {
827 struct timespec ts; 1138 struct timespec ts;
828 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1139 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
829 have_monotonic = 1; 1140 have_monotonic = 1;
830 } 1141 }
831#endif 1142#endif
832 1143
833 ev_rt_now = ev_time (); 1144 ev_rt_now = ev_time ();
834 mn_now = get_clock (); 1145 mn_now = get_clock ();
835 now_floor = mn_now; 1146 now_floor = mn_now;
836 rtmn_diff = ev_rt_now - mn_now; 1147 rtmn_diff = ev_rt_now - mn_now;
1148
1149 io_blocktime = 0.;
1150 timeout_blocktime = 0.;
1151 backend = 0;
1152 backend_fd = -1;
1153 gotasync = 0;
1154#if EV_USE_INOTIFY
1155 fs_fd = -2;
1156#endif
1157
1158 /* pid check not overridable via env */
1159#ifndef _WIN32
1160 if (flags & EVFLAG_FORKCHECK)
1161 curpid = getpid ();
1162#endif
837 1163
838 if (!(flags & EVFLAG_NOENV) 1164 if (!(flags & EVFLAG_NOENV)
839 && !enable_secure () 1165 && !enable_secure ()
840 && getenv ("LIBEV_FLAGS")) 1166 && getenv ("LIBEV_FLAGS"))
841 flags = atoi (getenv ("LIBEV_FLAGS")); 1167 flags = atoi (getenv ("LIBEV_FLAGS"));
842 1168
843 if (!(flags & 0x0000ffffUL)) 1169 if (!(flags & 0x0000ffffUL))
844 flags |= ev_recommended_backends (); 1170 flags |= ev_recommended_backends ();
845 1171
846 method = 0;
847#if EV_USE_PORT 1172#if EV_USE_PORT
848 if (!method && (flags & EVBACKEND_PORT )) method = port_init (EV_A_ flags); 1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
849#endif 1174#endif
850#if EV_USE_KQUEUE 1175#if EV_USE_KQUEUE
851 if (!method && (flags & EVBACKEND_KQUEUE)) method = kqueue_init (EV_A_ flags); 1176 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
852#endif 1177#endif
853#if EV_USE_EPOLL 1178#if EV_USE_EPOLL
854 if (!method && (flags & EVBACKEND_EPOLL )) method = epoll_init (EV_A_ flags); 1179 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
855#endif 1180#endif
856#if EV_USE_POLL 1181#if EV_USE_POLL
857 if (!method && (flags & EVBACKEND_POLL )) method = poll_init (EV_A_ flags); 1182 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
858#endif 1183#endif
859#if EV_USE_SELECT 1184#if EV_USE_SELECT
860 if (!method && (flags & EVBACKEND_SELECT)) method = select_init (EV_A_ flags); 1185 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
861#endif 1186#endif
862 1187
863 ev_init (&sigev, sigcb); 1188 ev_init (&pipeev, pipecb);
864 ev_set_priority (&sigev, EV_MAXPRI); 1189 ev_set_priority (&pipeev, EV_MAXPRI);
865 } 1190 }
866} 1191}
867 1192
868static void 1193static void noinline
869loop_destroy (EV_P) 1194loop_destroy (EV_P)
870{ 1195{
871 int i; 1196 int i;
872 1197
1198 if (ev_is_active (&pipeev))
1199 {
1200 ev_ref (EV_A); /* signal watcher */
1201 ev_io_stop (EV_A_ &pipeev);
1202
1203#if EV_USE_EVENTFD
1204 if (evfd >= 0)
1205 close (evfd);
1206#endif
1207
1208 if (evpipe [0] >= 0)
1209 {
1210 close (evpipe [0]);
1211 close (evpipe [1]);
1212 }
1213 }
1214
1215#if EV_USE_INOTIFY
1216 if (fs_fd >= 0)
1217 close (fs_fd);
1218#endif
1219
1220 if (backend_fd >= 0)
1221 close (backend_fd);
1222
873#if EV_USE_PORT 1223#if EV_USE_PORT
874 if (method == EVBACKEND_PORT ) port_destroy (EV_A); 1224 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
875#endif 1225#endif
876#if EV_USE_KQUEUE 1226#if EV_USE_KQUEUE
877 if (method == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1227 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
878#endif 1228#endif
879#if EV_USE_EPOLL 1229#if EV_USE_EPOLL
880 if (method == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 1230 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
881#endif 1231#endif
882#if EV_USE_POLL 1232#if EV_USE_POLL
883 if (method == EVBACKEND_POLL ) poll_destroy (EV_A); 1233 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
884#endif 1234#endif
885#if EV_USE_SELECT 1235#if EV_USE_SELECT
886 if (method == EVBACKEND_SELECT) select_destroy (EV_A); 1236 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
887#endif 1237#endif
888 1238
889 for (i = NUMPRI; i--; ) 1239 for (i = NUMPRI; i--; )
1240 {
890 array_free (pending, [i]); 1241 array_free (pending, [i]);
1242#if EV_IDLE_ENABLE
1243 array_free (idle, [i]);
1244#endif
1245 }
1246
1247 ev_free (anfds); anfdmax = 0;
891 1248
892 /* have to use the microsoft-never-gets-it-right macro */ 1249 /* have to use the microsoft-never-gets-it-right macro */
893 array_free (fdchange, EMPTY0); 1250 array_free (fdchange, EMPTY);
894 array_free (timer, EMPTY0); 1251 array_free (timer, EMPTY);
895#if EV_PERIODICS 1252#if EV_PERIODIC_ENABLE
896 array_free (periodic, EMPTY0); 1253 array_free (periodic, EMPTY);
897#endif 1254#endif
1255#if EV_FORK_ENABLE
898 array_free (idle, EMPTY0); 1256 array_free (fork, EMPTY);
1257#endif
899 array_free (prepare, EMPTY0); 1258 array_free (prepare, EMPTY);
900 array_free (check, EMPTY0); 1259 array_free (check, EMPTY);
1260#if EV_ASYNC_ENABLE
1261 array_free (async, EMPTY);
1262#endif
901 1263
902 method = 0; 1264 backend = 0;
903} 1265}
904 1266
905static void 1267void inline_size infy_fork (EV_P);
1268
1269void inline_size
906loop_fork (EV_P) 1270loop_fork (EV_P)
907{ 1271{
908#if EV_USE_PORT 1272#if EV_USE_PORT
909 if (method == EVBACKEND_PORT ) port_fork (EV_A); 1273 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
910#endif 1274#endif
911#if EV_USE_KQUEUE 1275#if EV_USE_KQUEUE
912 if (method == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1276 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
913#endif 1277#endif
914#if EV_USE_EPOLL 1278#if EV_USE_EPOLL
915 if (method == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1279 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
916#endif 1280#endif
1281#if EV_USE_INOTIFY
1282 infy_fork (EV_A);
1283#endif
917 1284
918 if (ev_is_active (&sigev)) 1285 if (ev_is_active (&pipeev))
919 { 1286 {
920 /* default loop */ 1287 /* this "locks" the handlers against writing to the pipe */
1288 /* while we modify the fd vars */
1289 gotsig = 1;
1290#if EV_ASYNC_ENABLE
1291 gotasync = 1;
1292#endif
921 1293
922 ev_ref (EV_A); 1294 ev_ref (EV_A);
923 ev_io_stop (EV_A_ &sigev); 1295 ev_io_stop (EV_A_ &pipeev);
1296
1297#if EV_USE_EVENTFD
1298 if (evfd >= 0)
1299 close (evfd);
1300#endif
1301
1302 if (evpipe [0] >= 0)
1303 {
924 close (sigpipe [0]); 1304 close (evpipe [0]);
925 close (sigpipe [1]); 1305 close (evpipe [1]);
1306 }
926 1307
927 while (pipe (sigpipe))
928 syserr ("(libev) error creating pipe");
929
930 siginit (EV_A); 1308 evpipe_init (EV_A);
1309 /* now iterate over everything, in case we missed something */
1310 pipecb (EV_A_ &pipeev, EV_READ);
931 } 1311 }
932 1312
933 postfork = 0; 1313 postfork = 0;
934} 1314}
935 1315
941 1321
942 memset (loop, 0, sizeof (struct ev_loop)); 1322 memset (loop, 0, sizeof (struct ev_loop));
943 1323
944 loop_init (EV_A_ flags); 1324 loop_init (EV_A_ flags);
945 1325
946 if (ev_method (EV_A)) 1326 if (ev_backend (EV_A))
947 return loop; 1327 return loop;
948 1328
949 return 0; 1329 return 0;
950} 1330}
951 1331
957} 1337}
958 1338
959void 1339void
960ev_loop_fork (EV_P) 1340ev_loop_fork (EV_P)
961{ 1341{
962 postfork = 1; 1342 postfork = 1; /* must be in line with ev_default_fork */
963} 1343}
964 1344
965#endif 1345#endif
966 1346
967#if EV_MULTIPLICITY 1347#if EV_MULTIPLICITY
970#else 1350#else
971int 1351int
972ev_default_loop (unsigned int flags) 1352ev_default_loop (unsigned int flags)
973#endif 1353#endif
974{ 1354{
975 if (sigpipe [0] == sigpipe [1])
976 if (pipe (sigpipe))
977 return 0;
978
979 if (!ev_default_loop_ptr) 1355 if (!ev_default_loop_ptr)
980 { 1356 {
981#if EV_MULTIPLICITY 1357#if EV_MULTIPLICITY
982 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1358 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
983#else 1359#else
984 ev_default_loop_ptr = 1; 1360 ev_default_loop_ptr = 1;
985#endif 1361#endif
986 1362
987 loop_init (EV_A_ flags); 1363 loop_init (EV_A_ flags);
988 1364
989 if (ev_method (EV_A)) 1365 if (ev_backend (EV_A))
990 { 1366 {
991 siginit (EV_A);
992
993#ifndef _WIN32 1367#ifndef _WIN32
994 ev_signal_init (&childev, childcb, SIGCHLD); 1368 ev_signal_init (&childev, childcb, SIGCHLD);
995 ev_set_priority (&childev, EV_MAXPRI); 1369 ev_set_priority (&childev, EV_MAXPRI);
996 ev_signal_start (EV_A_ &childev); 1370 ev_signal_start (EV_A_ &childev);
997 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1371 ev_unref (EV_A); /* child watcher should not keep loop alive */
1014#ifndef _WIN32 1388#ifndef _WIN32
1015 ev_ref (EV_A); /* child watcher */ 1389 ev_ref (EV_A); /* child watcher */
1016 ev_signal_stop (EV_A_ &childev); 1390 ev_signal_stop (EV_A_ &childev);
1017#endif 1391#endif
1018 1392
1019 ev_ref (EV_A); /* signal watcher */
1020 ev_io_stop (EV_A_ &sigev);
1021
1022 close (sigpipe [0]); sigpipe [0] = 0;
1023 close (sigpipe [1]); sigpipe [1] = 0;
1024
1025 loop_destroy (EV_A); 1393 loop_destroy (EV_A);
1026} 1394}
1027 1395
1028void 1396void
1029ev_default_fork (void) 1397ev_default_fork (void)
1030{ 1398{
1031#if EV_MULTIPLICITY 1399#if EV_MULTIPLICITY
1032 struct ev_loop *loop = ev_default_loop_ptr; 1400 struct ev_loop *loop = ev_default_loop_ptr;
1033#endif 1401#endif
1034 1402
1035 if (method) 1403 if (backend)
1036 postfork = 1; 1404 postfork = 1; /* must be in line with ev_loop_fork */
1037} 1405}
1038 1406
1039/*****************************************************************************/ 1407/*****************************************************************************/
1040 1408
1041static int 1409void
1042any_pending (EV_P) 1410ev_invoke (EV_P_ void *w, int revents)
1043{ 1411{
1044 int pri; 1412 EV_CB_INVOKE ((W)w, revents);
1045
1046 for (pri = NUMPRI; pri--; )
1047 if (pendingcnt [pri])
1048 return 1;
1049
1050 return 0;
1051} 1413}
1052 1414
1053inline void 1415void inline_speed
1054call_pending (EV_P) 1416call_pending (EV_P)
1055{ 1417{
1056 int pri; 1418 int pri;
1057 1419
1058 for (pri = NUMPRI; pri--; ) 1420 for (pri = NUMPRI; pri--; )
1060 { 1422 {
1061 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1423 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1062 1424
1063 if (expect_true (p->w)) 1425 if (expect_true (p->w))
1064 { 1426 {
1427 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1428
1065 p->w->pending = 0; 1429 p->w->pending = 0;
1066 EV_CB_INVOKE (p->w, p->events); 1430 EV_CB_INVOKE (p->w, p->events);
1067 } 1431 }
1068 } 1432 }
1069} 1433}
1070 1434
1071inline void 1435void inline_size
1072timers_reify (EV_P) 1436timers_reify (EV_P)
1073{ 1437{
1074 while (timercnt && ((WT)timers [0])->at <= mn_now) 1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1075 { 1439 {
1076 struct ev_timer *w = timers [0]; 1440 ev_timer *w = (ev_timer *)timers [0];
1077 1441
1078 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1079 1443
1080 /* first reschedule or stop timer */ 1444 /* first reschedule or stop timer */
1081 if (w->repeat) 1445 if (w->repeat)
1082 { 1446 {
1083 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1447 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1084 1448
1085 ((WT)w)->at += w->repeat; 1449 ((WT)w)->at += w->repeat;
1086 if (((WT)w)->at < mn_now) 1450 if (((WT)w)->at < mn_now)
1087 ((WT)w)->at = mn_now; 1451 ((WT)w)->at = mn_now;
1088 1452
1089 downheap ((WT *)timers, timercnt, 0); 1453 downheap (timers, timercnt, 0);
1090 } 1454 }
1091 else 1455 else
1092 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1093 1457
1094 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1095 } 1459 }
1096} 1460}
1097 1461
1098#if EV_PERIODICS 1462#if EV_PERIODIC_ENABLE
1099inline void 1463void inline_size
1100periodics_reify (EV_P) 1464periodics_reify (EV_P)
1101{ 1465{
1102 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1103 { 1467 {
1104 struct ev_periodic *w = periodics [0]; 1468 ev_periodic *w = (ev_periodic *)periodics [0];
1105 1469
1106 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1107 1471
1108 /* first reschedule or stop timer */ 1472 /* first reschedule or stop timer */
1109 if (w->reschedule_cb) 1473 if (w->reschedule_cb)
1110 { 1474 {
1111 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1112 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1113 downheap ((WT *)periodics, periodiccnt, 0); 1477 downheap (periodics, periodiccnt, 0);
1114 } 1478 }
1115 else if (w->interval) 1479 else if (w->interval)
1116 { 1480 {
1117 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1118 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1119 downheap ((WT *)periodics, periodiccnt, 0); 1484 downheap (periodics, periodiccnt, 0);
1120 } 1485 }
1121 else 1486 else
1122 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1123 1488
1124 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1125 } 1490 }
1126} 1491}
1127 1492
1128static void 1493static void noinline
1129periodics_reschedule (EV_P) 1494periodics_reschedule (EV_P)
1130{ 1495{
1131 int i; 1496 int i;
1132 1497
1133 /* adjust periodics after time jump */ 1498 /* adjust periodics after time jump */
1134 for (i = 0; i < periodiccnt; ++i) 1499 for (i = 0; i < periodiccnt; ++i)
1135 { 1500 {
1136 struct ev_periodic *w = periodics [i]; 1501 ev_periodic *w = (ev_periodic *)periodics [i];
1137 1502
1138 if (w->reschedule_cb) 1503 if (w->reschedule_cb)
1139 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1140 else if (w->interval) 1505 else if (w->interval)
1141 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1142 } 1507 }
1143 1508
1144 /* now rebuild the heap */ 1509 /* now rebuild the heap */
1145 for (i = periodiccnt >> 1; i--; ) 1510 for (i = periodiccnt >> 1; i--; )
1146 downheap ((WT *)periodics, periodiccnt, i); 1511 downheap (periodics, periodiccnt, i);
1147} 1512}
1148#endif 1513#endif
1149 1514
1150inline int 1515#if EV_IDLE_ENABLE
1151time_update_monotonic (EV_P) 1516void inline_size
1517idle_reify (EV_P)
1152{ 1518{
1519 if (expect_false (idleall))
1520 {
1521 int pri;
1522
1523 for (pri = NUMPRI; pri--; )
1524 {
1525 if (pendingcnt [pri])
1526 break;
1527
1528 if (idlecnt [pri])
1529 {
1530 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1531 break;
1532 }
1533 }
1534 }
1535}
1536#endif
1537
1538void inline_speed
1539time_update (EV_P_ ev_tstamp max_block)
1540{
1541 int i;
1542
1543#if EV_USE_MONOTONIC
1544 if (expect_true (have_monotonic))
1545 {
1546 ev_tstamp odiff = rtmn_diff;
1547
1153 mn_now = get_clock (); 1548 mn_now = get_clock ();
1154 1549
1550 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1551 /* interpolate in the meantime */
1155 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1552 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1156 { 1553 {
1157 ev_rt_now = rtmn_diff + mn_now; 1554 ev_rt_now = rtmn_diff + mn_now;
1158 return 0; 1555 return;
1159 } 1556 }
1160 else 1557
1161 {
1162 now_floor = mn_now; 1558 now_floor = mn_now;
1163 ev_rt_now = ev_time (); 1559 ev_rt_now = ev_time ();
1164 return 1;
1165 }
1166}
1167 1560
1168inline void 1561 /* loop a few times, before making important decisions.
1169time_update (EV_P) 1562 * on the choice of "4": one iteration isn't enough,
1170{ 1563 * in case we get preempted during the calls to
1171 int i; 1564 * ev_time and get_clock. a second call is almost guaranteed
1172 1565 * to succeed in that case, though. and looping a few more times
1173#if EV_USE_MONOTONIC 1566 * doesn't hurt either as we only do this on time-jumps or
1174 if (expect_true (have_monotonic)) 1567 * in the unlikely event of having been preempted here.
1175 { 1568 */
1176 if (time_update_monotonic (EV_A)) 1569 for (i = 4; --i; )
1177 { 1570 {
1178 ev_tstamp odiff = rtmn_diff;
1179
1180 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1181 {
1182 rtmn_diff = ev_rt_now - mn_now; 1571 rtmn_diff = ev_rt_now - mn_now;
1183 1572
1184 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1185 return; /* all is well */ 1574 return; /* all is well */
1186 1575
1187 ev_rt_now = ev_time (); 1576 ev_rt_now = ev_time ();
1188 mn_now = get_clock (); 1577 mn_now = get_clock ();
1189 now_floor = mn_now; 1578 now_floor = mn_now;
1190 } 1579 }
1191 1580
1192# if EV_PERIODICS 1581# if EV_PERIODIC_ENABLE
1582 periodics_reschedule (EV_A);
1583# endif
1584 /* no timer adjustment, as the monotonic clock doesn't jump */
1585 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1586 }
1587 else
1588#endif
1589 {
1590 ev_rt_now = ev_time ();
1591
1592 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1593 {
1594#if EV_PERIODIC_ENABLE
1193 periodics_reschedule (EV_A); 1595 periodics_reschedule (EV_A);
1194# endif 1596#endif
1195 /* no timer adjustment, as the monotonic clock doesn't jump */
1196 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1197 }
1198 }
1199 else
1200#endif
1201 {
1202 ev_rt_now = ev_time ();
1203
1204 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1205 {
1206#if EV_PERIODICS
1207 periodics_reschedule (EV_A);
1208#endif
1209
1210 /* adjust timers. this is easy, as the offset is the same for all */ 1597 /* adjust timers. this is easy, as the offset is the same for all of them */
1211 for (i = 0; i < timercnt; ++i) 1598 for (i = 0; i < timercnt; ++i)
1212 ((WT)timers [i])->at += ev_rt_now - mn_now; 1599 ((WT)timers [i])->at += ev_rt_now - mn_now;
1213 } 1600 }
1214 1601
1215 mn_now = ev_rt_now; 1602 mn_now = ev_rt_now;
1231static int loop_done; 1618static int loop_done;
1232 1619
1233void 1620void
1234ev_loop (EV_P_ int flags) 1621ev_loop (EV_P_ int flags)
1235{ 1622{
1236 double block; 1623 loop_done = EVUNLOOP_CANCEL;
1237 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1238 1624
1239 while (activecnt) 1625 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1626
1627 do
1240 { 1628 {
1629#ifndef _WIN32
1630 if (expect_false (curpid)) /* penalise the forking check even more */
1631 if (expect_false (getpid () != curpid))
1632 {
1633 curpid = getpid ();
1634 postfork = 1;
1635 }
1636#endif
1637
1638#if EV_FORK_ENABLE
1639 /* we might have forked, so queue fork handlers */
1640 if (expect_false (postfork))
1641 if (forkcnt)
1642 {
1643 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1644 call_pending (EV_A);
1645 }
1646#endif
1647
1241 /* queue check watchers (and execute them) */ 1648 /* queue prepare watchers (and execute them) */
1242 if (expect_false (preparecnt)) 1649 if (expect_false (preparecnt))
1243 { 1650 {
1244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1651 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1245 call_pending (EV_A); 1652 call_pending (EV_A);
1246 } 1653 }
1247 1654
1655 if (expect_false (!activecnt))
1656 break;
1657
1248 /* we might have forked, so reify kernel state if necessary */ 1658 /* we might have forked, so reify kernel state if necessary */
1249 if (expect_false (postfork)) 1659 if (expect_false (postfork))
1250 loop_fork (EV_A); 1660 loop_fork (EV_A);
1251 1661
1252 /* update fd-related kernel structures */ 1662 /* update fd-related kernel structures */
1253 fd_reify (EV_A); 1663 fd_reify (EV_A);
1254 1664
1255 /* calculate blocking time */ 1665 /* calculate blocking time */
1666 {
1667 ev_tstamp waittime = 0.;
1668 ev_tstamp sleeptime = 0.;
1256 1669
1257 /* we only need this for !monotonic clock or timers, but as we basically 1670 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1258 always have timers, we just calculate it always */
1259#if EV_USE_MONOTONIC
1260 if (expect_true (have_monotonic))
1261 time_update_monotonic (EV_A);
1262 else
1263#endif
1264 { 1671 {
1265 ev_rt_now = ev_time (); 1672 /* update time to cancel out callback processing overhead */
1266 mn_now = ev_rt_now; 1673 time_update (EV_A_ 1e100);
1267 }
1268 1674
1269 if (flags & EVLOOP_NONBLOCK || idlecnt)
1270 block = 0.;
1271 else
1272 {
1273 block = MAX_BLOCKTIME; 1675 waittime = MAX_BLOCKTIME;
1274 1676
1275 if (timercnt) 1677 if (timercnt)
1276 { 1678 {
1277 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1278 if (block > to) block = to; 1680 if (waittime > to) waittime = to;
1279 } 1681 }
1280 1682
1281#if EV_PERIODICS 1683#if EV_PERIODIC_ENABLE
1282 if (periodiccnt) 1684 if (periodiccnt)
1283 { 1685 {
1284 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1285 if (block > to) block = to; 1687 if (waittime > to) waittime = to;
1286 } 1688 }
1287#endif 1689#endif
1288 1690
1289 if (expect_false (block < 0.)) block = 0.; 1691 if (expect_false (waittime < timeout_blocktime))
1692 waittime = timeout_blocktime;
1693
1694 sleeptime = waittime - backend_fudge;
1695
1696 if (expect_true (sleeptime > io_blocktime))
1697 sleeptime = io_blocktime;
1698
1699 if (sleeptime)
1700 {
1701 ev_sleep (sleeptime);
1702 waittime -= sleeptime;
1703 }
1290 } 1704 }
1291 1705
1292 method_poll (EV_A_ block); 1706 ++loop_count;
1707 backend_poll (EV_A_ waittime);
1293 1708
1294 /* update ev_rt_now, do magic */ 1709 /* update ev_rt_now, do magic */
1295 time_update (EV_A); 1710 time_update (EV_A_ waittime + sleeptime);
1711 }
1296 1712
1297 /* queue pending timers and reschedule them */ 1713 /* queue pending timers and reschedule them */
1298 timers_reify (EV_A); /* relative timers called last */ 1714 timers_reify (EV_A); /* relative timers called last */
1299#if EV_PERIODICS 1715#if EV_PERIODIC_ENABLE
1300 periodics_reify (EV_A); /* absolute timers called first */ 1716 periodics_reify (EV_A); /* absolute timers called first */
1301#endif 1717#endif
1302 1718
1719#if EV_IDLE_ENABLE
1303 /* queue idle watchers unless io or timers are pending */ 1720 /* queue idle watchers unless other events are pending */
1304 if (idlecnt && !any_pending (EV_A)) 1721 idle_reify (EV_A);
1305 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1722#endif
1306 1723
1307 /* queue check watchers, to be executed first */ 1724 /* queue check watchers, to be executed first */
1308 if (expect_false (checkcnt)) 1725 if (expect_false (checkcnt))
1309 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1726 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1310 1727
1311 call_pending (EV_A); 1728 call_pending (EV_A);
1312
1313 if (expect_false (loop_done))
1314 break;
1315 } 1729 }
1730 while (expect_true (
1731 activecnt
1732 && !loop_done
1733 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1734 ));
1316 1735
1317 if (loop_done != 2) 1736 if (loop_done == EVUNLOOP_ONE)
1318 loop_done = 0; 1737 loop_done = EVUNLOOP_CANCEL;
1319} 1738}
1320 1739
1321void 1740void
1322ev_unloop (EV_P_ int how) 1741ev_unloop (EV_P_ int how)
1323{ 1742{
1324 loop_done = how; 1743 loop_done = how;
1325} 1744}
1326 1745
1327/*****************************************************************************/ 1746/*****************************************************************************/
1328 1747
1329inline void 1748void inline_size
1330wlist_add (WL *head, WL elem) 1749wlist_add (WL *head, WL elem)
1331{ 1750{
1332 elem->next = *head; 1751 elem->next = *head;
1333 *head = elem; 1752 *head = elem;
1334} 1753}
1335 1754
1336inline void 1755void inline_size
1337wlist_del (WL *head, WL elem) 1756wlist_del (WL *head, WL elem)
1338{ 1757{
1339 while (*head) 1758 while (*head)
1340 { 1759 {
1341 if (*head == elem) 1760 if (*head == elem)
1346 1765
1347 head = &(*head)->next; 1766 head = &(*head)->next;
1348 } 1767 }
1349} 1768}
1350 1769
1351inline void 1770void inline_speed
1352ev_clear_pending (EV_P_ W w) 1771clear_pending (EV_P_ W w)
1353{ 1772{
1354 if (w->pending) 1773 if (w->pending)
1355 { 1774 {
1356 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1775 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1357 w->pending = 0; 1776 w->pending = 0;
1358 } 1777 }
1359} 1778}
1360 1779
1361inline void 1780int
1781ev_clear_pending (EV_P_ void *w)
1782{
1783 W w_ = (W)w;
1784 int pending = w_->pending;
1785
1786 if (expect_true (pending))
1787 {
1788 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1789 w_->pending = 0;
1790 p->w = 0;
1791 return p->events;
1792 }
1793 else
1794 return 0;
1795}
1796
1797void inline_size
1798pri_adjust (EV_P_ W w)
1799{
1800 int pri = w->priority;
1801 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1802 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1803 w->priority = pri;
1804}
1805
1806void inline_speed
1362ev_start (EV_P_ W w, int active) 1807ev_start (EV_P_ W w, int active)
1363{ 1808{
1364 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1809 pri_adjust (EV_A_ w);
1365 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1366
1367 w->active = active; 1810 w->active = active;
1368 ev_ref (EV_A); 1811 ev_ref (EV_A);
1369} 1812}
1370 1813
1371inline void 1814void inline_size
1372ev_stop (EV_P_ W w) 1815ev_stop (EV_P_ W w)
1373{ 1816{
1374 ev_unref (EV_A); 1817 ev_unref (EV_A);
1375 w->active = 0; 1818 w->active = 0;
1376} 1819}
1377 1820
1378/*****************************************************************************/ 1821/*****************************************************************************/
1379 1822
1380void 1823void noinline
1381ev_io_start (EV_P_ struct ev_io *w) 1824ev_io_start (EV_P_ ev_io *w)
1382{ 1825{
1383 int fd = w->fd; 1826 int fd = w->fd;
1384 1827
1385 if (expect_false (ev_is_active (w))) 1828 if (expect_false (ev_is_active (w)))
1386 return; 1829 return;
1387 1830
1388 assert (("ev_io_start called with negative fd", fd >= 0)); 1831 assert (("ev_io_start called with negative fd", fd >= 0));
1389 1832
1390 ev_start (EV_A_ (W)w, 1); 1833 ev_start (EV_A_ (W)w, 1);
1391 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1834 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1392 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1835 wlist_add (&anfds[fd].head, (WL)w);
1393 1836
1394 fd_change (EV_A_ fd); 1837 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1838 w->events &= ~EV_IOFDSET;
1395} 1839}
1396 1840
1397void 1841void noinline
1398ev_io_stop (EV_P_ struct ev_io *w) 1842ev_io_stop (EV_P_ ev_io *w)
1399{ 1843{
1400 ev_clear_pending (EV_A_ (W)w); 1844 clear_pending (EV_A_ (W)w);
1401 if (expect_false (!ev_is_active (w))) 1845 if (expect_false (!ev_is_active (w)))
1402 return; 1846 return;
1403 1847
1404 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1405 1849
1406 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1850 wlist_del (&anfds[w->fd].head, (WL)w);
1407 ev_stop (EV_A_ (W)w); 1851 ev_stop (EV_A_ (W)w);
1408 1852
1409 fd_change (EV_A_ w->fd); 1853 fd_change (EV_A_ w->fd, 1);
1410} 1854}
1411 1855
1412void 1856void noinline
1413ev_timer_start (EV_P_ struct ev_timer *w) 1857ev_timer_start (EV_P_ ev_timer *w)
1414{ 1858{
1415 if (expect_false (ev_is_active (w))) 1859 if (expect_false (ev_is_active (w)))
1416 return; 1860 return;
1417 1861
1418 ((WT)w)->at += mn_now; 1862 ((WT)w)->at += mn_now;
1419 1863
1420 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1421 1865
1422 ev_start (EV_A_ (W)w, ++timercnt); 1866 ev_start (EV_A_ (W)w, ++timercnt);
1423 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1424 timers [timercnt - 1] = w; 1868 timers [timercnt - 1] = (WT)w;
1425 upheap ((WT *)timers, timercnt - 1); 1869 upheap (timers, timercnt - 1);
1426 1870
1427 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1428} 1872}
1429 1873
1430void 1874void noinline
1431ev_timer_stop (EV_P_ struct ev_timer *w) 1875ev_timer_stop (EV_P_ ev_timer *w)
1432{ 1876{
1433 ev_clear_pending (EV_A_ (W)w); 1877 clear_pending (EV_A_ (W)w);
1434 if (expect_false (!ev_is_active (w))) 1878 if (expect_false (!ev_is_active (w)))
1435 return; 1879 return;
1436 1880
1437 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1438 1882
1883 {
1884 int active = ((W)w)->active;
1885
1439 if (expect_true (((W)w)->active < timercnt--)) 1886 if (expect_true (--active < --timercnt))
1440 { 1887 {
1441 timers [((W)w)->active - 1] = timers [timercnt]; 1888 timers [active] = timers [timercnt];
1442 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1889 adjustheap (timers, timercnt, active);
1443 } 1890 }
1891 }
1444 1892
1445 ((WT)w)->at -= mn_now; 1893 ((WT)w)->at -= mn_now;
1446 1894
1447 ev_stop (EV_A_ (W)w); 1895 ev_stop (EV_A_ (W)w);
1448} 1896}
1449 1897
1450void 1898void noinline
1451ev_timer_again (EV_P_ struct ev_timer *w) 1899ev_timer_again (EV_P_ ev_timer *w)
1452{ 1900{
1453 if (ev_is_active (w)) 1901 if (ev_is_active (w))
1454 { 1902 {
1455 if (w->repeat) 1903 if (w->repeat)
1456 { 1904 {
1457 ((WT)w)->at = mn_now + w->repeat; 1905 ((WT)w)->at = mn_now + w->repeat;
1458 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1906 adjustheap (timers, timercnt, ((W)w)->active - 1);
1459 } 1907 }
1460 else 1908 else
1461 ev_timer_stop (EV_A_ w); 1909 ev_timer_stop (EV_A_ w);
1462 } 1910 }
1463 else if (w->repeat) 1911 else if (w->repeat)
1465 w->at = w->repeat; 1913 w->at = w->repeat;
1466 ev_timer_start (EV_A_ w); 1914 ev_timer_start (EV_A_ w);
1467 } 1915 }
1468} 1916}
1469 1917
1470#if EV_PERIODICS 1918#if EV_PERIODIC_ENABLE
1471void 1919void noinline
1472ev_periodic_start (EV_P_ struct ev_periodic *w) 1920ev_periodic_start (EV_P_ ev_periodic *w)
1473{ 1921{
1474 if (expect_false (ev_is_active (w))) 1922 if (expect_false (ev_is_active (w)))
1475 return; 1923 return;
1476 1924
1477 if (w->reschedule_cb) 1925 if (w->reschedule_cb)
1478 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1479 else if (w->interval) 1927 else if (w->interval)
1480 { 1928 {
1481 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1482 /* this formula differs from the one in periodic_reify because we do not always round up */ 1930 /* this formula differs from the one in periodic_reify because we do not always round up */
1483 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1484 } 1932 }
1933 else
1934 ((WT)w)->at = w->offset;
1485 1935
1486 ev_start (EV_A_ (W)w, ++periodiccnt); 1936 ev_start (EV_A_ (W)w, ++periodiccnt);
1487 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1488 periodics [periodiccnt - 1] = w; 1938 periodics [periodiccnt - 1] = (WT)w;
1489 upheap ((WT *)periodics, periodiccnt - 1); 1939 upheap (periodics, periodiccnt - 1);
1490 1940
1491 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1492} 1942}
1493 1943
1494void 1944void noinline
1495ev_periodic_stop (EV_P_ struct ev_periodic *w) 1945ev_periodic_stop (EV_P_ ev_periodic *w)
1496{ 1946{
1497 ev_clear_pending (EV_A_ (W)w); 1947 clear_pending (EV_A_ (W)w);
1498 if (expect_false (!ev_is_active (w))) 1948 if (expect_false (!ev_is_active (w)))
1499 return; 1949 return;
1500 1950
1501 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1502 1952
1953 {
1954 int active = ((W)w)->active;
1955
1503 if (expect_true (((W)w)->active < periodiccnt--)) 1956 if (expect_true (--active < --periodiccnt))
1504 { 1957 {
1505 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1958 periodics [active] = periodics [periodiccnt];
1506 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1959 adjustheap (periodics, periodiccnt, active);
1507 } 1960 }
1961 }
1508 1962
1509 ev_stop (EV_A_ (W)w); 1963 ev_stop (EV_A_ (W)w);
1510} 1964}
1511 1965
1512void 1966void noinline
1513ev_periodic_again (EV_P_ struct ev_periodic *w) 1967ev_periodic_again (EV_P_ ev_periodic *w)
1514{ 1968{
1515 /* TODO: use adjustheap and recalculation */ 1969 /* TODO: use adjustheap and recalculation */
1516 ev_periodic_stop (EV_A_ w); 1970 ev_periodic_stop (EV_A_ w);
1517 ev_periodic_start (EV_A_ w); 1971 ev_periodic_start (EV_A_ w);
1518} 1972}
1519#endif 1973#endif
1520 1974
1521void
1522ev_idle_start (EV_P_ struct ev_idle *w)
1523{
1524 if (expect_false (ev_is_active (w)))
1525 return;
1526
1527 ev_start (EV_A_ (W)w, ++idlecnt);
1528 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1529 idles [idlecnt - 1] = w;
1530}
1531
1532void
1533ev_idle_stop (EV_P_ struct ev_idle *w)
1534{
1535 ev_clear_pending (EV_A_ (W)w);
1536 if (expect_false (!ev_is_active (w)))
1537 return;
1538
1539 idles [((W)w)->active - 1] = idles [--idlecnt];
1540 ev_stop (EV_A_ (W)w);
1541}
1542
1543void
1544ev_prepare_start (EV_P_ struct ev_prepare *w)
1545{
1546 if (expect_false (ev_is_active (w)))
1547 return;
1548
1549 ev_start (EV_A_ (W)w, ++preparecnt);
1550 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1551 prepares [preparecnt - 1] = w;
1552}
1553
1554void
1555ev_prepare_stop (EV_P_ struct ev_prepare *w)
1556{
1557 ev_clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w)))
1559 return;
1560
1561 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1562 ev_stop (EV_A_ (W)w);
1563}
1564
1565void
1566ev_check_start (EV_P_ struct ev_check *w)
1567{
1568 if (expect_false (ev_is_active (w)))
1569 return;
1570
1571 ev_start (EV_A_ (W)w, ++checkcnt);
1572 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1573 checks [checkcnt - 1] = w;
1574}
1575
1576void
1577ev_check_stop (EV_P_ struct ev_check *w)
1578{
1579 ev_clear_pending (EV_A_ (W)w);
1580 if (expect_false (!ev_is_active (w)))
1581 return;
1582
1583 checks [((W)w)->active - 1] = checks [--checkcnt];
1584 ev_stop (EV_A_ (W)w);
1585}
1586
1587#ifndef SA_RESTART 1975#ifndef SA_RESTART
1588# define SA_RESTART 0 1976# define SA_RESTART 0
1589#endif 1977#endif
1590 1978
1591void 1979void noinline
1592ev_signal_start (EV_P_ struct ev_signal *w) 1980ev_signal_start (EV_P_ ev_signal *w)
1593{ 1981{
1594#if EV_MULTIPLICITY 1982#if EV_MULTIPLICITY
1595 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1983 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1596#endif 1984#endif
1597 if (expect_false (ev_is_active (w))) 1985 if (expect_false (ev_is_active (w)))
1598 return; 1986 return;
1599 1987
1600 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1988 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1601 1989
1990 evpipe_init (EV_A);
1991
1992 {
1993#ifndef _WIN32
1994 sigset_t full, prev;
1995 sigfillset (&full);
1996 sigprocmask (SIG_SETMASK, &full, &prev);
1997#endif
1998
1999 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2000
2001#ifndef _WIN32
2002 sigprocmask (SIG_SETMASK, &prev, 0);
2003#endif
2004 }
2005
1602 ev_start (EV_A_ (W)w, 1); 2006 ev_start (EV_A_ (W)w, 1);
1603 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1604 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2007 wlist_add (&signals [w->signum - 1].head, (WL)w);
1605 2008
1606 if (!((WL)w)->next) 2009 if (!((WL)w)->next)
1607 { 2010 {
1608#if _WIN32 2011#if _WIN32
1609 signal (w->signum, sighandler); 2012 signal (w->signum, ev_sighandler);
1610#else 2013#else
1611 struct sigaction sa; 2014 struct sigaction sa;
1612 sa.sa_handler = sighandler; 2015 sa.sa_handler = ev_sighandler;
1613 sigfillset (&sa.sa_mask); 2016 sigfillset (&sa.sa_mask);
1614 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2017 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1615 sigaction (w->signum, &sa, 0); 2018 sigaction (w->signum, &sa, 0);
1616#endif 2019#endif
1617 } 2020 }
1618} 2021}
1619 2022
1620void 2023void noinline
1621ev_signal_stop (EV_P_ struct ev_signal *w) 2024ev_signal_stop (EV_P_ ev_signal *w)
1622{ 2025{
1623 ev_clear_pending (EV_A_ (W)w); 2026 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 2027 if (expect_false (!ev_is_active (w)))
1625 return; 2028 return;
1626 2029
1627 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2030 wlist_del (&signals [w->signum - 1].head, (WL)w);
1628 ev_stop (EV_A_ (W)w); 2031 ev_stop (EV_A_ (W)w);
1629 2032
1630 if (!signals [w->signum - 1].head) 2033 if (!signals [w->signum - 1].head)
1631 signal (w->signum, SIG_DFL); 2034 signal (w->signum, SIG_DFL);
1632} 2035}
1633 2036
1634void 2037void
1635ev_child_start (EV_P_ struct ev_child *w) 2038ev_child_start (EV_P_ ev_child *w)
1636{ 2039{
1637#if EV_MULTIPLICITY 2040#if EV_MULTIPLICITY
1638 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2041 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1639#endif 2042#endif
1640 if (expect_false (ev_is_active (w))) 2043 if (expect_false (ev_is_active (w)))
1641 return; 2044 return;
1642 2045
1643 ev_start (EV_A_ (W)w, 1); 2046 ev_start (EV_A_ (W)w, 1);
1644 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2047 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1645} 2048}
1646 2049
1647void 2050void
1648ev_child_stop (EV_P_ struct ev_child *w) 2051ev_child_stop (EV_P_ ev_child *w)
1649{ 2052{
1650 ev_clear_pending (EV_A_ (W)w); 2053 clear_pending (EV_A_ (W)w);
1651 if (expect_false (!ev_is_active (w))) 2054 if (expect_false (!ev_is_active (w)))
1652 return; 2055 return;
1653 2056
1654 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2057 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1655 ev_stop (EV_A_ (W)w); 2058 ev_stop (EV_A_ (W)w);
1656} 2059}
1657 2060
2061#if EV_STAT_ENABLE
2062
2063# ifdef _WIN32
2064# undef lstat
2065# define lstat(a,b) _stati64 (a,b)
2066# endif
2067
2068#define DEF_STAT_INTERVAL 5.0074891
2069#define MIN_STAT_INTERVAL 0.1074891
2070
2071static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2072
2073#if EV_USE_INOTIFY
2074# define EV_INOTIFY_BUFSIZE 8192
2075
2076static void noinline
2077infy_add (EV_P_ ev_stat *w)
2078{
2079 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2080
2081 if (w->wd < 0)
2082 {
2083 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2084
2085 /* monitor some parent directory for speedup hints */
2086 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2087 {
2088 char path [4096];
2089 strcpy (path, w->path);
2090
2091 do
2092 {
2093 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2094 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2095
2096 char *pend = strrchr (path, '/');
2097
2098 if (!pend)
2099 break; /* whoops, no '/', complain to your admin */
2100
2101 *pend = 0;
2102 w->wd = inotify_add_watch (fs_fd, path, mask);
2103 }
2104 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2105 }
2106 }
2107 else
2108 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2109
2110 if (w->wd >= 0)
2111 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2112}
2113
2114static void noinline
2115infy_del (EV_P_ ev_stat *w)
2116{
2117 int slot;
2118 int wd = w->wd;
2119
2120 if (wd < 0)
2121 return;
2122
2123 w->wd = -2;
2124 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2125 wlist_del (&fs_hash [slot].head, (WL)w);
2126
2127 /* remove this watcher, if others are watching it, they will rearm */
2128 inotify_rm_watch (fs_fd, wd);
2129}
2130
2131static void noinline
2132infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2133{
2134 if (slot < 0)
2135 /* overflow, need to check for all hahs slots */
2136 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2137 infy_wd (EV_A_ slot, wd, ev);
2138 else
2139 {
2140 WL w_;
2141
2142 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2143 {
2144 ev_stat *w = (ev_stat *)w_;
2145 w_ = w_->next; /* lets us remove this watcher and all before it */
2146
2147 if (w->wd == wd || wd == -1)
2148 {
2149 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2150 {
2151 w->wd = -1;
2152 infy_add (EV_A_ w); /* re-add, no matter what */
2153 }
2154
2155 stat_timer_cb (EV_A_ &w->timer, 0);
2156 }
2157 }
2158 }
2159}
2160
2161static void
2162infy_cb (EV_P_ ev_io *w, int revents)
2163{
2164 char buf [EV_INOTIFY_BUFSIZE];
2165 struct inotify_event *ev = (struct inotify_event *)buf;
2166 int ofs;
2167 int len = read (fs_fd, buf, sizeof (buf));
2168
2169 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2170 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2171}
2172
2173void inline_size
2174infy_init (EV_P)
2175{
2176 if (fs_fd != -2)
2177 return;
2178
2179 fs_fd = inotify_init ();
2180
2181 if (fs_fd >= 0)
2182 {
2183 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2184 ev_set_priority (&fs_w, EV_MAXPRI);
2185 ev_io_start (EV_A_ &fs_w);
2186 }
2187}
2188
2189void inline_size
2190infy_fork (EV_P)
2191{
2192 int slot;
2193
2194 if (fs_fd < 0)
2195 return;
2196
2197 close (fs_fd);
2198 fs_fd = inotify_init ();
2199
2200 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2201 {
2202 WL w_ = fs_hash [slot].head;
2203 fs_hash [slot].head = 0;
2204
2205 while (w_)
2206 {
2207 ev_stat *w = (ev_stat *)w_;
2208 w_ = w_->next; /* lets us add this watcher */
2209
2210 w->wd = -1;
2211
2212 if (fs_fd >= 0)
2213 infy_add (EV_A_ w); /* re-add, no matter what */
2214 else
2215 ev_timer_start (EV_A_ &w->timer);
2216 }
2217
2218 }
2219}
2220
2221#endif
2222
2223void
2224ev_stat_stat (EV_P_ ev_stat *w)
2225{
2226 if (lstat (w->path, &w->attr) < 0)
2227 w->attr.st_nlink = 0;
2228 else if (!w->attr.st_nlink)
2229 w->attr.st_nlink = 1;
2230}
2231
2232static void noinline
2233stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2234{
2235 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2236
2237 /* we copy this here each the time so that */
2238 /* prev has the old value when the callback gets invoked */
2239 w->prev = w->attr;
2240 ev_stat_stat (EV_A_ w);
2241
2242 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2243 if (
2244 w->prev.st_dev != w->attr.st_dev
2245 || w->prev.st_ino != w->attr.st_ino
2246 || w->prev.st_mode != w->attr.st_mode
2247 || w->prev.st_nlink != w->attr.st_nlink
2248 || w->prev.st_uid != w->attr.st_uid
2249 || w->prev.st_gid != w->attr.st_gid
2250 || w->prev.st_rdev != w->attr.st_rdev
2251 || w->prev.st_size != w->attr.st_size
2252 || w->prev.st_atime != w->attr.st_atime
2253 || w->prev.st_mtime != w->attr.st_mtime
2254 || w->prev.st_ctime != w->attr.st_ctime
2255 ) {
2256 #if EV_USE_INOTIFY
2257 infy_del (EV_A_ w);
2258 infy_add (EV_A_ w);
2259 ev_stat_stat (EV_A_ w); /* avoid race... */
2260 #endif
2261
2262 ev_feed_event (EV_A_ w, EV_STAT);
2263 }
2264}
2265
2266void
2267ev_stat_start (EV_P_ ev_stat *w)
2268{
2269 if (expect_false (ev_is_active (w)))
2270 return;
2271
2272 /* since we use memcmp, we need to clear any padding data etc. */
2273 memset (&w->prev, 0, sizeof (ev_statdata));
2274 memset (&w->attr, 0, sizeof (ev_statdata));
2275
2276 ev_stat_stat (EV_A_ w);
2277
2278 if (w->interval < MIN_STAT_INTERVAL)
2279 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2280
2281 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2282 ev_set_priority (&w->timer, ev_priority (w));
2283
2284#if EV_USE_INOTIFY
2285 infy_init (EV_A);
2286
2287 if (fs_fd >= 0)
2288 infy_add (EV_A_ w);
2289 else
2290#endif
2291 ev_timer_start (EV_A_ &w->timer);
2292
2293 ev_start (EV_A_ (W)w, 1);
2294}
2295
2296void
2297ev_stat_stop (EV_P_ ev_stat *w)
2298{
2299 clear_pending (EV_A_ (W)w);
2300 if (expect_false (!ev_is_active (w)))
2301 return;
2302
2303#if EV_USE_INOTIFY
2304 infy_del (EV_A_ w);
2305#endif
2306 ev_timer_stop (EV_A_ &w->timer);
2307
2308 ev_stop (EV_A_ (W)w);
2309}
2310#endif
2311
2312#if EV_IDLE_ENABLE
2313void
2314ev_idle_start (EV_P_ ev_idle *w)
2315{
2316 if (expect_false (ev_is_active (w)))
2317 return;
2318
2319 pri_adjust (EV_A_ (W)w);
2320
2321 {
2322 int active = ++idlecnt [ABSPRI (w)];
2323
2324 ++idleall;
2325 ev_start (EV_A_ (W)w, active);
2326
2327 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2328 idles [ABSPRI (w)][active - 1] = w;
2329 }
2330}
2331
2332void
2333ev_idle_stop (EV_P_ ev_idle *w)
2334{
2335 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w)))
2337 return;
2338
2339 {
2340 int active = ((W)w)->active;
2341
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2343 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2344
2345 ev_stop (EV_A_ (W)w);
2346 --idleall;
2347 }
2348}
2349#endif
2350
2351void
2352ev_prepare_start (EV_P_ ev_prepare *w)
2353{
2354 if (expect_false (ev_is_active (w)))
2355 return;
2356
2357 ev_start (EV_A_ (W)w, ++preparecnt);
2358 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2359 prepares [preparecnt - 1] = w;
2360}
2361
2362void
2363ev_prepare_stop (EV_P_ ev_prepare *w)
2364{
2365 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w)))
2367 return;
2368
2369 {
2370 int active = ((W)w)->active;
2371 prepares [active - 1] = prepares [--preparecnt];
2372 ((W)prepares [active - 1])->active = active;
2373 }
2374
2375 ev_stop (EV_A_ (W)w);
2376}
2377
2378void
2379ev_check_start (EV_P_ ev_check *w)
2380{
2381 if (expect_false (ev_is_active (w)))
2382 return;
2383
2384 ev_start (EV_A_ (W)w, ++checkcnt);
2385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2386 checks [checkcnt - 1] = w;
2387}
2388
2389void
2390ev_check_stop (EV_P_ ev_check *w)
2391{
2392 clear_pending (EV_A_ (W)w);
2393 if (expect_false (!ev_is_active (w)))
2394 return;
2395
2396 {
2397 int active = ((W)w)->active;
2398 checks [active - 1] = checks [--checkcnt];
2399 ((W)checks [active - 1])->active = active;
2400 }
2401
2402 ev_stop (EV_A_ (W)w);
2403}
2404
2405#if EV_EMBED_ENABLE
2406void noinline
2407ev_embed_sweep (EV_P_ ev_embed *w)
2408{
2409 ev_loop (w->other, EVLOOP_NONBLOCK);
2410}
2411
2412static void
2413embed_io_cb (EV_P_ ev_io *io, int revents)
2414{
2415 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2416
2417 if (ev_cb (w))
2418 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2419 else
2420 ev_loop (w->other, EVLOOP_NONBLOCK);
2421}
2422
2423static void
2424embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2425{
2426 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2427
2428 {
2429 struct ev_loop *loop = w->other;
2430
2431 while (fdchangecnt)
2432 {
2433 fd_reify (EV_A);
2434 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2435 }
2436 }
2437}
2438
2439#if 0
2440static void
2441embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2442{
2443 ev_idle_stop (EV_A_ idle);
2444}
2445#endif
2446
2447void
2448ev_embed_start (EV_P_ ev_embed *w)
2449{
2450 if (expect_false (ev_is_active (w)))
2451 return;
2452
2453 {
2454 struct ev_loop *loop = w->other;
2455 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2456 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2457 }
2458
2459 ev_set_priority (&w->io, ev_priority (w));
2460 ev_io_start (EV_A_ &w->io);
2461
2462 ev_prepare_init (&w->prepare, embed_prepare_cb);
2463 ev_set_priority (&w->prepare, EV_MINPRI);
2464 ev_prepare_start (EV_A_ &w->prepare);
2465
2466 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2467
2468 ev_start (EV_A_ (W)w, 1);
2469}
2470
2471void
2472ev_embed_stop (EV_P_ ev_embed *w)
2473{
2474 clear_pending (EV_A_ (W)w);
2475 if (expect_false (!ev_is_active (w)))
2476 return;
2477
2478 ev_io_stop (EV_A_ &w->io);
2479 ev_prepare_stop (EV_A_ &w->prepare);
2480
2481 ev_stop (EV_A_ (W)w);
2482}
2483#endif
2484
2485#if EV_FORK_ENABLE
2486void
2487ev_fork_start (EV_P_ ev_fork *w)
2488{
2489 if (expect_false (ev_is_active (w)))
2490 return;
2491
2492 ev_start (EV_A_ (W)w, ++forkcnt);
2493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2494 forks [forkcnt - 1] = w;
2495}
2496
2497void
2498ev_fork_stop (EV_P_ ev_fork *w)
2499{
2500 clear_pending (EV_A_ (W)w);
2501 if (expect_false (!ev_is_active (w)))
2502 return;
2503
2504 {
2505 int active = ((W)w)->active;
2506 forks [active - 1] = forks [--forkcnt];
2507 ((W)forks [active - 1])->active = active;
2508 }
2509
2510 ev_stop (EV_A_ (W)w);
2511}
2512#endif
2513
2514#if EV_ASYNC_ENABLE
2515void
2516ev_async_start (EV_P_ ev_async *w)
2517{
2518 if (expect_false (ev_is_active (w)))
2519 return;
2520
2521 evpipe_init (EV_A);
2522
2523 ev_start (EV_A_ (W)w, ++asynccnt);
2524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2525 asyncs [asynccnt - 1] = w;
2526}
2527
2528void
2529ev_async_stop (EV_P_ ev_async *w)
2530{
2531 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w)))
2533 return;
2534
2535 {
2536 int active = ((W)w)->active;
2537 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active;
2539 }
2540
2541 ev_stop (EV_A_ (W)w);
2542}
2543
2544void
2545ev_async_send (EV_P_ ev_async *w)
2546{
2547 w->sent = 1;
2548 evpipe_write (EV_A_ &gotasync);
2549}
2550#endif
2551
1658/*****************************************************************************/ 2552/*****************************************************************************/
1659 2553
1660struct ev_once 2554struct ev_once
1661{ 2555{
1662 struct ev_io io; 2556 ev_io io;
1663 struct ev_timer to; 2557 ev_timer to;
1664 void (*cb)(int revents, void *arg); 2558 void (*cb)(int revents, void *arg);
1665 void *arg; 2559 void *arg;
1666}; 2560};
1667 2561
1668static void 2562static void
1677 2571
1678 cb (revents, arg); 2572 cb (revents, arg);
1679} 2573}
1680 2574
1681static void 2575static void
1682once_cb_io (EV_P_ struct ev_io *w, int revents) 2576once_cb_io (EV_P_ ev_io *w, int revents)
1683{ 2577{
1684 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2578 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1685} 2579}
1686 2580
1687static void 2581static void
1688once_cb_to (EV_P_ struct ev_timer *w, int revents) 2582once_cb_to (EV_P_ ev_timer *w, int revents)
1689{ 2583{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2584 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1691} 2585}
1692 2586
1693void 2587void
1717 ev_timer_set (&once->to, timeout, 0.); 2611 ev_timer_set (&once->to, timeout, 0.);
1718 ev_timer_start (EV_A_ &once->to); 2612 ev_timer_start (EV_A_ &once->to);
1719 } 2613 }
1720} 2614}
1721 2615
2616#if EV_MULTIPLICITY
2617 #include "ev_wrap.h"
2618#endif
2619
1722#ifdef __cplusplus 2620#ifdef __cplusplus
1723} 2621}
1724#endif 2622#endif
1725 2623

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines