ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.153 by root, Wed Nov 28 11:41:18 2007 UTC vs.
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY 271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 273# include <stdint.h>
274int eventfd (unsigned int initval, int flags);
217#endif 275#endif
218 276
219/**/ 277/**/
278
279/*
280 * This is used to avoid floating point rounding problems.
281 * It is added to ev_rt_now when scheduling periodics
282 * to ensure progress, time-wise, even when rounding
283 * errors are against us.
284 * This value is good at least till the year 4000.
285 * Better solutions welcome.
286 */
287#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 288
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 289#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 290#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 291/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 292
225#if __GNUC__ >= 3 293#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 294# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 295# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 296#else
236# define expect(expr,value) (expr) 297# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 298# define noinline
299# if __STDC_VERSION__ < 199901L
300# define inline
301# endif
240#endif 302#endif
241 303
242#define expect_false(expr) expect ((expr) != 0, 0) 304#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 305#define expect_true(expr) expect ((expr) != 0, 1)
306#define inline_size static inline
307
308#if EV_MINIMAL
309# define inline_speed static noinline
310#else
311# define inline_speed static inline
312#endif
244 313
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 314#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 315#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 316
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 317#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 318#define EMPTY2(a,b) /* used to suppress some warnings */
250 319
251typedef ev_watcher *W; 320typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 321typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 322typedef ev_watcher_time *WT;
254 323
324#if EV_USE_MONOTONIC
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
328#endif
256 329
257#ifdef _WIN32 330#ifdef _WIN32
258# include "ev_win32.c" 331# include "ev_win32.c"
259#endif 332#endif
260 333
281 perror (msg); 354 perror (msg);
282 abort (); 355 abort ();
283 } 356 }
284} 357}
285 358
286static void *(*alloc)(void *ptr, size_t size) = realloc; 359static void *(*alloc)(void *ptr, long size);
287 360
288void 361void
289ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 362ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 363{
291 alloc = cb; 364 alloc = cb;
292} 365}
293 366
294inline_speed void * 367inline_speed void *
295ev_realloc (void *ptr, size_t size) 368ev_realloc (void *ptr, long size)
296{ 369{
297 ptr = alloc (ptr, size); 370 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
298 371
299 if (!ptr && size) 372 if (!ptr && size)
300 { 373 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 374 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 375 abort ();
303 } 376 }
304 377
305 return ptr; 378 return ptr;
306} 379}
324{ 397{
325 W w; 398 W w;
326 int events; 399 int events;
327} ANPENDING; 400} ANPENDING;
328 401
402#if EV_USE_INOTIFY
329typedef struct 403typedef struct
330{ 404{
331#if EV_USE_INOTIFY
332 WL head; 405 WL head;
333#endif
334} ANFS; 406} ANFS;
407#endif
335 408
336#if EV_MULTIPLICITY 409#if EV_MULTIPLICITY
337 410
338 struct ev_loop 411 struct ev_loop
339 { 412 {
396{ 469{
397 return ev_rt_now; 470 return ev_rt_now;
398} 471}
399#endif 472#endif
400 473
401#define array_roundsize(type,n) (((n) | 4) & ~3) 474void
475ev_sleep (ev_tstamp delay)
476{
477 if (delay > 0.)
478 {
479#if EV_USE_NANOSLEEP
480 struct timespec ts;
481
482 ts.tv_sec = (time_t)delay;
483 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
484
485 nanosleep (&ts, 0);
486#elif defined(_WIN32)
487 Sleep ((unsigned long)(delay * 1e3));
488#else
489 struct timeval tv;
490
491 tv.tv_sec = (time_t)delay;
492 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
493
494 select (0, 0, 0, 0, &tv);
495#endif
496 }
497}
498
499/*****************************************************************************/
500
501int inline_size
502array_nextsize (int elem, int cur, int cnt)
503{
504 int ncur = cur + 1;
505
506 do
507 ncur <<= 1;
508 while (cnt > ncur);
509
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
511 if (elem * ncur > 4096)
512 {
513 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
515 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem;
517 }
518
519 return ncur;
520}
521
522static noinline void *
523array_realloc (int elem, void *base, int *cur, int cnt)
524{
525 *cur = array_nextsize (elem, *cur, cnt);
526 return ev_realloc (base, elem * *cur);
527}
402 528
403#define array_needsize(type,base,cur,cnt,init) \ 529#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 530 if (expect_false ((cnt) > (cur))) \
405 { \ 531 { \
406 int newcnt = cur; \ 532 int ocur_ = (cur); \
407 do \ 533 (base) = (type *)array_realloc \
408 { \ 534 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 535 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 536 }
417 537
538#if 0
418#define array_slim(type,stem) \ 539#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 540 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 541 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 542 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 543 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 544 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 545 }
546#endif
425 547
426#define array_free(stem, idx) \ 548#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 549 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 550
429/*****************************************************************************/ 551/*****************************************************************************/
430 552
431void noinline 553void noinline
432ev_feed_event (EV_P_ void *w, int revents) 554ev_feed_event (EV_P_ void *w, int revents)
433{ 555{
434 W w_ = (W)w; 556 W w_ = (W)w;
557 int pri = ABSPRI (w_);
435 558
436 if (expect_false (w_->pending)) 559 if (expect_false (w_->pending))
560 pendings [pri][w_->pending - 1].events |= revents;
561 else
437 { 562 {
563 w_->pending = ++pendingcnt [pri];
564 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
565 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 566 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 567 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 568}
447 569
448void inline_size 570void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 571queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 572{
451 int i; 573 int i;
452 574
453 for (i = 0; i < eventcnt; ++i) 575 for (i = 0; i < eventcnt; ++i)
485} 607}
486 608
487void 609void
488ev_feed_fd_event (EV_P_ int fd, int revents) 610ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 611{
612 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 613 fd_event (EV_A_ fd, revents);
491} 614}
492 615
493void inline_size 616void inline_size
494fd_reify (EV_P) 617fd_reify (EV_P)
495{ 618{
499 { 622 {
500 int fd = fdchanges [i]; 623 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 624 ANFD *anfd = anfds + fd;
502 ev_io *w; 625 ev_io *w;
503 626
504 int events = 0; 627 unsigned char events = 0;
505 628
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 629 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 630 events |= (unsigned char)w->events;
508 631
509#if EV_SELECT_IS_WINSOCKET 632#if EV_SELECT_IS_WINSOCKET
510 if (events) 633 if (events)
511 { 634 {
512 unsigned long argp; 635 unsigned long argp;
636 #ifdef EV_FD_TO_WIN32_HANDLE
637 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
638 #else
513 anfd->handle = _get_osfhandle (fd); 639 anfd->handle = _get_osfhandle (fd);
640 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 641 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 642 }
516#endif 643#endif
517 644
645 {
646 unsigned char o_events = anfd->events;
647 unsigned char o_reify = anfd->reify;
648
518 anfd->reify = 0; 649 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 650 anfd->events = events;
651
652 if (o_events != events || o_reify & EV_IOFDSET)
653 backend_modify (EV_A_ fd, o_events, events);
654 }
522 } 655 }
523 656
524 fdchangecnt = 0; 657 fdchangecnt = 0;
525} 658}
526 659
527void inline_size 660void inline_size
528fd_change (EV_P_ int fd) 661fd_change (EV_P_ int fd, int flags)
529{ 662{
530 if (expect_false (anfds [fd].reify)) 663 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 664 anfds [fd].reify |= flags;
534 665
666 if (expect_true (!reify))
667 {
535 ++fdchangecnt; 668 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 669 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 670 fdchanges [fdchangecnt - 1] = fd;
671 }
538} 672}
539 673
540void inline_speed 674void inline_speed
541fd_kill (EV_P_ int fd) 675fd_kill (EV_P_ int fd)
542{ 676{
589static void noinline 723static void noinline
590fd_rearm_all (EV_P) 724fd_rearm_all (EV_P)
591{ 725{
592 int fd; 726 int fd;
593 727
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 729 if (anfds [fd].events)
597 { 730 {
598 anfds [fd].events = 0; 731 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 732 fd_change (EV_A_ fd, EV_IOFDSET | 1);
600 } 733 }
601} 734}
602 735
603/*****************************************************************************/ 736/*****************************************************************************/
604 737
605void inline_speed 738void inline_speed
606upheap (WT *heap, int k) 739upheap (WT *heap, int k)
607{ 740{
608 WT w = heap [k]; 741 WT w = heap [k];
609 742
610 while (k && heap [k >> 1]->at > w->at) 743 while (k)
611 { 744 {
745 int p = (k - 1) >> 1;
746
747 if (heap [p]->at <= w->at)
748 break;
749
612 heap [k] = heap [k >> 1]; 750 heap [k] = heap [p];
613 ((W)heap [k])->active = k + 1; 751 ((W)heap [k])->active = k + 1;
614 k >>= 1; 752 k = p;
615 } 753 }
616 754
617 heap [k] = w; 755 heap [k] = w;
618 ((W)heap [k])->active = k + 1; 756 ((W)heap [k])->active = k + 1;
619
620} 757}
621 758
622void inline_speed 759void inline_speed
623downheap (WT *heap, int N, int k) 760downheap (WT *heap, int N, int k)
624{ 761{
625 WT w = heap [k]; 762 WT w = heap [k];
626 763
627 while (k < (N >> 1)) 764 for (;;)
628 { 765 {
629 int j = k << 1; 766 int c = (k << 1) + 1;
630 767
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 768 if (c >= N)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 769 break;
636 770
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
772 ? 1 : 0;
773
774 if (w->at <= heap [c]->at)
775 break;
776
637 heap [k] = heap [j]; 777 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 778 ((W)heap [k])->active = k + 1;
779
639 k = j; 780 k = c;
640 } 781 }
641 782
642 heap [k] = w; 783 heap [k] = w;
643 ((W)heap [k])->active = k + 1; 784 ((W)heap [k])->active = k + 1;
644} 785}
653/*****************************************************************************/ 794/*****************************************************************************/
654 795
655typedef struct 796typedef struct
656{ 797{
657 WL head; 798 WL head;
658 sig_atomic_t volatile gotsig; 799 EV_ATOMIC_T gotsig;
659} ANSIG; 800} ANSIG;
660 801
661static ANSIG *signals; 802static ANSIG *signals;
662static int signalmax; 803static int signalmax;
663 804
664static int sigpipe [2]; 805static EV_ATOMIC_T gotsig;
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 806
668void inline_size 807void inline_size
669signals_init (ANSIG *base, int count) 808signals_init (ANSIG *base, int count)
670{ 809{
671 while (count--) 810 while (count--)
675 814
676 ++base; 815 ++base;
677 } 816 }
678} 817}
679 818
680static void 819/*****************************************************************************/
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686 820
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size 821void inline_speed
732fd_intern (int fd) 822fd_intern (int fd)
733{ 823{
734#ifdef _WIN32 824#ifdef _WIN32
735 int arg = 1; 825 int arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 826 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 829 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 830#endif
741} 831}
742 832
743static void noinline 833static void noinline
744siginit (EV_P) 834evpipe_init (EV_P)
745{ 835{
836 if (!ev_is_active (&pipeev))
837 {
838#if EV_USE_EVENTFD
839 if ((evfd = eventfd (0, 0)) >= 0)
840 {
841 evpipe [0] = -1;
842 fd_intern (evfd);
843 ev_io_set (&pipeev, evfd, EV_READ);
844 }
845 else
846#endif
847 {
848 while (pipe (evpipe))
849 syserr ("(libev) error creating signal/async pipe");
850
746 fd_intern (sigpipe [0]); 851 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 852 fd_intern (evpipe [1]);
853 ev_io_set (&pipeev, evpipe [0], EV_READ);
854 }
748 855
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 856 ev_io_start (EV_A_ &pipeev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 857 ev_unref (EV_A); /* watcher should not keep loop alive */
858 }
859}
860
861void inline_size
862evpipe_write (EV_P_ EV_ATOMIC_T *flag)
863{
864 if (!*flag)
865 {
866 int old_errno = errno; /* save errno because write might clobber it */
867
868 *flag = 1;
869
870#if EV_USE_EVENTFD
871 if (evfd >= 0)
872 {
873 uint64_t counter = 1;
874 write (evfd, &counter, sizeof (uint64_t));
875 }
876 else
877#endif
878 write (evpipe [1], &old_errno, 1);
879
880 errno = old_errno;
881 }
882}
883
884static void
885pipecb (EV_P_ ev_io *iow, int revents)
886{
887#if EV_USE_EVENTFD
888 if (evfd >= 0)
889 {
890 uint64_t counter = 1;
891 read (evfd, &counter, sizeof (uint64_t));
892 }
893 else
894#endif
895 {
896 char dummy;
897 read (evpipe [0], &dummy, 1);
898 }
899
900 if (gotsig && ev_is_default_loop (EV_A))
901 {
902 int signum;
903 gotsig = 0;
904
905 for (signum = signalmax; signum--; )
906 if (signals [signum].gotsig)
907 ev_feed_signal_event (EV_A_ signum + 1);
908 }
909
910#if EV_ASYNC_ENABLE
911 if (gotasync)
912 {
913 int i;
914 gotasync = 0;
915
916 for (i = asynccnt; i--; )
917 if (asyncs [i]->sent)
918 {
919 asyncs [i]->sent = 0;
920 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
921 }
922 }
923#endif
752} 924}
753 925
754/*****************************************************************************/ 926/*****************************************************************************/
755 927
928static void
929ev_sighandler (int signum)
930{
931#if EV_MULTIPLICITY
932 struct ev_loop *loop = &default_loop_struct;
933#endif
934
935#if _WIN32
936 signal (signum, ev_sighandler);
937#endif
938
939 signals [signum - 1].gotsig = 1;
940 evpipe_write (EV_A_ &gotsig);
941}
942
943void noinline
944ev_feed_signal_event (EV_P_ int signum)
945{
946 WL w;
947
948#if EV_MULTIPLICITY
949 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
950#endif
951
952 --signum;
953
954 if (signum < 0 || signum >= signalmax)
955 return;
956
957 signals [signum].gotsig = 0;
958
959 for (w = signals [signum].head; w; w = w->next)
960 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
961}
962
963/*****************************************************************************/
964
756static ev_child *childs [EV_PID_HASHSIZE]; 965static WL childs [EV_PID_HASHSIZE];
757 966
758#ifndef _WIN32 967#ifndef _WIN32
759 968
760static ev_signal childev; 969static ev_signal childev;
761 970
971#ifndef WIFCONTINUED
972# define WIFCONTINUED(status) 0
973#endif
974
762void inline_speed 975void inline_speed
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 976child_reap (EV_P_ int chain, int pid, int status)
764{ 977{
765 ev_child *w; 978 ev_child *w;
979 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 980
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 981 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
982 {
768 if (w->pid == pid || !w->pid) 983 if ((w->pid == pid || !w->pid)
984 && (!traced || (w->flags & 1)))
769 { 985 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 986 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 987 w->rpid = pid;
772 w->rstatus = status; 988 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 989 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 990 }
991 }
775} 992}
776 993
777#ifndef WCONTINUED 994#ifndef WCONTINUED
778# define WCONTINUED 0 995# define WCONTINUED 0
779#endif 996#endif
788 if (!WCONTINUED 1005 if (!WCONTINUED
789 || errno != EINVAL 1006 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1007 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1008 return;
792 1009
793 /* make sure we are called again until all childs have been reaped */ 1010 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1011 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1012 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1013
797 child_reap (EV_A_ sw, pid, pid, status); 1014 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1015 if (EV_PID_HASHSIZE > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1016 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1017}
801 1018
802#endif 1019#endif
803 1020
804/*****************************************************************************/ 1021/*****************************************************************************/
876} 1093}
877 1094
878unsigned int 1095unsigned int
879ev_embeddable_backends (void) 1096ev_embeddable_backends (void)
880{ 1097{
881 return EVBACKEND_EPOLL 1098 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1099
883 | EVBACKEND_PORT; 1100 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1101 /* please fix it and tell me how to detect the fix */
1102 flags &= ~EVBACKEND_EPOLL;
1103
1104 return flags;
884} 1105}
885 1106
886unsigned int 1107unsigned int
887ev_backend (EV_P) 1108ev_backend (EV_P)
888{ 1109{
889 return backend; 1110 return backend;
1111}
1112
1113unsigned int
1114ev_loop_count (EV_P)
1115{
1116 return loop_count;
1117}
1118
1119void
1120ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1121{
1122 io_blocktime = interval;
1123}
1124
1125void
1126ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1127{
1128 timeout_blocktime = interval;
890} 1129}
891 1130
892static void noinline 1131static void noinline
893loop_init (EV_P_ unsigned int flags) 1132loop_init (EV_P_ unsigned int flags)
894{ 1133{
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1139 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1140 have_monotonic = 1;
902 } 1141 }
903#endif 1142#endif
904 1143
905 ev_rt_now = ev_time (); 1144 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 1145 mn_now = get_clock ();
907 now_floor = mn_now; 1146 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 1147 rtmn_diff = ev_rt_now - mn_now;
1148
1149 io_blocktime = 0.;
1150 timeout_blocktime = 0.;
1151 backend = 0;
1152 backend_fd = -1;
1153 gotasync = 0;
1154#if EV_USE_INOTIFY
1155 fs_fd = -2;
1156#endif
1157
1158 /* pid check not overridable via env */
1159#ifndef _WIN32
1160 if (flags & EVFLAG_FORKCHECK)
1161 curpid = getpid ();
1162#endif
909 1163
910 if (!(flags & EVFLAG_NOENV) 1164 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1165 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1166 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1167 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1168
915 if (!(flags & 0x0000ffffUL)) 1169 if (!(flags & 0x0000ffffUL))
916 flags |= ev_recommended_backends (); 1170 flags |= ev_recommended_backends ();
917 1171
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923
924#if EV_USE_PORT 1172#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1174#endif
927#if EV_USE_KQUEUE 1175#if EV_USE_KQUEUE
928 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1176 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
935#endif 1183#endif
936#if EV_USE_SELECT 1184#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1185 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1186#endif
939 1187
940 ev_init (&sigev, sigcb); 1188 ev_init (&pipeev, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1189 ev_set_priority (&pipeev, EV_MAXPRI);
942 } 1190 }
943} 1191}
944 1192
945static void noinline 1193static void noinline
946loop_destroy (EV_P) 1194loop_destroy (EV_P)
947{ 1195{
948 int i; 1196 int i;
1197
1198 if (ev_is_active (&pipeev))
1199 {
1200 ev_ref (EV_A); /* signal watcher */
1201 ev_io_stop (EV_A_ &pipeev);
1202
1203#if EV_USE_EVENTFD
1204 if (evfd >= 0)
1205 close (evfd);
1206#endif
1207
1208 if (evpipe [0] >= 0)
1209 {
1210 close (evpipe [0]);
1211 close (evpipe [1]);
1212 }
1213 }
949 1214
950#if EV_USE_INOTIFY 1215#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1216 if (fs_fd >= 0)
952 close (fs_fd); 1217 close (fs_fd);
953#endif 1218#endif
970#if EV_USE_SELECT 1235#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1236 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1237#endif
973 1238
974 for (i = NUMPRI; i--; ) 1239 for (i = NUMPRI; i--; )
1240 {
975 array_free (pending, [i]); 1241 array_free (pending, [i]);
1242#if EV_IDLE_ENABLE
1243 array_free (idle, [i]);
1244#endif
1245 }
1246
1247 ev_free (anfds); anfdmax = 0;
976 1248
977 /* have to use the microsoft-never-gets-it-right macro */ 1249 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1250 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1251 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1252#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1253 array_free (periodic, EMPTY);
982#endif 1254#endif
1255#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1256 array_free (fork, EMPTY);
1257#endif
984 array_free (prepare, EMPTY0); 1258 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1259 array_free (check, EMPTY);
1260#if EV_ASYNC_ENABLE
1261 array_free (async, EMPTY);
1262#endif
986 1263
987 backend = 0; 1264 backend = 0;
988} 1265}
1266
1267void inline_size infy_fork (EV_P);
989 1268
990void inline_size 1269void inline_size
991loop_fork (EV_P) 1270loop_fork (EV_P)
992{ 1271{
993#if EV_USE_PORT 1272#if EV_USE_PORT
997 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1276 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
998#endif 1277#endif
999#if EV_USE_EPOLL 1278#if EV_USE_EPOLL
1000 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1279 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1001#endif 1280#endif
1281#if EV_USE_INOTIFY
1282 infy_fork (EV_A);
1283#endif
1002 1284
1003 if (ev_is_active (&sigev)) 1285 if (ev_is_active (&pipeev))
1004 { 1286 {
1005 /* default loop */ 1287 /* this "locks" the handlers against writing to the pipe */
1288 /* while we modify the fd vars */
1289 gotsig = 1;
1290#if EV_ASYNC_ENABLE
1291 gotasync = 1;
1292#endif
1006 1293
1007 ev_ref (EV_A); 1294 ev_ref (EV_A);
1008 ev_io_stop (EV_A_ &sigev); 1295 ev_io_stop (EV_A_ &pipeev);
1296
1297#if EV_USE_EVENTFD
1298 if (evfd >= 0)
1299 close (evfd);
1300#endif
1301
1302 if (evpipe [0] >= 0)
1303 {
1009 close (sigpipe [0]); 1304 close (evpipe [0]);
1010 close (sigpipe [1]); 1305 close (evpipe [1]);
1306 }
1011 1307
1012 while (pipe (sigpipe))
1013 syserr ("(libev) error creating pipe");
1014
1015 siginit (EV_A); 1308 evpipe_init (EV_A);
1309 /* now iterate over everything, in case we missed something */
1310 pipecb (EV_A_ &pipeev, EV_READ);
1016 } 1311 }
1017 1312
1018 postfork = 0; 1313 postfork = 0;
1019} 1314}
1020 1315
1042} 1337}
1043 1338
1044void 1339void
1045ev_loop_fork (EV_P) 1340ev_loop_fork (EV_P)
1046{ 1341{
1047 postfork = 1; 1342 postfork = 1; /* must be in line with ev_default_fork */
1048} 1343}
1049 1344
1050#endif 1345#endif
1051 1346
1052#if EV_MULTIPLICITY 1347#if EV_MULTIPLICITY
1055#else 1350#else
1056int 1351int
1057ev_default_loop (unsigned int flags) 1352ev_default_loop (unsigned int flags)
1058#endif 1353#endif
1059{ 1354{
1060 if (sigpipe [0] == sigpipe [1])
1061 if (pipe (sigpipe))
1062 return 0;
1063
1064 if (!ev_default_loop_ptr) 1355 if (!ev_default_loop_ptr)
1065 { 1356 {
1066#if EV_MULTIPLICITY 1357#if EV_MULTIPLICITY
1067 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1358 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1068#else 1359#else
1071 1362
1072 loop_init (EV_A_ flags); 1363 loop_init (EV_A_ flags);
1073 1364
1074 if (ev_backend (EV_A)) 1365 if (ev_backend (EV_A))
1075 { 1366 {
1076 siginit (EV_A);
1077
1078#ifndef _WIN32 1367#ifndef _WIN32
1079 ev_signal_init (&childev, childcb, SIGCHLD); 1368 ev_signal_init (&childev, childcb, SIGCHLD);
1080 ev_set_priority (&childev, EV_MAXPRI); 1369 ev_set_priority (&childev, EV_MAXPRI);
1081 ev_signal_start (EV_A_ &childev); 1370 ev_signal_start (EV_A_ &childev);
1082 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1371 ev_unref (EV_A); /* child watcher should not keep loop alive */
1099#ifndef _WIN32 1388#ifndef _WIN32
1100 ev_ref (EV_A); /* child watcher */ 1389 ev_ref (EV_A); /* child watcher */
1101 ev_signal_stop (EV_A_ &childev); 1390 ev_signal_stop (EV_A_ &childev);
1102#endif 1391#endif
1103 1392
1104 ev_ref (EV_A); /* signal watcher */
1105 ev_io_stop (EV_A_ &sigev);
1106
1107 close (sigpipe [0]); sigpipe [0] = 0;
1108 close (sigpipe [1]); sigpipe [1] = 0;
1109
1110 loop_destroy (EV_A); 1393 loop_destroy (EV_A);
1111} 1394}
1112 1395
1113void 1396void
1114ev_default_fork (void) 1397ev_default_fork (void)
1116#if EV_MULTIPLICITY 1399#if EV_MULTIPLICITY
1117 struct ev_loop *loop = ev_default_loop_ptr; 1400 struct ev_loop *loop = ev_default_loop_ptr;
1118#endif 1401#endif
1119 1402
1120 if (backend) 1403 if (backend)
1121 postfork = 1; 1404 postfork = 1; /* must be in line with ev_loop_fork */
1122} 1405}
1123 1406
1124/*****************************************************************************/ 1407/*****************************************************************************/
1125 1408
1126int inline_size 1409void
1127any_pending (EV_P) 1410ev_invoke (EV_P_ void *w, int revents)
1128{ 1411{
1129 int pri; 1412 EV_CB_INVOKE ((W)w, revents);
1130
1131 for (pri = NUMPRI; pri--; )
1132 if (pendingcnt [pri])
1133 return 1;
1134
1135 return 0;
1136} 1413}
1137 1414
1138void inline_speed 1415void inline_speed
1139call_pending (EV_P) 1416call_pending (EV_P)
1140{ 1417{
1158void inline_size 1435void inline_size
1159timers_reify (EV_P) 1436timers_reify (EV_P)
1160{ 1437{
1161 while (timercnt && ((WT)timers [0])->at <= mn_now) 1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1162 { 1439 {
1163 ev_timer *w = timers [0]; 1440 ev_timer *w = (ev_timer *)timers [0];
1164 1441
1165 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1166 1443
1167 /* first reschedule or stop timer */ 1444 /* first reschedule or stop timer */
1168 if (w->repeat) 1445 if (w->repeat)
1171 1448
1172 ((WT)w)->at += w->repeat; 1449 ((WT)w)->at += w->repeat;
1173 if (((WT)w)->at < mn_now) 1450 if (((WT)w)->at < mn_now)
1174 ((WT)w)->at = mn_now; 1451 ((WT)w)->at = mn_now;
1175 1452
1176 downheap ((WT *)timers, timercnt, 0); 1453 downheap (timers, timercnt, 0);
1177 } 1454 }
1178 else 1455 else
1179 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1180 1457
1181 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1186void inline_size 1463void inline_size
1187periodics_reify (EV_P) 1464periodics_reify (EV_P)
1188{ 1465{
1189 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1190 { 1467 {
1191 ev_periodic *w = periodics [0]; 1468 ev_periodic *w = (ev_periodic *)periodics [0];
1192 1469
1193 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1194 1471
1195 /* first reschedule or stop timer */ 1472 /* first reschedule or stop timer */
1196 if (w->reschedule_cb) 1473 if (w->reschedule_cb)
1197 { 1474 {
1198 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1199 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1200 downheap ((WT *)periodics, periodiccnt, 0); 1477 downheap (periodics, periodiccnt, 0);
1201 } 1478 }
1202 else if (w->interval) 1479 else if (w->interval)
1203 { 1480 {
1204 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1205 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1206 downheap ((WT *)periodics, periodiccnt, 0); 1484 downheap (periodics, periodiccnt, 0);
1207 } 1485 }
1208 else 1486 else
1209 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1210 1488
1211 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1218 int i; 1496 int i;
1219 1497
1220 /* adjust periodics after time jump */ 1498 /* adjust periodics after time jump */
1221 for (i = 0; i < periodiccnt; ++i) 1499 for (i = 0; i < periodiccnt; ++i)
1222 { 1500 {
1223 ev_periodic *w = periodics [i]; 1501 ev_periodic *w = (ev_periodic *)periodics [i];
1224 1502
1225 if (w->reschedule_cb) 1503 if (w->reschedule_cb)
1226 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1227 else if (w->interval) 1505 else if (w->interval)
1228 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1229 } 1507 }
1230 1508
1231 /* now rebuild the heap */ 1509 /* now rebuild the heap */
1232 for (i = periodiccnt >> 1; i--; ) 1510 for (i = periodiccnt >> 1; i--; )
1233 downheap ((WT *)periodics, periodiccnt, i); 1511 downheap (periodics, periodiccnt, i);
1234} 1512}
1235#endif 1513#endif
1236 1514
1515#if EV_IDLE_ENABLE
1237int inline_size 1516void inline_size
1238time_update_monotonic (EV_P) 1517idle_reify (EV_P)
1239{ 1518{
1519 if (expect_false (idleall))
1520 {
1521 int pri;
1522
1523 for (pri = NUMPRI; pri--; )
1524 {
1525 if (pendingcnt [pri])
1526 break;
1527
1528 if (idlecnt [pri])
1529 {
1530 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1531 break;
1532 }
1533 }
1534 }
1535}
1536#endif
1537
1538void inline_speed
1539time_update (EV_P_ ev_tstamp max_block)
1540{
1541 int i;
1542
1543#if EV_USE_MONOTONIC
1544 if (expect_true (have_monotonic))
1545 {
1546 ev_tstamp odiff = rtmn_diff;
1547
1240 mn_now = get_clock (); 1548 mn_now = get_clock ();
1241 1549
1550 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1551 /* interpolate in the meantime */
1242 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1552 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1243 { 1553 {
1244 ev_rt_now = rtmn_diff + mn_now; 1554 ev_rt_now = rtmn_diff + mn_now;
1245 return 0; 1555 return;
1246 } 1556 }
1247 else 1557
1248 {
1249 now_floor = mn_now; 1558 now_floor = mn_now;
1250 ev_rt_now = ev_time (); 1559 ev_rt_now = ev_time ();
1251 return 1;
1252 }
1253}
1254 1560
1255void inline_size 1561 /* loop a few times, before making important decisions.
1256time_update (EV_P) 1562 * on the choice of "4": one iteration isn't enough,
1257{ 1563 * in case we get preempted during the calls to
1258 int i; 1564 * ev_time and get_clock. a second call is almost guaranteed
1259 1565 * to succeed in that case, though. and looping a few more times
1260#if EV_USE_MONOTONIC 1566 * doesn't hurt either as we only do this on time-jumps or
1261 if (expect_true (have_monotonic)) 1567 * in the unlikely event of having been preempted here.
1262 { 1568 */
1263 if (time_update_monotonic (EV_A)) 1569 for (i = 4; --i; )
1264 { 1570 {
1265 ev_tstamp odiff = rtmn_diff;
1266
1267 /* loop a few times, before making important decisions.
1268 * on the choice of "4": one iteration isn't enough,
1269 * in case we get preempted during the calls to
1270 * ev_time and get_clock. a second call is almost guarenteed
1271 * to succeed in that case, though. and looping a few more times
1272 * doesn't hurt either as we only do this on time-jumps or
1273 * in the unlikely event of getting preempted here.
1274 */
1275 for (i = 4; --i; )
1276 {
1277 rtmn_diff = ev_rt_now - mn_now; 1571 rtmn_diff = ev_rt_now - mn_now;
1278 1572
1279 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1280 return; /* all is well */ 1574 return; /* all is well */
1281 1575
1282 ev_rt_now = ev_time (); 1576 ev_rt_now = ev_time ();
1283 mn_now = get_clock (); 1577 mn_now = get_clock ();
1284 now_floor = mn_now; 1578 now_floor = mn_now;
1285 } 1579 }
1286 1580
1287# if EV_PERIODIC_ENABLE 1581# if EV_PERIODIC_ENABLE
1288 periodics_reschedule (EV_A); 1582 periodics_reschedule (EV_A);
1289# endif 1583# endif
1290 /* no timer adjustment, as the monotonic clock doesn't jump */ 1584 /* no timer adjustment, as the monotonic clock doesn't jump */
1291 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1585 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1292 }
1293 } 1586 }
1294 else 1587 else
1295#endif 1588#endif
1296 { 1589 {
1297 ev_rt_now = ev_time (); 1590 ev_rt_now = ev_time ();
1298 1591
1299 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1592 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1300 { 1593 {
1301#if EV_PERIODIC_ENABLE 1594#if EV_PERIODIC_ENABLE
1302 periodics_reschedule (EV_A); 1595 periodics_reschedule (EV_A);
1303#endif 1596#endif
1304
1305 /* adjust timers. this is easy, as the offset is the same for all */ 1597 /* adjust timers. this is easy, as the offset is the same for all of them */
1306 for (i = 0; i < timercnt; ++i) 1598 for (i = 0; i < timercnt; ++i)
1307 ((WT)timers [i])->at += ev_rt_now - mn_now; 1599 ((WT)timers [i])->at += ev_rt_now - mn_now;
1308 } 1600 }
1309 1601
1310 mn_now = ev_rt_now; 1602 mn_now = ev_rt_now;
1326static int loop_done; 1618static int loop_done;
1327 1619
1328void 1620void
1329ev_loop (EV_P_ int flags) 1621ev_loop (EV_P_ int flags)
1330{ 1622{
1331 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1623 loop_done = EVUNLOOP_CANCEL;
1332 ? EVUNLOOP_ONE
1333 : EVUNLOOP_CANCEL;
1334 1624
1335 while (activecnt) 1625 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1626
1627 do
1336 { 1628 {
1337 /* we might have forked, so reify kernel state if necessary */ 1629#ifndef _WIN32
1630 if (expect_false (curpid)) /* penalise the forking check even more */
1631 if (expect_false (getpid () != curpid))
1632 {
1633 curpid = getpid ();
1634 postfork = 1;
1635 }
1636#endif
1637
1338 #if EV_FORK_ENABLE 1638#if EV_FORK_ENABLE
1639 /* we might have forked, so queue fork handlers */
1339 if (expect_false (postfork)) 1640 if (expect_false (postfork))
1340 if (forkcnt) 1641 if (forkcnt)
1341 { 1642 {
1342 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1643 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1343 call_pending (EV_A); 1644 call_pending (EV_A);
1344 } 1645 }
1345 #endif 1646#endif
1346 1647
1347 /* queue check watchers (and execute them) */ 1648 /* queue prepare watchers (and execute them) */
1348 if (expect_false (preparecnt)) 1649 if (expect_false (preparecnt))
1349 { 1650 {
1350 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1651 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1351 call_pending (EV_A); 1652 call_pending (EV_A);
1352 } 1653 }
1353 1654
1655 if (expect_false (!activecnt))
1656 break;
1657
1354 /* we might have forked, so reify kernel state if necessary */ 1658 /* we might have forked, so reify kernel state if necessary */
1355 if (expect_false (postfork)) 1659 if (expect_false (postfork))
1356 loop_fork (EV_A); 1660 loop_fork (EV_A);
1357 1661
1358 /* update fd-related kernel structures */ 1662 /* update fd-related kernel structures */
1359 fd_reify (EV_A); 1663 fd_reify (EV_A);
1360 1664
1361 /* calculate blocking time */ 1665 /* calculate blocking time */
1362 { 1666 {
1363 double block; 1667 ev_tstamp waittime = 0.;
1668 ev_tstamp sleeptime = 0.;
1364 1669
1365 if (flags & EVLOOP_NONBLOCK || idlecnt) 1670 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1366 block = 0.; /* do not block at all */
1367 else
1368 { 1671 {
1369 /* update time to cancel out callback processing overhead */ 1672 /* update time to cancel out callback processing overhead */
1370#if EV_USE_MONOTONIC
1371 if (expect_true (have_monotonic))
1372 time_update_monotonic (EV_A); 1673 time_update (EV_A_ 1e100);
1373 else
1374#endif
1375 {
1376 ev_rt_now = ev_time ();
1377 mn_now = ev_rt_now;
1378 }
1379 1674
1380 block = MAX_BLOCKTIME; 1675 waittime = MAX_BLOCKTIME;
1381 1676
1382 if (timercnt) 1677 if (timercnt)
1383 { 1678 {
1384 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1385 if (block > to) block = to; 1680 if (waittime > to) waittime = to;
1386 } 1681 }
1387 1682
1388#if EV_PERIODIC_ENABLE 1683#if EV_PERIODIC_ENABLE
1389 if (periodiccnt) 1684 if (periodiccnt)
1390 { 1685 {
1391 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1392 if (block > to) block = to; 1687 if (waittime > to) waittime = to;
1393 } 1688 }
1394#endif 1689#endif
1395 1690
1396 if (expect_false (block < 0.)) block = 0.; 1691 if (expect_false (waittime < timeout_blocktime))
1692 waittime = timeout_blocktime;
1693
1694 sleeptime = waittime - backend_fudge;
1695
1696 if (expect_true (sleeptime > io_blocktime))
1697 sleeptime = io_blocktime;
1698
1699 if (sleeptime)
1700 {
1701 ev_sleep (sleeptime);
1702 waittime -= sleeptime;
1703 }
1397 } 1704 }
1398 1705
1706 ++loop_count;
1399 backend_poll (EV_A_ block); 1707 backend_poll (EV_A_ waittime);
1708
1709 /* update ev_rt_now, do magic */
1710 time_update (EV_A_ waittime + sleeptime);
1400 } 1711 }
1401
1402 /* update ev_rt_now, do magic */
1403 time_update (EV_A);
1404 1712
1405 /* queue pending timers and reschedule them */ 1713 /* queue pending timers and reschedule them */
1406 timers_reify (EV_A); /* relative timers called last */ 1714 timers_reify (EV_A); /* relative timers called last */
1407#if EV_PERIODIC_ENABLE 1715#if EV_PERIODIC_ENABLE
1408 periodics_reify (EV_A); /* absolute timers called first */ 1716 periodics_reify (EV_A); /* absolute timers called first */
1409#endif 1717#endif
1410 1718
1719#if EV_IDLE_ENABLE
1411 /* queue idle watchers unless other events are pending */ 1720 /* queue idle watchers unless other events are pending */
1412 if (idlecnt && !any_pending (EV_A)) 1721 idle_reify (EV_A);
1413 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1722#endif
1414 1723
1415 /* queue check watchers, to be executed first */ 1724 /* queue check watchers, to be executed first */
1416 if (expect_false (checkcnt)) 1725 if (expect_false (checkcnt))
1417 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1726 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1418 1727
1419 call_pending (EV_A); 1728 call_pending (EV_A);
1420
1421 if (expect_false (loop_done))
1422 break;
1423 } 1729 }
1730 while (expect_true (
1731 activecnt
1732 && !loop_done
1733 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1734 ));
1424 1735
1425 if (loop_done == EVUNLOOP_ONE) 1736 if (loop_done == EVUNLOOP_ONE)
1426 loop_done = EVUNLOOP_CANCEL; 1737 loop_done = EVUNLOOP_CANCEL;
1427} 1738}
1428 1739
1455 head = &(*head)->next; 1766 head = &(*head)->next;
1456 } 1767 }
1457} 1768}
1458 1769
1459void inline_speed 1770void inline_speed
1460ev_clear_pending (EV_P_ W w) 1771clear_pending (EV_P_ W w)
1461{ 1772{
1462 if (w->pending) 1773 if (w->pending)
1463 { 1774 {
1464 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1775 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1465 w->pending = 0; 1776 w->pending = 0;
1466 } 1777 }
1467} 1778}
1468 1779
1780int
1781ev_clear_pending (EV_P_ void *w)
1782{
1783 W w_ = (W)w;
1784 int pending = w_->pending;
1785
1786 if (expect_true (pending))
1787 {
1788 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1789 w_->pending = 0;
1790 p->w = 0;
1791 return p->events;
1792 }
1793 else
1794 return 0;
1795}
1796
1797void inline_size
1798pri_adjust (EV_P_ W w)
1799{
1800 int pri = w->priority;
1801 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1802 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1803 w->priority = pri;
1804}
1805
1469void inline_speed 1806void inline_speed
1470ev_start (EV_P_ W w, int active) 1807ev_start (EV_P_ W w, int active)
1471{ 1808{
1472 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1809 pri_adjust (EV_A_ w);
1473 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1474
1475 w->active = active; 1810 w->active = active;
1476 ev_ref (EV_A); 1811 ev_ref (EV_A);
1477} 1812}
1478 1813
1479void inline_size 1814void inline_size
1483 w->active = 0; 1818 w->active = 0;
1484} 1819}
1485 1820
1486/*****************************************************************************/ 1821/*****************************************************************************/
1487 1822
1488void 1823void noinline
1489ev_io_start (EV_P_ ev_io *w) 1824ev_io_start (EV_P_ ev_io *w)
1490{ 1825{
1491 int fd = w->fd; 1826 int fd = w->fd;
1492 1827
1493 if (expect_false (ev_is_active (w))) 1828 if (expect_false (ev_is_active (w)))
1495 1830
1496 assert (("ev_io_start called with negative fd", fd >= 0)); 1831 assert (("ev_io_start called with negative fd", fd >= 0));
1497 1832
1498 ev_start (EV_A_ (W)w, 1); 1833 ev_start (EV_A_ (W)w, 1);
1499 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1834 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1500 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1835 wlist_add (&anfds[fd].head, (WL)w);
1501 1836
1502 fd_change (EV_A_ fd); 1837 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1838 w->events &= ~EV_IOFDSET;
1503} 1839}
1504 1840
1505void 1841void noinline
1506ev_io_stop (EV_P_ ev_io *w) 1842ev_io_stop (EV_P_ ev_io *w)
1507{ 1843{
1508 ev_clear_pending (EV_A_ (W)w); 1844 clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w))) 1845 if (expect_false (!ev_is_active (w)))
1510 return; 1846 return;
1511 1847
1512 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1513 1849
1514 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1850 wlist_del (&anfds[w->fd].head, (WL)w);
1515 ev_stop (EV_A_ (W)w); 1851 ev_stop (EV_A_ (W)w);
1516 1852
1517 fd_change (EV_A_ w->fd); 1853 fd_change (EV_A_ w->fd, 1);
1518} 1854}
1519 1855
1520void 1856void noinline
1521ev_timer_start (EV_P_ ev_timer *w) 1857ev_timer_start (EV_P_ ev_timer *w)
1522{ 1858{
1523 if (expect_false (ev_is_active (w))) 1859 if (expect_false (ev_is_active (w)))
1524 return; 1860 return;
1525 1861
1526 ((WT)w)->at += mn_now; 1862 ((WT)w)->at += mn_now;
1527 1863
1528 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1529 1865
1530 ev_start (EV_A_ (W)w, ++timercnt); 1866 ev_start (EV_A_ (W)w, ++timercnt);
1531 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1532 timers [timercnt - 1] = w; 1868 timers [timercnt - 1] = (WT)w;
1533 upheap ((WT *)timers, timercnt - 1); 1869 upheap (timers, timercnt - 1);
1534 1870
1535 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1536} 1872}
1537 1873
1538void 1874void noinline
1539ev_timer_stop (EV_P_ ev_timer *w) 1875ev_timer_stop (EV_P_ ev_timer *w)
1540{ 1876{
1541 ev_clear_pending (EV_A_ (W)w); 1877 clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w))) 1878 if (expect_false (!ev_is_active (w)))
1543 return; 1879 return;
1544 1880
1545 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1546 1882
1547 { 1883 {
1548 int active = ((W)w)->active; 1884 int active = ((W)w)->active;
1549 1885
1550 if (expect_true (--active < --timercnt)) 1886 if (expect_true (--active < --timercnt))
1551 { 1887 {
1552 timers [active] = timers [timercnt]; 1888 timers [active] = timers [timercnt];
1553 adjustheap ((WT *)timers, timercnt, active); 1889 adjustheap (timers, timercnt, active);
1554 } 1890 }
1555 } 1891 }
1556 1892
1557 ((WT)w)->at -= mn_now; 1893 ((WT)w)->at -= mn_now;
1558 1894
1559 ev_stop (EV_A_ (W)w); 1895 ev_stop (EV_A_ (W)w);
1560} 1896}
1561 1897
1562void 1898void noinline
1563ev_timer_again (EV_P_ ev_timer *w) 1899ev_timer_again (EV_P_ ev_timer *w)
1564{ 1900{
1565 if (ev_is_active (w)) 1901 if (ev_is_active (w))
1566 { 1902 {
1567 if (w->repeat) 1903 if (w->repeat)
1568 { 1904 {
1569 ((WT)w)->at = mn_now + w->repeat; 1905 ((WT)w)->at = mn_now + w->repeat;
1570 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1906 adjustheap (timers, timercnt, ((W)w)->active - 1);
1571 } 1907 }
1572 else 1908 else
1573 ev_timer_stop (EV_A_ w); 1909 ev_timer_stop (EV_A_ w);
1574 } 1910 }
1575 else if (w->repeat) 1911 else if (w->repeat)
1578 ev_timer_start (EV_A_ w); 1914 ev_timer_start (EV_A_ w);
1579 } 1915 }
1580} 1916}
1581 1917
1582#if EV_PERIODIC_ENABLE 1918#if EV_PERIODIC_ENABLE
1583void 1919void noinline
1584ev_periodic_start (EV_P_ ev_periodic *w) 1920ev_periodic_start (EV_P_ ev_periodic *w)
1585{ 1921{
1586 if (expect_false (ev_is_active (w))) 1922 if (expect_false (ev_is_active (w)))
1587 return; 1923 return;
1588 1924
1590 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1591 else if (w->interval) 1927 else if (w->interval)
1592 { 1928 {
1593 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1594 /* this formula differs from the one in periodic_reify because we do not always round up */ 1930 /* this formula differs from the one in periodic_reify because we do not always round up */
1595 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1596 } 1932 }
1933 else
1934 ((WT)w)->at = w->offset;
1597 1935
1598 ev_start (EV_A_ (W)w, ++periodiccnt); 1936 ev_start (EV_A_ (W)w, ++periodiccnt);
1599 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1600 periodics [periodiccnt - 1] = w; 1938 periodics [periodiccnt - 1] = (WT)w;
1601 upheap ((WT *)periodics, periodiccnt - 1); 1939 upheap (periodics, periodiccnt - 1);
1602 1940
1603 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1604} 1942}
1605 1943
1606void 1944void noinline
1607ev_periodic_stop (EV_P_ ev_periodic *w) 1945ev_periodic_stop (EV_P_ ev_periodic *w)
1608{ 1946{
1609 ev_clear_pending (EV_A_ (W)w); 1947 clear_pending (EV_A_ (W)w);
1610 if (expect_false (!ev_is_active (w))) 1948 if (expect_false (!ev_is_active (w)))
1611 return; 1949 return;
1612 1950
1613 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1614 1952
1615 { 1953 {
1616 int active = ((W)w)->active; 1954 int active = ((W)w)->active;
1617 1955
1618 if (expect_true (--active < --periodiccnt)) 1956 if (expect_true (--active < --periodiccnt))
1619 { 1957 {
1620 periodics [active] = periodics [periodiccnt]; 1958 periodics [active] = periodics [periodiccnt];
1621 adjustheap ((WT *)periodics, periodiccnt, active); 1959 adjustheap (periodics, periodiccnt, active);
1622 } 1960 }
1623 } 1961 }
1624 1962
1625 ev_stop (EV_A_ (W)w); 1963 ev_stop (EV_A_ (W)w);
1626} 1964}
1627 1965
1628void 1966void noinline
1629ev_periodic_again (EV_P_ ev_periodic *w) 1967ev_periodic_again (EV_P_ ev_periodic *w)
1630{ 1968{
1631 /* TODO: use adjustheap and recalculation */ 1969 /* TODO: use adjustheap and recalculation */
1632 ev_periodic_stop (EV_A_ w); 1970 ev_periodic_stop (EV_A_ w);
1633 ev_periodic_start (EV_A_ w); 1971 ev_periodic_start (EV_A_ w);
1636 1974
1637#ifndef SA_RESTART 1975#ifndef SA_RESTART
1638# define SA_RESTART 0 1976# define SA_RESTART 0
1639#endif 1977#endif
1640 1978
1641void 1979void noinline
1642ev_signal_start (EV_P_ ev_signal *w) 1980ev_signal_start (EV_P_ ev_signal *w)
1643{ 1981{
1644#if EV_MULTIPLICITY 1982#if EV_MULTIPLICITY
1645 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1983 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1646#endif 1984#endif
1647 if (expect_false (ev_is_active (w))) 1985 if (expect_false (ev_is_active (w)))
1648 return; 1986 return;
1649 1987
1650 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1988 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1651 1989
1990 evpipe_init (EV_A);
1991
1992 {
1993#ifndef _WIN32
1994 sigset_t full, prev;
1995 sigfillset (&full);
1996 sigprocmask (SIG_SETMASK, &full, &prev);
1997#endif
1998
1999 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2000
2001#ifndef _WIN32
2002 sigprocmask (SIG_SETMASK, &prev, 0);
2003#endif
2004 }
2005
1652 ev_start (EV_A_ (W)w, 1); 2006 ev_start (EV_A_ (W)w, 1);
1653 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1654 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2007 wlist_add (&signals [w->signum - 1].head, (WL)w);
1655 2008
1656 if (!((WL)w)->next) 2009 if (!((WL)w)->next)
1657 { 2010 {
1658#if _WIN32 2011#if _WIN32
1659 signal (w->signum, sighandler); 2012 signal (w->signum, ev_sighandler);
1660#else 2013#else
1661 struct sigaction sa; 2014 struct sigaction sa;
1662 sa.sa_handler = sighandler; 2015 sa.sa_handler = ev_sighandler;
1663 sigfillset (&sa.sa_mask); 2016 sigfillset (&sa.sa_mask);
1664 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2017 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1665 sigaction (w->signum, &sa, 0); 2018 sigaction (w->signum, &sa, 0);
1666#endif 2019#endif
1667 } 2020 }
1668} 2021}
1669 2022
1670void 2023void noinline
1671ev_signal_stop (EV_P_ ev_signal *w) 2024ev_signal_stop (EV_P_ ev_signal *w)
1672{ 2025{
1673 ev_clear_pending (EV_A_ (W)w); 2026 clear_pending (EV_A_ (W)w);
1674 if (expect_false (!ev_is_active (w))) 2027 if (expect_false (!ev_is_active (w)))
1675 return; 2028 return;
1676 2029
1677 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2030 wlist_del (&signals [w->signum - 1].head, (WL)w);
1678 ev_stop (EV_A_ (W)w); 2031 ev_stop (EV_A_ (W)w);
1679 2032
1680 if (!signals [w->signum - 1].head) 2033 if (!signals [w->signum - 1].head)
1681 signal (w->signum, SIG_DFL); 2034 signal (w->signum, SIG_DFL);
1682} 2035}
1689#endif 2042#endif
1690 if (expect_false (ev_is_active (w))) 2043 if (expect_false (ev_is_active (w)))
1691 return; 2044 return;
1692 2045
1693 ev_start (EV_A_ (W)w, 1); 2046 ev_start (EV_A_ (W)w, 1);
1694 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2047 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1695} 2048}
1696 2049
1697void 2050void
1698ev_child_stop (EV_P_ ev_child *w) 2051ev_child_stop (EV_P_ ev_child *w)
1699{ 2052{
1700 ev_clear_pending (EV_A_ (W)w); 2053 clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w))) 2054 if (expect_false (!ev_is_active (w)))
1702 return; 2055 return;
1703 2056
1704 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2057 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1705 ev_stop (EV_A_ (W)w); 2058 ev_stop (EV_A_ (W)w);
1706} 2059}
1707 2060
1708#if EV_STAT_ENABLE 2061#if EV_STAT_ENABLE
1709 2062
1713# endif 2066# endif
1714 2067
1715#define DEF_STAT_INTERVAL 5.0074891 2068#define DEF_STAT_INTERVAL 5.0074891
1716#define MIN_STAT_INTERVAL 0.1074891 2069#define MIN_STAT_INTERVAL 0.1074891
1717 2070
1718void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2071static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1719 2072
1720#if EV_USE_INOTIFY 2073#if EV_USE_INOTIFY
1721# define EV_INOTIFY_BUFSIZE 8192 2074# define EV_INOTIFY_BUFSIZE 8192
1722 2075
1723static void noinline 2076static void noinline
1831 ev_set_priority (&fs_w, EV_MAXPRI); 2184 ev_set_priority (&fs_w, EV_MAXPRI);
1832 ev_io_start (EV_A_ &fs_w); 2185 ev_io_start (EV_A_ &fs_w);
1833 } 2186 }
1834} 2187}
1835 2188
2189void inline_size
2190infy_fork (EV_P)
2191{
2192 int slot;
2193
2194 if (fs_fd < 0)
2195 return;
2196
2197 close (fs_fd);
2198 fs_fd = inotify_init ();
2199
2200 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2201 {
2202 WL w_ = fs_hash [slot].head;
2203 fs_hash [slot].head = 0;
2204
2205 while (w_)
2206 {
2207 ev_stat *w = (ev_stat *)w_;
2208 w_ = w_->next; /* lets us add this watcher */
2209
2210 w->wd = -1;
2211
2212 if (fs_fd >= 0)
2213 infy_add (EV_A_ w); /* re-add, no matter what */
2214 else
2215 ev_timer_start (EV_A_ &w->timer);
2216 }
2217
2218 }
2219}
2220
1836#endif 2221#endif
1837 2222
1838void 2223void
1839ev_stat_stat (EV_P_ ev_stat *w) 2224ev_stat_stat (EV_P_ ev_stat *w)
1840{ 2225{
1842 w->attr.st_nlink = 0; 2227 w->attr.st_nlink = 0;
1843 else if (!w->attr.st_nlink) 2228 else if (!w->attr.st_nlink)
1844 w->attr.st_nlink = 1; 2229 w->attr.st_nlink = 1;
1845} 2230}
1846 2231
1847void noinline 2232static void noinline
1848stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2233stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1849{ 2234{
1850 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2235 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1851 2236
1852 /* we copy this here each the time so that */ 2237 /* we copy this here each the time so that */
1853 /* prev has the old value when the callback gets invoked */ 2238 /* prev has the old value when the callback gets invoked */
1854 w->prev = w->attr; 2239 w->prev = w->attr;
1855 ev_stat_stat (EV_A_ w); 2240 ev_stat_stat (EV_A_ w);
1856 2241
1857 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2242 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2243 if (
2244 w->prev.st_dev != w->attr.st_dev
2245 || w->prev.st_ino != w->attr.st_ino
2246 || w->prev.st_mode != w->attr.st_mode
2247 || w->prev.st_nlink != w->attr.st_nlink
2248 || w->prev.st_uid != w->attr.st_uid
2249 || w->prev.st_gid != w->attr.st_gid
2250 || w->prev.st_rdev != w->attr.st_rdev
2251 || w->prev.st_size != w->attr.st_size
2252 || w->prev.st_atime != w->attr.st_atime
2253 || w->prev.st_mtime != w->attr.st_mtime
2254 || w->prev.st_ctime != w->attr.st_ctime
1858 { 2255 ) {
1859 #if EV_USE_INOTIFY 2256 #if EV_USE_INOTIFY
1860 infy_del (EV_A_ w); 2257 infy_del (EV_A_ w);
1861 infy_add (EV_A_ w); 2258 infy_add (EV_A_ w);
1862 ev_stat_stat (EV_A_ w); /* avoid race... */ 2259 ev_stat_stat (EV_A_ w); /* avoid race... */
1863 #endif 2260 #endif
1897} 2294}
1898 2295
1899void 2296void
1900ev_stat_stop (EV_P_ ev_stat *w) 2297ev_stat_stop (EV_P_ ev_stat *w)
1901{ 2298{
1902 ev_clear_pending (EV_A_ (W)w); 2299 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2300 if (expect_false (!ev_is_active (w)))
1904 return; 2301 return;
1905 2302
1906#if EV_USE_INOTIFY 2303#if EV_USE_INOTIFY
1907 infy_del (EV_A_ w); 2304 infy_del (EV_A_ w);
1910 2307
1911 ev_stop (EV_A_ (W)w); 2308 ev_stop (EV_A_ (W)w);
1912} 2309}
1913#endif 2310#endif
1914 2311
2312#if EV_IDLE_ENABLE
1915void 2313void
1916ev_idle_start (EV_P_ ev_idle *w) 2314ev_idle_start (EV_P_ ev_idle *w)
1917{ 2315{
1918 if (expect_false (ev_is_active (w))) 2316 if (expect_false (ev_is_active (w)))
1919 return; 2317 return;
1920 2318
2319 pri_adjust (EV_A_ (W)w);
2320
2321 {
2322 int active = ++idlecnt [ABSPRI (w)];
2323
2324 ++idleall;
1921 ev_start (EV_A_ (W)w, ++idlecnt); 2325 ev_start (EV_A_ (W)w, active);
2326
1922 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2327 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1923 idles [idlecnt - 1] = w; 2328 idles [ABSPRI (w)][active - 1] = w;
2329 }
1924} 2330}
1925 2331
1926void 2332void
1927ev_idle_stop (EV_P_ ev_idle *w) 2333ev_idle_stop (EV_P_ ev_idle *w)
1928{ 2334{
1929 ev_clear_pending (EV_A_ (W)w); 2335 clear_pending (EV_A_ (W)w);
1930 if (expect_false (!ev_is_active (w))) 2336 if (expect_false (!ev_is_active (w)))
1931 return; 2337 return;
1932 2338
1933 { 2339 {
1934 int active = ((W)w)->active; 2340 int active = ((W)w)->active;
1935 idles [active - 1] = idles [--idlecnt]; 2341
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1936 ((W)idles [active - 1])->active = active; 2343 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2344
2345 ev_stop (EV_A_ (W)w);
2346 --idleall;
1937 } 2347 }
1938
1939 ev_stop (EV_A_ (W)w);
1940} 2348}
2349#endif
1941 2350
1942void 2351void
1943ev_prepare_start (EV_P_ ev_prepare *w) 2352ev_prepare_start (EV_P_ ev_prepare *w)
1944{ 2353{
1945 if (expect_false (ev_is_active (w))) 2354 if (expect_false (ev_is_active (w)))
1951} 2360}
1952 2361
1953void 2362void
1954ev_prepare_stop (EV_P_ ev_prepare *w) 2363ev_prepare_stop (EV_P_ ev_prepare *w)
1955{ 2364{
1956 ev_clear_pending (EV_A_ (W)w); 2365 clear_pending (EV_A_ (W)w);
1957 if (expect_false (!ev_is_active (w))) 2366 if (expect_false (!ev_is_active (w)))
1958 return; 2367 return;
1959 2368
1960 { 2369 {
1961 int active = ((W)w)->active; 2370 int active = ((W)w)->active;
1978} 2387}
1979 2388
1980void 2389void
1981ev_check_stop (EV_P_ ev_check *w) 2390ev_check_stop (EV_P_ ev_check *w)
1982{ 2391{
1983 ev_clear_pending (EV_A_ (W)w); 2392 clear_pending (EV_A_ (W)w);
1984 if (expect_false (!ev_is_active (w))) 2393 if (expect_false (!ev_is_active (w)))
1985 return; 2394 return;
1986 2395
1987 { 2396 {
1988 int active = ((W)w)->active; 2397 int active = ((W)w)->active;
1995 2404
1996#if EV_EMBED_ENABLE 2405#if EV_EMBED_ENABLE
1997void noinline 2406void noinline
1998ev_embed_sweep (EV_P_ ev_embed *w) 2407ev_embed_sweep (EV_P_ ev_embed *w)
1999{ 2408{
2000 ev_loop (w->loop, EVLOOP_NONBLOCK); 2409 ev_loop (w->other, EVLOOP_NONBLOCK);
2001} 2410}
2002 2411
2003static void 2412static void
2004embed_cb (EV_P_ ev_io *io, int revents) 2413embed_io_cb (EV_P_ ev_io *io, int revents)
2005{ 2414{
2006 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2415 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2007 2416
2008 if (ev_cb (w)) 2417 if (ev_cb (w))
2009 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2418 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2010 else 2419 else
2011 ev_embed_sweep (loop, w); 2420 ev_loop (w->other, EVLOOP_NONBLOCK);
2012} 2421}
2422
2423static void
2424embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2425{
2426 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2427
2428 {
2429 struct ev_loop *loop = w->other;
2430
2431 while (fdchangecnt)
2432 {
2433 fd_reify (EV_A);
2434 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2435 }
2436 }
2437}
2438
2439#if 0
2440static void
2441embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2442{
2443 ev_idle_stop (EV_A_ idle);
2444}
2445#endif
2013 2446
2014void 2447void
2015ev_embed_start (EV_P_ ev_embed *w) 2448ev_embed_start (EV_P_ ev_embed *w)
2016{ 2449{
2017 if (expect_false (ev_is_active (w))) 2450 if (expect_false (ev_is_active (w)))
2018 return; 2451 return;
2019 2452
2020 { 2453 {
2021 struct ev_loop *loop = w->loop; 2454 struct ev_loop *loop = w->other;
2022 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2455 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2023 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2456 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2024 } 2457 }
2025 2458
2026 ev_set_priority (&w->io, ev_priority (w)); 2459 ev_set_priority (&w->io, ev_priority (w));
2027 ev_io_start (EV_A_ &w->io); 2460 ev_io_start (EV_A_ &w->io);
2028 2461
2462 ev_prepare_init (&w->prepare, embed_prepare_cb);
2463 ev_set_priority (&w->prepare, EV_MINPRI);
2464 ev_prepare_start (EV_A_ &w->prepare);
2465
2466 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2467
2029 ev_start (EV_A_ (W)w, 1); 2468 ev_start (EV_A_ (W)w, 1);
2030} 2469}
2031 2470
2032void 2471void
2033ev_embed_stop (EV_P_ ev_embed *w) 2472ev_embed_stop (EV_P_ ev_embed *w)
2034{ 2473{
2035 ev_clear_pending (EV_A_ (W)w); 2474 clear_pending (EV_A_ (W)w);
2036 if (expect_false (!ev_is_active (w))) 2475 if (expect_false (!ev_is_active (w)))
2037 return; 2476 return;
2038 2477
2039 ev_io_stop (EV_A_ &w->io); 2478 ev_io_stop (EV_A_ &w->io);
2479 ev_prepare_stop (EV_A_ &w->prepare);
2040 2480
2041 ev_stop (EV_A_ (W)w); 2481 ev_stop (EV_A_ (W)w);
2042} 2482}
2043#endif 2483#endif
2044 2484
2055} 2495}
2056 2496
2057void 2497void
2058ev_fork_stop (EV_P_ ev_fork *w) 2498ev_fork_stop (EV_P_ ev_fork *w)
2059{ 2499{
2060 ev_clear_pending (EV_A_ (W)w); 2500 clear_pending (EV_A_ (W)w);
2061 if (expect_false (!ev_is_active (w))) 2501 if (expect_false (!ev_is_active (w)))
2062 return; 2502 return;
2063 2503
2064 { 2504 {
2065 int active = ((W)w)->active; 2505 int active = ((W)w)->active;
2069 2509
2070 ev_stop (EV_A_ (W)w); 2510 ev_stop (EV_A_ (W)w);
2071} 2511}
2072#endif 2512#endif
2073 2513
2514#if EV_ASYNC_ENABLE
2515void
2516ev_async_start (EV_P_ ev_async *w)
2517{
2518 if (expect_false (ev_is_active (w)))
2519 return;
2520
2521 evpipe_init (EV_A);
2522
2523 ev_start (EV_A_ (W)w, ++asynccnt);
2524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2525 asyncs [asynccnt - 1] = w;
2526}
2527
2528void
2529ev_async_stop (EV_P_ ev_async *w)
2530{
2531 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w)))
2533 return;
2534
2535 {
2536 int active = ((W)w)->active;
2537 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active;
2539 }
2540
2541 ev_stop (EV_A_ (W)w);
2542}
2543
2544void
2545ev_async_send (EV_P_ ev_async *w)
2546{
2547 w->sent = 1;
2548 evpipe_write (EV_A_ &gotasync);
2549}
2550#endif
2551
2074/*****************************************************************************/ 2552/*****************************************************************************/
2075 2553
2076struct ev_once 2554struct ev_once
2077{ 2555{
2078 ev_io io; 2556 ev_io io;
2133 ev_timer_set (&once->to, timeout, 0.); 2611 ev_timer_set (&once->to, timeout, 0.);
2134 ev_timer_start (EV_A_ &once->to); 2612 ev_timer_start (EV_A_ &once->to);
2135 } 2613 }
2136} 2614}
2137 2615
2616#if EV_MULTIPLICITY
2617 #include "ev_wrap.h"
2618#endif
2619
2138#ifdef __cplusplus 2620#ifdef __cplusplus
2139} 2621}
2140#endif 2622#endif
2141 2623

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines