ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.110 by root, Mon Nov 12 05:56:49 2007 UTC vs.
Revision 1.222 by root, Sun Apr 6 12:45:58 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
63 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
64#endif 132#endif
65 133
66#include <math.h> 134#include <math.h>
67#include <stdlib.h> 135#include <stdlib.h>
68#include <fcntl.h> 136#include <fcntl.h>
75#include <sys/types.h> 143#include <sys/types.h>
76#include <time.h> 144#include <time.h>
77 145
78#include <signal.h> 146#include <signal.h>
79 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
80#ifndef _WIN32 154#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 155# include <sys/time.h>
83# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
84#else 158#else
85# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 160# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
89# endif 163# endif
90#endif 164#endif
91 165
92/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
93 167
94#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
96#endif 178#endif
97 179
98#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 182#endif
102 183
103#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
104# ifdef _WIN32 185# ifdef _WIN32
105# define EV_USE_POLL 0 186# define EV_USE_POLL 0
107# define EV_USE_POLL 1 188# define EV_USE_POLL 1
108# endif 189# endif
109#endif 190#endif
110 191
111#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
112# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
113#endif 198#endif
114 199
115#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
117#endif 202#endif
118 203
119#ifndef EV_USE_REALTIME 204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
121#endif 213# endif
214#endif
122 215
123/**/ 216#ifndef EV_PID_HASHSIZE
124 217# if EV_MINIMAL
125/* darwin simply cannot be helped */ 218# define EV_PID_HASHSIZE 1
126#ifdef __APPLE__ 219# else
127# undef EV_USE_POLL 220# define EV_PID_HASHSIZE 16
128# undef EV_USE_KQUEUE
129#endif 221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
130 241
131#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
134#endif 245#endif
136#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
139#endif 250#endif
140 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
141#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 268# include <winsock.h>
143#endif 269#endif
144 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
145/**/ 283/**/
146 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
151 298
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157
158#if __GNUC__ >= 3 299#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 301# define noinline __attribute__ ((noinline))
161#else 302#else
162# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
163# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L
306# define inline
307# endif
164#endif 308#endif
165 309
166#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
168 319
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
171 322
172#define EMPTY /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
173 325
174typedef struct ev_watcher *W; 326typedef ev_watcher *W;
175typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
176typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
177 329
330#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
178static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif
179 335
180#ifdef _WIN32 336#ifdef _WIN32
181# include "ev_win32.c" 337# include "ev_win32.c"
182#endif 338#endif
183 339
184/*****************************************************************************/ 340/*****************************************************************************/
185 341
186static void (*syserr_cb)(const char *msg); 342static void (*syserr_cb)(const char *msg);
187 343
344void
188void ev_set_syserr_cb (void (*cb)(const char *msg)) 345ev_set_syserr_cb (void (*cb)(const char *msg))
189{ 346{
190 syserr_cb = cb; 347 syserr_cb = cb;
191} 348}
192 349
193static void 350static void noinline
194syserr (const char *msg) 351syserr (const char *msg)
195{ 352{
196 if (!msg) 353 if (!msg)
197 msg = "(libev) system error"; 354 msg = "(libev) system error";
198 355
205 } 362 }
206} 363}
207 364
208static void *(*alloc)(void *ptr, long size); 365static void *(*alloc)(void *ptr, long size);
209 366
367void
210void ev_set_allocator (void *(*cb)(void *ptr, long size)) 368ev_set_allocator (void *(*cb)(void *ptr, long size))
211{ 369{
212 alloc = cb; 370 alloc = cb;
213} 371}
214 372
215static void * 373inline_speed void *
216ev_realloc (void *ptr, long size) 374ev_realloc (void *ptr, long size)
217{ 375{
218 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 376 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
219 377
220 if (!ptr && size) 378 if (!ptr && size)
244typedef struct 402typedef struct
245{ 403{
246 W w; 404 W w;
247 int events; 405 int events;
248} ANPENDING; 406} ANPENDING;
407
408#if EV_USE_INOTIFY
409typedef struct
410{
411 WL head;
412} ANFS;
413#endif
249 414
250#if EV_MULTIPLICITY 415#if EV_MULTIPLICITY
251 416
252 struct ev_loop 417 struct ev_loop
253 { 418 {
257 #include "ev_vars.h" 422 #include "ev_vars.h"
258 #undef VAR 423 #undef VAR
259 }; 424 };
260 #include "ev_wrap.h" 425 #include "ev_wrap.h"
261 426
262 struct ev_loop default_loop_struct; 427 static struct ev_loop default_loop_struct;
263 static struct ev_loop *default_loop; 428 struct ev_loop *ev_default_loop_ptr;
264 429
265#else 430#else
266 431
267 ev_tstamp ev_rt_now; 432 ev_tstamp ev_rt_now;
268 #define VAR(name,decl) static decl; 433 #define VAR(name,decl) static decl;
269 #include "ev_vars.h" 434 #include "ev_vars.h"
270 #undef VAR 435 #undef VAR
271 436
272 static int default_loop; 437 static int ev_default_loop_ptr;
273 438
274#endif 439#endif
275 440
276/*****************************************************************************/ 441/*****************************************************************************/
277 442
287 gettimeofday (&tv, 0); 452 gettimeofday (&tv, 0);
288 return tv.tv_sec + tv.tv_usec * 1e-6; 453 return tv.tv_sec + tv.tv_usec * 1e-6;
289#endif 454#endif
290} 455}
291 456
292inline ev_tstamp 457ev_tstamp inline_size
293get_clock (void) 458get_clock (void)
294{ 459{
295#if EV_USE_MONOTONIC 460#if EV_USE_MONOTONIC
296 if (expect_true (have_monotonic)) 461 if (expect_true (have_monotonic))
297 { 462 {
310{ 475{
311 return ev_rt_now; 476 return ev_rt_now;
312} 477}
313#endif 478#endif
314 479
315#define array_roundsize(type,n) (((n) | 4) & ~3) 480void
481ev_sleep (ev_tstamp delay)
482{
483 if (delay > 0.)
484 {
485#if EV_USE_NANOSLEEP
486 struct timespec ts;
487
488 ts.tv_sec = (time_t)delay;
489 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
490
491 nanosleep (&ts, 0);
492#elif defined(_WIN32)
493 Sleep ((unsigned long)(delay * 1e3));
494#else
495 struct timeval tv;
496
497 tv.tv_sec = (time_t)delay;
498 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
499
500 select (0, 0, 0, 0, &tv);
501#endif
502 }
503}
504
505/*****************************************************************************/
506
507int inline_size
508array_nextsize (int elem, int cur, int cnt)
509{
510 int ncur = cur + 1;
511
512 do
513 ncur <<= 1;
514 while (cnt > ncur);
515
516 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
517 if (elem * ncur > 4096)
518 {
519 ncur *= elem;
520 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
521 ncur = ncur - sizeof (void *) * 4;
522 ncur /= elem;
523 }
524
525 return ncur;
526}
527
528static noinline void *
529array_realloc (int elem, void *base, int *cur, int cnt)
530{
531 *cur = array_nextsize (elem, *cur, cnt);
532 return ev_realloc (base, elem * *cur);
533}
316 534
317#define array_needsize(type,base,cur,cnt,init) \ 535#define array_needsize(type,base,cur,cnt,init) \
318 if (expect_false ((cnt) > cur)) \ 536 if (expect_false ((cnt) > (cur))) \
319 { \ 537 { \
320 int newcnt = cur; \ 538 int ocur_ = (cur); \
321 do \ 539 (base) = (type *)array_realloc \
322 { \ 540 (sizeof (type), (base), &(cur), (cnt)); \
323 newcnt = array_roundsize (type, newcnt << 1); \ 541 init ((base) + (ocur_), (cur) - ocur_); \
324 } \
325 while ((cnt) > newcnt); \
326 \
327 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
328 init (base + cur, newcnt - cur); \
329 cur = newcnt; \
330 } 542 }
331 543
544#if 0
332#define array_slim(type,stem) \ 545#define array_slim(type,stem) \
333 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 546 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
334 { \ 547 { \
335 stem ## max = array_roundsize (stem ## cnt >> 1); \ 548 stem ## max = array_roundsize (stem ## cnt >> 1); \
336 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 549 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
337 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 550 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
338 } 551 }
552#endif
339 553
340#define array_free(stem, idx) \ 554#define array_free(stem, idx) \
341 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 555 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
342 556
343/*****************************************************************************/ 557/*****************************************************************************/
344 558
345static void 559void noinline
560ev_feed_event (EV_P_ void *w, int revents)
561{
562 W w_ = (W)w;
563 int pri = ABSPRI (w_);
564
565 if (expect_false (w_->pending))
566 pendings [pri][w_->pending - 1].events |= revents;
567 else
568 {
569 w_->pending = ++pendingcnt [pri];
570 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
571 pendings [pri][w_->pending - 1].w = w_;
572 pendings [pri][w_->pending - 1].events = revents;
573 }
574}
575
576void inline_speed
577queue_events (EV_P_ W *events, int eventcnt, int type)
578{
579 int i;
580
581 for (i = 0; i < eventcnt; ++i)
582 ev_feed_event (EV_A_ events [i], type);
583}
584
585/*****************************************************************************/
586
587void inline_size
346anfds_init (ANFD *base, int count) 588anfds_init (ANFD *base, int count)
347{ 589{
348 while (count--) 590 while (count--)
349 { 591 {
350 base->head = 0; 592 base->head = 0;
353 595
354 ++base; 596 ++base;
355 } 597 }
356} 598}
357 599
358void 600void inline_speed
359ev_feed_event (EV_P_ void *w, int revents)
360{
361 W w_ = (W)w;
362
363 if (w_->pending)
364 {
365 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
366 return;
367 }
368
369 w_->pending = ++pendingcnt [ABSPRI (w_)];
370 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
371 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
372 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
373}
374
375static void
376queue_events (EV_P_ W *events, int eventcnt, int type)
377{
378 int i;
379
380 for (i = 0; i < eventcnt; ++i)
381 ev_feed_event (EV_A_ events [i], type);
382}
383
384inline void
385fd_event (EV_P_ int fd, int revents) 601fd_event (EV_P_ int fd, int revents)
386{ 602{
387 ANFD *anfd = anfds + fd; 603 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 604 ev_io *w;
389 605
390 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 606 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
391 { 607 {
392 int ev = w->events & revents; 608 int ev = w->events & revents;
393 609
394 if (ev) 610 if (ev)
395 ev_feed_event (EV_A_ (W)w, ev); 611 ev_feed_event (EV_A_ (W)w, ev);
397} 613}
398 614
399void 615void
400ev_feed_fd_event (EV_P_ int fd, int revents) 616ev_feed_fd_event (EV_P_ int fd, int revents)
401{ 617{
618 if (fd >= 0 && fd < anfdmax)
402 fd_event (EV_A_ fd, revents); 619 fd_event (EV_A_ fd, revents);
403} 620}
404 621
405/*****************************************************************************/ 622void inline_size
406
407static void
408fd_reify (EV_P) 623fd_reify (EV_P)
409{ 624{
410 int i; 625 int i;
411 626
412 for (i = 0; i < fdchangecnt; ++i) 627 for (i = 0; i < fdchangecnt; ++i)
413 { 628 {
414 int fd = fdchanges [i]; 629 int fd = fdchanges [i];
415 ANFD *anfd = anfds + fd; 630 ANFD *anfd = anfds + fd;
416 struct ev_io *w; 631 ev_io *w;
417 632
418 int events = 0; 633 unsigned char events = 0;
419 634
420 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 635 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
421 events |= w->events; 636 events |= (unsigned char)w->events;
422 637
423#if EV_SELECT_IS_WINSOCKET 638#if EV_SELECT_IS_WINSOCKET
424 if (events) 639 if (events)
425 { 640 {
426 unsigned long argp; 641 unsigned long argp;
642 #ifdef EV_FD_TO_WIN32_HANDLE
643 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
644 #else
427 anfd->handle = _get_osfhandle (fd); 645 anfd->handle = _get_osfhandle (fd);
646 #endif
428 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 647 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
429 } 648 }
430#endif 649#endif
431 650
651 {
652 unsigned char o_events = anfd->events;
653 unsigned char o_reify = anfd->reify;
654
432 anfd->reify = 0; 655 anfd->reify = 0;
433
434 method_modify (EV_A_ fd, anfd->events, events);
435 anfd->events = events; 656 anfd->events = events;
657
658 if (o_events != events || o_reify & EV_IOFDSET)
659 backend_modify (EV_A_ fd, o_events, events);
660 }
436 } 661 }
437 662
438 fdchangecnt = 0; 663 fdchangecnt = 0;
439} 664}
440 665
441static void 666void inline_size
442fd_change (EV_P_ int fd) 667fd_change (EV_P_ int fd, int flags)
443{ 668{
444 if (anfds [fd].reify) 669 unsigned char reify = anfds [fd].reify;
445 return;
446
447 anfds [fd].reify = 1; 670 anfds [fd].reify |= flags;
448 671
672 if (expect_true (!reify))
673 {
449 ++fdchangecnt; 674 ++fdchangecnt;
450 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 675 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
451 fdchanges [fdchangecnt - 1] = fd; 676 fdchanges [fdchangecnt - 1] = fd;
677 }
452} 678}
453 679
454static void 680void inline_speed
455fd_kill (EV_P_ int fd) 681fd_kill (EV_P_ int fd)
456{ 682{
457 struct ev_io *w; 683 ev_io *w;
458 684
459 while ((w = (struct ev_io *)anfds [fd].head)) 685 while ((w = (ev_io *)anfds [fd].head))
460 { 686 {
461 ev_io_stop (EV_A_ w); 687 ev_io_stop (EV_A_ w);
462 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 688 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
463 } 689 }
464} 690}
465 691
466static int 692int inline_size
467fd_valid (int fd) 693fd_valid (int fd)
468{ 694{
469#ifdef _WIN32 695#ifdef _WIN32
470 return _get_osfhandle (fd) != -1; 696 return _get_osfhandle (fd) != -1;
471#else 697#else
472 return fcntl (fd, F_GETFD) != -1; 698 return fcntl (fd, F_GETFD) != -1;
473#endif 699#endif
474} 700}
475 701
476/* called on EBADF to verify fds */ 702/* called on EBADF to verify fds */
477static void 703static void noinline
478fd_ebadf (EV_P) 704fd_ebadf (EV_P)
479{ 705{
480 int fd; 706 int fd;
481 707
482 for (fd = 0; fd < anfdmax; ++fd) 708 for (fd = 0; fd < anfdmax; ++fd)
484 if (!fd_valid (fd) == -1 && errno == EBADF) 710 if (!fd_valid (fd) == -1 && errno == EBADF)
485 fd_kill (EV_A_ fd); 711 fd_kill (EV_A_ fd);
486} 712}
487 713
488/* called on ENOMEM in select/poll to kill some fds and retry */ 714/* called on ENOMEM in select/poll to kill some fds and retry */
489static void 715static void noinline
490fd_enomem (EV_P) 716fd_enomem (EV_P)
491{ 717{
492 int fd; 718 int fd;
493 719
494 for (fd = anfdmax; fd--; ) 720 for (fd = anfdmax; fd--; )
497 fd_kill (EV_A_ fd); 723 fd_kill (EV_A_ fd);
498 return; 724 return;
499 } 725 }
500} 726}
501 727
502/* usually called after fork if method needs to re-arm all fds from scratch */ 728/* usually called after fork if backend needs to re-arm all fds from scratch */
503static void 729static void noinline
504fd_rearm_all (EV_P) 730fd_rearm_all (EV_P)
505{ 731{
506 int fd; 732 int fd;
507 733
508 /* this should be highly optimised to not do anything but set a flag */
509 for (fd = 0; fd < anfdmax; ++fd) 734 for (fd = 0; fd < anfdmax; ++fd)
510 if (anfds [fd].events) 735 if (anfds [fd].events)
511 { 736 {
512 anfds [fd].events = 0; 737 anfds [fd].events = 0;
513 fd_change (EV_A_ fd); 738 fd_change (EV_A_ fd, EV_IOFDSET | 1);
514 } 739 }
515} 740}
516 741
517/*****************************************************************************/ 742/*****************************************************************************/
518 743
519static void 744void inline_speed
520upheap (WT *heap, int k) 745upheap (WT *heap, int k)
521{ 746{
522 WT w = heap [k]; 747 WT w = heap [k];
523 748
524 while (k && heap [k >> 1]->at > w->at) 749 while (k)
525 { 750 {
751 int p = (k - 1) >> 1;
752
753 if (heap [p]->at <= w->at)
754 break;
755
526 heap [k] = heap [k >> 1]; 756 heap [k] = heap [p];
527 ((W)heap [k])->active = k + 1; 757 ((W)heap [k])->active = k + 1;
528 k >>= 1; 758 k = p;
529 } 759 }
530 760
531 heap [k] = w; 761 heap [k] = w;
532 ((W)heap [k])->active = k + 1; 762 ((W)heap [k])->active = k + 1;
533
534} 763}
535 764
536static void 765void inline_speed
537downheap (WT *heap, int N, int k) 766downheap (WT *heap, int N, int k)
538{ 767{
539 WT w = heap [k]; 768 WT w = heap [k];
540 769
541 while (k < (N >> 1)) 770 for (;;)
542 { 771 {
543 int j = k << 1; 772 int c = (k << 1) + 1;
544 773
545 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 774 if (c >= N)
546 ++j;
547
548 if (w->at <= heap [j]->at)
549 break; 775 break;
550 776
777 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
778 ? 1 : 0;
779
780 if (w->at <= heap [c]->at)
781 break;
782
551 heap [k] = heap [j]; 783 heap [k] = heap [c];
552 ((W)heap [k])->active = k + 1; 784 ((W)heap [k])->active = k + 1;
785
553 k = j; 786 k = c;
554 } 787 }
555 788
556 heap [k] = w; 789 heap [k] = w;
557 ((W)heap [k])->active = k + 1; 790 ((W)heap [k])->active = k + 1;
558} 791}
559 792
560inline void 793void inline_size
561adjustheap (WT *heap, int N, int k) 794adjustheap (WT *heap, int N, int k)
562{ 795{
563 upheap (heap, k); 796 upheap (heap, k);
564 downheap (heap, N, k); 797 downheap (heap, N, k);
565} 798}
567/*****************************************************************************/ 800/*****************************************************************************/
568 801
569typedef struct 802typedef struct
570{ 803{
571 WL head; 804 WL head;
572 sig_atomic_t volatile gotsig; 805 EV_ATOMIC_T gotsig;
573} ANSIG; 806} ANSIG;
574 807
575static ANSIG *signals; 808static ANSIG *signals;
576static int signalmax; 809static int signalmax;
577 810
578static int sigpipe [2]; 811static EV_ATOMIC_T gotsig;
579static sig_atomic_t volatile gotsig;
580static struct ev_io sigev;
581 812
582static void 813void inline_size
583signals_init (ANSIG *base, int count) 814signals_init (ANSIG *base, int count)
584{ 815{
585 while (count--) 816 while (count--)
586 { 817 {
587 base->head = 0; 818 base->head = 0;
589 820
590 ++base; 821 ++base;
591 } 822 }
592} 823}
593 824
594static void 825/*****************************************************************************/
595sighandler (int signum)
596{
597#if _WIN32
598 signal (signum, sighandler);
599#endif
600 826
601 signals [signum - 1].gotsig = 1; 827void inline_speed
602
603 if (!gotsig)
604 {
605 int old_errno = errno;
606 gotsig = 1;
607 write (sigpipe [1], &signum, 1);
608 errno = old_errno;
609 }
610}
611
612void
613ev_feed_signal_event (EV_P_ int signum)
614{
615 WL w;
616
617#if EV_MULTIPLICITY
618 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
619#endif
620
621 --signum;
622
623 if (signum < 0 || signum >= signalmax)
624 return;
625
626 signals [signum].gotsig = 0;
627
628 for (w = signals [signum].head; w; w = w->next)
629 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
630}
631
632static void
633sigcb (EV_P_ struct ev_io *iow, int revents)
634{
635 int signum;
636
637 read (sigpipe [0], &revents, 1);
638 gotsig = 0;
639
640 for (signum = signalmax; signum--; )
641 if (signals [signum].gotsig)
642 ev_feed_signal_event (EV_A_ signum + 1);
643}
644
645inline void
646fd_intern (int fd) 828fd_intern (int fd)
647{ 829{
648#ifdef _WIN32 830#ifdef _WIN32
649 int arg = 1; 831 int arg = 1;
650 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
652 fcntl (fd, F_SETFD, FD_CLOEXEC); 834 fcntl (fd, F_SETFD, FD_CLOEXEC);
653 fcntl (fd, F_SETFL, O_NONBLOCK); 835 fcntl (fd, F_SETFL, O_NONBLOCK);
654#endif 836#endif
655} 837}
656 838
839static void noinline
840evpipe_init (EV_P)
841{
842 if (!ev_is_active (&pipeev))
843 {
844#if EV_USE_EVENTFD
845 if ((evfd = eventfd (0, 0)) >= 0)
846 {
847 evpipe [0] = -1;
848 fd_intern (evfd);
849 ev_io_set (&pipeev, evfd, EV_READ);
850 }
851 else
852#endif
853 {
854 while (pipe (evpipe))
855 syserr ("(libev) error creating signal/async pipe");
856
857 fd_intern (evpipe [0]);
858 fd_intern (evpipe [1]);
859 ev_io_set (&pipeev, evpipe [0], EV_READ);
860 }
861
862 ev_io_start (EV_A_ &pipeev);
863 ev_unref (EV_A); /* watcher should not keep loop alive */
864 }
865}
866
867void inline_size
868evpipe_write (EV_P_ EV_ATOMIC_T *flag)
869{
870 if (!*flag)
871 {
872 int old_errno = errno; /* save errno because write might clobber it */
873
874 *flag = 1;
875
876#if EV_USE_EVENTFD
877 if (evfd >= 0)
878 {
879 uint64_t counter = 1;
880 write (evfd, &counter, sizeof (uint64_t));
881 }
882 else
883#endif
884 write (evpipe [1], &old_errno, 1);
885
886 errno = old_errno;
887 }
888}
889
657static void 890static void
658siginit (EV_P) 891pipecb (EV_P_ ev_io *iow, int revents)
659{ 892{
660 fd_intern (sigpipe [0]); 893#if EV_USE_EVENTFD
661 fd_intern (sigpipe [1]); 894 if (evfd >= 0)
895 {
896 uint64_t counter = 1;
897 read (evfd, &counter, sizeof (uint64_t));
898 }
899 else
900#endif
901 {
902 char dummy;
903 read (evpipe [0], &dummy, 1);
904 }
662 905
663 ev_io_set (&sigev, sigpipe [0], EV_READ); 906 if (gotsig && ev_is_default_loop (EV_A))
664 ev_io_start (EV_A_ &sigev); 907 {
665 ev_unref (EV_A); /* child watcher should not keep loop alive */ 908 int signum;
909 gotsig = 0;
910
911 for (signum = signalmax; signum--; )
912 if (signals [signum].gotsig)
913 ev_feed_signal_event (EV_A_ signum + 1);
914 }
915
916#if EV_ASYNC_ENABLE
917 if (gotasync)
918 {
919 int i;
920 gotasync = 0;
921
922 for (i = asynccnt; i--; )
923 if (asyncs [i]->sent)
924 {
925 asyncs [i]->sent = 0;
926 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
927 }
928 }
929#endif
666} 930}
667 931
668/*****************************************************************************/ 932/*****************************************************************************/
669 933
670static struct ev_child *childs [PID_HASHSIZE]; 934static void
935ev_sighandler (int signum)
936{
937#if EV_MULTIPLICITY
938 struct ev_loop *loop = &default_loop_struct;
939#endif
940
941#if _WIN32
942 signal (signum, ev_sighandler);
943#endif
944
945 signals [signum - 1].gotsig = 1;
946 evpipe_write (EV_A_ &gotsig);
947}
948
949void noinline
950ev_feed_signal_event (EV_P_ int signum)
951{
952 WL w;
953
954#if EV_MULTIPLICITY
955 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
956#endif
957
958 --signum;
959
960 if (signum < 0 || signum >= signalmax)
961 return;
962
963 signals [signum].gotsig = 0;
964
965 for (w = signals [signum].head; w; w = w->next)
966 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
967}
968
969/*****************************************************************************/
970
971static WL childs [EV_PID_HASHSIZE];
671 972
672#ifndef _WIN32 973#ifndef _WIN32
673 974
674static struct ev_signal childev; 975static ev_signal childev;
976
977#ifndef WIFCONTINUED
978# define WIFCONTINUED(status) 0
979#endif
980
981void inline_speed
982child_reap (EV_P_ int chain, int pid, int status)
983{
984 ev_child *w;
985 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
986
987 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
988 {
989 if ((w->pid == pid || !w->pid)
990 && (!traced || (w->flags & 1)))
991 {
992 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
993 w->rpid = pid;
994 w->rstatus = status;
995 ev_feed_event (EV_A_ (W)w, EV_CHILD);
996 }
997 }
998}
675 999
676#ifndef WCONTINUED 1000#ifndef WCONTINUED
677# define WCONTINUED 0 1001# define WCONTINUED 0
678#endif 1002#endif
679 1003
680static void 1004static void
681child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
682{
683 struct ev_child *w;
684
685 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
686 if (w->pid == pid || !w->pid)
687 {
688 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
689 w->rpid = pid;
690 w->rstatus = status;
691 ev_feed_event (EV_A_ (W)w, EV_CHILD);
692 }
693}
694
695static void
696childcb (EV_P_ struct ev_signal *sw, int revents) 1005childcb (EV_P_ ev_signal *sw, int revents)
697{ 1006{
698 int pid, status; 1007 int pid, status;
699 1008
1009 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
700 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1010 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
701 { 1011 if (!WCONTINUED
1012 || errno != EINVAL
1013 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1014 return;
1015
702 /* make sure we are called again until all childs have been reaped */ 1016 /* make sure we are called again until all children have been reaped */
1017 /* we need to do it this way so that the callback gets called before we continue */
703 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1018 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
704 1019
705 child_reap (EV_A_ sw, pid, pid, status); 1020 child_reap (EV_A_ pid, pid, status);
1021 if (EV_PID_HASHSIZE > 1)
706 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1022 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
707 }
708} 1023}
709 1024
710#endif 1025#endif
711 1026
712/*****************************************************************************/ 1027/*****************************************************************************/
713 1028
1029#if EV_USE_PORT
1030# include "ev_port.c"
1031#endif
714#if EV_USE_KQUEUE 1032#if EV_USE_KQUEUE
715# include "ev_kqueue.c" 1033# include "ev_kqueue.c"
716#endif 1034#endif
717#if EV_USE_EPOLL 1035#if EV_USE_EPOLL
718# include "ev_epoll.c" 1036# include "ev_epoll.c"
735{ 1053{
736 return EV_VERSION_MINOR; 1054 return EV_VERSION_MINOR;
737} 1055}
738 1056
739/* return true if we are running with elevated privileges and should ignore env variables */ 1057/* return true if we are running with elevated privileges and should ignore env variables */
740static int 1058int inline_size
741enable_secure (void) 1059enable_secure (void)
742{ 1060{
743#ifdef _WIN32 1061#ifdef _WIN32
744 return 0; 1062 return 0;
745#else 1063#else
746 return getuid () != geteuid () 1064 return getuid () != geteuid ()
747 || getgid () != getegid (); 1065 || getgid () != getegid ();
748#endif 1066#endif
749} 1067}
750 1068
751int 1069unsigned int
752ev_method (EV_P) 1070ev_supported_backends (void)
753{ 1071{
754 return method; 1072 unsigned int flags = 0;
755}
756 1073
757static void 1074 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1075 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1076 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1077 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1078 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1079
1080 return flags;
1081}
1082
1083unsigned int
1084ev_recommended_backends (void)
1085{
1086 unsigned int flags = ev_supported_backends ();
1087
1088#ifndef __NetBSD__
1089 /* kqueue is borked on everything but netbsd apparently */
1090 /* it usually doesn't work correctly on anything but sockets and pipes */
1091 flags &= ~EVBACKEND_KQUEUE;
1092#endif
1093#ifdef __APPLE__
1094 // flags &= ~EVBACKEND_KQUEUE; for documentation
1095 flags &= ~EVBACKEND_POLL;
1096#endif
1097
1098 return flags;
1099}
1100
1101unsigned int
1102ev_embeddable_backends (void)
1103{
1104 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1105
1106 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1107 /* please fix it and tell me how to detect the fix */
1108 flags &= ~EVBACKEND_EPOLL;
1109
1110 return flags;
1111}
1112
1113unsigned int
1114ev_backend (EV_P)
1115{
1116 return backend;
1117}
1118
1119unsigned int
1120ev_loop_count (EV_P)
1121{
1122 return loop_count;
1123}
1124
1125void
1126ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1127{
1128 io_blocktime = interval;
1129}
1130
1131void
1132ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1133{
1134 timeout_blocktime = interval;
1135}
1136
1137static void noinline
758loop_init (EV_P_ unsigned int flags) 1138loop_init (EV_P_ unsigned int flags)
759{ 1139{
760 if (!method) 1140 if (!backend)
761 { 1141 {
762#if EV_USE_MONOTONIC 1142#if EV_USE_MONOTONIC
763 { 1143 {
764 struct timespec ts; 1144 struct timespec ts;
765 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1145 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
766 have_monotonic = 1; 1146 have_monotonic = 1;
767 } 1147 }
768#endif 1148#endif
769 1149
770 ev_rt_now = ev_time (); 1150 ev_rt_now = ev_time ();
771 mn_now = get_clock (); 1151 mn_now = get_clock ();
772 now_floor = mn_now; 1152 now_floor = mn_now;
773 rtmn_diff = ev_rt_now - mn_now; 1153 rtmn_diff = ev_rt_now - mn_now;
774 1154
775 if (!(flags & EVMETHOD_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1155 io_blocktime = 0.;
1156 timeout_blocktime = 0.;
1157 backend = 0;
1158 backend_fd = -1;
1159 gotasync = 0;
1160#if EV_USE_INOTIFY
1161 fs_fd = -2;
1162#endif
1163
1164 /* pid check not overridable via env */
1165#ifndef _WIN32
1166 if (flags & EVFLAG_FORKCHECK)
1167 curpid = getpid ();
1168#endif
1169
1170 if (!(flags & EVFLAG_NOENV)
1171 && !enable_secure ()
1172 && getenv ("LIBEV_FLAGS"))
776 flags = atoi (getenv ("LIBEV_FLAGS")); 1173 flags = atoi (getenv ("LIBEV_FLAGS"));
777 1174
778 if (!(flags & 0x0000ffff)) 1175 if (!(flags & 0x0000ffffUL))
779 flags |= 0x0000ffff; 1176 flags |= ev_recommended_backends ();
780 1177
781 method = 0; 1178#if EV_USE_PORT
1179 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1180#endif
782#if EV_USE_KQUEUE 1181#if EV_USE_KQUEUE
783 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1182 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
784#endif 1183#endif
785#if EV_USE_EPOLL 1184#if EV_USE_EPOLL
786 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1185 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
787#endif 1186#endif
788#if EV_USE_POLL 1187#if EV_USE_POLL
789 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1188 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
790#endif 1189#endif
791#if EV_USE_SELECT 1190#if EV_USE_SELECT
792 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1191 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
793#endif 1192#endif
794 1193
795 ev_init (&sigev, sigcb); 1194 ev_init (&pipeev, pipecb);
796 ev_set_priority (&sigev, EV_MAXPRI); 1195 ev_set_priority (&pipeev, EV_MAXPRI);
797 } 1196 }
798} 1197}
799 1198
800void 1199static void noinline
801loop_destroy (EV_P) 1200loop_destroy (EV_P)
802{ 1201{
803 int i; 1202 int i;
804 1203
1204 if (ev_is_active (&pipeev))
1205 {
1206 ev_ref (EV_A); /* signal watcher */
1207 ev_io_stop (EV_A_ &pipeev);
1208
1209#if EV_USE_EVENTFD
1210 if (evfd >= 0)
1211 close (evfd);
1212#endif
1213
1214 if (evpipe [0] >= 0)
1215 {
1216 close (evpipe [0]);
1217 close (evpipe [1]);
1218 }
1219 }
1220
1221#if EV_USE_INOTIFY
1222 if (fs_fd >= 0)
1223 close (fs_fd);
1224#endif
1225
1226 if (backend_fd >= 0)
1227 close (backend_fd);
1228
1229#if EV_USE_PORT
1230 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1231#endif
805#if EV_USE_KQUEUE 1232#if EV_USE_KQUEUE
806 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1233 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
807#endif 1234#endif
808#if EV_USE_EPOLL 1235#if EV_USE_EPOLL
809 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1236 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
810#endif 1237#endif
811#if EV_USE_POLL 1238#if EV_USE_POLL
812 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1239 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
813#endif 1240#endif
814#if EV_USE_SELECT 1241#if EV_USE_SELECT
815 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1242 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
816#endif 1243#endif
817 1244
818 for (i = NUMPRI; i--; ) 1245 for (i = NUMPRI; i--; )
1246 {
819 array_free (pending, [i]); 1247 array_free (pending, [i]);
1248#if EV_IDLE_ENABLE
1249 array_free (idle, [i]);
1250#endif
1251 }
1252
1253 ev_free (anfds); anfdmax = 0;
820 1254
821 /* have to use the microsoft-never-gets-it-right macro */ 1255 /* have to use the microsoft-never-gets-it-right macro */
822 array_free (fdchange, EMPTY); 1256 array_free (fdchange, EMPTY);
823 array_free (timer, EMPTY); 1257 array_free (timer, EMPTY);
824#if EV_PERIODICS 1258#if EV_PERIODIC_ENABLE
825 array_free (periodic, EMPTY); 1259 array_free (periodic, EMPTY);
826#endif 1260#endif
1261#if EV_FORK_ENABLE
827 array_free (idle, EMPTY); 1262 array_free (fork, EMPTY);
1263#endif
828 array_free (prepare, EMPTY); 1264 array_free (prepare, EMPTY);
829 array_free (check, EMPTY); 1265 array_free (check, EMPTY);
1266#if EV_ASYNC_ENABLE
1267 array_free (async, EMPTY);
1268#endif
830 1269
831 method = 0; 1270 backend = 0;
832} 1271}
833 1272
834static void 1273void inline_size infy_fork (EV_P);
1274
1275void inline_size
835loop_fork (EV_P) 1276loop_fork (EV_P)
836{ 1277{
1278#if EV_USE_PORT
1279 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1280#endif
1281#if EV_USE_KQUEUE
1282 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1283#endif
837#if EV_USE_EPOLL 1284#if EV_USE_EPOLL
838 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1285 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
839#endif 1286#endif
840#if EV_USE_KQUEUE 1287#if EV_USE_INOTIFY
841 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1288 infy_fork (EV_A);
842#endif 1289#endif
843 1290
844 if (ev_is_active (&sigev)) 1291 if (ev_is_active (&pipeev))
845 { 1292 {
846 /* default loop */ 1293 /* this "locks" the handlers against writing to the pipe */
1294 /* while we modify the fd vars */
1295 gotsig = 1;
1296#if EV_ASYNC_ENABLE
1297 gotasync = 1;
1298#endif
847 1299
848 ev_ref (EV_A); 1300 ev_ref (EV_A);
849 ev_io_stop (EV_A_ &sigev); 1301 ev_io_stop (EV_A_ &pipeev);
1302
1303#if EV_USE_EVENTFD
1304 if (evfd >= 0)
1305 close (evfd);
1306#endif
1307
1308 if (evpipe [0] >= 0)
1309 {
850 close (sigpipe [0]); 1310 close (evpipe [0]);
851 close (sigpipe [1]); 1311 close (evpipe [1]);
1312 }
852 1313
853 while (pipe (sigpipe))
854 syserr ("(libev) error creating pipe");
855
856 siginit (EV_A); 1314 evpipe_init (EV_A);
1315 /* now iterate over everything, in case we missed something */
1316 pipecb (EV_A_ &pipeev, EV_READ);
857 } 1317 }
858 1318
859 postfork = 0; 1319 postfork = 0;
860} 1320}
861 1321
867 1327
868 memset (loop, 0, sizeof (struct ev_loop)); 1328 memset (loop, 0, sizeof (struct ev_loop));
869 1329
870 loop_init (EV_A_ flags); 1330 loop_init (EV_A_ flags);
871 1331
872 if (ev_method (EV_A)) 1332 if (ev_backend (EV_A))
873 return loop; 1333 return loop;
874 1334
875 return 0; 1335 return 0;
876} 1336}
877 1337
883} 1343}
884 1344
885void 1345void
886ev_loop_fork (EV_P) 1346ev_loop_fork (EV_P)
887{ 1347{
888 postfork = 1; 1348 postfork = 1; /* must be in line with ev_default_fork */
889} 1349}
890 1350
891#endif 1351#endif
892 1352
893#if EV_MULTIPLICITY 1353#if EV_MULTIPLICITY
894struct ev_loop * 1354struct ev_loop *
1355ev_default_loop_init (unsigned int flags)
895#else 1356#else
896int 1357int
897#endif
898ev_default_loop (unsigned int flags) 1358ev_default_loop (unsigned int flags)
1359#endif
899{ 1360{
900 if (sigpipe [0] == sigpipe [1])
901 if (pipe (sigpipe))
902 return 0;
903
904 if (!default_loop) 1361 if (!ev_default_loop_ptr)
905 { 1362 {
906#if EV_MULTIPLICITY 1363#if EV_MULTIPLICITY
907 struct ev_loop *loop = default_loop = &default_loop_struct; 1364 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
908#else 1365#else
909 default_loop = 1; 1366 ev_default_loop_ptr = 1;
910#endif 1367#endif
911 1368
912 loop_init (EV_A_ flags); 1369 loop_init (EV_A_ flags);
913 1370
914 if (ev_method (EV_A)) 1371 if (ev_backend (EV_A))
915 { 1372 {
916 siginit (EV_A);
917
918#ifndef _WIN32 1373#ifndef _WIN32
919 ev_signal_init (&childev, childcb, SIGCHLD); 1374 ev_signal_init (&childev, childcb, SIGCHLD);
920 ev_set_priority (&childev, EV_MAXPRI); 1375 ev_set_priority (&childev, EV_MAXPRI);
921 ev_signal_start (EV_A_ &childev); 1376 ev_signal_start (EV_A_ &childev);
922 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1377 ev_unref (EV_A); /* child watcher should not keep loop alive */
923#endif 1378#endif
924 } 1379 }
925 else 1380 else
926 default_loop = 0; 1381 ev_default_loop_ptr = 0;
927 } 1382 }
928 1383
929 return default_loop; 1384 return ev_default_loop_ptr;
930} 1385}
931 1386
932void 1387void
933ev_default_destroy (void) 1388ev_default_destroy (void)
934{ 1389{
935#if EV_MULTIPLICITY 1390#if EV_MULTIPLICITY
936 struct ev_loop *loop = default_loop; 1391 struct ev_loop *loop = ev_default_loop_ptr;
937#endif 1392#endif
938 1393
939#ifndef _WIN32 1394#ifndef _WIN32
940 ev_ref (EV_A); /* child watcher */ 1395 ev_ref (EV_A); /* child watcher */
941 ev_signal_stop (EV_A_ &childev); 1396 ev_signal_stop (EV_A_ &childev);
942#endif 1397#endif
943 1398
944 ev_ref (EV_A); /* signal watcher */
945 ev_io_stop (EV_A_ &sigev);
946
947 close (sigpipe [0]); sigpipe [0] = 0;
948 close (sigpipe [1]); sigpipe [1] = 0;
949
950 loop_destroy (EV_A); 1399 loop_destroy (EV_A);
951} 1400}
952 1401
953void 1402void
954ev_default_fork (void) 1403ev_default_fork (void)
955{ 1404{
956#if EV_MULTIPLICITY 1405#if EV_MULTIPLICITY
957 struct ev_loop *loop = default_loop; 1406 struct ev_loop *loop = ev_default_loop_ptr;
958#endif 1407#endif
959 1408
960 if (method) 1409 if (backend)
961 postfork = 1; 1410 postfork = 1; /* must be in line with ev_loop_fork */
962} 1411}
963 1412
964/*****************************************************************************/ 1413/*****************************************************************************/
965 1414
966static int 1415void
967any_pending (EV_P) 1416ev_invoke (EV_P_ void *w, int revents)
968{ 1417{
969 int pri; 1418 EV_CB_INVOKE ((W)w, revents);
970
971 for (pri = NUMPRI; pri--; )
972 if (pendingcnt [pri])
973 return 1;
974
975 return 0;
976} 1419}
977 1420
978static void 1421void inline_speed
979call_pending (EV_P) 1422call_pending (EV_P)
980{ 1423{
981 int pri; 1424 int pri;
982 1425
983 for (pri = NUMPRI; pri--; ) 1426 for (pri = NUMPRI; pri--; )
984 while (pendingcnt [pri]) 1427 while (pendingcnt [pri])
985 { 1428 {
986 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1429 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
987 1430
988 if (p->w) 1431 if (expect_true (p->w))
989 { 1432 {
1433 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1434
990 p->w->pending = 0; 1435 p->w->pending = 0;
991 EV_CB_INVOKE (p->w, p->events); 1436 EV_CB_INVOKE (p->w, p->events);
992 } 1437 }
993 } 1438 }
994} 1439}
995 1440
996static void 1441void inline_size
997timers_reify (EV_P) 1442timers_reify (EV_P)
998{ 1443{
999 while (timercnt && ((WT)timers [0])->at <= mn_now) 1444 while (timercnt && ((WT)timers [0])->at <= mn_now)
1000 { 1445 {
1001 struct ev_timer *w = timers [0]; 1446 ev_timer *w = (ev_timer *)timers [0];
1002 1447
1003 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1448 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1004 1449
1005 /* first reschedule or stop timer */ 1450 /* first reschedule or stop timer */
1006 if (w->repeat) 1451 if (w->repeat)
1007 { 1452 {
1008 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1453 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1009 1454
1010 ((WT)w)->at += w->repeat; 1455 ((WT)w)->at += w->repeat;
1011 if (((WT)w)->at < mn_now) 1456 if (((WT)w)->at < mn_now)
1012 ((WT)w)->at = mn_now; 1457 ((WT)w)->at = mn_now;
1013 1458
1014 downheap ((WT *)timers, timercnt, 0); 1459 downheap (timers, timercnt, 0);
1015 } 1460 }
1016 else 1461 else
1017 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1462 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1018 1463
1019 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1464 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1020 } 1465 }
1021} 1466}
1022 1467
1023#if EV_PERIODICS 1468#if EV_PERIODIC_ENABLE
1024static void 1469void inline_size
1025periodics_reify (EV_P) 1470periodics_reify (EV_P)
1026{ 1471{
1027 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1472 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1028 { 1473 {
1029 struct ev_periodic *w = periodics [0]; 1474 ev_periodic *w = (ev_periodic *)periodics [0];
1030 1475
1031 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1476 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1032 1477
1033 /* first reschedule or stop timer */ 1478 /* first reschedule or stop timer */
1034 if (w->reschedule_cb) 1479 if (w->reschedule_cb)
1035 { 1480 {
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1481 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1037 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1482 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1038 downheap ((WT *)periodics, periodiccnt, 0); 1483 downheap (periodics, periodiccnt, 0);
1039 } 1484 }
1040 else if (w->interval) 1485 else if (w->interval)
1041 { 1486 {
1042 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1487 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1488 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1043 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1489 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1044 downheap ((WT *)periodics, periodiccnt, 0); 1490 downheap (periodics, periodiccnt, 0);
1045 } 1491 }
1046 else 1492 else
1047 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1493 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1048 1494
1049 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1495 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1050 } 1496 }
1051} 1497}
1052 1498
1053static void 1499static void noinline
1054periodics_reschedule (EV_P) 1500periodics_reschedule (EV_P)
1055{ 1501{
1056 int i; 1502 int i;
1057 1503
1058 /* adjust periodics after time jump */ 1504 /* adjust periodics after time jump */
1059 for (i = 0; i < periodiccnt; ++i) 1505 for (i = 0; i < periodiccnt; ++i)
1060 { 1506 {
1061 struct ev_periodic *w = periodics [i]; 1507 ev_periodic *w = (ev_periodic *)periodics [i];
1062 1508
1063 if (w->reschedule_cb) 1509 if (w->reschedule_cb)
1064 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1510 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1065 else if (w->interval) 1511 else if (w->interval)
1066 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1512 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1067 } 1513 }
1068 1514
1069 /* now rebuild the heap */ 1515 /* now rebuild the heap */
1070 for (i = periodiccnt >> 1; i--; ) 1516 for (i = periodiccnt >> 1; i--; )
1071 downheap ((WT *)periodics, periodiccnt, i); 1517 downheap (periodics, periodiccnt, i);
1072} 1518}
1073#endif 1519#endif
1074 1520
1075inline int 1521#if EV_IDLE_ENABLE
1076time_update_monotonic (EV_P) 1522void inline_size
1523idle_reify (EV_P)
1077{ 1524{
1525 if (expect_false (idleall))
1526 {
1527 int pri;
1528
1529 for (pri = NUMPRI; pri--; )
1530 {
1531 if (pendingcnt [pri])
1532 break;
1533
1534 if (idlecnt [pri])
1535 {
1536 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1537 break;
1538 }
1539 }
1540 }
1541}
1542#endif
1543
1544void inline_speed
1545time_update (EV_P_ ev_tstamp max_block)
1546{
1547 int i;
1548
1549#if EV_USE_MONOTONIC
1550 if (expect_true (have_monotonic))
1551 {
1552 ev_tstamp odiff = rtmn_diff;
1553
1078 mn_now = get_clock (); 1554 mn_now = get_clock ();
1079 1555
1556 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1557 /* interpolate in the meantime */
1080 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1558 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1081 { 1559 {
1082 ev_rt_now = rtmn_diff + mn_now; 1560 ev_rt_now = rtmn_diff + mn_now;
1083 return 0; 1561 return;
1084 } 1562 }
1085 else 1563
1086 {
1087 now_floor = mn_now; 1564 now_floor = mn_now;
1088 ev_rt_now = ev_time (); 1565 ev_rt_now = ev_time ();
1089 return 1;
1090 }
1091}
1092 1566
1093static void 1567 /* loop a few times, before making important decisions.
1094time_update (EV_P) 1568 * on the choice of "4": one iteration isn't enough,
1095{ 1569 * in case we get preempted during the calls to
1096 int i; 1570 * ev_time and get_clock. a second call is almost guaranteed
1097 1571 * to succeed in that case, though. and looping a few more times
1098#if EV_USE_MONOTONIC 1572 * doesn't hurt either as we only do this on time-jumps or
1099 if (expect_true (have_monotonic)) 1573 * in the unlikely event of having been preempted here.
1100 { 1574 */
1101 if (time_update_monotonic (EV_A)) 1575 for (i = 4; --i; )
1102 { 1576 {
1103 ev_tstamp odiff = rtmn_diff;
1104
1105 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1106 {
1107 rtmn_diff = ev_rt_now - mn_now; 1577 rtmn_diff = ev_rt_now - mn_now;
1108 1578
1109 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1579 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1110 return; /* all is well */ 1580 return; /* all is well */
1111 1581
1112 ev_rt_now = ev_time (); 1582 ev_rt_now = ev_time ();
1113 mn_now = get_clock (); 1583 mn_now = get_clock ();
1114 now_floor = mn_now; 1584 now_floor = mn_now;
1115 } 1585 }
1116 1586
1117# if EV_PERIODICS 1587# if EV_PERIODIC_ENABLE
1588 periodics_reschedule (EV_A);
1589# endif
1590 /* no timer adjustment, as the monotonic clock doesn't jump */
1591 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1592 }
1593 else
1594#endif
1595 {
1596 ev_rt_now = ev_time ();
1597
1598 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1599 {
1600#if EV_PERIODIC_ENABLE
1118 periodics_reschedule (EV_A); 1601 periodics_reschedule (EV_A);
1119# endif 1602#endif
1120 /* no timer adjustment, as the monotonic clock doesn't jump */
1121 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1122 }
1123 }
1124 else
1125#endif
1126 {
1127 ev_rt_now = ev_time ();
1128
1129 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1130 {
1131#if EV_PERIODICS
1132 periodics_reschedule (EV_A);
1133#endif
1134
1135 /* adjust timers. this is easy, as the offset is the same for all */ 1603 /* adjust timers. this is easy, as the offset is the same for all of them */
1136 for (i = 0; i < timercnt; ++i) 1604 for (i = 0; i < timercnt; ++i)
1137 ((WT)timers [i])->at += ev_rt_now - mn_now; 1605 ((WT)timers [i])->at += ev_rt_now - mn_now;
1138 } 1606 }
1139 1607
1140 mn_now = ev_rt_now; 1608 mn_now = ev_rt_now;
1156static int loop_done; 1624static int loop_done;
1157 1625
1158void 1626void
1159ev_loop (EV_P_ int flags) 1627ev_loop (EV_P_ int flags)
1160{ 1628{
1161 double block; 1629 loop_done = EVUNLOOP_CANCEL;
1162 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1630
1631 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1163 1632
1164 do 1633 do
1165 { 1634 {
1635#ifndef _WIN32
1636 if (expect_false (curpid)) /* penalise the forking check even more */
1637 if (expect_false (getpid () != curpid))
1638 {
1639 curpid = getpid ();
1640 postfork = 1;
1641 }
1642#endif
1643
1644#if EV_FORK_ENABLE
1645 /* we might have forked, so queue fork handlers */
1646 if (expect_false (postfork))
1647 if (forkcnt)
1648 {
1649 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1650 call_pending (EV_A);
1651 }
1652#endif
1653
1166 /* queue check watchers (and execute them) */ 1654 /* queue prepare watchers (and execute them) */
1167 if (expect_false (preparecnt)) 1655 if (expect_false (preparecnt))
1168 { 1656 {
1169 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1657 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1170 call_pending (EV_A); 1658 call_pending (EV_A);
1171 } 1659 }
1172 1660
1661 if (expect_false (!activecnt))
1662 break;
1663
1173 /* we might have forked, so reify kernel state if necessary */ 1664 /* we might have forked, so reify kernel state if necessary */
1174 if (expect_false (postfork)) 1665 if (expect_false (postfork))
1175 loop_fork (EV_A); 1666 loop_fork (EV_A);
1176 1667
1177 /* update fd-related kernel structures */ 1668 /* update fd-related kernel structures */
1178 fd_reify (EV_A); 1669 fd_reify (EV_A);
1179 1670
1180 /* calculate blocking time */ 1671 /* calculate blocking time */
1672 {
1673 ev_tstamp waittime = 0.;
1674 ev_tstamp sleeptime = 0.;
1181 1675
1182 /* we only need this for !monotonic clock or timers, but as we basically 1676 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1183 always have timers, we just calculate it always */
1184#if EV_USE_MONOTONIC
1185 if (expect_true (have_monotonic))
1186 time_update_monotonic (EV_A);
1187 else
1188#endif
1189 { 1677 {
1190 ev_rt_now = ev_time (); 1678 /* update time to cancel out callback processing overhead */
1191 mn_now = ev_rt_now; 1679 time_update (EV_A_ 1e100);
1192 }
1193 1680
1194 if (flags & EVLOOP_NONBLOCK || idlecnt)
1195 block = 0.;
1196 else
1197 {
1198 block = MAX_BLOCKTIME; 1681 waittime = MAX_BLOCKTIME;
1199 1682
1200 if (timercnt) 1683 if (timercnt)
1201 { 1684 {
1202 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1685 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1203 if (block > to) block = to; 1686 if (waittime > to) waittime = to;
1204 } 1687 }
1205 1688
1206#if EV_PERIODICS 1689#if EV_PERIODIC_ENABLE
1207 if (periodiccnt) 1690 if (periodiccnt)
1208 { 1691 {
1209 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1692 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1210 if (block > to) block = to; 1693 if (waittime > to) waittime = to;
1211 } 1694 }
1212#endif 1695#endif
1213 1696
1214 if (block < 0.) block = 0.; 1697 if (expect_false (waittime < timeout_blocktime))
1698 waittime = timeout_blocktime;
1699
1700 sleeptime = waittime - backend_fudge;
1701
1702 if (expect_true (sleeptime > io_blocktime))
1703 sleeptime = io_blocktime;
1704
1705 if (sleeptime)
1706 {
1707 ev_sleep (sleeptime);
1708 waittime -= sleeptime;
1709 }
1215 } 1710 }
1216 1711
1217 method_poll (EV_A_ block); 1712 ++loop_count;
1713 backend_poll (EV_A_ waittime);
1218 1714
1219 /* update ev_rt_now, do magic */ 1715 /* update ev_rt_now, do magic */
1220 time_update (EV_A); 1716 time_update (EV_A_ waittime + sleeptime);
1717 }
1221 1718
1222 /* queue pending timers and reschedule them */ 1719 /* queue pending timers and reschedule them */
1223 timers_reify (EV_A); /* relative timers called last */ 1720 timers_reify (EV_A); /* relative timers called last */
1224#if EV_PERIODICS 1721#if EV_PERIODIC_ENABLE
1225 periodics_reify (EV_A); /* absolute timers called first */ 1722 periodics_reify (EV_A); /* absolute timers called first */
1226#endif 1723#endif
1227 1724
1725#if EV_IDLE_ENABLE
1228 /* queue idle watchers unless io or timers are pending */ 1726 /* queue idle watchers unless other events are pending */
1229 if (idlecnt && !any_pending (EV_A)) 1727 idle_reify (EV_A);
1230 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1728#endif
1231 1729
1232 /* queue check watchers, to be executed first */ 1730 /* queue check watchers, to be executed first */
1233 if (checkcnt) 1731 if (expect_false (checkcnt))
1234 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1732 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1235 1733
1236 call_pending (EV_A); 1734 call_pending (EV_A);
1237 } 1735 }
1238 while (activecnt && !loop_done); 1736 while (expect_true (
1737 activecnt
1738 && !loop_done
1739 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1740 ));
1239 1741
1240 if (loop_done != 2) 1742 if (loop_done == EVUNLOOP_ONE)
1241 loop_done = 0; 1743 loop_done = EVUNLOOP_CANCEL;
1242} 1744}
1243 1745
1244void 1746void
1245ev_unloop (EV_P_ int how) 1747ev_unloop (EV_P_ int how)
1246{ 1748{
1247 loop_done = how; 1749 loop_done = how;
1248} 1750}
1249 1751
1250/*****************************************************************************/ 1752/*****************************************************************************/
1251 1753
1252inline void 1754void inline_size
1253wlist_add (WL *head, WL elem) 1755wlist_add (WL *head, WL elem)
1254{ 1756{
1255 elem->next = *head; 1757 elem->next = *head;
1256 *head = elem; 1758 *head = elem;
1257} 1759}
1258 1760
1259inline void 1761void inline_size
1260wlist_del (WL *head, WL elem) 1762wlist_del (WL *head, WL elem)
1261{ 1763{
1262 while (*head) 1764 while (*head)
1263 { 1765 {
1264 if (*head == elem) 1766 if (*head == elem)
1269 1771
1270 head = &(*head)->next; 1772 head = &(*head)->next;
1271 } 1773 }
1272} 1774}
1273 1775
1274inline void 1776void inline_speed
1275ev_clear_pending (EV_P_ W w) 1777clear_pending (EV_P_ W w)
1276{ 1778{
1277 if (w->pending) 1779 if (w->pending)
1278 { 1780 {
1279 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1781 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1280 w->pending = 0; 1782 w->pending = 0;
1281 } 1783 }
1282} 1784}
1283 1785
1284inline void 1786int
1787ev_clear_pending (EV_P_ void *w)
1788{
1789 W w_ = (W)w;
1790 int pending = w_->pending;
1791
1792 if (expect_true (pending))
1793 {
1794 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1795 w_->pending = 0;
1796 p->w = 0;
1797 return p->events;
1798 }
1799 else
1800 return 0;
1801}
1802
1803void inline_size
1804pri_adjust (EV_P_ W w)
1805{
1806 int pri = w->priority;
1807 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1808 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1809 w->priority = pri;
1810}
1811
1812void inline_speed
1285ev_start (EV_P_ W w, int active) 1813ev_start (EV_P_ W w, int active)
1286{ 1814{
1287 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1815 pri_adjust (EV_A_ w);
1288 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1289
1290 w->active = active; 1816 w->active = active;
1291 ev_ref (EV_A); 1817 ev_ref (EV_A);
1292} 1818}
1293 1819
1294inline void 1820void inline_size
1295ev_stop (EV_P_ W w) 1821ev_stop (EV_P_ W w)
1296{ 1822{
1297 ev_unref (EV_A); 1823 ev_unref (EV_A);
1298 w->active = 0; 1824 w->active = 0;
1299} 1825}
1300 1826
1301/*****************************************************************************/ 1827/*****************************************************************************/
1302 1828
1303void 1829void noinline
1304ev_io_start (EV_P_ struct ev_io *w) 1830ev_io_start (EV_P_ ev_io *w)
1305{ 1831{
1306 int fd = w->fd; 1832 int fd = w->fd;
1307 1833
1308 if (ev_is_active (w)) 1834 if (expect_false (ev_is_active (w)))
1309 return; 1835 return;
1310 1836
1311 assert (("ev_io_start called with negative fd", fd >= 0)); 1837 assert (("ev_io_start called with negative fd", fd >= 0));
1312 1838
1313 ev_start (EV_A_ (W)w, 1); 1839 ev_start (EV_A_ (W)w, 1);
1314 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1840 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1315 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1841 wlist_add (&anfds[fd].head, (WL)w);
1316 1842
1317 fd_change (EV_A_ fd); 1843 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1844 w->events &= ~EV_IOFDSET;
1318} 1845}
1319 1846
1320void 1847void noinline
1321ev_io_stop (EV_P_ struct ev_io *w) 1848ev_io_stop (EV_P_ ev_io *w)
1322{ 1849{
1323 ev_clear_pending (EV_A_ (W)w); 1850 clear_pending (EV_A_ (W)w);
1324 if (!ev_is_active (w)) 1851 if (expect_false (!ev_is_active (w)))
1325 return; 1852 return;
1326 1853
1327 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1854 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1328 1855
1329 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1856 wlist_del (&anfds[w->fd].head, (WL)w);
1330 ev_stop (EV_A_ (W)w); 1857 ev_stop (EV_A_ (W)w);
1331 1858
1332 fd_change (EV_A_ w->fd); 1859 fd_change (EV_A_ w->fd, 1);
1333} 1860}
1334 1861
1335void 1862void noinline
1336ev_timer_start (EV_P_ struct ev_timer *w) 1863ev_timer_start (EV_P_ ev_timer *w)
1337{ 1864{
1338 if (ev_is_active (w)) 1865 if (expect_false (ev_is_active (w)))
1339 return; 1866 return;
1340 1867
1341 ((WT)w)->at += mn_now; 1868 ((WT)w)->at += mn_now;
1342 1869
1343 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1870 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1344 1871
1345 ev_start (EV_A_ (W)w, ++timercnt); 1872 ev_start (EV_A_ (W)w, ++timercnt);
1346 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1873 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1347 timers [timercnt - 1] = w; 1874 timers [timercnt - 1] = (WT)w;
1348 upheap ((WT *)timers, timercnt - 1); 1875 upheap (timers, timercnt - 1);
1349 1876
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1877 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1351} 1878}
1352 1879
1353void 1880void noinline
1354ev_timer_stop (EV_P_ struct ev_timer *w) 1881ev_timer_stop (EV_P_ ev_timer *w)
1355{ 1882{
1356 ev_clear_pending (EV_A_ (W)w); 1883 clear_pending (EV_A_ (W)w);
1357 if (!ev_is_active (w)) 1884 if (expect_false (!ev_is_active (w)))
1358 return; 1885 return;
1359 1886
1360 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1887 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1361 1888
1362 if (((W)w)->active < timercnt--) 1889 {
1890 int active = ((W)w)->active;
1891
1892 if (expect_true (--active < --timercnt))
1363 { 1893 {
1364 timers [((W)w)->active - 1] = timers [timercnt]; 1894 timers [active] = timers [timercnt];
1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1895 adjustheap (timers, timercnt, active);
1366 } 1896 }
1897 }
1367 1898
1368 ((WT)w)->at -= mn_now; 1899 ((WT)w)->at -= mn_now;
1369 1900
1370 ev_stop (EV_A_ (W)w); 1901 ev_stop (EV_A_ (W)w);
1371} 1902}
1372 1903
1373void 1904void noinline
1374ev_timer_again (EV_P_ struct ev_timer *w) 1905ev_timer_again (EV_P_ ev_timer *w)
1375{ 1906{
1376 if (ev_is_active (w)) 1907 if (ev_is_active (w))
1377 { 1908 {
1378 if (w->repeat) 1909 if (w->repeat)
1379 { 1910 {
1380 ((WT)w)->at = mn_now + w->repeat; 1911 ((WT)w)->at = mn_now + w->repeat;
1381 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1912 adjustheap (timers, timercnt, ((W)w)->active - 1);
1382 } 1913 }
1383 else 1914 else
1384 ev_timer_stop (EV_A_ w); 1915 ev_timer_stop (EV_A_ w);
1385 } 1916 }
1386 else if (w->repeat) 1917 else if (w->repeat)
1918 {
1919 w->at = w->repeat;
1387 ev_timer_start (EV_A_ w); 1920 ev_timer_start (EV_A_ w);
1921 }
1388} 1922}
1389 1923
1390#if EV_PERIODICS 1924#if EV_PERIODIC_ENABLE
1391void 1925void noinline
1392ev_periodic_start (EV_P_ struct ev_periodic *w) 1926ev_periodic_start (EV_P_ ev_periodic *w)
1393{ 1927{
1394 if (ev_is_active (w)) 1928 if (expect_false (ev_is_active (w)))
1395 return; 1929 return;
1396 1930
1397 if (w->reschedule_cb) 1931 if (w->reschedule_cb)
1398 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1932 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1399 else if (w->interval) 1933 else if (w->interval)
1400 { 1934 {
1401 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1935 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1402 /* this formula differs from the one in periodic_reify because we do not always round up */ 1936 /* this formula differs from the one in periodic_reify because we do not always round up */
1403 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1937 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 } 1938 }
1939 else
1940 ((WT)w)->at = w->offset;
1405 1941
1406 ev_start (EV_A_ (W)w, ++periodiccnt); 1942 ev_start (EV_A_ (W)w, ++periodiccnt);
1407 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1943 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1408 periodics [periodiccnt - 1] = w; 1944 periodics [periodiccnt - 1] = (WT)w;
1409 upheap ((WT *)periodics, periodiccnt - 1); 1945 upheap (periodics, periodiccnt - 1);
1410 1946
1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1947 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1412} 1948}
1413 1949
1414void 1950void noinline
1415ev_periodic_stop (EV_P_ struct ev_periodic *w) 1951ev_periodic_stop (EV_P_ ev_periodic *w)
1416{ 1952{
1417 ev_clear_pending (EV_A_ (W)w); 1953 clear_pending (EV_A_ (W)w);
1418 if (!ev_is_active (w)) 1954 if (expect_false (!ev_is_active (w)))
1419 return; 1955 return;
1420 1956
1421 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1957 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1422 1958
1423 if (((W)w)->active < periodiccnt--) 1959 {
1960 int active = ((W)w)->active;
1961
1962 if (expect_true (--active < --periodiccnt))
1424 { 1963 {
1425 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1964 periodics [active] = periodics [periodiccnt];
1426 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1965 adjustheap (periodics, periodiccnt, active);
1427 } 1966 }
1967 }
1428 1968
1429 ev_stop (EV_A_ (W)w); 1969 ev_stop (EV_A_ (W)w);
1430} 1970}
1431 1971
1432void 1972void noinline
1433ev_periodic_again (EV_P_ struct ev_periodic *w) 1973ev_periodic_again (EV_P_ ev_periodic *w)
1434{ 1974{
1435 /* TODO: use adjustheap and recalculation */ 1975 /* TODO: use adjustheap and recalculation */
1436 ev_periodic_stop (EV_A_ w); 1976 ev_periodic_stop (EV_A_ w);
1437 ev_periodic_start (EV_A_ w); 1977 ev_periodic_start (EV_A_ w);
1438} 1978}
1439#endif 1979#endif
1440 1980
1441void
1442ev_idle_start (EV_P_ struct ev_idle *w)
1443{
1444 if (ev_is_active (w))
1445 return;
1446
1447 ev_start (EV_A_ (W)w, ++idlecnt);
1448 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1449 idles [idlecnt - 1] = w;
1450}
1451
1452void
1453ev_idle_stop (EV_P_ struct ev_idle *w)
1454{
1455 ev_clear_pending (EV_A_ (W)w);
1456 if (!ev_is_active (w))
1457 return;
1458
1459 idles [((W)w)->active - 1] = idles [--idlecnt];
1460 ev_stop (EV_A_ (W)w);
1461}
1462
1463void
1464ev_prepare_start (EV_P_ struct ev_prepare *w)
1465{
1466 if (ev_is_active (w))
1467 return;
1468
1469 ev_start (EV_A_ (W)w, ++preparecnt);
1470 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1471 prepares [preparecnt - 1] = w;
1472}
1473
1474void
1475ev_prepare_stop (EV_P_ struct ev_prepare *w)
1476{
1477 ev_clear_pending (EV_A_ (W)w);
1478 if (!ev_is_active (w))
1479 return;
1480
1481 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1482 ev_stop (EV_A_ (W)w);
1483}
1484
1485void
1486ev_check_start (EV_P_ struct ev_check *w)
1487{
1488 if (ev_is_active (w))
1489 return;
1490
1491 ev_start (EV_A_ (W)w, ++checkcnt);
1492 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1493 checks [checkcnt - 1] = w;
1494}
1495
1496void
1497ev_check_stop (EV_P_ struct ev_check *w)
1498{
1499 ev_clear_pending (EV_A_ (W)w);
1500 if (!ev_is_active (w))
1501 return;
1502
1503 checks [((W)w)->active - 1] = checks [--checkcnt];
1504 ev_stop (EV_A_ (W)w);
1505}
1506
1507#ifndef SA_RESTART 1981#ifndef SA_RESTART
1508# define SA_RESTART 0 1982# define SA_RESTART 0
1509#endif 1983#endif
1510 1984
1511void 1985void noinline
1512ev_signal_start (EV_P_ struct ev_signal *w) 1986ev_signal_start (EV_P_ ev_signal *w)
1513{ 1987{
1514#if EV_MULTIPLICITY 1988#if EV_MULTIPLICITY
1515 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1989 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1516#endif 1990#endif
1517 if (ev_is_active (w)) 1991 if (expect_false (ev_is_active (w)))
1518 return; 1992 return;
1519 1993
1520 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1994 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1521 1995
1996 evpipe_init (EV_A);
1997
1998 {
1999#ifndef _WIN32
2000 sigset_t full, prev;
2001 sigfillset (&full);
2002 sigprocmask (SIG_SETMASK, &full, &prev);
2003#endif
2004
2005 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2006
2007#ifndef _WIN32
2008 sigprocmask (SIG_SETMASK, &prev, 0);
2009#endif
2010 }
2011
1522 ev_start (EV_A_ (W)w, 1); 2012 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1524 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2013 wlist_add (&signals [w->signum - 1].head, (WL)w);
1525 2014
1526 if (!((WL)w)->next) 2015 if (!((WL)w)->next)
1527 { 2016 {
1528#if _WIN32 2017#if _WIN32
1529 signal (w->signum, sighandler); 2018 signal (w->signum, ev_sighandler);
1530#else 2019#else
1531 struct sigaction sa; 2020 struct sigaction sa;
1532 sa.sa_handler = sighandler; 2021 sa.sa_handler = ev_sighandler;
1533 sigfillset (&sa.sa_mask); 2022 sigfillset (&sa.sa_mask);
1534 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2023 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1535 sigaction (w->signum, &sa, 0); 2024 sigaction (w->signum, &sa, 0);
1536#endif 2025#endif
1537 } 2026 }
1538} 2027}
1539 2028
1540void 2029void noinline
1541ev_signal_stop (EV_P_ struct ev_signal *w) 2030ev_signal_stop (EV_P_ ev_signal *w)
1542{ 2031{
1543 ev_clear_pending (EV_A_ (W)w); 2032 clear_pending (EV_A_ (W)w);
1544 if (!ev_is_active (w)) 2033 if (expect_false (!ev_is_active (w)))
1545 return; 2034 return;
1546 2035
1547 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2036 wlist_del (&signals [w->signum - 1].head, (WL)w);
1548 ev_stop (EV_A_ (W)w); 2037 ev_stop (EV_A_ (W)w);
1549 2038
1550 if (!signals [w->signum - 1].head) 2039 if (!signals [w->signum - 1].head)
1551 signal (w->signum, SIG_DFL); 2040 signal (w->signum, SIG_DFL);
1552} 2041}
1553 2042
1554void 2043void
1555ev_child_start (EV_P_ struct ev_child *w) 2044ev_child_start (EV_P_ ev_child *w)
1556{ 2045{
1557#if EV_MULTIPLICITY 2046#if EV_MULTIPLICITY
1558 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2047 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif 2048#endif
1560 if (ev_is_active (w)) 2049 if (expect_false (ev_is_active (w)))
1561 return; 2050 return;
1562 2051
1563 ev_start (EV_A_ (W)w, 1); 2052 ev_start (EV_A_ (W)w, 1);
1564 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2053 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1565} 2054}
1566 2055
1567void 2056void
1568ev_child_stop (EV_P_ struct ev_child *w) 2057ev_child_stop (EV_P_ ev_child *w)
1569{ 2058{
1570 ev_clear_pending (EV_A_ (W)w); 2059 clear_pending (EV_A_ (W)w);
1571 if (!ev_is_active (w)) 2060 if (expect_false (!ev_is_active (w)))
1572 return; 2061 return;
1573 2062
1574 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2063 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1575 ev_stop (EV_A_ (W)w); 2064 ev_stop (EV_A_ (W)w);
1576} 2065}
1577 2066
2067#if EV_STAT_ENABLE
2068
2069# ifdef _WIN32
2070# undef lstat
2071# define lstat(a,b) _stati64 (a,b)
2072# endif
2073
2074#define DEF_STAT_INTERVAL 5.0074891
2075#define MIN_STAT_INTERVAL 0.1074891
2076
2077static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2078
2079#if EV_USE_INOTIFY
2080# define EV_INOTIFY_BUFSIZE 8192
2081
2082static void noinline
2083infy_add (EV_P_ ev_stat *w)
2084{
2085 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2086
2087 if (w->wd < 0)
2088 {
2089 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2090
2091 /* monitor some parent directory for speedup hints */
2092 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2093 {
2094 char path [4096];
2095 strcpy (path, w->path);
2096
2097 do
2098 {
2099 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2100 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2101
2102 char *pend = strrchr (path, '/');
2103
2104 if (!pend)
2105 break; /* whoops, no '/', complain to your admin */
2106
2107 *pend = 0;
2108 w->wd = inotify_add_watch (fs_fd, path, mask);
2109 }
2110 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2111 }
2112 }
2113 else
2114 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2115
2116 if (w->wd >= 0)
2117 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2118}
2119
2120static void noinline
2121infy_del (EV_P_ ev_stat *w)
2122{
2123 int slot;
2124 int wd = w->wd;
2125
2126 if (wd < 0)
2127 return;
2128
2129 w->wd = -2;
2130 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2131 wlist_del (&fs_hash [slot].head, (WL)w);
2132
2133 /* remove this watcher, if others are watching it, they will rearm */
2134 inotify_rm_watch (fs_fd, wd);
2135}
2136
2137static void noinline
2138infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2139{
2140 if (slot < 0)
2141 /* overflow, need to check for all hahs slots */
2142 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2143 infy_wd (EV_A_ slot, wd, ev);
2144 else
2145 {
2146 WL w_;
2147
2148 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2149 {
2150 ev_stat *w = (ev_stat *)w_;
2151 w_ = w_->next; /* lets us remove this watcher and all before it */
2152
2153 if (w->wd == wd || wd == -1)
2154 {
2155 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2156 {
2157 w->wd = -1;
2158 infy_add (EV_A_ w); /* re-add, no matter what */
2159 }
2160
2161 stat_timer_cb (EV_A_ &w->timer, 0);
2162 }
2163 }
2164 }
2165}
2166
2167static void
2168infy_cb (EV_P_ ev_io *w, int revents)
2169{
2170 char buf [EV_INOTIFY_BUFSIZE];
2171 struct inotify_event *ev = (struct inotify_event *)buf;
2172 int ofs;
2173 int len = read (fs_fd, buf, sizeof (buf));
2174
2175 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2176 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2177}
2178
2179void inline_size
2180infy_init (EV_P)
2181{
2182 if (fs_fd != -2)
2183 return;
2184
2185 fs_fd = inotify_init ();
2186
2187 if (fs_fd >= 0)
2188 {
2189 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2190 ev_set_priority (&fs_w, EV_MAXPRI);
2191 ev_io_start (EV_A_ &fs_w);
2192 }
2193}
2194
2195void inline_size
2196infy_fork (EV_P)
2197{
2198 int slot;
2199
2200 if (fs_fd < 0)
2201 return;
2202
2203 close (fs_fd);
2204 fs_fd = inotify_init ();
2205
2206 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2207 {
2208 WL w_ = fs_hash [slot].head;
2209 fs_hash [slot].head = 0;
2210
2211 while (w_)
2212 {
2213 ev_stat *w = (ev_stat *)w_;
2214 w_ = w_->next; /* lets us add this watcher */
2215
2216 w->wd = -1;
2217
2218 if (fs_fd >= 0)
2219 infy_add (EV_A_ w); /* re-add, no matter what */
2220 else
2221 ev_timer_start (EV_A_ &w->timer);
2222 }
2223
2224 }
2225}
2226
2227#endif
2228
2229void
2230ev_stat_stat (EV_P_ ev_stat *w)
2231{
2232 if (lstat (w->path, &w->attr) < 0)
2233 w->attr.st_nlink = 0;
2234 else if (!w->attr.st_nlink)
2235 w->attr.st_nlink = 1;
2236}
2237
2238static void noinline
2239stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2240{
2241 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2242
2243 /* we copy this here each the time so that */
2244 /* prev has the old value when the callback gets invoked */
2245 w->prev = w->attr;
2246 ev_stat_stat (EV_A_ w);
2247
2248 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2249 if (
2250 w->prev.st_dev != w->attr.st_dev
2251 || w->prev.st_ino != w->attr.st_ino
2252 || w->prev.st_mode != w->attr.st_mode
2253 || w->prev.st_nlink != w->attr.st_nlink
2254 || w->prev.st_uid != w->attr.st_uid
2255 || w->prev.st_gid != w->attr.st_gid
2256 || w->prev.st_rdev != w->attr.st_rdev
2257 || w->prev.st_size != w->attr.st_size
2258 || w->prev.st_atime != w->attr.st_atime
2259 || w->prev.st_mtime != w->attr.st_mtime
2260 || w->prev.st_ctime != w->attr.st_ctime
2261 ) {
2262 #if EV_USE_INOTIFY
2263 infy_del (EV_A_ w);
2264 infy_add (EV_A_ w);
2265 ev_stat_stat (EV_A_ w); /* avoid race... */
2266 #endif
2267
2268 ev_feed_event (EV_A_ w, EV_STAT);
2269 }
2270}
2271
2272void
2273ev_stat_start (EV_P_ ev_stat *w)
2274{
2275 if (expect_false (ev_is_active (w)))
2276 return;
2277
2278 /* since we use memcmp, we need to clear any padding data etc. */
2279 memset (&w->prev, 0, sizeof (ev_statdata));
2280 memset (&w->attr, 0, sizeof (ev_statdata));
2281
2282 ev_stat_stat (EV_A_ w);
2283
2284 if (w->interval < MIN_STAT_INTERVAL)
2285 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2286
2287 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2288 ev_set_priority (&w->timer, ev_priority (w));
2289
2290#if EV_USE_INOTIFY
2291 infy_init (EV_A);
2292
2293 if (fs_fd >= 0)
2294 infy_add (EV_A_ w);
2295 else
2296#endif
2297 ev_timer_start (EV_A_ &w->timer);
2298
2299 ev_start (EV_A_ (W)w, 1);
2300}
2301
2302void
2303ev_stat_stop (EV_P_ ev_stat *w)
2304{
2305 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w)))
2307 return;
2308
2309#if EV_USE_INOTIFY
2310 infy_del (EV_A_ w);
2311#endif
2312 ev_timer_stop (EV_A_ &w->timer);
2313
2314 ev_stop (EV_A_ (W)w);
2315}
2316#endif
2317
2318#if EV_IDLE_ENABLE
2319void
2320ev_idle_start (EV_P_ ev_idle *w)
2321{
2322 if (expect_false (ev_is_active (w)))
2323 return;
2324
2325 pri_adjust (EV_A_ (W)w);
2326
2327 {
2328 int active = ++idlecnt [ABSPRI (w)];
2329
2330 ++idleall;
2331 ev_start (EV_A_ (W)w, active);
2332
2333 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2334 idles [ABSPRI (w)][active - 1] = w;
2335 }
2336}
2337
2338void
2339ev_idle_stop (EV_P_ ev_idle *w)
2340{
2341 clear_pending (EV_A_ (W)w);
2342 if (expect_false (!ev_is_active (w)))
2343 return;
2344
2345 {
2346 int active = ((W)w)->active;
2347
2348 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2349 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2350
2351 ev_stop (EV_A_ (W)w);
2352 --idleall;
2353 }
2354}
2355#endif
2356
2357void
2358ev_prepare_start (EV_P_ ev_prepare *w)
2359{
2360 if (expect_false (ev_is_active (w)))
2361 return;
2362
2363 ev_start (EV_A_ (W)w, ++preparecnt);
2364 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2365 prepares [preparecnt - 1] = w;
2366}
2367
2368void
2369ev_prepare_stop (EV_P_ ev_prepare *w)
2370{
2371 clear_pending (EV_A_ (W)w);
2372 if (expect_false (!ev_is_active (w)))
2373 return;
2374
2375 {
2376 int active = ((W)w)->active;
2377 prepares [active - 1] = prepares [--preparecnt];
2378 ((W)prepares [active - 1])->active = active;
2379 }
2380
2381 ev_stop (EV_A_ (W)w);
2382}
2383
2384void
2385ev_check_start (EV_P_ ev_check *w)
2386{
2387 if (expect_false (ev_is_active (w)))
2388 return;
2389
2390 ev_start (EV_A_ (W)w, ++checkcnt);
2391 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2392 checks [checkcnt - 1] = w;
2393}
2394
2395void
2396ev_check_stop (EV_P_ ev_check *w)
2397{
2398 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w)))
2400 return;
2401
2402 {
2403 int active = ((W)w)->active;
2404 checks [active - 1] = checks [--checkcnt];
2405 ((W)checks [active - 1])->active = active;
2406 }
2407
2408 ev_stop (EV_A_ (W)w);
2409}
2410
2411#if EV_EMBED_ENABLE
2412void noinline
2413ev_embed_sweep (EV_P_ ev_embed *w)
2414{
2415 ev_loop (w->other, EVLOOP_NONBLOCK);
2416}
2417
2418static void
2419embed_io_cb (EV_P_ ev_io *io, int revents)
2420{
2421 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2422
2423 if (ev_cb (w))
2424 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2425 else
2426 ev_loop (w->other, EVLOOP_NONBLOCK);
2427}
2428
2429static void
2430embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2431{
2432 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2433
2434 {
2435 struct ev_loop *loop = w->other;
2436
2437 while (fdchangecnt)
2438 {
2439 fd_reify (EV_A);
2440 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2441 }
2442 }
2443}
2444
2445#if 0
2446static void
2447embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2448{
2449 ev_idle_stop (EV_A_ idle);
2450}
2451#endif
2452
2453void
2454ev_embed_start (EV_P_ ev_embed *w)
2455{
2456 if (expect_false (ev_is_active (w)))
2457 return;
2458
2459 {
2460 struct ev_loop *loop = w->other;
2461 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2462 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2463 }
2464
2465 ev_set_priority (&w->io, ev_priority (w));
2466 ev_io_start (EV_A_ &w->io);
2467
2468 ev_prepare_init (&w->prepare, embed_prepare_cb);
2469 ev_set_priority (&w->prepare, EV_MINPRI);
2470 ev_prepare_start (EV_A_ &w->prepare);
2471
2472 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2473
2474 ev_start (EV_A_ (W)w, 1);
2475}
2476
2477void
2478ev_embed_stop (EV_P_ ev_embed *w)
2479{
2480 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w)))
2482 return;
2483
2484 ev_io_stop (EV_A_ &w->io);
2485 ev_prepare_stop (EV_A_ &w->prepare);
2486
2487 ev_stop (EV_A_ (W)w);
2488}
2489#endif
2490
2491#if EV_FORK_ENABLE
2492void
2493ev_fork_start (EV_P_ ev_fork *w)
2494{
2495 if (expect_false (ev_is_active (w)))
2496 return;
2497
2498 ev_start (EV_A_ (W)w, ++forkcnt);
2499 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2500 forks [forkcnt - 1] = w;
2501}
2502
2503void
2504ev_fork_stop (EV_P_ ev_fork *w)
2505{
2506 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w)))
2508 return;
2509
2510 {
2511 int active = ((W)w)->active;
2512 forks [active - 1] = forks [--forkcnt];
2513 ((W)forks [active - 1])->active = active;
2514 }
2515
2516 ev_stop (EV_A_ (W)w);
2517}
2518#endif
2519
2520#if EV_ASYNC_ENABLE
2521void
2522ev_async_start (EV_P_ ev_async *w)
2523{
2524 if (expect_false (ev_is_active (w)))
2525 return;
2526
2527 evpipe_init (EV_A);
2528
2529 ev_start (EV_A_ (W)w, ++asynccnt);
2530 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2531 asyncs [asynccnt - 1] = w;
2532}
2533
2534void
2535ev_async_stop (EV_P_ ev_async *w)
2536{
2537 clear_pending (EV_A_ (W)w);
2538 if (expect_false (!ev_is_active (w)))
2539 return;
2540
2541 {
2542 int active = ((W)w)->active;
2543 asyncs [active - 1] = asyncs [--asynccnt];
2544 ((W)asyncs [active - 1])->active = active;
2545 }
2546
2547 ev_stop (EV_A_ (W)w);
2548}
2549
2550void
2551ev_async_send (EV_P_ ev_async *w)
2552{
2553 w->sent = 1;
2554 evpipe_write (EV_A_ &gotasync);
2555}
2556#endif
2557
1578/*****************************************************************************/ 2558/*****************************************************************************/
1579 2559
1580struct ev_once 2560struct ev_once
1581{ 2561{
1582 struct ev_io io; 2562 ev_io io;
1583 struct ev_timer to; 2563 ev_timer to;
1584 void (*cb)(int revents, void *arg); 2564 void (*cb)(int revents, void *arg);
1585 void *arg; 2565 void *arg;
1586}; 2566};
1587 2567
1588static void 2568static void
1597 2577
1598 cb (revents, arg); 2578 cb (revents, arg);
1599} 2579}
1600 2580
1601static void 2581static void
1602once_cb_io (EV_P_ struct ev_io *w, int revents) 2582once_cb_io (EV_P_ ev_io *w, int revents)
1603{ 2583{
1604 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2584 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1605} 2585}
1606 2586
1607static void 2587static void
1608once_cb_to (EV_P_ struct ev_timer *w, int revents) 2588once_cb_to (EV_P_ ev_timer *w, int revents)
1609{ 2589{
1610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2590 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1611} 2591}
1612 2592
1613void 2593void
1614ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2594ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1615{ 2595{
1616 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2596 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1617 2597
1618 if (!once) 2598 if (expect_false (!once))
2599 {
1619 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2600 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1620 else 2601 return;
1621 { 2602 }
2603
1622 once->cb = cb; 2604 once->cb = cb;
1623 once->arg = arg; 2605 once->arg = arg;
1624 2606
1625 ev_init (&once->io, once_cb_io); 2607 ev_init (&once->io, once_cb_io);
1626 if (fd >= 0) 2608 if (fd >= 0)
1627 { 2609 {
1628 ev_io_set (&once->io, fd, events); 2610 ev_io_set (&once->io, fd, events);
1629 ev_io_start (EV_A_ &once->io); 2611 ev_io_start (EV_A_ &once->io);
1630 } 2612 }
1631 2613
1632 ev_init (&once->to, once_cb_to); 2614 ev_init (&once->to, once_cb_to);
1633 if (timeout >= 0.) 2615 if (timeout >= 0.)
1634 { 2616 {
1635 ev_timer_set (&once->to, timeout, 0.); 2617 ev_timer_set (&once->to, timeout, 0.);
1636 ev_timer_start (EV_A_ &once->to); 2618 ev_timer_start (EV_A_ &once->to);
1637 }
1638 } 2619 }
1639} 2620}
2621
2622#if EV_MULTIPLICITY
2623 #include "ev_wrap.h"
2624#endif
1640 2625
1641#ifdef __cplusplus 2626#ifdef __cplusplus
1642} 2627}
1643#endif 2628#endif
1644 2629

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines