ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.162 by root, Mon Dec 3 13:41:24 2007 UTC vs.
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY 271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 273# include <stdint.h>
274int eventfd (unsigned int initval, int flags);
217#endif 275#endif
218 276
219/**/ 277/**/
278
279/*
280 * This is used to avoid floating point rounding problems.
281 * It is added to ev_rt_now when scheduling periodics
282 * to ensure progress, time-wise, even when rounding
283 * errors are against us.
284 * This value is good at least till the year 4000.
285 * Better solutions welcome.
286 */
287#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 288
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 289#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 290#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 291/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 292
225#if __GNUC__ >= 3 293#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 294# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 295# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 296#else
236# define expect(expr,value) (expr) 297# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 298# define noinline
299# if __STDC_VERSION__ < 199901L
300# define inline
301# endif
240#endif 302#endif
241 303
242#define expect_false(expr) expect ((expr) != 0, 0) 304#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 305#define expect_true(expr) expect ((expr) != 0, 1)
306#define inline_size static inline
307
308#if EV_MINIMAL
309# define inline_speed static noinline
310#else
311# define inline_speed static inline
312#endif
244 313
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 314#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 315#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 316
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 317#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 318#define EMPTY2(a,b) /* used to suppress some warnings */
250 319
251typedef ev_watcher *W; 320typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 321typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 322typedef ev_watcher_time *WT;
254 323
324#if EV_USE_MONOTONIC
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
328#endif
256 329
257#ifdef _WIN32 330#ifdef _WIN32
258# include "ev_win32.c" 331# include "ev_win32.c"
259#endif 332#endif
260 333
396{ 469{
397 return ev_rt_now; 470 return ev_rt_now;
398} 471}
399#endif 472#endif
400 473
401#define array_roundsize(type,n) (((n) | 4) & ~3) 474void
475ev_sleep (ev_tstamp delay)
476{
477 if (delay > 0.)
478 {
479#if EV_USE_NANOSLEEP
480 struct timespec ts;
481
482 ts.tv_sec = (time_t)delay;
483 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
484
485 nanosleep (&ts, 0);
486#elif defined(_WIN32)
487 Sleep ((unsigned long)(delay * 1e3));
488#else
489 struct timeval tv;
490
491 tv.tv_sec = (time_t)delay;
492 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
493
494 select (0, 0, 0, 0, &tv);
495#endif
496 }
497}
498
499/*****************************************************************************/
500
501int inline_size
502array_nextsize (int elem, int cur, int cnt)
503{
504 int ncur = cur + 1;
505
506 do
507 ncur <<= 1;
508 while (cnt > ncur);
509
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
511 if (elem * ncur > 4096)
512 {
513 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
515 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem;
517 }
518
519 return ncur;
520}
521
522static noinline void *
523array_realloc (int elem, void *base, int *cur, int cnt)
524{
525 *cur = array_nextsize (elem, *cur, cnt);
526 return ev_realloc (base, elem * *cur);
527}
402 528
403#define array_needsize(type,base,cur,cnt,init) \ 529#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 530 if (expect_false ((cnt) > (cur))) \
405 { \ 531 { \
406 int newcnt = cur; \ 532 int ocur_ = (cur); \
407 do \ 533 (base) = (type *)array_realloc \
408 { \ 534 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 535 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 536 }
417 537
538#if 0
418#define array_slim(type,stem) \ 539#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 540 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 541 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 542 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 543 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 544 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 545 }
546#endif
425 547
426#define array_free(stem, idx) \ 548#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 549 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 550
429/*****************************************************************************/ 551/*****************************************************************************/
430 552
431void noinline 553void noinline
432ev_feed_event (EV_P_ void *w, int revents) 554ev_feed_event (EV_P_ void *w, int revents)
433{ 555{
434 W w_ = (W)w; 556 W w_ = (W)w;
557 int pri = ABSPRI (w_);
435 558
436 if (expect_false (w_->pending)) 559 if (expect_false (w_->pending))
560 pendings [pri][w_->pending - 1].events |= revents;
561 else
437 { 562 {
563 w_->pending = ++pendingcnt [pri];
564 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
565 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 566 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 567 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 568}
447 569
448void inline_size 570void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 571queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 572{
451 int i; 573 int i;
452 574
453 for (i = 0; i < eventcnt; ++i) 575 for (i = 0; i < eventcnt; ++i)
485} 607}
486 608
487void 609void
488ev_feed_fd_event (EV_P_ int fd, int revents) 610ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 611{
612 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 613 fd_event (EV_A_ fd, revents);
491} 614}
492 615
493void inline_size 616void inline_size
494fd_reify (EV_P) 617fd_reify (EV_P)
495{ 618{
499 { 622 {
500 int fd = fdchanges [i]; 623 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 624 ANFD *anfd = anfds + fd;
502 ev_io *w; 625 ev_io *w;
503 626
504 int events = 0; 627 unsigned char events = 0;
505 628
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 629 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 630 events |= (unsigned char)w->events;
508 631
509#if EV_SELECT_IS_WINSOCKET 632#if EV_SELECT_IS_WINSOCKET
510 if (events) 633 if (events)
511 { 634 {
512 unsigned long argp; 635 unsigned long argp;
636 #ifdef EV_FD_TO_WIN32_HANDLE
637 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
638 #else
513 anfd->handle = _get_osfhandle (fd); 639 anfd->handle = _get_osfhandle (fd);
640 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 641 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 642 }
516#endif 643#endif
517 644
645 {
646 unsigned char o_events = anfd->events;
647 unsigned char o_reify = anfd->reify;
648
518 anfd->reify = 0; 649 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 650 anfd->events = events;
651
652 if (o_events != events || o_reify & EV_IOFDSET)
653 backend_modify (EV_A_ fd, o_events, events);
654 }
522 } 655 }
523 656
524 fdchangecnt = 0; 657 fdchangecnt = 0;
525} 658}
526 659
527void inline_size 660void inline_size
528fd_change (EV_P_ int fd) 661fd_change (EV_P_ int fd, int flags)
529{ 662{
530 if (expect_false (anfds [fd].reify)) 663 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 664 anfds [fd].reify |= flags;
534 665
666 if (expect_true (!reify))
667 {
535 ++fdchangecnt; 668 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 669 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 670 fdchanges [fdchangecnt - 1] = fd;
671 }
538} 672}
539 673
540void inline_speed 674void inline_speed
541fd_kill (EV_P_ int fd) 675fd_kill (EV_P_ int fd)
542{ 676{
593 727
594 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 729 if (anfds [fd].events)
596 { 730 {
597 anfds [fd].events = 0; 731 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 732 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 733 }
600} 734}
601 735
602/*****************************************************************************/ 736/*****************************************************************************/
603 737
604void inline_speed 738void inline_speed
605upheap (WT *heap, int k) 739upheap (WT *heap, int k)
606{ 740{
607 WT w = heap [k]; 741 WT w = heap [k];
608 742
609 while (k && heap [k >> 1]->at > w->at) 743 while (k)
610 { 744 {
745 int p = (k - 1) >> 1;
746
747 if (heap [p]->at <= w->at)
748 break;
749
611 heap [k] = heap [k >> 1]; 750 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 751 ((W)heap [k])->active = k + 1;
613 k >>= 1; 752 k = p;
614 } 753 }
615 754
616 heap [k] = w; 755 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 756 ((W)heap [k])->active = k + 1;
618
619} 757}
620 758
621void inline_speed 759void inline_speed
622downheap (WT *heap, int N, int k) 760downheap (WT *heap, int N, int k)
623{ 761{
624 WT w = heap [k]; 762 WT w = heap [k];
625 763
626 while (k < (N >> 1)) 764 for (;;)
627 { 765 {
628 int j = k << 1; 766 int c = (k << 1) + 1;
629 767
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 768 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 769 break;
635 770
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
772 ? 1 : 0;
773
774 if (w->at <= heap [c]->at)
775 break;
776
636 heap [k] = heap [j]; 777 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 778 ((W)heap [k])->active = k + 1;
779
638 k = j; 780 k = c;
639 } 781 }
640 782
641 heap [k] = w; 783 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 784 ((W)heap [k])->active = k + 1;
643} 785}
652/*****************************************************************************/ 794/*****************************************************************************/
653 795
654typedef struct 796typedef struct
655{ 797{
656 WL head; 798 WL head;
657 sig_atomic_t volatile gotsig; 799 EV_ATOMIC_T gotsig;
658} ANSIG; 800} ANSIG;
659 801
660static ANSIG *signals; 802static ANSIG *signals;
661static int signalmax; 803static int signalmax;
662 804
663static int sigpipe [2]; 805static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 806
667void inline_size 807void inline_size
668signals_init (ANSIG *base, int count) 808signals_init (ANSIG *base, int count)
669{ 809{
670 while (count--) 810 while (count--)
674 814
675 ++base; 815 ++base;
676 } 816 }
677} 817}
678 818
679static void 819/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 820
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 821void inline_speed
731fd_intern (int fd) 822fd_intern (int fd)
732{ 823{
733#ifdef _WIN32 824#ifdef _WIN32
734 int arg = 1; 825 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 826 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 829 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 830#endif
740} 831}
741 832
742static void noinline 833static void noinline
743siginit (EV_P) 834evpipe_init (EV_P)
744{ 835{
836 if (!ev_is_active (&pipeev))
837 {
838#if EV_USE_EVENTFD
839 if ((evfd = eventfd (0, 0)) >= 0)
840 {
841 evpipe [0] = -1;
842 fd_intern (evfd);
843 ev_io_set (&pipeev, evfd, EV_READ);
844 }
845 else
846#endif
847 {
848 while (pipe (evpipe))
849 syserr ("(libev) error creating signal/async pipe");
850
745 fd_intern (sigpipe [0]); 851 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 852 fd_intern (evpipe [1]);
853 ev_io_set (&pipeev, evpipe [0], EV_READ);
854 }
747 855
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 856 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 857 ev_unref (EV_A); /* watcher should not keep loop alive */
858 }
859}
860
861void inline_size
862evpipe_write (EV_P_ EV_ATOMIC_T *flag)
863{
864 if (!*flag)
865 {
866 int old_errno = errno; /* save errno because write might clobber it */
867
868 *flag = 1;
869
870#if EV_USE_EVENTFD
871 if (evfd >= 0)
872 {
873 uint64_t counter = 1;
874 write (evfd, &counter, sizeof (uint64_t));
875 }
876 else
877#endif
878 write (evpipe [1], &old_errno, 1);
879
880 errno = old_errno;
881 }
882}
883
884static void
885pipecb (EV_P_ ev_io *iow, int revents)
886{
887#if EV_USE_EVENTFD
888 if (evfd >= 0)
889 {
890 uint64_t counter = 1;
891 read (evfd, &counter, sizeof (uint64_t));
892 }
893 else
894#endif
895 {
896 char dummy;
897 read (evpipe [0], &dummy, 1);
898 }
899
900 if (gotsig && ev_is_default_loop (EV_A))
901 {
902 int signum;
903 gotsig = 0;
904
905 for (signum = signalmax; signum--; )
906 if (signals [signum].gotsig)
907 ev_feed_signal_event (EV_A_ signum + 1);
908 }
909
910#if EV_ASYNC_ENABLE
911 if (gotasync)
912 {
913 int i;
914 gotasync = 0;
915
916 for (i = asynccnt; i--; )
917 if (asyncs [i]->sent)
918 {
919 asyncs [i]->sent = 0;
920 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
921 }
922 }
923#endif
751} 924}
752 925
753/*****************************************************************************/ 926/*****************************************************************************/
754 927
928static void
929ev_sighandler (int signum)
930{
931#if EV_MULTIPLICITY
932 struct ev_loop *loop = &default_loop_struct;
933#endif
934
935#if _WIN32
936 signal (signum, ev_sighandler);
937#endif
938
939 signals [signum - 1].gotsig = 1;
940 evpipe_write (EV_A_ &gotsig);
941}
942
943void noinline
944ev_feed_signal_event (EV_P_ int signum)
945{
946 WL w;
947
948#if EV_MULTIPLICITY
949 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
950#endif
951
952 --signum;
953
954 if (signum < 0 || signum >= signalmax)
955 return;
956
957 signals [signum].gotsig = 0;
958
959 for (w = signals [signum].head; w; w = w->next)
960 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
961}
962
963/*****************************************************************************/
964
755static ev_child *childs [EV_PID_HASHSIZE]; 965static WL childs [EV_PID_HASHSIZE];
756 966
757#ifndef _WIN32 967#ifndef _WIN32
758 968
759static ev_signal childev; 969static ev_signal childev;
760 970
971#ifndef WIFCONTINUED
972# define WIFCONTINUED(status) 0
973#endif
974
761void inline_speed 975void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 976child_reap (EV_P_ int chain, int pid, int status)
763{ 977{
764 ev_child *w; 978 ev_child *w;
979 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 980
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 981 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
982 {
767 if (w->pid == pid || !w->pid) 983 if ((w->pid == pid || !w->pid)
984 && (!traced || (w->flags & 1)))
768 { 985 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 986 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 987 w->rpid = pid;
771 w->rstatus = status; 988 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 989 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 990 }
991 }
774} 992}
775 993
776#ifndef WCONTINUED 994#ifndef WCONTINUED
777# define WCONTINUED 0 995# define WCONTINUED 0
778#endif 996#endif
787 if (!WCONTINUED 1005 if (!WCONTINUED
788 || errno != EINVAL 1006 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1007 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1008 return;
791 1009
792 /* make sure we are called again until all childs have been reaped */ 1010 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1011 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1012 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1013
796 child_reap (EV_A_ sw, pid, pid, status); 1014 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1015 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1016 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1017}
800 1018
801#endif 1019#endif
802 1020
803/*****************************************************************************/ 1021/*****************************************************************************/
875} 1093}
876 1094
877unsigned int 1095unsigned int
878ev_embeddable_backends (void) 1096ev_embeddable_backends (void)
879{ 1097{
880 return EVBACKEND_EPOLL 1098 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1099
882 | EVBACKEND_PORT; 1100 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1101 /* please fix it and tell me how to detect the fix */
1102 flags &= ~EVBACKEND_EPOLL;
1103
1104 return flags;
883} 1105}
884 1106
885unsigned int 1107unsigned int
886ev_backend (EV_P) 1108ev_backend (EV_P)
887{ 1109{
890 1112
891unsigned int 1113unsigned int
892ev_loop_count (EV_P) 1114ev_loop_count (EV_P)
893{ 1115{
894 return loop_count; 1116 return loop_count;
1117}
1118
1119void
1120ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1121{
1122 io_blocktime = interval;
1123}
1124
1125void
1126ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1127{
1128 timeout_blocktime = interval;
895} 1129}
896 1130
897static void noinline 1131static void noinline
898loop_init (EV_P_ unsigned int flags) 1132loop_init (EV_P_ unsigned int flags)
899{ 1133{
905 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1139 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
906 have_monotonic = 1; 1140 have_monotonic = 1;
907 } 1141 }
908#endif 1142#endif
909 1143
910 ev_rt_now = ev_time (); 1144 ev_rt_now = ev_time ();
911 mn_now = get_clock (); 1145 mn_now = get_clock ();
912 now_floor = mn_now; 1146 now_floor = mn_now;
913 rtmn_diff = ev_rt_now - mn_now; 1147 rtmn_diff = ev_rt_now - mn_now;
1148
1149 io_blocktime = 0.;
1150 timeout_blocktime = 0.;
1151 backend = 0;
1152 backend_fd = -1;
1153 gotasync = 0;
1154#if EV_USE_INOTIFY
1155 fs_fd = -2;
1156#endif
914 1157
915 /* pid check not overridable via env */ 1158 /* pid check not overridable via env */
916#ifndef _WIN32 1159#ifndef _WIN32
917 if (flags & EVFLAG_FORKCHECK) 1160 if (flags & EVFLAG_FORKCHECK)
918 curpid = getpid (); 1161 curpid = getpid ();
924 flags = atoi (getenv ("LIBEV_FLAGS")); 1167 flags = atoi (getenv ("LIBEV_FLAGS"));
925 1168
926 if (!(flags & 0x0000ffffUL)) 1169 if (!(flags & 0x0000ffffUL))
927 flags |= ev_recommended_backends (); 1170 flags |= ev_recommended_backends ();
928 1171
929 backend = 0;
930 backend_fd = -1;
931#if EV_USE_INOTIFY
932 fs_fd = -2;
933#endif
934
935#if EV_USE_PORT 1172#if EV_USE_PORT
936 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
937#endif 1174#endif
938#if EV_USE_KQUEUE 1175#if EV_USE_KQUEUE
939 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1176 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
946#endif 1183#endif
947#if EV_USE_SELECT 1184#if EV_USE_SELECT
948 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1185 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
949#endif 1186#endif
950 1187
951 ev_init (&sigev, sigcb); 1188 ev_init (&pipeev, pipecb);
952 ev_set_priority (&sigev, EV_MAXPRI); 1189 ev_set_priority (&pipeev, EV_MAXPRI);
953 } 1190 }
954} 1191}
955 1192
956static void noinline 1193static void noinline
957loop_destroy (EV_P) 1194loop_destroy (EV_P)
958{ 1195{
959 int i; 1196 int i;
1197
1198 if (ev_is_active (&pipeev))
1199 {
1200 ev_ref (EV_A); /* signal watcher */
1201 ev_io_stop (EV_A_ &pipeev);
1202
1203#if EV_USE_EVENTFD
1204 if (evfd >= 0)
1205 close (evfd);
1206#endif
1207
1208 if (evpipe [0] >= 0)
1209 {
1210 close (evpipe [0]);
1211 close (evpipe [1]);
1212 }
1213 }
960 1214
961#if EV_USE_INOTIFY 1215#if EV_USE_INOTIFY
962 if (fs_fd >= 0) 1216 if (fs_fd >= 0)
963 close (fs_fd); 1217 close (fs_fd);
964#endif 1218#endif
981#if EV_USE_SELECT 1235#if EV_USE_SELECT
982 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1236 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
983#endif 1237#endif
984 1238
985 for (i = NUMPRI; i--; ) 1239 for (i = NUMPRI; i--; )
1240 {
986 array_free (pending, [i]); 1241 array_free (pending, [i]);
1242#if EV_IDLE_ENABLE
1243 array_free (idle, [i]);
1244#endif
1245 }
1246
1247 ev_free (anfds); anfdmax = 0;
987 1248
988 /* have to use the microsoft-never-gets-it-right macro */ 1249 /* have to use the microsoft-never-gets-it-right macro */
989 array_free (fdchange, EMPTY0); 1250 array_free (fdchange, EMPTY);
990 array_free (timer, EMPTY0); 1251 array_free (timer, EMPTY);
991#if EV_PERIODIC_ENABLE 1252#if EV_PERIODIC_ENABLE
992 array_free (periodic, EMPTY0); 1253 array_free (periodic, EMPTY);
993#endif 1254#endif
1255#if EV_FORK_ENABLE
994 array_free (idle, EMPTY0); 1256 array_free (fork, EMPTY);
1257#endif
995 array_free (prepare, EMPTY0); 1258 array_free (prepare, EMPTY);
996 array_free (check, EMPTY0); 1259 array_free (check, EMPTY);
1260#if EV_ASYNC_ENABLE
1261 array_free (async, EMPTY);
1262#endif
997 1263
998 backend = 0; 1264 backend = 0;
999} 1265}
1000 1266
1001void inline_size infy_fork (EV_P); 1267void inline_size infy_fork (EV_P);
1014#endif 1280#endif
1015#if EV_USE_INOTIFY 1281#if EV_USE_INOTIFY
1016 infy_fork (EV_A); 1282 infy_fork (EV_A);
1017#endif 1283#endif
1018 1284
1019 if (ev_is_active (&sigev)) 1285 if (ev_is_active (&pipeev))
1020 { 1286 {
1021 /* default loop */ 1287 /* this "locks" the handlers against writing to the pipe */
1288 /* while we modify the fd vars */
1289 gotsig = 1;
1290#if EV_ASYNC_ENABLE
1291 gotasync = 1;
1292#endif
1022 1293
1023 ev_ref (EV_A); 1294 ev_ref (EV_A);
1024 ev_io_stop (EV_A_ &sigev); 1295 ev_io_stop (EV_A_ &pipeev);
1296
1297#if EV_USE_EVENTFD
1298 if (evfd >= 0)
1299 close (evfd);
1300#endif
1301
1302 if (evpipe [0] >= 0)
1303 {
1025 close (sigpipe [0]); 1304 close (evpipe [0]);
1026 close (sigpipe [1]); 1305 close (evpipe [1]);
1306 }
1027 1307
1028 while (pipe (sigpipe))
1029 syserr ("(libev) error creating pipe");
1030
1031 siginit (EV_A); 1308 evpipe_init (EV_A);
1309 /* now iterate over everything, in case we missed something */
1310 pipecb (EV_A_ &pipeev, EV_READ);
1032 } 1311 }
1033 1312
1034 postfork = 0; 1313 postfork = 0;
1035} 1314}
1036 1315
1058} 1337}
1059 1338
1060void 1339void
1061ev_loop_fork (EV_P) 1340ev_loop_fork (EV_P)
1062{ 1341{
1063 postfork = 1; 1342 postfork = 1; /* must be in line with ev_default_fork */
1064} 1343}
1065 1344
1066#endif 1345#endif
1067 1346
1068#if EV_MULTIPLICITY 1347#if EV_MULTIPLICITY
1071#else 1350#else
1072int 1351int
1073ev_default_loop (unsigned int flags) 1352ev_default_loop (unsigned int flags)
1074#endif 1353#endif
1075{ 1354{
1076 if (sigpipe [0] == sigpipe [1])
1077 if (pipe (sigpipe))
1078 return 0;
1079
1080 if (!ev_default_loop_ptr) 1355 if (!ev_default_loop_ptr)
1081 { 1356 {
1082#if EV_MULTIPLICITY 1357#if EV_MULTIPLICITY
1083 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1358 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1084#else 1359#else
1087 1362
1088 loop_init (EV_A_ flags); 1363 loop_init (EV_A_ flags);
1089 1364
1090 if (ev_backend (EV_A)) 1365 if (ev_backend (EV_A))
1091 { 1366 {
1092 siginit (EV_A);
1093
1094#ifndef _WIN32 1367#ifndef _WIN32
1095 ev_signal_init (&childev, childcb, SIGCHLD); 1368 ev_signal_init (&childev, childcb, SIGCHLD);
1096 ev_set_priority (&childev, EV_MAXPRI); 1369 ev_set_priority (&childev, EV_MAXPRI);
1097 ev_signal_start (EV_A_ &childev); 1370 ev_signal_start (EV_A_ &childev);
1098 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1371 ev_unref (EV_A); /* child watcher should not keep loop alive */
1115#ifndef _WIN32 1388#ifndef _WIN32
1116 ev_ref (EV_A); /* child watcher */ 1389 ev_ref (EV_A); /* child watcher */
1117 ev_signal_stop (EV_A_ &childev); 1390 ev_signal_stop (EV_A_ &childev);
1118#endif 1391#endif
1119 1392
1120 ev_ref (EV_A); /* signal watcher */
1121 ev_io_stop (EV_A_ &sigev);
1122
1123 close (sigpipe [0]); sigpipe [0] = 0;
1124 close (sigpipe [1]); sigpipe [1] = 0;
1125
1126 loop_destroy (EV_A); 1393 loop_destroy (EV_A);
1127} 1394}
1128 1395
1129void 1396void
1130ev_default_fork (void) 1397ev_default_fork (void)
1132#if EV_MULTIPLICITY 1399#if EV_MULTIPLICITY
1133 struct ev_loop *loop = ev_default_loop_ptr; 1400 struct ev_loop *loop = ev_default_loop_ptr;
1134#endif 1401#endif
1135 1402
1136 if (backend) 1403 if (backend)
1137 postfork = 1; 1404 postfork = 1; /* must be in line with ev_loop_fork */
1138} 1405}
1139 1406
1140/*****************************************************************************/ 1407/*****************************************************************************/
1141 1408
1142int inline_size 1409void
1143any_pending (EV_P) 1410ev_invoke (EV_P_ void *w, int revents)
1144{ 1411{
1145 int pri; 1412 EV_CB_INVOKE ((W)w, revents);
1146
1147 for (pri = NUMPRI; pri--; )
1148 if (pendingcnt [pri])
1149 return 1;
1150
1151 return 0;
1152} 1413}
1153 1414
1154void inline_speed 1415void inline_speed
1155call_pending (EV_P) 1416call_pending (EV_P)
1156{ 1417{
1174void inline_size 1435void inline_size
1175timers_reify (EV_P) 1436timers_reify (EV_P)
1176{ 1437{
1177 while (timercnt && ((WT)timers [0])->at <= mn_now) 1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1178 { 1439 {
1179 ev_timer *w = timers [0]; 1440 ev_timer *w = (ev_timer *)timers [0];
1180 1441
1181 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1182 1443
1183 /* first reschedule or stop timer */ 1444 /* first reschedule or stop timer */
1184 if (w->repeat) 1445 if (w->repeat)
1187 1448
1188 ((WT)w)->at += w->repeat; 1449 ((WT)w)->at += w->repeat;
1189 if (((WT)w)->at < mn_now) 1450 if (((WT)w)->at < mn_now)
1190 ((WT)w)->at = mn_now; 1451 ((WT)w)->at = mn_now;
1191 1452
1192 downheap ((WT *)timers, timercnt, 0); 1453 downheap (timers, timercnt, 0);
1193 } 1454 }
1194 else 1455 else
1195 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1196 1457
1197 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1202void inline_size 1463void inline_size
1203periodics_reify (EV_P) 1464periodics_reify (EV_P)
1204{ 1465{
1205 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1206 { 1467 {
1207 ev_periodic *w = periodics [0]; 1468 ev_periodic *w = (ev_periodic *)periodics [0];
1208 1469
1209 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1210 1471
1211 /* first reschedule or stop timer */ 1472 /* first reschedule or stop timer */
1212 if (w->reschedule_cb) 1473 if (w->reschedule_cb)
1213 { 1474 {
1214 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1215 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1477 downheap (periodics, periodiccnt, 0);
1217 } 1478 }
1218 else if (w->interval) 1479 else if (w->interval)
1219 { 1480 {
1220 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1221 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1222 downheap ((WT *)periodics, periodiccnt, 0); 1484 downheap (periodics, periodiccnt, 0);
1223 } 1485 }
1224 else 1486 else
1225 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1226 1488
1227 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1234 int i; 1496 int i;
1235 1497
1236 /* adjust periodics after time jump */ 1498 /* adjust periodics after time jump */
1237 for (i = 0; i < periodiccnt; ++i) 1499 for (i = 0; i < periodiccnt; ++i)
1238 { 1500 {
1239 ev_periodic *w = periodics [i]; 1501 ev_periodic *w = (ev_periodic *)periodics [i];
1240 1502
1241 if (w->reschedule_cb) 1503 if (w->reschedule_cb)
1242 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1243 else if (w->interval) 1505 else if (w->interval)
1244 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1245 } 1507 }
1246 1508
1247 /* now rebuild the heap */ 1509 /* now rebuild the heap */
1248 for (i = periodiccnt >> 1; i--; ) 1510 for (i = periodiccnt >> 1; i--; )
1249 downheap ((WT *)periodics, periodiccnt, i); 1511 downheap (periodics, periodiccnt, i);
1250} 1512}
1251#endif 1513#endif
1252 1514
1515#if EV_IDLE_ENABLE
1253int inline_size 1516void inline_size
1254time_update_monotonic (EV_P) 1517idle_reify (EV_P)
1255{ 1518{
1519 if (expect_false (idleall))
1520 {
1521 int pri;
1522
1523 for (pri = NUMPRI; pri--; )
1524 {
1525 if (pendingcnt [pri])
1526 break;
1527
1528 if (idlecnt [pri])
1529 {
1530 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1531 break;
1532 }
1533 }
1534 }
1535}
1536#endif
1537
1538void inline_speed
1539time_update (EV_P_ ev_tstamp max_block)
1540{
1541 int i;
1542
1543#if EV_USE_MONOTONIC
1544 if (expect_true (have_monotonic))
1545 {
1546 ev_tstamp odiff = rtmn_diff;
1547
1256 mn_now = get_clock (); 1548 mn_now = get_clock ();
1257 1549
1550 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1551 /* interpolate in the meantime */
1258 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1552 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1259 { 1553 {
1260 ev_rt_now = rtmn_diff + mn_now; 1554 ev_rt_now = rtmn_diff + mn_now;
1261 return 0; 1555 return;
1262 } 1556 }
1263 else 1557
1264 {
1265 now_floor = mn_now; 1558 now_floor = mn_now;
1266 ev_rt_now = ev_time (); 1559 ev_rt_now = ev_time ();
1267 return 1;
1268 }
1269}
1270 1560
1271void inline_size 1561 /* loop a few times, before making important decisions.
1272time_update (EV_P) 1562 * on the choice of "4": one iteration isn't enough,
1273{ 1563 * in case we get preempted during the calls to
1274 int i; 1564 * ev_time and get_clock. a second call is almost guaranteed
1275 1565 * to succeed in that case, though. and looping a few more times
1276#if EV_USE_MONOTONIC 1566 * doesn't hurt either as we only do this on time-jumps or
1277 if (expect_true (have_monotonic)) 1567 * in the unlikely event of having been preempted here.
1278 { 1568 */
1279 if (time_update_monotonic (EV_A)) 1569 for (i = 4; --i; )
1280 { 1570 {
1281 ev_tstamp odiff = rtmn_diff;
1282
1283 /* loop a few times, before making important decisions.
1284 * on the choice of "4": one iteration isn't enough,
1285 * in case we get preempted during the calls to
1286 * ev_time and get_clock. a second call is almost guaranteed
1287 * to succeed in that case, though. and looping a few more times
1288 * doesn't hurt either as we only do this on time-jumps or
1289 * in the unlikely event of having been preempted here.
1290 */
1291 for (i = 4; --i; )
1292 {
1293 rtmn_diff = ev_rt_now - mn_now; 1571 rtmn_diff = ev_rt_now - mn_now;
1294 1572
1295 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1296 return; /* all is well */ 1574 return; /* all is well */
1297 1575
1298 ev_rt_now = ev_time (); 1576 ev_rt_now = ev_time ();
1299 mn_now = get_clock (); 1577 mn_now = get_clock ();
1300 now_floor = mn_now; 1578 now_floor = mn_now;
1301 } 1579 }
1302 1580
1303# if EV_PERIODIC_ENABLE 1581# if EV_PERIODIC_ENABLE
1304 periodics_reschedule (EV_A); 1582 periodics_reschedule (EV_A);
1305# endif 1583# endif
1306 /* no timer adjustment, as the monotonic clock doesn't jump */ 1584 /* no timer adjustment, as the monotonic clock doesn't jump */
1307 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1585 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1308 }
1309 } 1586 }
1310 else 1587 else
1311#endif 1588#endif
1312 { 1589 {
1313 ev_rt_now = ev_time (); 1590 ev_rt_now = ev_time ();
1314 1591
1315 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1592 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1316 { 1593 {
1317#if EV_PERIODIC_ENABLE 1594#if EV_PERIODIC_ENABLE
1318 periodics_reschedule (EV_A); 1595 periodics_reschedule (EV_A);
1319#endif 1596#endif
1320
1321 /* adjust timers. this is easy, as the offset is the same for all of them */ 1597 /* adjust timers. this is easy, as the offset is the same for all of them */
1322 for (i = 0; i < timercnt; ++i) 1598 for (i = 0; i < timercnt; ++i)
1323 ((WT)timers [i])->at += ev_rt_now - mn_now; 1599 ((WT)timers [i])->at += ev_rt_now - mn_now;
1324 } 1600 }
1325 1601
1342static int loop_done; 1618static int loop_done;
1343 1619
1344void 1620void
1345ev_loop (EV_P_ int flags) 1621ev_loop (EV_P_ int flags)
1346{ 1622{
1347 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1623 loop_done = EVUNLOOP_CANCEL;
1348 ? EVUNLOOP_ONE
1349 : EVUNLOOP_CANCEL;
1350 1624
1351 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1625 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1352 1626
1353 do 1627 do
1354 { 1628 {
1369 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1643 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1370 call_pending (EV_A); 1644 call_pending (EV_A);
1371 } 1645 }
1372#endif 1646#endif
1373 1647
1374 /* queue check watchers (and execute them) */ 1648 /* queue prepare watchers (and execute them) */
1375 if (expect_false (preparecnt)) 1649 if (expect_false (preparecnt))
1376 { 1650 {
1377 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1651 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1378 call_pending (EV_A); 1652 call_pending (EV_A);
1379 } 1653 }
1388 /* update fd-related kernel structures */ 1662 /* update fd-related kernel structures */
1389 fd_reify (EV_A); 1663 fd_reify (EV_A);
1390 1664
1391 /* calculate blocking time */ 1665 /* calculate blocking time */
1392 { 1666 {
1393 ev_tstamp block; 1667 ev_tstamp waittime = 0.;
1668 ev_tstamp sleeptime = 0.;
1394 1669
1395 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1670 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1396 block = 0.; /* do not block at all */
1397 else
1398 { 1671 {
1399 /* update time to cancel out callback processing overhead */ 1672 /* update time to cancel out callback processing overhead */
1400#if EV_USE_MONOTONIC
1401 if (expect_true (have_monotonic))
1402 time_update_monotonic (EV_A); 1673 time_update (EV_A_ 1e100);
1403 else
1404#endif
1405 {
1406 ev_rt_now = ev_time ();
1407 mn_now = ev_rt_now;
1408 }
1409 1674
1410 block = MAX_BLOCKTIME; 1675 waittime = MAX_BLOCKTIME;
1411 1676
1412 if (timercnt) 1677 if (timercnt)
1413 { 1678 {
1414 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1415 if (block > to) block = to; 1680 if (waittime > to) waittime = to;
1416 } 1681 }
1417 1682
1418#if EV_PERIODIC_ENABLE 1683#if EV_PERIODIC_ENABLE
1419 if (periodiccnt) 1684 if (periodiccnt)
1420 { 1685 {
1421 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1422 if (block > to) block = to; 1687 if (waittime > to) waittime = to;
1423 } 1688 }
1424#endif 1689#endif
1425 1690
1426 if (expect_false (block < 0.)) block = 0.; 1691 if (expect_false (waittime < timeout_blocktime))
1692 waittime = timeout_blocktime;
1693
1694 sleeptime = waittime - backend_fudge;
1695
1696 if (expect_true (sleeptime > io_blocktime))
1697 sleeptime = io_blocktime;
1698
1699 if (sleeptime)
1700 {
1701 ev_sleep (sleeptime);
1702 waittime -= sleeptime;
1703 }
1427 } 1704 }
1428 1705
1429 ++loop_count; 1706 ++loop_count;
1430 backend_poll (EV_A_ block); 1707 backend_poll (EV_A_ waittime);
1708
1709 /* update ev_rt_now, do magic */
1710 time_update (EV_A_ waittime + sleeptime);
1431 } 1711 }
1432
1433 /* update ev_rt_now, do magic */
1434 time_update (EV_A);
1435 1712
1436 /* queue pending timers and reschedule them */ 1713 /* queue pending timers and reschedule them */
1437 timers_reify (EV_A); /* relative timers called last */ 1714 timers_reify (EV_A); /* relative timers called last */
1438#if EV_PERIODIC_ENABLE 1715#if EV_PERIODIC_ENABLE
1439 periodics_reify (EV_A); /* absolute timers called first */ 1716 periodics_reify (EV_A); /* absolute timers called first */
1440#endif 1717#endif
1441 1718
1719#if EV_IDLE_ENABLE
1442 /* queue idle watchers unless other events are pending */ 1720 /* queue idle watchers unless other events are pending */
1443 if (idlecnt && !any_pending (EV_A)) 1721 idle_reify (EV_A);
1444 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1722#endif
1445 1723
1446 /* queue check watchers, to be executed first */ 1724 /* queue check watchers, to be executed first */
1447 if (expect_false (checkcnt)) 1725 if (expect_false (checkcnt))
1448 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1726 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1449 1727
1450 call_pending (EV_A); 1728 call_pending (EV_A);
1451
1452 } 1729 }
1453 while (expect_true (activecnt && !loop_done)); 1730 while (expect_true (
1731 activecnt
1732 && !loop_done
1733 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1734 ));
1454 1735
1455 if (loop_done == EVUNLOOP_ONE) 1736 if (loop_done == EVUNLOOP_ONE)
1456 loop_done = EVUNLOOP_CANCEL; 1737 loop_done = EVUNLOOP_CANCEL;
1457} 1738}
1458 1739
1485 head = &(*head)->next; 1766 head = &(*head)->next;
1486 } 1767 }
1487} 1768}
1488 1769
1489void inline_speed 1770void inline_speed
1490ev_clear_pending (EV_P_ W w) 1771clear_pending (EV_P_ W w)
1491{ 1772{
1492 if (w->pending) 1773 if (w->pending)
1493 { 1774 {
1494 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1775 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1495 w->pending = 0; 1776 w->pending = 0;
1496 } 1777 }
1497} 1778}
1498 1779
1780int
1781ev_clear_pending (EV_P_ void *w)
1782{
1783 W w_ = (W)w;
1784 int pending = w_->pending;
1785
1786 if (expect_true (pending))
1787 {
1788 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1789 w_->pending = 0;
1790 p->w = 0;
1791 return p->events;
1792 }
1793 else
1794 return 0;
1795}
1796
1797void inline_size
1798pri_adjust (EV_P_ W w)
1799{
1800 int pri = w->priority;
1801 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1802 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1803 w->priority = pri;
1804}
1805
1499void inline_speed 1806void inline_speed
1500ev_start (EV_P_ W w, int active) 1807ev_start (EV_P_ W w, int active)
1501{ 1808{
1502 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1809 pri_adjust (EV_A_ w);
1503 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1504
1505 w->active = active; 1810 w->active = active;
1506 ev_ref (EV_A); 1811 ev_ref (EV_A);
1507} 1812}
1508 1813
1509void inline_size 1814void inline_size
1513 w->active = 0; 1818 w->active = 0;
1514} 1819}
1515 1820
1516/*****************************************************************************/ 1821/*****************************************************************************/
1517 1822
1518void 1823void noinline
1519ev_io_start (EV_P_ ev_io *w) 1824ev_io_start (EV_P_ ev_io *w)
1520{ 1825{
1521 int fd = w->fd; 1826 int fd = w->fd;
1522 1827
1523 if (expect_false (ev_is_active (w))) 1828 if (expect_false (ev_is_active (w)))
1525 1830
1526 assert (("ev_io_start called with negative fd", fd >= 0)); 1831 assert (("ev_io_start called with negative fd", fd >= 0));
1527 1832
1528 ev_start (EV_A_ (W)w, 1); 1833 ev_start (EV_A_ (W)w, 1);
1529 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1834 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1530 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1835 wlist_add (&anfds[fd].head, (WL)w);
1531 1836
1532 fd_change (EV_A_ fd); 1837 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1838 w->events &= ~EV_IOFDSET;
1533} 1839}
1534 1840
1535void 1841void noinline
1536ev_io_stop (EV_P_ ev_io *w) 1842ev_io_stop (EV_P_ ev_io *w)
1537{ 1843{
1538 ev_clear_pending (EV_A_ (W)w); 1844 clear_pending (EV_A_ (W)w);
1539 if (expect_false (!ev_is_active (w))) 1845 if (expect_false (!ev_is_active (w)))
1540 return; 1846 return;
1541 1847
1542 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1543 1849
1544 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1850 wlist_del (&anfds[w->fd].head, (WL)w);
1545 ev_stop (EV_A_ (W)w); 1851 ev_stop (EV_A_ (W)w);
1546 1852
1547 fd_change (EV_A_ w->fd); 1853 fd_change (EV_A_ w->fd, 1);
1548} 1854}
1549 1855
1550void 1856void noinline
1551ev_timer_start (EV_P_ ev_timer *w) 1857ev_timer_start (EV_P_ ev_timer *w)
1552{ 1858{
1553 if (expect_false (ev_is_active (w))) 1859 if (expect_false (ev_is_active (w)))
1554 return; 1860 return;
1555 1861
1556 ((WT)w)->at += mn_now; 1862 ((WT)w)->at += mn_now;
1557 1863
1558 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1559 1865
1560 ev_start (EV_A_ (W)w, ++timercnt); 1866 ev_start (EV_A_ (W)w, ++timercnt);
1561 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1562 timers [timercnt - 1] = w; 1868 timers [timercnt - 1] = (WT)w;
1563 upheap ((WT *)timers, timercnt - 1); 1869 upheap (timers, timercnt - 1);
1564 1870
1565 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1566} 1872}
1567 1873
1568void 1874void noinline
1569ev_timer_stop (EV_P_ ev_timer *w) 1875ev_timer_stop (EV_P_ ev_timer *w)
1570{ 1876{
1571 ev_clear_pending (EV_A_ (W)w); 1877 clear_pending (EV_A_ (W)w);
1572 if (expect_false (!ev_is_active (w))) 1878 if (expect_false (!ev_is_active (w)))
1573 return; 1879 return;
1574 1880
1575 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1576 1882
1577 { 1883 {
1578 int active = ((W)w)->active; 1884 int active = ((W)w)->active;
1579 1885
1580 if (expect_true (--active < --timercnt)) 1886 if (expect_true (--active < --timercnt))
1581 { 1887 {
1582 timers [active] = timers [timercnt]; 1888 timers [active] = timers [timercnt];
1583 adjustheap ((WT *)timers, timercnt, active); 1889 adjustheap (timers, timercnt, active);
1584 } 1890 }
1585 } 1891 }
1586 1892
1587 ((WT)w)->at -= mn_now; 1893 ((WT)w)->at -= mn_now;
1588 1894
1589 ev_stop (EV_A_ (W)w); 1895 ev_stop (EV_A_ (W)w);
1590} 1896}
1591 1897
1592void 1898void noinline
1593ev_timer_again (EV_P_ ev_timer *w) 1899ev_timer_again (EV_P_ ev_timer *w)
1594{ 1900{
1595 if (ev_is_active (w)) 1901 if (ev_is_active (w))
1596 { 1902 {
1597 if (w->repeat) 1903 if (w->repeat)
1598 { 1904 {
1599 ((WT)w)->at = mn_now + w->repeat; 1905 ((WT)w)->at = mn_now + w->repeat;
1600 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1906 adjustheap (timers, timercnt, ((W)w)->active - 1);
1601 } 1907 }
1602 else 1908 else
1603 ev_timer_stop (EV_A_ w); 1909 ev_timer_stop (EV_A_ w);
1604 } 1910 }
1605 else if (w->repeat) 1911 else if (w->repeat)
1608 ev_timer_start (EV_A_ w); 1914 ev_timer_start (EV_A_ w);
1609 } 1915 }
1610} 1916}
1611 1917
1612#if EV_PERIODIC_ENABLE 1918#if EV_PERIODIC_ENABLE
1613void 1919void noinline
1614ev_periodic_start (EV_P_ ev_periodic *w) 1920ev_periodic_start (EV_P_ ev_periodic *w)
1615{ 1921{
1616 if (expect_false (ev_is_active (w))) 1922 if (expect_false (ev_is_active (w)))
1617 return; 1923 return;
1618 1924
1620 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1621 else if (w->interval) 1927 else if (w->interval)
1622 { 1928 {
1623 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1624 /* this formula differs from the one in periodic_reify because we do not always round up */ 1930 /* this formula differs from the one in periodic_reify because we do not always round up */
1625 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1626 } 1932 }
1933 else
1934 ((WT)w)->at = w->offset;
1627 1935
1628 ev_start (EV_A_ (W)w, ++periodiccnt); 1936 ev_start (EV_A_ (W)w, ++periodiccnt);
1629 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1630 periodics [periodiccnt - 1] = w; 1938 periodics [periodiccnt - 1] = (WT)w;
1631 upheap ((WT *)periodics, periodiccnt - 1); 1939 upheap (periodics, periodiccnt - 1);
1632 1940
1633 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1634} 1942}
1635 1943
1636void 1944void noinline
1637ev_periodic_stop (EV_P_ ev_periodic *w) 1945ev_periodic_stop (EV_P_ ev_periodic *w)
1638{ 1946{
1639 ev_clear_pending (EV_A_ (W)w); 1947 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 1948 if (expect_false (!ev_is_active (w)))
1641 return; 1949 return;
1642 1950
1643 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1644 1952
1645 { 1953 {
1646 int active = ((W)w)->active; 1954 int active = ((W)w)->active;
1647 1955
1648 if (expect_true (--active < --periodiccnt)) 1956 if (expect_true (--active < --periodiccnt))
1649 { 1957 {
1650 periodics [active] = periodics [periodiccnt]; 1958 periodics [active] = periodics [periodiccnt];
1651 adjustheap ((WT *)periodics, periodiccnt, active); 1959 adjustheap (periodics, periodiccnt, active);
1652 } 1960 }
1653 } 1961 }
1654 1962
1655 ev_stop (EV_A_ (W)w); 1963 ev_stop (EV_A_ (W)w);
1656} 1964}
1657 1965
1658void 1966void noinline
1659ev_periodic_again (EV_P_ ev_periodic *w) 1967ev_periodic_again (EV_P_ ev_periodic *w)
1660{ 1968{
1661 /* TODO: use adjustheap and recalculation */ 1969 /* TODO: use adjustheap and recalculation */
1662 ev_periodic_stop (EV_A_ w); 1970 ev_periodic_stop (EV_A_ w);
1663 ev_periodic_start (EV_A_ w); 1971 ev_periodic_start (EV_A_ w);
1666 1974
1667#ifndef SA_RESTART 1975#ifndef SA_RESTART
1668# define SA_RESTART 0 1976# define SA_RESTART 0
1669#endif 1977#endif
1670 1978
1671void 1979void noinline
1672ev_signal_start (EV_P_ ev_signal *w) 1980ev_signal_start (EV_P_ ev_signal *w)
1673{ 1981{
1674#if EV_MULTIPLICITY 1982#if EV_MULTIPLICITY
1675 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1983 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1676#endif 1984#endif
1677 if (expect_false (ev_is_active (w))) 1985 if (expect_false (ev_is_active (w)))
1678 return; 1986 return;
1679 1987
1680 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1988 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1681 1989
1990 evpipe_init (EV_A);
1991
1992 {
1993#ifndef _WIN32
1994 sigset_t full, prev;
1995 sigfillset (&full);
1996 sigprocmask (SIG_SETMASK, &full, &prev);
1997#endif
1998
1999 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2000
2001#ifndef _WIN32
2002 sigprocmask (SIG_SETMASK, &prev, 0);
2003#endif
2004 }
2005
1682 ev_start (EV_A_ (W)w, 1); 2006 ev_start (EV_A_ (W)w, 1);
1683 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1684 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2007 wlist_add (&signals [w->signum - 1].head, (WL)w);
1685 2008
1686 if (!((WL)w)->next) 2009 if (!((WL)w)->next)
1687 { 2010 {
1688#if _WIN32 2011#if _WIN32
1689 signal (w->signum, sighandler); 2012 signal (w->signum, ev_sighandler);
1690#else 2013#else
1691 struct sigaction sa; 2014 struct sigaction sa;
1692 sa.sa_handler = sighandler; 2015 sa.sa_handler = ev_sighandler;
1693 sigfillset (&sa.sa_mask); 2016 sigfillset (&sa.sa_mask);
1694 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2017 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1695 sigaction (w->signum, &sa, 0); 2018 sigaction (w->signum, &sa, 0);
1696#endif 2019#endif
1697 } 2020 }
1698} 2021}
1699 2022
1700void 2023void noinline
1701ev_signal_stop (EV_P_ ev_signal *w) 2024ev_signal_stop (EV_P_ ev_signal *w)
1702{ 2025{
1703 ev_clear_pending (EV_A_ (W)w); 2026 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2027 if (expect_false (!ev_is_active (w)))
1705 return; 2028 return;
1706 2029
1707 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2030 wlist_del (&signals [w->signum - 1].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 2031 ev_stop (EV_A_ (W)w);
1709 2032
1710 if (!signals [w->signum - 1].head) 2033 if (!signals [w->signum - 1].head)
1711 signal (w->signum, SIG_DFL); 2034 signal (w->signum, SIG_DFL);
1712} 2035}
1719#endif 2042#endif
1720 if (expect_false (ev_is_active (w))) 2043 if (expect_false (ev_is_active (w)))
1721 return; 2044 return;
1722 2045
1723 ev_start (EV_A_ (W)w, 1); 2046 ev_start (EV_A_ (W)w, 1);
1724 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2047 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1725} 2048}
1726 2049
1727void 2050void
1728ev_child_stop (EV_P_ ev_child *w) 2051ev_child_stop (EV_P_ ev_child *w)
1729{ 2052{
1730 ev_clear_pending (EV_A_ (W)w); 2053 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 2054 if (expect_false (!ev_is_active (w)))
1732 return; 2055 return;
1733 2056
1734 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2057 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1735 ev_stop (EV_A_ (W)w); 2058 ev_stop (EV_A_ (W)w);
1736} 2059}
1737 2060
1738#if EV_STAT_ENABLE 2061#if EV_STAT_ENABLE
1739 2062
1971} 2294}
1972 2295
1973void 2296void
1974ev_stat_stop (EV_P_ ev_stat *w) 2297ev_stat_stop (EV_P_ ev_stat *w)
1975{ 2298{
1976 ev_clear_pending (EV_A_ (W)w); 2299 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 2300 if (expect_false (!ev_is_active (w)))
1978 return; 2301 return;
1979 2302
1980#if EV_USE_INOTIFY 2303#if EV_USE_INOTIFY
1981 infy_del (EV_A_ w); 2304 infy_del (EV_A_ w);
1984 2307
1985 ev_stop (EV_A_ (W)w); 2308 ev_stop (EV_A_ (W)w);
1986} 2309}
1987#endif 2310#endif
1988 2311
2312#if EV_IDLE_ENABLE
1989void 2313void
1990ev_idle_start (EV_P_ ev_idle *w) 2314ev_idle_start (EV_P_ ev_idle *w)
1991{ 2315{
1992 if (expect_false (ev_is_active (w))) 2316 if (expect_false (ev_is_active (w)))
1993 return; 2317 return;
1994 2318
2319 pri_adjust (EV_A_ (W)w);
2320
2321 {
2322 int active = ++idlecnt [ABSPRI (w)];
2323
2324 ++idleall;
1995 ev_start (EV_A_ (W)w, ++idlecnt); 2325 ev_start (EV_A_ (W)w, active);
2326
1996 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2327 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1997 idles [idlecnt - 1] = w; 2328 idles [ABSPRI (w)][active - 1] = w;
2329 }
1998} 2330}
1999 2331
2000void 2332void
2001ev_idle_stop (EV_P_ ev_idle *w) 2333ev_idle_stop (EV_P_ ev_idle *w)
2002{ 2334{
2003 ev_clear_pending (EV_A_ (W)w); 2335 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 2336 if (expect_false (!ev_is_active (w)))
2005 return; 2337 return;
2006 2338
2007 { 2339 {
2008 int active = ((W)w)->active; 2340 int active = ((W)w)->active;
2009 idles [active - 1] = idles [--idlecnt]; 2341
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2010 ((W)idles [active - 1])->active = active; 2343 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2344
2345 ev_stop (EV_A_ (W)w);
2346 --idleall;
2011 } 2347 }
2012
2013 ev_stop (EV_A_ (W)w);
2014} 2348}
2349#endif
2015 2350
2016void 2351void
2017ev_prepare_start (EV_P_ ev_prepare *w) 2352ev_prepare_start (EV_P_ ev_prepare *w)
2018{ 2353{
2019 if (expect_false (ev_is_active (w))) 2354 if (expect_false (ev_is_active (w)))
2025} 2360}
2026 2361
2027void 2362void
2028ev_prepare_stop (EV_P_ ev_prepare *w) 2363ev_prepare_stop (EV_P_ ev_prepare *w)
2029{ 2364{
2030 ev_clear_pending (EV_A_ (W)w); 2365 clear_pending (EV_A_ (W)w);
2031 if (expect_false (!ev_is_active (w))) 2366 if (expect_false (!ev_is_active (w)))
2032 return; 2367 return;
2033 2368
2034 { 2369 {
2035 int active = ((W)w)->active; 2370 int active = ((W)w)->active;
2052} 2387}
2053 2388
2054void 2389void
2055ev_check_stop (EV_P_ ev_check *w) 2390ev_check_stop (EV_P_ ev_check *w)
2056{ 2391{
2057 ev_clear_pending (EV_A_ (W)w); 2392 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 2393 if (expect_false (!ev_is_active (w)))
2059 return; 2394 return;
2060 2395
2061 { 2396 {
2062 int active = ((W)w)->active; 2397 int active = ((W)w)->active;
2069 2404
2070#if EV_EMBED_ENABLE 2405#if EV_EMBED_ENABLE
2071void noinline 2406void noinline
2072ev_embed_sweep (EV_P_ ev_embed *w) 2407ev_embed_sweep (EV_P_ ev_embed *w)
2073{ 2408{
2074 ev_loop (w->loop, EVLOOP_NONBLOCK); 2409 ev_loop (w->other, EVLOOP_NONBLOCK);
2075} 2410}
2076 2411
2077static void 2412static void
2078embed_cb (EV_P_ ev_io *io, int revents) 2413embed_io_cb (EV_P_ ev_io *io, int revents)
2079{ 2414{
2080 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2415 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2081 2416
2082 if (ev_cb (w)) 2417 if (ev_cb (w))
2083 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2418 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2084 else 2419 else
2085 ev_embed_sweep (loop, w); 2420 ev_loop (w->other, EVLOOP_NONBLOCK);
2086} 2421}
2422
2423static void
2424embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2425{
2426 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2427
2428 {
2429 struct ev_loop *loop = w->other;
2430
2431 while (fdchangecnt)
2432 {
2433 fd_reify (EV_A);
2434 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2435 }
2436 }
2437}
2438
2439#if 0
2440static void
2441embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2442{
2443 ev_idle_stop (EV_A_ idle);
2444}
2445#endif
2087 2446
2088void 2447void
2089ev_embed_start (EV_P_ ev_embed *w) 2448ev_embed_start (EV_P_ ev_embed *w)
2090{ 2449{
2091 if (expect_false (ev_is_active (w))) 2450 if (expect_false (ev_is_active (w)))
2092 return; 2451 return;
2093 2452
2094 { 2453 {
2095 struct ev_loop *loop = w->loop; 2454 struct ev_loop *loop = w->other;
2096 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2455 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2097 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2456 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2098 } 2457 }
2099 2458
2100 ev_set_priority (&w->io, ev_priority (w)); 2459 ev_set_priority (&w->io, ev_priority (w));
2101 ev_io_start (EV_A_ &w->io); 2460 ev_io_start (EV_A_ &w->io);
2102 2461
2462 ev_prepare_init (&w->prepare, embed_prepare_cb);
2463 ev_set_priority (&w->prepare, EV_MINPRI);
2464 ev_prepare_start (EV_A_ &w->prepare);
2465
2466 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2467
2103 ev_start (EV_A_ (W)w, 1); 2468 ev_start (EV_A_ (W)w, 1);
2104} 2469}
2105 2470
2106void 2471void
2107ev_embed_stop (EV_P_ ev_embed *w) 2472ev_embed_stop (EV_P_ ev_embed *w)
2108{ 2473{
2109 ev_clear_pending (EV_A_ (W)w); 2474 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 2475 if (expect_false (!ev_is_active (w)))
2111 return; 2476 return;
2112 2477
2113 ev_io_stop (EV_A_ &w->io); 2478 ev_io_stop (EV_A_ &w->io);
2479 ev_prepare_stop (EV_A_ &w->prepare);
2114 2480
2115 ev_stop (EV_A_ (W)w); 2481 ev_stop (EV_A_ (W)w);
2116} 2482}
2117#endif 2483#endif
2118 2484
2129} 2495}
2130 2496
2131void 2497void
2132ev_fork_stop (EV_P_ ev_fork *w) 2498ev_fork_stop (EV_P_ ev_fork *w)
2133{ 2499{
2134 ev_clear_pending (EV_A_ (W)w); 2500 clear_pending (EV_A_ (W)w);
2135 if (expect_false (!ev_is_active (w))) 2501 if (expect_false (!ev_is_active (w)))
2136 return; 2502 return;
2137 2503
2138 { 2504 {
2139 int active = ((W)w)->active; 2505 int active = ((W)w)->active;
2143 2509
2144 ev_stop (EV_A_ (W)w); 2510 ev_stop (EV_A_ (W)w);
2145} 2511}
2146#endif 2512#endif
2147 2513
2514#if EV_ASYNC_ENABLE
2515void
2516ev_async_start (EV_P_ ev_async *w)
2517{
2518 if (expect_false (ev_is_active (w)))
2519 return;
2520
2521 evpipe_init (EV_A);
2522
2523 ev_start (EV_A_ (W)w, ++asynccnt);
2524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2525 asyncs [asynccnt - 1] = w;
2526}
2527
2528void
2529ev_async_stop (EV_P_ ev_async *w)
2530{
2531 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w)))
2533 return;
2534
2535 {
2536 int active = ((W)w)->active;
2537 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active;
2539 }
2540
2541 ev_stop (EV_A_ (W)w);
2542}
2543
2544void
2545ev_async_send (EV_P_ ev_async *w)
2546{
2547 w->sent = 1;
2548 evpipe_write (EV_A_ &gotasync);
2549}
2550#endif
2551
2148/*****************************************************************************/ 2552/*****************************************************************************/
2149 2553
2150struct ev_once 2554struct ev_once
2151{ 2555{
2152 ev_io io; 2556 ev_io io;
2207 ev_timer_set (&once->to, timeout, 0.); 2611 ev_timer_set (&once->to, timeout, 0.);
2208 ev_timer_start (EV_A_ &once->to); 2612 ev_timer_start (EV_A_ &once->to);
2209 } 2613 }
2210} 2614}
2211 2615
2616#if EV_MULTIPLICITY
2617 #include "ev_wrap.h"
2618#endif
2619
2212#ifdef __cplusplus 2620#ifdef __cplusplus
2213} 2621}
2214#endif 2622#endif
2215 2623

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines