ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC vs.
Revision 1.392 by root, Thu Aug 4 14:37:49 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
152#endif 186#endif
187
188EV_CPP(extern "C" {)
153 189
154#ifndef _WIN32 190#ifndef _WIN32
155# include <sys/time.h> 191# include <sys/time.h>
156# include <sys/wait.h> 192# include <sys/wait.h>
157# include <unistd.h> 193# include <unistd.h>
158#else 194#else
195# include <io.h>
159# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 197# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
163# endif 200# endif
201# undef EV_AVOID_STDIO
164#endif 202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
165 211
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 212/* this block tries to deduce configuration from header-defined symbols and defaults */
167 213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
253
168#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
169# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
170#endif 260#endif
171 261
172#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 264#endif
175 265
176#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
177# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
178#endif 272#endif
179 273
180#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 276#endif
183 277
184#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
185# ifdef _WIN32 279# ifdef _WIN32
186# define EV_USE_POLL 0 280# define EV_USE_POLL 0
187# else 281# else
188# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 283# endif
190#endif 284#endif
191 285
192#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 289# else
196# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
197# endif 291# endif
198#endif 292#endif
199 293
205# define EV_USE_PORT 0 299# define EV_USE_PORT 0
206#endif 300#endif
207 301
208#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 305# else
212# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
213# endif 307# endif
214#endif 308#endif
215 309
216#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 312#endif
223 313
224#ifndef EV_INOTIFY_HASHSIZE 314#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 316#endif
231 317
232#ifndef EV_USE_EVENTFD 318#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 320# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 321# else
236# define EV_USE_EVENTFD 0 322# define EV_USE_EVENTFD 0
237# endif 323# endif
238#endif 324#endif
239 325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
241 373
242#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
245#endif 377#endif
253# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
255#endif 387#endif
256 388
257#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 392# include <sys/select.h>
260# endif 393# endif
261#endif 394#endif
262 395
263#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
264# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
265#endif 404#endif
266 405
267#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 407# include <winsock.h>
269#endif 408#endif
270 409
271#if EV_USE_EVENTFD 410#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
274int eventfd (unsigned int initval, int flags); 423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
275#endif 446#endif
276 447
277/**/ 448/**/
278 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
279/* 456/*
280 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
281 * It is added to ev_rt_now when scheduling periodics
282 * to ensure progress, time-wise, even when rounding
283 * errors are against us.
284 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
285 * Better solutions welcome.
286 */ 459 */
287#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
288 462
289#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
290#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
291/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
292 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470/* ECB.H BEGIN */
471/*
472 * libecb - http://software.schmorp.de/pkg/libecb
473 *
474 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475 * Copyright (©) 2011 Emanuele Giaquinta
476 * All rights reserved.
477 *
478 * Redistribution and use in source and binary forms, with or without modifica-
479 * tion, are permitted provided that the following conditions are met:
480 *
481 * 1. Redistributions of source code must retain the above copyright notice,
482 * this list of conditions and the following disclaimer.
483 *
484 * 2. Redistributions in binary form must reproduce the above copyright
485 * notice, this list of conditions and the following disclaimer in the
486 * documentation and/or other materials provided with the distribution.
487 *
488 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497 * OF THE POSSIBILITY OF SUCH DAMAGE.
498 */
499
500#ifndef ECB_H
501#define ECB_H
502
503#ifdef _WIN32
504 typedef signed char int8_t;
505 typedef unsigned char uint8_t;
506 typedef signed short int16_t;
507 typedef unsigned short uint16_t;
508 typedef signed int int32_t;
509 typedef unsigned int uint32_t;
293#if __GNUC__ >= 4 510 #if __GNUC__
294# define expect(expr,value) __builtin_expect ((expr),(value)) 511 typedef signed long long int64_t;
295# define noinline __attribute__ ((noinline)) 512 typedef unsigned long long uint64_t;
513 #else /* _MSC_VER || __BORLANDC__ */
514 typedef signed __int64 int64_t;
515 typedef unsigned __int64 uint64_t;
516 #endif
296#else 517#else
297# define expect(expr,value) (expr) 518 #include <inttypes.h>
298# define noinline
299# if __STDC_VERSION__ < 199901L
300# define inline
301# endif 519#endif
520
521/* many compilers define _GNUC_ to some versions but then only implement
522 * what their idiot authors think are the "more important" extensions,
523 * causing enormous grief in return for some better fake benchmark numbers.
524 * or so.
525 * we try to detect these and simply assume they are not gcc - if they have
526 * an issue with that they should have done it right in the first place.
527 */
528#ifndef ECB_GCC_VERSION
529 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530 #define ECB_GCC_VERSION(major,minor) 0
531 #else
532 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
302#endif 533 #endif
534#endif
303 535
536/*****************************************************************************/
537
538/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540
541#if ECB_NO_THREADS || ECB_NO_SMP
542 #define ECB_MEMORY_FENCE do { } while (0)
543 #define ECB_MEMORY_FENCE_ACQUIRE do { } while (0)
544 #define ECB_MEMORY_FENCE_RELEASE do { } while (0)
545#endif
546
547#ifndef ECB_MEMORY_FENCE
548 #if ECB_GCC_VERSION(2,5)
549 #if __x86
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
552 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
553 #elif __amd64
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
555 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
556 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
557 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
558 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
559 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
560 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__) \
561 || defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
562 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
563 #define ECB_MEMORY_FENCE \
564 do { \
565 int null = 0; \
566 __asm__ __volatile__ ("mcr p15,0,%0,c6,c10,5", : "=&r" (null) : : "memory"); \
567 while (0)
568 #endif
569 #endif
570#endif
571
572#ifndef ECB_MEMORY_FENCE
573 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER)
574 #define ECB_MEMORY_FENCE __sync_synchronize ()
575 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
576 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
577 #elif _MSC_VER >= 1400 /* VC++ 2005 */
578 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
579 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
580 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
581 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
582 #elif defined(_WIN32)
583 #include <WinNT.h>
584 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
585 #endif
586#endif
587
588#ifndef ECB_MEMORY_FENCE
589 #if !ECB_AVOID_PTHREADS
590 /*
591 * if you get undefined symbol references to pthread_mutex_lock,
592 * or failure to find pthread.h, then you should implement
593 * the ECB_MEMORY_FENCE operations for your cpu/compiler
594 * OR provide pthread.h and link against the posix thread library
595 * of your system.
596 */
597 #include <pthread.h>
598 #define ECB_NEEDS_PTHREADS 1
599 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
600
601 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
602 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
603 #endif
604#endif
605
606#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
607 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
608#endif
609
610#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
611 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
612#endif
613
614/*****************************************************************************/
615
616#define ECB_C99 (__STDC_VERSION__ >= 199901L)
617
618#if __cplusplus
619 #define ecb_inline static inline
620#elif ECB_GCC_VERSION(2,5)
621 #define ecb_inline static __inline__
622#elif ECB_C99
623 #define ecb_inline static inline
624#else
625 #define ecb_inline static
626#endif
627
628#if ECB_GCC_VERSION(3,3)
629 #define ecb_restrict __restrict__
630#elif ECB_C99
631 #define ecb_restrict restrict
632#else
633 #define ecb_restrict
634#endif
635
636typedef int ecb_bool;
637
638#define ECB_CONCAT_(a, b) a ## b
639#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
640#define ECB_STRINGIFY_(a) # a
641#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
642
643#define ecb_function_ ecb_inline
644
645#if ECB_GCC_VERSION(3,1)
646 #define ecb_attribute(attrlist) __attribute__(attrlist)
647 #define ecb_is_constant(expr) __builtin_constant_p (expr)
648 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
649 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
650#else
651 #define ecb_attribute(attrlist)
652 #define ecb_is_constant(expr) 0
653 #define ecb_expect(expr,value) (expr)
654 #define ecb_prefetch(addr,rw,locality)
655#endif
656
657/* no emulation for ecb_decltype */
658#if ECB_GCC_VERSION(4,5)
659 #define ecb_decltype(x) __decltype(x)
660#elif ECB_GCC_VERSION(3,0)
661 #define ecb_decltype(x) __typeof(x)
662#endif
663
664#define ecb_noinline ecb_attribute ((__noinline__))
665#define ecb_noreturn ecb_attribute ((__noreturn__))
666#define ecb_unused ecb_attribute ((__unused__))
667#define ecb_const ecb_attribute ((__const__))
668#define ecb_pure ecb_attribute ((__pure__))
669
670#if ECB_GCC_VERSION(4,3)
671 #define ecb_artificial ecb_attribute ((__artificial__))
672 #define ecb_hot ecb_attribute ((__hot__))
673 #define ecb_cold ecb_attribute ((__cold__))
674#else
675 #define ecb_artificial
676 #define ecb_hot
677 #define ecb_cold
678#endif
679
680/* put around conditional expressions if you are very sure that the */
681/* expression is mostly true or mostly false. note that these return */
682/* booleans, not the expression. */
304#define expect_false(expr) expect ((expr) != 0, 0) 683#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
305#define expect_true(expr) expect ((expr) != 0, 1) 684#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
685/* for compatibility to the rest of the world */
686#define ecb_likely(expr) ecb_expect_true (expr)
687#define ecb_unlikely(expr) ecb_expect_false (expr)
688
689/* count trailing zero bits and count # of one bits */
690#if ECB_GCC_VERSION(3,4)
691 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
692 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
693 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
694 #define ecb_ctz32(x) __builtin_ctz (x)
695 #define ecb_ctz64(x) __builtin_ctzll (x)
696 #define ecb_popcount32(x) __builtin_popcount (x)
697 /* no popcountll */
698#else
699 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
700 ecb_function_ int
701 ecb_ctz32 (uint32_t x)
702 {
703 int r = 0;
704
705 x &= ~x + 1; /* this isolates the lowest bit */
706
707#if ECB_branchless_on_i386
708 r += !!(x & 0xaaaaaaaa) << 0;
709 r += !!(x & 0xcccccccc) << 1;
710 r += !!(x & 0xf0f0f0f0) << 2;
711 r += !!(x & 0xff00ff00) << 3;
712 r += !!(x & 0xffff0000) << 4;
713#else
714 if (x & 0xaaaaaaaa) r += 1;
715 if (x & 0xcccccccc) r += 2;
716 if (x & 0xf0f0f0f0) r += 4;
717 if (x & 0xff00ff00) r += 8;
718 if (x & 0xffff0000) r += 16;
719#endif
720
721 return r;
722 }
723
724 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz64 (uint64_t x)
727 {
728 int shift = x & 0xffffffffU ? 0 : 32;
729 return ecb_ctz32 (x >> shift) + shift;
730 }
731
732 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
733 ecb_function_ int
734 ecb_popcount32 (uint32_t x)
735 {
736 x -= (x >> 1) & 0x55555555;
737 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
738 x = ((x >> 4) + x) & 0x0f0f0f0f;
739 x *= 0x01010101;
740
741 return x >> 24;
742 }
743
744 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
745 ecb_function_ int ecb_ld32 (uint32_t x)
746 {
747 int r = 0;
748
749 if (x >> 16) { x >>= 16; r += 16; }
750 if (x >> 8) { x >>= 8; r += 8; }
751 if (x >> 4) { x >>= 4; r += 4; }
752 if (x >> 2) { x >>= 2; r += 2; }
753 if (x >> 1) { r += 1; }
754
755 return r;
756 }
757
758 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
759 ecb_function_ int ecb_ld64 (uint64_t x)
760 {
761 int r = 0;
762
763 if (x >> 32) { x >>= 32; r += 32; }
764
765 return r + ecb_ld32 (x);
766 }
767#endif
768
769/* popcount64 is only available on 64 bit cpus as gcc builtin */
770/* so for this version we are lazy */
771ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
772ecb_function_ int
773ecb_popcount64 (uint64_t x)
774{
775 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
776}
777
778ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
779ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
780ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
781ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
782ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
783ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
784ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
785ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
786
787ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
788ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
789ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
790ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
791ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
792ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
793ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
794ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
795
796#if ECB_GCC_VERSION(4,3)
797 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
798 #define ecb_bswap32(x) __builtin_bswap32 (x)
799 #define ecb_bswap64(x) __builtin_bswap64 (x)
800#else
801 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
802 ecb_function_ uint16_t
803 ecb_bswap16 (uint16_t x)
804 {
805 return ecb_rotl16 (x, 8);
806 }
807
808 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
809 ecb_function_ uint32_t
810 ecb_bswap32 (uint32_t x)
811 {
812 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
813 }
814
815 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
816 ecb_function_ uint64_t
817 ecb_bswap64 (uint64_t x)
818 {
819 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
820 }
821#endif
822
823#if ECB_GCC_VERSION(4,5)
824 #define ecb_unreachable() __builtin_unreachable ()
825#else
826 /* this seems to work fine, but gcc always emits a warning for it :/ */
827 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
828 ecb_function_ void ecb_unreachable (void) { }
829#endif
830
831/* try to tell the compiler that some condition is definitely true */
832#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
833
834ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
835ecb_function_ unsigned char
836ecb_byteorder_helper (void)
837{
838 const uint32_t u = 0x11223344;
839 return *(unsigned char *)&u;
840}
841
842ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
843ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
844ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
845ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
846
847#if ECB_GCC_VERSION(3,0) || ECB_C99
848 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
849#else
850 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
851#endif
852
853#if ecb_cplusplus_does_not_suck
854 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
855 template<typename T, int N>
856 static inline int ecb_array_length (const T (&arr)[N])
857 {
858 return N;
859 }
860#else
861 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
862#endif
863
864#endif
865
866/* ECB.H END */
867
868#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
869# undef ECB_MEMORY_FENCE
870# undef ECB_MEMORY_FENCE_ACQUIRE
871# undef ECB_MEMORY_FENCE_RELEASE
872#endif
873
874#define expect_false(cond) ecb_expect_false (cond)
875#define expect_true(cond) ecb_expect_true (cond)
876#define noinline ecb_noinline
877
306#define inline_size static inline 878#define inline_size ecb_inline
307 879
308#if EV_MINIMAL 880#if EV_FEATURE_CODE
881# define inline_speed ecb_inline
882#else
309# define inline_speed static noinline 883# define inline_speed static noinline
884#endif
885
886#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
887
888#if EV_MINPRI == EV_MAXPRI
889# define ABSPRI(w) (((W)w), 0)
310#else 890#else
311# define inline_speed static inline
312#endif
313
314#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
315#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 891# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
892#endif
316 893
317#define EMPTY /* required for microsofts broken pseudo-c compiler */ 894#define EMPTY /* required for microsofts broken pseudo-c compiler */
318#define EMPTY2(a,b) /* used to suppress some warnings */ 895#define EMPTY2(a,b) /* used to suppress some warnings */
319 896
320typedef ev_watcher *W; 897typedef ev_watcher *W;
321typedef ev_watcher_list *WL; 898typedef ev_watcher_list *WL;
322typedef ev_watcher_time *WT; 899typedef ev_watcher_time *WT;
323 900
901#define ev_active(w) ((W)(w))->active
902#define ev_at(w) ((WT)(w))->at
903
904#if EV_USE_REALTIME
905/* sig_atomic_t is used to avoid per-thread variables or locking but still */
906/* giving it a reasonably high chance of working on typical architectures */
907static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
908#endif
909
324#if EV_USE_MONOTONIC 910#if EV_USE_MONOTONIC
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */
327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 911static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
912#endif
913
914#ifndef EV_FD_TO_WIN32_HANDLE
915# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
916#endif
917#ifndef EV_WIN32_HANDLE_TO_FD
918# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
919#endif
920#ifndef EV_WIN32_CLOSE_FD
921# define EV_WIN32_CLOSE_FD(fd) close (fd)
328#endif 922#endif
329 923
330#ifdef _WIN32 924#ifdef _WIN32
331# include "ev_win32.c" 925# include "ev_win32.c"
332#endif 926#endif
333 927
334/*****************************************************************************/ 928/*****************************************************************************/
335 929
930/* define a suitable floor function (only used by periodics atm) */
931
932#if EV_USE_FLOOR
933# include <math.h>
934# define ev_floor(v) floor (v)
935#else
936
937#include <float.h>
938
939/* a floor() replacement function, should be independent of ev_tstamp type */
940static ev_tstamp noinline
941ev_floor (ev_tstamp v)
942{
943 /* the choice of shift factor is not terribly important */
944#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
945 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
946#else
947 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
948#endif
949
950 /* argument too large for an unsigned long? */
951 if (expect_false (v >= shift))
952 {
953 ev_tstamp f;
954
955 if (v == v - 1.)
956 return v; /* very large number */
957
958 f = shift * ev_floor (v * (1. / shift));
959 return f + ev_floor (v - f);
960 }
961
962 /* special treatment for negative args? */
963 if (expect_false (v < 0.))
964 {
965 ev_tstamp f = -ev_floor (-v);
966
967 return f - (f == v ? 0 : 1);
968 }
969
970 /* fits into an unsigned long */
971 return (unsigned long)v;
972}
973
974#endif
975
976/*****************************************************************************/
977
978#ifdef __linux
979# include <sys/utsname.h>
980#endif
981
982static unsigned int noinline ecb_cold
983ev_linux_version (void)
984{
985#ifdef __linux
986 unsigned int v = 0;
987 struct utsname buf;
988 int i;
989 char *p = buf.release;
990
991 if (uname (&buf))
992 return 0;
993
994 for (i = 3+1; --i; )
995 {
996 unsigned int c = 0;
997
998 for (;;)
999 {
1000 if (*p >= '0' && *p <= '9')
1001 c = c * 10 + *p++ - '0';
1002 else
1003 {
1004 p += *p == '.';
1005 break;
1006 }
1007 }
1008
1009 v = (v << 8) | c;
1010 }
1011
1012 return v;
1013#else
1014 return 0;
1015#endif
1016}
1017
1018/*****************************************************************************/
1019
1020#if EV_AVOID_STDIO
1021static void noinline ecb_cold
1022ev_printerr (const char *msg)
1023{
1024 write (STDERR_FILENO, msg, strlen (msg));
1025}
1026#endif
1027
336static void (*syserr_cb)(const char *msg); 1028static void (*syserr_cb)(const char *msg);
337 1029
338void 1030void ecb_cold
339ev_set_syserr_cb (void (*cb)(const char *msg)) 1031ev_set_syserr_cb (void (*cb)(const char *msg))
340{ 1032{
341 syserr_cb = cb; 1033 syserr_cb = cb;
342} 1034}
343 1035
344static void noinline 1036static void noinline ecb_cold
345syserr (const char *msg) 1037ev_syserr (const char *msg)
346{ 1038{
347 if (!msg) 1039 if (!msg)
348 msg = "(libev) system error"; 1040 msg = "(libev) system error";
349 1041
350 if (syserr_cb) 1042 if (syserr_cb)
351 syserr_cb (msg); 1043 syserr_cb (msg);
352 else 1044 else
353 { 1045 {
1046#if EV_AVOID_STDIO
1047 ev_printerr (msg);
1048 ev_printerr (": ");
1049 ev_printerr (strerror (errno));
1050 ev_printerr ("\n");
1051#else
354 perror (msg); 1052 perror (msg);
1053#endif
355 abort (); 1054 abort ();
356 } 1055 }
357} 1056}
358 1057
1058static void *
1059ev_realloc_emul (void *ptr, long size)
1060{
1061#if __GLIBC__
1062 return realloc (ptr, size);
1063#else
1064 /* some systems, notably openbsd and darwin, fail to properly
1065 * implement realloc (x, 0) (as required by both ansi c-89 and
1066 * the single unix specification, so work around them here.
1067 */
1068
1069 if (size)
1070 return realloc (ptr, size);
1071
1072 free (ptr);
1073 return 0;
1074#endif
1075}
1076
359static void *(*alloc)(void *ptr, long size); 1077static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
360 1078
361void 1079void ecb_cold
362ev_set_allocator (void *(*cb)(void *ptr, long size)) 1080ev_set_allocator (void *(*cb)(void *ptr, long size))
363{ 1081{
364 alloc = cb; 1082 alloc = cb;
365} 1083}
366 1084
367inline_speed void * 1085inline_speed void *
368ev_realloc (void *ptr, long size) 1086ev_realloc (void *ptr, long size)
369{ 1087{
370 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1088 ptr = alloc (ptr, size);
371 1089
372 if (!ptr && size) 1090 if (!ptr && size)
373 { 1091 {
1092#if EV_AVOID_STDIO
1093 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1094#else
374 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1095 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1096#endif
375 abort (); 1097 abort ();
376 } 1098 }
377 1099
378 return ptr; 1100 return ptr;
379} 1101}
381#define ev_malloc(size) ev_realloc (0, (size)) 1103#define ev_malloc(size) ev_realloc (0, (size))
382#define ev_free(ptr) ev_realloc ((ptr), 0) 1104#define ev_free(ptr) ev_realloc ((ptr), 0)
383 1105
384/*****************************************************************************/ 1106/*****************************************************************************/
385 1107
1108/* set in reify when reification needed */
1109#define EV_ANFD_REIFY 1
1110
1111/* file descriptor info structure */
386typedef struct 1112typedef struct
387{ 1113{
388 WL head; 1114 WL head;
389 unsigned char events; 1115 unsigned char events; /* the events watched for */
1116 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1117 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
390 unsigned char reify; 1118 unsigned char unused;
1119#if EV_USE_EPOLL
1120 unsigned int egen; /* generation counter to counter epoll bugs */
1121#endif
391#if EV_SELECT_IS_WINSOCKET 1122#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
392 SOCKET handle; 1123 SOCKET handle;
393#endif 1124#endif
1125#if EV_USE_IOCP
1126 OVERLAPPED or, ow;
1127#endif
394} ANFD; 1128} ANFD;
395 1129
1130/* stores the pending event set for a given watcher */
396typedef struct 1131typedef struct
397{ 1132{
398 W w; 1133 W w;
399 int events; 1134 int events; /* the pending event set for the given watcher */
400} ANPENDING; 1135} ANPENDING;
401 1136
402#if EV_USE_INOTIFY 1137#if EV_USE_INOTIFY
1138/* hash table entry per inotify-id */
403typedef struct 1139typedef struct
404{ 1140{
405 WL head; 1141 WL head;
406} ANFS; 1142} ANFS;
1143#endif
1144
1145/* Heap Entry */
1146#if EV_HEAP_CACHE_AT
1147 /* a heap element */
1148 typedef struct {
1149 ev_tstamp at;
1150 WT w;
1151 } ANHE;
1152
1153 #define ANHE_w(he) (he).w /* access watcher, read-write */
1154 #define ANHE_at(he) (he).at /* access cached at, read-only */
1155 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1156#else
1157 /* a heap element */
1158 typedef WT ANHE;
1159
1160 #define ANHE_w(he) (he)
1161 #define ANHE_at(he) (he)->at
1162 #define ANHE_at_cache(he)
407#endif 1163#endif
408 1164
409#if EV_MULTIPLICITY 1165#if EV_MULTIPLICITY
410 1166
411 struct ev_loop 1167 struct ev_loop
430 1186
431 static int ev_default_loop_ptr; 1187 static int ev_default_loop_ptr;
432 1188
433#endif 1189#endif
434 1190
1191#if EV_FEATURE_API
1192# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1193# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1194# define EV_INVOKE_PENDING invoke_cb (EV_A)
1195#else
1196# define EV_RELEASE_CB (void)0
1197# define EV_ACQUIRE_CB (void)0
1198# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1199#endif
1200
1201#define EVBREAK_RECURSE 0x80
1202
435/*****************************************************************************/ 1203/*****************************************************************************/
436 1204
1205#ifndef EV_HAVE_EV_TIME
437ev_tstamp 1206ev_tstamp
438ev_time (void) 1207ev_time (void)
439{ 1208{
440#if EV_USE_REALTIME 1209#if EV_USE_REALTIME
1210 if (expect_true (have_realtime))
1211 {
441 struct timespec ts; 1212 struct timespec ts;
442 clock_gettime (CLOCK_REALTIME, &ts); 1213 clock_gettime (CLOCK_REALTIME, &ts);
443 return ts.tv_sec + ts.tv_nsec * 1e-9; 1214 return ts.tv_sec + ts.tv_nsec * 1e-9;
444#else 1215 }
1216#endif
1217
445 struct timeval tv; 1218 struct timeval tv;
446 gettimeofday (&tv, 0); 1219 gettimeofday (&tv, 0);
447 return tv.tv_sec + tv.tv_usec * 1e-6; 1220 return tv.tv_sec + tv.tv_usec * 1e-6;
448#endif
449} 1221}
1222#endif
450 1223
451ev_tstamp inline_size 1224inline_size ev_tstamp
452get_clock (void) 1225get_clock (void)
453{ 1226{
454#if EV_USE_MONOTONIC 1227#if EV_USE_MONOTONIC
455 if (expect_true (have_monotonic)) 1228 if (expect_true (have_monotonic))
456 { 1229 {
477 if (delay > 0.) 1250 if (delay > 0.)
478 { 1251 {
479#if EV_USE_NANOSLEEP 1252#if EV_USE_NANOSLEEP
480 struct timespec ts; 1253 struct timespec ts;
481 1254
482 ts.tv_sec = (time_t)delay; 1255 EV_TS_SET (ts, delay);
483 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
484
485 nanosleep (&ts, 0); 1256 nanosleep (&ts, 0);
486#elif defined(_WIN32) 1257#elif defined(_WIN32)
487 Sleep ((unsigned long)(delay * 1e3)); 1258 Sleep ((unsigned long)(delay * 1e3));
488#else 1259#else
489 struct timeval tv; 1260 struct timeval tv;
490 1261
491 tv.tv_sec = (time_t)delay; 1262 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
492 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1263 /* something not guaranteed by newer posix versions, but guaranteed */
493 1264 /* by older ones */
1265 EV_TV_SET (tv, delay);
494 select (0, 0, 0, 0, &tv); 1266 select (0, 0, 0, 0, &tv);
495#endif 1267#endif
496 } 1268 }
497} 1269}
498 1270
499/*****************************************************************************/ 1271/*****************************************************************************/
500 1272
501int inline_size 1273#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1274
1275/* find a suitable new size for the given array, */
1276/* hopefully by rounding to a nice-to-malloc size */
1277inline_size int
502array_nextsize (int elem, int cur, int cnt) 1278array_nextsize (int elem, int cur, int cnt)
503{ 1279{
504 int ncur = cur + 1; 1280 int ncur = cur + 1;
505 1281
506 do 1282 do
507 ncur <<= 1; 1283 ncur <<= 1;
508 while (cnt > ncur); 1284 while (cnt > ncur);
509 1285
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1286 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
511 if (elem * ncur > 4096) 1287 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
512 { 1288 {
513 ncur *= elem; 1289 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1290 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
515 ncur = ncur - sizeof (void *) * 4; 1291 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem; 1292 ncur /= elem;
517 } 1293 }
518 1294
519 return ncur; 1295 return ncur;
520} 1296}
521 1297
522static noinline void * 1298static void * noinline ecb_cold
523array_realloc (int elem, void *base, int *cur, int cnt) 1299array_realloc (int elem, void *base, int *cur, int cnt)
524{ 1300{
525 *cur = array_nextsize (elem, *cur, cnt); 1301 *cur = array_nextsize (elem, *cur, cnt);
526 return ev_realloc (base, elem * *cur); 1302 return ev_realloc (base, elem * *cur);
527} 1303}
1304
1305#define array_init_zero(base,count) \
1306 memset ((void *)(base), 0, sizeof (*(base)) * (count))
528 1307
529#define array_needsize(type,base,cur,cnt,init) \ 1308#define array_needsize(type,base,cur,cnt,init) \
530 if (expect_false ((cnt) > (cur))) \ 1309 if (expect_false ((cnt) > (cur))) \
531 { \ 1310 { \
532 int ocur_ = (cur); \ 1311 int ecb_unused ocur_ = (cur); \
533 (base) = (type *)array_realloc \ 1312 (base) = (type *)array_realloc \
534 (sizeof (type), (base), &(cur), (cnt)); \ 1313 (sizeof (type), (base), &(cur), (cnt)); \
535 init ((base) + (ocur_), (cur) - ocur_); \ 1314 init ((base) + (ocur_), (cur) - ocur_); \
536 } 1315 }
537 1316
544 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1323 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
545 } 1324 }
546#endif 1325#endif
547 1326
548#define array_free(stem, idx) \ 1327#define array_free(stem, idx) \
549 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1328 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
550 1329
551/*****************************************************************************/ 1330/*****************************************************************************/
1331
1332/* dummy callback for pending events */
1333static void noinline
1334pendingcb (EV_P_ ev_prepare *w, int revents)
1335{
1336}
552 1337
553void noinline 1338void noinline
554ev_feed_event (EV_P_ void *w, int revents) 1339ev_feed_event (EV_P_ void *w, int revents)
555{ 1340{
556 W w_ = (W)w; 1341 W w_ = (W)w;
565 pendings [pri][w_->pending - 1].w = w_; 1350 pendings [pri][w_->pending - 1].w = w_;
566 pendings [pri][w_->pending - 1].events = revents; 1351 pendings [pri][w_->pending - 1].events = revents;
567 } 1352 }
568} 1353}
569 1354
570void inline_speed 1355inline_speed void
1356feed_reverse (EV_P_ W w)
1357{
1358 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1359 rfeeds [rfeedcnt++] = w;
1360}
1361
1362inline_size void
1363feed_reverse_done (EV_P_ int revents)
1364{
1365 do
1366 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1367 while (rfeedcnt);
1368}
1369
1370inline_speed void
571queue_events (EV_P_ W *events, int eventcnt, int type) 1371queue_events (EV_P_ W *events, int eventcnt, int type)
572{ 1372{
573 int i; 1373 int i;
574 1374
575 for (i = 0; i < eventcnt; ++i) 1375 for (i = 0; i < eventcnt; ++i)
576 ev_feed_event (EV_A_ events [i], type); 1376 ev_feed_event (EV_A_ events [i], type);
577} 1377}
578 1378
579/*****************************************************************************/ 1379/*****************************************************************************/
580 1380
581void inline_size 1381inline_speed void
582anfds_init (ANFD *base, int count)
583{
584 while (count--)
585 {
586 base->head = 0;
587 base->events = EV_NONE;
588 base->reify = 0;
589
590 ++base;
591 }
592}
593
594void inline_speed
595fd_event (EV_P_ int fd, int revents) 1382fd_event_nocheck (EV_P_ int fd, int revents)
596{ 1383{
597 ANFD *anfd = anfds + fd; 1384 ANFD *anfd = anfds + fd;
598 ev_io *w; 1385 ev_io *w;
599 1386
600 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1387 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
604 if (ev) 1391 if (ev)
605 ev_feed_event (EV_A_ (W)w, ev); 1392 ev_feed_event (EV_A_ (W)w, ev);
606 } 1393 }
607} 1394}
608 1395
1396/* do not submit kernel events for fds that have reify set */
1397/* because that means they changed while we were polling for new events */
1398inline_speed void
1399fd_event (EV_P_ int fd, int revents)
1400{
1401 ANFD *anfd = anfds + fd;
1402
1403 if (expect_true (!anfd->reify))
1404 fd_event_nocheck (EV_A_ fd, revents);
1405}
1406
609void 1407void
610ev_feed_fd_event (EV_P_ int fd, int revents) 1408ev_feed_fd_event (EV_P_ int fd, int revents)
611{ 1409{
612 if (fd >= 0 && fd < anfdmax) 1410 if (fd >= 0 && fd < anfdmax)
613 fd_event (EV_A_ fd, revents); 1411 fd_event_nocheck (EV_A_ fd, revents);
614} 1412}
615 1413
616void inline_size 1414/* make sure the external fd watch events are in-sync */
1415/* with the kernel/libev internal state */
1416inline_size void
617fd_reify (EV_P) 1417fd_reify (EV_P)
618{ 1418{
619 int i; 1419 int i;
1420
1421#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1422 for (i = 0; i < fdchangecnt; ++i)
1423 {
1424 int fd = fdchanges [i];
1425 ANFD *anfd = anfds + fd;
1426
1427 if (anfd->reify & EV__IOFDSET && anfd->head)
1428 {
1429 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1430
1431 if (handle != anfd->handle)
1432 {
1433 unsigned long arg;
1434
1435 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1436
1437 /* handle changed, but fd didn't - we need to do it in two steps */
1438 backend_modify (EV_A_ fd, anfd->events, 0);
1439 anfd->events = 0;
1440 anfd->handle = handle;
1441 }
1442 }
1443 }
1444#endif
620 1445
621 for (i = 0; i < fdchangecnt; ++i) 1446 for (i = 0; i < fdchangecnt; ++i)
622 { 1447 {
623 int fd = fdchanges [i]; 1448 int fd = fdchanges [i];
624 ANFD *anfd = anfds + fd; 1449 ANFD *anfd = anfds + fd;
625 ev_io *w; 1450 ev_io *w;
626 1451
627 unsigned char events = 0; 1452 unsigned char o_events = anfd->events;
1453 unsigned char o_reify = anfd->reify;
628 1454
629 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1455 anfd->reify = 0;
630 events |= (unsigned char)w->events;
631 1456
632#if EV_SELECT_IS_WINSOCKET 1457 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
633 if (events)
634 { 1458 {
635 unsigned long argp; 1459 anfd->events = 0;
636 #ifdef EV_FD_TO_WIN32_HANDLE 1460
637 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1461 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
638 #else 1462 anfd->events |= (unsigned char)w->events;
639 anfd->handle = _get_osfhandle (fd); 1463
640 #endif 1464 if (o_events != anfd->events)
641 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1465 o_reify = EV__IOFDSET; /* actually |= */
642 } 1466 }
643#endif
644 1467
645 { 1468 if (o_reify & EV__IOFDSET)
646 unsigned char o_events = anfd->events;
647 unsigned char o_reify = anfd->reify;
648
649 anfd->reify = 0;
650 anfd->events = events;
651
652 if (o_events != events || o_reify & EV_IOFDSET)
653 backend_modify (EV_A_ fd, o_events, events); 1469 backend_modify (EV_A_ fd, o_events, anfd->events);
654 }
655 } 1470 }
656 1471
657 fdchangecnt = 0; 1472 fdchangecnt = 0;
658} 1473}
659 1474
660void inline_size 1475/* something about the given fd changed */
1476inline_size void
661fd_change (EV_P_ int fd, int flags) 1477fd_change (EV_P_ int fd, int flags)
662{ 1478{
663 unsigned char reify = anfds [fd].reify; 1479 unsigned char reify = anfds [fd].reify;
664 anfds [fd].reify |= flags; 1480 anfds [fd].reify |= flags;
665 1481
669 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
670 fdchanges [fdchangecnt - 1] = fd; 1486 fdchanges [fdchangecnt - 1] = fd;
671 } 1487 }
672} 1488}
673 1489
674void inline_speed 1490/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1491inline_speed void ecb_cold
675fd_kill (EV_P_ int fd) 1492fd_kill (EV_P_ int fd)
676{ 1493{
677 ev_io *w; 1494 ev_io *w;
678 1495
679 while ((w = (ev_io *)anfds [fd].head)) 1496 while ((w = (ev_io *)anfds [fd].head))
681 ev_io_stop (EV_A_ w); 1498 ev_io_stop (EV_A_ w);
682 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1499 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
683 } 1500 }
684} 1501}
685 1502
686int inline_size 1503/* check whether the given fd is actually valid, for error recovery */
1504inline_size int ecb_cold
687fd_valid (int fd) 1505fd_valid (int fd)
688{ 1506{
689#ifdef _WIN32 1507#ifdef _WIN32
690 return _get_osfhandle (fd) != -1; 1508 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
691#else 1509#else
692 return fcntl (fd, F_GETFD) != -1; 1510 return fcntl (fd, F_GETFD) != -1;
693#endif 1511#endif
694} 1512}
695 1513
696/* called on EBADF to verify fds */ 1514/* called on EBADF to verify fds */
697static void noinline 1515static void noinline ecb_cold
698fd_ebadf (EV_P) 1516fd_ebadf (EV_P)
699{ 1517{
700 int fd; 1518 int fd;
701 1519
702 for (fd = 0; fd < anfdmax; ++fd) 1520 for (fd = 0; fd < anfdmax; ++fd)
703 if (anfds [fd].events) 1521 if (anfds [fd].events)
704 if (!fd_valid (fd) == -1 && errno == EBADF) 1522 if (!fd_valid (fd) && errno == EBADF)
705 fd_kill (EV_A_ fd); 1523 fd_kill (EV_A_ fd);
706} 1524}
707 1525
708/* called on ENOMEM in select/poll to kill some fds and retry */ 1526/* called on ENOMEM in select/poll to kill some fds and retry */
709static void noinline 1527static void noinline ecb_cold
710fd_enomem (EV_P) 1528fd_enomem (EV_P)
711{ 1529{
712 int fd; 1530 int fd;
713 1531
714 for (fd = anfdmax; fd--; ) 1532 for (fd = anfdmax; fd--; )
715 if (anfds [fd].events) 1533 if (anfds [fd].events)
716 { 1534 {
717 fd_kill (EV_A_ fd); 1535 fd_kill (EV_A_ fd);
718 return; 1536 break;
719 } 1537 }
720} 1538}
721 1539
722/* usually called after fork if backend needs to re-arm all fds from scratch */ 1540/* usually called after fork if backend needs to re-arm all fds from scratch */
723static void noinline 1541static void noinline
727 1545
728 for (fd = 0; fd < anfdmax; ++fd) 1546 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1547 if (anfds [fd].events)
730 { 1548 {
731 anfds [fd].events = 0; 1549 anfds [fd].events = 0;
1550 anfds [fd].emask = 0;
732 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1551 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
733 } 1552 }
734} 1553}
735 1554
736/*****************************************************************************/ 1555/* used to prepare libev internal fd's */
737 1556/* this is not fork-safe */
738void inline_speed 1557inline_speed void
739upheap (WT *heap, int k)
740{
741 WT w = heap [k];
742
743 while (k)
744 {
745 int p = (k - 1) >> 1;
746
747 if (heap [p]->at <= w->at)
748 break;
749
750 heap [k] = heap [p];
751 ((W)heap [k])->active = k + 1;
752 k = p;
753 }
754
755 heap [k] = w;
756 ((W)heap [k])->active = k + 1;
757}
758
759void inline_speed
760downheap (WT *heap, int N, int k)
761{
762 WT w = heap [k];
763
764 for (;;)
765 {
766 int c = (k << 1) + 1;
767
768 if (c >= N)
769 break;
770
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
772 ? 1 : 0;
773
774 if (w->at <= heap [c]->at)
775 break;
776
777 heap [k] = heap [c];
778 ((W)heap [k])->active = k + 1;
779
780 k = c;
781 }
782
783 heap [k] = w;
784 ((W)heap [k])->active = k + 1;
785}
786
787void inline_size
788adjustheap (WT *heap, int N, int k)
789{
790 upheap (heap, k);
791 downheap (heap, N, k);
792}
793
794/*****************************************************************************/
795
796typedef struct
797{
798 WL head;
799 EV_ATOMIC_T gotsig;
800} ANSIG;
801
802static ANSIG *signals;
803static int signalmax;
804
805static EV_ATOMIC_T gotsig;
806
807void inline_size
808signals_init (ANSIG *base, int count)
809{
810 while (count--)
811 {
812 base->head = 0;
813 base->gotsig = 0;
814
815 ++base;
816 }
817}
818
819/*****************************************************************************/
820
821void inline_speed
822fd_intern (int fd) 1558fd_intern (int fd)
823{ 1559{
824#ifdef _WIN32 1560#ifdef _WIN32
825 int arg = 1; 1561 unsigned long arg = 1;
826 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1562 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
827#else 1563#else
828 fcntl (fd, F_SETFD, FD_CLOEXEC); 1564 fcntl (fd, F_SETFD, FD_CLOEXEC);
829 fcntl (fd, F_SETFL, O_NONBLOCK); 1565 fcntl (fd, F_SETFL, O_NONBLOCK);
830#endif 1566#endif
831} 1567}
832 1568
1569/*****************************************************************************/
1570
1571/*
1572 * the heap functions want a real array index. array index 0 is guaranteed to not
1573 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1574 * the branching factor of the d-tree.
1575 */
1576
1577/*
1578 * at the moment we allow libev the luxury of two heaps,
1579 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1580 * which is more cache-efficient.
1581 * the difference is about 5% with 50000+ watchers.
1582 */
1583#if EV_USE_4HEAP
1584
1585#define DHEAP 4
1586#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1587#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1588#define UPHEAP_DONE(p,k) ((p) == (k))
1589
1590/* away from the root */
1591inline_speed void
1592downheap (ANHE *heap, int N, int k)
1593{
1594 ANHE he = heap [k];
1595 ANHE *E = heap + N + HEAP0;
1596
1597 for (;;)
1598 {
1599 ev_tstamp minat;
1600 ANHE *minpos;
1601 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1602
1603 /* find minimum child */
1604 if (expect_true (pos + DHEAP - 1 < E))
1605 {
1606 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1607 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1608 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1609 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1610 }
1611 else if (pos < E)
1612 {
1613 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1614 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1615 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1616 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1617 }
1618 else
1619 break;
1620
1621 if (ANHE_at (he) <= minat)
1622 break;
1623
1624 heap [k] = *minpos;
1625 ev_active (ANHE_w (*minpos)) = k;
1626
1627 k = minpos - heap;
1628 }
1629
1630 heap [k] = he;
1631 ev_active (ANHE_w (he)) = k;
1632}
1633
1634#else /* 4HEAP */
1635
1636#define HEAP0 1
1637#define HPARENT(k) ((k) >> 1)
1638#define UPHEAP_DONE(p,k) (!(p))
1639
1640/* away from the root */
1641inline_speed void
1642downheap (ANHE *heap, int N, int k)
1643{
1644 ANHE he = heap [k];
1645
1646 for (;;)
1647 {
1648 int c = k << 1;
1649
1650 if (c >= N + HEAP0)
1651 break;
1652
1653 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1654 ? 1 : 0;
1655
1656 if (ANHE_at (he) <= ANHE_at (heap [c]))
1657 break;
1658
1659 heap [k] = heap [c];
1660 ev_active (ANHE_w (heap [k])) = k;
1661
1662 k = c;
1663 }
1664
1665 heap [k] = he;
1666 ev_active (ANHE_w (he)) = k;
1667}
1668#endif
1669
1670/* towards the root */
1671inline_speed void
1672upheap (ANHE *heap, int k)
1673{
1674 ANHE he = heap [k];
1675
1676 for (;;)
1677 {
1678 int p = HPARENT (k);
1679
1680 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1681 break;
1682
1683 heap [k] = heap [p];
1684 ev_active (ANHE_w (heap [k])) = k;
1685 k = p;
1686 }
1687
1688 heap [k] = he;
1689 ev_active (ANHE_w (he)) = k;
1690}
1691
1692/* move an element suitably so it is in a correct place */
1693inline_size void
1694adjustheap (ANHE *heap, int N, int k)
1695{
1696 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1697 upheap (heap, k);
1698 else
1699 downheap (heap, N, k);
1700}
1701
1702/* rebuild the heap: this function is used only once and executed rarely */
1703inline_size void
1704reheap (ANHE *heap, int N)
1705{
1706 int i;
1707
1708 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1709 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1710 for (i = 0; i < N; ++i)
1711 upheap (heap, i + HEAP0);
1712}
1713
1714/*****************************************************************************/
1715
1716/* associate signal watchers to a signal signal */
1717typedef struct
1718{
1719 EV_ATOMIC_T pending;
1720#if EV_MULTIPLICITY
1721 EV_P;
1722#endif
1723 WL head;
1724} ANSIG;
1725
1726static ANSIG signals [EV_NSIG - 1];
1727
1728/*****************************************************************************/
1729
1730#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1731
833static void noinline 1732static void noinline ecb_cold
834evpipe_init (EV_P) 1733evpipe_init (EV_P)
835{ 1734{
836 if (!ev_is_active (&pipeev)) 1735 if (!ev_is_active (&pipe_w))
837 { 1736 {
838#if EV_USE_EVENTFD 1737# if EV_USE_EVENTFD
1738 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1739 if (evfd < 0 && errno == EINVAL)
839 if ((evfd = eventfd (0, 0)) >= 0) 1740 evfd = eventfd (0, 0);
1741
1742 if (evfd >= 0)
840 { 1743 {
841 evpipe [0] = -1; 1744 evpipe [0] = -1;
842 fd_intern (evfd); 1745 fd_intern (evfd); /* doing it twice doesn't hurt */
843 ev_io_set (&pipeev, evfd, EV_READ); 1746 ev_io_set (&pipe_w, evfd, EV_READ);
844 } 1747 }
845 else 1748 else
846#endif 1749# endif
847 { 1750 {
848 while (pipe (evpipe)) 1751 while (pipe (evpipe))
849 syserr ("(libev) error creating signal/async pipe"); 1752 ev_syserr ("(libev) error creating signal/async pipe");
850 1753
851 fd_intern (evpipe [0]); 1754 fd_intern (evpipe [0]);
852 fd_intern (evpipe [1]); 1755 fd_intern (evpipe [1]);
853 ev_io_set (&pipeev, evpipe [0], EV_READ); 1756 ev_io_set (&pipe_w, evpipe [0], EV_READ);
854 } 1757 }
855 1758
856 ev_io_start (EV_A_ &pipeev); 1759 ev_io_start (EV_A_ &pipe_w);
857 ev_unref (EV_A); /* watcher should not keep loop alive */ 1760 ev_unref (EV_A); /* watcher should not keep loop alive */
858 } 1761 }
859} 1762}
860 1763
861void inline_size 1764inline_speed void
862evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1765evpipe_write (EV_P_ EV_ATOMIC_T *flag)
863{ 1766{
864 if (!*flag) 1767 if (expect_true (*flag))
1768 return;
1769
1770 *flag = 1;
1771
1772 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1773
1774 pipe_write_skipped = 1;
1775
1776 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1777
1778 if (pipe_write_wanted)
865 { 1779 {
1780 int old_errno;
1781
1782 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1783
866 int old_errno = errno; /* save errno because write might clobber it */ 1784 old_errno = errno; /* save errno because write will clobber it */
867
868 *flag = 1;
869 1785
870#if EV_USE_EVENTFD 1786#if EV_USE_EVENTFD
871 if (evfd >= 0) 1787 if (evfd >= 0)
872 { 1788 {
873 uint64_t counter = 1; 1789 uint64_t counter = 1;
874 write (evfd, &counter, sizeof (uint64_t)); 1790 write (evfd, &counter, sizeof (uint64_t));
875 } 1791 }
876 else 1792 else
877#endif 1793#endif
1794 {
1795 /* win32 people keep sending patches that change this write() to send() */
1796 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1797 /* so when you think this write should be a send instead, please find out */
1798 /* where your send() is from - it's definitely not the microsoft send, and */
1799 /* tell me. thank you. */
878 write (evpipe [1], &old_errno, 1); 1800 write (evpipe [1], &(evpipe [1]), 1);
1801 }
879 1802
880 errno = old_errno; 1803 errno = old_errno;
881 } 1804 }
882} 1805}
883 1806
1807/* called whenever the libev signal pipe */
1808/* got some events (signal, async) */
884static void 1809static void
885pipecb (EV_P_ ev_io *iow, int revents) 1810pipecb (EV_P_ ev_io *iow, int revents)
886{ 1811{
1812 int i;
1813
1814 if (revents & EV_READ)
1815 {
887#if EV_USE_EVENTFD 1816#if EV_USE_EVENTFD
888 if (evfd >= 0) 1817 if (evfd >= 0)
889 { 1818 {
890 uint64_t counter = 1; 1819 uint64_t counter;
891 read (evfd, &counter, sizeof (uint64_t)); 1820 read (evfd, &counter, sizeof (uint64_t));
892 } 1821 }
893 else 1822 else
894#endif 1823#endif
895 { 1824 {
896 char dummy; 1825 char dummy;
1826 /* see discussion in evpipe_write when you think this read should be recv in win32 */
897 read (evpipe [0], &dummy, 1); 1827 read (evpipe [0], &dummy, 1);
1828 }
1829 }
1830
1831 pipe_write_skipped = 0;
1832
1833#if EV_SIGNAL_ENABLE
1834 if (sig_pending)
898 } 1835 {
1836 sig_pending = 0;
899 1837
900 if (gotsig && ev_is_default_loop (EV_A)) 1838 for (i = EV_NSIG - 1; i--; )
901 { 1839 if (expect_false (signals [i].pending))
902 int signum;
903 gotsig = 0;
904
905 for (signum = signalmax; signum--; )
906 if (signals [signum].gotsig)
907 ev_feed_signal_event (EV_A_ signum + 1); 1840 ev_feed_signal_event (EV_A_ i + 1);
908 } 1841 }
1842#endif
909 1843
910#if EV_ASYNC_ENABLE 1844#if EV_ASYNC_ENABLE
911 if (gotasync) 1845 if (async_pending)
912 { 1846 {
913 int i; 1847 async_pending = 0;
914 gotasync = 0;
915 1848
916 for (i = asynccnt; i--; ) 1849 for (i = asynccnt; i--; )
917 if (asyncs [i]->sent) 1850 if (asyncs [i]->sent)
918 { 1851 {
919 asyncs [i]->sent = 0; 1852 asyncs [i]->sent = 0;
923#endif 1856#endif
924} 1857}
925 1858
926/*****************************************************************************/ 1859/*****************************************************************************/
927 1860
1861void
1862ev_feed_signal (int signum)
1863{
1864#if EV_MULTIPLICITY
1865 EV_P = signals [signum - 1].loop;
1866
1867 if (!EV_A)
1868 return;
1869#endif
1870
1871 if (!ev_active (&pipe_w))
1872 return;
1873
1874 signals [signum - 1].pending = 1;
1875 evpipe_write (EV_A_ &sig_pending);
1876}
1877
928static void 1878static void
929ev_sighandler (int signum) 1879ev_sighandler (int signum)
930{ 1880{
931#if EV_MULTIPLICITY
932 struct ev_loop *loop = &default_loop_struct;
933#endif
934
935#if _WIN32 1881#ifdef _WIN32
936 signal (signum, ev_sighandler); 1882 signal (signum, ev_sighandler);
937#endif 1883#endif
938 1884
939 signals [signum - 1].gotsig = 1; 1885 ev_feed_signal (signum);
940 evpipe_write (EV_A_ &gotsig);
941} 1886}
942 1887
943void noinline 1888void noinline
944ev_feed_signal_event (EV_P_ int signum) 1889ev_feed_signal_event (EV_P_ int signum)
945{ 1890{
946 WL w; 1891 WL w;
947 1892
1893 if (expect_false (signum <= 0 || signum > EV_NSIG))
1894 return;
1895
1896 --signum;
1897
948#if EV_MULTIPLICITY 1898#if EV_MULTIPLICITY
949 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1899 /* it is permissible to try to feed a signal to the wrong loop */
950#endif 1900 /* or, likely more useful, feeding a signal nobody is waiting for */
951 1901
952 --signum; 1902 if (expect_false (signals [signum].loop != EV_A))
953
954 if (signum < 0 || signum >= signalmax)
955 return; 1903 return;
1904#endif
956 1905
957 signals [signum].gotsig = 0; 1906 signals [signum].pending = 0;
958 1907
959 for (w = signals [signum].head; w; w = w->next) 1908 for (w = signals [signum].head; w; w = w->next)
960 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1909 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
961} 1910}
962 1911
1912#if EV_USE_SIGNALFD
1913static void
1914sigfdcb (EV_P_ ev_io *iow, int revents)
1915{
1916 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1917
1918 for (;;)
1919 {
1920 ssize_t res = read (sigfd, si, sizeof (si));
1921
1922 /* not ISO-C, as res might be -1, but works with SuS */
1923 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1924 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1925
1926 if (res < (ssize_t)sizeof (si))
1927 break;
1928 }
1929}
1930#endif
1931
1932#endif
1933
963/*****************************************************************************/ 1934/*****************************************************************************/
964 1935
1936#if EV_CHILD_ENABLE
965static WL childs [EV_PID_HASHSIZE]; 1937static WL childs [EV_PID_HASHSIZE];
966
967#ifndef _WIN32
968 1938
969static ev_signal childev; 1939static ev_signal childev;
970 1940
971#ifndef WIFCONTINUED 1941#ifndef WIFCONTINUED
972# define WIFCONTINUED(status) 0 1942# define WIFCONTINUED(status) 0
973#endif 1943#endif
974 1944
975void inline_speed 1945/* handle a single child status event */
1946inline_speed void
976child_reap (EV_P_ int chain, int pid, int status) 1947child_reap (EV_P_ int chain, int pid, int status)
977{ 1948{
978 ev_child *w; 1949 ev_child *w;
979 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1950 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
980 1951
981 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1952 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
982 { 1953 {
983 if ((w->pid == pid || !w->pid) 1954 if ((w->pid == pid || !w->pid)
984 && (!traced || (w->flags & 1))) 1955 && (!traced || (w->flags & 1)))
985 { 1956 {
986 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1957 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
993 1964
994#ifndef WCONTINUED 1965#ifndef WCONTINUED
995# define WCONTINUED 0 1966# define WCONTINUED 0
996#endif 1967#endif
997 1968
1969/* called on sigchld etc., calls waitpid */
998static void 1970static void
999childcb (EV_P_ ev_signal *sw, int revents) 1971childcb (EV_P_ ev_signal *sw, int revents)
1000{ 1972{
1001 int pid, status; 1973 int pid, status;
1002 1974
1010 /* make sure we are called again until all children have been reaped */ 1982 /* make sure we are called again until all children have been reaped */
1011 /* we need to do it this way so that the callback gets called before we continue */ 1983 /* we need to do it this way so that the callback gets called before we continue */
1012 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1984 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1013 1985
1014 child_reap (EV_A_ pid, pid, status); 1986 child_reap (EV_A_ pid, pid, status);
1015 if (EV_PID_HASHSIZE > 1) 1987 if ((EV_PID_HASHSIZE) > 1)
1016 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1988 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1017} 1989}
1018 1990
1019#endif 1991#endif
1020 1992
1021/*****************************************************************************/ 1993/*****************************************************************************/
1022 1994
1995#if EV_USE_IOCP
1996# include "ev_iocp.c"
1997#endif
1023#if EV_USE_PORT 1998#if EV_USE_PORT
1024# include "ev_port.c" 1999# include "ev_port.c"
1025#endif 2000#endif
1026#if EV_USE_KQUEUE 2001#if EV_USE_KQUEUE
1027# include "ev_kqueue.c" 2002# include "ev_kqueue.c"
1034#endif 2009#endif
1035#if EV_USE_SELECT 2010#if EV_USE_SELECT
1036# include "ev_select.c" 2011# include "ev_select.c"
1037#endif 2012#endif
1038 2013
1039int 2014int ecb_cold
1040ev_version_major (void) 2015ev_version_major (void)
1041{ 2016{
1042 return EV_VERSION_MAJOR; 2017 return EV_VERSION_MAJOR;
1043} 2018}
1044 2019
1045int 2020int ecb_cold
1046ev_version_minor (void) 2021ev_version_minor (void)
1047{ 2022{
1048 return EV_VERSION_MINOR; 2023 return EV_VERSION_MINOR;
1049} 2024}
1050 2025
1051/* return true if we are running with elevated privileges and should ignore env variables */ 2026/* return true if we are running with elevated privileges and should ignore env variables */
1052int inline_size 2027int inline_size ecb_cold
1053enable_secure (void) 2028enable_secure (void)
1054{ 2029{
1055#ifdef _WIN32 2030#ifdef _WIN32
1056 return 0; 2031 return 0;
1057#else 2032#else
1058 return getuid () != geteuid () 2033 return getuid () != geteuid ()
1059 || getgid () != getegid (); 2034 || getgid () != getegid ();
1060#endif 2035#endif
1061} 2036}
1062 2037
1063unsigned int 2038unsigned int ecb_cold
1064ev_supported_backends (void) 2039ev_supported_backends (void)
1065{ 2040{
1066 unsigned int flags = 0; 2041 unsigned int flags = 0;
1067 2042
1068 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2043 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1072 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2047 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1073 2048
1074 return flags; 2049 return flags;
1075} 2050}
1076 2051
1077unsigned int 2052unsigned int ecb_cold
1078ev_recommended_backends (void) 2053ev_recommended_backends (void)
1079{ 2054{
1080 unsigned int flags = ev_supported_backends (); 2055 unsigned int flags = ev_supported_backends ();
1081 2056
1082#ifndef __NetBSD__ 2057#ifndef __NetBSD__
1083 /* kqueue is borked on everything but netbsd apparently */ 2058 /* kqueue is borked on everything but netbsd apparently */
1084 /* it usually doesn't work correctly on anything but sockets and pipes */ 2059 /* it usually doesn't work correctly on anything but sockets and pipes */
1085 flags &= ~EVBACKEND_KQUEUE; 2060 flags &= ~EVBACKEND_KQUEUE;
1086#endif 2061#endif
1087#ifdef __APPLE__ 2062#ifdef __APPLE__
1088 // flags &= ~EVBACKEND_KQUEUE; for documentation 2063 /* only select works correctly on that "unix-certified" platform */
1089 flags &= ~EVBACKEND_POLL; 2064 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2065 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2066#endif
2067#ifdef __FreeBSD__
2068 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1090#endif 2069#endif
1091 2070
1092 return flags; 2071 return flags;
1093} 2072}
1094 2073
1095unsigned int 2074unsigned int ecb_cold
1096ev_embeddable_backends (void) 2075ev_embeddable_backends (void)
1097{ 2076{
1098 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2077 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1099 2078
1100 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2079 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1101 /* please fix it and tell me how to detect the fix */ 2080 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1102 flags &= ~EVBACKEND_EPOLL; 2081 flags &= ~EVBACKEND_EPOLL;
1103 2082
1104 return flags; 2083 return flags;
1105} 2084}
1106 2085
1107unsigned int 2086unsigned int
1108ev_backend (EV_P) 2087ev_backend (EV_P)
1109{ 2088{
1110 return backend; 2089 return backend;
1111} 2090}
1112 2091
2092#if EV_FEATURE_API
1113unsigned int 2093unsigned int
1114ev_loop_count (EV_P) 2094ev_iteration (EV_P)
1115{ 2095{
1116 return loop_count; 2096 return loop_count;
2097}
2098
2099unsigned int
2100ev_depth (EV_P)
2101{
2102 return loop_depth;
1117} 2103}
1118 2104
1119void 2105void
1120ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2106ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1121{ 2107{
1126ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2112ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1127{ 2113{
1128 timeout_blocktime = interval; 2114 timeout_blocktime = interval;
1129} 2115}
1130 2116
2117void
2118ev_set_userdata (EV_P_ void *data)
2119{
2120 userdata = data;
2121}
2122
2123void *
2124ev_userdata (EV_P)
2125{
2126 return userdata;
2127}
2128
2129void
2130ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2131{
2132 invoke_cb = invoke_pending_cb;
2133}
2134
2135void
2136ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2137{
2138 release_cb = release;
2139 acquire_cb = acquire;
2140}
2141#endif
2142
2143/* initialise a loop structure, must be zero-initialised */
1131static void noinline 2144static void noinline ecb_cold
1132loop_init (EV_P_ unsigned int flags) 2145loop_init (EV_P_ unsigned int flags)
1133{ 2146{
1134 if (!backend) 2147 if (!backend)
1135 { 2148 {
2149 origflags = flags;
2150
2151#if EV_USE_REALTIME
2152 if (!have_realtime)
2153 {
2154 struct timespec ts;
2155
2156 if (!clock_gettime (CLOCK_REALTIME, &ts))
2157 have_realtime = 1;
2158 }
2159#endif
2160
1136#if EV_USE_MONOTONIC 2161#if EV_USE_MONOTONIC
2162 if (!have_monotonic)
1137 { 2163 {
1138 struct timespec ts; 2164 struct timespec ts;
2165
1139 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2166 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1140 have_monotonic = 1; 2167 have_monotonic = 1;
1141 } 2168 }
1142#endif
1143
1144 ev_rt_now = ev_time ();
1145 mn_now = get_clock ();
1146 now_floor = mn_now;
1147 rtmn_diff = ev_rt_now - mn_now;
1148
1149 io_blocktime = 0.;
1150 timeout_blocktime = 0.;
1151 backend = 0;
1152 backend_fd = -1;
1153 gotasync = 0;
1154#if EV_USE_INOTIFY
1155 fs_fd = -2;
1156#endif 2169#endif
1157 2170
1158 /* pid check not overridable via env */ 2171 /* pid check not overridable via env */
1159#ifndef _WIN32 2172#ifndef _WIN32
1160 if (flags & EVFLAG_FORKCHECK) 2173 if (flags & EVFLAG_FORKCHECK)
1164 if (!(flags & EVFLAG_NOENV) 2177 if (!(flags & EVFLAG_NOENV)
1165 && !enable_secure () 2178 && !enable_secure ()
1166 && getenv ("LIBEV_FLAGS")) 2179 && getenv ("LIBEV_FLAGS"))
1167 flags = atoi (getenv ("LIBEV_FLAGS")); 2180 flags = atoi (getenv ("LIBEV_FLAGS"));
1168 2181
1169 if (!(flags & 0x0000ffffUL)) 2182 ev_rt_now = ev_time ();
2183 mn_now = get_clock ();
2184 now_floor = mn_now;
2185 rtmn_diff = ev_rt_now - mn_now;
2186#if EV_FEATURE_API
2187 invoke_cb = ev_invoke_pending;
2188#endif
2189
2190 io_blocktime = 0.;
2191 timeout_blocktime = 0.;
2192 backend = 0;
2193 backend_fd = -1;
2194 sig_pending = 0;
2195#if EV_ASYNC_ENABLE
2196 async_pending = 0;
2197#endif
2198 pipe_write_skipped = 0;
2199 pipe_write_wanted = 0;
2200#if EV_USE_INOTIFY
2201 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2202#endif
2203#if EV_USE_SIGNALFD
2204 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2205#endif
2206
2207 if (!(flags & EVBACKEND_MASK))
1170 flags |= ev_recommended_backends (); 2208 flags |= ev_recommended_backends ();
1171 2209
2210#if EV_USE_IOCP
2211 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2212#endif
1172#if EV_USE_PORT 2213#if EV_USE_PORT
1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2214 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1174#endif 2215#endif
1175#if EV_USE_KQUEUE 2216#if EV_USE_KQUEUE
1176 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2217 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1183#endif 2224#endif
1184#if EV_USE_SELECT 2225#if EV_USE_SELECT
1185 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2226 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1186#endif 2227#endif
1187 2228
2229 ev_prepare_init (&pending_w, pendingcb);
2230
2231#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1188 ev_init (&pipeev, pipecb); 2232 ev_init (&pipe_w, pipecb);
1189 ev_set_priority (&pipeev, EV_MAXPRI); 2233 ev_set_priority (&pipe_w, EV_MAXPRI);
2234#endif
1190 } 2235 }
1191} 2236}
1192 2237
1193static void noinline 2238/* free up a loop structure */
2239void ecb_cold
1194loop_destroy (EV_P) 2240ev_loop_destroy (EV_P)
1195{ 2241{
1196 int i; 2242 int i;
1197 2243
2244#if EV_MULTIPLICITY
2245 /* mimic free (0) */
2246 if (!EV_A)
2247 return;
2248#endif
2249
2250#if EV_CLEANUP_ENABLE
2251 /* queue cleanup watchers (and execute them) */
2252 if (expect_false (cleanupcnt))
2253 {
2254 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2255 EV_INVOKE_PENDING;
2256 }
2257#endif
2258
2259#if EV_CHILD_ENABLE
2260 if (ev_is_active (&childev))
2261 {
2262 ev_ref (EV_A); /* child watcher */
2263 ev_signal_stop (EV_A_ &childev);
2264 }
2265#endif
2266
1198 if (ev_is_active (&pipeev)) 2267 if (ev_is_active (&pipe_w))
1199 { 2268 {
1200 ev_ref (EV_A); /* signal watcher */ 2269 /*ev_ref (EV_A);*/
1201 ev_io_stop (EV_A_ &pipeev); 2270 /*ev_io_stop (EV_A_ &pipe_w);*/
1202 2271
1203#if EV_USE_EVENTFD 2272#if EV_USE_EVENTFD
1204 if (evfd >= 0) 2273 if (evfd >= 0)
1205 close (evfd); 2274 close (evfd);
1206#endif 2275#endif
1207 2276
1208 if (evpipe [0] >= 0) 2277 if (evpipe [0] >= 0)
1209 { 2278 {
1210 close (evpipe [0]); 2279 EV_WIN32_CLOSE_FD (evpipe [0]);
1211 close (evpipe [1]); 2280 EV_WIN32_CLOSE_FD (evpipe [1]);
1212 } 2281 }
1213 } 2282 }
2283
2284#if EV_USE_SIGNALFD
2285 if (ev_is_active (&sigfd_w))
2286 close (sigfd);
2287#endif
1214 2288
1215#if EV_USE_INOTIFY 2289#if EV_USE_INOTIFY
1216 if (fs_fd >= 0) 2290 if (fs_fd >= 0)
1217 close (fs_fd); 2291 close (fs_fd);
1218#endif 2292#endif
1219 2293
1220 if (backend_fd >= 0) 2294 if (backend_fd >= 0)
1221 close (backend_fd); 2295 close (backend_fd);
1222 2296
2297#if EV_USE_IOCP
2298 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2299#endif
1223#if EV_USE_PORT 2300#if EV_USE_PORT
1224 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2301 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1225#endif 2302#endif
1226#if EV_USE_KQUEUE 2303#if EV_USE_KQUEUE
1227 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2304 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1242#if EV_IDLE_ENABLE 2319#if EV_IDLE_ENABLE
1243 array_free (idle, [i]); 2320 array_free (idle, [i]);
1244#endif 2321#endif
1245 } 2322 }
1246 2323
1247 ev_free (anfds); anfdmax = 0; 2324 ev_free (anfds); anfds = 0; anfdmax = 0;
1248 2325
1249 /* have to use the microsoft-never-gets-it-right macro */ 2326 /* have to use the microsoft-never-gets-it-right macro */
2327 array_free (rfeed, EMPTY);
1250 array_free (fdchange, EMPTY); 2328 array_free (fdchange, EMPTY);
1251 array_free (timer, EMPTY); 2329 array_free (timer, EMPTY);
1252#if EV_PERIODIC_ENABLE 2330#if EV_PERIODIC_ENABLE
1253 array_free (periodic, EMPTY); 2331 array_free (periodic, EMPTY);
1254#endif 2332#endif
1255#if EV_FORK_ENABLE 2333#if EV_FORK_ENABLE
1256 array_free (fork, EMPTY); 2334 array_free (fork, EMPTY);
1257#endif 2335#endif
2336#if EV_CLEANUP_ENABLE
2337 array_free (cleanup, EMPTY);
2338#endif
1258 array_free (prepare, EMPTY); 2339 array_free (prepare, EMPTY);
1259 array_free (check, EMPTY); 2340 array_free (check, EMPTY);
1260#if EV_ASYNC_ENABLE 2341#if EV_ASYNC_ENABLE
1261 array_free (async, EMPTY); 2342 array_free (async, EMPTY);
1262#endif 2343#endif
1263 2344
1264 backend = 0; 2345 backend = 0;
1265}
1266 2346
2347#if EV_MULTIPLICITY
2348 if (ev_is_default_loop (EV_A))
2349#endif
2350 ev_default_loop_ptr = 0;
2351#if EV_MULTIPLICITY
2352 else
2353 ev_free (EV_A);
2354#endif
2355}
2356
2357#if EV_USE_INOTIFY
1267void inline_size infy_fork (EV_P); 2358inline_size void infy_fork (EV_P);
2359#endif
1268 2360
1269void inline_size 2361inline_size void
1270loop_fork (EV_P) 2362loop_fork (EV_P)
1271{ 2363{
1272#if EV_USE_PORT 2364#if EV_USE_PORT
1273 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2365 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1274#endif 2366#endif
1280#endif 2372#endif
1281#if EV_USE_INOTIFY 2373#if EV_USE_INOTIFY
1282 infy_fork (EV_A); 2374 infy_fork (EV_A);
1283#endif 2375#endif
1284 2376
1285 if (ev_is_active (&pipeev)) 2377 if (ev_is_active (&pipe_w))
1286 { 2378 {
1287 /* this "locks" the handlers against writing to the pipe */ 2379 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1288 /* while we modify the fd vars */
1289 gotsig = 1;
1290#if EV_ASYNC_ENABLE
1291 gotasync = 1;
1292#endif
1293 2380
1294 ev_ref (EV_A); 2381 ev_ref (EV_A);
1295 ev_io_stop (EV_A_ &pipeev); 2382 ev_io_stop (EV_A_ &pipe_w);
1296 2383
1297#if EV_USE_EVENTFD 2384#if EV_USE_EVENTFD
1298 if (evfd >= 0) 2385 if (evfd >= 0)
1299 close (evfd); 2386 close (evfd);
1300#endif 2387#endif
1301 2388
1302 if (evpipe [0] >= 0) 2389 if (evpipe [0] >= 0)
1303 { 2390 {
1304 close (evpipe [0]); 2391 EV_WIN32_CLOSE_FD (evpipe [0]);
1305 close (evpipe [1]); 2392 EV_WIN32_CLOSE_FD (evpipe [1]);
1306 } 2393 }
1307 2394
2395#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1308 evpipe_init (EV_A); 2396 evpipe_init (EV_A);
1309 /* now iterate over everything, in case we missed something */ 2397 /* now iterate over everything, in case we missed something */
1310 pipecb (EV_A_ &pipeev, EV_READ); 2398 pipecb (EV_A_ &pipe_w, EV_READ);
2399#endif
1311 } 2400 }
1312 2401
1313 postfork = 0; 2402 postfork = 0;
1314} 2403}
1315 2404
1316#if EV_MULTIPLICITY 2405#if EV_MULTIPLICITY
2406
1317struct ev_loop * 2407struct ev_loop * ecb_cold
1318ev_loop_new (unsigned int flags) 2408ev_loop_new (unsigned int flags)
1319{ 2409{
1320 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2410 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1321 2411
1322 memset (loop, 0, sizeof (struct ev_loop)); 2412 memset (EV_A, 0, sizeof (struct ev_loop));
1323
1324 loop_init (EV_A_ flags); 2413 loop_init (EV_A_ flags);
1325 2414
1326 if (ev_backend (EV_A)) 2415 if (ev_backend (EV_A))
1327 return loop; 2416 return EV_A;
1328 2417
2418 ev_free (EV_A);
1329 return 0; 2419 return 0;
1330} 2420}
1331 2421
1332void 2422#endif /* multiplicity */
1333ev_loop_destroy (EV_P)
1334{
1335 loop_destroy (EV_A);
1336 ev_free (loop);
1337}
1338 2423
1339void 2424#if EV_VERIFY
1340ev_loop_fork (EV_P) 2425static void noinline ecb_cold
2426verify_watcher (EV_P_ W w)
1341{ 2427{
1342 postfork = 1; /* must be in line with ev_default_fork */ 2428 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1343}
1344 2429
2430 if (w->pending)
2431 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2432}
2433
2434static void noinline ecb_cold
2435verify_heap (EV_P_ ANHE *heap, int N)
2436{
2437 int i;
2438
2439 for (i = HEAP0; i < N + HEAP0; ++i)
2440 {
2441 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2442 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2443 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2444
2445 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2446 }
2447}
2448
2449static void noinline ecb_cold
2450array_verify (EV_P_ W *ws, int cnt)
2451{
2452 while (cnt--)
2453 {
2454 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2455 verify_watcher (EV_A_ ws [cnt]);
2456 }
2457}
2458#endif
2459
2460#if EV_FEATURE_API
2461void ecb_cold
2462ev_verify (EV_P)
2463{
2464#if EV_VERIFY
2465 int i;
2466 WL w;
2467
2468 assert (activecnt >= -1);
2469
2470 assert (fdchangemax >= fdchangecnt);
2471 for (i = 0; i < fdchangecnt; ++i)
2472 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2473
2474 assert (anfdmax >= 0);
2475 for (i = 0; i < anfdmax; ++i)
2476 for (w = anfds [i].head; w; w = w->next)
2477 {
2478 verify_watcher (EV_A_ (W)w);
2479 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2480 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2481 }
2482
2483 assert (timermax >= timercnt);
2484 verify_heap (EV_A_ timers, timercnt);
2485
2486#if EV_PERIODIC_ENABLE
2487 assert (periodicmax >= periodiccnt);
2488 verify_heap (EV_A_ periodics, periodiccnt);
2489#endif
2490
2491 for (i = NUMPRI; i--; )
2492 {
2493 assert (pendingmax [i] >= pendingcnt [i]);
2494#if EV_IDLE_ENABLE
2495 assert (idleall >= 0);
2496 assert (idlemax [i] >= idlecnt [i]);
2497 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2498#endif
2499 }
2500
2501#if EV_FORK_ENABLE
2502 assert (forkmax >= forkcnt);
2503 array_verify (EV_A_ (W *)forks, forkcnt);
2504#endif
2505
2506#if EV_CLEANUP_ENABLE
2507 assert (cleanupmax >= cleanupcnt);
2508 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2509#endif
2510
2511#if EV_ASYNC_ENABLE
2512 assert (asyncmax >= asynccnt);
2513 array_verify (EV_A_ (W *)asyncs, asynccnt);
2514#endif
2515
2516#if EV_PREPARE_ENABLE
2517 assert (preparemax >= preparecnt);
2518 array_verify (EV_A_ (W *)prepares, preparecnt);
2519#endif
2520
2521#if EV_CHECK_ENABLE
2522 assert (checkmax >= checkcnt);
2523 array_verify (EV_A_ (W *)checks, checkcnt);
2524#endif
2525
2526# if 0
2527#if EV_CHILD_ENABLE
2528 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2529 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2530#endif
2531# endif
2532#endif
2533}
1345#endif 2534#endif
1346 2535
1347#if EV_MULTIPLICITY 2536#if EV_MULTIPLICITY
1348struct ev_loop * 2537struct ev_loop * ecb_cold
1349ev_default_loop_init (unsigned int flags)
1350#else 2538#else
1351int 2539int
2540#endif
1352ev_default_loop (unsigned int flags) 2541ev_default_loop (unsigned int flags)
1353#endif
1354{ 2542{
1355 if (!ev_default_loop_ptr) 2543 if (!ev_default_loop_ptr)
1356 { 2544 {
1357#if EV_MULTIPLICITY 2545#if EV_MULTIPLICITY
1358 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2546 EV_P = ev_default_loop_ptr = &default_loop_struct;
1359#else 2547#else
1360 ev_default_loop_ptr = 1; 2548 ev_default_loop_ptr = 1;
1361#endif 2549#endif
1362 2550
1363 loop_init (EV_A_ flags); 2551 loop_init (EV_A_ flags);
1364 2552
1365 if (ev_backend (EV_A)) 2553 if (ev_backend (EV_A))
1366 { 2554 {
1367#ifndef _WIN32 2555#if EV_CHILD_ENABLE
1368 ev_signal_init (&childev, childcb, SIGCHLD); 2556 ev_signal_init (&childev, childcb, SIGCHLD);
1369 ev_set_priority (&childev, EV_MAXPRI); 2557 ev_set_priority (&childev, EV_MAXPRI);
1370 ev_signal_start (EV_A_ &childev); 2558 ev_signal_start (EV_A_ &childev);
1371 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2559 ev_unref (EV_A); /* child watcher should not keep loop alive */
1372#endif 2560#endif
1377 2565
1378 return ev_default_loop_ptr; 2566 return ev_default_loop_ptr;
1379} 2567}
1380 2568
1381void 2569void
1382ev_default_destroy (void) 2570ev_loop_fork (EV_P)
1383{ 2571{
1384#if EV_MULTIPLICITY
1385 struct ev_loop *loop = ev_default_loop_ptr;
1386#endif
1387
1388#ifndef _WIN32
1389 ev_ref (EV_A); /* child watcher */
1390 ev_signal_stop (EV_A_ &childev);
1391#endif
1392
1393 loop_destroy (EV_A);
1394}
1395
1396void
1397ev_default_fork (void)
1398{
1399#if EV_MULTIPLICITY
1400 struct ev_loop *loop = ev_default_loop_ptr;
1401#endif
1402
1403 if (backend)
1404 postfork = 1; /* must be in line with ev_loop_fork */ 2572 postfork = 1; /* must be in line with ev_default_fork */
1405} 2573}
1406 2574
1407/*****************************************************************************/ 2575/*****************************************************************************/
1408 2576
1409void 2577void
1410ev_invoke (EV_P_ void *w, int revents) 2578ev_invoke (EV_P_ void *w, int revents)
1411{ 2579{
1412 EV_CB_INVOKE ((W)w, revents); 2580 EV_CB_INVOKE ((W)w, revents);
1413} 2581}
1414 2582
1415void inline_speed 2583unsigned int
1416call_pending (EV_P) 2584ev_pending_count (EV_P)
2585{
2586 int pri;
2587 unsigned int count = 0;
2588
2589 for (pri = NUMPRI; pri--; )
2590 count += pendingcnt [pri];
2591
2592 return count;
2593}
2594
2595void noinline
2596ev_invoke_pending (EV_P)
1417{ 2597{
1418 int pri; 2598 int pri;
1419 2599
1420 for (pri = NUMPRI; pri--; ) 2600 for (pri = NUMPRI; pri--; )
1421 while (pendingcnt [pri]) 2601 while (pendingcnt [pri])
1422 { 2602 {
1423 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2603 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1424 2604
1425 if (expect_true (p->w))
1426 {
1427 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1428
1429 p->w->pending = 0; 2605 p->w->pending = 0;
1430 EV_CB_INVOKE (p->w, p->events); 2606 EV_CB_INVOKE (p->w, p->events);
1431 } 2607 EV_FREQUENT_CHECK;
1432 } 2608 }
1433} 2609}
1434 2610
1435void inline_size
1436timers_reify (EV_P)
1437{
1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1439 {
1440 ev_timer *w = (ev_timer *)timers [0];
1441
1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1443
1444 /* first reschedule or stop timer */
1445 if (w->repeat)
1446 {
1447 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1448
1449 ((WT)w)->at += w->repeat;
1450 if (((WT)w)->at < mn_now)
1451 ((WT)w)->at = mn_now;
1452
1453 downheap (timers, timercnt, 0);
1454 }
1455 else
1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1457
1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1459 }
1460}
1461
1462#if EV_PERIODIC_ENABLE
1463void inline_size
1464periodics_reify (EV_P)
1465{
1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1467 {
1468 ev_periodic *w = (ev_periodic *)periodics [0];
1469
1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->reschedule_cb)
1474 {
1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1477 downheap (periodics, periodiccnt, 0);
1478 }
1479 else if (w->interval)
1480 {
1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1484 downheap (periodics, periodiccnt, 0);
1485 }
1486 else
1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1490 }
1491}
1492
1493static void noinline
1494periodics_reschedule (EV_P)
1495{
1496 int i;
1497
1498 /* adjust periodics after time jump */
1499 for (i = 0; i < periodiccnt; ++i)
1500 {
1501 ev_periodic *w = (ev_periodic *)periodics [i];
1502
1503 if (w->reschedule_cb)
1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1505 else if (w->interval)
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 }
1508
1509 /* now rebuild the heap */
1510 for (i = periodiccnt >> 1; i--; )
1511 downheap (periodics, periodiccnt, i);
1512}
1513#endif
1514
1515#if EV_IDLE_ENABLE 2611#if EV_IDLE_ENABLE
1516void inline_size 2612/* make idle watchers pending. this handles the "call-idle */
2613/* only when higher priorities are idle" logic */
2614inline_size void
1517idle_reify (EV_P) 2615idle_reify (EV_P)
1518{ 2616{
1519 if (expect_false (idleall)) 2617 if (expect_false (idleall))
1520 { 2618 {
1521 int pri; 2619 int pri;
1533 } 2631 }
1534 } 2632 }
1535} 2633}
1536#endif 2634#endif
1537 2635
1538void inline_speed 2636/* make timers pending */
2637inline_size void
2638timers_reify (EV_P)
2639{
2640 EV_FREQUENT_CHECK;
2641
2642 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2643 {
2644 do
2645 {
2646 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2647
2648 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2649
2650 /* first reschedule or stop timer */
2651 if (w->repeat)
2652 {
2653 ev_at (w) += w->repeat;
2654 if (ev_at (w) < mn_now)
2655 ev_at (w) = mn_now;
2656
2657 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2658
2659 ANHE_at_cache (timers [HEAP0]);
2660 downheap (timers, timercnt, HEAP0);
2661 }
2662 else
2663 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2664
2665 EV_FREQUENT_CHECK;
2666 feed_reverse (EV_A_ (W)w);
2667 }
2668 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2669
2670 feed_reverse_done (EV_A_ EV_TIMER);
2671 }
2672}
2673
2674#if EV_PERIODIC_ENABLE
2675
2676static void noinline
2677periodic_recalc (EV_P_ ev_periodic *w)
2678{
2679 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2680 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2681
2682 /* the above almost always errs on the low side */
2683 while (at <= ev_rt_now)
2684 {
2685 ev_tstamp nat = at + w->interval;
2686
2687 /* when resolution fails us, we use ev_rt_now */
2688 if (expect_false (nat == at))
2689 {
2690 at = ev_rt_now;
2691 break;
2692 }
2693
2694 at = nat;
2695 }
2696
2697 ev_at (w) = at;
2698}
2699
2700/* make periodics pending */
2701inline_size void
2702periodics_reify (EV_P)
2703{
2704 EV_FREQUENT_CHECK;
2705
2706 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2707 {
2708 int feed_count = 0;
2709
2710 do
2711 {
2712 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2713
2714 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2715
2716 /* first reschedule or stop timer */
2717 if (w->reschedule_cb)
2718 {
2719 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2720
2721 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2722
2723 ANHE_at_cache (periodics [HEAP0]);
2724 downheap (periodics, periodiccnt, HEAP0);
2725 }
2726 else if (w->interval)
2727 {
2728 periodic_recalc (EV_A_ w);
2729 ANHE_at_cache (periodics [HEAP0]);
2730 downheap (periodics, periodiccnt, HEAP0);
2731 }
2732 else
2733 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2734
2735 EV_FREQUENT_CHECK;
2736 feed_reverse (EV_A_ (W)w);
2737 }
2738 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2739
2740 feed_reverse_done (EV_A_ EV_PERIODIC);
2741 }
2742}
2743
2744/* simply recalculate all periodics */
2745/* TODO: maybe ensure that at least one event happens when jumping forward? */
2746static void noinline ecb_cold
2747periodics_reschedule (EV_P)
2748{
2749 int i;
2750
2751 /* adjust periodics after time jump */
2752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2753 {
2754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2755
2756 if (w->reschedule_cb)
2757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2758 else if (w->interval)
2759 periodic_recalc (EV_A_ w);
2760
2761 ANHE_at_cache (periodics [i]);
2762 }
2763
2764 reheap (periodics, periodiccnt);
2765}
2766#endif
2767
2768/* adjust all timers by a given offset */
2769static void noinline ecb_cold
2770timers_reschedule (EV_P_ ev_tstamp adjust)
2771{
2772 int i;
2773
2774 for (i = 0; i < timercnt; ++i)
2775 {
2776 ANHE *he = timers + i + HEAP0;
2777 ANHE_w (*he)->at += adjust;
2778 ANHE_at_cache (*he);
2779 }
2780}
2781
2782/* fetch new monotonic and realtime times from the kernel */
2783/* also detect if there was a timejump, and act accordingly */
2784inline_speed void
1539time_update (EV_P_ ev_tstamp max_block) 2785time_update (EV_P_ ev_tstamp max_block)
1540{ 2786{
1541 int i;
1542
1543#if EV_USE_MONOTONIC 2787#if EV_USE_MONOTONIC
1544 if (expect_true (have_monotonic)) 2788 if (expect_true (have_monotonic))
1545 { 2789 {
2790 int i;
1546 ev_tstamp odiff = rtmn_diff; 2791 ev_tstamp odiff = rtmn_diff;
1547 2792
1548 mn_now = get_clock (); 2793 mn_now = get_clock ();
1549 2794
1550 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2795 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1566 * doesn't hurt either as we only do this on time-jumps or 2811 * doesn't hurt either as we only do this on time-jumps or
1567 * in the unlikely event of having been preempted here. 2812 * in the unlikely event of having been preempted here.
1568 */ 2813 */
1569 for (i = 4; --i; ) 2814 for (i = 4; --i; )
1570 { 2815 {
2816 ev_tstamp diff;
1571 rtmn_diff = ev_rt_now - mn_now; 2817 rtmn_diff = ev_rt_now - mn_now;
1572 2818
1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2819 diff = odiff - rtmn_diff;
2820
2821 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1574 return; /* all is well */ 2822 return; /* all is well */
1575 2823
1576 ev_rt_now = ev_time (); 2824 ev_rt_now = ev_time ();
1577 mn_now = get_clock (); 2825 mn_now = get_clock ();
1578 now_floor = mn_now; 2826 now_floor = mn_now;
1579 } 2827 }
1580 2828
2829 /* no timer adjustment, as the monotonic clock doesn't jump */
2830 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1581# if EV_PERIODIC_ENABLE 2831# if EV_PERIODIC_ENABLE
1582 periodics_reschedule (EV_A); 2832 periodics_reschedule (EV_A);
1583# endif 2833# endif
1584 /* no timer adjustment, as the monotonic clock doesn't jump */
1585 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1586 } 2834 }
1587 else 2835 else
1588#endif 2836#endif
1589 { 2837 {
1590 ev_rt_now = ev_time (); 2838 ev_rt_now = ev_time ();
1591 2839
1592 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2840 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1593 { 2841 {
2842 /* adjust timers. this is easy, as the offset is the same for all of them */
2843 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1594#if EV_PERIODIC_ENABLE 2844#if EV_PERIODIC_ENABLE
1595 periodics_reschedule (EV_A); 2845 periodics_reschedule (EV_A);
1596#endif 2846#endif
1597 /* adjust timers. this is easy, as the offset is the same for all of them */
1598 for (i = 0; i < timercnt; ++i)
1599 ((WT)timers [i])->at += ev_rt_now - mn_now;
1600 } 2847 }
1601 2848
1602 mn_now = ev_rt_now; 2849 mn_now = ev_rt_now;
1603 } 2850 }
1604} 2851}
1605 2852
1606void 2853void
1607ev_ref (EV_P)
1608{
1609 ++activecnt;
1610}
1611
1612void
1613ev_unref (EV_P)
1614{
1615 --activecnt;
1616}
1617
1618static int loop_done;
1619
1620void
1621ev_loop (EV_P_ int flags) 2854ev_run (EV_P_ int flags)
1622{ 2855{
2856#if EV_FEATURE_API
2857 ++loop_depth;
2858#endif
2859
2860 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2861
1623 loop_done = EVUNLOOP_CANCEL; 2862 loop_done = EVBREAK_CANCEL;
1624 2863
1625 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2864 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1626 2865
1627 do 2866 do
1628 { 2867 {
2868#if EV_VERIFY >= 2
2869 ev_verify (EV_A);
2870#endif
2871
1629#ifndef _WIN32 2872#ifndef _WIN32
1630 if (expect_false (curpid)) /* penalise the forking check even more */ 2873 if (expect_false (curpid)) /* penalise the forking check even more */
1631 if (expect_false (getpid () != curpid)) 2874 if (expect_false (getpid () != curpid))
1632 { 2875 {
1633 curpid = getpid (); 2876 curpid = getpid ();
1639 /* we might have forked, so queue fork handlers */ 2882 /* we might have forked, so queue fork handlers */
1640 if (expect_false (postfork)) 2883 if (expect_false (postfork))
1641 if (forkcnt) 2884 if (forkcnt)
1642 { 2885 {
1643 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2886 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1644 call_pending (EV_A); 2887 EV_INVOKE_PENDING;
1645 } 2888 }
1646#endif 2889#endif
1647 2890
2891#if EV_PREPARE_ENABLE
1648 /* queue prepare watchers (and execute them) */ 2892 /* queue prepare watchers (and execute them) */
1649 if (expect_false (preparecnt)) 2893 if (expect_false (preparecnt))
1650 { 2894 {
1651 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2895 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1652 call_pending (EV_A); 2896 EV_INVOKE_PENDING;
1653 } 2897 }
2898#endif
1654 2899
1655 if (expect_false (!activecnt)) 2900 if (expect_false (loop_done))
1656 break; 2901 break;
1657 2902
1658 /* we might have forked, so reify kernel state if necessary */ 2903 /* we might have forked, so reify kernel state if necessary */
1659 if (expect_false (postfork)) 2904 if (expect_false (postfork))
1660 loop_fork (EV_A); 2905 loop_fork (EV_A);
1665 /* calculate blocking time */ 2910 /* calculate blocking time */
1666 { 2911 {
1667 ev_tstamp waittime = 0.; 2912 ev_tstamp waittime = 0.;
1668 ev_tstamp sleeptime = 0.; 2913 ev_tstamp sleeptime = 0.;
1669 2914
2915 /* remember old timestamp for io_blocktime calculation */
2916 ev_tstamp prev_mn_now = mn_now;
2917
2918 /* update time to cancel out callback processing overhead */
2919 time_update (EV_A_ 1e100);
2920
2921 /* from now on, we want a pipe-wake-up */
2922 pipe_write_wanted = 1;
2923
2924 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2925
1670 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2926 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1671 { 2927 {
1672 /* update time to cancel out callback processing overhead */
1673 time_update (EV_A_ 1e100);
1674
1675 waittime = MAX_BLOCKTIME; 2928 waittime = MAX_BLOCKTIME;
1676 2929
1677 if (timercnt) 2930 if (timercnt)
1678 { 2931 {
1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2932 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1680 if (waittime > to) waittime = to; 2933 if (waittime > to) waittime = to;
1681 } 2934 }
1682 2935
1683#if EV_PERIODIC_ENABLE 2936#if EV_PERIODIC_ENABLE
1684 if (periodiccnt) 2937 if (periodiccnt)
1685 { 2938 {
1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2939 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1687 if (waittime > to) waittime = to; 2940 if (waittime > to) waittime = to;
1688 } 2941 }
1689#endif 2942#endif
1690 2943
2944 /* don't let timeouts decrease the waittime below timeout_blocktime */
1691 if (expect_false (waittime < timeout_blocktime)) 2945 if (expect_false (waittime < timeout_blocktime))
1692 waittime = timeout_blocktime; 2946 waittime = timeout_blocktime;
1693 2947
1694 sleeptime = waittime - backend_fudge; 2948 /* at this point, we NEED to wait, so we have to ensure */
2949 /* to pass a minimum nonzero value to the backend */
2950 if (expect_false (waittime < backend_mintime))
2951 waittime = backend_mintime;
1695 2952
2953 /* extra check because io_blocktime is commonly 0 */
1696 if (expect_true (sleeptime > io_blocktime)) 2954 if (expect_false (io_blocktime))
1697 sleeptime = io_blocktime;
1698
1699 if (sleeptime)
1700 { 2955 {
2956 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2957
2958 if (sleeptime > waittime - backend_mintime)
2959 sleeptime = waittime - backend_mintime;
2960
2961 if (expect_true (sleeptime > 0.))
2962 {
1701 ev_sleep (sleeptime); 2963 ev_sleep (sleeptime);
1702 waittime -= sleeptime; 2964 waittime -= sleeptime;
2965 }
1703 } 2966 }
1704 } 2967 }
1705 2968
2969#if EV_FEATURE_API
1706 ++loop_count; 2970 ++loop_count;
2971#endif
2972 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1707 backend_poll (EV_A_ waittime); 2973 backend_poll (EV_A_ waittime);
2974 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2975
2976 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2977
2978 if (pipe_write_skipped)
2979 {
2980 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2981 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2982 }
2983
1708 2984
1709 /* update ev_rt_now, do magic */ 2985 /* update ev_rt_now, do magic */
1710 time_update (EV_A_ waittime + sleeptime); 2986 time_update (EV_A_ waittime + sleeptime);
1711 } 2987 }
1712 2988
1719#if EV_IDLE_ENABLE 2995#if EV_IDLE_ENABLE
1720 /* queue idle watchers unless other events are pending */ 2996 /* queue idle watchers unless other events are pending */
1721 idle_reify (EV_A); 2997 idle_reify (EV_A);
1722#endif 2998#endif
1723 2999
3000#if EV_CHECK_ENABLE
1724 /* queue check watchers, to be executed first */ 3001 /* queue check watchers, to be executed first */
1725 if (expect_false (checkcnt)) 3002 if (expect_false (checkcnt))
1726 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3003 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3004#endif
1727 3005
1728 call_pending (EV_A); 3006 EV_INVOKE_PENDING;
1729 } 3007 }
1730 while (expect_true ( 3008 while (expect_true (
1731 activecnt 3009 activecnt
1732 && !loop_done 3010 && !loop_done
1733 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3011 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1734 )); 3012 ));
1735 3013
1736 if (loop_done == EVUNLOOP_ONE) 3014 if (loop_done == EVBREAK_ONE)
1737 loop_done = EVUNLOOP_CANCEL; 3015 loop_done = EVBREAK_CANCEL;
3016
3017#if EV_FEATURE_API
3018 --loop_depth;
3019#endif
1738} 3020}
1739 3021
1740void 3022void
1741ev_unloop (EV_P_ int how) 3023ev_break (EV_P_ int how)
1742{ 3024{
1743 loop_done = how; 3025 loop_done = how;
1744} 3026}
1745 3027
3028void
3029ev_ref (EV_P)
3030{
3031 ++activecnt;
3032}
3033
3034void
3035ev_unref (EV_P)
3036{
3037 --activecnt;
3038}
3039
3040void
3041ev_now_update (EV_P)
3042{
3043 time_update (EV_A_ 1e100);
3044}
3045
3046void
3047ev_suspend (EV_P)
3048{
3049 ev_now_update (EV_A);
3050}
3051
3052void
3053ev_resume (EV_P)
3054{
3055 ev_tstamp mn_prev = mn_now;
3056
3057 ev_now_update (EV_A);
3058 timers_reschedule (EV_A_ mn_now - mn_prev);
3059#if EV_PERIODIC_ENABLE
3060 /* TODO: really do this? */
3061 periodics_reschedule (EV_A);
3062#endif
3063}
3064
1746/*****************************************************************************/ 3065/*****************************************************************************/
3066/* singly-linked list management, used when the expected list length is short */
1747 3067
1748void inline_size 3068inline_size void
1749wlist_add (WL *head, WL elem) 3069wlist_add (WL *head, WL elem)
1750{ 3070{
1751 elem->next = *head; 3071 elem->next = *head;
1752 *head = elem; 3072 *head = elem;
1753} 3073}
1754 3074
1755void inline_size 3075inline_size void
1756wlist_del (WL *head, WL elem) 3076wlist_del (WL *head, WL elem)
1757{ 3077{
1758 while (*head) 3078 while (*head)
1759 { 3079 {
1760 if (*head == elem) 3080 if (expect_true (*head == elem))
1761 { 3081 {
1762 *head = elem->next; 3082 *head = elem->next;
1763 return; 3083 break;
1764 } 3084 }
1765 3085
1766 head = &(*head)->next; 3086 head = &(*head)->next;
1767 } 3087 }
1768} 3088}
1769 3089
1770void inline_speed 3090/* internal, faster, version of ev_clear_pending */
3091inline_speed void
1771clear_pending (EV_P_ W w) 3092clear_pending (EV_P_ W w)
1772{ 3093{
1773 if (w->pending) 3094 if (w->pending)
1774 { 3095 {
1775 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3096 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1776 w->pending = 0; 3097 w->pending = 0;
1777 } 3098 }
1778} 3099}
1779 3100
1780int 3101int
1784 int pending = w_->pending; 3105 int pending = w_->pending;
1785 3106
1786 if (expect_true (pending)) 3107 if (expect_true (pending))
1787 { 3108 {
1788 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3109 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3110 p->w = (W)&pending_w;
1789 w_->pending = 0; 3111 w_->pending = 0;
1790 p->w = 0;
1791 return p->events; 3112 return p->events;
1792 } 3113 }
1793 else 3114 else
1794 return 0; 3115 return 0;
1795} 3116}
1796 3117
1797void inline_size 3118inline_size void
1798pri_adjust (EV_P_ W w) 3119pri_adjust (EV_P_ W w)
1799{ 3120{
1800 int pri = w->priority; 3121 int pri = ev_priority (w);
1801 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3122 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1802 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3123 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1803 w->priority = pri; 3124 ev_set_priority (w, pri);
1804} 3125}
1805 3126
1806void inline_speed 3127inline_speed void
1807ev_start (EV_P_ W w, int active) 3128ev_start (EV_P_ W w, int active)
1808{ 3129{
1809 pri_adjust (EV_A_ w); 3130 pri_adjust (EV_A_ w);
1810 w->active = active; 3131 w->active = active;
1811 ev_ref (EV_A); 3132 ev_ref (EV_A);
1812} 3133}
1813 3134
1814void inline_size 3135inline_size void
1815ev_stop (EV_P_ W w) 3136ev_stop (EV_P_ W w)
1816{ 3137{
1817 ev_unref (EV_A); 3138 ev_unref (EV_A);
1818 w->active = 0; 3139 w->active = 0;
1819} 3140}
1826 int fd = w->fd; 3147 int fd = w->fd;
1827 3148
1828 if (expect_false (ev_is_active (w))) 3149 if (expect_false (ev_is_active (w)))
1829 return; 3150 return;
1830 3151
1831 assert (("ev_io_start called with negative fd", fd >= 0)); 3152 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3153 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3154
3155 EV_FREQUENT_CHECK;
1832 3156
1833 ev_start (EV_A_ (W)w, 1); 3157 ev_start (EV_A_ (W)w, 1);
1834 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3158 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1835 wlist_add (&anfds[fd].head, (WL)w); 3159 wlist_add (&anfds[fd].head, (WL)w);
1836 3160
1837 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3161 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1838 w->events &= ~EV_IOFDSET; 3162 w->events &= ~EV__IOFDSET;
3163
3164 EV_FREQUENT_CHECK;
1839} 3165}
1840 3166
1841void noinline 3167void noinline
1842ev_io_stop (EV_P_ ev_io *w) 3168ev_io_stop (EV_P_ ev_io *w)
1843{ 3169{
1844 clear_pending (EV_A_ (W)w); 3170 clear_pending (EV_A_ (W)w);
1845 if (expect_false (!ev_is_active (w))) 3171 if (expect_false (!ev_is_active (w)))
1846 return; 3172 return;
1847 3173
1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3174 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3175
3176 EV_FREQUENT_CHECK;
1849 3177
1850 wlist_del (&anfds[w->fd].head, (WL)w); 3178 wlist_del (&anfds[w->fd].head, (WL)w);
1851 ev_stop (EV_A_ (W)w); 3179 ev_stop (EV_A_ (W)w);
1852 3180
1853 fd_change (EV_A_ w->fd, 1); 3181 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3182
3183 EV_FREQUENT_CHECK;
1854} 3184}
1855 3185
1856void noinline 3186void noinline
1857ev_timer_start (EV_P_ ev_timer *w) 3187ev_timer_start (EV_P_ ev_timer *w)
1858{ 3188{
1859 if (expect_false (ev_is_active (w))) 3189 if (expect_false (ev_is_active (w)))
1860 return; 3190 return;
1861 3191
1862 ((WT)w)->at += mn_now; 3192 ev_at (w) += mn_now;
1863 3193
1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3194 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1865 3195
3196 EV_FREQUENT_CHECK;
3197
3198 ++timercnt;
1866 ev_start (EV_A_ (W)w, ++timercnt); 3199 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3200 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1868 timers [timercnt - 1] = (WT)w; 3201 ANHE_w (timers [ev_active (w)]) = (WT)w;
1869 upheap (timers, timercnt - 1); 3202 ANHE_at_cache (timers [ev_active (w)]);
3203 upheap (timers, ev_active (w));
1870 3204
3205 EV_FREQUENT_CHECK;
3206
1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3207 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1872} 3208}
1873 3209
1874void noinline 3210void noinline
1875ev_timer_stop (EV_P_ ev_timer *w) 3211ev_timer_stop (EV_P_ ev_timer *w)
1876{ 3212{
1877 clear_pending (EV_A_ (W)w); 3213 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 3214 if (expect_false (!ev_is_active (w)))
1879 return; 3215 return;
1880 3216
1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3217 EV_FREQUENT_CHECK;
1882 3218
1883 { 3219 {
1884 int active = ((W)w)->active; 3220 int active = ev_active (w);
1885 3221
3222 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3223
3224 --timercnt;
3225
1886 if (expect_true (--active < --timercnt)) 3226 if (expect_true (active < timercnt + HEAP0))
1887 { 3227 {
1888 timers [active] = timers [timercnt]; 3228 timers [active] = timers [timercnt + HEAP0];
1889 adjustheap (timers, timercnt, active); 3229 adjustheap (timers, timercnt, active);
1890 } 3230 }
1891 } 3231 }
1892 3232
1893 ((WT)w)->at -= mn_now; 3233 ev_at (w) -= mn_now;
1894 3234
1895 ev_stop (EV_A_ (W)w); 3235 ev_stop (EV_A_ (W)w);
3236
3237 EV_FREQUENT_CHECK;
1896} 3238}
1897 3239
1898void noinline 3240void noinline
1899ev_timer_again (EV_P_ ev_timer *w) 3241ev_timer_again (EV_P_ ev_timer *w)
1900{ 3242{
3243 EV_FREQUENT_CHECK;
3244
1901 if (ev_is_active (w)) 3245 if (ev_is_active (w))
1902 { 3246 {
1903 if (w->repeat) 3247 if (w->repeat)
1904 { 3248 {
1905 ((WT)w)->at = mn_now + w->repeat; 3249 ev_at (w) = mn_now + w->repeat;
3250 ANHE_at_cache (timers [ev_active (w)]);
1906 adjustheap (timers, timercnt, ((W)w)->active - 1); 3251 adjustheap (timers, timercnt, ev_active (w));
1907 } 3252 }
1908 else 3253 else
1909 ev_timer_stop (EV_A_ w); 3254 ev_timer_stop (EV_A_ w);
1910 } 3255 }
1911 else if (w->repeat) 3256 else if (w->repeat)
1912 { 3257 {
1913 w->at = w->repeat; 3258 ev_at (w) = w->repeat;
1914 ev_timer_start (EV_A_ w); 3259 ev_timer_start (EV_A_ w);
1915 } 3260 }
3261
3262 EV_FREQUENT_CHECK;
3263}
3264
3265ev_tstamp
3266ev_timer_remaining (EV_P_ ev_timer *w)
3267{
3268 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1916} 3269}
1917 3270
1918#if EV_PERIODIC_ENABLE 3271#if EV_PERIODIC_ENABLE
1919void noinline 3272void noinline
1920ev_periodic_start (EV_P_ ev_periodic *w) 3273ev_periodic_start (EV_P_ ev_periodic *w)
1921{ 3274{
1922 if (expect_false (ev_is_active (w))) 3275 if (expect_false (ev_is_active (w)))
1923 return; 3276 return;
1924 3277
1925 if (w->reschedule_cb) 3278 if (w->reschedule_cb)
1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3279 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1927 else if (w->interval) 3280 else if (w->interval)
1928 { 3281 {
1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3282 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1930 /* this formula differs from the one in periodic_reify because we do not always round up */ 3283 periodic_recalc (EV_A_ w);
1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1932 } 3284 }
1933 else 3285 else
1934 ((WT)w)->at = w->offset; 3286 ev_at (w) = w->offset;
1935 3287
3288 EV_FREQUENT_CHECK;
3289
3290 ++periodiccnt;
1936 ev_start (EV_A_ (W)w, ++periodiccnt); 3291 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3292 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1938 periodics [periodiccnt - 1] = (WT)w; 3293 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1939 upheap (periodics, periodiccnt - 1); 3294 ANHE_at_cache (periodics [ev_active (w)]);
3295 upheap (periodics, ev_active (w));
1940 3296
3297 EV_FREQUENT_CHECK;
3298
1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3299 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1942} 3300}
1943 3301
1944void noinline 3302void noinline
1945ev_periodic_stop (EV_P_ ev_periodic *w) 3303ev_periodic_stop (EV_P_ ev_periodic *w)
1946{ 3304{
1947 clear_pending (EV_A_ (W)w); 3305 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 3306 if (expect_false (!ev_is_active (w)))
1949 return; 3307 return;
1950 3308
1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3309 EV_FREQUENT_CHECK;
1952 3310
1953 { 3311 {
1954 int active = ((W)w)->active; 3312 int active = ev_active (w);
1955 3313
3314 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3315
3316 --periodiccnt;
3317
1956 if (expect_true (--active < --periodiccnt)) 3318 if (expect_true (active < periodiccnt + HEAP0))
1957 { 3319 {
1958 periodics [active] = periodics [periodiccnt]; 3320 periodics [active] = periodics [periodiccnt + HEAP0];
1959 adjustheap (periodics, periodiccnt, active); 3321 adjustheap (periodics, periodiccnt, active);
1960 } 3322 }
1961 } 3323 }
1962 3324
1963 ev_stop (EV_A_ (W)w); 3325 ev_stop (EV_A_ (W)w);
3326
3327 EV_FREQUENT_CHECK;
1964} 3328}
1965 3329
1966void noinline 3330void noinline
1967ev_periodic_again (EV_P_ ev_periodic *w) 3331ev_periodic_again (EV_P_ ev_periodic *w)
1968{ 3332{
1974 3338
1975#ifndef SA_RESTART 3339#ifndef SA_RESTART
1976# define SA_RESTART 0 3340# define SA_RESTART 0
1977#endif 3341#endif
1978 3342
3343#if EV_SIGNAL_ENABLE
3344
1979void noinline 3345void noinline
1980ev_signal_start (EV_P_ ev_signal *w) 3346ev_signal_start (EV_P_ ev_signal *w)
1981{ 3347{
1982#if EV_MULTIPLICITY
1983 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1984#endif
1985 if (expect_false (ev_is_active (w))) 3348 if (expect_false (ev_is_active (w)))
1986 return; 3349 return;
1987 3350
1988 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3351 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1989 3352
1990 evpipe_init (EV_A); 3353#if EV_MULTIPLICITY
3354 assert (("libev: a signal must not be attached to two different loops",
3355 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1991 3356
3357 signals [w->signum - 1].loop = EV_A;
3358#endif
3359
3360 EV_FREQUENT_CHECK;
3361
3362#if EV_USE_SIGNALFD
3363 if (sigfd == -2)
1992 { 3364 {
1993#ifndef _WIN32 3365 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1994 sigset_t full, prev; 3366 if (sigfd < 0 && errno == EINVAL)
1995 sigfillset (&full); 3367 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1996 sigprocmask (SIG_SETMASK, &full, &prev);
1997#endif
1998 3368
1999 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3369 if (sigfd >= 0)
3370 {
3371 fd_intern (sigfd); /* doing it twice will not hurt */
2000 3372
2001#ifndef _WIN32 3373 sigemptyset (&sigfd_set);
2002 sigprocmask (SIG_SETMASK, &prev, 0); 3374
2003#endif 3375 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3376 ev_set_priority (&sigfd_w, EV_MAXPRI);
3377 ev_io_start (EV_A_ &sigfd_w);
3378 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3379 }
2004 } 3380 }
3381
3382 if (sigfd >= 0)
3383 {
3384 /* TODO: check .head */
3385 sigaddset (&sigfd_set, w->signum);
3386 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3387
3388 signalfd (sigfd, &sigfd_set, 0);
3389 }
3390#endif
2005 3391
2006 ev_start (EV_A_ (W)w, 1); 3392 ev_start (EV_A_ (W)w, 1);
2007 wlist_add (&signals [w->signum - 1].head, (WL)w); 3393 wlist_add (&signals [w->signum - 1].head, (WL)w);
2008 3394
2009 if (!((WL)w)->next) 3395 if (!((WL)w)->next)
3396# if EV_USE_SIGNALFD
3397 if (sigfd < 0) /*TODO*/
3398# endif
2010 { 3399 {
2011#if _WIN32 3400# ifdef _WIN32
3401 evpipe_init (EV_A);
3402
2012 signal (w->signum, ev_sighandler); 3403 signal (w->signum, ev_sighandler);
2013#else 3404# else
2014 struct sigaction sa; 3405 struct sigaction sa;
3406
3407 evpipe_init (EV_A);
3408
2015 sa.sa_handler = ev_sighandler; 3409 sa.sa_handler = ev_sighandler;
2016 sigfillset (&sa.sa_mask); 3410 sigfillset (&sa.sa_mask);
2017 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3411 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2018 sigaction (w->signum, &sa, 0); 3412 sigaction (w->signum, &sa, 0);
3413
3414 if (origflags & EVFLAG_NOSIGMASK)
3415 {
3416 sigemptyset (&sa.sa_mask);
3417 sigaddset (&sa.sa_mask, w->signum);
3418 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3419 }
2019#endif 3420#endif
2020 } 3421 }
3422
3423 EV_FREQUENT_CHECK;
2021} 3424}
2022 3425
2023void noinline 3426void noinline
2024ev_signal_stop (EV_P_ ev_signal *w) 3427ev_signal_stop (EV_P_ ev_signal *w)
2025{ 3428{
2026 clear_pending (EV_A_ (W)w); 3429 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 3430 if (expect_false (!ev_is_active (w)))
2028 return; 3431 return;
2029 3432
3433 EV_FREQUENT_CHECK;
3434
2030 wlist_del (&signals [w->signum - 1].head, (WL)w); 3435 wlist_del (&signals [w->signum - 1].head, (WL)w);
2031 ev_stop (EV_A_ (W)w); 3436 ev_stop (EV_A_ (W)w);
2032 3437
2033 if (!signals [w->signum - 1].head) 3438 if (!signals [w->signum - 1].head)
3439 {
3440#if EV_MULTIPLICITY
3441 signals [w->signum - 1].loop = 0; /* unattach from signal */
3442#endif
3443#if EV_USE_SIGNALFD
3444 if (sigfd >= 0)
3445 {
3446 sigset_t ss;
3447
3448 sigemptyset (&ss);
3449 sigaddset (&ss, w->signum);
3450 sigdelset (&sigfd_set, w->signum);
3451
3452 signalfd (sigfd, &sigfd_set, 0);
3453 sigprocmask (SIG_UNBLOCK, &ss, 0);
3454 }
3455 else
3456#endif
2034 signal (w->signum, SIG_DFL); 3457 signal (w->signum, SIG_DFL);
3458 }
3459
3460 EV_FREQUENT_CHECK;
2035} 3461}
3462
3463#endif
3464
3465#if EV_CHILD_ENABLE
2036 3466
2037void 3467void
2038ev_child_start (EV_P_ ev_child *w) 3468ev_child_start (EV_P_ ev_child *w)
2039{ 3469{
2040#if EV_MULTIPLICITY 3470#if EV_MULTIPLICITY
2041 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3471 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2042#endif 3472#endif
2043 if (expect_false (ev_is_active (w))) 3473 if (expect_false (ev_is_active (w)))
2044 return; 3474 return;
2045 3475
3476 EV_FREQUENT_CHECK;
3477
2046 ev_start (EV_A_ (W)w, 1); 3478 ev_start (EV_A_ (W)w, 1);
2047 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3479 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3480
3481 EV_FREQUENT_CHECK;
2048} 3482}
2049 3483
2050void 3484void
2051ev_child_stop (EV_P_ ev_child *w) 3485ev_child_stop (EV_P_ ev_child *w)
2052{ 3486{
2053 clear_pending (EV_A_ (W)w); 3487 clear_pending (EV_A_ (W)w);
2054 if (expect_false (!ev_is_active (w))) 3488 if (expect_false (!ev_is_active (w)))
2055 return; 3489 return;
2056 3490
3491 EV_FREQUENT_CHECK;
3492
2057 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3493 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2058 ev_stop (EV_A_ (W)w); 3494 ev_stop (EV_A_ (W)w);
3495
3496 EV_FREQUENT_CHECK;
2059} 3497}
3498
3499#endif
2060 3500
2061#if EV_STAT_ENABLE 3501#if EV_STAT_ENABLE
2062 3502
2063# ifdef _WIN32 3503# ifdef _WIN32
2064# undef lstat 3504# undef lstat
2065# define lstat(a,b) _stati64 (a,b) 3505# define lstat(a,b) _stati64 (a,b)
2066# endif 3506# endif
2067 3507
2068#define DEF_STAT_INTERVAL 5.0074891 3508#define DEF_STAT_INTERVAL 5.0074891
3509#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2069#define MIN_STAT_INTERVAL 0.1074891 3510#define MIN_STAT_INTERVAL 0.1074891
2070 3511
2071static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3512static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2072 3513
2073#if EV_USE_INOTIFY 3514#if EV_USE_INOTIFY
2074# define EV_INOTIFY_BUFSIZE 8192 3515
3516/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3517# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2075 3518
2076static void noinline 3519static void noinline
2077infy_add (EV_P_ ev_stat *w) 3520infy_add (EV_P_ ev_stat *w)
2078{ 3521{
2079 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3522 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2080 3523
2081 if (w->wd < 0) 3524 if (w->wd >= 0)
3525 {
3526 struct statfs sfs;
3527
3528 /* now local changes will be tracked by inotify, but remote changes won't */
3529 /* unless the filesystem is known to be local, we therefore still poll */
3530 /* also do poll on <2.6.25, but with normal frequency */
3531
3532 if (!fs_2625)
3533 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3534 else if (!statfs (w->path, &sfs)
3535 && (sfs.f_type == 0x1373 /* devfs */
3536 || sfs.f_type == 0xEF53 /* ext2/3 */
3537 || sfs.f_type == 0x3153464a /* jfs */
3538 || sfs.f_type == 0x52654973 /* reiser3 */
3539 || sfs.f_type == 0x01021994 /* tempfs */
3540 || sfs.f_type == 0x58465342 /* xfs */))
3541 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3542 else
3543 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2082 { 3544 }
2083 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3545 else
3546 {
3547 /* can't use inotify, continue to stat */
3548 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2084 3549
2085 /* monitor some parent directory for speedup hints */ 3550 /* if path is not there, monitor some parent directory for speedup hints */
3551 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3552 /* but an efficiency issue only */
2086 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3553 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2087 { 3554 {
2088 char path [4096]; 3555 char path [4096];
2089 strcpy (path, w->path); 3556 strcpy (path, w->path);
2090 3557
2093 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3560 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2094 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3561 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2095 3562
2096 char *pend = strrchr (path, '/'); 3563 char *pend = strrchr (path, '/');
2097 3564
2098 if (!pend) 3565 if (!pend || pend == path)
2099 break; /* whoops, no '/', complain to your admin */ 3566 break;
2100 3567
2101 *pend = 0; 3568 *pend = 0;
2102 w->wd = inotify_add_watch (fs_fd, path, mask); 3569 w->wd = inotify_add_watch (fs_fd, path, mask);
2103 } 3570 }
2104 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3571 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2105 } 3572 }
2106 } 3573 }
2107 else
2108 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2109 3574
2110 if (w->wd >= 0) 3575 if (w->wd >= 0)
2111 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3576 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3577
3578 /* now re-arm timer, if required */
3579 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3580 ev_timer_again (EV_A_ &w->timer);
3581 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2112} 3582}
2113 3583
2114static void noinline 3584static void noinline
2115infy_del (EV_P_ ev_stat *w) 3585infy_del (EV_P_ ev_stat *w)
2116{ 3586{
2119 3589
2120 if (wd < 0) 3590 if (wd < 0)
2121 return; 3591 return;
2122 3592
2123 w->wd = -2; 3593 w->wd = -2;
2124 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3594 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2125 wlist_del (&fs_hash [slot].head, (WL)w); 3595 wlist_del (&fs_hash [slot].head, (WL)w);
2126 3596
2127 /* remove this watcher, if others are watching it, they will rearm */ 3597 /* remove this watcher, if others are watching it, they will rearm */
2128 inotify_rm_watch (fs_fd, wd); 3598 inotify_rm_watch (fs_fd, wd);
2129} 3599}
2130 3600
2131static void noinline 3601static void noinline
2132infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3602infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2133{ 3603{
2134 if (slot < 0) 3604 if (slot < 0)
2135 /* overflow, need to check for all hahs slots */ 3605 /* overflow, need to check for all hash slots */
2136 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3606 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2137 infy_wd (EV_A_ slot, wd, ev); 3607 infy_wd (EV_A_ slot, wd, ev);
2138 else 3608 else
2139 { 3609 {
2140 WL w_; 3610 WL w_;
2141 3611
2142 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3612 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2143 { 3613 {
2144 ev_stat *w = (ev_stat *)w_; 3614 ev_stat *w = (ev_stat *)w_;
2145 w_ = w_->next; /* lets us remove this watcher and all before it */ 3615 w_ = w_->next; /* lets us remove this watcher and all before it */
2146 3616
2147 if (w->wd == wd || wd == -1) 3617 if (w->wd == wd || wd == -1)
2148 { 3618 {
2149 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3619 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2150 { 3620 {
3621 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2151 w->wd = -1; 3622 w->wd = -1;
2152 infy_add (EV_A_ w); /* re-add, no matter what */ 3623 infy_add (EV_A_ w); /* re-add, no matter what */
2153 } 3624 }
2154 3625
2155 stat_timer_cb (EV_A_ &w->timer, 0); 3626 stat_timer_cb (EV_A_ &w->timer, 0);
2160 3631
2161static void 3632static void
2162infy_cb (EV_P_ ev_io *w, int revents) 3633infy_cb (EV_P_ ev_io *w, int revents)
2163{ 3634{
2164 char buf [EV_INOTIFY_BUFSIZE]; 3635 char buf [EV_INOTIFY_BUFSIZE];
2165 struct inotify_event *ev = (struct inotify_event *)buf;
2166 int ofs; 3636 int ofs;
2167 int len = read (fs_fd, buf, sizeof (buf)); 3637 int len = read (fs_fd, buf, sizeof (buf));
2168 3638
2169 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3639 for (ofs = 0; ofs < len; )
3640 {
3641 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2170 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3642 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3643 ofs += sizeof (struct inotify_event) + ev->len;
3644 }
2171} 3645}
2172 3646
2173void inline_size 3647inline_size void ecb_cold
3648ev_check_2625 (EV_P)
3649{
3650 /* kernels < 2.6.25 are borked
3651 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3652 */
3653 if (ev_linux_version () < 0x020619)
3654 return;
3655
3656 fs_2625 = 1;
3657}
3658
3659inline_size int
3660infy_newfd (void)
3661{
3662#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3663 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3664 if (fd >= 0)
3665 return fd;
3666#endif
3667 return inotify_init ();
3668}
3669
3670inline_size void
2174infy_init (EV_P) 3671infy_init (EV_P)
2175{ 3672{
2176 if (fs_fd != -2) 3673 if (fs_fd != -2)
2177 return; 3674 return;
2178 3675
3676 fs_fd = -1;
3677
3678 ev_check_2625 (EV_A);
3679
2179 fs_fd = inotify_init (); 3680 fs_fd = infy_newfd ();
2180 3681
2181 if (fs_fd >= 0) 3682 if (fs_fd >= 0)
2182 { 3683 {
3684 fd_intern (fs_fd);
2183 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3685 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2184 ev_set_priority (&fs_w, EV_MAXPRI); 3686 ev_set_priority (&fs_w, EV_MAXPRI);
2185 ev_io_start (EV_A_ &fs_w); 3687 ev_io_start (EV_A_ &fs_w);
3688 ev_unref (EV_A);
2186 } 3689 }
2187} 3690}
2188 3691
2189void inline_size 3692inline_size void
2190infy_fork (EV_P) 3693infy_fork (EV_P)
2191{ 3694{
2192 int slot; 3695 int slot;
2193 3696
2194 if (fs_fd < 0) 3697 if (fs_fd < 0)
2195 return; 3698 return;
2196 3699
3700 ev_ref (EV_A);
3701 ev_io_stop (EV_A_ &fs_w);
2197 close (fs_fd); 3702 close (fs_fd);
2198 fs_fd = inotify_init (); 3703 fs_fd = infy_newfd ();
2199 3704
3705 if (fs_fd >= 0)
3706 {
3707 fd_intern (fs_fd);
3708 ev_io_set (&fs_w, fs_fd, EV_READ);
3709 ev_io_start (EV_A_ &fs_w);
3710 ev_unref (EV_A);
3711 }
3712
2200 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3713 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2201 { 3714 {
2202 WL w_ = fs_hash [slot].head; 3715 WL w_ = fs_hash [slot].head;
2203 fs_hash [slot].head = 0; 3716 fs_hash [slot].head = 0;
2204 3717
2205 while (w_) 3718 while (w_)
2210 w->wd = -1; 3723 w->wd = -1;
2211 3724
2212 if (fs_fd >= 0) 3725 if (fs_fd >= 0)
2213 infy_add (EV_A_ w); /* re-add, no matter what */ 3726 infy_add (EV_A_ w); /* re-add, no matter what */
2214 else 3727 else
3728 {
3729 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3730 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2215 ev_timer_start (EV_A_ &w->timer); 3731 ev_timer_again (EV_A_ &w->timer);
3732 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3733 }
2216 } 3734 }
2217
2218 } 3735 }
2219} 3736}
2220 3737
3738#endif
3739
3740#ifdef _WIN32
3741# define EV_LSTAT(p,b) _stati64 (p, b)
3742#else
3743# define EV_LSTAT(p,b) lstat (p, b)
2221#endif 3744#endif
2222 3745
2223void 3746void
2224ev_stat_stat (EV_P_ ev_stat *w) 3747ev_stat_stat (EV_P_ ev_stat *w)
2225{ 3748{
2232static void noinline 3755static void noinline
2233stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3756stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2234{ 3757{
2235 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3758 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2236 3759
2237 /* we copy this here each the time so that */ 3760 ev_statdata prev = w->attr;
2238 /* prev has the old value when the callback gets invoked */
2239 w->prev = w->attr;
2240 ev_stat_stat (EV_A_ w); 3761 ev_stat_stat (EV_A_ w);
2241 3762
2242 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3763 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2243 if ( 3764 if (
2244 w->prev.st_dev != w->attr.st_dev 3765 prev.st_dev != w->attr.st_dev
2245 || w->prev.st_ino != w->attr.st_ino 3766 || prev.st_ino != w->attr.st_ino
2246 || w->prev.st_mode != w->attr.st_mode 3767 || prev.st_mode != w->attr.st_mode
2247 || w->prev.st_nlink != w->attr.st_nlink 3768 || prev.st_nlink != w->attr.st_nlink
2248 || w->prev.st_uid != w->attr.st_uid 3769 || prev.st_uid != w->attr.st_uid
2249 || w->prev.st_gid != w->attr.st_gid 3770 || prev.st_gid != w->attr.st_gid
2250 || w->prev.st_rdev != w->attr.st_rdev 3771 || prev.st_rdev != w->attr.st_rdev
2251 || w->prev.st_size != w->attr.st_size 3772 || prev.st_size != w->attr.st_size
2252 || w->prev.st_atime != w->attr.st_atime 3773 || prev.st_atime != w->attr.st_atime
2253 || w->prev.st_mtime != w->attr.st_mtime 3774 || prev.st_mtime != w->attr.st_mtime
2254 || w->prev.st_ctime != w->attr.st_ctime 3775 || prev.st_ctime != w->attr.st_ctime
2255 ) { 3776 ) {
3777 /* we only update w->prev on actual differences */
3778 /* in case we test more often than invoke the callback, */
3779 /* to ensure that prev is always different to attr */
3780 w->prev = prev;
3781
2256 #if EV_USE_INOTIFY 3782 #if EV_USE_INOTIFY
3783 if (fs_fd >= 0)
3784 {
2257 infy_del (EV_A_ w); 3785 infy_del (EV_A_ w);
2258 infy_add (EV_A_ w); 3786 infy_add (EV_A_ w);
2259 ev_stat_stat (EV_A_ w); /* avoid race... */ 3787 ev_stat_stat (EV_A_ w); /* avoid race... */
3788 }
2260 #endif 3789 #endif
2261 3790
2262 ev_feed_event (EV_A_ w, EV_STAT); 3791 ev_feed_event (EV_A_ w, EV_STAT);
2263 } 3792 }
2264} 3793}
2267ev_stat_start (EV_P_ ev_stat *w) 3796ev_stat_start (EV_P_ ev_stat *w)
2268{ 3797{
2269 if (expect_false (ev_is_active (w))) 3798 if (expect_false (ev_is_active (w)))
2270 return; 3799 return;
2271 3800
2272 /* since we use memcmp, we need to clear any padding data etc. */
2273 memset (&w->prev, 0, sizeof (ev_statdata));
2274 memset (&w->attr, 0, sizeof (ev_statdata));
2275
2276 ev_stat_stat (EV_A_ w); 3801 ev_stat_stat (EV_A_ w);
2277 3802
3803 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2278 if (w->interval < MIN_STAT_INTERVAL) 3804 w->interval = MIN_STAT_INTERVAL;
2279 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2280 3805
2281 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3806 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2282 ev_set_priority (&w->timer, ev_priority (w)); 3807 ev_set_priority (&w->timer, ev_priority (w));
2283 3808
2284#if EV_USE_INOTIFY 3809#if EV_USE_INOTIFY
2285 infy_init (EV_A); 3810 infy_init (EV_A);
2286 3811
2287 if (fs_fd >= 0) 3812 if (fs_fd >= 0)
2288 infy_add (EV_A_ w); 3813 infy_add (EV_A_ w);
2289 else 3814 else
2290#endif 3815#endif
3816 {
2291 ev_timer_start (EV_A_ &w->timer); 3817 ev_timer_again (EV_A_ &w->timer);
3818 ev_unref (EV_A);
3819 }
2292 3820
2293 ev_start (EV_A_ (W)w, 1); 3821 ev_start (EV_A_ (W)w, 1);
3822
3823 EV_FREQUENT_CHECK;
2294} 3824}
2295 3825
2296void 3826void
2297ev_stat_stop (EV_P_ ev_stat *w) 3827ev_stat_stop (EV_P_ ev_stat *w)
2298{ 3828{
2299 clear_pending (EV_A_ (W)w); 3829 clear_pending (EV_A_ (W)w);
2300 if (expect_false (!ev_is_active (w))) 3830 if (expect_false (!ev_is_active (w)))
2301 return; 3831 return;
2302 3832
3833 EV_FREQUENT_CHECK;
3834
2303#if EV_USE_INOTIFY 3835#if EV_USE_INOTIFY
2304 infy_del (EV_A_ w); 3836 infy_del (EV_A_ w);
2305#endif 3837#endif
3838
3839 if (ev_is_active (&w->timer))
3840 {
3841 ev_ref (EV_A);
2306 ev_timer_stop (EV_A_ &w->timer); 3842 ev_timer_stop (EV_A_ &w->timer);
3843 }
2307 3844
2308 ev_stop (EV_A_ (W)w); 3845 ev_stop (EV_A_ (W)w);
3846
3847 EV_FREQUENT_CHECK;
2309} 3848}
2310#endif 3849#endif
2311 3850
2312#if EV_IDLE_ENABLE 3851#if EV_IDLE_ENABLE
2313void 3852void
2316 if (expect_false (ev_is_active (w))) 3855 if (expect_false (ev_is_active (w)))
2317 return; 3856 return;
2318 3857
2319 pri_adjust (EV_A_ (W)w); 3858 pri_adjust (EV_A_ (W)w);
2320 3859
3860 EV_FREQUENT_CHECK;
3861
2321 { 3862 {
2322 int active = ++idlecnt [ABSPRI (w)]; 3863 int active = ++idlecnt [ABSPRI (w)];
2323 3864
2324 ++idleall; 3865 ++idleall;
2325 ev_start (EV_A_ (W)w, active); 3866 ev_start (EV_A_ (W)w, active);
2326 3867
2327 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3868 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2328 idles [ABSPRI (w)][active - 1] = w; 3869 idles [ABSPRI (w)][active - 1] = w;
2329 } 3870 }
3871
3872 EV_FREQUENT_CHECK;
2330} 3873}
2331 3874
2332void 3875void
2333ev_idle_stop (EV_P_ ev_idle *w) 3876ev_idle_stop (EV_P_ ev_idle *w)
2334{ 3877{
2335 clear_pending (EV_A_ (W)w); 3878 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w))) 3879 if (expect_false (!ev_is_active (w)))
2337 return; 3880 return;
2338 3881
3882 EV_FREQUENT_CHECK;
3883
2339 { 3884 {
2340 int active = ((W)w)->active; 3885 int active = ev_active (w);
2341 3886
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3887 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2343 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3888 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2344 3889
2345 ev_stop (EV_A_ (W)w); 3890 ev_stop (EV_A_ (W)w);
2346 --idleall; 3891 --idleall;
2347 } 3892 }
2348}
2349#endif
2350 3893
3894 EV_FREQUENT_CHECK;
3895}
3896#endif
3897
3898#if EV_PREPARE_ENABLE
2351void 3899void
2352ev_prepare_start (EV_P_ ev_prepare *w) 3900ev_prepare_start (EV_P_ ev_prepare *w)
2353{ 3901{
2354 if (expect_false (ev_is_active (w))) 3902 if (expect_false (ev_is_active (w)))
2355 return; 3903 return;
3904
3905 EV_FREQUENT_CHECK;
2356 3906
2357 ev_start (EV_A_ (W)w, ++preparecnt); 3907 ev_start (EV_A_ (W)w, ++preparecnt);
2358 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3908 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2359 prepares [preparecnt - 1] = w; 3909 prepares [preparecnt - 1] = w;
3910
3911 EV_FREQUENT_CHECK;
2360} 3912}
2361 3913
2362void 3914void
2363ev_prepare_stop (EV_P_ ev_prepare *w) 3915ev_prepare_stop (EV_P_ ev_prepare *w)
2364{ 3916{
2365 clear_pending (EV_A_ (W)w); 3917 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 3918 if (expect_false (!ev_is_active (w)))
2367 return; 3919 return;
2368 3920
3921 EV_FREQUENT_CHECK;
3922
2369 { 3923 {
2370 int active = ((W)w)->active; 3924 int active = ev_active (w);
3925
2371 prepares [active - 1] = prepares [--preparecnt]; 3926 prepares [active - 1] = prepares [--preparecnt];
2372 ((W)prepares [active - 1])->active = active; 3927 ev_active (prepares [active - 1]) = active;
2373 } 3928 }
2374 3929
2375 ev_stop (EV_A_ (W)w); 3930 ev_stop (EV_A_ (W)w);
2376}
2377 3931
3932 EV_FREQUENT_CHECK;
3933}
3934#endif
3935
3936#if EV_CHECK_ENABLE
2378void 3937void
2379ev_check_start (EV_P_ ev_check *w) 3938ev_check_start (EV_P_ ev_check *w)
2380{ 3939{
2381 if (expect_false (ev_is_active (w))) 3940 if (expect_false (ev_is_active (w)))
2382 return; 3941 return;
3942
3943 EV_FREQUENT_CHECK;
2383 3944
2384 ev_start (EV_A_ (W)w, ++checkcnt); 3945 ev_start (EV_A_ (W)w, ++checkcnt);
2385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3946 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2386 checks [checkcnt - 1] = w; 3947 checks [checkcnt - 1] = w;
3948
3949 EV_FREQUENT_CHECK;
2387} 3950}
2388 3951
2389void 3952void
2390ev_check_stop (EV_P_ ev_check *w) 3953ev_check_stop (EV_P_ ev_check *w)
2391{ 3954{
2392 clear_pending (EV_A_ (W)w); 3955 clear_pending (EV_A_ (W)w);
2393 if (expect_false (!ev_is_active (w))) 3956 if (expect_false (!ev_is_active (w)))
2394 return; 3957 return;
2395 3958
3959 EV_FREQUENT_CHECK;
3960
2396 { 3961 {
2397 int active = ((W)w)->active; 3962 int active = ev_active (w);
3963
2398 checks [active - 1] = checks [--checkcnt]; 3964 checks [active - 1] = checks [--checkcnt];
2399 ((W)checks [active - 1])->active = active; 3965 ev_active (checks [active - 1]) = active;
2400 } 3966 }
2401 3967
2402 ev_stop (EV_A_ (W)w); 3968 ev_stop (EV_A_ (W)w);
3969
3970 EV_FREQUENT_CHECK;
2403} 3971}
3972#endif
2404 3973
2405#if EV_EMBED_ENABLE 3974#if EV_EMBED_ENABLE
2406void noinline 3975void noinline
2407ev_embed_sweep (EV_P_ ev_embed *w) 3976ev_embed_sweep (EV_P_ ev_embed *w)
2408{ 3977{
2409 ev_loop (w->other, EVLOOP_NONBLOCK); 3978 ev_run (w->other, EVRUN_NOWAIT);
2410} 3979}
2411 3980
2412static void 3981static void
2413embed_io_cb (EV_P_ ev_io *io, int revents) 3982embed_io_cb (EV_P_ ev_io *io, int revents)
2414{ 3983{
2415 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3984 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2416 3985
2417 if (ev_cb (w)) 3986 if (ev_cb (w))
2418 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3987 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2419 else 3988 else
2420 ev_loop (w->other, EVLOOP_NONBLOCK); 3989 ev_run (w->other, EVRUN_NOWAIT);
2421} 3990}
2422 3991
2423static void 3992static void
2424embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3993embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2425{ 3994{
2426 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3995 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2427 3996
2428 { 3997 {
2429 struct ev_loop *loop = w->other; 3998 EV_P = w->other;
2430 3999
2431 while (fdchangecnt) 4000 while (fdchangecnt)
2432 { 4001 {
2433 fd_reify (EV_A); 4002 fd_reify (EV_A);
2434 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4003 ev_run (EV_A_ EVRUN_NOWAIT);
2435 } 4004 }
2436 } 4005 }
4006}
4007
4008static void
4009embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4010{
4011 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4012
4013 ev_embed_stop (EV_A_ w);
4014
4015 {
4016 EV_P = w->other;
4017
4018 ev_loop_fork (EV_A);
4019 ev_run (EV_A_ EVRUN_NOWAIT);
4020 }
4021
4022 ev_embed_start (EV_A_ w);
2437} 4023}
2438 4024
2439#if 0 4025#if 0
2440static void 4026static void
2441embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4027embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2449{ 4035{
2450 if (expect_false (ev_is_active (w))) 4036 if (expect_false (ev_is_active (w)))
2451 return; 4037 return;
2452 4038
2453 { 4039 {
2454 struct ev_loop *loop = w->other; 4040 EV_P = w->other;
2455 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4041 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2456 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4042 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2457 } 4043 }
4044
4045 EV_FREQUENT_CHECK;
2458 4046
2459 ev_set_priority (&w->io, ev_priority (w)); 4047 ev_set_priority (&w->io, ev_priority (w));
2460 ev_io_start (EV_A_ &w->io); 4048 ev_io_start (EV_A_ &w->io);
2461 4049
2462 ev_prepare_init (&w->prepare, embed_prepare_cb); 4050 ev_prepare_init (&w->prepare, embed_prepare_cb);
2463 ev_set_priority (&w->prepare, EV_MINPRI); 4051 ev_set_priority (&w->prepare, EV_MINPRI);
2464 ev_prepare_start (EV_A_ &w->prepare); 4052 ev_prepare_start (EV_A_ &w->prepare);
2465 4053
4054 ev_fork_init (&w->fork, embed_fork_cb);
4055 ev_fork_start (EV_A_ &w->fork);
4056
2466 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4057 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2467 4058
2468 ev_start (EV_A_ (W)w, 1); 4059 ev_start (EV_A_ (W)w, 1);
4060
4061 EV_FREQUENT_CHECK;
2469} 4062}
2470 4063
2471void 4064void
2472ev_embed_stop (EV_P_ ev_embed *w) 4065ev_embed_stop (EV_P_ ev_embed *w)
2473{ 4066{
2474 clear_pending (EV_A_ (W)w); 4067 clear_pending (EV_A_ (W)w);
2475 if (expect_false (!ev_is_active (w))) 4068 if (expect_false (!ev_is_active (w)))
2476 return; 4069 return;
2477 4070
4071 EV_FREQUENT_CHECK;
4072
2478 ev_io_stop (EV_A_ &w->io); 4073 ev_io_stop (EV_A_ &w->io);
2479 ev_prepare_stop (EV_A_ &w->prepare); 4074 ev_prepare_stop (EV_A_ &w->prepare);
4075 ev_fork_stop (EV_A_ &w->fork);
2480 4076
2481 ev_stop (EV_A_ (W)w); 4077 ev_stop (EV_A_ (W)w);
4078
4079 EV_FREQUENT_CHECK;
2482} 4080}
2483#endif 4081#endif
2484 4082
2485#if EV_FORK_ENABLE 4083#if EV_FORK_ENABLE
2486void 4084void
2487ev_fork_start (EV_P_ ev_fork *w) 4085ev_fork_start (EV_P_ ev_fork *w)
2488{ 4086{
2489 if (expect_false (ev_is_active (w))) 4087 if (expect_false (ev_is_active (w)))
2490 return; 4088 return;
2491 4089
4090 EV_FREQUENT_CHECK;
4091
2492 ev_start (EV_A_ (W)w, ++forkcnt); 4092 ev_start (EV_A_ (W)w, ++forkcnt);
2493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4093 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2494 forks [forkcnt - 1] = w; 4094 forks [forkcnt - 1] = w;
4095
4096 EV_FREQUENT_CHECK;
2495} 4097}
2496 4098
2497void 4099void
2498ev_fork_stop (EV_P_ ev_fork *w) 4100ev_fork_stop (EV_P_ ev_fork *w)
2499{ 4101{
2500 clear_pending (EV_A_ (W)w); 4102 clear_pending (EV_A_ (W)w);
2501 if (expect_false (!ev_is_active (w))) 4103 if (expect_false (!ev_is_active (w)))
2502 return; 4104 return;
2503 4105
4106 EV_FREQUENT_CHECK;
4107
2504 { 4108 {
2505 int active = ((W)w)->active; 4109 int active = ev_active (w);
4110
2506 forks [active - 1] = forks [--forkcnt]; 4111 forks [active - 1] = forks [--forkcnt];
2507 ((W)forks [active - 1])->active = active; 4112 ev_active (forks [active - 1]) = active;
2508 } 4113 }
2509 4114
2510 ev_stop (EV_A_ (W)w); 4115 ev_stop (EV_A_ (W)w);
4116
4117 EV_FREQUENT_CHECK;
4118}
4119#endif
4120
4121#if EV_CLEANUP_ENABLE
4122void
4123ev_cleanup_start (EV_P_ ev_cleanup *w)
4124{
4125 if (expect_false (ev_is_active (w)))
4126 return;
4127
4128 EV_FREQUENT_CHECK;
4129
4130 ev_start (EV_A_ (W)w, ++cleanupcnt);
4131 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4132 cleanups [cleanupcnt - 1] = w;
4133
4134 /* cleanup watchers should never keep a refcount on the loop */
4135 ev_unref (EV_A);
4136 EV_FREQUENT_CHECK;
4137}
4138
4139void
4140ev_cleanup_stop (EV_P_ ev_cleanup *w)
4141{
4142 clear_pending (EV_A_ (W)w);
4143 if (expect_false (!ev_is_active (w)))
4144 return;
4145
4146 EV_FREQUENT_CHECK;
4147 ev_ref (EV_A);
4148
4149 {
4150 int active = ev_active (w);
4151
4152 cleanups [active - 1] = cleanups [--cleanupcnt];
4153 ev_active (cleanups [active - 1]) = active;
4154 }
4155
4156 ev_stop (EV_A_ (W)w);
4157
4158 EV_FREQUENT_CHECK;
2511} 4159}
2512#endif 4160#endif
2513 4161
2514#if EV_ASYNC_ENABLE 4162#if EV_ASYNC_ENABLE
2515void 4163void
2516ev_async_start (EV_P_ ev_async *w) 4164ev_async_start (EV_P_ ev_async *w)
2517{ 4165{
2518 if (expect_false (ev_is_active (w))) 4166 if (expect_false (ev_is_active (w)))
2519 return; 4167 return;
2520 4168
4169 w->sent = 0;
4170
2521 evpipe_init (EV_A); 4171 evpipe_init (EV_A);
4172
4173 EV_FREQUENT_CHECK;
2522 4174
2523 ev_start (EV_A_ (W)w, ++asynccnt); 4175 ev_start (EV_A_ (W)w, ++asynccnt);
2524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4176 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2525 asyncs [asynccnt - 1] = w; 4177 asyncs [asynccnt - 1] = w;
4178
4179 EV_FREQUENT_CHECK;
2526} 4180}
2527 4181
2528void 4182void
2529ev_async_stop (EV_P_ ev_async *w) 4183ev_async_stop (EV_P_ ev_async *w)
2530{ 4184{
2531 clear_pending (EV_A_ (W)w); 4185 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w))) 4186 if (expect_false (!ev_is_active (w)))
2533 return; 4187 return;
2534 4188
4189 EV_FREQUENT_CHECK;
4190
2535 { 4191 {
2536 int active = ((W)w)->active; 4192 int active = ev_active (w);
4193
2537 asyncs [active - 1] = asyncs [--asynccnt]; 4194 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active; 4195 ev_active (asyncs [active - 1]) = active;
2539 } 4196 }
2540 4197
2541 ev_stop (EV_A_ (W)w); 4198 ev_stop (EV_A_ (W)w);
4199
4200 EV_FREQUENT_CHECK;
2542} 4201}
2543 4202
2544void 4203void
2545ev_async_send (EV_P_ ev_async *w) 4204ev_async_send (EV_P_ ev_async *w)
2546{ 4205{
2547 w->sent = 1; 4206 w->sent = 1;
2548 evpipe_write (EV_A_ &gotasync); 4207 evpipe_write (EV_A_ &async_pending);
2549} 4208}
2550#endif 4209#endif
2551 4210
2552/*****************************************************************************/ 4211/*****************************************************************************/
2553 4212
2563once_cb (EV_P_ struct ev_once *once, int revents) 4222once_cb (EV_P_ struct ev_once *once, int revents)
2564{ 4223{
2565 void (*cb)(int revents, void *arg) = once->cb; 4224 void (*cb)(int revents, void *arg) = once->cb;
2566 void *arg = once->arg; 4225 void *arg = once->arg;
2567 4226
2568 ev_io_stop (EV_A_ &once->io); 4227 ev_io_stop (EV_A_ &once->io);
2569 ev_timer_stop (EV_A_ &once->to); 4228 ev_timer_stop (EV_A_ &once->to);
2570 ev_free (once); 4229 ev_free (once);
2571 4230
2572 cb (revents, arg); 4231 cb (revents, arg);
2573} 4232}
2574 4233
2575static void 4234static void
2576once_cb_io (EV_P_ ev_io *w, int revents) 4235once_cb_io (EV_P_ ev_io *w, int revents)
2577{ 4236{
2578 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4237 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4238
4239 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2579} 4240}
2580 4241
2581static void 4242static void
2582once_cb_to (EV_P_ ev_timer *w, int revents) 4243once_cb_to (EV_P_ ev_timer *w, int revents)
2583{ 4244{
2584 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4245 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4246
4247 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2585} 4248}
2586 4249
2587void 4250void
2588ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4251ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2589{ 4252{
2590 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4253 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2591 4254
2592 if (expect_false (!once)) 4255 if (expect_false (!once))
2593 { 4256 {
2594 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4257 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2595 return; 4258 return;
2596 } 4259 }
2597 4260
2598 once->cb = cb; 4261 once->cb = cb;
2599 once->arg = arg; 4262 once->arg = arg;
2611 ev_timer_set (&once->to, timeout, 0.); 4274 ev_timer_set (&once->to, timeout, 0.);
2612 ev_timer_start (EV_A_ &once->to); 4275 ev_timer_start (EV_A_ &once->to);
2613 } 4276 }
2614} 4277}
2615 4278
4279/*****************************************************************************/
4280
4281#if EV_WALK_ENABLE
4282void ecb_cold
4283ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4284{
4285 int i, j;
4286 ev_watcher_list *wl, *wn;
4287
4288 if (types & (EV_IO | EV_EMBED))
4289 for (i = 0; i < anfdmax; ++i)
4290 for (wl = anfds [i].head; wl; )
4291 {
4292 wn = wl->next;
4293
4294#if EV_EMBED_ENABLE
4295 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4296 {
4297 if (types & EV_EMBED)
4298 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4299 }
4300 else
4301#endif
4302#if EV_USE_INOTIFY
4303 if (ev_cb ((ev_io *)wl) == infy_cb)
4304 ;
4305 else
4306#endif
4307 if ((ev_io *)wl != &pipe_w)
4308 if (types & EV_IO)
4309 cb (EV_A_ EV_IO, wl);
4310
4311 wl = wn;
4312 }
4313
4314 if (types & (EV_TIMER | EV_STAT))
4315 for (i = timercnt + HEAP0; i-- > HEAP0; )
4316#if EV_STAT_ENABLE
4317 /*TODO: timer is not always active*/
4318 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4319 {
4320 if (types & EV_STAT)
4321 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4322 }
4323 else
4324#endif
4325 if (types & EV_TIMER)
4326 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4327
4328#if EV_PERIODIC_ENABLE
4329 if (types & EV_PERIODIC)
4330 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4331 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4332#endif
4333
4334#if EV_IDLE_ENABLE
4335 if (types & EV_IDLE)
4336 for (j = NUMPRI; j--; )
4337 for (i = idlecnt [j]; i--; )
4338 cb (EV_A_ EV_IDLE, idles [j][i]);
4339#endif
4340
4341#if EV_FORK_ENABLE
4342 if (types & EV_FORK)
4343 for (i = forkcnt; i--; )
4344 if (ev_cb (forks [i]) != embed_fork_cb)
4345 cb (EV_A_ EV_FORK, forks [i]);
4346#endif
4347
4348#if EV_ASYNC_ENABLE
4349 if (types & EV_ASYNC)
4350 for (i = asynccnt; i--; )
4351 cb (EV_A_ EV_ASYNC, asyncs [i]);
4352#endif
4353
4354#if EV_PREPARE_ENABLE
4355 if (types & EV_PREPARE)
4356 for (i = preparecnt; i--; )
4357# if EV_EMBED_ENABLE
4358 if (ev_cb (prepares [i]) != embed_prepare_cb)
4359# endif
4360 cb (EV_A_ EV_PREPARE, prepares [i]);
4361#endif
4362
4363#if EV_CHECK_ENABLE
4364 if (types & EV_CHECK)
4365 for (i = checkcnt; i--; )
4366 cb (EV_A_ EV_CHECK, checks [i]);
4367#endif
4368
4369#if EV_SIGNAL_ENABLE
4370 if (types & EV_SIGNAL)
4371 for (i = 0; i < EV_NSIG - 1; ++i)
4372 for (wl = signals [i].head; wl; )
4373 {
4374 wn = wl->next;
4375 cb (EV_A_ EV_SIGNAL, wl);
4376 wl = wn;
4377 }
4378#endif
4379
4380#if EV_CHILD_ENABLE
4381 if (types & EV_CHILD)
4382 for (i = (EV_PID_HASHSIZE); i--; )
4383 for (wl = childs [i]; wl; )
4384 {
4385 wn = wl->next;
4386 cb (EV_A_ EV_CHILD, wl);
4387 wl = wn;
4388 }
4389#endif
4390/* EV_STAT 0x00001000 /* stat data changed */
4391/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4392}
4393#endif
4394
2616#if EV_MULTIPLICITY 4395#if EV_MULTIPLICITY
2617 #include "ev_wrap.h" 4396 #include "ev_wrap.h"
2618#endif 4397#endif
2619 4398
2620#ifdef __cplusplus 4399EV_CPP(})
2621}
2622#endif
2623 4400

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines