ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC vs.
Revision 1.479 by root, Sun Dec 20 01:31:17 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
269
168#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
169# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
275# endif
170#endif 276#endif
171 277
172#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 280#endif
175 281
176#ifndef EV_USE_NANOSLEEP 282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
177# define EV_USE_NANOSLEEP 0 286# define EV_USE_NANOSLEEP 0
287# endif
178#endif 288#endif
179 289
180#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 292#endif
183 293
184#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
185# ifdef _WIN32 295# ifdef _WIN32
186# define EV_USE_POLL 0 296# define EV_USE_POLL 0
187# else 297# else
188# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 299# endif
190#endif 300#endif
191 301
192#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 305# else
196# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
197# endif 307# endif
198#endif 308#endif
199 309
205# define EV_USE_PORT 0 315# define EV_USE_PORT 0
206#endif 316#endif
207 317
208#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 320# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 321# else
212# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
213# endif 323# endif
214#endif 324#endif
215 325
216#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 328#endif
223 329
224#ifndef EV_INOTIFY_HASHSIZE 330#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 332#endif
231 333
232#ifndef EV_USE_EVENTFD 334#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 336# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 337# else
236# define EV_USE_EVENTFD 0 338# define EV_USE_EVENTFD 0
237# endif 339# endif
238#endif 340#endif
239 341
342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
347# endif
348#endif
349
350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
360#ifndef EV_USE_4HEAP
361# define EV_USE_4HEAP EV_FEATURE_DATA
362#endif
363
364#ifndef EV_HEAP_CACHE_AT
365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
396#endif
397
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 399
242#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 401# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 402# define EV_USE_MONOTONIC 0
253# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
255#endif 413#endif
256 414
257#if !EV_USE_NANOSLEEP 415#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 418# include <sys/select.h>
260# endif 419# endif
261#endif 420#endif
262 421
263#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
264# include <sys/inotify.h> 424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
265#endif 429# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 430#endif
270 431
271#if EV_USE_EVENTFD 432#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 434# include <stdint.h>
435# ifndef EFD_NONBLOCK
436# define EFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef EFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
444# endif
274int eventfd (unsigned int initval, int flags); 445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
275#endif 468#endif
276 469
277/**/ 470/**/
278 471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
279/* 478/*
280 * This is used to avoid floating point rounding problems. 479 * This is used to work around floating point rounding problems.
281 * It is added to ev_rt_now when scheduling periodics
282 * to ensure progress, time-wise, even when rounding
283 * errors are against us.
284 * This value is good at least till the year 4000. 480 * This value is good at least till the year 4000.
285 * Better solutions welcome.
286 */ 481 */
287#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
288 484
289#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
290#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
291/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
292 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010005
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
293#if __GNUC__ >= 4 546 #if __GNUC__
547 typedef signed long long int64_t;
548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
562#else
563 #include <inttypes.h>
564 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569#endif
570
571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574/* work around x32 idiocy by defining proper macros */
575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581#endif
582
583/* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
595
596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
633
634/*****************************************************************************/
635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648#if __xlC__ && ECB_CPP
649 #include <builtins.h>
650#endif
651
652#if 1400 <= _MSC_VER
653 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
654#endif
655
656#ifndef ECB_MEMORY_FENCE
657 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
658 #if __i386 || __i386__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif ECB_GCC_AMD64
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
664 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
665 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
666 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
667 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
668 #elif defined __ARM_ARCH_2__ \
669 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
670 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
671 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
672 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
673 || defined __ARM_ARCH_5TEJ__
674 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
675 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
676 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
677 || defined __ARM_ARCH_6T2__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
679 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
680 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
682 #elif __aarch64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
684 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
686 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
687 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
688 #elif defined __s390__ || defined __s390x__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
690 #elif defined __mips__
691 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
692 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
694 #elif defined __alpha__
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
696 #elif defined __hppa__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
698 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
699 #elif defined __ia64__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
701 #elif defined __m68k__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #elif defined __m88k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
705 #elif defined __sh__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
707 #endif
708 #endif
709#endif
710
711#ifndef ECB_MEMORY_FENCE
712 #if ECB_GCC_VERSION(4,7)
713 /* see comment below (stdatomic.h) about the C11 memory model. */
714 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
715 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
716 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
717
718 #elif ECB_CLANG_EXTENSION(c_atomic)
719 /* see comment below (stdatomic.h) about the C11 memory model. */
720 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
721 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
722 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
723
724 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
725 #define ECB_MEMORY_FENCE __sync_synchronize ()
726 #elif _MSC_VER >= 1500 /* VC++ 2008 */
727 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
728 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
729 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
730 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
731 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
732 #elif _MSC_VER >= 1400 /* VC++ 2005 */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
737 #elif defined _WIN32
738 #include <WinNT.h>
739 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
740 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
741 #include <mbarrier.h>
742 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
743 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
744 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
745 #elif __xlC__
746 #define ECB_MEMORY_FENCE __sync ()
747 #endif
748#endif
749
750#ifndef ECB_MEMORY_FENCE
751 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
752 /* we assume that these memory fences work on all variables/all memory accesses, */
753 /* not just C11 atomics and atomic accesses */
754 #include <stdatomic.h>
755 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
756 /* any fence other than seq_cst, which isn't very efficient for us. */
757 /* Why that is, we don't know - either the C11 memory model is quite useless */
758 /* for most usages, or gcc and clang have a bug */
759 /* I *currently* lean towards the latter, and inefficiently implement */
760 /* all three of ecb's fences as a seq_cst fence */
761 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
762 /* for all __atomic_thread_fence's except seq_cst */
763 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
764 #endif
765#endif
766
767#ifndef ECB_MEMORY_FENCE
768 #if !ECB_AVOID_PTHREADS
769 /*
770 * if you get undefined symbol references to pthread_mutex_lock,
771 * or failure to find pthread.h, then you should implement
772 * the ECB_MEMORY_FENCE operations for your cpu/compiler
773 * OR provide pthread.h and link against the posix thread library
774 * of your system.
775 */
776 #include <pthread.h>
777 #define ECB_NEEDS_PTHREADS 1
778 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
779
780 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
781 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
782 #endif
783#endif
784
785#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
786 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
787#endif
788
789#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
790 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
791#endif
792
793/*****************************************************************************/
794
795#if ECB_CPP
796 #define ecb_inline static inline
797#elif ECB_GCC_VERSION(2,5)
798 #define ecb_inline static __inline__
799#elif ECB_C99
800 #define ecb_inline static inline
801#else
802 #define ecb_inline static
803#endif
804
805#if ECB_GCC_VERSION(3,3)
806 #define ecb_restrict __restrict__
807#elif ECB_C99
808 #define ecb_restrict restrict
809#else
810 #define ecb_restrict
811#endif
812
813typedef int ecb_bool;
814
815#define ECB_CONCAT_(a, b) a ## b
816#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
817#define ECB_STRINGIFY_(a) # a
818#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
819#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
820
821#define ecb_function_ ecb_inline
822
823#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
824 #define ecb_attribute(attrlist) __attribute__ (attrlist)
825#else
826 #define ecb_attribute(attrlist)
827#endif
828
829#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
830 #define ecb_is_constant(expr) __builtin_constant_p (expr)
831#else
832 /* possible C11 impl for integral types
833 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
834 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
835
836 #define ecb_is_constant(expr) 0
837#endif
838
839#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
294# define expect(expr,value) __builtin_expect ((expr),(value)) 840 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
295# define noinline __attribute__ ((noinline))
296#else 841#else
297# define expect(expr,value) (expr) 842 #define ecb_expect(expr,value) (expr)
298# define noinline
299# if __STDC_VERSION__ < 199901L
300# define inline
301# endif 843#endif
302#endif
303 844
845#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
846 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
847#else
848 #define ecb_prefetch(addr,rw,locality)
849#endif
850
851/* no emulation for ecb_decltype */
852#if ECB_CPP11
853 // older implementations might have problems with decltype(x)::type, work around it
854 template<class T> struct ecb_decltype_t { typedef T type; };
855 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
856#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
857 #define ecb_decltype(x) __typeof__ (x)
858#endif
859
860#if _MSC_VER >= 1300
861 #define ecb_deprecated __declspec (deprecated)
862#else
863 #define ecb_deprecated ecb_attribute ((__deprecated__))
864#endif
865
866#if _MSC_VER >= 1500
867 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
868#elif ECB_GCC_VERSION(4,5)
869 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
870#else
871 #define ecb_deprecated_message(msg) ecb_deprecated
872#endif
873
874#if _MSC_VER >= 1400
875 #define ecb_noinline __declspec (noinline)
876#else
877 #define ecb_noinline ecb_attribute ((__noinline__))
878#endif
879
880#define ecb_unused ecb_attribute ((__unused__))
881#define ecb_const ecb_attribute ((__const__))
882#define ecb_pure ecb_attribute ((__pure__))
883
884#if ECB_C11 || __IBMC_NORETURN
885 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
886 #define ecb_noreturn _Noreturn
887#elif ECB_CPP11
888 #define ecb_noreturn [[noreturn]]
889#elif _MSC_VER >= 1200
890 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
891 #define ecb_noreturn __declspec (noreturn)
892#else
893 #define ecb_noreturn ecb_attribute ((__noreturn__))
894#endif
895
896#if ECB_GCC_VERSION(4,3)
897 #define ecb_artificial ecb_attribute ((__artificial__))
898 #define ecb_hot ecb_attribute ((__hot__))
899 #define ecb_cold ecb_attribute ((__cold__))
900#else
901 #define ecb_artificial
902 #define ecb_hot
903 #define ecb_cold
904#endif
905
906/* put around conditional expressions if you are very sure that the */
907/* expression is mostly true or mostly false. note that these return */
908/* booleans, not the expression. */
304#define expect_false(expr) expect ((expr) != 0, 0) 909#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
305#define expect_true(expr) expect ((expr) != 0, 1) 910#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
911/* for compatibility to the rest of the world */
912#define ecb_likely(expr) ecb_expect_true (expr)
913#define ecb_unlikely(expr) ecb_expect_false (expr)
914
915/* count trailing zero bits and count # of one bits */
916#if ECB_GCC_VERSION(3,4) \
917 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
918 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
919 && ECB_CLANG_BUILTIN(__builtin_popcount))
920 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
921 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
922 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
923 #define ecb_ctz32(x) __builtin_ctz (x)
924 #define ecb_ctz64(x) __builtin_ctzll (x)
925 #define ecb_popcount32(x) __builtin_popcount (x)
926 /* no popcountll */
927#else
928 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
929 ecb_function_ ecb_const int
930 ecb_ctz32 (uint32_t x)
931 {
932#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
933 unsigned long r;
934 _BitScanForward (&r, x);
935 return (int)r;
936#else
937 int r = 0;
938
939 x &= ~x + 1; /* this isolates the lowest bit */
940
941#if ECB_branchless_on_i386
942 r += !!(x & 0xaaaaaaaa) << 0;
943 r += !!(x & 0xcccccccc) << 1;
944 r += !!(x & 0xf0f0f0f0) << 2;
945 r += !!(x & 0xff00ff00) << 3;
946 r += !!(x & 0xffff0000) << 4;
947#else
948 if (x & 0xaaaaaaaa) r += 1;
949 if (x & 0xcccccccc) r += 2;
950 if (x & 0xf0f0f0f0) r += 4;
951 if (x & 0xff00ff00) r += 8;
952 if (x & 0xffff0000) r += 16;
953#endif
954
955 return r;
956#endif
957 }
958
959 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
960 ecb_function_ ecb_const int
961 ecb_ctz64 (uint64_t x)
962 {
963#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
964 unsigned long r;
965 _BitScanForward64 (&r, x);
966 return (int)r;
967#else
968 int shift = x & 0xffffffff ? 0 : 32;
969 return ecb_ctz32 (x >> shift) + shift;
970#endif
971 }
972
973 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
974 ecb_function_ ecb_const int
975 ecb_popcount32 (uint32_t x)
976 {
977 x -= (x >> 1) & 0x55555555;
978 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
979 x = ((x >> 4) + x) & 0x0f0f0f0f;
980 x *= 0x01010101;
981
982 return x >> 24;
983 }
984
985 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
986 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
987 {
988#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
989 unsigned long r;
990 _BitScanReverse (&r, x);
991 return (int)r;
992#else
993 int r = 0;
994
995 if (x >> 16) { x >>= 16; r += 16; }
996 if (x >> 8) { x >>= 8; r += 8; }
997 if (x >> 4) { x >>= 4; r += 4; }
998 if (x >> 2) { x >>= 2; r += 2; }
999 if (x >> 1) { r += 1; }
1000
1001 return r;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1006 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1007 {
1008#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1009 unsigned long r;
1010 _BitScanReverse64 (&r, x);
1011 return (int)r;
1012#else
1013 int r = 0;
1014
1015 if (x >> 32) { x >>= 32; r += 32; }
1016
1017 return r + ecb_ld32 (x);
1018#endif
1019 }
1020#endif
1021
1022ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1023ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1024ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1025ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1026
1027ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1028ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1029{
1030 return ( (x * 0x0802U & 0x22110U)
1031 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1032}
1033
1034ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1035ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1036{
1037 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1038 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1039 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1040 x = ( x >> 8 ) | ( x << 8);
1041
1042 return x;
1043}
1044
1045ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1046ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1047{
1048 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1049 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1050 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1051 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1052 x = ( x >> 16 ) | ( x << 16);
1053
1054 return x;
1055}
1056
1057/* popcount64 is only available on 64 bit cpus as gcc builtin */
1058/* so for this version we are lazy */
1059ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1060ecb_function_ ecb_const int
1061ecb_popcount64 (uint64_t x)
1062{
1063 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1064}
1065
1066ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1067ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1068ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1069ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1070ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1071ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1072ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1073ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1074
1075ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1076ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1077ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1078ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1079ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1080ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1081ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1082ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1083
1084#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1085 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1086 #define ecb_bswap16(x) __builtin_bswap16 (x)
1087 #else
1088 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1089 #endif
1090 #define ecb_bswap32(x) __builtin_bswap32 (x)
1091 #define ecb_bswap64(x) __builtin_bswap64 (x)
1092#elif _MSC_VER
1093 #include <stdlib.h>
1094 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1095 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1096 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1097#else
1098 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1099 ecb_function_ ecb_const uint16_t
1100 ecb_bswap16 (uint16_t x)
1101 {
1102 return ecb_rotl16 (x, 8);
1103 }
1104
1105 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1106 ecb_function_ ecb_const uint32_t
1107 ecb_bswap32 (uint32_t x)
1108 {
1109 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1110 }
1111
1112 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1113 ecb_function_ ecb_const uint64_t
1114 ecb_bswap64 (uint64_t x)
1115 {
1116 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1117 }
1118#endif
1119
1120#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1121 #define ecb_unreachable() __builtin_unreachable ()
1122#else
1123 /* this seems to work fine, but gcc always emits a warning for it :/ */
1124 ecb_inline ecb_noreturn void ecb_unreachable (void);
1125 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1126#endif
1127
1128/* try to tell the compiler that some condition is definitely true */
1129#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1130
1131ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1132ecb_inline ecb_const uint32_t
1133ecb_byteorder_helper (void)
1134{
1135 /* the union code still generates code under pressure in gcc, */
1136 /* but less than using pointers, and always seems to */
1137 /* successfully return a constant. */
1138 /* the reason why we have this horrible preprocessor mess */
1139 /* is to avoid it in all cases, at least on common architectures */
1140 /* or when using a recent enough gcc version (>= 4.6) */
1141#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1142 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1143 #define ECB_LITTLE_ENDIAN 1
1144 return 0x44332211;
1145#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1146 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1147 #define ECB_BIG_ENDIAN 1
1148 return 0x11223344;
1149#else
1150 union
1151 {
1152 uint8_t c[4];
1153 uint32_t u;
1154 } u = { 0x11, 0x22, 0x33, 0x44 };
1155 return u.u;
1156#endif
1157}
1158
1159ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1160ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1161ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1162ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1163
1164#if ECB_GCC_VERSION(3,0) || ECB_C99
1165 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1166#else
1167 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1168#endif
1169
1170#if ECB_CPP
1171 template<typename T>
1172 static inline T ecb_div_rd (T val, T div)
1173 {
1174 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1175 }
1176 template<typename T>
1177 static inline T ecb_div_ru (T val, T div)
1178 {
1179 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1180 }
1181#else
1182 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1183 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1184#endif
1185
1186#if ecb_cplusplus_does_not_suck
1187 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1188 template<typename T, int N>
1189 static inline int ecb_array_length (const T (&arr)[N])
1190 {
1191 return N;
1192 }
1193#else
1194 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1195#endif
1196
1197ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1198ecb_function_ ecb_const uint32_t
1199ecb_binary16_to_binary32 (uint32_t x)
1200{
1201 unsigned int s = (x & 0x8000) << (31 - 15);
1202 int e = (x >> 10) & 0x001f;
1203 unsigned int m = x & 0x03ff;
1204
1205 if (ecb_expect_false (e == 31))
1206 /* infinity or NaN */
1207 e = 255 - (127 - 15);
1208 else if (ecb_expect_false (!e))
1209 {
1210 if (ecb_expect_true (!m))
1211 /* zero, handled by code below by forcing e to 0 */
1212 e = 0 - (127 - 15);
1213 else
1214 {
1215 /* subnormal, renormalise */
1216 unsigned int s = 10 - ecb_ld32 (m);
1217
1218 m = (m << s) & 0x3ff; /* mask implicit bit */
1219 e -= s - 1;
1220 }
1221 }
1222
1223 /* e and m now are normalised, or zero, (or inf or nan) */
1224 e += 127 - 15;
1225
1226 return s | (e << 23) | (m << (23 - 10));
1227}
1228
1229ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1230ecb_function_ ecb_const uint16_t
1231ecb_binary32_to_binary16 (uint32_t x)
1232{
1233 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1234 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1235 unsigned int m = x & 0x007fffff;
1236
1237 x &= 0x7fffffff;
1238
1239 /* if it's within range of binary16 normals, use fast path */
1240 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1241 {
1242 /* mantissa round-to-even */
1243 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1244
1245 /* handle overflow */
1246 if (ecb_expect_false (m >= 0x00800000))
1247 {
1248 m >>= 1;
1249 e += 1;
1250 }
1251
1252 return s | (e << 10) | (m >> (23 - 10));
1253 }
1254
1255 /* handle large numbers and infinity */
1256 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1257 return s | 0x7c00;
1258
1259 /* handle zero, subnormals and small numbers */
1260 if (ecb_expect_true (x < 0x38800000))
1261 {
1262 /* zero */
1263 if (ecb_expect_true (!x))
1264 return s;
1265
1266 /* handle subnormals */
1267
1268 /* too small, will be zero */
1269 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1270 return s;
1271
1272 m |= 0x00800000; /* make implicit bit explicit */
1273
1274 /* very tricky - we need to round to the nearest e (+10) bit value */
1275 {
1276 unsigned int bits = 14 - e;
1277 unsigned int half = (1 << (bits - 1)) - 1;
1278 unsigned int even = (m >> bits) & 1;
1279
1280 /* if this overflows, we will end up with a normalised number */
1281 m = (m + half + even) >> bits;
1282 }
1283
1284 return s | m;
1285 }
1286
1287 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1288 m >>= 13;
1289
1290 return s | 0x7c00 | m | !m;
1291}
1292
1293/*******************************************************************************/
1294/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1295
1296/* basically, everything uses "ieee pure-endian" floating point numbers */
1297/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1298#if 0 \
1299 || __i386 || __i386__ \
1300 || ECB_GCC_AMD64 \
1301 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1302 || defined __s390__ || defined __s390x__ \
1303 || defined __mips__ \
1304 || defined __alpha__ \
1305 || defined __hppa__ \
1306 || defined __ia64__ \
1307 || defined __m68k__ \
1308 || defined __m88k__ \
1309 || defined __sh__ \
1310 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1311 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1312 || defined __aarch64__
1313 #define ECB_STDFP 1
1314 #include <string.h> /* for memcpy */
1315#else
1316 #define ECB_STDFP 0
1317#endif
1318
1319#ifndef ECB_NO_LIBM
1320
1321 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1322
1323 /* only the oldest of old doesn't have this one. solaris. */
1324 #ifdef INFINITY
1325 #define ECB_INFINITY INFINITY
1326 #else
1327 #define ECB_INFINITY HUGE_VAL
1328 #endif
1329
1330 #ifdef NAN
1331 #define ECB_NAN NAN
1332 #else
1333 #define ECB_NAN ECB_INFINITY
1334 #endif
1335
1336 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1337 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1338 #define ecb_frexpf(x,e) frexpf ((x), (e))
1339 #else
1340 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1341 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1342 #endif
1343
1344 /* convert a float to ieee single/binary32 */
1345 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1346 ecb_function_ ecb_const uint32_t
1347 ecb_float_to_binary32 (float x)
1348 {
1349 uint32_t r;
1350
1351 #if ECB_STDFP
1352 memcpy (&r, &x, 4);
1353 #else
1354 /* slow emulation, works for anything but -0 */
1355 uint32_t m;
1356 int e;
1357
1358 if (x == 0e0f ) return 0x00000000U;
1359 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1360 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1361 if (x != x ) return 0x7fbfffffU;
1362
1363 m = ecb_frexpf (x, &e) * 0x1000000U;
1364
1365 r = m & 0x80000000U;
1366
1367 if (r)
1368 m = -m;
1369
1370 if (e <= -126)
1371 {
1372 m &= 0xffffffU;
1373 m >>= (-125 - e);
1374 e = -126;
1375 }
1376
1377 r |= (e + 126) << 23;
1378 r |= m & 0x7fffffU;
1379 #endif
1380
1381 return r;
1382 }
1383
1384 /* converts an ieee single/binary32 to a float */
1385 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1386 ecb_function_ ecb_const float
1387 ecb_binary32_to_float (uint32_t x)
1388 {
1389 float r;
1390
1391 #if ECB_STDFP
1392 memcpy (&r, &x, 4);
1393 #else
1394 /* emulation, only works for normals and subnormals and +0 */
1395 int neg = x >> 31;
1396 int e = (x >> 23) & 0xffU;
1397
1398 x &= 0x7fffffU;
1399
1400 if (e)
1401 x |= 0x800000U;
1402 else
1403 e = 1;
1404
1405 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1406 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1407
1408 r = neg ? -r : r;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* convert a double to ieee double/binary64 */
1415 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1416 ecb_function_ ecb_const uint64_t
1417 ecb_double_to_binary64 (double x)
1418 {
1419 uint64_t r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 8);
1423 #else
1424 /* slow emulation, works for anything but -0 */
1425 uint64_t m;
1426 int e;
1427
1428 if (x == 0e0 ) return 0x0000000000000000U;
1429 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1430 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1431 if (x != x ) return 0X7ff7ffffffffffffU;
1432
1433 m = frexp (x, &e) * 0x20000000000000U;
1434
1435 r = m & 0x8000000000000000;;
1436
1437 if (r)
1438 m = -m;
1439
1440 if (e <= -1022)
1441 {
1442 m &= 0x1fffffffffffffU;
1443 m >>= (-1021 - e);
1444 e = -1022;
1445 }
1446
1447 r |= ((uint64_t)(e + 1022)) << 52;
1448 r |= m & 0xfffffffffffffU;
1449 #endif
1450
1451 return r;
1452 }
1453
1454 /* converts an ieee double/binary64 to a double */
1455 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1456 ecb_function_ ecb_const double
1457 ecb_binary64_to_double (uint64_t x)
1458 {
1459 double r;
1460
1461 #if ECB_STDFP
1462 memcpy (&r, &x, 8);
1463 #else
1464 /* emulation, only works for normals and subnormals and +0 */
1465 int neg = x >> 63;
1466 int e = (x >> 52) & 0x7ffU;
1467
1468 x &= 0xfffffffffffffU;
1469
1470 if (e)
1471 x |= 0x10000000000000U;
1472 else
1473 e = 1;
1474
1475 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1476 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1477
1478 r = neg ? -r : r;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* convert a float to ieee half/binary16 */
1485 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1486 ecb_function_ ecb_const uint16_t
1487 ecb_float_to_binary16 (float x)
1488 {
1489 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1490 }
1491
1492 /* convert an ieee half/binary16 to float */
1493 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1494 ecb_function_ ecb_const float
1495 ecb_binary16_to_float (uint16_t x)
1496 {
1497 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1498 }
1499
1500#endif
1501
1502#endif
1503
1504/* ECB.H END */
1505
1506#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1507/* if your architecture doesn't need memory fences, e.g. because it is
1508 * single-cpu/core, or if you use libev in a project that doesn't use libev
1509 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1510 * libev, in which cases the memory fences become nops.
1511 * alternatively, you can remove this #error and link against libpthread,
1512 * which will then provide the memory fences.
1513 */
1514# error "memory fences not defined for your architecture, please report"
1515#endif
1516
1517#ifndef ECB_MEMORY_FENCE
1518# define ECB_MEMORY_FENCE do { } while (0)
1519# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1520# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1521#endif
1522
1523#define expect_false(cond) ecb_expect_false (cond)
1524#define expect_true(cond) ecb_expect_true (cond)
1525#define noinline ecb_noinline
1526
306#define inline_size static inline 1527#define inline_size ecb_inline
307 1528
308#if EV_MINIMAL 1529#if EV_FEATURE_CODE
1530# define inline_speed ecb_inline
1531#else
309# define inline_speed static noinline 1532# define inline_speed static noinline
310#else
311# define inline_speed static inline
312#endif 1533#endif
313 1534
314#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1535#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1536
1537#if EV_MINPRI == EV_MAXPRI
1538# define ABSPRI(w) (((W)w), 0)
1539#else
315#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1540# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1541#endif
316 1542
317#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1543#define EMPTY /* required for microsofts broken pseudo-c compiler */
318#define EMPTY2(a,b) /* used to suppress some warnings */ 1544#define EMPTY2(a,b) /* used to suppress some warnings */
319 1545
320typedef ev_watcher *W; 1546typedef ev_watcher *W;
321typedef ev_watcher_list *WL; 1547typedef ev_watcher_list *WL;
322typedef ev_watcher_time *WT; 1548typedef ev_watcher_time *WT;
323 1549
1550#define ev_active(w) ((W)(w))->active
1551#define ev_at(w) ((WT)(w))->at
1552
1553#if EV_USE_REALTIME
1554/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1555/* giving it a reasonably high chance of working on typical architectures */
1556static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1557#endif
1558
324#if EV_USE_MONOTONIC 1559#if EV_USE_MONOTONIC
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */
327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1560static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1561#endif
1562
1563#ifndef EV_FD_TO_WIN32_HANDLE
1564# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1565#endif
1566#ifndef EV_WIN32_HANDLE_TO_FD
1567# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1568#endif
1569#ifndef EV_WIN32_CLOSE_FD
1570# define EV_WIN32_CLOSE_FD(fd) close (fd)
328#endif 1571#endif
329 1572
330#ifdef _WIN32 1573#ifdef _WIN32
331# include "ev_win32.c" 1574# include "ev_win32.c"
332#endif 1575#endif
333 1576
334/*****************************************************************************/ 1577/*****************************************************************************/
335 1578
1579/* define a suitable floor function (only used by periodics atm) */
1580
1581#if EV_USE_FLOOR
1582# include <math.h>
1583# define ev_floor(v) floor (v)
1584#else
1585
1586#include <float.h>
1587
1588/* a floor() replacement function, should be independent of ev_tstamp type */
1589static ev_tstamp noinline
1590ev_floor (ev_tstamp v)
1591{
1592 /* the choice of shift factor is not terribly important */
1593#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1594 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1595#else
1596 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1597#endif
1598
1599 /* argument too large for an unsigned long? */
1600 if (expect_false (v >= shift))
1601 {
1602 ev_tstamp f;
1603
1604 if (v == v - 1.)
1605 return v; /* very large number */
1606
1607 f = shift * ev_floor (v * (1. / shift));
1608 return f + ev_floor (v - f);
1609 }
1610
1611 /* special treatment for negative args? */
1612 if (expect_false (v < 0.))
1613 {
1614 ev_tstamp f = -ev_floor (-v);
1615
1616 return f - (f == v ? 0 : 1);
1617 }
1618
1619 /* fits into an unsigned long */
1620 return (unsigned long)v;
1621}
1622
1623#endif
1624
1625/*****************************************************************************/
1626
1627#ifdef __linux
1628# include <sys/utsname.h>
1629#endif
1630
1631static unsigned int noinline ecb_cold
1632ev_linux_version (void)
1633{
1634#ifdef __linux
1635 unsigned int v = 0;
1636 struct utsname buf;
1637 int i;
1638 char *p = buf.release;
1639
1640 if (uname (&buf))
1641 return 0;
1642
1643 for (i = 3+1; --i; )
1644 {
1645 unsigned int c = 0;
1646
1647 for (;;)
1648 {
1649 if (*p >= '0' && *p <= '9')
1650 c = c * 10 + *p++ - '0';
1651 else
1652 {
1653 p += *p == '.';
1654 break;
1655 }
1656 }
1657
1658 v = (v << 8) | c;
1659 }
1660
1661 return v;
1662#else
1663 return 0;
1664#endif
1665}
1666
1667/*****************************************************************************/
1668
1669#if EV_AVOID_STDIO
1670static void noinline ecb_cold
1671ev_printerr (const char *msg)
1672{
1673 write (STDERR_FILENO, msg, strlen (msg));
1674}
1675#endif
1676
336static void (*syserr_cb)(const char *msg); 1677static void (*syserr_cb)(const char *msg) EV_THROW;
337 1678
338void 1679void ecb_cold
339ev_set_syserr_cb (void (*cb)(const char *msg)) 1680ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
340{ 1681{
341 syserr_cb = cb; 1682 syserr_cb = cb;
342} 1683}
343 1684
344static void noinline 1685static void noinline ecb_cold
345syserr (const char *msg) 1686ev_syserr (const char *msg)
346{ 1687{
347 if (!msg) 1688 if (!msg)
348 msg = "(libev) system error"; 1689 msg = "(libev) system error";
349 1690
350 if (syserr_cb) 1691 if (syserr_cb)
351 syserr_cb (msg); 1692 syserr_cb (msg);
352 else 1693 else
353 { 1694 {
1695#if EV_AVOID_STDIO
1696 ev_printerr (msg);
1697 ev_printerr (": ");
1698 ev_printerr (strerror (errno));
1699 ev_printerr ("\n");
1700#else
354 perror (msg); 1701 perror (msg);
1702#endif
355 abort (); 1703 abort ();
356 } 1704 }
357} 1705}
358 1706
1707static void *
1708ev_realloc_emul (void *ptr, long size) EV_THROW
1709{
1710 /* some systems, notably openbsd and darwin, fail to properly
1711 * implement realloc (x, 0) (as required by both ansi c-89 and
1712 * the single unix specification, so work around them here.
1713 * recently, also (at least) fedora and debian started breaking it,
1714 * despite documenting it otherwise.
1715 */
1716
1717 if (size)
1718 return realloc (ptr, size);
1719
1720 free (ptr);
1721 return 0;
1722}
1723
359static void *(*alloc)(void *ptr, long size); 1724static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
360 1725
361void 1726void ecb_cold
362ev_set_allocator (void *(*cb)(void *ptr, long size)) 1727ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
363{ 1728{
364 alloc = cb; 1729 alloc = cb;
365} 1730}
366 1731
367inline_speed void * 1732inline_speed void *
368ev_realloc (void *ptr, long size) 1733ev_realloc (void *ptr, long size)
369{ 1734{
370 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1735 ptr = alloc (ptr, size);
371 1736
372 if (!ptr && size) 1737 if (!ptr && size)
373 { 1738 {
1739#if EV_AVOID_STDIO
1740 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1741#else
374 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1742 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1743#endif
375 abort (); 1744 abort ();
376 } 1745 }
377 1746
378 return ptr; 1747 return ptr;
379} 1748}
381#define ev_malloc(size) ev_realloc (0, (size)) 1750#define ev_malloc(size) ev_realloc (0, (size))
382#define ev_free(ptr) ev_realloc ((ptr), 0) 1751#define ev_free(ptr) ev_realloc ((ptr), 0)
383 1752
384/*****************************************************************************/ 1753/*****************************************************************************/
385 1754
1755/* set in reify when reification needed */
1756#define EV_ANFD_REIFY 1
1757
1758/* file descriptor info structure */
386typedef struct 1759typedef struct
387{ 1760{
388 WL head; 1761 WL head;
389 unsigned char events; 1762 unsigned char events; /* the events watched for */
1763 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1764 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
390 unsigned char reify; 1765 unsigned char unused;
1766#if EV_USE_EPOLL
1767 unsigned int egen; /* generation counter to counter epoll bugs */
1768#endif
391#if EV_SELECT_IS_WINSOCKET 1769#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
392 SOCKET handle; 1770 SOCKET handle;
393#endif 1771#endif
1772#if EV_USE_IOCP
1773 OVERLAPPED or, ow;
1774#endif
394} ANFD; 1775} ANFD;
395 1776
1777/* stores the pending event set for a given watcher */
396typedef struct 1778typedef struct
397{ 1779{
398 W w; 1780 W w;
399 int events; 1781 int events; /* the pending event set for the given watcher */
400} ANPENDING; 1782} ANPENDING;
401 1783
402#if EV_USE_INOTIFY 1784#if EV_USE_INOTIFY
1785/* hash table entry per inotify-id */
403typedef struct 1786typedef struct
404{ 1787{
405 WL head; 1788 WL head;
406} ANFS; 1789} ANFS;
1790#endif
1791
1792/* Heap Entry */
1793#if EV_HEAP_CACHE_AT
1794 /* a heap element */
1795 typedef struct {
1796 ev_tstamp at;
1797 WT w;
1798 } ANHE;
1799
1800 #define ANHE_w(he) (he).w /* access watcher, read-write */
1801 #define ANHE_at(he) (he).at /* access cached at, read-only */
1802 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1803#else
1804 /* a heap element */
1805 typedef WT ANHE;
1806
1807 #define ANHE_w(he) (he)
1808 #define ANHE_at(he) (he)->at
1809 #define ANHE_at_cache(he)
407#endif 1810#endif
408 1811
409#if EV_MULTIPLICITY 1812#if EV_MULTIPLICITY
410 1813
411 struct ev_loop 1814 struct ev_loop
417 #undef VAR 1820 #undef VAR
418 }; 1821 };
419 #include "ev_wrap.h" 1822 #include "ev_wrap.h"
420 1823
421 static struct ev_loop default_loop_struct; 1824 static struct ev_loop default_loop_struct;
422 struct ev_loop *ev_default_loop_ptr; 1825 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
423 1826
424#else 1827#else
425 1828
426 ev_tstamp ev_rt_now; 1829 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
427 #define VAR(name,decl) static decl; 1830 #define VAR(name,decl) static decl;
428 #include "ev_vars.h" 1831 #include "ev_vars.h"
429 #undef VAR 1832 #undef VAR
430 1833
431 static int ev_default_loop_ptr; 1834 static int ev_default_loop_ptr;
432 1835
433#endif 1836#endif
434 1837
1838#if EV_FEATURE_API
1839# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1840# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1841# define EV_INVOKE_PENDING invoke_cb (EV_A)
1842#else
1843# define EV_RELEASE_CB (void)0
1844# define EV_ACQUIRE_CB (void)0
1845# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1846#endif
1847
1848#define EVBREAK_RECURSE 0x80
1849
435/*****************************************************************************/ 1850/*****************************************************************************/
436 1851
1852#ifndef EV_HAVE_EV_TIME
437ev_tstamp 1853ev_tstamp
438ev_time (void) 1854ev_time (void) EV_THROW
439{ 1855{
440#if EV_USE_REALTIME 1856#if EV_USE_REALTIME
1857 if (expect_true (have_realtime))
1858 {
441 struct timespec ts; 1859 struct timespec ts;
442 clock_gettime (CLOCK_REALTIME, &ts); 1860 clock_gettime (CLOCK_REALTIME, &ts);
443 return ts.tv_sec + ts.tv_nsec * 1e-9; 1861 return ts.tv_sec + ts.tv_nsec * 1e-9;
444#else 1862 }
1863#endif
1864
445 struct timeval tv; 1865 struct timeval tv;
446 gettimeofday (&tv, 0); 1866 gettimeofday (&tv, 0);
447 return tv.tv_sec + tv.tv_usec * 1e-6; 1867 return tv.tv_sec + tv.tv_usec * 1e-6;
448#endif
449} 1868}
1869#endif
450 1870
451ev_tstamp inline_size 1871inline_size ev_tstamp
452get_clock (void) 1872get_clock (void)
453{ 1873{
454#if EV_USE_MONOTONIC 1874#if EV_USE_MONOTONIC
455 if (expect_true (have_monotonic)) 1875 if (expect_true (have_monotonic))
456 { 1876 {
463 return ev_time (); 1883 return ev_time ();
464} 1884}
465 1885
466#if EV_MULTIPLICITY 1886#if EV_MULTIPLICITY
467ev_tstamp 1887ev_tstamp
468ev_now (EV_P) 1888ev_now (EV_P) EV_THROW
469{ 1889{
470 return ev_rt_now; 1890 return ev_rt_now;
471} 1891}
472#endif 1892#endif
473 1893
474void 1894void
475ev_sleep (ev_tstamp delay) 1895ev_sleep (ev_tstamp delay) EV_THROW
476{ 1896{
477 if (delay > 0.) 1897 if (delay > 0.)
478 { 1898 {
479#if EV_USE_NANOSLEEP 1899#if EV_USE_NANOSLEEP
480 struct timespec ts; 1900 struct timespec ts;
481 1901
482 ts.tv_sec = (time_t)delay; 1902 EV_TS_SET (ts, delay);
483 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
484
485 nanosleep (&ts, 0); 1903 nanosleep (&ts, 0);
486#elif defined(_WIN32) 1904#elif defined _WIN32
487 Sleep ((unsigned long)(delay * 1e3)); 1905 Sleep ((unsigned long)(delay * 1e3));
488#else 1906#else
489 struct timeval tv; 1907 struct timeval tv;
490 1908
491 tv.tv_sec = (time_t)delay; 1909 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
492 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1910 /* something not guaranteed by newer posix versions, but guaranteed */
493 1911 /* by older ones */
1912 EV_TV_SET (tv, delay);
494 select (0, 0, 0, 0, &tv); 1913 select (0, 0, 0, 0, &tv);
495#endif 1914#endif
496 } 1915 }
497} 1916}
498 1917
499/*****************************************************************************/ 1918/*****************************************************************************/
500 1919
501int inline_size 1920#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1921
1922/* find a suitable new size for the given array, */
1923/* hopefully by rounding to a nice-to-malloc size */
1924inline_size int
502array_nextsize (int elem, int cur, int cnt) 1925array_nextsize (int elem, int cur, int cnt)
503{ 1926{
504 int ncur = cur + 1; 1927 int ncur = cur + 1;
505 1928
506 do 1929 do
507 ncur <<= 1; 1930 ncur <<= 1;
508 while (cnt > ncur); 1931 while (cnt > ncur);
509 1932
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1933 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
511 if (elem * ncur > 4096) 1934 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
512 { 1935 {
513 ncur *= elem; 1936 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1937 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
515 ncur = ncur - sizeof (void *) * 4; 1938 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem; 1939 ncur /= elem;
517 } 1940 }
518 1941
519 return ncur; 1942 return ncur;
520} 1943}
521 1944
522static noinline void * 1945static void * noinline ecb_cold
523array_realloc (int elem, void *base, int *cur, int cnt) 1946array_realloc (int elem, void *base, int *cur, int cnt)
524{ 1947{
525 *cur = array_nextsize (elem, *cur, cnt); 1948 *cur = array_nextsize (elem, *cur, cnt);
526 return ev_realloc (base, elem * *cur); 1949 return ev_realloc (base, elem * *cur);
527} 1950}
1951
1952#define array_init_zero(base,count) \
1953 memset ((void *)(base), 0, sizeof (*(base)) * (count))
528 1954
529#define array_needsize(type,base,cur,cnt,init) \ 1955#define array_needsize(type,base,cur,cnt,init) \
530 if (expect_false ((cnt) > (cur))) \ 1956 if (expect_false ((cnt) > (cur))) \
531 { \ 1957 { \
532 int ocur_ = (cur); \ 1958 int ecb_unused ocur_ = (cur); \
533 (base) = (type *)array_realloc \ 1959 (base) = (type *)array_realloc \
534 (sizeof (type), (base), &(cur), (cnt)); \ 1960 (sizeof (type), (base), &(cur), (cnt)); \
535 init ((base) + (ocur_), (cur) - ocur_); \ 1961 init ((base) + (ocur_), (cur) - ocur_); \
536 } 1962 }
537 1963
544 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1970 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
545 } 1971 }
546#endif 1972#endif
547 1973
548#define array_free(stem, idx) \ 1974#define array_free(stem, idx) \
549 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1975 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
550 1976
551/*****************************************************************************/ 1977/*****************************************************************************/
552 1978
1979/* dummy callback for pending events */
1980static void noinline
1981pendingcb (EV_P_ ev_prepare *w, int revents)
1982{
1983}
1984
553void noinline 1985void noinline
554ev_feed_event (EV_P_ void *w, int revents) 1986ev_feed_event (EV_P_ void *w, int revents) EV_THROW
555{ 1987{
556 W w_ = (W)w; 1988 W w_ = (W)w;
557 int pri = ABSPRI (w_); 1989 int pri = ABSPRI (w_);
558 1990
559 if (expect_false (w_->pending)) 1991 if (expect_false (w_->pending))
563 w_->pending = ++pendingcnt [pri]; 1995 w_->pending = ++pendingcnt [pri];
564 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1996 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
565 pendings [pri][w_->pending - 1].w = w_; 1997 pendings [pri][w_->pending - 1].w = w_;
566 pendings [pri][w_->pending - 1].events = revents; 1998 pendings [pri][w_->pending - 1].events = revents;
567 } 1999 }
568}
569 2000
570void inline_speed 2001 pendingpri = NUMPRI - 1;
2002}
2003
2004inline_speed void
2005feed_reverse (EV_P_ W w)
2006{
2007 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2008 rfeeds [rfeedcnt++] = w;
2009}
2010
2011inline_size void
2012feed_reverse_done (EV_P_ int revents)
2013{
2014 do
2015 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2016 while (rfeedcnt);
2017}
2018
2019inline_speed void
571queue_events (EV_P_ W *events, int eventcnt, int type) 2020queue_events (EV_P_ W *events, int eventcnt, int type)
572{ 2021{
573 int i; 2022 int i;
574 2023
575 for (i = 0; i < eventcnt; ++i) 2024 for (i = 0; i < eventcnt; ++i)
576 ev_feed_event (EV_A_ events [i], type); 2025 ev_feed_event (EV_A_ events [i], type);
577} 2026}
578 2027
579/*****************************************************************************/ 2028/*****************************************************************************/
580 2029
581void inline_size 2030inline_speed void
582anfds_init (ANFD *base, int count)
583{
584 while (count--)
585 {
586 base->head = 0;
587 base->events = EV_NONE;
588 base->reify = 0;
589
590 ++base;
591 }
592}
593
594void inline_speed
595fd_event (EV_P_ int fd, int revents) 2031fd_event_nocheck (EV_P_ int fd, int revents)
596{ 2032{
597 ANFD *anfd = anfds + fd; 2033 ANFD *anfd = anfds + fd;
598 ev_io *w; 2034 ev_io *w;
599 2035
600 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2036 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
604 if (ev) 2040 if (ev)
605 ev_feed_event (EV_A_ (W)w, ev); 2041 ev_feed_event (EV_A_ (W)w, ev);
606 } 2042 }
607} 2043}
608 2044
2045/* do not submit kernel events for fds that have reify set */
2046/* because that means they changed while we were polling for new events */
2047inline_speed void
2048fd_event (EV_P_ int fd, int revents)
2049{
2050 ANFD *anfd = anfds + fd;
2051
2052 if (expect_true (!anfd->reify))
2053 fd_event_nocheck (EV_A_ fd, revents);
2054}
2055
609void 2056void
610ev_feed_fd_event (EV_P_ int fd, int revents) 2057ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
611{ 2058{
612 if (fd >= 0 && fd < anfdmax) 2059 if (fd >= 0 && fd < anfdmax)
613 fd_event (EV_A_ fd, revents); 2060 fd_event_nocheck (EV_A_ fd, revents);
614} 2061}
615 2062
616void inline_size 2063/* make sure the external fd watch events are in-sync */
2064/* with the kernel/libev internal state */
2065inline_size void
617fd_reify (EV_P) 2066fd_reify (EV_P)
618{ 2067{
619 int i; 2068 int i;
2069
2070#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2071 for (i = 0; i < fdchangecnt; ++i)
2072 {
2073 int fd = fdchanges [i];
2074 ANFD *anfd = anfds + fd;
2075
2076 if (anfd->reify & EV__IOFDSET && anfd->head)
2077 {
2078 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2079
2080 if (handle != anfd->handle)
2081 {
2082 unsigned long arg;
2083
2084 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2085
2086 /* handle changed, but fd didn't - we need to do it in two steps */
2087 backend_modify (EV_A_ fd, anfd->events, 0);
2088 anfd->events = 0;
2089 anfd->handle = handle;
2090 }
2091 }
2092 }
2093#endif
620 2094
621 for (i = 0; i < fdchangecnt; ++i) 2095 for (i = 0; i < fdchangecnt; ++i)
622 { 2096 {
623 int fd = fdchanges [i]; 2097 int fd = fdchanges [i];
624 ANFD *anfd = anfds + fd; 2098 ANFD *anfd = anfds + fd;
625 ev_io *w; 2099 ev_io *w;
626 2100
627 unsigned char events = 0; 2101 unsigned char o_events = anfd->events;
2102 unsigned char o_reify = anfd->reify;
628 2103
629 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2104 anfd->reify = 0;
630 events |= (unsigned char)w->events;
631 2105
632#if EV_SELECT_IS_WINSOCKET 2106 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
633 if (events)
634 { 2107 {
635 unsigned long argp; 2108 anfd->events = 0;
636 #ifdef EV_FD_TO_WIN32_HANDLE 2109
637 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2110 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
638 #else 2111 anfd->events |= (unsigned char)w->events;
639 anfd->handle = _get_osfhandle (fd); 2112
640 #endif 2113 if (o_events != anfd->events)
641 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2114 o_reify = EV__IOFDSET; /* actually |= */
642 } 2115 }
643#endif
644 2116
645 { 2117 if (o_reify & EV__IOFDSET)
646 unsigned char o_events = anfd->events;
647 unsigned char o_reify = anfd->reify;
648
649 anfd->reify = 0;
650 anfd->events = events;
651
652 if (o_events != events || o_reify & EV_IOFDSET)
653 backend_modify (EV_A_ fd, o_events, events); 2118 backend_modify (EV_A_ fd, o_events, anfd->events);
654 }
655 } 2119 }
656 2120
657 fdchangecnt = 0; 2121 fdchangecnt = 0;
658} 2122}
659 2123
660void inline_size 2124/* something about the given fd changed */
2125inline_size void
661fd_change (EV_P_ int fd, int flags) 2126fd_change (EV_P_ int fd, int flags)
662{ 2127{
663 unsigned char reify = anfds [fd].reify; 2128 unsigned char reify = anfds [fd].reify;
664 anfds [fd].reify |= flags; 2129 anfds [fd].reify |= flags;
665 2130
669 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2134 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
670 fdchanges [fdchangecnt - 1] = fd; 2135 fdchanges [fdchangecnt - 1] = fd;
671 } 2136 }
672} 2137}
673 2138
674void inline_speed 2139/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2140inline_speed void ecb_cold
675fd_kill (EV_P_ int fd) 2141fd_kill (EV_P_ int fd)
676{ 2142{
677 ev_io *w; 2143 ev_io *w;
678 2144
679 while ((w = (ev_io *)anfds [fd].head)) 2145 while ((w = (ev_io *)anfds [fd].head))
681 ev_io_stop (EV_A_ w); 2147 ev_io_stop (EV_A_ w);
682 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2148 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
683 } 2149 }
684} 2150}
685 2151
686int inline_size 2152/* check whether the given fd is actually valid, for error recovery */
2153inline_size int ecb_cold
687fd_valid (int fd) 2154fd_valid (int fd)
688{ 2155{
689#ifdef _WIN32 2156#ifdef _WIN32
690 return _get_osfhandle (fd) != -1; 2157 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
691#else 2158#else
692 return fcntl (fd, F_GETFD) != -1; 2159 return fcntl (fd, F_GETFD) != -1;
693#endif 2160#endif
694} 2161}
695 2162
696/* called on EBADF to verify fds */ 2163/* called on EBADF to verify fds */
697static void noinline 2164static void noinline ecb_cold
698fd_ebadf (EV_P) 2165fd_ebadf (EV_P)
699{ 2166{
700 int fd; 2167 int fd;
701 2168
702 for (fd = 0; fd < anfdmax; ++fd) 2169 for (fd = 0; fd < anfdmax; ++fd)
703 if (anfds [fd].events) 2170 if (anfds [fd].events)
704 if (!fd_valid (fd) == -1 && errno == EBADF) 2171 if (!fd_valid (fd) && errno == EBADF)
705 fd_kill (EV_A_ fd); 2172 fd_kill (EV_A_ fd);
706} 2173}
707 2174
708/* called on ENOMEM in select/poll to kill some fds and retry */ 2175/* called on ENOMEM in select/poll to kill some fds and retry */
709static void noinline 2176static void noinline ecb_cold
710fd_enomem (EV_P) 2177fd_enomem (EV_P)
711{ 2178{
712 int fd; 2179 int fd;
713 2180
714 for (fd = anfdmax; fd--; ) 2181 for (fd = anfdmax; fd--; )
715 if (anfds [fd].events) 2182 if (anfds [fd].events)
716 { 2183 {
717 fd_kill (EV_A_ fd); 2184 fd_kill (EV_A_ fd);
718 return; 2185 break;
719 } 2186 }
720} 2187}
721 2188
722/* usually called after fork if backend needs to re-arm all fds from scratch */ 2189/* usually called after fork if backend needs to re-arm all fds from scratch */
723static void noinline 2190static void noinline
727 2194
728 for (fd = 0; fd < anfdmax; ++fd) 2195 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 2196 if (anfds [fd].events)
730 { 2197 {
731 anfds [fd].events = 0; 2198 anfds [fd].events = 0;
2199 anfds [fd].emask = 0;
732 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2200 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
733 } 2201 }
734} 2202}
735 2203
736/*****************************************************************************/ 2204/* used to prepare libev internal fd's */
737 2205/* this is not fork-safe */
738void inline_speed 2206inline_speed void
739upheap (WT *heap, int k)
740{
741 WT w = heap [k];
742
743 while (k)
744 {
745 int p = (k - 1) >> 1;
746
747 if (heap [p]->at <= w->at)
748 break;
749
750 heap [k] = heap [p];
751 ((W)heap [k])->active = k + 1;
752 k = p;
753 }
754
755 heap [k] = w;
756 ((W)heap [k])->active = k + 1;
757}
758
759void inline_speed
760downheap (WT *heap, int N, int k)
761{
762 WT w = heap [k];
763
764 for (;;)
765 {
766 int c = (k << 1) + 1;
767
768 if (c >= N)
769 break;
770
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
772 ? 1 : 0;
773
774 if (w->at <= heap [c]->at)
775 break;
776
777 heap [k] = heap [c];
778 ((W)heap [k])->active = k + 1;
779
780 k = c;
781 }
782
783 heap [k] = w;
784 ((W)heap [k])->active = k + 1;
785}
786
787void inline_size
788adjustheap (WT *heap, int N, int k)
789{
790 upheap (heap, k);
791 downheap (heap, N, k);
792}
793
794/*****************************************************************************/
795
796typedef struct
797{
798 WL head;
799 EV_ATOMIC_T gotsig;
800} ANSIG;
801
802static ANSIG *signals;
803static int signalmax;
804
805static EV_ATOMIC_T gotsig;
806
807void inline_size
808signals_init (ANSIG *base, int count)
809{
810 while (count--)
811 {
812 base->head = 0;
813 base->gotsig = 0;
814
815 ++base;
816 }
817}
818
819/*****************************************************************************/
820
821void inline_speed
822fd_intern (int fd) 2207fd_intern (int fd)
823{ 2208{
824#ifdef _WIN32 2209#ifdef _WIN32
825 int arg = 1; 2210 unsigned long arg = 1;
826 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2211 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
827#else 2212#else
828 fcntl (fd, F_SETFD, FD_CLOEXEC); 2213 fcntl (fd, F_SETFD, FD_CLOEXEC);
829 fcntl (fd, F_SETFL, O_NONBLOCK); 2214 fcntl (fd, F_SETFL, O_NONBLOCK);
830#endif 2215#endif
831} 2216}
832 2217
833static void noinline 2218/*****************************************************************************/
834evpipe_init (EV_P) 2219
2220/*
2221 * the heap functions want a real array index. array index 0 is guaranteed to not
2222 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2223 * the branching factor of the d-tree.
2224 */
2225
2226/*
2227 * at the moment we allow libev the luxury of two heaps,
2228 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2229 * which is more cache-efficient.
2230 * the difference is about 5% with 50000+ watchers.
2231 */
2232#if EV_USE_4HEAP
2233
2234#define DHEAP 4
2235#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2236#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2237#define UPHEAP_DONE(p,k) ((p) == (k))
2238
2239/* away from the root */
2240inline_speed void
2241downheap (ANHE *heap, int N, int k)
835{ 2242{
836 if (!ev_is_active (&pipeev)) 2243 ANHE he = heap [k];
2244 ANHE *E = heap + N + HEAP0;
2245
2246 for (;;)
837 { 2247 {
838#if EV_USE_EVENTFD 2248 ev_tstamp minat;
839 if ((evfd = eventfd (0, 0)) >= 0) 2249 ANHE *minpos;
2250 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2251
2252 /* find minimum child */
2253 if (expect_true (pos + DHEAP - 1 < E))
840 { 2254 {
841 evpipe [0] = -1; 2255 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
842 fd_intern (evfd); 2256 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
843 ev_io_set (&pipeev, evfd, EV_READ); 2257 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2258 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2259 }
2260 else if (pos < E)
2261 {
2262 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2263 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2264 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2265 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 2266 }
845 else 2267 else
2268 break;
2269
2270 if (ANHE_at (he) <= minat)
2271 break;
2272
2273 heap [k] = *minpos;
2274 ev_active (ANHE_w (*minpos)) = k;
2275
2276 k = minpos - heap;
2277 }
2278
2279 heap [k] = he;
2280 ev_active (ANHE_w (he)) = k;
2281}
2282
2283#else /* 4HEAP */
2284
2285#define HEAP0 1
2286#define HPARENT(k) ((k) >> 1)
2287#define UPHEAP_DONE(p,k) (!(p))
2288
2289/* away from the root */
2290inline_speed void
2291downheap (ANHE *heap, int N, int k)
2292{
2293 ANHE he = heap [k];
2294
2295 for (;;)
2296 {
2297 int c = k << 1;
2298
2299 if (c >= N + HEAP0)
2300 break;
2301
2302 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2303 ? 1 : 0;
2304
2305 if (ANHE_at (he) <= ANHE_at (heap [c]))
2306 break;
2307
2308 heap [k] = heap [c];
2309 ev_active (ANHE_w (heap [k])) = k;
2310
2311 k = c;
2312 }
2313
2314 heap [k] = he;
2315 ev_active (ANHE_w (he)) = k;
2316}
2317#endif
2318
2319/* towards the root */
2320inline_speed void
2321upheap (ANHE *heap, int k)
2322{
2323 ANHE he = heap [k];
2324
2325 for (;;)
2326 {
2327 int p = HPARENT (k);
2328
2329 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2330 break;
2331
2332 heap [k] = heap [p];
2333 ev_active (ANHE_w (heap [k])) = k;
2334 k = p;
2335 }
2336
2337 heap [k] = he;
2338 ev_active (ANHE_w (he)) = k;
2339}
2340
2341/* move an element suitably so it is in a correct place */
2342inline_size void
2343adjustheap (ANHE *heap, int N, int k)
2344{
2345 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2346 upheap (heap, k);
2347 else
2348 downheap (heap, N, k);
2349}
2350
2351/* rebuild the heap: this function is used only once and executed rarely */
2352inline_size void
2353reheap (ANHE *heap, int N)
2354{
2355 int i;
2356
2357 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2358 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2359 for (i = 0; i < N; ++i)
2360 upheap (heap, i + HEAP0);
2361}
2362
2363/*****************************************************************************/
2364
2365/* associate signal watchers to a signal signal */
2366typedef struct
2367{
2368 EV_ATOMIC_T pending;
2369#if EV_MULTIPLICITY
2370 EV_P;
2371#endif
2372 WL head;
2373} ANSIG;
2374
2375static ANSIG signals [EV_NSIG - 1];
2376
2377/*****************************************************************************/
2378
2379#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2380
2381static void noinline ecb_cold
2382evpipe_init (EV_P)
2383{
2384 if (!ev_is_active (&pipe_w))
2385 {
2386 int fds [2];
2387
2388# if EV_USE_EVENTFD
2389 fds [0] = -1;
2390 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2391 if (fds [1] < 0 && errno == EINVAL)
2392 fds [1] = eventfd (0, 0);
2393
2394 if (fds [1] < 0)
846#endif 2395# endif
847 { 2396 {
848 while (pipe (evpipe)) 2397 while (pipe (fds))
849 syserr ("(libev) error creating signal/async pipe"); 2398 ev_syserr ("(libev) error creating signal/async pipe");
850 2399
851 fd_intern (evpipe [0]); 2400 fd_intern (fds [0]);
852 fd_intern (evpipe [1]);
853 ev_io_set (&pipeev, evpipe [0], EV_READ);
854 } 2401 }
855 2402
2403 evpipe [0] = fds [0];
2404
2405 if (evpipe [1] < 0)
2406 evpipe [1] = fds [1]; /* first call, set write fd */
2407 else
2408 {
2409 /* on subsequent calls, do not change evpipe [1] */
2410 /* so that evpipe_write can always rely on its value. */
2411 /* this branch does not do anything sensible on windows, */
2412 /* so must not be executed on windows */
2413
2414 dup2 (fds [1], evpipe [1]);
2415 close (fds [1]);
2416 }
2417
2418 fd_intern (evpipe [1]);
2419
2420 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
856 ev_io_start (EV_A_ &pipeev); 2421 ev_io_start (EV_A_ &pipe_w);
857 ev_unref (EV_A); /* watcher should not keep loop alive */ 2422 ev_unref (EV_A); /* watcher should not keep loop alive */
858 } 2423 }
859} 2424}
860 2425
861void inline_size 2426inline_speed void
862evpipe_write (EV_P_ EV_ATOMIC_T *flag) 2427evpipe_write (EV_P_ EV_ATOMIC_T *flag)
863{ 2428{
864 if (!*flag) 2429 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2430
2431 if (expect_true (*flag))
2432 return;
2433
2434 *flag = 1;
2435 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2436
2437 pipe_write_skipped = 1;
2438
2439 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2440
2441 if (pipe_write_wanted)
865 { 2442 {
2443 int old_errno;
2444
2445 pipe_write_skipped = 0;
2446 ECB_MEMORY_FENCE_RELEASE;
2447
866 int old_errno = errno; /* save errno because write might clobber it */ 2448 old_errno = errno; /* save errno because write will clobber it */
867
868 *flag = 1;
869 2449
870#if EV_USE_EVENTFD 2450#if EV_USE_EVENTFD
871 if (evfd >= 0) 2451 if (evpipe [0] < 0)
872 { 2452 {
873 uint64_t counter = 1; 2453 uint64_t counter = 1;
874 write (evfd, &counter, sizeof (uint64_t)); 2454 write (evpipe [1], &counter, sizeof (uint64_t));
875 } 2455 }
876 else 2456 else
877#endif 2457#endif
2458 {
2459#ifdef _WIN32
2460 WSABUF buf;
2461 DWORD sent;
2462 buf.buf = &buf;
2463 buf.len = 1;
2464 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2465#else
878 write (evpipe [1], &old_errno, 1); 2466 write (evpipe [1], &(evpipe [1]), 1);
2467#endif
2468 }
879 2469
880 errno = old_errno; 2470 errno = old_errno;
881 } 2471 }
882} 2472}
883 2473
2474/* called whenever the libev signal pipe */
2475/* got some events (signal, async) */
884static void 2476static void
885pipecb (EV_P_ ev_io *iow, int revents) 2477pipecb (EV_P_ ev_io *iow, int revents)
886{ 2478{
2479 int i;
2480
2481 if (revents & EV_READ)
2482 {
887#if EV_USE_EVENTFD 2483#if EV_USE_EVENTFD
888 if (evfd >= 0) 2484 if (evpipe [0] < 0)
889 { 2485 {
890 uint64_t counter = 1; 2486 uint64_t counter;
891 read (evfd, &counter, sizeof (uint64_t)); 2487 read (evpipe [1], &counter, sizeof (uint64_t));
892 } 2488 }
893 else 2489 else
894#endif 2490#endif
895 { 2491 {
896 char dummy; 2492 char dummy[4];
2493#ifdef _WIN32
2494 WSABUF buf;
2495 DWORD recvd;
2496 DWORD flags = 0;
2497 buf.buf = dummy;
2498 buf.len = sizeof (dummy);
2499 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2500#else
897 read (evpipe [0], &dummy, 1); 2501 read (evpipe [0], &dummy, sizeof (dummy));
2502#endif
2503 }
2504 }
2505
2506 pipe_write_skipped = 0;
2507
2508 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2509
2510#if EV_SIGNAL_ENABLE
2511 if (sig_pending)
898 } 2512 {
2513 sig_pending = 0;
899 2514
900 if (gotsig && ev_is_default_loop (EV_A)) 2515 ECB_MEMORY_FENCE;
901 {
902 int signum;
903 gotsig = 0;
904 2516
905 for (signum = signalmax; signum--; ) 2517 for (i = EV_NSIG - 1; i--; )
906 if (signals [signum].gotsig) 2518 if (expect_false (signals [i].pending))
907 ev_feed_signal_event (EV_A_ signum + 1); 2519 ev_feed_signal_event (EV_A_ i + 1);
908 } 2520 }
2521#endif
909 2522
910#if EV_ASYNC_ENABLE 2523#if EV_ASYNC_ENABLE
911 if (gotasync) 2524 if (async_pending)
912 { 2525 {
913 int i; 2526 async_pending = 0;
914 gotasync = 0; 2527
2528 ECB_MEMORY_FENCE;
915 2529
916 for (i = asynccnt; i--; ) 2530 for (i = asynccnt; i--; )
917 if (asyncs [i]->sent) 2531 if (asyncs [i]->sent)
918 { 2532 {
919 asyncs [i]->sent = 0; 2533 asyncs [i]->sent = 0;
2534 ECB_MEMORY_FENCE_RELEASE;
920 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2535 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
921 } 2536 }
922 } 2537 }
923#endif 2538#endif
924} 2539}
925 2540
926/*****************************************************************************/ 2541/*****************************************************************************/
927 2542
2543void
2544ev_feed_signal (int signum) EV_THROW
2545{
2546#if EV_MULTIPLICITY
2547 EV_P;
2548 ECB_MEMORY_FENCE_ACQUIRE;
2549 EV_A = signals [signum - 1].loop;
2550
2551 if (!EV_A)
2552 return;
2553#endif
2554
2555 signals [signum - 1].pending = 1;
2556 evpipe_write (EV_A_ &sig_pending);
2557}
2558
928static void 2559static void
929ev_sighandler (int signum) 2560ev_sighandler (int signum)
930{ 2561{
2562#ifdef _WIN32
2563 signal (signum, ev_sighandler);
2564#endif
2565
2566 ev_feed_signal (signum);
2567}
2568
2569void noinline
2570ev_feed_signal_event (EV_P_ int signum) EV_THROW
2571{
2572 WL w;
2573
2574 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2575 return;
2576
2577 --signum;
2578
931#if EV_MULTIPLICITY 2579#if EV_MULTIPLICITY
932 struct ev_loop *loop = &default_loop_struct; 2580 /* it is permissible to try to feed a signal to the wrong loop */
933#endif 2581 /* or, likely more useful, feeding a signal nobody is waiting for */
934 2582
935#if _WIN32 2583 if (expect_false (signals [signum].loop != EV_A))
936 signal (signum, ev_sighandler);
937#endif
938
939 signals [signum - 1].gotsig = 1;
940 evpipe_write (EV_A_ &gotsig);
941}
942
943void noinline
944ev_feed_signal_event (EV_P_ int signum)
945{
946 WL w;
947
948#if EV_MULTIPLICITY
949 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
950#endif
951
952 --signum;
953
954 if (signum < 0 || signum >= signalmax)
955 return; 2584 return;
2585#endif
956 2586
957 signals [signum].gotsig = 0; 2587 signals [signum].pending = 0;
2588 ECB_MEMORY_FENCE_RELEASE;
958 2589
959 for (w = signals [signum].head; w; w = w->next) 2590 for (w = signals [signum].head; w; w = w->next)
960 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2591 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
961} 2592}
962 2593
2594#if EV_USE_SIGNALFD
2595static void
2596sigfdcb (EV_P_ ev_io *iow, int revents)
2597{
2598 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2599
2600 for (;;)
2601 {
2602 ssize_t res = read (sigfd, si, sizeof (si));
2603
2604 /* not ISO-C, as res might be -1, but works with SuS */
2605 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2606 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2607
2608 if (res < (ssize_t)sizeof (si))
2609 break;
2610 }
2611}
2612#endif
2613
2614#endif
2615
963/*****************************************************************************/ 2616/*****************************************************************************/
964 2617
2618#if EV_CHILD_ENABLE
965static WL childs [EV_PID_HASHSIZE]; 2619static WL childs [EV_PID_HASHSIZE];
966
967#ifndef _WIN32
968 2620
969static ev_signal childev; 2621static ev_signal childev;
970 2622
971#ifndef WIFCONTINUED 2623#ifndef WIFCONTINUED
972# define WIFCONTINUED(status) 0 2624# define WIFCONTINUED(status) 0
973#endif 2625#endif
974 2626
975void inline_speed 2627/* handle a single child status event */
2628inline_speed void
976child_reap (EV_P_ int chain, int pid, int status) 2629child_reap (EV_P_ int chain, int pid, int status)
977{ 2630{
978 ev_child *w; 2631 ev_child *w;
979 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2632 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
980 2633
981 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2634 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
982 { 2635 {
983 if ((w->pid == pid || !w->pid) 2636 if ((w->pid == pid || !w->pid)
984 && (!traced || (w->flags & 1))) 2637 && (!traced || (w->flags & 1)))
985 { 2638 {
986 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2639 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
993 2646
994#ifndef WCONTINUED 2647#ifndef WCONTINUED
995# define WCONTINUED 0 2648# define WCONTINUED 0
996#endif 2649#endif
997 2650
2651/* called on sigchld etc., calls waitpid */
998static void 2652static void
999childcb (EV_P_ ev_signal *sw, int revents) 2653childcb (EV_P_ ev_signal *sw, int revents)
1000{ 2654{
1001 int pid, status; 2655 int pid, status;
1002 2656
1010 /* make sure we are called again until all children have been reaped */ 2664 /* make sure we are called again until all children have been reaped */
1011 /* we need to do it this way so that the callback gets called before we continue */ 2665 /* we need to do it this way so that the callback gets called before we continue */
1012 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2666 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1013 2667
1014 child_reap (EV_A_ pid, pid, status); 2668 child_reap (EV_A_ pid, pid, status);
1015 if (EV_PID_HASHSIZE > 1) 2669 if ((EV_PID_HASHSIZE) > 1)
1016 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2670 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1017} 2671}
1018 2672
1019#endif 2673#endif
1020 2674
1021/*****************************************************************************/ 2675/*****************************************************************************/
1022 2676
2677#if EV_USE_IOCP
2678# include "ev_iocp.c"
2679#endif
1023#if EV_USE_PORT 2680#if EV_USE_PORT
1024# include "ev_port.c" 2681# include "ev_port.c"
1025#endif 2682#endif
1026#if EV_USE_KQUEUE 2683#if EV_USE_KQUEUE
1027# include "ev_kqueue.c" 2684# include "ev_kqueue.c"
1034#endif 2691#endif
1035#if EV_USE_SELECT 2692#if EV_USE_SELECT
1036# include "ev_select.c" 2693# include "ev_select.c"
1037#endif 2694#endif
1038 2695
1039int 2696int ecb_cold
1040ev_version_major (void) 2697ev_version_major (void) EV_THROW
1041{ 2698{
1042 return EV_VERSION_MAJOR; 2699 return EV_VERSION_MAJOR;
1043} 2700}
1044 2701
1045int 2702int ecb_cold
1046ev_version_minor (void) 2703ev_version_minor (void) EV_THROW
1047{ 2704{
1048 return EV_VERSION_MINOR; 2705 return EV_VERSION_MINOR;
1049} 2706}
1050 2707
1051/* return true if we are running with elevated privileges and should ignore env variables */ 2708/* return true if we are running with elevated privileges and should ignore env variables */
1052int inline_size 2709int inline_size ecb_cold
1053enable_secure (void) 2710enable_secure (void)
1054{ 2711{
1055#ifdef _WIN32 2712#ifdef _WIN32
1056 return 0; 2713 return 0;
1057#else 2714#else
1058 return getuid () != geteuid () 2715 return getuid () != geteuid ()
1059 || getgid () != getegid (); 2716 || getgid () != getegid ();
1060#endif 2717#endif
1061} 2718}
1062 2719
1063unsigned int 2720unsigned int ecb_cold
1064ev_supported_backends (void) 2721ev_supported_backends (void) EV_THROW
1065{ 2722{
1066 unsigned int flags = 0; 2723 unsigned int flags = 0;
1067 2724
1068 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2725 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1069 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2726 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1072 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2729 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1073 2730
1074 return flags; 2731 return flags;
1075} 2732}
1076 2733
1077unsigned int 2734unsigned int ecb_cold
1078ev_recommended_backends (void) 2735ev_recommended_backends (void) EV_THROW
1079{ 2736{
1080 unsigned int flags = ev_supported_backends (); 2737 unsigned int flags = ev_supported_backends ();
1081 2738
1082#ifndef __NetBSD__ 2739#ifndef __NetBSD__
1083 /* kqueue is borked on everything but netbsd apparently */ 2740 /* kqueue is borked on everything but netbsd apparently */
1084 /* it usually doesn't work correctly on anything but sockets and pipes */ 2741 /* it usually doesn't work correctly on anything but sockets and pipes */
1085 flags &= ~EVBACKEND_KQUEUE; 2742 flags &= ~EVBACKEND_KQUEUE;
1086#endif 2743#endif
1087#ifdef __APPLE__ 2744#ifdef __APPLE__
1088 // flags &= ~EVBACKEND_KQUEUE; for documentation 2745 /* only select works correctly on that "unix-certified" platform */
1089 flags &= ~EVBACKEND_POLL; 2746 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2747 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2748#endif
2749#ifdef __FreeBSD__
2750 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1090#endif 2751#endif
1091 2752
1092 return flags; 2753 return flags;
1093} 2754}
1094 2755
2756unsigned int ecb_cold
2757ev_embeddable_backends (void) EV_THROW
2758{
2759 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2760
2761 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2762 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2763 flags &= ~EVBACKEND_EPOLL;
2764
2765 return flags;
2766}
2767
1095unsigned int 2768unsigned int
1096ev_embeddable_backends (void) 2769ev_backend (EV_P) EV_THROW
1097{ 2770{
1098 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2771 return backend;
1099
1100 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1101 /* please fix it and tell me how to detect the fix */
1102 flags &= ~EVBACKEND_EPOLL;
1103
1104 return flags;
1105} 2772}
1106 2773
2774#if EV_FEATURE_API
1107unsigned int 2775unsigned int
1108ev_backend (EV_P) 2776ev_iteration (EV_P) EV_THROW
1109{ 2777{
1110 return backend; 2778 return loop_count;
1111} 2779}
1112 2780
1113unsigned int 2781unsigned int
1114ev_loop_count (EV_P) 2782ev_depth (EV_P) EV_THROW
1115{ 2783{
1116 return loop_count; 2784 return loop_depth;
1117} 2785}
1118 2786
1119void 2787void
1120ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2788ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1121{ 2789{
1122 io_blocktime = interval; 2790 io_blocktime = interval;
1123} 2791}
1124 2792
1125void 2793void
1126ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2794ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1127{ 2795{
1128 timeout_blocktime = interval; 2796 timeout_blocktime = interval;
1129} 2797}
1130 2798
2799void
2800ev_set_userdata (EV_P_ void *data) EV_THROW
2801{
2802 userdata = data;
2803}
2804
2805void *
2806ev_userdata (EV_P) EV_THROW
2807{
2808 return userdata;
2809}
2810
2811void
2812ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2813{
2814 invoke_cb = invoke_pending_cb;
2815}
2816
2817void
2818ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2819{
2820 release_cb = release;
2821 acquire_cb = acquire;
2822}
2823#endif
2824
2825/* initialise a loop structure, must be zero-initialised */
1131static void noinline 2826static void noinline ecb_cold
1132loop_init (EV_P_ unsigned int flags) 2827loop_init (EV_P_ unsigned int flags) EV_THROW
1133{ 2828{
1134 if (!backend) 2829 if (!backend)
1135 { 2830 {
2831 origflags = flags;
2832
2833#if EV_USE_REALTIME
2834 if (!have_realtime)
2835 {
2836 struct timespec ts;
2837
2838 if (!clock_gettime (CLOCK_REALTIME, &ts))
2839 have_realtime = 1;
2840 }
2841#endif
2842
1136#if EV_USE_MONOTONIC 2843#if EV_USE_MONOTONIC
2844 if (!have_monotonic)
1137 { 2845 {
1138 struct timespec ts; 2846 struct timespec ts;
2847
1139 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2848 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1140 have_monotonic = 1; 2849 have_monotonic = 1;
1141 } 2850 }
1142#endif
1143
1144 ev_rt_now = ev_time ();
1145 mn_now = get_clock ();
1146 now_floor = mn_now;
1147 rtmn_diff = ev_rt_now - mn_now;
1148
1149 io_blocktime = 0.;
1150 timeout_blocktime = 0.;
1151 backend = 0;
1152 backend_fd = -1;
1153 gotasync = 0;
1154#if EV_USE_INOTIFY
1155 fs_fd = -2;
1156#endif 2851#endif
1157 2852
1158 /* pid check not overridable via env */ 2853 /* pid check not overridable via env */
1159#ifndef _WIN32 2854#ifndef _WIN32
1160 if (flags & EVFLAG_FORKCHECK) 2855 if (flags & EVFLAG_FORKCHECK)
1164 if (!(flags & EVFLAG_NOENV) 2859 if (!(flags & EVFLAG_NOENV)
1165 && !enable_secure () 2860 && !enable_secure ()
1166 && getenv ("LIBEV_FLAGS")) 2861 && getenv ("LIBEV_FLAGS"))
1167 flags = atoi (getenv ("LIBEV_FLAGS")); 2862 flags = atoi (getenv ("LIBEV_FLAGS"));
1168 2863
1169 if (!(flags & 0x0000ffffUL)) 2864 ev_rt_now = ev_time ();
2865 mn_now = get_clock ();
2866 now_floor = mn_now;
2867 rtmn_diff = ev_rt_now - mn_now;
2868#if EV_FEATURE_API
2869 invoke_cb = ev_invoke_pending;
2870#endif
2871
2872 io_blocktime = 0.;
2873 timeout_blocktime = 0.;
2874 backend = 0;
2875 backend_fd = -1;
2876 sig_pending = 0;
2877#if EV_ASYNC_ENABLE
2878 async_pending = 0;
2879#endif
2880 pipe_write_skipped = 0;
2881 pipe_write_wanted = 0;
2882 evpipe [0] = -1;
2883 evpipe [1] = -1;
2884#if EV_USE_INOTIFY
2885 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2886#endif
2887#if EV_USE_SIGNALFD
2888 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2889#endif
2890
2891 if (!(flags & EVBACKEND_MASK))
1170 flags |= ev_recommended_backends (); 2892 flags |= ev_recommended_backends ();
1171 2893
2894#if EV_USE_IOCP
2895 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2896#endif
1172#if EV_USE_PORT 2897#if EV_USE_PORT
1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2898 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1174#endif 2899#endif
1175#if EV_USE_KQUEUE 2900#if EV_USE_KQUEUE
1176 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2901 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1183#endif 2908#endif
1184#if EV_USE_SELECT 2909#if EV_USE_SELECT
1185 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2910 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1186#endif 2911#endif
1187 2912
2913 ev_prepare_init (&pending_w, pendingcb);
2914
2915#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1188 ev_init (&pipeev, pipecb); 2916 ev_init (&pipe_w, pipecb);
1189 ev_set_priority (&pipeev, EV_MAXPRI); 2917 ev_set_priority (&pipe_w, EV_MAXPRI);
2918#endif
1190 } 2919 }
1191} 2920}
1192 2921
1193static void noinline 2922/* free up a loop structure */
2923void ecb_cold
1194loop_destroy (EV_P) 2924ev_loop_destroy (EV_P)
1195{ 2925{
1196 int i; 2926 int i;
1197 2927
2928#if EV_MULTIPLICITY
2929 /* mimic free (0) */
2930 if (!EV_A)
2931 return;
2932#endif
2933
2934#if EV_CLEANUP_ENABLE
2935 /* queue cleanup watchers (and execute them) */
2936 if (expect_false (cleanupcnt))
2937 {
2938 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2939 EV_INVOKE_PENDING;
2940 }
2941#endif
2942
2943#if EV_CHILD_ENABLE
2944 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2945 {
2946 ev_ref (EV_A); /* child watcher */
2947 ev_signal_stop (EV_A_ &childev);
2948 }
2949#endif
2950
1198 if (ev_is_active (&pipeev)) 2951 if (ev_is_active (&pipe_w))
1199 { 2952 {
1200 ev_ref (EV_A); /* signal watcher */ 2953 /*ev_ref (EV_A);*/
1201 ev_io_stop (EV_A_ &pipeev); 2954 /*ev_io_stop (EV_A_ &pipe_w);*/
1202 2955
2956 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2957 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2958 }
2959
1203#if EV_USE_EVENTFD 2960#if EV_USE_SIGNALFD
1204 if (evfd >= 0) 2961 if (ev_is_active (&sigfd_w))
1205 close (evfd); 2962 close (sigfd);
1206#endif 2963#endif
1207
1208 if (evpipe [0] >= 0)
1209 {
1210 close (evpipe [0]);
1211 close (evpipe [1]);
1212 }
1213 }
1214 2964
1215#if EV_USE_INOTIFY 2965#if EV_USE_INOTIFY
1216 if (fs_fd >= 0) 2966 if (fs_fd >= 0)
1217 close (fs_fd); 2967 close (fs_fd);
1218#endif 2968#endif
1219 2969
1220 if (backend_fd >= 0) 2970 if (backend_fd >= 0)
1221 close (backend_fd); 2971 close (backend_fd);
1222 2972
2973#if EV_USE_IOCP
2974 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2975#endif
1223#if EV_USE_PORT 2976#if EV_USE_PORT
1224 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2977 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1225#endif 2978#endif
1226#if EV_USE_KQUEUE 2979#if EV_USE_KQUEUE
1227 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2980 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1242#if EV_IDLE_ENABLE 2995#if EV_IDLE_ENABLE
1243 array_free (idle, [i]); 2996 array_free (idle, [i]);
1244#endif 2997#endif
1245 } 2998 }
1246 2999
1247 ev_free (anfds); anfdmax = 0; 3000 ev_free (anfds); anfds = 0; anfdmax = 0;
1248 3001
1249 /* have to use the microsoft-never-gets-it-right macro */ 3002 /* have to use the microsoft-never-gets-it-right macro */
3003 array_free (rfeed, EMPTY);
1250 array_free (fdchange, EMPTY); 3004 array_free (fdchange, EMPTY);
1251 array_free (timer, EMPTY); 3005 array_free (timer, EMPTY);
1252#if EV_PERIODIC_ENABLE 3006#if EV_PERIODIC_ENABLE
1253 array_free (periodic, EMPTY); 3007 array_free (periodic, EMPTY);
1254#endif 3008#endif
1255#if EV_FORK_ENABLE 3009#if EV_FORK_ENABLE
1256 array_free (fork, EMPTY); 3010 array_free (fork, EMPTY);
1257#endif 3011#endif
3012#if EV_CLEANUP_ENABLE
3013 array_free (cleanup, EMPTY);
3014#endif
1258 array_free (prepare, EMPTY); 3015 array_free (prepare, EMPTY);
1259 array_free (check, EMPTY); 3016 array_free (check, EMPTY);
1260#if EV_ASYNC_ENABLE 3017#if EV_ASYNC_ENABLE
1261 array_free (async, EMPTY); 3018 array_free (async, EMPTY);
1262#endif 3019#endif
1263 3020
1264 backend = 0; 3021 backend = 0;
1265}
1266 3022
3023#if EV_MULTIPLICITY
3024 if (ev_is_default_loop (EV_A))
3025#endif
3026 ev_default_loop_ptr = 0;
3027#if EV_MULTIPLICITY
3028 else
3029 ev_free (EV_A);
3030#endif
3031}
3032
3033#if EV_USE_INOTIFY
1267void inline_size infy_fork (EV_P); 3034inline_size void infy_fork (EV_P);
3035#endif
1268 3036
1269void inline_size 3037inline_size void
1270loop_fork (EV_P) 3038loop_fork (EV_P)
1271{ 3039{
1272#if EV_USE_PORT 3040#if EV_USE_PORT
1273 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3041 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1274#endif 3042#endif
1280#endif 3048#endif
1281#if EV_USE_INOTIFY 3049#if EV_USE_INOTIFY
1282 infy_fork (EV_A); 3050 infy_fork (EV_A);
1283#endif 3051#endif
1284 3052
1285 if (ev_is_active (&pipeev)) 3053#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3054 if (ev_is_active (&pipe_w) && postfork != 2)
3055 {
3056 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3057
3058 ev_ref (EV_A);
3059 ev_io_stop (EV_A_ &pipe_w);
3060
3061 if (evpipe [0] >= 0)
3062 EV_WIN32_CLOSE_FD (evpipe [0]);
3063
3064 evpipe_init (EV_A);
3065 /* iterate over everything, in case we missed something before */
3066 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1286 { 3067 }
1287 /* this "locks" the handlers against writing to the pipe */ 3068#endif
1288 /* while we modify the fd vars */ 3069
1289 gotsig = 1; 3070 postfork = 0;
3071}
3072
3073#if EV_MULTIPLICITY
3074
3075struct ev_loop * ecb_cold
3076ev_loop_new (unsigned int flags) EV_THROW
3077{
3078 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3079
3080 memset (EV_A, 0, sizeof (struct ev_loop));
3081 loop_init (EV_A_ flags);
3082
3083 if (ev_backend (EV_A))
3084 return EV_A;
3085
3086 ev_free (EV_A);
3087 return 0;
3088}
3089
3090#endif /* multiplicity */
3091
3092#if EV_VERIFY
3093static void noinline ecb_cold
3094verify_watcher (EV_P_ W w)
3095{
3096 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3097
3098 if (w->pending)
3099 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3100}
3101
3102static void noinline ecb_cold
3103verify_heap (EV_P_ ANHE *heap, int N)
3104{
3105 int i;
3106
3107 for (i = HEAP0; i < N + HEAP0; ++i)
3108 {
3109 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3110 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3111 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3112
3113 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3114 }
3115}
3116
3117static void noinline ecb_cold
3118array_verify (EV_P_ W *ws, int cnt)
3119{
3120 while (cnt--)
3121 {
3122 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3123 verify_watcher (EV_A_ ws [cnt]);
3124 }
3125}
3126#endif
3127
3128#if EV_FEATURE_API
3129void ecb_cold
3130ev_verify (EV_P) EV_THROW
3131{
3132#if EV_VERIFY
3133 int i;
3134 WL w, w2;
3135
3136 assert (activecnt >= -1);
3137
3138 assert (fdchangemax >= fdchangecnt);
3139 for (i = 0; i < fdchangecnt; ++i)
3140 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3141
3142 assert (anfdmax >= 0);
3143 for (i = 0; i < anfdmax; ++i)
3144 {
3145 int j = 0;
3146
3147 for (w = w2 = anfds [i].head; w; w = w->next)
3148 {
3149 verify_watcher (EV_A_ (W)w);
3150
3151 if (j++ & 1)
3152 {
3153 assert (("libev: io watcher list contains a loop", w != w2));
3154 w2 = w2->next;
3155 }
3156
3157 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3158 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3159 }
3160 }
3161
3162 assert (timermax >= timercnt);
3163 verify_heap (EV_A_ timers, timercnt);
3164
3165#if EV_PERIODIC_ENABLE
3166 assert (periodicmax >= periodiccnt);
3167 verify_heap (EV_A_ periodics, periodiccnt);
3168#endif
3169
3170 for (i = NUMPRI; i--; )
3171 {
3172 assert (pendingmax [i] >= pendingcnt [i]);
3173#if EV_IDLE_ENABLE
3174 assert (idleall >= 0);
3175 assert (idlemax [i] >= idlecnt [i]);
3176 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3177#endif
3178 }
3179
3180#if EV_FORK_ENABLE
3181 assert (forkmax >= forkcnt);
3182 array_verify (EV_A_ (W *)forks, forkcnt);
3183#endif
3184
3185#if EV_CLEANUP_ENABLE
3186 assert (cleanupmax >= cleanupcnt);
3187 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3188#endif
3189
1290#if EV_ASYNC_ENABLE 3190#if EV_ASYNC_ENABLE
1291 gotasync = 1; 3191 assert (asyncmax >= asynccnt);
3192 array_verify (EV_A_ (W *)asyncs, asynccnt);
3193#endif
3194
3195#if EV_PREPARE_ENABLE
3196 assert (preparemax >= preparecnt);
3197 array_verify (EV_A_ (W *)prepares, preparecnt);
3198#endif
3199
3200#if EV_CHECK_ENABLE
3201 assert (checkmax >= checkcnt);
3202 array_verify (EV_A_ (W *)checks, checkcnt);
3203#endif
3204
3205# if 0
3206#if EV_CHILD_ENABLE
3207 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3208 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3209#endif
1292#endif 3210# endif
1293
1294 ev_ref (EV_A);
1295 ev_io_stop (EV_A_ &pipeev);
1296
1297#if EV_USE_EVENTFD
1298 if (evfd >= 0)
1299 close (evfd);
1300#endif 3211#endif
1301
1302 if (evpipe [0] >= 0)
1303 {
1304 close (evpipe [0]);
1305 close (evpipe [1]);
1306 }
1307
1308 evpipe_init (EV_A);
1309 /* now iterate over everything, in case we missed something */
1310 pipecb (EV_A_ &pipeev, EV_READ);
1311 }
1312
1313 postfork = 0;
1314} 3212}
3213#endif
1315 3214
1316#if EV_MULTIPLICITY 3215#if EV_MULTIPLICITY
1317struct ev_loop * 3216struct ev_loop * ecb_cold
1318ev_loop_new (unsigned int flags) 3217#else
1319{ 3218int
1320 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1321
1322 memset (loop, 0, sizeof (struct ev_loop));
1323
1324 loop_init (EV_A_ flags);
1325
1326 if (ev_backend (EV_A))
1327 return loop;
1328
1329 return 0;
1330}
1331
1332void
1333ev_loop_destroy (EV_P)
1334{
1335 loop_destroy (EV_A);
1336 ev_free (loop);
1337}
1338
1339void
1340ev_loop_fork (EV_P)
1341{
1342 postfork = 1; /* must be in line with ev_default_fork */
1343}
1344
1345#endif 3219#endif
1346 3220ev_default_loop (unsigned int flags) EV_THROW
3221{
3222 if (!ev_default_loop_ptr)
3223 {
1347#if EV_MULTIPLICITY 3224#if EV_MULTIPLICITY
1348struct ev_loop *
1349ev_default_loop_init (unsigned int flags)
1350#else
1351int
1352ev_default_loop (unsigned int flags)
1353#endif
1354{
1355 if (!ev_default_loop_ptr)
1356 {
1357#if EV_MULTIPLICITY
1358 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3225 EV_P = ev_default_loop_ptr = &default_loop_struct;
1359#else 3226#else
1360 ev_default_loop_ptr = 1; 3227 ev_default_loop_ptr = 1;
1361#endif 3228#endif
1362 3229
1363 loop_init (EV_A_ flags); 3230 loop_init (EV_A_ flags);
1364 3231
1365 if (ev_backend (EV_A)) 3232 if (ev_backend (EV_A))
1366 { 3233 {
1367#ifndef _WIN32 3234#if EV_CHILD_ENABLE
1368 ev_signal_init (&childev, childcb, SIGCHLD); 3235 ev_signal_init (&childev, childcb, SIGCHLD);
1369 ev_set_priority (&childev, EV_MAXPRI); 3236 ev_set_priority (&childev, EV_MAXPRI);
1370 ev_signal_start (EV_A_ &childev); 3237 ev_signal_start (EV_A_ &childev);
1371 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3238 ev_unref (EV_A); /* child watcher should not keep loop alive */
1372#endif 3239#endif
1377 3244
1378 return ev_default_loop_ptr; 3245 return ev_default_loop_ptr;
1379} 3246}
1380 3247
1381void 3248void
1382ev_default_destroy (void) 3249ev_loop_fork (EV_P) EV_THROW
1383{ 3250{
1384#if EV_MULTIPLICITY 3251 postfork = 1;
1385 struct ev_loop *loop = ev_default_loop_ptr;
1386#endif
1387
1388#ifndef _WIN32
1389 ev_ref (EV_A); /* child watcher */
1390 ev_signal_stop (EV_A_ &childev);
1391#endif
1392
1393 loop_destroy (EV_A);
1394}
1395
1396void
1397ev_default_fork (void)
1398{
1399#if EV_MULTIPLICITY
1400 struct ev_loop *loop = ev_default_loop_ptr;
1401#endif
1402
1403 if (backend)
1404 postfork = 1; /* must be in line with ev_loop_fork */
1405} 3252}
1406 3253
1407/*****************************************************************************/ 3254/*****************************************************************************/
1408 3255
1409void 3256void
1410ev_invoke (EV_P_ void *w, int revents) 3257ev_invoke (EV_P_ void *w, int revents)
1411{ 3258{
1412 EV_CB_INVOKE ((W)w, revents); 3259 EV_CB_INVOKE ((W)w, revents);
1413} 3260}
1414 3261
1415void inline_speed 3262unsigned int
1416call_pending (EV_P) 3263ev_pending_count (EV_P) EV_THROW
1417{ 3264{
1418 int pri; 3265 int pri;
3266 unsigned int count = 0;
1419 3267
1420 for (pri = NUMPRI; pri--; ) 3268 for (pri = NUMPRI; pri--; )
3269 count += pendingcnt [pri];
3270
3271 return count;
3272}
3273
3274void noinline
3275ev_invoke_pending (EV_P)
3276{
3277 pendingpri = NUMPRI;
3278
3279 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3280 {
3281 --pendingpri;
3282
1421 while (pendingcnt [pri]) 3283 while (pendingcnt [pendingpri])
1422 {
1423 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1424
1425 if (expect_true (p->w))
1426 {
1427 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1428
1429 p->w->pending = 0;
1430 EV_CB_INVOKE (p->w, p->events);
1431 }
1432 }
1433}
1434
1435void inline_size
1436timers_reify (EV_P)
1437{
1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1439 {
1440 ev_timer *w = (ev_timer *)timers [0];
1441
1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1443
1444 /* first reschedule or stop timer */
1445 if (w->repeat)
1446 { 3284 {
1447 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3285 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1448 3286
1449 ((WT)w)->at += w->repeat; 3287 p->w->pending = 0;
1450 if (((WT)w)->at < mn_now) 3288 EV_CB_INVOKE (p->w, p->events);
1451 ((WT)w)->at = mn_now; 3289 EV_FREQUENT_CHECK;
1452
1453 downheap (timers, timercnt, 0);
1454 } 3290 }
1455 else
1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1457
1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1459 }
1460}
1461
1462#if EV_PERIODIC_ENABLE
1463void inline_size
1464periodics_reify (EV_P)
1465{
1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1467 { 3291 }
1468 ev_periodic *w = (ev_periodic *)periodics [0];
1469
1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->reschedule_cb)
1474 {
1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1477 downheap (periodics, periodiccnt, 0);
1478 }
1479 else if (w->interval)
1480 {
1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1484 downheap (periodics, periodiccnt, 0);
1485 }
1486 else
1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1490 }
1491} 3292}
1492
1493static void noinline
1494periodics_reschedule (EV_P)
1495{
1496 int i;
1497
1498 /* adjust periodics after time jump */
1499 for (i = 0; i < periodiccnt; ++i)
1500 {
1501 ev_periodic *w = (ev_periodic *)periodics [i];
1502
1503 if (w->reschedule_cb)
1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1505 else if (w->interval)
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 }
1508
1509 /* now rebuild the heap */
1510 for (i = periodiccnt >> 1; i--; )
1511 downheap (periodics, periodiccnt, i);
1512}
1513#endif
1514 3293
1515#if EV_IDLE_ENABLE 3294#if EV_IDLE_ENABLE
1516void inline_size 3295/* make idle watchers pending. this handles the "call-idle */
3296/* only when higher priorities are idle" logic */
3297inline_size void
1517idle_reify (EV_P) 3298idle_reify (EV_P)
1518{ 3299{
1519 if (expect_false (idleall)) 3300 if (expect_false (idleall))
1520 { 3301 {
1521 int pri; 3302 int pri;
1533 } 3314 }
1534 } 3315 }
1535} 3316}
1536#endif 3317#endif
1537 3318
1538void inline_speed 3319/* make timers pending */
3320inline_size void
3321timers_reify (EV_P)
3322{
3323 EV_FREQUENT_CHECK;
3324
3325 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3326 {
3327 do
3328 {
3329 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3330
3331 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3332
3333 /* first reschedule or stop timer */
3334 if (w->repeat)
3335 {
3336 ev_at (w) += w->repeat;
3337 if (ev_at (w) < mn_now)
3338 ev_at (w) = mn_now;
3339
3340 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3341
3342 ANHE_at_cache (timers [HEAP0]);
3343 downheap (timers, timercnt, HEAP0);
3344 }
3345 else
3346 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3347
3348 EV_FREQUENT_CHECK;
3349 feed_reverse (EV_A_ (W)w);
3350 }
3351 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3352
3353 feed_reverse_done (EV_A_ EV_TIMER);
3354 }
3355}
3356
3357#if EV_PERIODIC_ENABLE
3358
3359static void noinline
3360periodic_recalc (EV_P_ ev_periodic *w)
3361{
3362 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3363 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3364
3365 /* the above almost always errs on the low side */
3366 while (at <= ev_rt_now)
3367 {
3368 ev_tstamp nat = at + w->interval;
3369
3370 /* when resolution fails us, we use ev_rt_now */
3371 if (expect_false (nat == at))
3372 {
3373 at = ev_rt_now;
3374 break;
3375 }
3376
3377 at = nat;
3378 }
3379
3380 ev_at (w) = at;
3381}
3382
3383/* make periodics pending */
3384inline_size void
3385periodics_reify (EV_P)
3386{
3387 EV_FREQUENT_CHECK;
3388
3389 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3390 {
3391 do
3392 {
3393 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3394
3395 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3396
3397 /* first reschedule or stop timer */
3398 if (w->reschedule_cb)
3399 {
3400 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3401
3402 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3403
3404 ANHE_at_cache (periodics [HEAP0]);
3405 downheap (periodics, periodiccnt, HEAP0);
3406 }
3407 else if (w->interval)
3408 {
3409 periodic_recalc (EV_A_ w);
3410 ANHE_at_cache (periodics [HEAP0]);
3411 downheap (periodics, periodiccnt, HEAP0);
3412 }
3413 else
3414 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3415
3416 EV_FREQUENT_CHECK;
3417 feed_reverse (EV_A_ (W)w);
3418 }
3419 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3420
3421 feed_reverse_done (EV_A_ EV_PERIODIC);
3422 }
3423}
3424
3425/* simply recalculate all periodics */
3426/* TODO: maybe ensure that at least one event happens when jumping forward? */
3427static void noinline ecb_cold
3428periodics_reschedule (EV_P)
3429{
3430 int i;
3431
3432 /* adjust periodics after time jump */
3433 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3434 {
3435 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3436
3437 if (w->reschedule_cb)
3438 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3439 else if (w->interval)
3440 periodic_recalc (EV_A_ w);
3441
3442 ANHE_at_cache (periodics [i]);
3443 }
3444
3445 reheap (periodics, periodiccnt);
3446}
3447#endif
3448
3449/* adjust all timers by a given offset */
3450static void noinline ecb_cold
3451timers_reschedule (EV_P_ ev_tstamp adjust)
3452{
3453 int i;
3454
3455 for (i = 0; i < timercnt; ++i)
3456 {
3457 ANHE *he = timers + i + HEAP0;
3458 ANHE_w (*he)->at += adjust;
3459 ANHE_at_cache (*he);
3460 }
3461}
3462
3463/* fetch new monotonic and realtime times from the kernel */
3464/* also detect if there was a timejump, and act accordingly */
3465inline_speed void
1539time_update (EV_P_ ev_tstamp max_block) 3466time_update (EV_P_ ev_tstamp max_block)
1540{ 3467{
1541 int i;
1542
1543#if EV_USE_MONOTONIC 3468#if EV_USE_MONOTONIC
1544 if (expect_true (have_monotonic)) 3469 if (expect_true (have_monotonic))
1545 { 3470 {
3471 int i;
1546 ev_tstamp odiff = rtmn_diff; 3472 ev_tstamp odiff = rtmn_diff;
1547 3473
1548 mn_now = get_clock (); 3474 mn_now = get_clock ();
1549 3475
1550 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3476 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1566 * doesn't hurt either as we only do this on time-jumps or 3492 * doesn't hurt either as we only do this on time-jumps or
1567 * in the unlikely event of having been preempted here. 3493 * in the unlikely event of having been preempted here.
1568 */ 3494 */
1569 for (i = 4; --i; ) 3495 for (i = 4; --i; )
1570 { 3496 {
3497 ev_tstamp diff;
1571 rtmn_diff = ev_rt_now - mn_now; 3498 rtmn_diff = ev_rt_now - mn_now;
1572 3499
1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3500 diff = odiff - rtmn_diff;
3501
3502 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1574 return; /* all is well */ 3503 return; /* all is well */
1575 3504
1576 ev_rt_now = ev_time (); 3505 ev_rt_now = ev_time ();
1577 mn_now = get_clock (); 3506 mn_now = get_clock ();
1578 now_floor = mn_now; 3507 now_floor = mn_now;
1579 } 3508 }
1580 3509
3510 /* no timer adjustment, as the monotonic clock doesn't jump */
3511 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1581# if EV_PERIODIC_ENABLE 3512# if EV_PERIODIC_ENABLE
1582 periodics_reschedule (EV_A); 3513 periodics_reschedule (EV_A);
1583# endif 3514# endif
1584 /* no timer adjustment, as the monotonic clock doesn't jump */
1585 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1586 } 3515 }
1587 else 3516 else
1588#endif 3517#endif
1589 { 3518 {
1590 ev_rt_now = ev_time (); 3519 ev_rt_now = ev_time ();
1591 3520
1592 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3521 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1593 { 3522 {
3523 /* adjust timers. this is easy, as the offset is the same for all of them */
3524 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1594#if EV_PERIODIC_ENABLE 3525#if EV_PERIODIC_ENABLE
1595 periodics_reschedule (EV_A); 3526 periodics_reschedule (EV_A);
1596#endif 3527#endif
1597 /* adjust timers. this is easy, as the offset is the same for all of them */
1598 for (i = 0; i < timercnt; ++i)
1599 ((WT)timers [i])->at += ev_rt_now - mn_now;
1600 } 3528 }
1601 3529
1602 mn_now = ev_rt_now; 3530 mn_now = ev_rt_now;
1603 } 3531 }
1604} 3532}
1605 3533
1606void 3534int
1607ev_ref (EV_P)
1608{
1609 ++activecnt;
1610}
1611
1612void
1613ev_unref (EV_P)
1614{
1615 --activecnt;
1616}
1617
1618static int loop_done;
1619
1620void
1621ev_loop (EV_P_ int flags) 3535ev_run (EV_P_ int flags)
1622{ 3536{
3537#if EV_FEATURE_API
3538 ++loop_depth;
3539#endif
3540
3541 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3542
1623 loop_done = EVUNLOOP_CANCEL; 3543 loop_done = EVBREAK_CANCEL;
1624 3544
1625 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3545 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1626 3546
1627 do 3547 do
1628 { 3548 {
3549#if EV_VERIFY >= 2
3550 ev_verify (EV_A);
3551#endif
3552
1629#ifndef _WIN32 3553#ifndef _WIN32
1630 if (expect_false (curpid)) /* penalise the forking check even more */ 3554 if (expect_false (curpid)) /* penalise the forking check even more */
1631 if (expect_false (getpid () != curpid)) 3555 if (expect_false (getpid () != curpid))
1632 { 3556 {
1633 curpid = getpid (); 3557 curpid = getpid ();
1639 /* we might have forked, so queue fork handlers */ 3563 /* we might have forked, so queue fork handlers */
1640 if (expect_false (postfork)) 3564 if (expect_false (postfork))
1641 if (forkcnt) 3565 if (forkcnt)
1642 { 3566 {
1643 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1644 call_pending (EV_A); 3568 EV_INVOKE_PENDING;
1645 } 3569 }
1646#endif 3570#endif
1647 3571
3572#if EV_PREPARE_ENABLE
1648 /* queue prepare watchers (and execute them) */ 3573 /* queue prepare watchers (and execute them) */
1649 if (expect_false (preparecnt)) 3574 if (expect_false (preparecnt))
1650 { 3575 {
1651 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3576 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1652 call_pending (EV_A); 3577 EV_INVOKE_PENDING;
1653 } 3578 }
3579#endif
1654 3580
1655 if (expect_false (!activecnt)) 3581 if (expect_false (loop_done))
1656 break; 3582 break;
1657 3583
1658 /* we might have forked, so reify kernel state if necessary */ 3584 /* we might have forked, so reify kernel state if necessary */
1659 if (expect_false (postfork)) 3585 if (expect_false (postfork))
1660 loop_fork (EV_A); 3586 loop_fork (EV_A);
1665 /* calculate blocking time */ 3591 /* calculate blocking time */
1666 { 3592 {
1667 ev_tstamp waittime = 0.; 3593 ev_tstamp waittime = 0.;
1668 ev_tstamp sleeptime = 0.; 3594 ev_tstamp sleeptime = 0.;
1669 3595
3596 /* remember old timestamp for io_blocktime calculation */
3597 ev_tstamp prev_mn_now = mn_now;
3598
3599 /* update time to cancel out callback processing overhead */
3600 time_update (EV_A_ 1e100);
3601
3602 /* from now on, we want a pipe-wake-up */
3603 pipe_write_wanted = 1;
3604
3605 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3606
1670 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3607 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1671 { 3608 {
1672 /* update time to cancel out callback processing overhead */
1673 time_update (EV_A_ 1e100);
1674
1675 waittime = MAX_BLOCKTIME; 3609 waittime = MAX_BLOCKTIME;
1676 3610
1677 if (timercnt) 3611 if (timercnt)
1678 { 3612 {
1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3613 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1680 if (waittime > to) waittime = to; 3614 if (waittime > to) waittime = to;
1681 } 3615 }
1682 3616
1683#if EV_PERIODIC_ENABLE 3617#if EV_PERIODIC_ENABLE
1684 if (periodiccnt) 3618 if (periodiccnt)
1685 { 3619 {
1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3620 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1687 if (waittime > to) waittime = to; 3621 if (waittime > to) waittime = to;
1688 } 3622 }
1689#endif 3623#endif
1690 3624
3625 /* don't let timeouts decrease the waittime below timeout_blocktime */
1691 if (expect_false (waittime < timeout_blocktime)) 3626 if (expect_false (waittime < timeout_blocktime))
1692 waittime = timeout_blocktime; 3627 waittime = timeout_blocktime;
1693 3628
1694 sleeptime = waittime - backend_fudge; 3629 /* at this point, we NEED to wait, so we have to ensure */
3630 /* to pass a minimum nonzero value to the backend */
3631 if (expect_false (waittime < backend_mintime))
3632 waittime = backend_mintime;
1695 3633
3634 /* extra check because io_blocktime is commonly 0 */
1696 if (expect_true (sleeptime > io_blocktime)) 3635 if (expect_false (io_blocktime))
1697 sleeptime = io_blocktime;
1698
1699 if (sleeptime)
1700 { 3636 {
3637 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3638
3639 if (sleeptime > waittime - backend_mintime)
3640 sleeptime = waittime - backend_mintime;
3641
3642 if (expect_true (sleeptime > 0.))
3643 {
1701 ev_sleep (sleeptime); 3644 ev_sleep (sleeptime);
1702 waittime -= sleeptime; 3645 waittime -= sleeptime;
3646 }
1703 } 3647 }
1704 } 3648 }
1705 3649
3650#if EV_FEATURE_API
1706 ++loop_count; 3651 ++loop_count;
3652#endif
3653 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1707 backend_poll (EV_A_ waittime); 3654 backend_poll (EV_A_ waittime);
3655 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3656
3657 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3658
3659 ECB_MEMORY_FENCE_ACQUIRE;
3660 if (pipe_write_skipped)
3661 {
3662 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3663 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3664 }
3665
1708 3666
1709 /* update ev_rt_now, do magic */ 3667 /* update ev_rt_now, do magic */
1710 time_update (EV_A_ waittime + sleeptime); 3668 time_update (EV_A_ waittime + sleeptime);
1711 } 3669 }
1712 3670
1719#if EV_IDLE_ENABLE 3677#if EV_IDLE_ENABLE
1720 /* queue idle watchers unless other events are pending */ 3678 /* queue idle watchers unless other events are pending */
1721 idle_reify (EV_A); 3679 idle_reify (EV_A);
1722#endif 3680#endif
1723 3681
3682#if EV_CHECK_ENABLE
1724 /* queue check watchers, to be executed first */ 3683 /* queue check watchers, to be executed first */
1725 if (expect_false (checkcnt)) 3684 if (expect_false (checkcnt))
1726 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3685 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3686#endif
1727 3687
1728 call_pending (EV_A); 3688 EV_INVOKE_PENDING;
1729 } 3689 }
1730 while (expect_true ( 3690 while (expect_true (
1731 activecnt 3691 activecnt
1732 && !loop_done 3692 && !loop_done
1733 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3693 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1734 )); 3694 ));
1735 3695
1736 if (loop_done == EVUNLOOP_ONE) 3696 if (loop_done == EVBREAK_ONE)
1737 loop_done = EVUNLOOP_CANCEL; 3697 loop_done = EVBREAK_CANCEL;
3698
3699#if EV_FEATURE_API
3700 --loop_depth;
3701#endif
3702
3703 return activecnt;
1738} 3704}
1739 3705
1740void 3706void
1741ev_unloop (EV_P_ int how) 3707ev_break (EV_P_ int how) EV_THROW
1742{ 3708{
1743 loop_done = how; 3709 loop_done = how;
1744} 3710}
1745 3711
3712void
3713ev_ref (EV_P) EV_THROW
3714{
3715 ++activecnt;
3716}
3717
3718void
3719ev_unref (EV_P) EV_THROW
3720{
3721 --activecnt;
3722}
3723
3724void
3725ev_now_update (EV_P) EV_THROW
3726{
3727 time_update (EV_A_ 1e100);
3728}
3729
3730void
3731ev_suspend (EV_P) EV_THROW
3732{
3733 ev_now_update (EV_A);
3734}
3735
3736void
3737ev_resume (EV_P) EV_THROW
3738{
3739 ev_tstamp mn_prev = mn_now;
3740
3741 ev_now_update (EV_A);
3742 timers_reschedule (EV_A_ mn_now - mn_prev);
3743#if EV_PERIODIC_ENABLE
3744 /* TODO: really do this? */
3745 periodics_reschedule (EV_A);
3746#endif
3747}
3748
1746/*****************************************************************************/ 3749/*****************************************************************************/
3750/* singly-linked list management, used when the expected list length is short */
1747 3751
1748void inline_size 3752inline_size void
1749wlist_add (WL *head, WL elem) 3753wlist_add (WL *head, WL elem)
1750{ 3754{
1751 elem->next = *head; 3755 elem->next = *head;
1752 *head = elem; 3756 *head = elem;
1753} 3757}
1754 3758
1755void inline_size 3759inline_size void
1756wlist_del (WL *head, WL elem) 3760wlist_del (WL *head, WL elem)
1757{ 3761{
1758 while (*head) 3762 while (*head)
1759 { 3763 {
1760 if (*head == elem) 3764 if (expect_true (*head == elem))
1761 { 3765 {
1762 *head = elem->next; 3766 *head = elem->next;
1763 return; 3767 break;
1764 } 3768 }
1765 3769
1766 head = &(*head)->next; 3770 head = &(*head)->next;
1767 } 3771 }
1768} 3772}
1769 3773
1770void inline_speed 3774/* internal, faster, version of ev_clear_pending */
3775inline_speed void
1771clear_pending (EV_P_ W w) 3776clear_pending (EV_P_ W w)
1772{ 3777{
1773 if (w->pending) 3778 if (w->pending)
1774 { 3779 {
1775 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3780 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1776 w->pending = 0; 3781 w->pending = 0;
1777 } 3782 }
1778} 3783}
1779 3784
1780int 3785int
1781ev_clear_pending (EV_P_ void *w) 3786ev_clear_pending (EV_P_ void *w) EV_THROW
1782{ 3787{
1783 W w_ = (W)w; 3788 W w_ = (W)w;
1784 int pending = w_->pending; 3789 int pending = w_->pending;
1785 3790
1786 if (expect_true (pending)) 3791 if (expect_true (pending))
1787 { 3792 {
1788 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3793 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3794 p->w = (W)&pending_w;
1789 w_->pending = 0; 3795 w_->pending = 0;
1790 p->w = 0;
1791 return p->events; 3796 return p->events;
1792 } 3797 }
1793 else 3798 else
1794 return 0; 3799 return 0;
1795} 3800}
1796 3801
1797void inline_size 3802inline_size void
1798pri_adjust (EV_P_ W w) 3803pri_adjust (EV_P_ W w)
1799{ 3804{
1800 int pri = w->priority; 3805 int pri = ev_priority (w);
1801 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3806 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1802 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3807 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1803 w->priority = pri; 3808 ev_set_priority (w, pri);
1804} 3809}
1805 3810
1806void inline_speed 3811inline_speed void
1807ev_start (EV_P_ W w, int active) 3812ev_start (EV_P_ W w, int active)
1808{ 3813{
1809 pri_adjust (EV_A_ w); 3814 pri_adjust (EV_A_ w);
1810 w->active = active; 3815 w->active = active;
1811 ev_ref (EV_A); 3816 ev_ref (EV_A);
1812} 3817}
1813 3818
1814void inline_size 3819inline_size void
1815ev_stop (EV_P_ W w) 3820ev_stop (EV_P_ W w)
1816{ 3821{
1817 ev_unref (EV_A); 3822 ev_unref (EV_A);
1818 w->active = 0; 3823 w->active = 0;
1819} 3824}
1820 3825
1821/*****************************************************************************/ 3826/*****************************************************************************/
1822 3827
1823void noinline 3828void noinline
1824ev_io_start (EV_P_ ev_io *w) 3829ev_io_start (EV_P_ ev_io *w) EV_THROW
1825{ 3830{
1826 int fd = w->fd; 3831 int fd = w->fd;
1827 3832
1828 if (expect_false (ev_is_active (w))) 3833 if (expect_false (ev_is_active (w)))
1829 return; 3834 return;
1830 3835
1831 assert (("ev_io_start called with negative fd", fd >= 0)); 3836 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3837 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3838
3839 EV_FREQUENT_CHECK;
1832 3840
1833 ev_start (EV_A_ (W)w, 1); 3841 ev_start (EV_A_ (W)w, 1);
1834 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3842 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1835 wlist_add (&anfds[fd].head, (WL)w); 3843 wlist_add (&anfds[fd].head, (WL)w);
1836 3844
3845 /* common bug, apparently */
3846 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3847
1837 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3848 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1838 w->events &= ~EV_IOFDSET; 3849 w->events &= ~EV__IOFDSET;
3850
3851 EV_FREQUENT_CHECK;
1839} 3852}
1840 3853
1841void noinline 3854void noinline
1842ev_io_stop (EV_P_ ev_io *w) 3855ev_io_stop (EV_P_ ev_io *w) EV_THROW
1843{ 3856{
1844 clear_pending (EV_A_ (W)w); 3857 clear_pending (EV_A_ (W)w);
1845 if (expect_false (!ev_is_active (w))) 3858 if (expect_false (!ev_is_active (w)))
1846 return; 3859 return;
1847 3860
1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3861 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3862
3863 EV_FREQUENT_CHECK;
1849 3864
1850 wlist_del (&anfds[w->fd].head, (WL)w); 3865 wlist_del (&anfds[w->fd].head, (WL)w);
1851 ev_stop (EV_A_ (W)w); 3866 ev_stop (EV_A_ (W)w);
1852 3867
1853 fd_change (EV_A_ w->fd, 1); 3868 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3869
3870 EV_FREQUENT_CHECK;
1854} 3871}
1855 3872
1856void noinline 3873void noinline
1857ev_timer_start (EV_P_ ev_timer *w) 3874ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1858{ 3875{
1859 if (expect_false (ev_is_active (w))) 3876 if (expect_false (ev_is_active (w)))
1860 return; 3877 return;
1861 3878
1862 ((WT)w)->at += mn_now; 3879 ev_at (w) += mn_now;
1863 3880
1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3881 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1865 3882
3883 EV_FREQUENT_CHECK;
3884
3885 ++timercnt;
1866 ev_start (EV_A_ (W)w, ++timercnt); 3886 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3887 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1868 timers [timercnt - 1] = (WT)w; 3888 ANHE_w (timers [ev_active (w)]) = (WT)w;
1869 upheap (timers, timercnt - 1); 3889 ANHE_at_cache (timers [ev_active (w)]);
3890 upheap (timers, ev_active (w));
1870 3891
3892 EV_FREQUENT_CHECK;
3893
1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3894 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1872} 3895}
1873 3896
1874void noinline 3897void noinline
1875ev_timer_stop (EV_P_ ev_timer *w) 3898ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1876{ 3899{
1877 clear_pending (EV_A_ (W)w); 3900 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 3901 if (expect_false (!ev_is_active (w)))
1879 return; 3902 return;
1880 3903
1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3904 EV_FREQUENT_CHECK;
1882 3905
1883 { 3906 {
1884 int active = ((W)w)->active; 3907 int active = ev_active (w);
1885 3908
3909 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3910
3911 --timercnt;
3912
1886 if (expect_true (--active < --timercnt)) 3913 if (expect_true (active < timercnt + HEAP0))
1887 { 3914 {
1888 timers [active] = timers [timercnt]; 3915 timers [active] = timers [timercnt + HEAP0];
1889 adjustheap (timers, timercnt, active); 3916 adjustheap (timers, timercnt, active);
1890 } 3917 }
1891 } 3918 }
1892 3919
1893 ((WT)w)->at -= mn_now; 3920 ev_at (w) -= mn_now;
1894 3921
1895 ev_stop (EV_A_ (W)w); 3922 ev_stop (EV_A_ (W)w);
3923
3924 EV_FREQUENT_CHECK;
1896} 3925}
1897 3926
1898void noinline 3927void noinline
1899ev_timer_again (EV_P_ ev_timer *w) 3928ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1900{ 3929{
3930 EV_FREQUENT_CHECK;
3931
3932 clear_pending (EV_A_ (W)w);
3933
1901 if (ev_is_active (w)) 3934 if (ev_is_active (w))
1902 { 3935 {
1903 if (w->repeat) 3936 if (w->repeat)
1904 { 3937 {
1905 ((WT)w)->at = mn_now + w->repeat; 3938 ev_at (w) = mn_now + w->repeat;
3939 ANHE_at_cache (timers [ev_active (w)]);
1906 adjustheap (timers, timercnt, ((W)w)->active - 1); 3940 adjustheap (timers, timercnt, ev_active (w));
1907 } 3941 }
1908 else 3942 else
1909 ev_timer_stop (EV_A_ w); 3943 ev_timer_stop (EV_A_ w);
1910 } 3944 }
1911 else if (w->repeat) 3945 else if (w->repeat)
1912 { 3946 {
1913 w->at = w->repeat; 3947 ev_at (w) = w->repeat;
1914 ev_timer_start (EV_A_ w); 3948 ev_timer_start (EV_A_ w);
1915 } 3949 }
3950
3951 EV_FREQUENT_CHECK;
3952}
3953
3954ev_tstamp
3955ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3956{
3957 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1916} 3958}
1917 3959
1918#if EV_PERIODIC_ENABLE 3960#if EV_PERIODIC_ENABLE
1919void noinline 3961void noinline
1920ev_periodic_start (EV_P_ ev_periodic *w) 3962ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1921{ 3963{
1922 if (expect_false (ev_is_active (w))) 3964 if (expect_false (ev_is_active (w)))
1923 return; 3965 return;
1924 3966
1925 if (w->reschedule_cb) 3967 if (w->reschedule_cb)
1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3968 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1927 else if (w->interval) 3969 else if (w->interval)
1928 { 3970 {
1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3971 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1930 /* this formula differs from the one in periodic_reify because we do not always round up */ 3972 periodic_recalc (EV_A_ w);
1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1932 } 3973 }
1933 else 3974 else
1934 ((WT)w)->at = w->offset; 3975 ev_at (w) = w->offset;
1935 3976
3977 EV_FREQUENT_CHECK;
3978
3979 ++periodiccnt;
1936 ev_start (EV_A_ (W)w, ++periodiccnt); 3980 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3981 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1938 periodics [periodiccnt - 1] = (WT)w; 3982 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1939 upheap (periodics, periodiccnt - 1); 3983 ANHE_at_cache (periodics [ev_active (w)]);
3984 upheap (periodics, ev_active (w));
1940 3985
3986 EV_FREQUENT_CHECK;
3987
1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3988 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1942} 3989}
1943 3990
1944void noinline 3991void noinline
1945ev_periodic_stop (EV_P_ ev_periodic *w) 3992ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1946{ 3993{
1947 clear_pending (EV_A_ (W)w); 3994 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 3995 if (expect_false (!ev_is_active (w)))
1949 return; 3996 return;
1950 3997
1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3998 EV_FREQUENT_CHECK;
1952 3999
1953 { 4000 {
1954 int active = ((W)w)->active; 4001 int active = ev_active (w);
1955 4002
4003 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4004
4005 --periodiccnt;
4006
1956 if (expect_true (--active < --periodiccnt)) 4007 if (expect_true (active < periodiccnt + HEAP0))
1957 { 4008 {
1958 periodics [active] = periodics [periodiccnt]; 4009 periodics [active] = periodics [periodiccnt + HEAP0];
1959 adjustheap (periodics, periodiccnt, active); 4010 adjustheap (periodics, periodiccnt, active);
1960 } 4011 }
1961 } 4012 }
1962 4013
1963 ev_stop (EV_A_ (W)w); 4014 ev_stop (EV_A_ (W)w);
4015
4016 EV_FREQUENT_CHECK;
1964} 4017}
1965 4018
1966void noinline 4019void noinline
1967ev_periodic_again (EV_P_ ev_periodic *w) 4020ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1968{ 4021{
1969 /* TODO: use adjustheap and recalculation */ 4022 /* TODO: use adjustheap and recalculation */
1970 ev_periodic_stop (EV_A_ w); 4023 ev_periodic_stop (EV_A_ w);
1971 ev_periodic_start (EV_A_ w); 4024 ev_periodic_start (EV_A_ w);
1972} 4025}
1974 4027
1975#ifndef SA_RESTART 4028#ifndef SA_RESTART
1976# define SA_RESTART 0 4029# define SA_RESTART 0
1977#endif 4030#endif
1978 4031
4032#if EV_SIGNAL_ENABLE
4033
1979void noinline 4034void noinline
1980ev_signal_start (EV_P_ ev_signal *w) 4035ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1981{ 4036{
1982#if EV_MULTIPLICITY
1983 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1984#endif
1985 if (expect_false (ev_is_active (w))) 4037 if (expect_false (ev_is_active (w)))
1986 return; 4038 return;
1987 4039
1988 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4040 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1989 4041
1990 evpipe_init (EV_A); 4042#if EV_MULTIPLICITY
4043 assert (("libev: a signal must not be attached to two different loops",
4044 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1991 4045
4046 signals [w->signum - 1].loop = EV_A;
4047 ECB_MEMORY_FENCE_RELEASE;
4048#endif
4049
4050 EV_FREQUENT_CHECK;
4051
4052#if EV_USE_SIGNALFD
4053 if (sigfd == -2)
1992 { 4054 {
1993#ifndef _WIN32 4055 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1994 sigset_t full, prev; 4056 if (sigfd < 0 && errno == EINVAL)
1995 sigfillset (&full); 4057 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1996 sigprocmask (SIG_SETMASK, &full, &prev);
1997#endif
1998 4058
1999 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4059 if (sigfd >= 0)
4060 {
4061 fd_intern (sigfd); /* doing it twice will not hurt */
2000 4062
2001#ifndef _WIN32 4063 sigemptyset (&sigfd_set);
2002 sigprocmask (SIG_SETMASK, &prev, 0); 4064
2003#endif 4065 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4066 ev_set_priority (&sigfd_w, EV_MAXPRI);
4067 ev_io_start (EV_A_ &sigfd_w);
4068 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4069 }
2004 } 4070 }
4071
4072 if (sigfd >= 0)
4073 {
4074 /* TODO: check .head */
4075 sigaddset (&sigfd_set, w->signum);
4076 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4077
4078 signalfd (sigfd, &sigfd_set, 0);
4079 }
4080#endif
2005 4081
2006 ev_start (EV_A_ (W)w, 1); 4082 ev_start (EV_A_ (W)w, 1);
2007 wlist_add (&signals [w->signum - 1].head, (WL)w); 4083 wlist_add (&signals [w->signum - 1].head, (WL)w);
2008 4084
2009 if (!((WL)w)->next) 4085 if (!((WL)w)->next)
4086# if EV_USE_SIGNALFD
4087 if (sigfd < 0) /*TODO*/
4088# endif
2010 { 4089 {
2011#if _WIN32 4090# ifdef _WIN32
4091 evpipe_init (EV_A);
4092
2012 signal (w->signum, ev_sighandler); 4093 signal (w->signum, ev_sighandler);
2013#else 4094# else
2014 struct sigaction sa; 4095 struct sigaction sa;
4096
4097 evpipe_init (EV_A);
4098
2015 sa.sa_handler = ev_sighandler; 4099 sa.sa_handler = ev_sighandler;
2016 sigfillset (&sa.sa_mask); 4100 sigfillset (&sa.sa_mask);
2017 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4101 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2018 sigaction (w->signum, &sa, 0); 4102 sigaction (w->signum, &sa, 0);
4103
4104 if (origflags & EVFLAG_NOSIGMASK)
4105 {
4106 sigemptyset (&sa.sa_mask);
4107 sigaddset (&sa.sa_mask, w->signum);
4108 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4109 }
2019#endif 4110#endif
2020 } 4111 }
4112
4113 EV_FREQUENT_CHECK;
2021} 4114}
2022 4115
2023void noinline 4116void noinline
2024ev_signal_stop (EV_P_ ev_signal *w) 4117ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2025{ 4118{
2026 clear_pending (EV_A_ (W)w); 4119 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 4120 if (expect_false (!ev_is_active (w)))
2028 return; 4121 return;
2029 4122
4123 EV_FREQUENT_CHECK;
4124
2030 wlist_del (&signals [w->signum - 1].head, (WL)w); 4125 wlist_del (&signals [w->signum - 1].head, (WL)w);
2031 ev_stop (EV_A_ (W)w); 4126 ev_stop (EV_A_ (W)w);
2032 4127
2033 if (!signals [w->signum - 1].head) 4128 if (!signals [w->signum - 1].head)
4129 {
4130#if EV_MULTIPLICITY
4131 signals [w->signum - 1].loop = 0; /* unattach from signal */
4132#endif
4133#if EV_USE_SIGNALFD
4134 if (sigfd >= 0)
4135 {
4136 sigset_t ss;
4137
4138 sigemptyset (&ss);
4139 sigaddset (&ss, w->signum);
4140 sigdelset (&sigfd_set, w->signum);
4141
4142 signalfd (sigfd, &sigfd_set, 0);
4143 sigprocmask (SIG_UNBLOCK, &ss, 0);
4144 }
4145 else
4146#endif
2034 signal (w->signum, SIG_DFL); 4147 signal (w->signum, SIG_DFL);
4148 }
4149
4150 EV_FREQUENT_CHECK;
2035} 4151}
4152
4153#endif
4154
4155#if EV_CHILD_ENABLE
2036 4156
2037void 4157void
2038ev_child_start (EV_P_ ev_child *w) 4158ev_child_start (EV_P_ ev_child *w) EV_THROW
2039{ 4159{
2040#if EV_MULTIPLICITY 4160#if EV_MULTIPLICITY
2041 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4161 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2042#endif 4162#endif
2043 if (expect_false (ev_is_active (w))) 4163 if (expect_false (ev_is_active (w)))
2044 return; 4164 return;
2045 4165
4166 EV_FREQUENT_CHECK;
4167
2046 ev_start (EV_A_ (W)w, 1); 4168 ev_start (EV_A_ (W)w, 1);
2047 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4169 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4170
4171 EV_FREQUENT_CHECK;
2048} 4172}
2049 4173
2050void 4174void
2051ev_child_stop (EV_P_ ev_child *w) 4175ev_child_stop (EV_P_ ev_child *w) EV_THROW
2052{ 4176{
2053 clear_pending (EV_A_ (W)w); 4177 clear_pending (EV_A_ (W)w);
2054 if (expect_false (!ev_is_active (w))) 4178 if (expect_false (!ev_is_active (w)))
2055 return; 4179 return;
2056 4180
4181 EV_FREQUENT_CHECK;
4182
2057 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4183 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2058 ev_stop (EV_A_ (W)w); 4184 ev_stop (EV_A_ (W)w);
4185
4186 EV_FREQUENT_CHECK;
2059} 4187}
4188
4189#endif
2060 4190
2061#if EV_STAT_ENABLE 4191#if EV_STAT_ENABLE
2062 4192
2063# ifdef _WIN32 4193# ifdef _WIN32
2064# undef lstat 4194# undef lstat
2065# define lstat(a,b) _stati64 (a,b) 4195# define lstat(a,b) _stati64 (a,b)
2066# endif 4196# endif
2067 4197
2068#define DEF_STAT_INTERVAL 5.0074891 4198#define DEF_STAT_INTERVAL 5.0074891
4199#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2069#define MIN_STAT_INTERVAL 0.1074891 4200#define MIN_STAT_INTERVAL 0.1074891
2070 4201
2071static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4202static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2072 4203
2073#if EV_USE_INOTIFY 4204#if EV_USE_INOTIFY
2074# define EV_INOTIFY_BUFSIZE 8192 4205
4206/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4207# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2075 4208
2076static void noinline 4209static void noinline
2077infy_add (EV_P_ ev_stat *w) 4210infy_add (EV_P_ ev_stat *w)
2078{ 4211{
2079 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4212 w->wd = inotify_add_watch (fs_fd, w->path,
4213 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4214 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4215 | IN_DONT_FOLLOW | IN_MASK_ADD);
2080 4216
2081 if (w->wd < 0) 4217 if (w->wd >= 0)
4218 {
4219 struct statfs sfs;
4220
4221 /* now local changes will be tracked by inotify, but remote changes won't */
4222 /* unless the filesystem is known to be local, we therefore still poll */
4223 /* also do poll on <2.6.25, but with normal frequency */
4224
4225 if (!fs_2625)
4226 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4227 else if (!statfs (w->path, &sfs)
4228 && (sfs.f_type == 0x1373 /* devfs */
4229 || sfs.f_type == 0x4006 /* fat */
4230 || sfs.f_type == 0x4d44 /* msdos */
4231 || sfs.f_type == 0xEF53 /* ext2/3 */
4232 || sfs.f_type == 0x72b6 /* jffs2 */
4233 || sfs.f_type == 0x858458f6 /* ramfs */
4234 || sfs.f_type == 0x5346544e /* ntfs */
4235 || sfs.f_type == 0x3153464a /* jfs */
4236 || sfs.f_type == 0x9123683e /* btrfs */
4237 || sfs.f_type == 0x52654973 /* reiser3 */
4238 || sfs.f_type == 0x01021994 /* tmpfs */
4239 || sfs.f_type == 0x58465342 /* xfs */))
4240 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4241 else
4242 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2082 { 4243 }
2083 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4244 else
4245 {
4246 /* can't use inotify, continue to stat */
4247 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2084 4248
2085 /* monitor some parent directory for speedup hints */ 4249 /* if path is not there, monitor some parent directory for speedup hints */
4250 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4251 /* but an efficiency issue only */
2086 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4252 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2087 { 4253 {
2088 char path [4096]; 4254 char path [4096];
2089 strcpy (path, w->path); 4255 strcpy (path, w->path);
2090 4256
2093 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4259 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2094 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4260 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2095 4261
2096 char *pend = strrchr (path, '/'); 4262 char *pend = strrchr (path, '/');
2097 4263
2098 if (!pend) 4264 if (!pend || pend == path)
2099 break; /* whoops, no '/', complain to your admin */ 4265 break;
2100 4266
2101 *pend = 0; 4267 *pend = 0;
2102 w->wd = inotify_add_watch (fs_fd, path, mask); 4268 w->wd = inotify_add_watch (fs_fd, path, mask);
2103 } 4269 }
2104 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4270 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2105 } 4271 }
2106 } 4272 }
2107 else
2108 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2109 4273
2110 if (w->wd >= 0) 4274 if (w->wd >= 0)
2111 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4275 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4276
4277 /* now re-arm timer, if required */
4278 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4279 ev_timer_again (EV_A_ &w->timer);
4280 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2112} 4281}
2113 4282
2114static void noinline 4283static void noinline
2115infy_del (EV_P_ ev_stat *w) 4284infy_del (EV_P_ ev_stat *w)
2116{ 4285{
2119 4288
2120 if (wd < 0) 4289 if (wd < 0)
2121 return; 4290 return;
2122 4291
2123 w->wd = -2; 4292 w->wd = -2;
2124 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4293 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2125 wlist_del (&fs_hash [slot].head, (WL)w); 4294 wlist_del (&fs_hash [slot].head, (WL)w);
2126 4295
2127 /* remove this watcher, if others are watching it, they will rearm */ 4296 /* remove this watcher, if others are watching it, they will rearm */
2128 inotify_rm_watch (fs_fd, wd); 4297 inotify_rm_watch (fs_fd, wd);
2129} 4298}
2130 4299
2131static void noinline 4300static void noinline
2132infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4301infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2133{ 4302{
2134 if (slot < 0) 4303 if (slot < 0)
2135 /* overflow, need to check for all hahs slots */ 4304 /* overflow, need to check for all hash slots */
2136 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4305 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2137 infy_wd (EV_A_ slot, wd, ev); 4306 infy_wd (EV_A_ slot, wd, ev);
2138 else 4307 else
2139 { 4308 {
2140 WL w_; 4309 WL w_;
2141 4310
2142 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4311 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2143 { 4312 {
2144 ev_stat *w = (ev_stat *)w_; 4313 ev_stat *w = (ev_stat *)w_;
2145 w_ = w_->next; /* lets us remove this watcher and all before it */ 4314 w_ = w_->next; /* lets us remove this watcher and all before it */
2146 4315
2147 if (w->wd == wd || wd == -1) 4316 if (w->wd == wd || wd == -1)
2148 { 4317 {
2149 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4318 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2150 { 4319 {
4320 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2151 w->wd = -1; 4321 w->wd = -1;
2152 infy_add (EV_A_ w); /* re-add, no matter what */ 4322 infy_add (EV_A_ w); /* re-add, no matter what */
2153 } 4323 }
2154 4324
2155 stat_timer_cb (EV_A_ &w->timer, 0); 4325 stat_timer_cb (EV_A_ &w->timer, 0);
2160 4330
2161static void 4331static void
2162infy_cb (EV_P_ ev_io *w, int revents) 4332infy_cb (EV_P_ ev_io *w, int revents)
2163{ 4333{
2164 char buf [EV_INOTIFY_BUFSIZE]; 4334 char buf [EV_INOTIFY_BUFSIZE];
2165 struct inotify_event *ev = (struct inotify_event *)buf;
2166 int ofs; 4335 int ofs;
2167 int len = read (fs_fd, buf, sizeof (buf)); 4336 int len = read (fs_fd, buf, sizeof (buf));
2168 4337
2169 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4338 for (ofs = 0; ofs < len; )
4339 {
4340 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2170 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4341 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4342 ofs += sizeof (struct inotify_event) + ev->len;
4343 }
2171} 4344}
2172 4345
2173void inline_size 4346inline_size void ecb_cold
4347ev_check_2625 (EV_P)
4348{
4349 /* kernels < 2.6.25 are borked
4350 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4351 */
4352 if (ev_linux_version () < 0x020619)
4353 return;
4354
4355 fs_2625 = 1;
4356}
4357
4358inline_size int
4359infy_newfd (void)
4360{
4361#if defined IN_CLOEXEC && defined IN_NONBLOCK
4362 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4363 if (fd >= 0)
4364 return fd;
4365#endif
4366 return inotify_init ();
4367}
4368
4369inline_size void
2174infy_init (EV_P) 4370infy_init (EV_P)
2175{ 4371{
2176 if (fs_fd != -2) 4372 if (fs_fd != -2)
2177 return; 4373 return;
2178 4374
4375 fs_fd = -1;
4376
4377 ev_check_2625 (EV_A);
4378
2179 fs_fd = inotify_init (); 4379 fs_fd = infy_newfd ();
2180 4380
2181 if (fs_fd >= 0) 4381 if (fs_fd >= 0)
2182 { 4382 {
4383 fd_intern (fs_fd);
2183 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4384 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2184 ev_set_priority (&fs_w, EV_MAXPRI); 4385 ev_set_priority (&fs_w, EV_MAXPRI);
2185 ev_io_start (EV_A_ &fs_w); 4386 ev_io_start (EV_A_ &fs_w);
4387 ev_unref (EV_A);
2186 } 4388 }
2187} 4389}
2188 4390
2189void inline_size 4391inline_size void
2190infy_fork (EV_P) 4392infy_fork (EV_P)
2191{ 4393{
2192 int slot; 4394 int slot;
2193 4395
2194 if (fs_fd < 0) 4396 if (fs_fd < 0)
2195 return; 4397 return;
2196 4398
4399 ev_ref (EV_A);
4400 ev_io_stop (EV_A_ &fs_w);
2197 close (fs_fd); 4401 close (fs_fd);
2198 fs_fd = inotify_init (); 4402 fs_fd = infy_newfd ();
2199 4403
4404 if (fs_fd >= 0)
4405 {
4406 fd_intern (fs_fd);
4407 ev_io_set (&fs_w, fs_fd, EV_READ);
4408 ev_io_start (EV_A_ &fs_w);
4409 ev_unref (EV_A);
4410 }
4411
2200 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4412 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2201 { 4413 {
2202 WL w_ = fs_hash [slot].head; 4414 WL w_ = fs_hash [slot].head;
2203 fs_hash [slot].head = 0; 4415 fs_hash [slot].head = 0;
2204 4416
2205 while (w_) 4417 while (w_)
2210 w->wd = -1; 4422 w->wd = -1;
2211 4423
2212 if (fs_fd >= 0) 4424 if (fs_fd >= 0)
2213 infy_add (EV_A_ w); /* re-add, no matter what */ 4425 infy_add (EV_A_ w); /* re-add, no matter what */
2214 else 4426 else
4427 {
4428 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4429 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2215 ev_timer_start (EV_A_ &w->timer); 4430 ev_timer_again (EV_A_ &w->timer);
4431 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4432 }
2216 } 4433 }
2217
2218 } 4434 }
2219} 4435}
2220 4436
4437#endif
4438
4439#ifdef _WIN32
4440# define EV_LSTAT(p,b) _stati64 (p, b)
4441#else
4442# define EV_LSTAT(p,b) lstat (p, b)
2221#endif 4443#endif
2222 4444
2223void 4445void
2224ev_stat_stat (EV_P_ ev_stat *w) 4446ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2225{ 4447{
2226 if (lstat (w->path, &w->attr) < 0) 4448 if (lstat (w->path, &w->attr) < 0)
2227 w->attr.st_nlink = 0; 4449 w->attr.st_nlink = 0;
2228 else if (!w->attr.st_nlink) 4450 else if (!w->attr.st_nlink)
2229 w->attr.st_nlink = 1; 4451 w->attr.st_nlink = 1;
2232static void noinline 4454static void noinline
2233stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4455stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2234{ 4456{
2235 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4457 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2236 4458
2237 /* we copy this here each the time so that */ 4459 ev_statdata prev = w->attr;
2238 /* prev has the old value when the callback gets invoked */
2239 w->prev = w->attr;
2240 ev_stat_stat (EV_A_ w); 4460 ev_stat_stat (EV_A_ w);
2241 4461
2242 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4462 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2243 if ( 4463 if (
2244 w->prev.st_dev != w->attr.st_dev 4464 prev.st_dev != w->attr.st_dev
2245 || w->prev.st_ino != w->attr.st_ino 4465 || prev.st_ino != w->attr.st_ino
2246 || w->prev.st_mode != w->attr.st_mode 4466 || prev.st_mode != w->attr.st_mode
2247 || w->prev.st_nlink != w->attr.st_nlink 4467 || prev.st_nlink != w->attr.st_nlink
2248 || w->prev.st_uid != w->attr.st_uid 4468 || prev.st_uid != w->attr.st_uid
2249 || w->prev.st_gid != w->attr.st_gid 4469 || prev.st_gid != w->attr.st_gid
2250 || w->prev.st_rdev != w->attr.st_rdev 4470 || prev.st_rdev != w->attr.st_rdev
2251 || w->prev.st_size != w->attr.st_size 4471 || prev.st_size != w->attr.st_size
2252 || w->prev.st_atime != w->attr.st_atime 4472 || prev.st_atime != w->attr.st_atime
2253 || w->prev.st_mtime != w->attr.st_mtime 4473 || prev.st_mtime != w->attr.st_mtime
2254 || w->prev.st_ctime != w->attr.st_ctime 4474 || prev.st_ctime != w->attr.st_ctime
2255 ) { 4475 ) {
4476 /* we only update w->prev on actual differences */
4477 /* in case we test more often than invoke the callback, */
4478 /* to ensure that prev is always different to attr */
4479 w->prev = prev;
4480
2256 #if EV_USE_INOTIFY 4481 #if EV_USE_INOTIFY
4482 if (fs_fd >= 0)
4483 {
2257 infy_del (EV_A_ w); 4484 infy_del (EV_A_ w);
2258 infy_add (EV_A_ w); 4485 infy_add (EV_A_ w);
2259 ev_stat_stat (EV_A_ w); /* avoid race... */ 4486 ev_stat_stat (EV_A_ w); /* avoid race... */
4487 }
2260 #endif 4488 #endif
2261 4489
2262 ev_feed_event (EV_A_ w, EV_STAT); 4490 ev_feed_event (EV_A_ w, EV_STAT);
2263 } 4491 }
2264} 4492}
2265 4493
2266void 4494void
2267ev_stat_start (EV_P_ ev_stat *w) 4495ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2268{ 4496{
2269 if (expect_false (ev_is_active (w))) 4497 if (expect_false (ev_is_active (w)))
2270 return; 4498 return;
2271 4499
2272 /* since we use memcmp, we need to clear any padding data etc. */
2273 memset (&w->prev, 0, sizeof (ev_statdata));
2274 memset (&w->attr, 0, sizeof (ev_statdata));
2275
2276 ev_stat_stat (EV_A_ w); 4500 ev_stat_stat (EV_A_ w);
2277 4501
4502 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2278 if (w->interval < MIN_STAT_INTERVAL) 4503 w->interval = MIN_STAT_INTERVAL;
2279 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2280 4504
2281 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4505 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2282 ev_set_priority (&w->timer, ev_priority (w)); 4506 ev_set_priority (&w->timer, ev_priority (w));
2283 4507
2284#if EV_USE_INOTIFY 4508#if EV_USE_INOTIFY
2285 infy_init (EV_A); 4509 infy_init (EV_A);
2286 4510
2287 if (fs_fd >= 0) 4511 if (fs_fd >= 0)
2288 infy_add (EV_A_ w); 4512 infy_add (EV_A_ w);
2289 else 4513 else
2290#endif 4514#endif
4515 {
2291 ev_timer_start (EV_A_ &w->timer); 4516 ev_timer_again (EV_A_ &w->timer);
4517 ev_unref (EV_A);
4518 }
2292 4519
2293 ev_start (EV_A_ (W)w, 1); 4520 ev_start (EV_A_ (W)w, 1);
4521
4522 EV_FREQUENT_CHECK;
2294} 4523}
2295 4524
2296void 4525void
2297ev_stat_stop (EV_P_ ev_stat *w) 4526ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2298{ 4527{
2299 clear_pending (EV_A_ (W)w); 4528 clear_pending (EV_A_ (W)w);
2300 if (expect_false (!ev_is_active (w))) 4529 if (expect_false (!ev_is_active (w)))
2301 return; 4530 return;
2302 4531
4532 EV_FREQUENT_CHECK;
4533
2303#if EV_USE_INOTIFY 4534#if EV_USE_INOTIFY
2304 infy_del (EV_A_ w); 4535 infy_del (EV_A_ w);
2305#endif 4536#endif
4537
4538 if (ev_is_active (&w->timer))
4539 {
4540 ev_ref (EV_A);
2306 ev_timer_stop (EV_A_ &w->timer); 4541 ev_timer_stop (EV_A_ &w->timer);
4542 }
2307 4543
2308 ev_stop (EV_A_ (W)w); 4544 ev_stop (EV_A_ (W)w);
4545
4546 EV_FREQUENT_CHECK;
2309} 4547}
2310#endif 4548#endif
2311 4549
2312#if EV_IDLE_ENABLE 4550#if EV_IDLE_ENABLE
2313void 4551void
2314ev_idle_start (EV_P_ ev_idle *w) 4552ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2315{ 4553{
2316 if (expect_false (ev_is_active (w))) 4554 if (expect_false (ev_is_active (w)))
2317 return; 4555 return;
2318 4556
2319 pri_adjust (EV_A_ (W)w); 4557 pri_adjust (EV_A_ (W)w);
4558
4559 EV_FREQUENT_CHECK;
2320 4560
2321 { 4561 {
2322 int active = ++idlecnt [ABSPRI (w)]; 4562 int active = ++idlecnt [ABSPRI (w)];
2323 4563
2324 ++idleall; 4564 ++idleall;
2325 ev_start (EV_A_ (W)w, active); 4565 ev_start (EV_A_ (W)w, active);
2326 4566
2327 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4567 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2328 idles [ABSPRI (w)][active - 1] = w; 4568 idles [ABSPRI (w)][active - 1] = w;
2329 } 4569 }
4570
4571 EV_FREQUENT_CHECK;
2330} 4572}
2331 4573
2332void 4574void
2333ev_idle_stop (EV_P_ ev_idle *w) 4575ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2334{ 4576{
2335 clear_pending (EV_A_ (W)w); 4577 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w))) 4578 if (expect_false (!ev_is_active (w)))
2337 return; 4579 return;
2338 4580
4581 EV_FREQUENT_CHECK;
4582
2339 { 4583 {
2340 int active = ((W)w)->active; 4584 int active = ev_active (w);
2341 4585
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4586 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2343 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4587 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2344 4588
2345 ev_stop (EV_A_ (W)w); 4589 ev_stop (EV_A_ (W)w);
2346 --idleall; 4590 --idleall;
2347 } 4591 }
2348}
2349#endif
2350 4592
4593 EV_FREQUENT_CHECK;
4594}
4595#endif
4596
4597#if EV_PREPARE_ENABLE
2351void 4598void
2352ev_prepare_start (EV_P_ ev_prepare *w) 4599ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2353{ 4600{
2354 if (expect_false (ev_is_active (w))) 4601 if (expect_false (ev_is_active (w)))
2355 return; 4602 return;
4603
4604 EV_FREQUENT_CHECK;
2356 4605
2357 ev_start (EV_A_ (W)w, ++preparecnt); 4606 ev_start (EV_A_ (W)w, ++preparecnt);
2358 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4607 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2359 prepares [preparecnt - 1] = w; 4608 prepares [preparecnt - 1] = w;
4609
4610 EV_FREQUENT_CHECK;
2360} 4611}
2361 4612
2362void 4613void
2363ev_prepare_stop (EV_P_ ev_prepare *w) 4614ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2364{ 4615{
2365 clear_pending (EV_A_ (W)w); 4616 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 4617 if (expect_false (!ev_is_active (w)))
2367 return; 4618 return;
2368 4619
4620 EV_FREQUENT_CHECK;
4621
2369 { 4622 {
2370 int active = ((W)w)->active; 4623 int active = ev_active (w);
4624
2371 prepares [active - 1] = prepares [--preparecnt]; 4625 prepares [active - 1] = prepares [--preparecnt];
2372 ((W)prepares [active - 1])->active = active; 4626 ev_active (prepares [active - 1]) = active;
2373 } 4627 }
2374 4628
2375 ev_stop (EV_A_ (W)w); 4629 ev_stop (EV_A_ (W)w);
2376}
2377 4630
4631 EV_FREQUENT_CHECK;
4632}
4633#endif
4634
4635#if EV_CHECK_ENABLE
2378void 4636void
2379ev_check_start (EV_P_ ev_check *w) 4637ev_check_start (EV_P_ ev_check *w) EV_THROW
2380{ 4638{
2381 if (expect_false (ev_is_active (w))) 4639 if (expect_false (ev_is_active (w)))
2382 return; 4640 return;
4641
4642 EV_FREQUENT_CHECK;
2383 4643
2384 ev_start (EV_A_ (W)w, ++checkcnt); 4644 ev_start (EV_A_ (W)w, ++checkcnt);
2385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4645 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2386 checks [checkcnt - 1] = w; 4646 checks [checkcnt - 1] = w;
4647
4648 EV_FREQUENT_CHECK;
2387} 4649}
2388 4650
2389void 4651void
2390ev_check_stop (EV_P_ ev_check *w) 4652ev_check_stop (EV_P_ ev_check *w) EV_THROW
2391{ 4653{
2392 clear_pending (EV_A_ (W)w); 4654 clear_pending (EV_A_ (W)w);
2393 if (expect_false (!ev_is_active (w))) 4655 if (expect_false (!ev_is_active (w)))
2394 return; 4656 return;
2395 4657
4658 EV_FREQUENT_CHECK;
4659
2396 { 4660 {
2397 int active = ((W)w)->active; 4661 int active = ev_active (w);
4662
2398 checks [active - 1] = checks [--checkcnt]; 4663 checks [active - 1] = checks [--checkcnt];
2399 ((W)checks [active - 1])->active = active; 4664 ev_active (checks [active - 1]) = active;
2400 } 4665 }
2401 4666
2402 ev_stop (EV_A_ (W)w); 4667 ev_stop (EV_A_ (W)w);
4668
4669 EV_FREQUENT_CHECK;
2403} 4670}
4671#endif
2404 4672
2405#if EV_EMBED_ENABLE 4673#if EV_EMBED_ENABLE
2406void noinline 4674void noinline
2407ev_embed_sweep (EV_P_ ev_embed *w) 4675ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2408{ 4676{
2409 ev_loop (w->other, EVLOOP_NONBLOCK); 4677 ev_run (w->other, EVRUN_NOWAIT);
2410} 4678}
2411 4679
2412static void 4680static void
2413embed_io_cb (EV_P_ ev_io *io, int revents) 4681embed_io_cb (EV_P_ ev_io *io, int revents)
2414{ 4682{
2415 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4683 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2416 4684
2417 if (ev_cb (w)) 4685 if (ev_cb (w))
2418 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4686 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2419 else 4687 else
2420 ev_loop (w->other, EVLOOP_NONBLOCK); 4688 ev_run (w->other, EVRUN_NOWAIT);
2421} 4689}
2422 4690
2423static void 4691static void
2424embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4692embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2425{ 4693{
2426 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4694 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2427 4695
2428 { 4696 {
2429 struct ev_loop *loop = w->other; 4697 EV_P = w->other;
2430 4698
2431 while (fdchangecnt) 4699 while (fdchangecnt)
2432 { 4700 {
2433 fd_reify (EV_A); 4701 fd_reify (EV_A);
2434 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4702 ev_run (EV_A_ EVRUN_NOWAIT);
2435 } 4703 }
2436 } 4704 }
4705}
4706
4707static void
4708embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4709{
4710 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4711
4712 ev_embed_stop (EV_A_ w);
4713
4714 {
4715 EV_P = w->other;
4716
4717 ev_loop_fork (EV_A);
4718 ev_run (EV_A_ EVRUN_NOWAIT);
4719 }
4720
4721 ev_embed_start (EV_A_ w);
2437} 4722}
2438 4723
2439#if 0 4724#if 0
2440static void 4725static void
2441embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4726embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2443 ev_idle_stop (EV_A_ idle); 4728 ev_idle_stop (EV_A_ idle);
2444} 4729}
2445#endif 4730#endif
2446 4731
2447void 4732void
2448ev_embed_start (EV_P_ ev_embed *w) 4733ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2449{ 4734{
2450 if (expect_false (ev_is_active (w))) 4735 if (expect_false (ev_is_active (w)))
2451 return; 4736 return;
2452 4737
2453 { 4738 {
2454 struct ev_loop *loop = w->other; 4739 EV_P = w->other;
2455 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4740 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2456 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4741 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2457 } 4742 }
4743
4744 EV_FREQUENT_CHECK;
2458 4745
2459 ev_set_priority (&w->io, ev_priority (w)); 4746 ev_set_priority (&w->io, ev_priority (w));
2460 ev_io_start (EV_A_ &w->io); 4747 ev_io_start (EV_A_ &w->io);
2461 4748
2462 ev_prepare_init (&w->prepare, embed_prepare_cb); 4749 ev_prepare_init (&w->prepare, embed_prepare_cb);
2463 ev_set_priority (&w->prepare, EV_MINPRI); 4750 ev_set_priority (&w->prepare, EV_MINPRI);
2464 ev_prepare_start (EV_A_ &w->prepare); 4751 ev_prepare_start (EV_A_ &w->prepare);
2465 4752
4753 ev_fork_init (&w->fork, embed_fork_cb);
4754 ev_fork_start (EV_A_ &w->fork);
4755
2466 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4756 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2467 4757
2468 ev_start (EV_A_ (W)w, 1); 4758 ev_start (EV_A_ (W)w, 1);
4759
4760 EV_FREQUENT_CHECK;
2469} 4761}
2470 4762
2471void 4763void
2472ev_embed_stop (EV_P_ ev_embed *w) 4764ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2473{ 4765{
2474 clear_pending (EV_A_ (W)w); 4766 clear_pending (EV_A_ (W)w);
2475 if (expect_false (!ev_is_active (w))) 4767 if (expect_false (!ev_is_active (w)))
2476 return; 4768 return;
2477 4769
4770 EV_FREQUENT_CHECK;
4771
2478 ev_io_stop (EV_A_ &w->io); 4772 ev_io_stop (EV_A_ &w->io);
2479 ev_prepare_stop (EV_A_ &w->prepare); 4773 ev_prepare_stop (EV_A_ &w->prepare);
4774 ev_fork_stop (EV_A_ &w->fork);
2480 4775
2481 ev_stop (EV_A_ (W)w); 4776 ev_stop (EV_A_ (W)w);
4777
4778 EV_FREQUENT_CHECK;
2482} 4779}
2483#endif 4780#endif
2484 4781
2485#if EV_FORK_ENABLE 4782#if EV_FORK_ENABLE
2486void 4783void
2487ev_fork_start (EV_P_ ev_fork *w) 4784ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2488{ 4785{
2489 if (expect_false (ev_is_active (w))) 4786 if (expect_false (ev_is_active (w)))
2490 return; 4787 return;
4788
4789 EV_FREQUENT_CHECK;
2491 4790
2492 ev_start (EV_A_ (W)w, ++forkcnt); 4791 ev_start (EV_A_ (W)w, ++forkcnt);
2493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4792 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2494 forks [forkcnt - 1] = w; 4793 forks [forkcnt - 1] = w;
4794
4795 EV_FREQUENT_CHECK;
2495} 4796}
2496 4797
2497void 4798void
2498ev_fork_stop (EV_P_ ev_fork *w) 4799ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2499{ 4800{
2500 clear_pending (EV_A_ (W)w); 4801 clear_pending (EV_A_ (W)w);
2501 if (expect_false (!ev_is_active (w))) 4802 if (expect_false (!ev_is_active (w)))
2502 return; 4803 return;
2503 4804
4805 EV_FREQUENT_CHECK;
4806
2504 { 4807 {
2505 int active = ((W)w)->active; 4808 int active = ev_active (w);
4809
2506 forks [active - 1] = forks [--forkcnt]; 4810 forks [active - 1] = forks [--forkcnt];
2507 ((W)forks [active - 1])->active = active; 4811 ev_active (forks [active - 1]) = active;
2508 } 4812 }
2509 4813
2510 ev_stop (EV_A_ (W)w); 4814 ev_stop (EV_A_ (W)w);
4815
4816 EV_FREQUENT_CHECK;
4817}
4818#endif
4819
4820#if EV_CLEANUP_ENABLE
4821void
4822ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4823{
4824 if (expect_false (ev_is_active (w)))
4825 return;
4826
4827 EV_FREQUENT_CHECK;
4828
4829 ev_start (EV_A_ (W)w, ++cleanupcnt);
4830 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4831 cleanups [cleanupcnt - 1] = w;
4832
4833 /* cleanup watchers should never keep a refcount on the loop */
4834 ev_unref (EV_A);
4835 EV_FREQUENT_CHECK;
4836}
4837
4838void
4839ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4840{
4841 clear_pending (EV_A_ (W)w);
4842 if (expect_false (!ev_is_active (w)))
4843 return;
4844
4845 EV_FREQUENT_CHECK;
4846 ev_ref (EV_A);
4847
4848 {
4849 int active = ev_active (w);
4850
4851 cleanups [active - 1] = cleanups [--cleanupcnt];
4852 ev_active (cleanups [active - 1]) = active;
4853 }
4854
4855 ev_stop (EV_A_ (W)w);
4856
4857 EV_FREQUENT_CHECK;
2511} 4858}
2512#endif 4859#endif
2513 4860
2514#if EV_ASYNC_ENABLE 4861#if EV_ASYNC_ENABLE
2515void 4862void
2516ev_async_start (EV_P_ ev_async *w) 4863ev_async_start (EV_P_ ev_async *w) EV_THROW
2517{ 4864{
2518 if (expect_false (ev_is_active (w))) 4865 if (expect_false (ev_is_active (w)))
2519 return; 4866 return;
2520 4867
4868 w->sent = 0;
4869
2521 evpipe_init (EV_A); 4870 evpipe_init (EV_A);
4871
4872 EV_FREQUENT_CHECK;
2522 4873
2523 ev_start (EV_A_ (W)w, ++asynccnt); 4874 ev_start (EV_A_ (W)w, ++asynccnt);
2524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4875 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2525 asyncs [asynccnt - 1] = w; 4876 asyncs [asynccnt - 1] = w;
4877
4878 EV_FREQUENT_CHECK;
2526} 4879}
2527 4880
2528void 4881void
2529ev_async_stop (EV_P_ ev_async *w) 4882ev_async_stop (EV_P_ ev_async *w) EV_THROW
2530{ 4883{
2531 clear_pending (EV_A_ (W)w); 4884 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w))) 4885 if (expect_false (!ev_is_active (w)))
2533 return; 4886 return;
2534 4887
4888 EV_FREQUENT_CHECK;
4889
2535 { 4890 {
2536 int active = ((W)w)->active; 4891 int active = ev_active (w);
4892
2537 asyncs [active - 1] = asyncs [--asynccnt]; 4893 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active; 4894 ev_active (asyncs [active - 1]) = active;
2539 } 4895 }
2540 4896
2541 ev_stop (EV_A_ (W)w); 4897 ev_stop (EV_A_ (W)w);
4898
4899 EV_FREQUENT_CHECK;
2542} 4900}
2543 4901
2544void 4902void
2545ev_async_send (EV_P_ ev_async *w) 4903ev_async_send (EV_P_ ev_async *w) EV_THROW
2546{ 4904{
2547 w->sent = 1; 4905 w->sent = 1;
2548 evpipe_write (EV_A_ &gotasync); 4906 evpipe_write (EV_A_ &async_pending);
2549} 4907}
2550#endif 4908#endif
2551 4909
2552/*****************************************************************************/ 4910/*****************************************************************************/
2553 4911
2563once_cb (EV_P_ struct ev_once *once, int revents) 4921once_cb (EV_P_ struct ev_once *once, int revents)
2564{ 4922{
2565 void (*cb)(int revents, void *arg) = once->cb; 4923 void (*cb)(int revents, void *arg) = once->cb;
2566 void *arg = once->arg; 4924 void *arg = once->arg;
2567 4925
2568 ev_io_stop (EV_A_ &once->io); 4926 ev_io_stop (EV_A_ &once->io);
2569 ev_timer_stop (EV_A_ &once->to); 4927 ev_timer_stop (EV_A_ &once->to);
2570 ev_free (once); 4928 ev_free (once);
2571 4929
2572 cb (revents, arg); 4930 cb (revents, arg);
2573} 4931}
2574 4932
2575static void 4933static void
2576once_cb_io (EV_P_ ev_io *w, int revents) 4934once_cb_io (EV_P_ ev_io *w, int revents)
2577{ 4935{
2578 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4936 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4937
4938 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2579} 4939}
2580 4940
2581static void 4941static void
2582once_cb_to (EV_P_ ev_timer *w, int revents) 4942once_cb_to (EV_P_ ev_timer *w, int revents)
2583{ 4943{
2584 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4944 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4945
4946 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2585} 4947}
2586 4948
2587void 4949void
2588ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4950ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2589{ 4951{
2590 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4952 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2591 4953
2592 if (expect_false (!once)) 4954 if (expect_false (!once))
2593 { 4955 {
2594 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4956 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2595 return; 4957 return;
2596 } 4958 }
2597 4959
2598 once->cb = cb; 4960 once->cb = cb;
2599 once->arg = arg; 4961 once->arg = arg;
2611 ev_timer_set (&once->to, timeout, 0.); 4973 ev_timer_set (&once->to, timeout, 0.);
2612 ev_timer_start (EV_A_ &once->to); 4974 ev_timer_start (EV_A_ &once->to);
2613 } 4975 }
2614} 4976}
2615 4977
4978/*****************************************************************************/
4979
4980#if EV_WALK_ENABLE
4981void ecb_cold
4982ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4983{
4984 int i, j;
4985 ev_watcher_list *wl, *wn;
4986
4987 if (types & (EV_IO | EV_EMBED))
4988 for (i = 0; i < anfdmax; ++i)
4989 for (wl = anfds [i].head; wl; )
4990 {
4991 wn = wl->next;
4992
4993#if EV_EMBED_ENABLE
4994 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4995 {
4996 if (types & EV_EMBED)
4997 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4998 }
4999 else
5000#endif
5001#if EV_USE_INOTIFY
5002 if (ev_cb ((ev_io *)wl) == infy_cb)
5003 ;
5004 else
5005#endif
5006 if ((ev_io *)wl != &pipe_w)
5007 if (types & EV_IO)
5008 cb (EV_A_ EV_IO, wl);
5009
5010 wl = wn;
5011 }
5012
5013 if (types & (EV_TIMER | EV_STAT))
5014 for (i = timercnt + HEAP0; i-- > HEAP0; )
5015#if EV_STAT_ENABLE
5016 /*TODO: timer is not always active*/
5017 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5018 {
5019 if (types & EV_STAT)
5020 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5021 }
5022 else
5023#endif
5024 if (types & EV_TIMER)
5025 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5026
5027#if EV_PERIODIC_ENABLE
5028 if (types & EV_PERIODIC)
5029 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5030 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5031#endif
5032
5033#if EV_IDLE_ENABLE
5034 if (types & EV_IDLE)
5035 for (j = NUMPRI; j--; )
5036 for (i = idlecnt [j]; i--; )
5037 cb (EV_A_ EV_IDLE, idles [j][i]);
5038#endif
5039
5040#if EV_FORK_ENABLE
5041 if (types & EV_FORK)
5042 for (i = forkcnt; i--; )
5043 if (ev_cb (forks [i]) != embed_fork_cb)
5044 cb (EV_A_ EV_FORK, forks [i]);
5045#endif
5046
5047#if EV_ASYNC_ENABLE
5048 if (types & EV_ASYNC)
5049 for (i = asynccnt; i--; )
5050 cb (EV_A_ EV_ASYNC, asyncs [i]);
5051#endif
5052
5053#if EV_PREPARE_ENABLE
5054 if (types & EV_PREPARE)
5055 for (i = preparecnt; i--; )
5056# if EV_EMBED_ENABLE
5057 if (ev_cb (prepares [i]) != embed_prepare_cb)
5058# endif
5059 cb (EV_A_ EV_PREPARE, prepares [i]);
5060#endif
5061
5062#if EV_CHECK_ENABLE
5063 if (types & EV_CHECK)
5064 for (i = checkcnt; i--; )
5065 cb (EV_A_ EV_CHECK, checks [i]);
5066#endif
5067
5068#if EV_SIGNAL_ENABLE
5069 if (types & EV_SIGNAL)
5070 for (i = 0; i < EV_NSIG - 1; ++i)
5071 for (wl = signals [i].head; wl; )
5072 {
5073 wn = wl->next;
5074 cb (EV_A_ EV_SIGNAL, wl);
5075 wl = wn;
5076 }
5077#endif
5078
5079#if EV_CHILD_ENABLE
5080 if (types & EV_CHILD)
5081 for (i = (EV_PID_HASHSIZE); i--; )
5082 for (wl = childs [i]; wl; )
5083 {
5084 wn = wl->next;
5085 cb (EV_A_ EV_CHILD, wl);
5086 wl = wn;
5087 }
5088#endif
5089/* EV_STAT 0x00001000 /* stat data changed */
5090/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5091}
5092#endif
5093
2616#if EV_MULTIPLICITY 5094#if EV_MULTIPLICITY
2617 #include "ev_wrap.h" 5095 #include "ev_wrap.h"
2618#endif 5096#endif
2619 5097
2620#ifdef __cplusplus
2621}
2622#endif
2623

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines